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ABSTRACT OF DISSERTATION

Thermo-Mechanical Coupling for Ablation

In order to investigate the thermal stress and expansion as well as the associated
strain effect on material properties caused by high temperature and large temperature
gradient, a two-way thermo-mechanical coupling solver is developed. This solver
integrates a new structural response module to the Kentucky Aerothermodynamics
and Thermal response System (KATS) framework. The structural solver uses a finite
volume approach to solve either hyperbolic equations for transient solid mechanics, or
elliptic equations for static solid mechanics. Then, based on the same framework, a
quasi-static approach is used to couple the structural response and thermal response to
estimate the thermal expansion and stress within Thermal Protection System (TPS)
materials.

To better capture the thermal expansion and study its impacts on material prop-
erties such as conductivity and porosity, a moving mesh scheme is also developed
and incorporated into the solver. Grid deformation is transferred among different
modules in the form of variations of geometric parameters and strain effects. By
doing so, a bi-direction information loop is formed to accomplish the two-way strong
thermo-mechanical coupling.

Results revealed that the thermal stress experienced during atmospheric re-entry
concentrates in a banded area at the edge of the pyrolysis zone and its magnitude can
be large enough to cause the failure of the TPS. In addition, thermal expansion causes
the whole structure to deform and the changes in material properties. Results also
indicated that the impacts coming from structural response should not be ignored in
thermal response.

KEYWORDS: Thermo-mechanical coupling, atmospheric entry, thermal expansion,
ablation, two-way coupling
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Chapter 1: Introduction

1.1 Motivation

Long before the first launch of rocket into sky, space exploration has been a magnet

for human kind seeking ultimate knowledge, investigating the boundary of science,

or simply make a better life for future generations. Nations, organizations and in-

dividuals are driven to make contributions to this remarkable journey. The process

of exploration is slow but undoubtedly unremitting with the painful tragedy [1] and

the exciting success of reusable rocket [2]. From the first rocket to the first satellite

orbiting earth, the cooperation between nations and scientists keeps forward to the

promise of a better world.

In this process, various branches of science and technologies have been boosted

to an unparalleled level such as material science, chemistry and computer science,

etc. In order to either harness more power from the chemical fuel, or withstand the

heat produced during the atmospheric entry, many applications have been utilized

to protect the structural integrity from extremely high temperature and radically

elevated temperature gradient. At the same time, these applications must have rea-

sonable weight to achieve a economic balance [3]. And the most important system

that contributes to this task is the Thermal Protection System (TPS) [4].

Convergent-Divergent (CD) nozzle is another application where TPS technology is

used [7]. In order to create high Mach flow field for experiments or powering payload,

the converge part of nozzle first increases the pressure of the flow and then the flow to

Mach 1 at the throat. The divergent part accelerates the flow to higher Mach number.

To maintain a stable and precise Mach number, the wall of the chamber is coated

with special material as a thermal protection layer [8]. It protects the nozzle from
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aerodynamic heating and maintains a relatively low deformation ratio. In this case,

the design of TPS must also consider the thermal expansion effects when choosing

material as well as the high pressure may impact the nozzle walls [9]. Underestimating

the thermal expansion will result in bias and errors in experiments and impairing the

overall performance.

Another application can be found is the heat shield for atmospheric re-entry vehi-

cles [10]. During the entry process, because of the extremely high velocity, the effect

of aerodynamic heating can be catastrophic. At the surface of the vehicle, tempera-

ture can reach up to 3,000 K with a heat flux up to 1,000 W/cm2 [11]. In this case,

the TPS must first have extremely low conductivity to slower the energy transfer;

then, it must maintain structural integrity under a large thermal stress introduced

by temperature gradient [12]. In addition, TPS used by re-entry vehicles should be

as light as possible so that more payload can be carried on for a space mission [13].

Although far more applications can be found as the utilization of TPS, this re-

search will focus on the atmospheric entry vehicles.

1.1.1 Ablation

Generally speaking, there are two types of TPS, active and passive [14]. For active

TPS, more complex cooling system is needed to keep the system at relatively low

temperature [15]. The cooling system of internal combustion engine can be viewed

as a type of active TPS [16]. Therefore, due to the complicated cooling components,

the cost of the active cooling TPS is usually much higher than the passive one [17]

and possibly less reliable compared to passive TPS.

Ablation is a mechanism used by passive thermal protection system. During abla-

tion, the dynamic energy is transferred into heat, and at the same time, the ablative

material itself is being burned and decomposed into char and pyrolysis gas [18]. In

this process, large amount of heat is removed by chemical reactions and the payload
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is protected by the TPS. Many recent space missions launched by NASA and Space-X

used ablative materials as the key component of their heat shield [19]. To manufac-

ture large TPS, ablative materials are normally assembled into tiles to form the whole

heat shield and attached on the surface of the capsule [20].

The process of ablation raises a lot of problems on how to evaluate the thermo-

mechanical performance of TPS. Under such extreme condition, the materials must

first have low enough conductivity so that energy transfer is slowed [21]. Then, TPS

material must have relatively low coefficient of thermal expansion (CTE) [22]. In

addition, because of the unavoidable induced thermal stress, the material must have

a high ultimate strength so that the structural integrity is maintained [23]. Finally, the

properties of this TPS material, should be stable enough with respect to temperature

and thermal expansion since these two factors are entwined closely during the entry

process [24].

1.1.2 Thermal expansion and stress

Thermal expansion and induced stress are general phenomena can be observed in

multiple facets of life. On any large bridge, for instance, there will be expansion

joints built as buffer spaces for the thermal expansion [25]. The same design can be

found on railway constructions [26]. Another example is the performance of internal

combustion engine in cold temperature. In winter, the output of vehicle will be

‘lagging’ because metals are still in a contracting state so that a lot of spaces will

undermine the sealings among different components [27]. The temperature changes

in those examples are very limited with no more than 800 K (for automobile engine).

With respect to TPS, much wider range of temperature is expected up to 3,000 K [28].

It is a must to carefully analyze the thermal expansion and stress in design and test

stages.

The expansions and stresses result from the changes in temperature. Temperature
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is the average of overall molecular kinetic energy of a substance. When an object is

heated, the kinetic energy increases and results in more vibrations and movements

of molecules. As a result, distances among the molecules become larger and the

overall shape deforms [22]. Most natural materials have positive proportional thermal

expansion coefficients, which means they expand under heating and contract under

cooling. If this heated object is constraint by certain conditions, like contacting with

a wall, the molecules react to each other and stress is then induced.

To study this thermally induced stress in TPS, this research will focus on numerical

simulations for the fundamental equilibrium equations.

1.2 Literature review

1.2.1 Stress and thermal stress

Thermal processing on metal can be traced back to thousands of years [29]. At that

time, there were no necessary tools to describe the real physics behind the perfor-

mance of materials and forces. Cauchy presented the first rigorous model for stress in

continuous solid media [30]. Based on that, several branches of solid mechanics had

been formed for different kinds of stress analysis and applications, and they are still

evolving.

The history of investigation on thermal stress can be dated back on 1835 by

Duhamel on the temperature effects on elasticity problem [31]. He studied the for-

mulations of elasticity with temperature as a variation parameter. Fueled by the

Industrial Revolution, science related to thermal power has been booming. More and

more analytical solutions have been found for specific geometries such as curved beam,

rings and frames [22]. With the aid of modern computer and the evolution of numeri-

cal methods such as Finite Different Method (FDM), Finite Element Method (FEM)

and Finite Volume Method (FVM), the realm of computation of thermal stress has

expanded greatly to almost any geometry, with any boundary conditions [32]. The
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problems, however, still remain unresolved for situations where a multi-physics cou-

pling scenario with more than two sets of equations are coupled together, especially

for the re-entry problem.

1.2.2 Structural response simulation

The mathematical foundation in solid mechanics is to solve either a set of elliptic

partial different equations (PDEs) for static problems, or a set of hyperbolic PDEs for

transient problems [22]. Among various numerical methods, Finite Element Method

is in a dominant role in solid mechanics solvers [33]. Some of the most famous

commercial FEM packages are ANSYS [34], COMSOL [35] and Nastran [36]. In this

research, a large amount of verification cases are verified against ANSYS results.

The ability to couple different physics together for more complex problem varies

in different packages. FEM calculates everything on node while the FVM on cell

center. To perform a thermo-mechanical coupling analysis between different frame-

work, interpolations are needed between cell nodes and cell centers. Consider the long

physical time of a specific problem, errors can become large due to the multiple times

of interpolations. Even within a same framework, the requirements of computational

grid varies a lot due to different governing equations [37]. More discussions of the

coupling schemes can be found in the following chapter.

More limitations prevent this research to use the FEM solver especially for the

re-entry problem. Atmospheric entry involves hypersonic flow field and an in-depth

material response. To do a fully coupled numerical modeling, all the relative modules

need to be coupled together. In order to facilitate coupling with existing solvers, the

structural response solver is developed in a FVM framework.
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1.2.3 Thermo-mechanical coupling for ablation

To accurately model the mechanical performance of TPS during entry, a coupled

thermo-mechanical solver is needed. The purposes of developing such solver is to

estimate the magnitude and location of the thermal stress caused by temperature

gradient. Dating back in 1960s, NASA has studied the thermal and mechanical per-

formance of various ablator materials mainly through experiments [38]. At that time,

measurements on the mechanical performance were very limited since the cost of the

tests were not trivial. Attempts at calculating the thermal stress of the space shuttle

orbiter wing skin panel were also conducted [39]. The main methods to estimate the

thermal stress induced by temperature distribution were theoretical mathematical

derivations and simplification to some specific geometries. As the power of mod-

ern computer became increasingly promising and economic, numerical studies were

emerging on this topic. Wei H. Ng and Anthony M. Waas estimated the thermal stress

of space shuttle using ABAQUS [40] and found out the magnitude of the maximum

von Mises stress was around 500 MPa at the constrained underlying structure [41].

Due to the limits of the commercial code, no material response was involved and the

impacts of thermal expansion were not considered.

During the ablation, the internal pressure produced by the produced pyrolysis

gas may also have structural impacts. These impacts are rarely estimated. Similar

studies, however, can be found in the theory of poroelasticity by Biot in his series of

paper [42, 43]. In this study, a exploratory study will be presented to investigate the

structural performance of the internal pressure produced by fluid within the porous

media.

The effects of thermal expansion due to large temperature gradient can be dis-

astrous. Experiments and numerical modeling show that the thermal expansion in

less intense environment such as CD nozzle dose have impacts on the performance of

the nozzle. In a study by Qiang and Shanyi Du et al., a more accurate estimation
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of thermal expansion can lead to redesign of the structural and reduce the maximum

stress by 14% [44]. In a lastest study for the HIPPO nozzle, Boyd et al. shows

that neglecting thermal expansion can lead to large errors in evaluating the surface

recession [45].

Another challenge is the previously mentioned material recession during ablation.

TPS material not only expands because of the high temperature distribution, but also

keeps losing material because of the shear stress and charring process. This nature

of geometric deformation requires a solver to capture the expansion and at the same

time, the surface recession. Such complex process has never been numerically studied

before.

In thermo-mechanical coupling, it is also important to identify the approach of

handling the information transferring between different modules. Usually, large vari-

ations of temperature and possible changes in density, information of temperature,

density and all the geometric parameters such as face areas, relative distances and

cell volumes are needed to be shared with structural response module. In one-way

coupling, an uni-direction information transfer path, from thermal response to struc-

tural response, is used to simplify the simulation process. Details of this process will

be presented in Chapter 3.

Unlike one-way coupling, two-way coupling features a bi-directional information

transfer between different modules. This process usually does not gain popularity

because of the complicated mathematical treatments and instability problems. It

is, however, very useful for the situations where structural changes may result in

large impacts on material properties and shapes of the objects. With respect to the

ablation problem, the thermal expansion and strain effects on the material properties

are changing the behaviors of material response. In this research, thermal expansion is

captured with a moving mesh scheme and transferred back into the material response

code. In addition, strain effects on conductivity will also be investigated based on a
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linear relationship.

1.3 Structures of research

In Chapter 2, the mathematical foundation of thermo-mechanical coupling will be

discussed with detailed governing equations and boundary-conditions. Then, the

uniqueness of a solution for fully coupled problem is proved by mathematical deriva-

tions. Next, discussions on conditions where inertial and mechanical coupling terms

can be neglected are provided, which leads to the framework of quasi-static frame-

work.

In Chapter 3, verifications cases on the structural response are presented as well

as the coupling case. Then, the developed framework will be applied to an ablation

case to investigate the distribution of displacement and von Mises stress.

Chapter 6 shows the process of development of a 1D two-way thermo-mechanical

solver. 1D code has many merits such as fast-prototyping and computationally cheap.

The 1D code is then verified using ANSYS results to demonstrate the correct imple-

mentation. Followed by that, some preliminary results for strain effects on a heat

conduction case are also provided.

Chapter 7 shows the development of a 3D fully coupled two-way strong thermo-

mechanical solver. The verification process is conducted by cross-valiadation with

the developed 1D solver and ANSYS result through a coupled heating case. Then,

a series of test cases are presented to show how thermal expansion and strain effect

impact on the performance of TPS.

Copyright c© Rui Fu, 2018.
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Chapter 2: Thermo-mechanical Coupling

2.1 Introduction

Rapidly elevated temperature and extreme temperature gradient occur a large variety

of engineering problems. In most cases, thermal deformations and stress are produced.

Understanding these stresses is of significant importance to the safety and life of the

materials and overall system. One typical example can be found is atmospheric

entry process, where space vehicles suffer from extreme aerodynamic heating resulted

from high-speed flight. Requirements on the materials can be complex for weight,

porosity and conductivity. Moreover, safety is always the primary concern for overall

system evaluation. To design such thermal protection system, accurate temperature

distribution and possible thermal deformation must be carefully examined. Thus, it is

crucial to investigate the relationship between these two closely entwined phenomena.

Although computer simulation and modeling currently dominate the early stages

of research and development, it is crucial to understand the mathematical foundations

behind these fancy tools. Otherwise, results and analysis provided by computational

tool cannot be trustworthy and reliable. In order to obtain better understanding

and more accuracy, mathematical foundations must be studied thoroughly. In this

chapter, fundamental laws that governed the thermal dynamics and solid mechanics

are investigated.

2.2 Fully coupled thermoelastic and uniqueness theorem

The fundamental equations used for a coupled thermo-mechanical problem can be

derived from principles of solid mechanics and thermodynamics. It is very important

to examine the equations, which will be solved simultaneously, with an unique existing
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solution under a general conditions. This section serves as a mathematical foundation

for the rest of the thesis.

2.2.1 Problem definition

Given a volume of arbitrary material in space V + B with B as the boundary. Then,

there exists at most one set of single-valued functions σij(x, t) and εij(x, t) of class

C(1), and T (x, t) and ui(x, t) of class C(2), for x = (x1, x2, x3) in V + B, t ≥ 0, which

satisfy the following equations as a complete coupled thermo-mechanical problem for

x in V, t ≥ 0:

kTmm = ρcṪ +mT0ε̇kk (2.1a)

σij,j = ρüi (2.1b)

and with the strain equation and stress-strain relation for x in V, t ≥ 0,

εij =
1

2
(ui,j + uj,i) (2.2a)

σij = δijλεkk + 2µεij − δijm(T − T0) (2.2b)

with boundary conditions for x on B, t > 0,

T = Tbc(x, t) (2.3a)

ui = Ui,bc(x, t) (2.3b)

and with initial conditions for x in V, t = 0,

T = Tic(x, t) (2.4a)

ui = Ui,ic(x, t) (2.4b)

u̇i = U̇i,ic(x, t) (2.4c)

where the quantities k, c, ρ, 3λ + 2µ, m = (3λ + 2µ)α and T0 are all positive. All

the initial and boundary condition functions are known. A function, for instance,
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u(x1, x2, · · · , xn) is said to be continuous of class C(n) if the function itself and all

its partial derivatives of order up to and including n are continuous functions of

(x1, x2, · · · , xn).

Problem proof

Assuming there exists two different such sets of functions, σ
(1)
ij and σ

(2)
ij , ε

(1)
ij and ε

(2)
ij

etc., and introduce the difference functions as,

σ∗ij = σ
(1)
ij − σ

(2)
ij (2.5a)

ε∗ij = ε
(1)
ij − ε

(2)
ij (2.5b)

u∗i = u
(1)
i − u

(2)
i (2.5c)

T ∗ = T (1) − T (2) (2.5d)

Because of the linearity of the problem, these difference functions should also satisfy

Eqs. 2.1 to Eqs. 2.2a and the homogeneous counterpart of Eqs. 2.2b to Eqs. 2.4. In

the next few paragraphs, detailed derivations will be provided to show that, with

certain amount of mathematical transformation, these differential terms can only be

zero, which is the proof of an uniqueness solution.

