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ABSTRACT OF DISSERTATION 

INDOOR-WIRELESS LOCATION TECHNIQUES AND ALGORITHMS UTILIZING 
UHF RFID AND BLE TECHNOLOGIES  

The work presented herein explores the ability of Ultra High Frequency Radio 
Frequency (UHF RF) devices, specifically (Radio Frequency Identification) RFID passive 
tags and Bluetooth Low Energy (BLE) to be used as tools to locate items of interest inside 
a building.  Localization Systems based on these technologies are commercially available, 
but have failed to be widely adopted due to significant drawbacks in the accuracy and 
reliability of state of the art systems.  It is the goal of this work to address that issue by 
identifying and potentially improving upon localization algorithms. 

The work presented here breaks the process of localization into distance estimations 
and trilateration algorithms to use those estimations to determine a 2D location.  Distance 
estimations are the largest error source in trilateration.  Several methods are proposed to 
improve speed and accuracy of measurements using additional information from frequency 
variations and phase angle information.  Adding information from the characteristic 
signature of multipath signals allowed for a significant reduction in distance estimation 
error for both BLE and RFID which was quantified using neural network optimization 
techniques.  The resulting error reduction algorithm was generalizable to completely new 
environments with very different multipath behavior and was a significant contribution of 
this work. 

Another significant contribution of this work is the experimental comparison of 
trilateration algorithms, which tested new and existing methods of trilateration for accuracy 
in a controlled environment using the same data sets.  Several new or improved methods 
of triangulation are presented as well as traditional methods from the literature in the 
analysis.  The Antenna Pattern Method represents a new way of compensating for the 
antenna radiation pattern and its potential impact on signal strength, which is also an 
important contribution of this effort.  The performance of each algorithm for multiple types 
of inputs are compared and the resulting error matrix allows a potential system designer to 
select the best option given the particular system constraints.   

KEYWORDS: Localization, RFID, Bluetooth Low Energy, Trilateration, RSSI-Informed 
Phase, Antenna Pattern Localization 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation for Enhanced Localization 

Localization is the technology of combining sensors with algorithms to determine 

the location of objects or individuals of importance.  This technology is utilized, for 

example, to identify where critical cargo shipments are anywhere in the world, track critical 

pieces of medical equipment inside hospitals and take inventories in storage areas.  

Information about location can be important for financial, and safety reasons to many 

industries from manufacturing, to health care, to transportation and logistics.   

The enabling technology for localization is typically an Internet of Things (IoT), or 

in an industry setting, an Industrial Internet of Things (IIoT).  This erupting technology is 

becoming wide spread due to a combination of inexpensive networked sensors, and data 

analytics merging together to accomplish a wide range of tasks.  These systems which were 

once task-specific, like a Wi-Fi system, can now be harnessed to provide information from 

all types of sensors (e.g., temperature, motion, audio, power, and clocks) to generate new, 

independent information about an environment (e.g., voice recognition, security 

surveillance, and energy efficiency).  Localization provides valuable feature to a pre-

existing technology, leveraging the sensor capabilities and allowing for more complex 

solutions. 

While the economic benefits from the localization of items and individuals both 

indoors and outdoors are significant, outdoor localization is mostly standardized using the 

global positioning system (GPS).  In contrast, indoor localization has significant room for 

improvement and uses any number of different methods.  Very few existing methods are 
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being rapidly adopted in large enterprise in a consistent way, due to a variety of limitations 

such as accuracy, cost, and time.   

Both the hardware and, especially, the algorithms required for effective deployment 

are not developed to the level that customers expect.  As such, the initial attempts by 

corporations to bring products to market have been met with only limited success.  The 

combination of high set-up costs, and poor performance mean customers are hesitant to 

adopt the technology, even if the function is extremely desirable. The current indoor 

localization technology networks have generally low precision, and additionally are prone 

to extreme erroneous readings.  The extreme readings and complex hardware deployments, 

as discussed in greater detail in the next chapter, are all indications of the 

underdevelopment of this highly valuable technology.  

1.2 Problem Statement 

The purpose of this research is to discover or improve upon indoor wireless 

localization methods to achieve a fast, accurate, environmentally robust and flexible 

algorithm, which can locate a varying number of devices using a varying number of 

readers/reader antennas, with minimal implementation cost.  The fundamental research 

problems investigated in this research include the effects of motion, the environment, and 

the equipment on localization accuracy.  The primary environmental effect studied in this 

work is multipath, which is known to have a significant impact on the accuracy of distance 

measurements. 
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1.3 Overview and Goals of the Research 

For this project, the first step is to identify the best indoor location algorithm/systems 

currently available and to quantify the limitations of those systems.  A major goal of this 

research is to generate a superior method to determine location, if possible, while also 

robustly addressing current technology issues to suggest an improved product and solution.  

One key focus is the reduction of both outliers/extreme results from a localization system, 

as well as improved general accuracy for all location estimations. Outlier locations have 

the potential to significantly erode system reliability, and can lead to the perception that 

the system as a whole is inaccurate, while reducing error in general would improve the 

value of the system and expand possible applications.  

This research focuses on two categorizations of indoor localization: many low-to-

moderate cost items, or fewer high-value items. Some examples of the first situation are 

prescription bottles filled at a pharmacy, small medical equipment or tools in an operating 

room, pieces or products on the assembly line of a manufacturing facility, or merchandise 

in a retail store.  As discussed more in the next chapter, RFID (Radio Frequency 

Identification) technology is selected for this application for its smaller variable cost, with 

individual tags costing only a few cents.  The second key application is the identification 

of more expensive mobile devices which might move around a hospital or industrial plant, 

and therefore require a larger detection range.  These items might include, for instance, 

infusion pumps at a medical facility, fork lift trucks at a manufacturing site, or even critical 

individuals such as newborns in a hospital.  The investigation into Bluetooth technology is 

intended to address this type of situation with an imbedded battery that yields a longer read 

range and a lower implementation cost for tracking only a few objects.  The goal of this 
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research is to utilize the combination of RFID and Bluetooth technologies to address both 

cases and find commonality in fundamental algorithms that can benefit both.  

The project was divided into three phases: 

• Indoor Localization Background 

• Research into Distance Measurement Accuracy 

• Identification of the Best Dynamic Localization Solutions 

In the first phase, a review of the current literature was completed and initial testing was 

performed to create a baseline for the performance of existing hardware systems and 

algorithms. During phase 2 of the research, the impact of motion and the environment on 

RF-based distance estimates was explored in detail, and robust methods to mitigate those 

impacts were proposed.  In the third phase of this work, the impact of equipment on 

localization accuracy, and methods to incorporate the actual antenna pattern, were further 

explored.  A detailed description of the three phases is presented in Appendix D. 

1.4 Organization of Document 

 

This document is organized as follows: 

 

Chapter 1: Introduction,  
Statement of the problem, motivation, scope and organization of the work 

 
Chapter 2: State of the art in localization  

A comparison of technologies and algorithms is presented. 
 