Starting with the integral from of Eqs. 2.29a,∫
V

kT ∗mm dV =

∫
V

ρcṪ ∗ dV +

∫
V

mT0ε̇
∗
kk dV (2.6)

For both hand sides, multiply with T ∗,∫
V

kT ∗T ∗mm dV =

∫
V

ρcT ∗Ṫ ∗ dV +

∫
V

mT0T
∗ε̇∗kk dV (2.7)

the left hand side can be construct with additional term as,∫
V

kT ∗T ∗mm dV +

∫
V

kT ∗mT
∗
m dV =

∫
V

(kT ∗T ∗m)m dV (2.8)
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The right hand side, by employing divergence theorem, becomes,∫
V

(kT ∗T ∗m)m dV =

∫
B

kT ∗T ∗mnm dA (2.9)

Since T ∗ on boundary is 0, thus,∫
V

(kT ∗T ∗m)m dV =

∫
B

kT ∗T ∗mnm dA = 0 (2.10)

Thus, the Eqs. 2.6 can be written as∫
V

ρcT ∗Ṫ ∗ dV +

∫
V

mT0T
∗ε̇∗kk dV +

∫
V

kT ∗mT
∗
m dV = 0 (2.11)

The first term on left hand side can further be re-written as,∫
V

ρcT ∗Ṫ ∗ dV =
ρc

2

∫
V

∂

∂t
T ∗2 dV (2.12)

the Eqs. 2.29a, combined with boundary condition Eqs. 2.3a, is derived as,

ρc

2

∫
V

∂

∂t
T ∗2 dV +

∫
V

mT0T
∗ε̇∗kk dV = −

∫
V

kT ∗mT
∗
m dV (2.13)

Next, the second term on the left hand side must be derived with a form of square

function to complete this proof. Let T0 be 0 and multiply the Eqs. 2.2b with ε̇∗kk in

integral form as,∫
V

σ∗ij ε̇
∗
ij dV =

∫
V

δijλε
∗
kkε̇
∗
ij dV +

∫
V

2µε∗ij ε̇
∗
ij dV −

∫
V

δijmT
∗ε̇∗ij dV (2.14)

For the first left term in the above equation, it can be re-written in terms of time

derivative of displacement as,∫
V

σ∗ij ε̇
∗
ij dV =

∫
V

σ∗iju̇
∗
i,j dV =

∫
V

[
(σ∗iju̇

∗
i ),j − (σ∗ij,ju̇

∗
i )

]
dV (2.15)

For the first term in the right hand side, by utilizing the divergence theorem and the

boundary condition Eqs. 2.3b, it can be written as,∫
V

(σ∗iju̇
∗
i ),j dV =

∫
B

σ∗iju̇
∗
inj dA = 0 (2.16)
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And to derive the second term on the right hand side, using the equilibrium equation,

in a square form as,∫
V

σ∗ij,ju̇
∗
i dV =

∫
V

ρü∗i u̇
∗
i dV =

∫
V

∂

∂t
(
1

2
ρu̇∗i u̇

∗
i ) dV (2.17)

Then, the Eqs. 2.15 can be written as,∫
V

σ∗ij ε̇
∗
ij dV +

∫
V

∂

∂t
(
1

2
ρu̇∗i u̇

∗
i ) dV = 0 (2.18)

To complete the whole derivation, the alternative form of stress and strain tensor in

terms of mean and deviatoric components are introduced,

sij = σij − δijσ (2.19a)

eij = εij − δijε (2.19b)

where sij represents stress tensor, eij represents the strain tensor, σ =
1

3
σii and

ε =
1

3
εii. Using the Eqs. 2.19, the first term in Eqs. 2.18 can be written as,∫

V

σ∗ij ε̇
∗
ij dV =

∫
V

3σ∗ε̇∗ dV +

∫
V

s∗ij ė
∗
ij dV (2.20)

With an additional relationship between the mean value of stress and strain as,

σ = (3λ+ 2µ)[ε− α(T − T0)] (2.21)

Remove T0 as a constant and with sij = 2µeij, the Eqs. 2.20 can be written as,∫
V

σ∗ij ε̇
∗
ij dV =

∫
V

3(3λ+ 2µ)ε∗ε̇∗ dV + 2µe∗ij ė
∗
ij −

∫
V

mT ∗ε̇∗kk dV (2.22)

Combine with the Eqs. 2.18, the final form is,∫
V

{ ∂
∂t

[
3

2
(3λ+ 2µ)ε∗2 + µe∗ije

∗
ij +

1

2
ρu̇∗i u̇

∗
i

]
−mT ∗ε̇∗kk} dV = 0 (2.23)

Rewrite the Eqs. 2.13 as,

ρc

2

∫
V

∂

∂t
T ∗2 dV +

∫
V

mT0T
∗ε̇∗kk dV = −

∫
V

kT ∗,mT
∗
,m dV (2.24)

13



By dividing the above equation by T0, and substituting mT ∗ε̇∗kk, the equation of all

the combined terms becomes,

∂

∂t

∫
V

{
3

2
(3λ+ 2µ)ε∗2 + µe∗ije

∗
ij +

1

2
ρu̇∗i u̇

∗
i +

ρc

2T0

T ∗2
}
dV = − k

T0

∫
V

T ∗,mT
∗
,m dV (2.25)

Since all the differential terms are initially zero according to the initial condition, the

time derivative can only be zero or positive. The right hand side, however, indicates

that the value must be zero or negative since k and T0 are positive. With this

reasoning and inequality, the left hands side must be zero.

∂

∂t

∫
V

{
3

2
(3λ+ 2µ)ε∗2 + µe∗ije

∗
ij +

1

2
ρu̇∗i u̇

∗
i +

ρc

2T0

T ∗2
}
dV = 0, (t ≥ 0) (2.26)

Thus, all the differential terms must remain zero for the whole set of equations for all

time. By proving the uniqueness of the coupled solutions, it is now ensured that the

results from numerical simulation based on these equations are unique.

2.3 Discussion of a fully coupled formulation

In order to examine the behaviors of a coupled thermoelastic solution for possible

simplification, a complete solution is presented. The solution comes from the classic

textbook Theory of Thermal Stress [22]. Consider a bar of arbitrary material, initially

at rest and at a uniform temperature. This bar is subjected to a prescribed internal

heat of generation, Q(x, t) per unit volume given by,

Q(x, t) = Q0(t)cos(x/L) (2.27)

where L represents the length of this bar. Constrains are imposed as,

u = u(x, t), (2.28a)

v = w = 0 (2.28b)
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u are displacement and T is temperature as primitive variables. The set of equations

for a complete coupled thermoelastic problem can be written as,

k
∂2T

∂x2
− ρcv

∂T

∂t
− (3λ+ 2µ)α1T0

∂2u

∂x∂t︸ ︷︷ ︸
mechanical coupling

+Q = 0 (2.29a)

(λ+ 2µ)
∂2u

∂x2
− ρ

∂2u

∂t2︸ ︷︷ ︸
inertial effects

−(3λ+ 2µ)α2
∂T

∂x
= 0 (2.29b)

where k is conductivity, ρ is density, cv is heat capacity, λ and µ are Lamé parameters,

α1 and α1 are coefficients of thermal expansion. It should be noted that in a full

coupling problem, both the mechanical coupling and inertial effects are taken into

account. To better investigate the mathematical behavior, dimensionless forms of a

list of parameters will be given. The solutions of displacement and temperature are,

u/L = ρcv/[α(3λ+ 2µ)]F (τ)sin(x/L) (2.30a)

T/T0 = G(τ)cos(x/L) (2.30b)

The following dimensionless parameters are also defined,

τ =
kt

ρcL2
(2.31a)

δ =
(3λ+ 2µ)2α1α2T0

(λ+ 2µ)ρcv
(2.31b)

K =
k

Lρcvve
(2.31c)

ve =
√

(λ+ 2µ)ρ (2.31d)

Where τ represents the time and ve the solid velocity. δ is a parameter can be

used to measure the extent of coupling. K is a coefficient to measure the thermal

characteristic time versus the structural characteristic time.

2.4 Mechanical coupling in heat conduction

The mechanical coupling term in the heat conduction equation can capture strain-

induced temperature rise. Consider an elastic steel bar being periodically pulled and
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compressed. Usually this process results in an increase of entropy and energy in a

mechanically irreversible process. This phenomenon is known as thermoelastic dis-

sipation. The mechanical coupling term, thus, plays essential role in this kind of

problem. However, if the strains and deformation are caused by non-uniform temper-

ature distribution, the deformation should not have large impact on the temperature

for most scenario. In such condition, the mechanical coupling term may be ignored.

With the definition of coupling parameter δ in Eqs. 2.31b, the heat equation may

be re-written as,

k
∂2T

∂x2
= ρcv

∂T

∂t

[
1 + δ(

λ+ 2µ

3λ+ 2µ
)(
∂ε/∂t

α1
∂T
∂t

)︸ ︷︷ ︸
mechanical coupling

]
+Q (2.32)

If the value of coupling term is much less than unit, it is then negligible. The inequality

is rewritten and provided as,

ε̇

3α1Ṫ
� (

λ+ 2µ/3

λ+ 2µ
)
1

δ
(2.33)

Setting T0 = 366 K as environmental temperature and using the properties listed in

Table 2.1, The value of δ can be calculated δ = 0.014, thus, the value of coupling

Table 2.1: Steel Properties

Density, kg/m3 Young’s modulus, N/m2 Poisson ratio

7850 2× 1011 0.3
Conductivity, W/(m· K) Specific heat, J/(kg· K) Coef. of thermal exp., m/(m·K)

60.5 434 12× 10−6

term will be very small if, approximately,

ε̇

3α1Ṫ
� 50 (2.34)

It should be noted that since the driving force of thermal strain is the non-uniform

temperature distribution, it is safe to argue that the time rate of change of strain

should be the same order as the time rate of change of temperature, which indicates
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the following inequality as,

ε̇ ' αu̇ ' αṪ (2.35)

The previous discussion makes it clear that the value of δ can be an indicator as

a threshold value for whether or not the mechanical coupling should be taken into

account for an temperature-driven thermal stress analysis. Generally, if δ � 1,

it is unnecessary to consider the mechanical coupling term in a thermo-mechanical

coupling analysis.

2.5 Inertial term in equilibrium

The inertial term in the equilibrium can be tricky to handle numerically since it is a

second order derivative with respect to time. Therefore, it is necessary to discuss the

conditions when this term can be neglected. It should be noted that the time rate

of change of temperature is generally slow compare to the dilitational waves and the

time rate of change of displacement. Some important issues were studied thoroughly

by Boley [22]. Thus, a quick summary will be provided to show the criterion for the

elimination of inertial term in practical applications.

Consider a bar with length L is being heated by a constant heat flux. An arbi-

trary point P , where 0 < P < L, has been chosen as a study position. At t = t1,

a thermo-mechanical expansion wave, caused by the initial heating of the surface,

reaches at point P . This point will first be compressed and then relieve stress due

to the expansion wave, and finally become tensile. To assess how strong the expan-

sion wave, which represents the inertial effects, some dimensionless parameters are

introduced as,

tM =
L

ve
(2.36a)

tT =
L2

κ
(2.36b)

H =
κh

vek
(2.36c)
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where tM represents the characteristic mechanical time and tT the characteristic

thermal time. κ is thermal diffusivity and H can be viewed as a ratio of mechanical

time and thermal time, which will be discussed in greater length later. For steel, it

is easy to observe that,

tT � tM (2.37)

The above inequality indicates that the mechanical expansion waves respond much

faster and reach its static state. That is one of the criterion can be used to assert

the ignorance of inertial effect. Another one is the value of H. With no geometric

irregularities such as holes or cracks, the maximum value of thermal stress can be

written as,

σxx,max = −Eα4T
1− 2v

(2.38)

where E and v are Young’s modulus and Poisson ratio. The absolute value of the

change 4σ caused by inertial effects can be related to the max stress, according to

the Poisson effects, as

4σ = v

∣∣∣∣Eα4T1− 2v

∣∣∣∣ =
v

1− 2v
|σ| (2.39)

For the solution of a fully coupled approach, as depicted in Ref. [22], for H < 1,

|σ| < H

1−H
(2.40)

Therefore, for this range of H, the possible maximum disturbance caused by inertial

is

|σ| <
(

v

1− 2v

)
H

1−H
(2.41)

For steel, it takes a value of 3× 10−5. With such small value, the cost of ignoring the

inertial effects in the thermo-mechanical coupling is extremely small. For a heating-

driven problem, the values of H and
tM
tT

should be carefully examined to evaluate the

importance of the inertial term.
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2.6 Quasi-static thermo-mechanical coupling

Based on the preceding analysis, the effects of the mechanical coupling terms of energy

equation and inertial terms of equilibrium equation can be neglected for a wide range

of thermo-mechanical coupling problems.

2.6.1 Formulations and uniqueness

The simplified formulations for a 1D thermo-mechanical coupling problem are pre-

sented as,

k
∂2T

∂x2
− ρcv

∂T

∂t
+Q = 0 (2.42a)

(λ+ 2µ)
∂2u

∂x2
− (3λ+ 2µ)α

∂T

∂x
= 0 (2.42b)

It should be noted that since the coupled equations have been simplified to two

“separated” equations, the uniqueness of each equation can be guaranteed by the

theory of partial differential equation (PDE). Those proof are straightforward and

can be found in any classic PDE textbook.

2.6.2 Analytic solutions and remarks

With specific boundary condition and initial conditions mentioned before, an analytic

solution can be found in Boley [22] as,

T (τ)

cos(x/L)

[
k

Q0L2

]
= 1 +

e−τ − τ0e
−τ/τ0

τ0 − 1
(2.43a)

u(τ)

sin(x/L)

[
(λ+ 2µ)k

(3λ+ 2µ)Q0L3α

]
= 1 +

e−τ − τ0e
−τ/τ0

τ0 − 1
(2.43b)

Several remarks should be noted for the above formulations and solutions. The

first one is that by ignoring the inertial terms in equilibrium equation, there is no

time derivative term in this equation, and this is the origin where the “quasi-static”
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terminology comes from. The second observation is that although there is no time

derivative of displacement, the solution is still time depend as u(x, τ) because of the

time dependency of temperature distribution. This observation is important when

investigating the ablation cases and two-way coupling.

Since displacement and stress are treated as quasi-static solutions, a question of

when they should be calculated arises. The severeness of the variation in material

properties and rapid temperature distribution both contribute to a rapid changes

in stress distribution. Thus, in practical application, the frequency of updating the

solution for u(x, τ) must be carefully examined.

2.7 General remarks and summary

Although various types of analytic solutions regarding the thermo-mechanical prob-

lem can be found with certain boundary conditions and initial conditions, in most

practical problem, due to the temperature-dependent material properties, deforming

shape and other factors, it is impossible to obtain an analytic solution. Therefore,

with the power of modern high performance computer, such coupling problems have

to be solved using numerical methods, such as Finite Element Method, Finite Dif-

ference Method or Finite Volume Method. In this study, the finite volume method

is chosen for the framework of the numerical scheme. Because of the coupling needs,

detailed formulations and discretization approach will be presented in later chapters.

Copyright c© Rui Fu, 2018.
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Chapter 3: Thermo-mechanical One-way

Coupling

3.1 Introduction

During hypersonic planetary entry, vehicles are exposed to extreme aerodynamic heat-

ing. To protect the payload, Thermal Protection Systems (TPS) are employed [46].

Modern TPS use low density ablative materials to effectively reduce the heat rate

applied to the spacecraft through phase change and chemical phenomena, such as

pyrolysis and ablation [47]. These two effects have been studied and modeled ex-

tensively since the 1960s. However, another ablation phenomenon, spallation, occurs

when porous ablative materials are subjected to high enthalpy flows [48, 49, 50].

This phenomenon can be described as the ejection of material particles into the flow

field. The particle ejection can lead to the formation of grooves which escalates

aerodynamic heating, accelerates material recession and weakens the integrity of the

TPS [51]. Material failures and catastrophic loss can be triggered by this process.

It is also speculated that the ejected particles, traveling in high temperature regions

of the flow, might block the radiative heating generated by the shock, and therefore

reduce the energy reaching the surface [52]. The mechanisms that cause spallation

are not well understood. For aerothermodynamic ablation, current state of the art

techniques account for this process by multiplying the thermochemical ablation rate

by a factor [53]. This correlation assumes that the thermochemical ablation is linked

to spallation, which is not necessarily a bad assumption. However, there is clearly a

need to better understand the spallation phenomenon.

One possible cause of spallation is material failure at the micro-scale resulting from

exceeding the material stress limit. TPS are usually manufactured using a carbon
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fiber reinforcement [54, 55, 4]. For most materials, their integrity is maintained when

the mechanical stress is less than a certain threshold value (500 MPa for crossply

carbon-fiber composites, for instance [56]). Once this stress limit has been exceeded,

micro fractures appear on the fiber scale, leading to material failure. Numerous

studies have been published on the mechanical behavior of porous ablators. One

such study [57, 58] focuses on the fracture testing of virgin and charred PICA. It was

observed that cracks were initiated and grew when a critical stress limit had been

reached, separating the carbon fibers from the binder. Thus, it is reasonable to assert

that spallation is a series of micro-fiber fractures caused by exceeding the material

strength limit. The stress acting on the fiber resulted from a combination of thermal

strain, internal pressure and shear stress of both flow field and pyrolysis gas blowing.

Therefore, to correctly predict the leading factors of spallation and failure of the TPS,

it is critical to accurately model both the distributions and magnitudes of stresses

within materials in a strongly coupled approach.

High temperature gradients are not the only source of stress inside TPS materials.

The complexity of this problem increases as chemical reactions and surface blowing is

considered [59]. These two factors are entwined within the ablation process, resulting

in density changes and production of pyrolysis gas [60, 61]. Transformation of TPS

materials by chemical reactions results in radical changes in properties such as Young’s

modulus and the coefficient of thermal expansion (CTE). Transport of pyrolysis gas

not only changes the temperature field, but also leads to internal pressure which can

cause stress concentrations [62].