Chapter 3: RF Propagation and Device Signal Strength 
 RSSI principles and theoretical vs. experimental performance are explored. 
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An overview of how these interact with Bluetooth and RFID technologies 
is presented. 

 
Chapter 4: Modeling RFID Propagation 

This chapter experimentally and theoretically verifies the propagation of 
signals for RFID devices, which has been misrepresented in the literature.  

 
Chapter 5: RSSI-Informed Phase Method for distance calculations 

Contribution 1:  A new method for leveraging RSSI and Phase distance 
measurements to create an improved hybrid method is presented in [1]. 

 
Chapter 6: Reducing RF Distance Error by Characterizing Multipath 

Contribution 2: A new method to leverage information from frequency to 
reduce distance estimation errors with RSSI is presented.   This was first 
reported in [2]; it has been further expanded and presented in [3]. 

 
Chapter 7: Representing the RSSI Signature  
 Further explorations of the RSSI signature introduced in Chapter 6. 
 
Chapter 8: Characterizing the Environment using RSSI Signature. 

Exploration of the capacity of the RSSI signature to characterize the system 
environment. 

 
Chapter 9: Methods of Trilateration 

Contribution 3: Several existing methods of trilateration are improved. 
 

Chapter 10: Antenna Pattern Method of Localization  
Contribution 4: A new method using a simplified approximation of the 
sensitivity pattern of the antenna to improve localization accuracy is 
presented. 

 
Chapter 11: Experimental Comparison of Trilateration  

Contribution 5: A comparison of methods using combinations of distance 
and location algorithms from a single large experimental data set is 
presented.  

 
Chapter 12: Error Analysis 
 
Chapter 13: Conclusions 

Summary of Contributions and Future Work 
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CHAPTER 2. STATE OF THE ART IN LOCALIZATION METHODS 

2.1 General Location Estimation Methods 

The challenges associated with locating objects or individuals arises from a variety of 

technical constraints.  The structure and characteristics of localization algorithms impact 

performance attributes, flexibility, and sensitivities; thus those trade-offs were investigated 

to determine which technology or combination of properties was most appropriate, and 

what the key technical considerations are.  

• Localization vs. Tracking 

• Indoor vs. Outdoor 

• Error Sources 

• Geometrical vs. Statistical Localization 

2.1.1 Localization vs. Tracking 

 The first consideration is the purpose of the location algorithm and understanding 

the distinction between localization and tracking. 

• Localization – A localization algorithm calculates the current location of an object, 

independently of any of its previous locations. 

• Tracking – Tracking algorithms use an iterative process which updates the 

previous location by applying any changes in measurement, in order to calculate 

the current location of an object. 
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These two processes are not mutually exclusive. Tracking must begin with an initial 

localization step, and for accuracy should periodically re-locate the object.  Additionally, 

localization algorithms can be used for tracking if they can be measured or calculated 

rapidly enough for the specific application. Algorithm scaling with a variable number of 

tagged objects becomes a significant factor in selection for complex scenarios. 

2.1.2 Indoor vs. Outdoor 

Indoor vs. outdoor algorithms vary based upon the technology used, and environmental 

information available for each situation.  Typically, indoor vs. outdoor localization 

algorithms are separated by reader range, rather than the algorithm used.  Outdoor systems 

have the advantage of fewer barriers, which create interference for radio-frequency based 

signals. Outdoor systems therefore are frequently more accurate than indoor signals in a 

given limited-range situation.  At the same time the accuracy requirements for outdoor 

systems are generally lower than a comparable indoor installation due to the nature of the 

items being located or tracked.  

2.1.3 Outdoor vs. Indoor Location Methods 

The following is an overview of the measurement hardware and algorithm technology, 

which is currently used for outdoor and indoor location applications: 

• Outdoor 

o Technology 

 Mobile Phone 

 Global Navigation Satellite System (GNSS) 

 Internal Navigation System (INS) 
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 Radar 

o Measurement 

 Time of Arrival (TOA) – Calculates separation distance using the 

travel time of the signal from transmission to reception. 

 Angle of Arrival (AOA) – Measures phase angle differences using 

an antenna array to calculate the incident angle of an incoming 

signal. 

 Received Signal Strength Indication (RSSI) – A measurement of 

the amplitude of the incoming signal and used to find separation 

distance. 

• Indoor 

o Technology 

 Radio [RFID, Bluetooth, WiFi] 

 Imaging [Infrared, Visible] 

 Sound [Audible, Ultrasonic] 

o Measurement 

 Received Signal Strength Indication (RSSI) 

 Phase Angle – A measure of signal location within a sinusoidal 

cycle.  Phase angle, along with changing frequencies can be used to 

calculate separation distance. 

The technologies selected for an indoor or outdoor application reflect the scaled 

differences between the two problems.  Outdoor applications use more global navigation 

and long-range technologies, such as satellite systems, due to the scale of the environment.  
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Indoor systems have the advantage of an initial understanding of the location of the sensors, 

general infrastructure in that environment, and environmental extremes. These ranging 

technologies however must be effective over ranges the length of a large room.  

The measurement algorithm technologies reflect these differences as well.  Time of 

Arrival (TOA) and Angle of Arrival (AOA) methods are extremely accurate but require 

long distances to generate a change in time or angle large enough to be measurable with 

existing equipment.  Conversely the RF technologies, direct line of sight technologies or 

audio technologies all have limited range and issues with objects impacting their accuracy.  

RF technologies do have the advantage though of being easily deployed in building settings 

with relatively low cost for initial installation.  Satellite location is generally blocked within 

a building, so while it is possible for global positioning to be used and linked to an internal 

system providing general coordinates, this technology is not likely to be applicable for the 

type of indoor location needed by customers.   

One potential cross-over technology is the mobile phone which contains both links to 

cellular and GPS networks as well as internal Wi-Fi and Bluetooth networks.  These 

devices are ubiquitous and may well form an important link to localization infrastructure 

of the near future.  It should be noted the RF technologies investigated in this research will 

lend themselves well to this hybrid infrastructure as it becomes available.   

2.1.4 Error Sources (Indoor and Outdoor) 

The key sources of error in location algorithms are similar for both indoor and outdoor 

localization.  These include instrument error, such as reader losses, mismatches and noise, 

as well as environmental errors like ambient noise and multipath. A more in-depth 
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investigation and discussion of error sources for this research is provided in the Error 

Analysis, Chapter 12. 

• Multipath – Multipath error is one of the largest sources of error for both indoor 

and outdoor localization.  It is caused by reflections along the path of the signal, 

yielding a longer total distance traveled by that signal.  This additional distance is 

understood by the reader as the object physically being further away.  Figure 2-1 

illustrates how reflections in the environment can yield longer total signal path 

lengths. 