During re-entry, the extremely high temperatures cause the TPS to expand so

that strain rate effects cannot be ignored [63]. This non-uniform distribution of

temperature causes a non-uniform expansion, which in turn, can alter the material

properties such as permeability, porosity and conductivity [64]. Moreover, if the

variability of material properties is considered, thermal strain can cause local defects
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that can lead to spallation.

Although extensive numerical studies have focused on the mechanism of abla-

tion [49, 65, 66, 67, 68, 69] and chemical pyrolysis gas transport [70, 71, 72, 73],

the ability to couple material response to structural response has only been briefly

explored [74, 68]. Solid mechanical solvers are usually only coupled with heat con-

duction, and material changes and internal pressure within the material are not taken

into account. Moreover, the effects of the structural response are not considered in

thermal response solvers.

In solid mechanics modeling, the Finite Element Method (FEM) dominates both

academia and industry, with popular codes such as ANSYS Mechanical [34] and

Abaqus [40]. These commercial codes have been proven to be accurate and efficient for

both static and dynamic problems. However, most hypersonic aerothermodynamics

and material response codes use a different approach, which leads to difficulties in

coupling schemes. Some hybrid methods have yielded satisfactory results, such as the

Control Volume Finite Element Method (CVFEM) [75]. This method adapts a finite

volume mesh and extracts nodes for computing [76]. However, the interpolations

between computing units, cell center and grid node, are inevitable for a coupling

scheme if a mixed finite volumes and finite elements are used. This situation may

result in a lower computational efficiency and possible numerical errors. The use of

a pure Finite Volume Method (FVM) has also been utilized to solve solid mechanics

problems. Bijelonja and Demirdzic [77] proposed such an approach for the linear

elasticity problem. The same approach was also used for coupled thermo-mechanical

stress analysis, on a moving mesh [78]. To validate the approach, Fallah et al. [79, 80]

offered comparisons of FEM and FVM results for different geometries and stress

analysis. All of these studies demonstrated that FVM has equal accuracy, while

being much simpler to implement mathematically and numerically.

The present work proposes a method of coupling multi-physics models for ablation
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simulation, and investigates links between the distribution of stress and ablation

phenomena. A structural response solver is developed using a Finite Volume Method.

This method is chosen to facilitate the coupling with a FVM-based material response

code, so that both codes can share the same structure and computational grid. The

structural response code is capable of both static and transient problems such as

vibrations. In this study, a quasi-static coupling strategy [81] is utilized for coupling

both codes.

The following sections describe the numerical framework used to discretize the

governing equations with related mathematical models. Then, a series of verification

test cases are presented to demonstrate that the models are correctly and accurately

implemented. Finally, a coupled thermo-mechanical test case for a 2D charring abla-

tor sample is presented.

3.2 Governing equations and numerical implementation

3.2.1 Numerical framework

The solid mechanics and material response codes have both been developed within

the Kentucky Aerothermodynamic and Thermal-response System (KATS) frame-

work [70, 71, 72]. KATS has been used to solve hypersonic flows [48, 82], low-speed

turbulent flows [83, 84], and material response [71, 70]. KATS is designed for mas-

sively parallellized computations, utilizing ParMETIS [85] for domain decomposition

and openMPI [86] as the message passing interface. In KATS, the general time-

dependent partial differential equations are written in the following form

∂Q

∂t
+∇ · (F −Fd) = S , (3.1)

whereQ represents the conservative variables, F the advective fluxes, Fd the diffusive

fluxes, and S represents the source terms. The system of equations is integrated over a

cell volume, and spatially discretized. The resulting linear system is solved iteratively
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for the whole domain, using an implicit backward Euler scheme[
V

∆t
I − ∂R

∂Q

]
∆Q = R , (3.2)

where V is the volume of the cell. Vector R represents the right hand side terms of

the linear system and is defined as

R ≡ −
∑
i∈cell

(F −Fd) · niAi + SV (3.3)

where Ai and ni are respectively the area and normal vector of the ith face of the cell.

3.2.2 Governing equations for the structural response module

The structural response module in KATS solves for the displacement field u ≡

(ux, uy, uz). Three relations – force equilibrium, strain tensor and Hooke’s Law –

compose a closed system for the evaluation of the structural response, and are given

as

∂2ρsu

∂t2
−∇ · σ = ρsf , (3.4)

σ = 2µε+ λ Tr(ε)I, (3.5)

ε =
1

2
[∇u+ (∇u)T]. (3.6)

where ρs represents the density of a solid material, σ is the stress tensor, t is time,

f is the external body force per unit mass and ε is the strain tensor. µ and λ are

respectively the first and second Lamé parameters, and are obtained with

µ =
E

2(1 + ν)
(3.7)

λ =
Eν

(1 + ν)(1− 2ν)
(3.8)

where E is Young’s modulus and ν is Poisson’s ratio. Since the components of the

displacement vectors u are the variables for which the equation is solved, the conser-

25



vation equation can be rewritten as∫
V

∂2(ρsu)

∂t2
dV −

∮
∂V

[
µ
(
∇u+ (∇u)T

)
+ λ Tr(∇u)I

]
· n da =

∫
V

ρsf dV . (3.9)

Initial conditions are set using the distribution of displacement u or ∂u/∂t at

t = 0. The solution is obtained by applying the usual boundary conditions such as a

fixed support on the surface, symmetry, fixed pressure, fixed traction or free surface

(zero traction).

3.2.3 Treatment for the time derivatives

Since the equilibrium equation for solid mechanics has a second-order time derivative,

the time integration scheme must be different than the material response or flow field

equations. In this study, the second-order time derivative term is split into two first-

order time derivatives

∂u

∂t
= v, (3.10a)

∂v

∂t
+∇ · (F −Fd) = S. (3.10b)

where v ≡ (vx, vy, vz) is the solid velocity vector. By doing so, the two equations

can be solved using the KATS framework. Since the solid density is treated as a

constant in the quasi-static scheme for each time step, the equations are divided by

ρs on both sides. The governing equations, in the context of Eq. (7.1) and (7.2), are
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thus represented by the following

Q =



ux

uy

uz

vx

vy

vz


,Fd =

1

ρs



0 0 0

0 0 0

0 0 0

2µ
∂ux
∂x

+ λ∇ · u µ

(
∂ux
∂y

+
∂uy
∂x

)
µ

(
∂ux
∂z

+
∂uz
∂x

)
µ

(
∂uy
∂x

+
∂ux
∂y

)
2µ
∂uy
∂y

+ λ∇ · u µ

(
∂uy
∂z

+
∂uz
∂y

)
µ

(
∂uz
∂x

+
∂ux
∂z

)
µ

(
∂uz
∂y

+
∂uy
∂z

)
2µ
∂uz
∂z

+ λ∇ · u


,

(3.11)

S =



vx

vy

vz

ρsfx

ρsfy

ρsfz


.

(3.12)

3.2.4 Thermo-mechanical coupling procedure

Since the structural response reaches equilibrium at a much faster speed than thermal

response, a quasi-static approach is sufficient, and much more efficient. Therefore,

although the KATS mechanical response solver is able to solve transient problems,

when coupled to the thermal response solver, a simplified, quasi-static version is used.

The equations solved for this quasi-static approach are obtained by setting vector ∂Q
∂t

of Eq. (7.1) to zero. The KATS framework can still be used to solve this system, and

Eq. (7.2) becomes

∆Q =

[
∂R

∂Q

]−1

R , (3.13)
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where Q = u. It is to be noted that solving this equation is identical to applying

Newton’s iterative method for a system of equations.

A overview diagram of the coupling scheme is provided in Fig. 3.1. As illustrated,

the quantities computed by the structural response code are not transferred back

to the thermal response code. Since ablation problem are temperature-driven, the

temperature changes caused by strain and deformation are negligible. Therefore,

there is no need to account for the mechanical term in energy equation of the thermal

response. The changes in solid density caused by the deformation, however, might

not be negligible, are omitted for the present study.

The coupling strategy uses the time step sizes imposed by the thermal response

module. At a fixed frequency number of time step s, the temperature and solid

density results are transferred to the structural response module. The structural

response module then uses them to solve the displacement, stress and strain fields.

Since both modules use the same finite volume framework, a shared computational

grid is used, which avoids interpolations between cell centers and neighboring nodes

and increases the fidelity of the whole solution. The iterative process is repeated until

the final time tf is reached.

Initialize
t = t0, n = 0

Thermal response
Solve ρ, vg, T

n = n+ 1
t = t+ ∆t n mod s = 0? Transfer T , ρ

Structural response
Solve u, σ, εt ≥ tf?

Complete

no

no

yes

yes

Figure 3.1: Coupling scheme between the structural response and thermal response
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3.3 Verification

The structural response code was initially verified for transient response using two

test cases. A coupled test case was also performed to show the accuracy of the

temperature field and the thermal expansion for a steel plate. All verification test

cases used steel as the material, with properties given in Table 3.1. The material

was assumed to be isotropic, and all the properties were considered independent of

temperature.

Table 3.1: Thermal and mechanical properties for steel

Density, kg/m3 Specific heat, J/(kg·K) Conductivity, W/(m· K)

7850 434 60.5

CTE, µm/(m·K) Young’s modulus, GN/m2 Poisson’s ratio

12 200 0.3

3.3.1 Transient solution - compression of a steel bar

The first test case was designed to verify the transient response of the solid material.

A steel bar was compressed on one end, using a ramping 1 × 106 Pa pressure load,

while the other end was fixed, as shown in Fig. 3.2a. It should be noted that the

fixed support constrained all displacement vectors to zero. The results, presented

in Fig. 3.2b, were compared to an analytical solution obtained using d’Alembert’s

formula [87].

The L2 relative error was calculated for three different times. The values obtained

were 0.320%, 0.318% and 0.318% for t = 0.5× 10−3 s, 1.0× 10−3 s and 1.5× 10−3 s,

respectively. The computed results are considered to be in excellent agreement with

the analytical solution at each time step.
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(a) Boundary conditions, dimensions,
and computational grid

(b) Displacement at various times. The
solution obtained using KATS is com-
pared to an analytical solution

Figure 3.2: Problem definition and results for the first verification test case – transient
compression of a 1D steel bar

3.3.2 Transient solution - compression of a 2D steel plate

The second verification test case was designed to verify the geometric effects on two

dimensional problems. For this case, the 2D steel plate illustrated in Fig. 3.3a was con-

sidered. The mesh, dimension and boundary conditions are also provided in Fig. 3.3a.

More specifically, one end of the plate was fixed, while a ramping 1 mm compression

displacement was applied to the other. All other boundaries were assumed to be free

surfaces.

The computed results were verified by performing a code-to-code comparison with

the commercial FEM software ANSYS [34]. Comparisons were performed along three

lines parallel to the direction of compression, at x = 0.5 m, 0.75 m and 1 m. The

results at x = 0.5 m are illustrated in Fig. 3.3b and show that the y−displacement

agrees remarkably well with the results obtained using ANSYS. The L2 relative errors

– the maximum value over time – was also calculated, with values of 0.228%, 0.432%

and 0.434% obtained at the three locations.

In addition to the comparison, contour plots of the compression waves are dis-
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played in Fig. 3.3c. These plots illustrate the propagation of the deformation wave

within the plate, with local expansion effects.

(a) Boundary conditions, dimensions and
computational grid

(b) Displacement at various times. The
solution obtained using KATS is com-
pared to an analytical solution

(c) Isocontours of the displacement in the y-direction at various times, illustrating the
compression waves propagating within the plate

Figure 3.3: Problem definition and results for the second verification test case –
transient compression of a 2D steel plate

3.3.3 Coupled solution - heating of a steel plate

The goal of the present work is to calculate the thermal strain and quantify its effects

on the stress field. Therefore, the coupled results must be carefully verified. This

is achieved by comparing the coupled results obtained with the KATS code with
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those of a commercial software. For this third verification test case, a steel plate

initially at 298 K was subjected to a constant heat flux for 10 seconds. Because of

the disparity in the time scales of the thermal and structural problem, the quasi-static

structural equations were solved. The boundary conditions and computational grid

are presented in Fig. 3.4. The computational grid was refined near the surface, where

heat flux is applied, since larger gradients were expected in this area.

Figure 3.4: Problem definition for the third verification test case – coupled heating
of a steel plate

Results at t = 1, 5 s and 10 s are presented in Fig. 3.5. As expected, at t = 1 s, the

temperature increases along the heated surface. At the same time, the plate expands

to the negative x and positive y directions, as shown in Fig. 3.5a. This becomes more

evident after 10 s of heating, as shown in Fig. 3.5b.

In order to compare the results to the ANSYS commercial software, data points

were extracted at y = 0.005 m along the plate, at t = 1, 5 and 10 s. The comparison

of the temperature profile are presented in Fig. 3.6a. The comparison of the displace-

ment is shown in Fig. 3.6b. For this case, the relative overall L2 error was calculated
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(a) Temperature isocontours (b) Displacement isocontours

Figure 3.5: Results for the third verification test case – coupled heating of a steel
plate

to be 0.14 %, which is considered to be excellent. These results indicate that both

the implementation and information transfer for the quasi-static coupling approach

is valid. Moreover, it demonstrates that the finite volume approach used in KATS

compares very well to the usual finite element method.

(a) Temperature comparison (b) Displacement comparison

Figure 3.6: KATS results compared to the ANSYS results for the third verification
test case – coupled heating of a steel plate

In order to ensure the proper implementation of the numerical method, a complete

grid convergence study was performed for this test-case. Three grids – each 3 times as

refined as the previous one – were used to calculate the theoretical order of accuracy
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of the scheme. More specifically, KATS uses a cell centered solver, for each refinement

of the computation grid, the number of cells is tripled. The grids and the time steps

for this test are listed in Table 3.2.

Table 3.2: Grid refinements and time step sizes for the convergence test

Refinement Number of grid cells Time step size Number of time steps
coarse 90×30 9×10−3 1,000

fine 270×90 3×10−3 3,000
finest 810×270 1×10−3 9,000

By assuming the solutions of variable X obtained at three different grid as coarse,

fine and finest are Xcoarse, Xfine and Xfinest, the spatial order of accuracy can then be

calculated as:

order = log3

‖ Xcoarse −Xfiner ‖2

‖ Xfiner −Xfinest ‖2

, (3.14)

The calculated orders of accuracy for each primitive variables are listed in Table 3.3.

It can be seen that for all the variables, the orders of accuracy are very desirable and

close to the expected value, two (2). Note that sine this is a 2D problem, no results

for the uz. The results show satisfactory convergence to the exact solution of the

system for both the coupling scheme and the static structural response.

Table 3.3: Spatial orders of accuracy from the grid function convergence test

Variable T ux uy uz

Order 2.032 2.035 1.921 N/A

3.4 Results: carbon phenolic charring ablator

To demonstrate thermo-mechanical coupling, the thermal loading of a representa-

tive ablative material was simulated. The geometry and boundary conditions are

presented in Fig. 3.7. The testing material was TACOT, with thermal properties

provided in Ref. [88].
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Since no mechanical properties have been published for TACOT, the values for

a similar material, obtained from Ref. [38], are used. The tabulated values for both

Young’s modulus and the CTE are given in Table 3.4. As for the Poisson’s ratio, it

is considered constant, with a value of 0.3. Unfortunately, no values were available

for the char state. For Young’s modulus, the last tabulated values of the virgin state

is used, as it is assumed that the resin has nearly all pyrolyzed at that temperature.

For the CTE, under the same assumption, a value obtained experimentally for XN05

carbon fibers is used [89]. The value are considered constant since the temperature

dependency of structural properties is mainly due to the resin. All the properties for

the char state are listed in Table 3.5.

Table 3.4: Mechanical properties for the virgin TACOT

Temperature, K CTE, µm/(m·K)
130 170
233 170
297 172
308 175
428 236
474 339
495 401
587 304
652 151
675 51.3
700 2.6
1000 2.6

Temperature, K Young’s modulus, GN/m2

156 14.7
205 12.8
299 10.3
363 9.05
428 7.96
474 5.12
538 1.81
587 1.38
652 1.69
678 1.73
700 1.73
1000 1.73

The front surface (x = 0 m) was subjected to a constant heat flux of q̇′′w = 7.5×105

W/m2, and a constant pressure of p = 101, 325 Pa. The back wall (x = 0.075 m) was
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Table 3.5: Mechanical properties for the char TACOT

CTE, µm/(m·K) Young’s modulus, GN/m2 Poisson’s ratio
2.6 1.73 0.3

assumed to be adiabatic and impermeable. The side wall (y = 0.05 m) was considered

adiabatic, permeable, and with a fixed pressure identical to the front surface pressure.

The rest of the thermal boundaries, including y = 0 m, z = 0 m, and z = 0.005 m,

were set to symmetry planes. For structural boundary conditions, the back wall

(x = 0.075 m) was set as fixed support, the front wall and the side wall were set as

free surfaces with no constraint, and the rest of the walls were constrained as shown

in Fig. 3.7.

Figure 3.7: Problem definition for the 2D low-density porous ablative material
(TACOT) demonstration test case
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3.4.1 Results between t = 0 s and 1 s

The temperature, displacement, density and stress distribution between 0 s and 1 s

are presented in Fig. 3.8. During initial phase, only a small portion of the plate is

affected. Therefore, the results are shown for a small subset of the domain, ranging

from x = [0, 0.01] m. Figure 3.8a shows that the temperature starts to increase

throughout the front surface of the plate, and that the stress concentration pulse,

defined as the region where the stress is greater than 100 MPa, follows the same

progression. Figure 3.8b shows that the deformation begins at the upper left corner

and continues to increase as time elapses. This figure also indicates that the maximum

displacement is only about 0.35 mm.