• Reader Error – Reader error varies significantly depending on the type of 

measurement.  RSSI measurements, for instance, are easier for the reader to 

quantify than a phase measurement.  Thus, phase has more variability in any 

particular measurement then RSSI.  Measuring time of arrival (TOA) requires 

extreme precision and accuracy because light travels quickly.  Therefore, TOA 

measurements are only reliable when the transmitter and receiver are separated by 

a large distance (cell phone to satellite) and the receiver has incredibly accurate, 

precise, and expensive measurement equipment, as is contained in a satellite.  Angle 

of arrival (AOA) is calculated using an antenna array and differences in phase 

angle, thus AOA data requires a relatively high level of precision and a larger, more 

expensive antenna. AOA measurements are typically only practical in outdoor 

environments. 

• Moving Device – Locating an object takes time; therefore, depending upon the 

speed of the object being tracked and how long it takes to locate it, an object in 

motion can have significant location errors. 
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• Antenna Angle – Errors due to antenna angle (or pointing error) are applicable in 

both indoor and outdoor localization systems. Antenna designs produce irregular 

sensitivity patterns which unevenly intensify signal amplitudes. Indoor systems are 

more sensitive to antenna pointing errors as the amplification effect has larger 

variations within the smaller field of interest.  Cell phone towers have a fairly 

isotropic antenna radiation pattern for objects on the ground, and satellites are 

extremely directional, but are precise in their angle towards earth.  For indoor 

systems like RFID, Bluetooth or Wi-Fi, signal direction is frequently unknown, and 

due to desires for low-cost installation the design goal is to have these systems 

deliberately respond to signals from any angle.   Thus, these antennas are often 

designed to be as uniform as possible, but a truly isotropic antenna does not exist.   

 

 

Figure 2-1: Reflections and multipath in an outdoor environment  
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2.1.5 Geometrical vs. Statistical Location 

Another distinction for location algorithms is the employment of geometrical or 

statistical algorithms.  Geometrical algorithms used trigonometry to calculate the location 

of an object, whereas statistical methods use previous or related data and probability 

analysis to find the likely location.   

• Geometrical 

o Triangulation – Finding the location of an object using known angles.  

 Uses AOA data. 

o Trilateration – Locating an object using known distances.  

 Uses TOA, RSSI, phase, or other data which can be used to calculate 

distance. 

• Statistical 

o Fingerprinting – Comparing incoming signal data to a map of known values, 

in a constant environment, to determine the likely location of the object.  

 Typically uses RSSI data. 

o Near Neighbor – Using reference devices at known locations, in comparison 

to the incoming signal, to determine the likely location of the object. 

 All measurement types can potentially be used for near neighbor. 

o Machine Learning– Supervised machine learning algorithms with a 

significant amount of training data can be used to find a likely location.  The 

result is different from a fingerprint as it can handle more variability.  
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While geometrical and statistical methods are distinct in their approach to calculating 

location, often a combination is used to capitalize on the strengths of each.  For example, 

geometrical methods are quite useful in finding an approximate location with minimal 

computation; however, as is the case with trilateration, any error in the system can mean 

the geometry will not converge on an actual location.  Thus, geometry can be used to find 

an initial area, and then statistically based optimization methods can be used to narrow the 

area down to the most likely location. 

2.2 Choosing Sensors and a Location Algorithm 

2.2.1 Problem Statement 

The problem statement which initiated this research was: 

Problem Statement 

The purpose of this research is to discover or improve upon indoor wireless localization 

methods to achieve a:  

• Fast 

• Accurate 

• Environmentally robust algorithm 

• Locating a varying number of devices  

• Using a varying number of readers/reader antennas 

• With minimal implementation cost. 
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The problem statement specifies indoor localization, thus outdoor technologies such as 

cellular networks, GNSS, INS and radar can be eliminated, along with the measurement 

methods TOA and AOA.  Therefore, the possible measurement methods include: radio, 

sound, and imaging.  The problem statement also dictates fast localization rather than 

tracking because a single quick localization algorithm can be used for both location and 

tracking applications.  Image analysis is often computationally intensive and is highly 

specific to the environment in which it’s trained.  Audio is a slower measurement due to 

the differences between the speeds of sound vs. light and complex with regards to noise 

interference.  Thus radio sensors were determined to be the technology of choice.   The 

following graphic (Figure 2-2) shows how the different indoor localization technologies 

compare.  Radio based technologies meet the requirements for an indoor localization 

system with low installation cost and a fast enough speed to potentially allow for device 

tracking.  There are two different technologies that fall into this general category, Radio 

Frequency Identification (RFID) and Bluetooth technologies as shown in Figure 2-2.  Both 

will be evaluated in this work.    
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Figure 2-2: Selecting a technology for localization 
 

2.2.2 Radio Devices 

Radio sensors are applicable indoors, have the potential for high accuracy, are fast, can 

easily incorporate a varying number of devices, and depending on the technology have a 

low implementation cost.  Indoor environments are complex and constantly changing, as a 

result RF devices often have large location error indoors.  Thus, a goal of this project is 

minimizing of the impact of complex and variable indoor environment on location 

accuracy. 

Between various RF technologies the dominant factor for its selection is prevalence in 

the market, which is linked to cost and ease of purchase.  To minimize the implementation 

cost, while handling a varying number of devices and readers, passive ultra-high frequency 

(UHF) radio frequency identification (RFID) and Bluetooth Low Energy (BLE) 
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technologies were selected as the optimal technologies for the two different types of 

situations discussed in the previous chapter. 

• Passive UHF RFID – For passive RFID, a reader is used to transmit a signal for 

the purpose of both supplying information and powering an RFID tag.  The RFID 

tag receives the query, and then uses the power from the reader’s signal to transmit 

a return signal of its own.  The return transmission includes any information stored 

on the tag.  This process is discussed in greater detail in Chapters 3 and 4. 

 RFID tags were originally designed as an information-dense bar-code 

replacement, or non-contact/non-line-of sight identifiers.  The potential of these 

devices quickly drove research into their use for additional applications like 

localization.  A typical RFID tag holds 64 bytes [4] of (user available) data and 

recent tags can hold up to 8KB [4] of data, in comparison UPC bar codes hold 4.25 

bytes [5] of data. 

 Passive RFID tags have a read range of <10m [6] and commonly cost 

between $0.05 and $1.00 [7], [8], [9], [10] per tag.  The passive (no battery needed) 

nature of these RFID tags reduces both the cost but also the read range.  Passive 

RFID tags have a long lifespan and are often coated in plastic to make them 

environmentally robust. There is no battery that needs be replaced, so there is also 

no periodic upkeep.  An RFID reader however, costs between $500 and $2,000 

[11].  This makes RFID systems ideal for applications where a large number of 

inexpensive items will need to be tracked over a limited range.  For instance, RFID 

tags are useful in retail and manufacturing environments to store information about 
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a multitude of different objects to which they are attached and can be used to locate 

those objects when needed. 

• BLE – Unlike RFID systems, BLE devices can be used as either readers or beacons.  