Figure 3.8c shows the solid density distribution within the test sample. It can be

noted that the region of maximum stress appears near the edge of the virgin region,

where the material starts to pyrolyze. This is clearly illustrated in Fig. 3.8d, where

the progression of the von Mises stress is shown. It can be seen that the region with

any significant stress is directly bounded by the pyrolysis zone (T ∈ [350, 700]).

Figure 3.9 demonstrates the correlations between the displacement, solid density,

temperature and von Mises stress, along the y = 0 m line. This location was chosen

as it corresponds to the centerline of the plate. In order to better illustrate the

phenomenon, only the region between x = [0, 0.015] m is illustrated as the rest of the

domain is uniform. These results were taken at t = 0.01 s, 0.04 s, 0.10 s, and 1 s to

show the time dependency. Figure 3.9a shows that the peak of stresses moves into

the material, following the deformation of the plate. Figure 3.9b shows the results

of von Mises stress and the solid density for the mentioned four time snapshots.

The locations of the largest stress move within the sample as time elapses, and even

enter the virgin zones. Figure 3.9c shows the relationship between the stress and

temperature field. The temperature keeps increasing from the front surface (x = 0

m), stress moves into the plate and the exact peak occurs within the pyrolysis zone,
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(a) Temperature isocountours and stress
concentration isolines

(b) Solid displacement and stress concen-
tration isolines

(c) Solid density isocontours and stress
concentration isolines

(d) Von Mises stress isocontours and tem-
perature isolines

Figure 3.8: Results for t ∈ [0.01, 1] s for the 2D low-density porous ablative material
(TACOT) demonstration test case

at T ≈ 600 K.

3.4.2 Results between t = 1 s and 15 s

Results between 1 s and 15 s are presented in Fig. 3.10. In Fig. 3.10a, the temperature

of the sample reaches up to 4000 K and the deformation, shown in Fig. 3.10b, is larger

than the ones in Fig. 3.8a. The stress concentration contour line shows that region

of maximum stress continuously penetrates into the material, always preceding the

high temperature region. Figure 3.10c shows the correlation between solid density

and stress magnitude. It can be seen that the stress concentrates on the area in the

virgin material, close to the pyrolysis front. Figure 3.10d illustrates the von Mises

stress and the temperature isolines. The figure shows that the distribution of stress
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(a) Displacement and von Mises stress (b) Solid density and von Mises stress

(c) Temperature and von Mises stress

Figure 3.9: Results along y = 0 m and x = [0, 0.015] m for t ∈ [0.01, 1] s for the 2D
low-density porous ablative material (TACOT) demonstration test case

has direct relation to the temperature profile, and that the greatest value still falls

within the T = 350 K and T = 700 K contour lines, that is, the pyrolysis region.

These figures show that the peak of the stress occurs within the pyrolysis zone, very

near to the virgin zone. In this region, the material has not yet fully decomposed,

even though the pyrolysis has started.

The results from these contour plots can be understood more easily when presented

along a single line (y = 0 m), as is done in Fig. 3.11. Figure 3.11a shows that the stress

and the deformation are related and vary with time. It can be seen that the greatest

gradient of deformation results in the maximum stress. Figure 3.11b clearly illustrates
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(a) Temperature isocountours and stress
concentration isolines

(b) Solid displacement and stress concen-
tration isolines

(c) Solid density isocontours and stress
concentration isolines

(d) Von Mises stress isocontours and tem-
perature isolines

Figure 3.10: Results for t ∈ [1, 15] s for the 2D low-density porous ablative material
(TACOT) demonstration test case

the delay between the solid density and the maximum stress. The peaks of the stress

are always located at the forefront of the pyrolysis zones. This is also observed in

Fig. 3.11c where large part of the peak occurs in a relatively low temperature region.

3.4.3 Discussion

The behavior previously described is mainly due to two combined effects. The first

is the result of the non-uniform temperature distribution that leads to a non-uniform

material expansion, and generates internal stresses. The second is generated by the

intrinsic changes within the material caused by pyrolysis. The material properties –

Young’s modulus and CTE, for instance – have significantly different values in the

virgin and char state. When the material goes from one state to the other, the steep
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(a) Displacement and von Mises stress (b) Solid density and von Mises stress

(c) Temperature and von Mises stress

Figure 3.11: Results along y = 0 m and x = [0, 0.04] m for t ∈ [1, 15] s for the 2D
low-density porous ablative material (TACOT) demonstration test case

changes in the properties intensifies the stress concentration.

The most interesting observation comes from the magnitude and location of the

stress. Both of them play a critical role in determining when and where the TPS is

likely to fail. The process of charring, by itself, may cause mechanical fracture of the

TPS material.

The results presented here indicate that the location of the peak stress occurs in

the pyrolysis zone, at the edge of the virgin zone, when the charring process begins.

The significance of these results can go further than the effect on strain and stress.

Even if the total displacement, as its maximum, is about 0.8 mm, the local strain can
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cause significant changes in the material properties, such as porosity, conductivity, and

permeability. Moreover, the thermal expansion causes deformation of the geometry.

In order to fully evaluate these effects on the material, a strong coupling scheme is

necessary. This would result in mesh deformation, and would undoubtably impact

the heat propagation within the material.

3.5 Conclusion

In order to perform detailed analysis of the structural response of ablative material,

a new solid mechanics solver was developed, using a finite-volume approach. This

numerical method was chosen to facilitate coupling with both hypersonic flow solvers

and material response codes. Verification test cases show that solid mechanics prob-

lems can be modeled with sufficient accuracy and efficiency by using a finite volume

approach instead of the usual finite element method. The coupling capabilities were

demonstrated through a 2D test case, using a low density porous ablative material.

The simple test case was able to demonstrate that the location of maximum stress

occurred in front of the pyrolysis zone, where the material had barely begun to char.

It also showed that the regions of high stress concentration occur within the pyrol-

ysis zone, where the temperature gradient and variations of material properties are

significant. The location and the magnitude of the stress is due to both non-uniform

temperature gradients and the variations in the material properties due to the char-

ring process.

These findings are of great interest to material response modeling since it is be-

lieved that high stress leads to crack formation, which has been observed in some

ablative materials. The high stress front could also lead to a severe weakening of the

fibers that, combined with oxidation, eventually results in spallation. Spallation is

an undesirable phenomenon for a TPS material since it accelerates the recession of

the ablator.
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The results presented here are exploratory, but allow to highlight phenomena that

can only occur through coupling. The next step will be to fully assessed them by using

a strong coupling approach – both with the material response and the flow field –

and by modeling realistic materials, validated by detailed experiments.

Copyright c© Rui Fu, 2018.
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Chapter 4: Investigation of Internal Pressure

within Ablative Material

In order to increase the insulation properties and decrease mass, modern TPS ma-

terials are usually highly porous. They are usually composed of a fibrous substitute

impregnated with resin material. Under entry conditions, resin material decomposes

and generates pyrolysis gas. The resulted gas can change the temperature distribu-

tion dramatically by providing a form of transpiration cooling. Another consequence

is that because the pyrolysis gas flows within the porous structures, it will exert

pressure field on the surfaces within the material, and that is the source of internal

pressure.

This chapter presents an exploratory study on the internal pressure of ablative

material. In order to evaluate the stress and deformation caused by internal pres-

sure field, the structural response code is coupled with the existing thermal response

module.

4.1 Coupling scheme

The one-way coupling scheme used in internal pressure coupling is similar compared

to the one described in Chapter 3. The same quasi-static approach is used as a basic

framework. Figure 4.1 shows the information transfer between the thermal response

and structural response. As the simulation progresses, thermal response delivers the

pressure field, changes of density and grid information to the structural response

module. The structural response uses those variables to calculate the displacement

and stress.
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Initialize
t = t0, n = 0

Thermal response
Solve ρ, vg, T

n = n+ 1
t = t+ ∆t n mod s = 0? Transfer P , ρ

Structural response
Solve u, σ, εt ≥ tf?

Complete

no

no

yes

yes

Figure 4.1: A one-way coupling scheme for internal pressure coupling

4.2 Material model and limitations

In order to investigate the internal pressure field within the ablative material during

ablation process, some key assumptions are needed. The first concept needed to

clarify is the internal pressure field. In this study, the pressure field is generated by

the pyrolysis gas. Thus, the shear force exerted by external hypersonic flow field is

not considered. In addition, because of the relatively low speed of pyrolysis gas, shear

force caused by flowing through pores is not taken into account. Thus, the internal

pressure Pinternal is the relative pressure, which can be calculated as

Pinternal = P − Pref , (4.1)

where P is the produced pyrolysis gas pressure, Pref is the reference pressure at the

initial state, which is set to be 101,325 Pa. The models and detailed calculation for

the pyrolysis gas flow can be found in Ref. [72].

The second key concept to define is the porous material model. In this study,

the porous media is considered to be isotropic material with uniformly distributed

pores. In addition, these pores are assumed to be interconnected so that pyrolysis gas

can freely flow from one pore to another. Based on these assumptions, the internal
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pressure is considered to exert force uniformly on the walls of each elements. Thus,

no sudden jumps and defects are modeled. Based on this, the absolute magnitude

of internal pressure is expected to be small, even for the impermeable walls used as

boundary conditions.

As a result of those assumptions, the porous material is treated as a bulk material

with isotropic material properties. However, the reality is definitely different; as

the distribution of the pore size is non-uniform, and some of those pores are not

connected. Thus, pressure can be built up rapidly in sealed pores and lead to a

micro-scale explosion.

4.3 Stress calculation

The internal pressure is the result of the pyrolysis gas produced by chemical reaction

of the virgin material[71]. Since pressure directly acts on the fibrous element surfaces

within the material, it can be directly added into the stress tensor on the normal

direction as:

σij = σtotalij − PIij (4.2)

where the superscript total represents all the forces acts on a certain cell surface.

4.4 Carbon phenolic charring ablator with permeable wall

4.4.1 Case setup and boundary conditions

The testing material used for this test is TACOT, with tabulated values for both

Young’s modulus and the CTE given in Table 3.4 for virgin and Table 3.5 for char.

The geometry and boundary conditions are presented in Fig. 4.2. The front surface

(x = 0 m) was subjected to a constant heat flux of q̇′′w = 7.5 × 105 W/m2, and a

constant pressure of p = 101, 325 Pa. The back wall (x = 0.075 m) was assumed to

be adiabatic and impermeable. The side wall (y = 0.05 m) was considered adiabatic,
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permeable, and with a fixed pressure identical to the front surface pressure. The rest

of the thermal boundaries, including y = 0 m, z = 0 m, and z = 0.005 m, were set

to symmetry planes. For structural boundary conditions, the back wall (x = 0.075

m) was set as fixed support, the front wall and the side wall were set as free surfaces

with no constraint, and the rest of the walls were constrained as shown in Fig. 4.2.

Figure 4.2: Problem definition for internal pressure investigation in charring abla-
tion. Boundary conditions, dimensions and computation grid with a top surface as
permeable wall

4.4.2 Numerical results

Figure 4.3 shows a series of isocontours evolutions for various variables at t = 1, 5, 10

and 15 s. In Fig. 4.3a, the temperature increases as time elapses, with almost uniform

distribution. Since the top surface is permeable, heat conduction becomes slightly

stronger on the top side wall. In Fig. 4.3b, the pressure fields are presented. It can

be seen that the overall magnitude of the internal pressure is small, around 3,600 Pa.
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However, as ablation continues, the pressure field becomes more uniform, and on the

char regime, the relative pressure becomes negative. In Fig. 4.3c, the evolution of

displacement results is presented. It can be observed that since the absolute pressure

is small, the resulting maximum displacement is only 0.002 mm, which is 2 microns,

and then can be ignored when compared to the size of the geometry. Still, the

distribution of displacement is very uniform and tends to expand to the upper left.

In Fig. 4.3d, the isocontours of the resulting von Mises stress are presented. Because

the driving force - internal pressure - is small, as a consequence, there is no significant

changes in stress level as time elapses. The maximum stress locates at the upper right

corner because of the fixed support, necessary to hold the plate.

(a) Temperature isocountours (b) Pressure isocontours

(c) Displacement isocontours (d) Von Mises stress isocontours

Figure 4.3: Isocontours for t ∈ [1, 15] s for various variables for permeable top surface
case

Figure 4.4 presents the results for pressure, displacement and stress on the axis

(y = 0 m). Figure 4.4a shows the evolution of temperature and pressure. It can be
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observed that as the material ablates, the surface temperature reaches the unrealistic

value of 4,800 K. With respect to pressure, the absolute magnitude decreases while

at the front, the negative value increases, which results in a ‘pulling’ effect on the

material. Figure 4.4b shows the relationship of displacement and pressure. The

pulling effects can be clearly seen as time elapses as the displacement keeps increasing.

Figure 4.4c shows the relationship of von Mises stress and pressure. It is interesting to

see the complex profile stress caused by internal pressure. As discussed, the maximum

stress, around 0.1 MPa, is located at the bottom surface where a fixed support holds

the plate. In addition, because of the increased displacement, the overall stress keeps

increasing while decreasing at the front part, due to the negative pressure distribution.

(a) Pressure and temperature (b) Pressure and displacement

(c) Pressure and von Mises stress

Figure 4.4: Temperature, displacement, von Mises stress and internal pressure for the
permeable top surface case.
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4.5 Carbon phenolic charring ablator with impermeable wall

This test-case investigates the internal pressure within a charring ablation process.

The difference with this case and the previous one is the top surface (y = 5 cm),

which is set to be impermeable.

4.5.1 Case setup and boundary conditions

The geometry and boundary conditions are presented in Fig. 4.5. All the material

properties are identical to the permeable wall case of Section 4.4. All the boundary

conditions are the same except the top surface is set to be impermeable, with a fixed

support. Therefore, no pyrolysis gas can flow through the top surface and as a result,

the temperature distribution is expected to be as uniform as the pressure field.

Figure 4.5: Problem definition for the internal pressure investigation in charring
ablation. Boundary conditions, dimensions and computation grid with a top surface
as impermeable wall
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4.5.2 Numerical results

Figure 4.6 shows a series of isocontours evolution for various variables at t = 1, 5, 10

and 15 s. The evolution of temperature results are displayed in Fig. 4.6a. As no gas

exits the top surface, the temperature field is uniformly distributed along x direction.

However, temperature keeps increasing as the front surface is constantly subjected to

large heat flux. The evolution of internal pressure results is presented in Fig. 4.6b.

The first difference, when compare to the previous case is that the internal pressure

is uniformly distributed along the x direction, as is the temperature. Secondly, unlike

the permeable wall case, there is no negative value of the relative pressure. This is

due to the fact that the gas can only flow through the left front surface, and that

there is a constant environmental pressure applied to that surface. However, since

pressure increases inside the plate, the resulted pressure field still has a “pulling”

effect on this plate. The evolution of displacement result is presented in Fig. 4.6c. It

can be observed that the “pulling” effect leads to the expansion of the center part of

the front surface. Because the top wall and left end wall are fixed, the plate can only

expands to the center area. The magnitude of the maximum displacement remains

very small with a value of 0.0012 mm. The evolution of von Mises stress results is

presented in Fig. 4.6d. Since the relative pressure and the resulted displacement are

all very small, the stress caused by them are small, with a maximum value of 0.2 MPa

located at the top right corner of the plate. No significant changes can be seen as the

ablation continues.

The comparisons of temperature, displacement, von Mises stress and internal pres-

sure are presented along y = 0 m in Fig. 4.7. Figure 4.7a shows the comparison be-

tween temperature and pressure. It can be seen that for this case, no negative pressure

occurs within the plate and the relative pressure keeps increasing with time as the

temperature on the front surface keeps increasing. Figure 4.7b shows the comparison

between displacement and pressure. It is very intersting to see a similar distribu-
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(a) Temperature isocountours (b) Pressure isocontours

(c) Displacement isocontours (d) Von Mises stress isocontours

Figure 4.6: Isocontour results for t ∈ [1, 15] s for various quantities for impermeable
top surface case

tion of the displacement, when compared to the permeable wall case. However, the

“pulling” effect is weaker than the case of the permeable wall, with a maximum value

around 0.0012 mm. As a result, in Fig.4.7c the von Mises stress becomes even smaller

compares to the previous case with a maximum value of 0.07 MPa.

4.6 Conclusion

In this chapter, the internal pressure produced by pyrolysis gas has been investigated

through a one-way coupling approach. Using the same approach as the thermo-

mechanical coupling described in Chapter 3, the internal pressure field is transferred

to the structural response, which allows the calculation of displacement and stress.

To simplify the problem, the porous media is assumed to be treated as bulk material
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(a) Pressure and temperature (b) Pressure and displacement

(c) Pressure and von Mises stress

Figure 4.7: Results comparisons among temperature, displacement, von Mises stress
and internal pressure for impermeable top surface case

with uniformly distributed pores and these pores are interconnected so that pyrolysis

gas can flow through.

Using this model on charring ablation cases, the internal pressure and resulted dis-

placement are investigated. By changing the boundary condition of the top surface

from permeable to impermeable, the internal pressure distribution changes signifi-

cantly. For permeable case, internal pressure shows both negative and positive value

in char and virgin respectively. For impermeable case, the internal pressure keeps

increasing. The pyrolysis gas plays a same “pulling” effect on the TPS material for

both cases. However, the resulted displacement and stress are small enough to be
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ignored during stress analysis.