This, in conjunction with the different networks operating (discussed in the next 

chapter), make BLE a versatile sensor.  BLE transponders are imbedded in a wide 

range of technologies and utilizing the potential functionality of these other devices 

could significantly reduce the implementation cost of a localization network.  

Adoption of BLE technology into mobile devices has driven the prevalence of the 

devices up and the cost per device down.  The price of a BLE device ranges from 

$10-$50, with a read range of >100m, making it an excellent and cost-effective 

solution for a handful of devices which need to be tracked over a greater range.  

They also have the ability to create connected decentralized networks which could 

enable location technology over a larger area than a single device can monitor.   

 BLE devices achieve the higher read range because they rely upon a 

connected power sources such as a battery or a wall outlet connection.  Battery 

powered BLE beacons require periodic battery charging or replacement.  These 

characteristics make them ideal for scenarios such as tracking medical equipment 

in a hospital, or large pieces of industrial equipment. 

2.2.3 Key Localization Algorithms 

• Triangulation, shown in Figure 2-3, uses known angles from AOA to calculate the 

location of an object, but given the requirements of an indoor localization 

algorithm, this is not a viable option.   
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Figure 2-3: Angle of Arrival (AOA) used for triangulation 
 

Thus, the major remaining possibilities for indoor localization algorithms using radio 

sensors are: 

• Trilateration -Trilateration uses 3 or more readers at known locations, then finds 

the location of the object using calculated separation distances.  If there is no error 

in the system, this can be calculated using the Law of Cosines, otherwise the 

geometry will not converge on a single location.  If this is the case, then graphically 

circles can be overlaid to show the likely locations or areas.  If there is some error 

then space in the center of the overlapping area, or some additional method of 

optimization is employed to find the most probable location.  Figure 2-4 graphically 

illustrates basic idea of trilateration. 
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Figure 2-4: Trilateration – Using distances to find an object  
 

• Fingerprinting – Fingerprinting is a method that relies on a matrix of known 

measurement values from a particular environment and typically uses a map of 

known RSSI values to determine its location. The RSSI from the desired device or 

beacon is compared to the map of RSSI values [12].  This narrows down the 

possible locations to places where the same or similar RSSI values have been 

recorded.  Low accuracy applications can use fingerprinting with a single reader or 

can incorporate multiple readers along with an optimization algorithm to find the 

most probable location.  A single reader would not be able to distinguish between 

two locations with the same signal strength but with a unique map of values it is 

still possible. Additional readers would then further narrow down the possible 

locations apart from errors due to changes in the environment.  Fingerprinting 

methods sometimes suffer from extreme values when predicted location is a 

significant distance from the actual. This is because more than one area in the RSSI 

map have the same value. This issue along with environmental inconsistency has 
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slowed adoption in commercial applications.   An example of a fingerprinting map 

can be seen in Figure 2-5.  Experimental set-up information for this figure can be 

found in Appendix A, section A.4.1.  

 

 

Figure 2-5: Fingerprinting map with relative RSSI values for every ft2 
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The main issue with fingerprinting is the need for constantly updating the map of RSSI 

values.  RSSI is heavily impacted by the surrounding environment.  Thus, if a 

fingerprinting map is extremely accurate, it can be very useful for location because 

multipath effects are already accounted for and it acts as a unique fingerprint of the area of 

interest.  However, even small changes in the environment can yield large changes in the 

fingerprinting map and result in large localization error.  If a fingerprinting method is to be 

employed, the map must be continuously updated, which is a tedious process. 

Finally, changes in antenna angle cannot be accounted for regardless of how often the 

fingerprint map is updated.   The impact on the measured RSSI value will cause the device 

to be assigned or located incorrectly on the fingerprint map.  

• Near Neighbor – Near neighbor is another comparative statistical algorithm, which 

can be used for either localization or tracking.  It uses a large number of reference 

devices in the environment at known locations, then typically the RSSI of the 

unknown beacon is compared to the RSSI values of the reference devices to find 

the probable location of the beacon.  Figure 2-6 illustrates the near neighbor system 

setup.  The algorithm most commonly used is k Nearest Neighbors (k-NN), which 

is considered to be a simplistic pattern recognition machine learning algorithm. 
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Figure 2-6: Depiction of near neighbor localization 
 

In contrast to fingerprinting, near neighbor does not use a historical map of data for 

comparison, but live data from reference devices.  This makes it environmentally robust 

when initially deployed like fingerprinting, but also continuously adapting to changes in 

the environment.  The key drawback of near neighbor methods is the requirement for a 

large number of reference devices to be deployed in any environment at accurately known 

locations.  This requires a large implementation cost both in terms of time and money. 

2.3 Choosing a Localization Algorithm 

In order to reduce the implementation and maintenance cost of the localization system; 

fingerprinting and near neighbor methods were eliminated in favor of a trilateration.  While 

fingerprinting and near neighbor methods have been demonstrated in the literature to be 

more robust than trilateration, the cost and time of implementation and maintenance make 

them difficult to employ and maintain in real world commercial situations. 
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Trilateration uses very few reference devices but instead incorporates signal processing 

knowledge to estimate distance and location, giving it a relatively low cost of deployment 

and support.  The plan for this research is to increase the accuracy of trilateration by finding 

an optimization algorithm in conjunction with geometrical trilateration to compensate for 

environmental impacts.  Thus, the focus of this research is to find or create the optimal 

combination of algorithms for indoor RF trilateration. 
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CHAPTER 3. RF PROPAGATION AND DEVICE SIGNAL STRENGTH 

3.1 Overview 

The purpose of this chapter is to review the general principles of UHF (Ultra High 

Frequency) propagation and verify the relationship between signal strength and distance as 

it applies to indoor RF trilateration.   The deterioration of signal amplitude as a function of 

distance is an underlying principle for the most common form of indoor RF distance 

estimation [12].   Generating distance measurements in this fashion is the first step in 

trilateration.  Distances are generated from a satellite for devices such as a RFID reader or 

BLE, to a target beacon, such as an RFID tag or BLE device in an unknown location.  

Signal strength is often used for calculating distance and primarily impacted by dispersion 

as it propagates and multipath effects.  For RFID systems readers/satellites are 

sophisticated and relatively expensive, while the tags/beacons are inexpensive and often 

plentiful within the specified area.  Bluetooth (BLE) devices are active (contain a power 

source such as a battery) and can serve as either satellites or beacons.  In comparison to 

RFID, BLE make for inexpensive satellites, but expensive beacons.  This tradeoff works 

well for deciding what technology is appropriate for a given application. 

3.2 Signal Strength vs. Distance 

For both BLE and RFID, the distance between satellite and beacon is normally 

determined by the amplitude of the signal received by the reader, or RSSI.  As the RF signal 

is radiated from the transmitting antenna, the electromagnetic wave density follows the 

inverse-square law, meaning the power density is proportional to the inverse square of the 

distance traveled.  This phenomenon is called RF wave propagation, the most simplistic 
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(free-space) form of which is described by the Friis [13] equation (Equation 3-1).  Figure 

3-1 shows empirical data demonstrating this one-way free-space propagation, by use of a 

5 meter fully-anechoic chamber.  Information about the experimental set-up for this 

experiment can be found in Appendix A, section A.4.2.  For this graph, the power at the 

various separation distances is given by the RSSI value as measured by the reader. 

 

Figure 3-1: RFID data demonstrating how RSSI vs. Distance follows the inverse-
square law, meaning the power density is proportional to 1/d2 where d is the 
separation distance between satellite and beacon. 

 

Assuming an idealized free space situation, the Friis equation can be used to 

estimate the RSSI based on the antenna to tag distance.  The Friis equation is given by 

Equation 3-1 [13]: 

𝑃𝑃𝑟𝑟
𝑃𝑃𝑡𝑡

= 𝐺𝐺𝑡𝑡𝐺𝐺𝑟𝑟 �
𝜆𝜆

4𝜋𝜋𝜋𝜋
�
2
                                              Equation 3-1 

Where: 
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Pr= Power to the receiving antenna (dBm) 

Pt=Power from the transmitting antenna (dBm) 

Gr=Gain of the receiving antenna (dBi) 

Gt=Gain of the transmitting antenna (dBi) 

λ = wavelength (m) 

R = Distance between antennas (m) 

 

 It should be noted the Friis equation, in the form shown in Equation 3-1, does not 

take into account any number of real-world losses or disturbances, such as impedance 

mismatches, polarization mismatches, equipment losses or multipath.  For passive RFID, 

some of the power transmitted by the reader is consumed by the RFID tag for its modulated 

response.  This topic will be discussed in greater detail in the next chapter. 

 One assumption when using the Friis transmission formula (Equation 3-1) is the 

communication takes place in the far field.  There are three key criteria for estimating far 

field (Equation 3-2) [14]: 

1) 𝑟𝑟 > 2𝐷𝐷2

𝜆𝜆
        

2) 𝑟𝑟 > 5𝐷𝐷        

3) 𝑟𝑟 > 1.6𝜆𝜆      Equation 3-2 

Where: 

r = Separation distance (m) 

D = Longest dimension of the antenna (m) 

λ = wavelength (m) 
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 For the half-wave dipole antenna, which is commonly used in this work for RFID, 

D = 0.5λ and λ=0.33 m.  Therefore, to be considered far field, it must satisfy 1) r > 0.165m, 

2) r > 0.825m and 3) r > 0.528m for RFID.  Similarly, the antenna on the end of the BLE 

circuit was measured to be 6.35cm long, as seen in Figure 3-2.  Since the wavelength for 

BLE is 0.125m, this means it too is a half-wave dipole antenna.  Therefore, for BLE these 

far-field conditions are as follows 1) r > 0.063m, 2) r > 0.313m and 3) r > 0.200 m.  For 

this work, far-field conditions are more easily violated with RFID than with Bluetooth, as 

the primary constraint is r > 0.825m for RFID and r > 0.313m for Bluetooth. 

 

Figure 3-2: BLE device used for this work, highlighting the imbedded antenna. 
 

 The majority of this work takes place clearly in the far field; however, the data 

collected in the near field is not excluded.  While this means theoretical far field equations 

such as Equation 3-1 cannot be accurately assumed, the majority of this work relies on 

these empirical relationships anyway due to several other unknowns within the system, 

such as the gain of the RFID tag [4] or BLE device [15], the power consumption of the 
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RFID tag, or the gain of the circular polarized RFID antenna [16].  Thus, general 

relationships are utilized like the inverse-square rule, rather than the precise theoretical 

calculated values. 

3.3 Multipath 

 Multipath is the phenomena where signals reflect off one or more surfaces before 

reaching the receiver.  Given a measurement (Ϻ) of the reported value of signal strength 

from an RF beacon as seen by the satellite, the measurement will include environment 

multipath and the impact of instrumentation.  This measurement, Ϻ, can be defined as: 

 

Ϻ =  𝑃𝑃𝜋𝜋𝐷𝐷 + ∑ (𝑃𝑃𝜋𝜋𝑅𝑅 sin𝜓𝜓)𝑗𝑗
𝑗𝑗=𝐾𝐾
𝑗𝑗=0                                    Equation 3-2 

 

Where: 

 PRD is the power received from the beacon’s direct signal (in Watts),  

PRM is the power received from a beacon’s multipath signal (in Watts),  

ψ is the phase offset between the direct signal and multipath signal (radians) and  

K is the number of multipath signals [3].   

 

The summation portion of Equation 3-2 represents the constructive and destructive 

interference of the multipath signals, which effectively become error in the distance 

measurement.  This discussion of multipath and the impact of frequency will be further 

explored in Chapter 6. 
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When the multiple multipath signals travel different paths, each path likely has its 

own unique distance.  With these variations in distance, the phase angle of the signals (ψ) 

when they finally reach the receiver also vary.  When these signals sum together at the 

receiver, they can either be in sync causing constructive interference and making the signal 

amplitude greater and the RF device appear closer, or they can be out of sync causing the 

signals to cancel each other out and making the RF device appear further away.  The 

diagram in Figure 3-3 illustrates how this effect works.   

 

Figure 3-3: Multipath, or in this case a single ground plane refection can cause 
constructive interference, where the direct and indirect signals sum together 
yielding a greater total signal amplitude. 

 

 Multipath is often the largest component to distance error and incredibly 

complicated to model in real world situation [17].  This is due to the fact every RF reflective 

surface would need to be considered in this model, therefore the exact orientation of every 

object in the environment would need to be known and included.  This level of detail is not 

practical for normal applications and even if the information was collected, the wave 

propagation model would be massive.  Therefore, to verify a simplistic form of multipath, 

an experiment was performed in a semi-anechoic chamber to compare to the theoretically 

predicted multipath of a single plane of reflection to the empirical data.  The results are 
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shown in Figure 3-4.  The experimental set-up for this figure can be found in Appendix A, 

section A.4.3. 

 

Figure 3-4: A comparison of theoretical vs. experimental multipath in the situation 
of a single ground plane reflection. 

 

 The theoretical ground plane reflection diagrammed in Figure 3-4 is calculated 

using the electric field strength equation from [18] shown below as Equation 3-3. 