It is, however, not safe to conclude that the internal pressure will not cause any

damages to the material. In reality, porous media, especially for TPS material, is

far from perfectly isotropic and uniform. In addition, pores are likely to form sealed

chamber within the material where pressure can build up rapidly as ablation process

continues. Although the number of localized pressure build-up is limited, these micro-

scale pressure chamber can form burst and cracks. As a result, some TPS may fail

and be ejected into the flow field before becoming fully charred. With this in mind,

future work could focus on developing more realistic material models with a more

accurate pores distribution.

Copyright c© Rui Fu, 2018.
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Chapter 5: Moving Mesh Scheme in KATS

In this chapter, the moving mesh scheme used in KATS structural response module

is described with detailed scheme and demonstration cases. A short introduction of

moving mesh approach will be given at the beginning. Then, detailed descriptions are

provided with a demonstration case on how to deform the mesh. Next, demonstration

cases of 1D, 2D and 3D computation grid will be provided to show the ability to

handle complex geometries. Then, this method will be applied to a coupled thermo-

mechanical modeling case. Finally, the moving mesh scheme will be applied to a

charring ablation case to see how TPS material deforms when subjected to heat flux.

5.1 Introduction

The successful development of the one-way thermo-mechanical solver leads to addi-

tional questions on how to capture the deformation and its associated effects. In

pure structural modeling, the material usually deforms under certain loads. This

deformation can be undesirable because it causes cracks and gaps between different

components. For thermal expansion, the local strain can lead to large thermal stress

which can also cause material fatigue and failures. In order to study those mecha-

nisms, it becomes necessary to develop a moving mesh scheme and coupled it into

the structural response module.

5.2 Computation domain techniques - moving mesh

In this section, a demonstration case is presented to show the detailed scheme used for

interpolations between cell center and grid node. The material used in this chapter

is steel with properties given in Table 3.1. Since the purpose is to demonstrate mesh
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movement, the steel is considered unbreakable under any mechanical loading.

5.2.1 Demonstration case - 2D plate compression

Figure 5.1 shows the loading functions. As it is illustrated, the displacement load

follows a 1 second Sine function with a maximum 0.5 m displacement. The boundary

conditions and computation grid are provided in Fig. 5.1b. For this 2D plate, the

front surface is subjected to a displacement load. The end wall is fixed support. Two

side walls are set to free surfaces, which means they will move according to the interior

part of the plate. In order to better visualized the deformation, an area identified on

Fig. 5.1b with a red rectangular is picked. This area is called the “study area”.

(a) Loading function (b) Boundary condition and geometry

Figure 5.1: Moving mesh scheme illustration case with loading function, boundary
conditions and computation grid.

In order to illustrate moving mesh scheme for finite volume framework, the def-

initions of cell, face and node must first be clarified. In a FVM framework, node is

the basic element representing a point in space. Three or four nodes, are connected

together to form a face. And as a result, a number of faces from a cell. For this 2D

case, 2 nodes form a face, and 4 faces form a cell. A cell center is the spatial center

of a closed 4 faces.

Figure 5.2 shows the previously mentioned study area with labels for nodes and

cells at the t = 0 s. Two random nodes, shown as yellow circles, M and N, are chosen
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for the representation of interior node and boundary node respectively. Their neigh-

boring cell centers shown as blue squares, have also been labelled as a combination

of i and j. In this figure, at t = 0 s, there is no movement for all the cells and nodes.

Figure 5.2: Detailed illustration of upper right corner of the geometry with test cells
and nodes identified.

Figure 5.3 shows the deformed mesh and corresponding nodes and cells at t = 0.1

s. Since the loads at this time is compressing the plate, all the nodes and cells are

moving toward upper right. For node M, the amount of movement is calculated by

a weighted average of surrounding cells celli,j, celli,j−1, celli−1,j and celli−1,j−1. In

this 2D case, all the movements of interior nodes are calculated according to this

methodology. It can be observed that even for this coarse mesh, the grid deforms

very smoothly without any unexpected changes in geometry.

For node N, the calculation is different. Nodes on the boundary are all calculated

by using the surrounding face centers. Since this node is on the end wall where all

the displacement is fixed, there is no movement on its surrounding faces. That is

why the displacement on node N is zero. On the contrary, all the nodes on the side

wall show a move toward upper right because they represent the free surface. All the
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faces are free to move thus have a non-zero displacement. In this way, the amount of

movement on those nodes are weighted averaging of neighboring faces.

It should be noted that the cells cellp,q and cellp,q−1 did move after this compres-

sion. Even though the faces on the boundary do not move, the cell are still affected

by the rest of the domain. Therefore, the solutions of displacement are not zero for

these two cell centers.

Figure 5.3: At t = 0.1 s, the plate is compressed with a deformation toward upper
right corner

Several remarks should be made regarding the moving mesh scheme for any kind

of application. The first one is that deforming computation grid dose not only serve

as a visualization tool. Since the movement represents the actual deformation of

solid material, parameter such as mass, must be conserved within a cell. Also, all

the spatial related parameters, such as cell volume, face area, face norms and spatial

gradient need to be updated after each deformation, for each time step. This can be

very time-consuming if the computation grid contains millions of cells. Since there is

a change in geometry, volumetric strain should be calculated accordingly. The criteria
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on whether or not to take into consideration the strain effects on material properties

such as conductivity, should be also carefully studied.

5.3 Moving mesh demonstration cases

In this section, a series of demonstration cases are provided to show the ability of this

mesh moving approach of handling multi-dimensional problems. First, a 1D case is

presented to show the accurate movement on boundaries. Then, a 2D case similar to

the previous illustration case is provided to show Poisson effects of compression and

extension on free surface. Finally, a 3D case is used to show a stronger Poisson effects

and the 3D capabilities of the algorithm.

5.3.1 1D demonstration

For this first case, a steel bar is used. Figure 5.4 shows the loading function as well

as the boundary conditions, dimension and computation grid. The steel bar has one

end fixed while the other end is given a displacement load. In this case, the loading

function is set to be a Sine function of 1 second so that compression and extension are

applied. The maximum displacement, representing maximum compression, occurs at

t = 0.25 s, and the minimum displacement, representing maximum extension, occurs

at t = 0.75 s.

Figure 5.5 presents the results during the compression. At the beginning, in

Fig. 5.5a, the bar is at rest with zero displacement for all nodes and cells. Then in

Fig. 5.5b as the front surface is being compressed , the bar is compressed uniformly to

the right. In Fig. 5.5c as time elapses, the bar is further compressed with a maximum

displacement of approximately 0.9 m. Finally in Fig. 5.5d at t = 0.25 s, maximum

displacement is reached as the front surface is compressed at exactly x = 1 m with

still uniformly distributed spacing.
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(a) Loading function (b) Boundary condition

Figure 5.4: Moving mesh 1D demonstration case setup

Figure 5.6 shows the results for the bar in the extension. By the nature of Sine

function, when t = 0.5 s, the displacement load is zero, which makes this bar is

back into its initial state, shown in Fig. 5.6a. As the loading function keeps being

applied, the bar is extended to the left, as shown in Fig. 5.6b, with the same uniformly

distributed displacement for each element. In Fig. 5.6c, the bar is further extended

with a maximum extension of approximately -0.9 m. Finally at t = 0.75 s, maximum

extension reached to exactly x = −1 m in Fig. 5.6d.

Several observations can be made regarding this 1D case. First, since this is a 1D

geometry, all the nodes are on boundary faces. Thus, the movement on front face

should be exactly the same amount as the loading function, as is observed in the

results. Also, no movement should be observed on y or z direction, which can also

be confirmed by the results. In addition, because the movement of each node obeys

steady-state equilibrium, the movements are uniformly distributed within this steel

bar, which also shown in the results.

60



(a) Initial gemometry (b) Grid in compression

(c) Compressed at t = 0.2 s (d) Grid is compressed to final state

Figure 5.5: Moving mesh demonstration case. Grid deformation of 1D mesh in com-
pression stage

5.3.2 2D demonstration

The second case is identical to the first one, but is now in 2D. Figure 5.7 shows the

loading function as well as the boundary conditions, dimension and computation grid.

The displacement is applied following the same Sine function as in the previous case.

The front surface (x = 0 m) is subjected to the loading, and the right wall (x = 5 m)

is set as a fixed support. Two side wall are set to be free surface. It should be noted

that, in this 2D case, Poisson effects are expected to be observed on the side walls as

opposed to the 1D case.
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(a) Initial gemometry (b) Grid in extension

(c) Extended at t = 0.65 s (d) Grid is pulled to final state

Figure 5.6: Moving mesh demonstration case. Grid deformation of 1D mesh in ex-
tension stage

(a) Loading function (b) Boundary condition

Figure 5.7: Moving mesh 2D demonstration case setup
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Figure 5.8 shows a series deformation results in the compression phase. At the

beginning in Fig. 5.8a, all the cells and nodes are at rest with zero displacement.

At t = 0.1 s, the plate is compressed to about 0.3 m, as shown in Fig. 5.8b. It

can be observed that two side walls expand in the y direction as a result of Poisson

effects. In Fig. 5.8c, stronger expansion of two side walls is observed since the plate

is further compressed to about 0.45 m. Finally, in Fig. 5.8d, the plate is at maximum

compression, and the x−displacement on front surface is exactly 0.5 m.

(a) Initial gemometry (b) Grid in compression

(c) Compressed at t = 0.2 s (d) Grid is compressed to final state

Figure 5.8: Moving mesh 2D demonstration case; grid deformation in the compression
phase

Figure 5.9 shows a series of results in extension stage. At t = 0.5 s shown in

Fig. 5.9a, the plate restores to its original shape and all the displacements are zero.

At t = 0.6 s shown in Fig. 5.9b, the displacement loading becomes negative and plays

a pulling effect on the plate. It can be observed that two side walls contract inwardly

because of the Poisson effect. When t = 0.65 s, the plate is further pulled to its left

as illustrated in Fig. 5.9c, with a maximum displacement around 0.4 m. Finally at

t = 0.75 s shown in Fig 5.9d, this plate is pulled to the position at exactly x = 0.5
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m. Stronger contracting effects on two side walls can be seen.

(a) Initial gemometry (b) Grid in extension

(c) Extended at t = 0.65 s (d) Grid is pulled to final state

Figure 5.9: Moving mesh 2D demonstration case; grid deformation in the extension
phase

In this 2D demonstration case, all the loads and boundary conditions are the

same as in the illustration case. Thus, detailed discussion for this case can be found

in Sec. 5.2.

5.3.3 3D demonstration

Figure 5.10 shows the loading function, the boundary conditions and computation

grid. The loading function is the same in 2D case. This test-case consists of a steel

cuboid with the front surface subjected to a displacement loading, while the bottom

surface is fixed. The four side walls are set to free surfaces. As with the previous cases,

more obvious Poisson effects are expected on the side walls during both compression

and extension stages.

Figure 5.11 shows the deformation results in the compression phase. The contour

plots show the total displacement, which is the norm of ~u. In Fig. 5.11a, at t = 0 s,
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(a) Loading function (b) Boundary condition

Figure 5.10: Moving mesh 3D demonstration case setup

no movement for all cells and nodes. In Fig. 5.11b, at t = 0.1 s, the front surface is

compressed to approximately 0.3 m, and an expansion can be observed on side walls.

In Fig. 5.11c, at t = 0.2 s, the cuboid is further compressed to approximately 0.45

m and all side walls expand outwardly. In Fig. 5.11d, at t = 0.25 s, the compression

reaches a maximum value of 0.5 m.

Figure 5.12 shows the results in the extension phase. At t = 0.5 s, in Fig. 5.12a,

the cuboid restored from compression and all displacements are zero. At t = 0.6 s, in

Fig. 5.12b, the loading becomes negative to its original form and side walls contract

inwardly. At t = 0.65 s, in Fig. 5.12c, the cuboid is further extended to 0.4 m with

a stronger contracting effect on the side walls. Finally at t = 0.75 s in Fig. 5.12d,

cuboid reaches a maximum extension with a displacement of 0.5 m. As shown in

these contour plots, the deformations are distributed uniformly within this cuboid.

Several remarks should be made for the moving mesh cases. First, the contour

plots are based on the total displacement result, which is calculated as the norm

of ~u. Moreover, moving mesh algorithm for 3D is much more complex than 1D or

2D case since more cell centers and nodes are taken into consideration. Finally, the

deformation results obey the equilibrium equations, which makes the deformation
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(a) Initial gemometry (b) Grid in compression

(c) Compressed at t = 0.2 s (d) Grid is compressed to final state

Figure 5.11: Moving mesh 3D demonstration case. Grid deformation in compression
stage

physically distributed on the computation grid.

5.4 Moving mesh application - heating of a steel plate

In this section, the developed moving mesh scheme is applied to a thermo-mechanical

coupling case to demonstrate its ability to capture the thermal expansion and changes

in shape. In order to perform such application, the moving mesh scheme obtains the

displacement values from structural response module and all the geometric parame-

ters are updated based on the displacement field. Then, the density for each cell is

calculated according to the changing cell volume to ensure the mass conservation for

each cell. Thus, this case consists of a two-way coupling demonstration case.

Figure 5.13 shows the case setup, a plate made of steel with length and width of
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(a) Initial gemometry (b) Grid in extension

(c) Extended at t = 0.65 s (d) Grid is pulled to final state

Figure 5.12: Moving mesh 3D demonstration case. Grid deformation in extension
stage

3 cm x 1 cm. The front surface is subjected to a heat flux and the end surface is

at room temperature and fixed support. The other faces are all adiabatic and with

constant constraints as indicated. The computational grid is refined near the surface,

where heat flux is applied, since larger gradients are expected in this area. Because

the bottom surface is constrained in the y−direction, the plate is expected to expand

toward the upper left corner.

Figure 5.14 shows the displacement contours, where vectors indicating the direc-

tions of deformation. It should be noted that the magnitude of the displacement is

very small with a maximum value of 0.04 mm. Thus, the deformation is multiplied

by 100 times to better visualize. At t = 1 s, the plate shows very mild deformation

on the corner. As the front surface is being heated constantly, at t = 5 s, significant

expansion can be observed on the front part of the plate. Finally, at t = 10 s, stronger
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Figure 5.13: Moving mesh application case. Dimensions, boundary conditions and
computation grid for coupled heating of a steel plate

expansion on the front surface can be seen and the whole plate shows a uniformly

distributed expansion.

Figure 5.15 shows the results of temperature isocontours on the gradually de-

formed geometry. At t = 1 s, the plate has not absorbed much heat, and the temper-

ature changes are located near the surface, and the plate barely deforms. At t = 5 s,

as the heating effect becomes more obvious, the temperature at front surface reaches

about 430 K and the geometry is now clearly deforming. At t = 10 s, the front surface

reaches maximum temperature of 470 K with significant thermal expansion on the

front part.

Several remarks should be made for this coupled case. First, the displacement and

temperature results are verified in Chapter 3, and therefore assumed to be correct.

It should also be noted that Second, in order to have a better visualization of the

results, the deformation is magnified. In this case, because all the displacement

results are obtained before deforming the mesh, it is easier to choose an appropriate
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Figure 5.14: Displacement isocontours results. Plate expands to upper left corner
because of the thermal expansion

Figure 5.15: Temperature isocontours results. Plate expands to upper left corner
because of the thermal expansion
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multiplier. Last, although the thermal response calculates the temperature field using

the deformed mesh, the temperature field is still distributed uniformly. This is because

the actual changes is small and the effects of changing the density and geometric

parameters have little or no impact on the heat conduction. In a word, the impact

on thermal response from structural changes are limited in this case. However, if

the strain effects on the material properties are considered, the temperature field is

expected to be nonuniform. The strain effects caused by thermal expansion will be

discussed in Chpater 7.

5.5 Moving mesh application - carbon phenolic charring ablator

In this section, the moving mesh scheme is applied to a charring ablation case with

non-uniformly distributed temperature profile and temperature-dependent material

properties. For this case, the deformation is expected to be more complex, thus

validate the robustness of the moving mesh scheme.

The material used for this case is TACOT, with thermal properties provided in

Ref. [88]. Since no mechanical properties are published for TACOT, the values for

a similar material, obtained from Ref. [38], are used. The tabulated values for both

the Young’s modulus and the CTE are given in Table 3.4. All the properties for the

char state are listed in Table 3.5.

The geometry and boundary conditions are presented in Fig. 5.16. The front

surface (x = 0 m) is subjected to a constant heat flux of q̇′′w = 7.5× 105 W/m2, and

a constant pressure of p = 101, 325 Pa. The back wall (x = 0.075 m) is assumed to

be adiabatic and impermeable. The side wall (y = 0.05 m) is considered adiabatic,

permeable, and with a fixed pressure identical to the front surface pressure. The rest

of the thermal boundaries, including y = 0 m, z = 0 m, and z = 0.005 m, are set to

symmetry planes. For the structural boundary conditions, the back wall (x = 0.075

m) is set as fixed support, the front wall and the side wall are set as free surfaces
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with no constraint, and the rest of the walls are constrained as shown in Fig. 5.16.

It should be noted that since the upper side wall is permeable, temperature field is

expected to be non-uniform and the bottom surface is constrained in the y−direction,

the plate is expected to expand to its upper left corner, similar in the previous case.

Figure 5.16: Moving mesh application case. Boundary conditions, dimensions and
computation grid for charring ablation

Figure 5.17 shows the isocontours of temperature, displacement, density and von

Mises stress. Results are at t = 1, 5, 10 and 15 s, to show the time evolution of

solutions. Figure 5.17a presents the evolution of temperature and the location of

stress concentration where stress exceeds 100 MPa. It can be observed that the

contour line is slightly deformed on the upper side wall. Figure 5.17b provides the

evolution of displacement field as well as the stress concentration area. It can be seen

that the upper left corner deforms with a largest value around 0.85 mm. Figure 5.17c

presents the evolution of solid density. During the ablation process, virgin is heated

and charred and as a consequence, density decreases to approximately 220 Kg/m3.
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Figure 5.17d provides how von Mises stress evolves during the ablation process. In

this figure, the are of high stress concentration is located where the temperature

ranges from 350 K to 700 K.

(a) Temperature isocountours (b) Displacement isocontours

(c) Density isocontours (d) Von Mises stress isocontours

Figure 5.17: Various isocontours results for charring ablation case. Very slightly
deformation can be observed on the plate

Because the maximum displacement is relatively small, with a value of 0.85 mm,

the results at t = 15 s are closely examined in Fig. 5.18 to allow a better visualization

of the deformation. In this figure, three locations-the lower left corner, the upper left

corner and the side wall-are chosen to show more detailed deformation. At the lower

left corner, the front surface expands to its left with about 0.5 mm. At the upper left

corner, the maximum displacement has a value of 0.85 mm. This figure clearly shows

the traction effects caused by the thermal expansion. Another interesting deformation

occurs at the side wall where stress concentrates. The deformation pattern at this

location differs from the other two. It is a ripple-like distribution with a maximum
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value of 0.7 mm. Because of this deformation, more areas is exposed to external flow

field, and this area could be subjected to more heating and shear force coming from

the flow field.

Figure 5.18: Detailed distribution of displacement at t = 15 s. Three locations are
picked to plot with more precision to show how mesh deforms

5.6 Conclusion

The detailed approach of moving mesh module is described with multiple demonstra-

tion cases and application cases. By presenting a 2D demonstration case, the method

used in interpolating displacement from cell centers to cell nodes was described. Then,

a series of demonstration cases in 1D, 2D and 3D were provided to show the abilities

of the scheme to handle multi-dimensional problems. This scheme was then applied

to a thermo-mechanical coupling case to show the effects of thermal strain on grid

deformation. Then, a more complex application, using charring ablation case, was

performed. All of the results show that the moving mesh scheme is robust and can

be applied to more complex problems.
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In this study, the displacement results are stored and transferred to the deforma-

tion of the computation grid. Because the geometry is constructed using nodes and

the FVM stores information on cell centers, interpolations between cell center and

node are inevitable.

Another concern for the moving mesh scheme is the coupling frequency. Because

the computational grid changes, all the geometric parameters such as cell volume, face

center and area, norms of each faces are also needed to be re-calculated. In addition,

a large portion of solver used a stored spatial gradient map to calculate gradient of

primitive variables, this map also needs to be updated. Sometime this process can

be time-consuming. Thus, on what frequency the grid is needed to be updated with

deformation should be investigated very thoroughly.

Copyright c© Rui Fu, 2018.
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Chapter 6: Two-way coupling framework and

coupled thermo-mechanical parameters

6.1 Introduction

1D modeling serves as an essential tool in the development of large scale computation

code because of its extensibility and simplicity. Major advantage of a 1D model is

that it can be rapidly developed due to the simplified mathematical formulation. It

simplifies complex three dimensional governing equations without the loss of princi-

ple behaviors. A large amount of partial differential equations collapses into ordinary

differential equations such as the Poisson equation, which is solved in this chapter.

Therefore, 1D model also enables a much easier implementation with respect to pro-

gramming. Another benefit comes from the fact that analytical solutions are often

obtained in 1D approach, which can provide accurate verification to the model.

For thermo-mechanical coupling, it becomes much easier to manipulate informa-

tion transfer from one module to the other. Many commercial codes do not include a

two-way scheme. There is, however, an increasing demand of a more precise predic-

tion and higher fidelity in simulation for space industry. Thus, a two-way coupling

scheme is developed in a 1D Finite Difference Method framework in this chapter.

6.2 Heat conduction equation

The 1D heat conduction equation is provided in Chapter 2, which is represented here

for convenience,

k
∂2T

∂x2
− ρcv

∂T

∂t
+Q = 0 (6.1)

This consists of a parabolic partial differential equation with first order time
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derivative and second order spatial derivative. Thus, an implicit backward time

scheme is employed for the time derivative since it is an ’A-stable’ method. As

for the spatial derivative, a centered-difference discretization is utilized. Using this

process, Eqs. 6.1 becomes,

k
T t+1
i+1 − 2T t+1

i + T t+1
i−1

4x2
i

− ρcv
T t+1
i − T ti
4t

+Q(xi) = 0 (6.2)

where superscript t represents the time; subscript i is the notation for the ith com-

putation grid. And 4xi and 4t are length between two neighboring grids and the

time step size. Q(xi) is the heat generation sources within the object. Since this is

a standard numerical treatment for heat equations, detailed treatment on boundary

conditions and initial conditions is not presented here. Solution can be achieved by

utilizing a standard newton’s method for equation systems.

6.3 Static equilibrium equation

The 1D static equilibrium equation is also represented here for convenience,

(λ+ 2µ)
∂2u

∂x2
− (3λ+ 2µ)α

∂T

∂x
= 0 (6.3)

Because of the quasi-static assumption, there is no temporal term in this equation.

The second order derivative term is discretized using the same centered-difference.

The temperature gradient term is then directly obtained by solving the temperature

field and then transfer the solution to the following equation,

(λ+ 2µ)
ui+1 − 2ui + ui−1

4x2
i

− (3λ+ 2µ)α
Ti+1 − Ti−1

24x
= 0 (6.4)

This results in a diagonal systems of equation which can be solved using a linear

matrix solver.
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6.4 One-way quasi-static solution

A typical quasi-static solution process for thermo-mechanical coupling is illustrated

in Fig. 6.1. First, temperature field is calculated by solving the heat conduction equa-

tion. Then, temperature, along with the density and grid information, are transferred

to the solid mechanics solver, which solves the static equilibrium equation. The solid

mechanics solver, using the temperature field, solves the displacement as primary

variables, and outputs the associated stress and strain.

Initialize
t = t0, n = 0

Heat conduction
Solve T

n = n+ 1
t = t+ ∆t n mod s = 0? Transfer T , ρ

Solid mechanics
Solve u, σ, εt ≥ tf?

Complete

no

no

yes

yes

Figure 6.1: One-way coupling scheme for 1D finite difference method solver

It should be noted that all the information is uni-direction from heat conduction

to solid mechanics. There is no feedback of the calculated displacement to thermal

response. Most commercial software are using this scheme for thermo-mechanical

coupling problem such as ANSYS [34] and Comsol [90].

Verification case

Consider a bar made of steel with properties given in Table 3.1. The left end of the

bar is subjected to a constant heat flux Qw = 75,000 W/m2 while the right end is set

to an iso-thermal boundary. For the structural boundary conditions, both ends are
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fixed support, while others are constraint in y, z planes. Initially, the bar is at rest,

and at a temperature of T = 298 K.

Figure 6.2: Boundary conditions and computation grid for verification case

Temperature profiles for the first 5 seconds are presented in Fig 6.3. It can be

observed that as time elapses, temperature gradually increases from left to right. The

solution is compared to the ANSYS result, with an excellent agreement.

The results for displacement profile are provided in Fig 6.4. It can be seen that

the overall displacement is zero because of the two fixed ends. The compression and

extension, however, can be observed during the heating process. Still, the results

have very good agreement with ANSYS results. This phenomena will be discussed

thoroughly in the next chapter.

6.5 Two-way quasi-static solution

The developed 1D code presented here serves as a verification tool for more complex

solutions such as finite volume one, which will be introduced in next chapter. Un-

like the one-way coupling presented in Chapter 3, the information transfer account
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Figure 6.3: Temperature verification

Figure 6.4: Displacement verification

for displacement. The displacement, in the form of geometry deformation, will be

transferred back to the heat conduction solver and formed a closed information loop.
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Initialize
t = t0, n = 0

Heat conduction
Solve T

n = n+ 1
t = t+ ∆t n mod s = 0?

Transfer T , ρ
Computation

grid

Solid mechanics
Solve u, σ, ε

Re-calculate
dx

Update kt ≥ tf?k, dx

Complete

no

no

yes

yes

Figure 6.5: Two-way coupling scheme for 1D finite difference solver

Several steps are necessary to accomplish the feedback to the thermal response.

The first one is to transfer the grid deformation since the amount of displacement

has been obtained. This first step is simply to visualize the deforming grid, and no

parameters are changed. The next step is to update the gradient of the primitive

variables, in this case is the temperature gradient. In another word, the geometric

parameters necessary for the calculation of gradient must be updated, like node po-

sition and area. Then, a mass conservation for each cell should be performed. By

doing so, it ensures that no matter how the grid is changed, the total mass remains

constant. As a result, density changes, even it could be very small. The local strain

can then be calculated to examine the strain effects on the material properties.

The discussion above indicates the steps of developing such two-way coupling

scheme, and the methodology can be applied to more complex coupling schemes such

as fluid solid interaction (FSI), which will be discussed later.
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Thermal expansion

Generally speaking, thermal expansion may occur when an object is subjected to

heating, with certain constraints on its boundaries. Here, discussion will be given on

the mechanism of this expansion and followed by a definition of strain effects.

Consider an object made up of a number of small cubic elements with equal

sizes, just like the usual computational grid, and that maintains continuum under

limited distortion. At this time, let the temperature of the object increases uniformly

throughout the object. Under the assumption that there is no constraints on the

boundaries, each element will expand with equal amount of volume in all directions.

Therefore, all the cubic units are still the same sizes and fit together to form an

expanded continuum body. In this example, no stress is induced and only strain is

introduced.

If the object has an nonuniform temperature, each element expands differently,

with an increase proportional to the temperature change. In this scenario, elements

become different in sizes and can no longer fit together. To maintain continuum,

each elements must restrain the deformations of its neighbor elements and stress is

induced. In one-way coupling problem, this expansion in geometry is ignored due to

the relative small values of displacement. In two-way coupling, however, the resulted

deformation in geometry is taken into consideration.

Strain effects in material properties

Within the scope of this research, the discussions focus on the strain effect on con-

ductivity. The capability of conducting energy within the material is based on the

molecular dynamics, since it relies on vibration waves. When material expands, the

distance between neighbor elements increases and resulted in a slower vibration wave,

which results in a decrease in conductivity. Thus, the conductivity is no longer a con-

stant but a variable depend on the volumetric strain ev, which is k = f(ev). This
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relationship can be described by a linear formula,

k(ev) =
k

1 + cev
(6.5)

where c is a relaxation coefficient to magnify or reduce the strain effects on the

conductivity. Therefore, if c = 0, the strain has no effects on conductivity. In

this study, different values of c are tested to evaluate the strain effects on both the

temperature and displacement field. With this understanding, the coupling equation

becomes,

∂

∂x

(
k(ev)

∂T

∂x

)
− ρcv

∂T

∂t
+Q = 0 (6.6a)

(λ+ 2µ)
∂2u

∂x2
− (3λ+ 2µ)α

∂T

∂x
= 0 (6.6b)

The first term of Eqs. 6.6a must be carefully treated. In the current 1D approach,

this term is treated both analytically and numerically. Using the chain rule, it can

be written as,

∂

∂x

(
k(ev)

∂T

∂x

)
=
∂k(ev)

∂x

∂T

∂x
+ k(ev)

∂2T

∂x2
(6.7)

This expanded formula can be evaluated using analytic form of both first order and

second order derivative temperature with respect to coordinate x. However, the first

order spatial derivative of conductivity is calculated by the solid mechanics module.

Thus, there is no direct formula for this derivative. Therefore, numerical derivative

is used to calculate this term as,

∂k(ev)i
∂xi

=
ki+1 − ki−1

24x
(6.8)

where ki can be written as,

k(ev)i =
k

1 + cevi
(6.9)
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6.6 Verification results for two-way coupling

The verification case considers the same setup described in Section 6.4. The only

difference is that strain effects on material property will be transferred back into

the thermal response code to formed a closed two-way information.To simplify the

problem, only the conductivity is transferred based on the linear relationship with

volumetric strain discussed in Section 6.5.

Figure 6.6 presented results for c = 10. For each variable, results are plotted from

t = 0 s to t = 5 s with a time step of t = 0.1 s. Figure 6.6a shows the temperature

increases as time elapses. Figure 6.6b shows the displacement distribution, which

increases and reaches a equilibrium state at t = 5 s with a maximum value of 0.0018

mm. Figure 6.6c plots the strain distribution along this bar, showing both compres-

sion and expansion. The positive value indicates the material expansions, which is

located at the front part of the bar. The maximum strain is located at the front

surface, where the highest temperature gradient is presented. At the end surface,

where x = 0.01 m, strain has a negative value of approximately -0.05%, indicating

that this part is compressed. Figure 6.6d shows the changes of conductivity. Because

the linear relationship is used, the conductivity decreases as strain increases. Since

the value of c is relatively small, as is the local strain, the change of conductivity is

not significant, with the range of [59.8 - 60.8].

Figure 6.7 shows the result when c = 1, 000. In this case, the strain effects is

magnified. In Fig. 6.7a, at the final state when t = 5 s, maximum temperature

increases to about 463 K and the temperature gradient becomes sharper compare

to the previous result. This is caused by the decreasing conductivity, which slows

the energy transfer. In Fig. 6.7b, due to the steeper temperature field, the maximum

displacement increases to about 0.0185 mm. The overall distribution follows the same

pattern. In Fig. 6.7c, the value of resulted strain is changed by the strain effects itself.

At the front surface, the value of strain increases to 0.128%. Compare to the case
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(a) Temperature (b) Displacement

(c) Strain (d) Conductivity

Figure 6.6: Results for c = 10 in time range t = 0− 5 s

when c = 10, the maximum value of strain increases by 42%, indicating the expansion

increases greatly. No significant change is observed at the end surface. In Fig. 6.7d,

it can be seen that conductivity changes greatly because of the large c, with values

in the range [34 - 105].

6.7 Summary

A 1D thermo-mechanical solver was developed for both one-way and two-way coupling

schemes. Both schemes utilize a quasi-static framework for coupling the thermal

module and solid mechanical module. The one-way results are verified against the

commercial code ANSYS [34] and shows good agreement. No commercial code is

found for direct two-way coupling because of the complex information loop.
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(a) Temperature (b) Displacement

(c) Strain (d) Conductivity

Figure 6.7: Results for c = 1000 in time range t = 0− 5 s

The results in two-way coupling are important for applications where accurate

description of thermal and structural performance are needed. One of the findings is

that the strain effects not only change the structural performance such as displace-

ment and strain, but also influence the thermal performance. It re-distributes the

temperature and causes the material properties to change significantly. In the areas

such as precision machining and re-entry problem, where the subtle changes cannot

be ignored, two-way coupling should be the standard method for simulation.

Copyright c© Rui Fu, 2018.
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Chapter 7: Thermo-mechanical Two-way

Coupling

7.1 Introduction

During re-entry, large heat flux results in thermal expansion and stress. At the same

time, this process is accompanied with shear force from the flow field and internal

pressure produced by pyrolysis gas. Under such conditions, TPS materials tend to

expand to a certain degree such that strain effects cannot be ignored. TPS materials

usually have a coefficient of thermal expansion with an order of 10 ∼ 100× 10−6

m/m·K[38]. With a significant temperature gradient, which occurs on the TPS, local

strain can be as large as 10 percent. Micro-scale strain can also alter the material

properties such as permeability, porosity and conductivity. One of the direct effects of

mechanical stresses is the phenomenon known as spallation[91, 49]. This phenomenon

can be described as the ejection of material particles into the flow field. This process

usually results from material failures and may lead to catastrophic loss. The cause of

spallation is not well understood and is currently modeled by multiplying an empirical

parameter to the thermochemical ablation rate[53]. A possible cause of spallation

is the material failure resulting from exceeding the strength limit. If variability of

material properties has been considered, thermal strain may cause the local defect and

it is directly related to the spallation. TPS are usually manufactured using a carbon

fiber matrix[54, 55, 4]. For most of materials, their integrity is maintained when

the mechanical stress is less than a certain threshold value (for instance, 500 MPa

for crossply carbon-fiber composite[56]). Once this stress limit has been exceeded,

fractures appear on the fiber scale, leading to material failure. Numerous studies have

been published on the mechanical behavior of porous ablators. One such study [57, 58]
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focuses on the fracture testing of virgin and charred PICA. It was observed that cracks

were initiated and grew when a critical stress limit has been reached, separating the

carbon fibers from the binder. Therefore, to correctly predict failure of the TPS, it is

essential to accurately model both the distributions and magnitudes of stresses within

materials.

Stress field within the TPS material is not only related to high temperature gra-

dient. The complexity of this problem increases as chemical reactions and surface

blowing are considered [59]. These two factors are entwined with the ablation pro-

cess, resulting in density changes and production of pyrolysis gas [92]. Transformation

of TPS material by chemical reaction results in radical changes properties such as ul-

timate strength, coefficient of thermal expansion. Transportation of pyrolysis gas not

only changes temperature field, but also leads to internal pressure which can cause

stress concentration. Due to the complexity of coupled physical interactions, detailed

numerical modeling is still in its first stage [93]. Solid mechanical solvers are usually

only coupled with heat conduction, and material changes and internal pressure within

the material are not taken into account.