𝐸𝐸𝐷𝐷𝐷𝐷 =
�30𝑃𝑃𝑇𝑇𝐺𝐺𝑅𝑅2�𝑑𝑑2

6 + 𝑑𝑑1
6|𝜌𝜌𝑣𝑣|2 + 2𝑑𝑑1

3𝑑𝑑2
3|𝜌𝜌𝑣𝑣| cos(𝜑𝜑𝑣𝑣 − 𝛽𝛽[𝑑𝑑2 − 𝑑𝑑1])�

1
2�

𝑑𝑑1
3𝑑𝑑2

3  

Equation 3-3 

Where: 

EDV = Ground-wave electric field strength (μV/m) 

PT = Radiated power (pW) 

G = Gain (dBi) 

R = Horizontal distance between transmitter and receiver (m), seen in Figure 3-5 

d1 = Direct path length (m), seen in Figure 3-5 
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d2 = Indirect path length (x +x’), seen in Figure 3-5 

ρv = vertical reflection coefficient 

φv = phase angle (radians) 

β = 2π/λ, free-space wavenumber (phase constant) 

 
Figure 3-5: A comparison of theoretical vs. experimental multipath in the situation 
of a single ground plane reflection.  

  

The shape of the curve from the theoretical calculation matches almost identically 

with the empirical data shown in Figure 3-4, with the exception that the experimental data 

deteriorates faster than the theoretical line.  This would indicate there are additional real-

world losses not accounted for.  Chapter 12 further explains the possible sources of error 

and losses within the experimental setup. 
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3.4 RFID vs. Bluetooth Communication 

To establish communication, a satellite broadcasts an encoded signal looking for a 

response from the beacon.  The beacon is activated by that signal and replies with an 

encoded signal containing the requested information.  In the case of a passive RFID tag, 

which contains no battery, the energy in the satellite’s signal is scavenged and modulated 

to create a response.  The communication can either be a point-to-point link or a point-to-

multipoint. Either way, passive RFID always takes the form of a centralized network as 

depicted in Figure 3-6(A).   

 

Figure 3-6: Illustration of (A) Centralized, (B) Decentralized, and (C) Distributed 
Mesh Networks  

 

 A BLE network is more complex because any device can serve as a satellite or 

beacon; or in Bluetooth specific terminology, a master or slave.  This decentralized network 

is illustrated in Figure 3-6(B).  Similar to RFID, BLE communication can either come in 

the form of a point-to-point connection, which for Bluetooth is called synchronous 

connection oriented (SCO), or point-to-multipoint called asynchronous connection less 

(ACL) [19].  A cluster of BLE devices is called a piconet (as shown in Figure 3-7), and a 
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BLE device can be a master in one piconet and at the same time a slave in another.  In this 

way the BLE devices create a decentralized mesh network allowing information to travel 

great distances through the network of piconets, called a scatternet.  Although BLE is often 

considered a mesh network, a true mesh network would be of the form illustrated in Figure 

3-6(C). 

 

Figure 3-7: Various network formations of Bluetooth communication. (a) Point-to-
Point or SCO communication, (b) Point-to-Multipoint or ACL, forming a Piconet, 
(c) Network of Piconets called a Scatternet  

 

 To minimize interference, RFID and Bluetooth rely on pseudo-random frequency 

hopping.  Based on FCC regulations, RFID utilizes 50 hop frequencies within the range of 

902-928 MHz while BLE hops between 40 channels ranging from 2.40-2.48 GHz, as can 

be seen in Figure 3-8. 
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Figure 3-8: Illustration of the Bluetooth hop frequencies overlaid with the Wi-Fi 
channels.  

 

 Both Bluetooth and Wi-Fi operate on the same frequency band. However, these 

technologies can interfere with each other.  This interference is investigated and is 

described in Chapter 12. 

3.5 Conclusion 

Signal strength for both Bluetooth and RFID decrease as an inverse-square function 

of the distance traveled and are significantly impacted by multipath.  This relationship was 

demonstrated for both free-space and single ground plane reflection scenarios using fully 

anechoic and semi-anechoic chambers.   

RFID and Bluetooth have unique methods of communication, with RFID solely 

relying on a centralized network, while Bluetooth devices can operate in a centralized or 

decentralized structure.  These two networks structures are made possible due to the fact 

any Bluetooth device can operate as a mater or slave and can simultaneously serve as a 

master in one piconet and a slave in another.  These groupings of piconets are called a 

scatternet and allow information to travel long distances through the network of devices.   
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CHAPTER 4. MODELING RFID PROPAGATION 

4.1 Background 

Chapter 3 explored signal strength and its dissipation as it propagates between 

transmitter and receiver.  When the propagated signal reaches the receiving RFID tag, the 

tag uses power from this signal to send back a response, which in the literature is referred 

to as backscatter.  In this chapter, the idea of RFID tag backscatter will be explored, and 

some of the misconceptions in the literature are clarified about how RFID tags function 

and how they can accurately be modeled. 

4.2 RFID Backscatter 

One definition of backscatter is, “the scattering of radiation or particles in a direction 

opposite to that of the incident radiation due to reflection from particles of the medium 

traversed” [20].  Essentially, backscatter is the reflection of particles in the opposite 

direction.  One example of backscatter would be if an RF wave encountered an antenna 

and some of the energy was re-radiated towards the RF source.  While backscatter is often 

thought of as a simple reflection, it can be more complex.  Based on the definition of 

backscatter, particles must completely change direction, but as is the case with RFID tags, 

this redirection can be accomplished through any number of means.  Since passive RFID 

tags have no battery and simply rely on the power of the incident wave to send a reply 

signal, this response is accurately referred to in the literature as backscatter [21] [22] [23] 
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[24] [25] [26].  True RFID backscatter is achieved by a collection of the incident wave 

power, and a retransmission by shifting between two states creating a modulated signal 

response.  Unfortunately, as backscatter is often thought of as purely a reflection, there is 

a common misconception in the literature of oversimplifying the RFID propagation model.  

If RFID propagation and response is misunderstood as a basic reflection, than it will be 

described as a simple two way propagation model, as was incorrectly demonstrated in 

multiple sources [27] [28] [29] [30] [17].   There are many different forms of backscatter, 

and this chapter will demonstrate with theoretical circuit models as well as experimental 

data, why the simple reflection definition for backscatter is not applicable. 

4.3 One vs. Two Way Reflection 

One of the steps to improving distance estimations is to first understand the 

properties of the signal strength and signal propagation.  The most common use of the term 

backscatter would suggest that the signal from the radio is reflected off of the RFID tag 

and back to the radio in a two-way propagation model.  The first step of the signal 

propagating from the reader antenna to the RFID tag can be described by the Friis equation 

as shown in (Equation 4-1). 