The one-way coupling features a uni-direction information transfer from one physi-

cal solution to the other as input parameters. More specifically, it features transferring

temperature profiles from material response code to structural response code. Within

a quasi-static scheme, the heat transfer has a continuous solution, and the structural

response is assumed to be static and converged for each time step. In such a way,

thermal strain, thermal stress and expansion can be calculated within the material

for different temperature gradient. Consequently, it assumes that changes of geom-

etry are so small that its effects on the computational grid can be neglected. The

manufacturing industry, especially material machining and welding, uses this kind of

approach to solve problems. Another type of one-way thermo-mechanical coupling

focuses on strain energy and its effects on the temperature field. This type of ap-
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proach, for instance, is used to study to the thermo-mechanical analysis of automobile

braking system[94].

Unlike the one-way scheme, two-way coupling can provide more accurate pre-

dictions. In this coupling scheme, temperature solutions are firstly transferred to

the mechanical code, and produce in displacement and geometry deformation. This

changes of shape are then transferred back to thermal analysis to complete a bi-

direction information transfer loop. As a result, higher fidelity solutions are obtained

for both solvers. Changes in the shape also lead to variations in the heat flux within

the material, which result in more accurate solution. Considering the strong thermal

gradient present in hypersonic thermal response, it is clear that there is a need to

explore the necessity of using a two-way coupling approach for the ablation problem.

In order to facilitate the coupling between the two code, a finite volume method

can be used. This methodology has been used in solid mechanics analysis multiple

times, mainly because of the ease of implementation. Bijelonja and Demirdzic[77]

proposed such an approach for the linear elasticity problem. The same approach was

also used for a coupled thermo-mechanical stress analysis, on a moving mesh.[78]. To

validate the approach, Fallah et al.[79] offered comparisons of Finite Element Method

(FEM) and Finite Volume Method (FVM) results for different geometries and stress

analysis. All of these studies demonstrated that FVM has equal accuracy while

being simpler to implement mathematically and numerically. In addition, by using

FVM, the same shared computation grid can be used for both material and structural

codes. For dissimilar mesh in thermo-mechanical coupling, the mapping between

different mesh can be problematic, resulting in decreased accuracy and computational

efficiency.

The present study proposes a unified FVM for coupling multi-physics models

for ablation simulations. A finite volume approach has been used for both thermal

and structural responses. A quasi-static two-way strong coupling strategy has been
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utilized for coupling both codes. In the following sections, the numerical framework

and formula necessary to generate results are presented. Verification cases will then

be provided along with ANSYS results. Then, study cases on ablation problem and

internal pressure field and how it acts on the material are provided. Finally, a fully

coupled case is presented to show the combination effects of internal pressure and

thermal expansion within the iso-Q sample.

7.2 Governing equations and numerical implementation

7.2.1 Numerical framework

The solid mechanics and material response codes have both been developed within the

Kentucky Aerothermodynamic and Thermal-response System (KATS) framework [70,

71]. KATS has been used to solve hypersonic flows [82], low-speed turbulent flows [83,

84], and material response [71, 70]. KATS is designed for massively parallellized

computations, utilizing ParMETIS [85] for domain decomposition and openMPI [86]

as the message passing interface. In KATS, the general time-independent partial

differential equations are written in the following form

∇ · (F −Fd) = S , (7.1)

where F the advective fluxes, Fd the diffusive fluxes, and S represents the source

terms. The system of equations is integrated over a cell volume, and spatially dis-

cretized. The resulting linear system is solved iteratively for the whole domain, using

an implicit backward Euler scheme[
−∂R
∂Q

]
∆Q = R , (7.2)

where Q represents the conservative variables and V is the volume of the cell. Vector

R represents the right hand side terms of the linear system and is defined as

R ≡ −
∑
i∈cell

(F −Fd) · niAi + SV (7.3)
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where Ai and ni are respectively the area and normal vector of the ith face of the cell.

7.2.2 Governing equations for the structural response module

The structural response module in KATS solves for the displacement field u ≡

(ux, uy, uz). Three relations – force equilibrium, strain tensor and Hooke’s Law –

compose a closed system for the evaluation of the structural response, and are given

as

−∇ · σ = ρsf , (7.4)

σ = 2µε+ λ Tr(ε)I, (7.5)

ε =
1

2
[∇u+ (∇u)T]. (7.6)

where ρs represents the density of a solid material, σ is the stress tensor, t is time,

f is the external body force per unit mass and ε is the strain tensor. µ and λ are

respectively the first and second Lamé parameters, and are obtained with

µ =
E

2(1 + ν)
(7.7)

λ =
Eν

(1 + ν)(1− 2ν)
(7.8)

where E is Young’s modulus and ν is Poisson’s ratio. Since the components of the

displacement vectors u are the variables for which the equation is solved, the conser-

vation equation can be rewritten as

−
∮
∂V

[
µ
(
∇u+ (∇u)T

)
+ λ Tr(∇u)I

]
· n da =

∫
V

ρsf dV . (7.9)

Initial conditions are set using the distribution of displacement u or ∂u/∂t at

t = 0. The solution is obtained by applying the usual boundary conditions such as a

fixed support on the surface, symmetry, fixed pressure, fixed traction or free surface

(zero traction).
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7.2.3 Coupling scheme

The scheme used for coupling the material response and structural response codes is

described here. Even though the material response code offers transient solution, it

assumed that the structural response reaches equilibrium much faster and thus can

be considered time-independent. Figure 7.1 presents the coupling scheme, detailing

how information flows between the material and structural response codes. During

the simulation, the material response code provides temperature, solid density and

pressure to the structural response code while the structural code provides information

on deformation of computational domain, local strain and its effects on the material

properties for certain amount of time steps.

Initialize
t = t0, n = 0

Thermal response
Solve ρ, vg, T

n = n+ 1
t = t+ ∆t n mod s = 0?

Transfer T , ρ
Computation

grid

Structural response
Solve u, σ, ε

Re-calculate
V , a, n

Update kt ≥ tf?
k, V , a, n

Deformed grid

Complete

no

no

yes

yes

Figure 7.1: Two-way coupling scheme between the structural response and thermal
response

The two-way coupling is achieved by exchanging quantities between the codes

which influence each respective model. Since the displacement field affects the shape

of the domain, the computational grid needs to be modified accordingly. This results

in additional updates on the face weights, node positions and cell volumes. It is

important to point out that these changes must be performed under the constraints

of mass conservation. Therefore, the density of the material is directly affected by
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the displacement. Moreover, strain also has an effect on material properties such as

conductivity and porosity. These quantities also need to vary. Finally, since the struc-

tural solver assumes steady-state, solutions must be updated regularly, insuring that

the temperature changes on the structural aspect remains reasonable. These interac-

tions are achieved in a way that balances the coupling frequency to the computational

efficiency.

7.2.4 Strain definition

Strain is defined as a relative displacement of particles in the body that excludes

rigid-body motions. For a typical engineering normal strain, it is defined as:

e =
∆L

L
=
l − L
L

(7.10)

where e is the engineering normal strain, L is the original length and l is the deformed

length of the object. In a FVM framework, the definition of strain has been extended

to volumetric strain as it is easier to represent the local strain. The volumetric strain

is defined as:

ev =
∆V

V
=
V ′ − V
V

(7.11)

where ev is the volumetric strain, V is the original volume of an object and V ′ is

the deformed volume of the object. For 1D problem, both of engineering strain and

volumetric strain will have the same value. Under the assumption that material is

isotropic, the volumetric strain is used in all following studies.

7.2.5 Strain effects on porous media properties

Strain effects have significant impacts on various properties of porous media. Discus-

sion of detailed property models for porous material is beyond the scope of this study.

Therefore, the strain relationship used to describe the key parameters will come from

related researches. An example of the variation of the porosity as a function of strain
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can be found from Bakhshian and Sahimi [64]. In their studies, the porosity varies

almost linearly with the strain.

Inspired by this study, the strain-conductivity relations are developed. When ma-

terial expands, the distance between molecules increases. According to the molecule

dynamics, it becomes harder for the heat wave to vibrate through the material. There-

fore, the conductivity will decrease when material is undergoing thermal expansion.

For the purpose of verification, a simple linear relation between strain and conduc-

tivity has been built as:

k′ =
k

1 + c ev
(7.12)

where k′ is conductivity after deformation, k is the original conductivity, c is a re-

laxation coefficient to magnify or reduce the strain effects on the property and ev is

volumetric strain. In this study, different values of c are tested to assess the strain

effects on the temperature field.

7.3 Verification test cases

In this section, verification cases are presented to show the correct implementation

of governing equations. Due to the lackage of commercial code capable of two-way

coupling, a 1D code is developed using Finite Difference Method. Thus, in the veri-

fication process, this 1D code along with KATS will be verified against ANSYS [34]

for one-way results. And then, two-way results will be compared using 1D code and

KATS to show the same results are obtained.

The material used is steel and its properties are presented in Table 7.1. To simplify

the problem, all the properties are considered independent of temperature and the

strain effects will only impact on the conductivity.

Additional verification test cases for the developed structural response code can be

found in [95]. In the present document, only thermo-mechanical coupling is presented.
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Table 7.1: Thermal and mechanical properties for steel

Density, kg/m3 Specific heat, J/(kg·K) Conductivity, W/(m· K)
7850 434 60.5

CTE, µm/(m·K) Young’s modulus, GN/m2 Poisson’s ratio
12 200 0.3

7.3.1 Geometry and boundary conditions

The same geometry and boundary conditions are used for both one-way and two-way

coupling. Consider a steel bar is heated at a constant heat flux for 5 seconds in

Fig. 7.2. The thermal boundary conditions at x = 0 is Qw = 7.5× 105 W/m2, and all

other surfaces are perfectly insulated. The reference temperature is set to 298 K to

represent the indoor environment. For structural boundary conditions, both of two

ends are fixed, and all other surfaces are constrained in specific directions.

Figure 7.2: Verification case with boundary conditions and computation grid

7.3.2 One-way coupling results verification

Figure 7.3 shows the temperature comparisons for three different codes. At t = 0 s,

the temperature is uniform at 298 K. As left side is subjected to the heat flux, the
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temperature increases from left to right. The perfect agreement for each code can

also be observed. L-2 norm will be added very soon.

Figure 7.3: Temperature results comparison

Figure 7.4 presents the results of displacement comparison. It can be seen that

since the two ends are fixed, there is no overall deformation along the bar. However,

displacement field shows that each element is expanding to its right (positive value of

displacement) since thermal strain has a larger effect on the left part. Again, three

different code produces results agree with each other perfectly.

Figure 7.5 shows the strain result comparison. For this result, ANSYS result is

missing because it does not provide this volumetric strain value as direct output. The

sign of the strain values represents the material either being compressed (negative) or

expanded (positive). As seen by the strain distribution, expansion and compression

occur at the same time. The left part of the bar is expanded due to the higher

temperature gradient whereas the right part of the bar is compressed because of a

lower temperature and increased thermal stresses.

It is interesting to point out that as the temperature magnitude increases with
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Figure 7.4: Displacement results comparison

Figure 7.5: Strain results comparison

time, the displacement field reaches a steady state equilibrium. In Fig. 7.6a, the

solutions are plotted by a time step 0.1 s. It is observed that the displacement field

reaches its steady state with a maximum value at about x = 0.0045 m. Thus, the
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strain alongside the bar behaves in a similar manner showed in Fig. 7.6b. The main

reason is that the temperature gradient along the bar reaches a steady state as heat

flux keeps heating the bar. Thus a constant temperature difference can be found.

(a) Displacement (b) Strain

Figure 7.6: Results for different times

7.3.3 Two-way coupling results verification

Since ANSYS does not provide direct way for two-way thermo-mechanical coupling,

the comparison of results in this section will between KATS and developed 1D finite

difference code. It should be noted that because different mathematical framework

of these two solver, the results are able to be cross-validated to show the correct

implementation of governing equations.

With the understanding of the behavior of displacement and strain field, different

values of relaxation coefficient have been chosen to evaluate the impacts on different

variables. In order to increase the clarity, all the results shown are at t = 5 s when

equilibrium reached with maximum and minimum values. In Fig. 7.7a, it can be

observed that as strain effects become stronger, the temperature distribution becomes

steeper. When compare c = 1 and c = 1, 000, the temperature at the x = 0 m is

higher for c = 1, 000. It is because the conductivity decreases at x = [0, 0.004] m,
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thus, it becomes harder to transfer heat alongside the bar. For the rest of the bar,

since conductivity increases, the temperature becomes smoother than when using

c = 1. Changes in temperature also have impacts on the displacement field. In

Fig. 7.7b, it can be observed that as the strain effects becomes stronger, the maximum

displacement increases and the location of the maximum moves to the left, where

temperature gradient is steeper.

(a) Temperature (b) Displacement

Figure 7.7: Temperature and displacement results for various relaxation values at
t = 5 s

The corresponding strain results are presented in Fig 7.8. The changes in strain

follows the same behavior as the temperature. It should also be noted that because

of the particular behavior of this case, the results of different variables are not pro-

portionally related to the relaxation coefficient.

7.4 Two-way strong thermo-mechanical ablation 1D modeling

In this section, the fully coupling scheme is employed to model charring ablation

problems. A step-by-step comparison is performed to show how the grid deforms,

and how strain effect impacts the material response. First, 1D results are presented

to better understand the physics and demonstrate how grid deformation and strain
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Figure 7.8: Strain results for various relaxation values at t = 5 s

effects play a role in strong coupling. Then, full 3D geometry – an iso-Q sample

– is presented to show how geometric effects plays in coupled ablation problems.

Contrary to the previous verification cases, the material used in the following sections

is theoretical charring ablator TACOT [88].

7.4.1 Boundary conditions and coupling process

The geometry used for this problem consists of a 0.01 m 1D bar made of TACOT, as

illustrated in Fig. 7.9. The front surface (x = 0 m) is subjected to a constant heat

flux of Qw = 7.5× 105 W/m2, and a constant pressure at p = 101, 325 Pa. The back

wall (x = 0.01 m) is assumed to be adiabatic and impermeable with a fixed support.

All other surfaces are considered to be symmetric.

7.4.2 Results

For this case study, the relaxation factor c is set to 1. The temperature values

for different coupling schemes are presented in Fig. 7.10. The four lines represent
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Figure 7.9: Charring ablation case with boundary conditions and computation grid

the results obtained with simple one-way coupling, grid deformation feedback, strain

effects on conductivity and full coupling, respectively. Using the one-way coupling

as the baseline, it can be seen that the thermal expansion at the front surface is

captured by the grid deformation coupling. Because of this displacement, the results

are shifted to the right, and very small temperature changes are observed. When

the strain effects are added, the maximum temperature increases for about 10 K,

due to the decrease in the conductivity in the expanded region. Since conductivity

along the bar both increases and decreases, the temperature field becomes steeper

at first and then becomes smoother. When both the grid deformation and strain

effect are combined – the fully coupling results – the surface expands to the left

with a temperature increase for about 7 K. Of course, since the relaxation factor is

very small, the temperature increase is not significant. With a more accurate strain-

property relation, more temperature changes are expected for this fully coupling case.

The results for displacement are presented in Fig. 7.11. When comparing the

baseline one-way coupling to the rest, it can be seen that both grid deformation and

strain effects play a role in decreasing the maximum displacement. The changes in
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Figure 7.10: Temperature results for different coupling schemes

length decreases the whole displacement along the bar uniformly. However, the strain

effects coupling smooths the displacement gradient around x = 0.004 m. As expected,

the fully coupled results show these two combined effects: the displacement becomes

smoother and with a smaller maximum value.

Figure 7.12 shows the distribution of von Mises stress along the bar. Compare

to the one-way result as baseline, the magnitude of maximum stress does not change

significantly. The location of the peak stress, however, are shifted to left. The thermal

expansion is first observed to shift to left about 0.0001 m as well as the strain effect.

As a result, the fully coupled result shows the peak moves to left about 0.0003 m.

Results for the volumetric strain are provided in Fig. 7.13. Although the total

strain is about only 4%, the local volumetric strain can be quite large, with value

as large as 17%. This large changes can have serious impact on solid density and

related properties. The peaks of the lines illustrate where largest stress occurs, which

is in the region between the virgin and char state (stress follows the strain behavior).

Comparing the results at t = 5 s, grid deformation has little effects on the strain
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Figure 7.11: Displacement results for different coupling schemes

Figure 7.12: Von Mises stress results for different coupling schemes

magnitude. Strain on the contrary, decreases the peak value, although very minimally

(about 0.1%). The combination of both phenomenon for the fully coupled case shows

only a movement of the peak with little changes in magnitude.
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Figure 7.13: Volumetric strain results for different coupling schemes

7.4.3 Results on projected grid

To compare the importance of the two-way coupling scheme, the 1-way coupled results

are projected on a new grid using the computed displacement solution. Figure 7.14

shows the temperature results, where the one-way and thermal expansion coupling

schemes are both overlapping. The same observation is made for the strain effects and

the two-way coupling temperatures. When compared to Fig. 7.10, it can be concluded

that the strain effect has much stronger influences on the temperature distribution.