One-Way Propagation 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 𝜋𝜋𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑣𝑣𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑟𝑟𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑟𝑟 𝑇𝑇𝑟𝑟𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝐺𝐺𝑟𝑟𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑟𝑟𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 �
𝜆𝜆

4𝜋𝜋𝑅𝑅
�
2
      Equation 4-1 

Where: 

Ptag Received - The power received by the passive RFID tag from the radio (dBm) 

Preader Transmitted - Power transmitted by the radio (dBm) 
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Greader - Gain for the antenna of the radio which sent the transmission (dBi) 

Gtag - Gain for the antenna inside of the tag (dBi) 

λ - Wavelength of the transmitted signal (m) 

d - Distance between radio and tag (m) 

 

In a two-way propagation model, the Ptag Received then becomes the starting point for 

the reflected energy (sometimes with an efficiency loss).   Substituting this value into the 

starting power in (Equation 4-1) the return reflection of power for a two-way propagation 

is given by: 

𝑃𝑃𝑟𝑟𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑟𝑟 𝜋𝜋𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑣𝑣𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 𝜋𝜋𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑣𝑣𝑅𝑅𝑅𝑅𝐺𝐺𝑟𝑟𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑟𝑟𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡 �
𝜆𝜆

4𝜋𝜋𝑅𝑅
�
2
             Equation 4-2 

And therefore: 

Two-Way Propagation 

𝑃𝑃𝑟𝑟𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑟𝑟 𝜋𝜋𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑣𝑣𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑟𝑟𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑟𝑟 𝑇𝑇𝑟𝑟𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅𝐺𝐺𝑟𝑟𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅𝑟𝑟2 𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡2 � 𝜆𝜆
4𝜋𝜋𝑅𝑅

�
4
         Equation 4-3 

Where Preader Received is the power received back by the reader from the RFID tag.  In 

a system with a passive tag, energy can come only from the intercepted radio signal, thus 

on first glance this model appears to be a reasonable assumption of how the RFID tag 

performs, but that would be a mistake.   
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4.4 Passive RFID System 

The RFID reader initiates communication by broadcasting a signal.  This signal has 

two key components, a modulated signal with information to be decoded by the tag’s chip, 

and a continuous wave which is used to power the tag, as shown in Figure 4-1. 

 

Figure 4-1: Communication link between RFID reader and tag.  
 

When the passive RFID tag responds to the reader, it does so by modulating the 

continuous wave from the reader to create a signal of its own.  The re-radiated signal is 

created based on switching between two load impedances (as can be seen in Figure 4-2), 

determined by the logic and information stored on the chip.  “The tag sends data back by 

switching its input impedance between two states and thus modulating the backscattered 

signal.  At each impedance state, the RFID tag presents a certain radar cross section (RCS).  

One of the impedance states is usually high and another is low to provide a significant 

difference in the backscattered signal.” [31] 
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Figure 4-2: System overview of passive RFID operation. 
 

As described in [21], an RFID tag is a transmitter and receiver but with a rectifier 

added to supply the DC voltage to the tag chip. The RFID chip passes through four stages 

of operation, from being idle waiting on a signal, to powering up when it receives a 

continuous RF signal, reading the address from a coded signal from the radio and finally 

responding if the received address matches the tag address.  It is the power level of this last 

stage, exiting the tag, which is of interest to determining distance from tag to reader.   

In order to do the complex change in signal from a received query to a response 

that contains a different set of data, the chip associated with the RFID tag contains several 

structures.  Those structures are shown in the diagram in Figure 4-3. According to Yao 

et.al. the voltage multiplier converts a part of the incoming RF signal power to DC to supply 

power for all active circuits on the chip.  A 250 pF blocking capacitor stores supply energy 

during short gaps in the received signal of up to approximately 100 μs. [22] 
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Figure 4-3: A diagram of the logic circuit for an RFID tag. 
 

The voltage multiplier converts RF signal into DC supply voltage. It is also called 

a “charge pump” because it is the DC power source for the rest of the chip. The modulator 

circuit changes the input impedance (capacitance) which modulates the electromagnetic 

wave scattered back to the antenna.  A simple demodulation circuit is shown in Figure 4-

4.  The capacitor, C1, helps to switch the voltage across the antenna between plus and 

minus VDD. 

 

Figure 4-4: A theoretical demodulation circuit used to strip signal from a frequency 
modulated source.  In an RFID circuit, the capacitors are the sources of energy to 
switch the voltage across the antenna from positive to negative and back again, 
creating the signal sent back to the reader. 

 

Thus, the power going to the antenna is limited by the charge on the capacitors.  

These capacitors are charged from the continuous transmission wave.  Therefore, there is 
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a limit to how much power the capacitors can store; and any additional power received will 

not be usable by the RFID tag for the modulated response.  The tag’s circuit was optimized 

to give the greatest read range, meaning it was designed to operate fully using the minimum 

supplied power.  Thus, under most conditions, the response signal can be accurately 

received by the reader at the largest intended separation distance; but as the tag comes 

closer to the reader, the additional power seen by the tag is not reflected in the tag response.  

Instead, for the most part, the tag’s response will always be broadcasted at the same power 

level, based upon the particular tag design.   

The operation of RFID tags can be found in the literature, but often how this 

translates to the greater system model of RFID tag and reader can be a point of confusion.  

The key issue lies in the difference between simple reflective backscatter and transmission 

of a modulated backscattered signal. 

4.5 Backscatter vs. Transmission 

Every moving charge (i.e. current) emits an electromagnetic field around it. The 

electric field results from the voltage changes occurring in the antenna, while the magnetic 

field is the result of the changes of the current flow.  Therefore, transmission or radiation 

occurs when a time varying current is passed through an antenna.   

Passive UHF RFID tags operate without a battery, and simply rely on the power 

within the continuous wave sent by the reader.  The tag responds by modulating on top of 

this continuous wave, essentially sending the power in the opposite direction.  In the most 

high-level and literal sense, this is backscatter.  Thus, in many instances this process of 

communication is accurately referred to as backscatter [21] [22] [23] [24] [25] [26].  
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However, in many cases this terminology has been picked up and misinterpreted as a 

simple reflection or modulated reflection of the incident wave.  This misunderstood model 

is a not collect and re-transmit model but rather the tag is described as reflecting the energy 

by changing of the antenna’s impedance to create backscatter [32]. Because there is a limit 

to how much energy the tag can absorb, any additional energy is not captured.   

Nikitin and Rao [31], were unique in that they neither simplified to a one-way 

model, nor did they inaccurately depict the tag response as a simple reflection backscatter 

with an efficiency loss.  Instead, they modified the two-way propagation equation 

(Equation 4-5) to include a coefficient (σ) to represent the measured loss in the system due 

to a calculated Thevenin equivalent circuit (Equation 4-6). 

𝑃𝑃𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑣𝑣𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑎𝑎𝑎𝑎𝑡𝑡 𝑇𝑇𝑟𝑟𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑇𝑇𝑇𝑇𝐺𝐺𝑎𝑎𝑎𝑎𝑡𝑡2 𝜆𝜆2𝜎𝜎
(4𝜋𝜋)3𝑟𝑟4

                      Equation 4-5 

Where 

𝜎𝜎 = |𝑆𝑆|2 (4𝜋𝜋)3𝑟𝑟4

𝐺𝐺𝑎𝑎𝑎𝑎𝑡𝑡2 𝜆𝜆2
                                        Equation 4-6 

And: 

S is the returned loss based upon the circuit design,  

Gant is the antenna gain  

Pant is the power from the antenna.  