This is not unexpected since the strain has a direct relationship with conductivity.

The same comparison is performed for the displacement, with the results shown

in Fig. 7.15. The strain effect has a lower maximum displacement than the one

obtained with the one-way coupling and moving mesh. As for the fully coupled results,

the maximum displacement is even lower. When compared to the one-way coupling

results, the maximum displacement is decreased by approximately 10%. As with the

temperature, the strain effects considerably affect the displacement distribution.

Figure 7.16 illustrates the same comparison, but this time, with the von Mises
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Figure 7.14: Temperature results on projected grid

Figure 7.15: Displacement results on projected grid

stress. The strain effect shifts the peaks of the stress to left, even on the results

obtained on a fixed mesh. When compared to the one-way results, the maximum

stress obtained using the two-way coupling scheme increases to about 2.4 MPa.

Finally, Fig. 7.17 illustrates the results of the volumetric strain on the projected

grid. It can be seen that the magnitudes of all the coupling schemes remains approx-

imately constant, while the location of the maximum strain shifts to left in the case

104



Figure 7.16: Von Mises stress results on projected grid

of the results obtained with strain effect and two-way coupling.

Figure 7.17: Volumetric strain results on projected grid

First, it is important to point out that the strain effect used for these results is

set to be very small, with a relaxation parameter is 1. For a material more sensitive

to volumetric strain, much stronger changes are expected. Second, the strain effect

has a strong influence on the locations of the peak values of stress and strain, as well
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as the maximum displacement and temperature. Therefore, it is undesirable to use a

material that has strong strain related properties as TPS material.

7.5 Fully coupled iso-Q sample

Arc-jet facilities are used to produce an extreme environment suitable for TPS ma-

terial testing. For this kind of tests, samples are usually shaped into an iso-Q sample

so that the heat flux on the front surface is almost uniform. Fig. 7.18a shows a typ-

ical post-test iso-Q geometry and Fig. 7.18b shows the sample is being subjected to

energized hypersonic flow. For this coupling case, a typical arc-jet material response

is modeled in order to provide insightful results and a better understanding of the

multi-physic process.

(a) Post-test iso-Q sample. Image taken from
Ref. [96]

(b) Iso-Q sampple in arcjet tesing. Image
taken from Ref. [97]

Figure 7.18: iso-Q sample

7.5.1 Boundary conditions and coupling process

Figure 7.19 shows the boundary conditions and computational grid used for the sim-

ulation. The front surface is subjected to a constant, uniform heat flux at Qw =
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7.5× 105 W/m2 and a constant, uniform pressure of p = 101, 325 Pa. The back wall

(x = 0.05 m) is assumed to be adiabatic and impermeable. The side wall (y = 0.05 m)

is set to be adiabatic, permeable, and with a fixed pressure, p = 101, 325 Pa, which

is the same as the front surface pressure. For solid mechanical boundary conditions,

the back wall (x = 0.05 m) is set to have a fixed support. As for the front and the

side wall, they are modeled as free surfaces with no constrain. For a better computa-

tional result, the mesh is intensively refined on the front surface and side wall, where

temperature gradient are expected to be large. A total of 60,000 computational cells

are used for this mesh.

Figure 7.19: Charring ablation case for iso-Q sample

7.5.2 Results

The two-way strong coupling shows very interesting modifications of the geometry

caused by thermal expansion. Figure 7.20 illustrates the displacement results, in-

cluding changes of geometry. It is immediately observed that at the beginning of

the simulation, when t = 1 s, the thermal expansion changes the geometry with a

maximum displacement 0.2 mm at the edge between the front surface and the side

107



wall. The front surface also expands to its left with a displacement of 0.1 mm.

Figure 7.20: Displacement results at t = 1 s

Figure 7.21 provides the temperature field at t = 1 s. The same expansion can be

observed. It should be noted that, since the material is expanding, in a realistic way,

the heat flux subjected to that area should vary with the changes of the deformation.

These results give more requirement on the heat flux description with a spatial cor-

rection. The value of the heat flux is fixed and uniformly subjected to the sample

front surface in this case.

Figure 7.22 presents the distribution of von Mises stress within the sample. It

can be observed that stress concentrates in a band area with a maximum value of

540 MPa. Since temperature is the driving force of this expansion and stress, the

band area follows the same pattern of the temperature field. The expanded front

surface shows little stress except at the joint area where front wall and side wall are

connected. This stress concentration has been studied in previous investigation on the

relationship between stress and temperature, displacement and density in Ref. [98].

Nevertheless, this type of behavior has been observed experimentally. An example
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Figure 7.21: Temperature results at t = 1 s

Figure 7.22: Von Mises stress results at t = 1 s

is shown in Fig. 7.23, where a PICA sample is being heated in an arc-jet facility at

t = 10, 17, 30 and 59 s. It can be seen that the sample is expanding as time elapses.

A very significant expansion – a “lip” – can be observed at the end of the run, at
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t = 59 s. As the expanded material becomes weaker, it will be peeled off by shear

stress on the edges, and depart the sample.

A similar behavior has also been reported in the literature when two different

material are subjected to the same heating condition, but have different thermo-

mechanical properties. If one material expands significantly compared to the other,

the flow field on the surface can be affected. This type of behavior, called fencing, as

been observed with the gap-filler used between the tiles of heat shields.[99]

Figure 7.23: Hymets arc-jet facility testing results conducted by Martin A. et al.
Image taken from Ref. [100]

7.6 Conclusion and outlook

In this study, the two-way thermo-mechanical coupling capabilities of KATS have

been verified and demonstrated. Code-to-code comparison shows that the thermal

expansion can be accurately predicted. 1D ablation cases shows that, grid defor-

mation decreases the maximum temperature and smooths the distribution of the

temperature. Meanwhile, strain effects on the conductivity increase the maximum

value and make temperature gradient steeper or smoother for different part of the

material. The results also demonstrate that for ablation modeling, thermal expansion

and its impacts on the material properties should be considered.

The internal pressure test-case provides an insight into the influence of the pressure

field on the stress experienced by the ablative material. Although the magnitude of
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the pore pressure is not very large, under certain condition, such as a non-permeable

cavity, localized stress may occur and cause damage. Finally, a two-way strong cou-

pling for iso-Q sample shows a thermal expansion on the front surface and side wall.

The deformation of the geometry leads to the formation of a “lip” that will eventu-

ally peel off, as is often seen in experimental results. The formation of this “lip” on

ablative material often leads to material spallation.

The results presented here open the door for additional work on the topic. For

instance, the material recession module would need to be coupled to the surface

ablation computation. Or, even more interestingly, the effects of the strong coupling

could be investigated using more parameters.

Copyright c© Rui Fu, 2018.
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Chapter 8: Conclusions, Contributions and

Future Work

8.1 Conclusions

This study focuses on the structural response of the TPS materials during atmospheric

re-entry. In Chapter 2, mathematical foundations of thermo-mechanical coupling

theories were investigated. The uniqueness of the coupled equations was proved.

Discussions on inertial term and mechanical coupling term were also presented to

show that in most situations, these two terms can be ignored. Based on the strict

mathematical derivations, the coupled thermo-mechanical equations could then be

simplified into a framework of quasi-static coupling system.

Based on the mathematical derivations, a structural response solver was developed

in the Finite Volume Method in Chapter 3. Verification cases were conducted to show

the accuracy and correctness of implementation of equations. Then, this solver was

coupled with thermal response in KATS and applied to charring ablation problem.

Results showed that, the produced thermal stress could be undesirably large up to 500

MPa, and was strongly related to temperature distribution and material properties

such as the density, conductivity, CTE and Young’s modulus.

Chapter 4 presented the results on the investigation of internal pressure within

TPS material. The results showed that under the assumption that porous media

was regarded as bulk material and isotropic properties, internal pressure played a

negligible effects on stress and displacement. However, more detailed investigations

were needed to study the possibility of the formation of impurity and micro-cracks in

the TPS material.

Chapter 5 provided the process of development of moving mesh scheme in struc-
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tural response module. The developed algorithm was based on the Finite Volume

Method and was very flexible to couple with different modules. A series of demon-

stration cases showed the correctness of mesh handling and application cases showed

the expected thermal expansion are captured.

In Chapter 6, as a continuation of the previous chapter, a 1D two-way thermo-

mechanical solver was developed based on Finite Difference Method in Python. This

rapidly developed code was then verified with ANSYS. By assuming a linear rela-

tionship between strain and conductivity, the strain effects was also studied to show

that as the conductivity decreased, surface temperature increased and resulted in a

larger local displacement. The results also revealed that the strain effects could play

a major role on the temperature distribution in heat conduction since conductivity

was a function of strain.

Finally in Chapter 7, as an integration of previously developed techniques and

frameworks, the fully coupled two-way thermo-mechanical solver was developed. Ther-

mal expansion and strain effect were captured during the charring ablation. The two-

way results showed that the overall temperature was underestimated as well as the

von Mises stress; the displacement was, however, overestimated in one-way coupling.

The application case on the iso-Q sample showed that thermal expansion on the front

surface and the joint area on the sample shoulder could be more easily peeled off from

the sample. The geometric deformation also indicated that the geometry of the flow

field should be changed according to the thermal expansion and the surface recession.

8.2 Original contributions

1. Development of multi-dimensional structural response solver in Fi-

nite Volume Method (FVM) framework. (Chapter 2, 3) Unlike most

solid mechanics solvers which are most developed using Finite Element Method

(FEM), the KATS uses an unified FVM framework. It solves either wave equa-
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tions for transient problem or elliptic equations for static problem by discretiza-

tion on cell centers of the computation grid . Demonstrated by the verification

cases, the solver achieved equal accuracy and capability for various structural

modeling problems compare to FEM. The same framework between among var-

ious components enabled KATS to be flexible enough to couple with other

modules with ease.

2. Development of thermo-mechanical coupling solver for charring ab-

lation. (Chapter 3) By coupling the developed structural solver with the

existing thermal response solver, KATS is able to investigate thermal stress

induced by high temperature and large temperature gradient within the TPS

material. In a same FVM framework, a shared computation grid can be used

for both codes and thus avoid multiple interpolations between cell center and

cell node. Based on this coupled solver, the distribution of thermal stress is

investigated for charring ablation during atmospheric re-entry. The resulted

thermal stress concentrates in a banded area as ablation process continues and

moves along with the ablation front. Thus, it is critical to ensure that the TPS

material can withstand the stress induced by the heating process.

3. Investigation on structural impacts of pyrolysis gas within TPS mate-

rial. (Chapter 4) Based on the same framework, the structural impacts of in-

ternal pressure induced by charring ablation pyrolysis gas are studied. Because

of the isotropic material assumption, the resulted stress from internal pressure

field is negligible for either permeable or impermeable walls cases. However, the

investigation also reveals that the possibilities of the impurity and micro-cracks

within the material and a rapidly building-up pressure, which can be disastrous

for TPS material.

4. Moving mesh scheme and two-way coupling of thermal expansion.
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(Chapter 5) Moving mesh scheme is now a necessary tool for multiphysics

advanced modeling. By updating the node position using the calculated dis-

placement on cell center, the computation grid is deformed in a physical way.

Empowered by the developed moving mesh scheme, thermal expansion is cap-

tured in either a simple heat conduction problem, or charring ablation problem.

5. Development of a 1D two-way thermo-mechanical coupling solver.

(Chapter 6) There exists very few available code can do a two-way thermo-

mechanical coupling, especially for strain effects on material properties. A 1D

prototype model is developed using a Finite Difference Method framework as an

exploratory and verification tool. It is rapidly developed in Python with pack-

ages including Numpy and Pandas. The post-process of results are handled by

Matplot for convenient visualization. The solver is verified by code-to-code com-

parisons among ANSYS and KATS for correct implementations of algorithm.

This package is now used for verification for KATS especially for studying the

strain effects on material properties.

6. Development of a two-way thermo-mechanical coupling solver for

charring ablation problem. (Chapter 7) The developed two-way thermo-

mechanical coupling solver can be regard as a collection of all the previous

techniques and schemes. Geometry deformation caused by large temperature

gradient is captured by moving mesh scheme and fed back to the thermal re-

sponse solver. The large thermal strain, at the same time, is calculated by

deformed grid and then is applied to material properties to see how it affects

the overall performance. By analyzing the thermal expansion and strain effects

on the charring ablative materials, the grid deformation and the thermal strain

are supposed to be not negligible. It is also the first time to visualize the ther-

mal expansion in charring ablation problems as well as the two-way strongly
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coupled analysis for TPS material.

8.3 Future Work

1. Material margin policy for TPS material. The TPS material proper-

ties have significant impacts on both thermal and mechanical performance for

atmospheric entry. As a continuation of this work, parametric studies on key

properties such as the CTE, Young’s modulus and Poisson ratio should be care-

fully investigated. Maximum allowable CTE should be examined with coupling

effects on the conductivity. By doing so, a material margin policy can be estab-

lished for different vehicles and various purposes. As a result, optimal material

properties can be quantified to achieve a perfect balance between economy and

safety.

2. Non-linear structural response solver. In either one-way and two-way

thermal mechanical coupling studies for the charring ablation, the resulted

strains are large enough so that the assumption of linear strain-stress may fail.

Thus, it is necessary to develop the non-linear description on the stress-strain

relation and coupled it into structural response code.

3. Porous material model. As showed in Chapter 4, the stress and strain

caused by internal pressure are negligible if the porous material is isotropic and

perfectly homogeneous with averaged, uniformly distributed pores. The reality,

however, is far from these assumptions. Pores are different in sizes and the

possibility of forming the local sealed chamber exists. Therefore, it is necessary

to study how the internal pressure affects the TPS material if these defects

exist.

Copyright c© Rui Fu, 2018.
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Appendix

A sample input file for KATS thermo-mechanical coupling simulation is provided in

the following list.

1 r e f e r e n c e {

2 Mach = 0 . 0 1 ;

3 T = 298 ;

4 }

5 time marching {

6 s tep s i z e = 1e−3;

7 number o f s t ep s = 1000 ;

8 }

9 g r i d 1 {

10 // f i l e = plate100100 . cgns ;

11 f i l e = isoQ40000plate . cgns ;

12 // trans form 1 ( func t i on = s c a l e ; anchor = [ 0 , 0 , 0 ] ; f a c t o r = [ 1 , 1 ,

1 ] ; ) ;

13 t rans form 1 ( func t i on = s c a l e ; anchor = [ 0 , 0 , 0 ] ; f a c t o r = [ 1E−3, 1E

−3, 1E−3] ;

14 number o f f law f a c e = 0 ; // one f law f a c e in t roduce two f law c e l l s

15 number o f f law c e l l = 0 ; // one f law c e l l b r ing s mu l t ip l e f law f a c e s

!

16 p o r o s i t y = 0 ; // ZERO means pure s o l i d !

17 moving mesh = 1 ; //1 = move , 0 = noMovement !

18 bcValue = 20 ;

19 ) ;

20 equat ions = heat conduct ion ;

21 wr i t e output (

22 volume v a r i a b l e s = [T, rhost , rhos , p , phi , so l idDi sp , vonMisesStress ,

t o t a lSo l i dD i sp , volumeStrain ,
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23 youngsModulus , thermalExpansion , po issonRat io , rank , mass ,

volume ] ;

24 s u r f a c e v a r i a b l e s = [ p , rho , mdot , phi , V, T, hg , rhos , rhost ,

s o l i d D i s p ] ;

25 volume p lo t f requency = 10 ;

26 s u r f a c e p l o t f requency = 400000000;

27 ) ;

28 heat conduct ion (

29 // Number o f . . .

30 maximum i t e r a t i o n s = 1000 ;

31 number o f gas bulk = 1 ;

32 number o f s o l i d s p e c i e s = 3 ;

33 number o f dimensions = 3 ;

34 number o f energy equat ions = 1 ;

35 porous model = Weng14 ; // Forchheimer ;// Weng15 ;// Suzuki04 ;// Weng14 ;//

Ahn02//Chen13 ;

36 ) ;

37 s o l i d mechanics (

38 maximum i t e r a t i o n s = 1500 ;

39 damping parameter = [ 0 . 2 5 , 0 . 25 , 0 . ] ;

40 convergence = 5E−6;

41 deformation magn i f i e r = [ 1 , 1 , 1 ] ;

42 r e l a x a t i o n c o e f f i c i e n t = 1 ;

43 // Number o f . . .

44 number o f s o l i d d i sp lacement equat ions = 3 ;

45 ) ;

46 mate r i a l = tacot /model . mat ;

47 IC 1 (T = 298 ; s o l i d D i s p =[0 , 0 , 0 ] ; p = 101325 ; ) ;

48 BC 3 ( type = o u t l e t ;

49 p = 101325;

50 exte rna lForce = [ 0 , 0 , 0 ] ;

51 ) ;

52 BC 4 ( type = o u t l e t ;
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53 //T = 298 ;

54 p = 101325;

55 qdot = 7 .5 e5 ;

56 exte rna lForce = [ 0 , 0 , 0 ] ;

57 ) ;

58 BC 2 ( type = wal l ;

59 //T = 298 ;

60 s o l i d D i s p = [ 0 , 0 , 0 ] ;

61 ) ;

62 BC 1 ( type = symmetry ;

63 s o l i d D i s p = [ 0 , 0 , 0 ] ;

64 // exte rna lForce = [ 0 , 0 , 0 ] ;

65 ) ;

66 //BC 5 ( type = symmetry ; ) ;

67 }

Listing 1: Sample Input File
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