 

The reflection of the signal is mathematically more like a re-transmission as it starts 

at a power level much lower than Ptag Received.  Thus, the most simplistic and accurate model 

for a passive RFID system is to depict it as a one-way, rather than a two-way propagation 
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model.  In this way, the power level begins at a constant, and losses only occur on the way 

back.  This is not truly the case, as power is lost in both directions, but if excess power 

received by the tag is never reflected, the tag always appears to radiate at the same power 

level. 

One analogy is that of a mirror vs. a solar panel as illustrated in Figure 4-5.  

Backscatter is often thought of more as a light and a mirror.  Light is reflected off of the 

mirror, perhaps changed slightly or absorbed by the imperfections in the mirror; but as a 

light is brought closer to the mirror (meaning more light reaches the mirror), proportionally 

more light is returned.  In the literature when RFID tag response is referred to as 

backscatter, this analogous model is often incorrectly assumed.  In fact, an RFID tag 

operates more similarly to a light and a solar panel.  When light reaches the solar panel, it 

is collected, and can be used, in this case to power a light shining in the opposite direction.  

There are losses in each stage of energy conversion, but perhaps more importantly, the 

solar panel only can absorb so much light energy.  Therefore, once it is at its maximum 

capacity, shining more light at the solar panel is ineffective and that energy is lost. 
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Figure 4-5: Rather than reflecting like a mirror an RFID tag works more like a solar 
collector powering a flashlight.  The energy hitting the collector provides the power 
for the responding flashlight but also controls how much can be returned.  Energy 
not captured by the collector cannot be re-transmitted back.  

 

There are several reasons why the misconception of simple reflection may persist.  

It is difficult to obtain the equipment necessary to test the difference between these two 

propagation models as they apply to RFID tags.  The manufacturers of these devices are 

also not clear about the design of their systems and how they minimize internal losses or 

make design decisions on internal impedance.  Indeed, when the manufacturer was 

contacted and questioned about this issue the response was that the signal was based on 

backscatter and no further information was provided. The Friis equation, which often cited 

as the basis of these theoretical models, was not developed to model the sending and 

receiving of a given signal, but rather to look at one-way propagation alone.  Researchers 

who begin by examining or developing tag design and structure nearly always correctly 

identify the mechanisms involved, but typically don’t go further to provide a propagation 

model that can be used.  Researchers who instead focus on propagation generally misuse a 

two-way propagation model without appropriate alteration, as was demonstrated by Nikitin 

and Rao [31].   
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4.6 Experimental Validation 

The first test to verify RFID system communication was to collect the signals of 

both the RFID reader and the tag’s response in a fully anechoic chamber using an 

oscilloscope.  The results of this experiment can be seen in Figure 4-6.  The experimental 

set-up for this can be found in Appendix A, section A.4.5. 

 

Figure 4-6: Experimentally collected signal from combine RFID reader and tag 
response, overlaid with diagram from Figure 4-1. 

 

It can easily be seen the tag and reader do behave as described in the literature with 

a modulated command from the reader, followed by a continuous wave.  Then the RFID 

tag responds by sending a modulated response signal on top of the continuous wave. 

The next experiment was to validate the overflow theory of energy collected by an  

RFID tag.  For this experiment, all factors were held constant for an RFID tag read, 

including the separation distance and carrier frequency, except for the transmit power of 
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the radio which was incrementally decreased.  If the reflected power was a function of the 

power received, the return signal would decrease proportionally to the decreased reader 

signal.  This was however not the case.  The results of the experiment can be seen in Figure 

4-7, and a description of the experimental set-up can be found in Appendix A, section 

A.4.4.  The RSSI from the tag did not change proportionally to the transmit power of the 

reader, but instead remained constant until the power got so low that the system could not 

fully charge.  This would suggest a response from the tag is designed to be at a set power 

level, making the tag response more realistically modeled as a one-way propagation model.  

 

Figure 4-7: The transmit power of the reader was dropped to find what impact that 
would have on the RSSI response from an RFID tag.  The tag maintained a constant 
RSSI response until the transmit power became too low to fully charge it. 

 

The same issue was noted by Chen et al. in 2013.  When the power received by the 

tag dropped for reasons other than distance, the tag responded with a constant power back. 

[33].  RSSI remained at a floor level until the transmitting power exceeded 24 dBm.  Above 



47 

that level the RSSI signal had a near step-response to an RSSI value over 1000.   In this 

paper no real explanation was provided which might explain why the RSSI levels off rather 

than continue proportionally to the transmitted power of the reader.  However, it is clear 

they experienced the same effect of changing the transmit power level as noted here. 

Another method was developed to verify this hypothesis that systems could be 

accurately modeled as one-way propagation.  For this experiment, a set of passive UHF 

RFID tags was selected from several manufacturers.  The experiment was run in a fully 

anechoic chamber, and individually the tags were measured at increasing separation 

distances from the RFID reader antenna.  The results of this experiment can be seen in 

Figure 4-8. The experimental set-up can be found in Appendix A, section A.4.6. 

 

Figure 4-8 The theoretical model for one-way and two-way reflection showing the 
expected decrease in signal strength, compared to normalized data taken for RFID 
tags tested in an anechoic chamber. 
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 From the results in Figure 4-8, it is easy to see the power loss is not proportional to 

the distance to the 4th power (d4) as is the case with a two-way propagation model (Equation 

4-3), but instead proportional to distance squared (d2) like a one-way model (Equation 4-

1).  This is important, because over the course of the literature review, the majority of 

literature described RFID tag response as a two-way propagation model with a simple 

efficiency loss in the tag, as was shown in examples in section 4-2, which is in fact 

incorrect. 

4.7 Conclusion 

RFID tags are designed to read at a maximum separation distance, and therefore 

consume the minimum energy.  However, when supplied additional energy, the tag does 

not proportionally send the extra energy back in the backscattered signal.  Instead, a 

constant power is output from the tag, therefore taking the form of a one-way propagation 

model.  The one-way propagation model has been explained and demonstrated 

experimentally in this chapter as one appropriate way to represent the reader-tag 

communication link budget. 

Some key topics covered in this chapter were: 

• Backscatter is the reflection of the incident wave, and a backscatter modulator 

works by changing the load impedance and therefore changing the reflection 

coefficient of the tag. 

• Passive tags do not simply reflect the reader’s wave, but instead collect and re-

transmit a portion of the energy, leaving excess energy unutilized. This makes 

the RSSI signal vs distance respond following two separate one-way 
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propagation models, where the starting point for the tag model is normally 

significantly below the amount of energy the tag was exposed to. 

• One experiment showed the RSSI from the tag was not proportional to 

the transmit power level of the reader, as would be expected with simple 

reflective backscatter or two-way propagation. 

• The one-way propagation model was used to successfully predict the RSSI in 

the free-space/fully anechoic experiment.   

 

It is suggested to provide clarification of the actual method of energy return from an 

RFID tag, a different term be used other than “backscatter”.  Backscatter is often mistaken 

as a simple reflection and has caused significant confusion in the literature as the examples 

in section 4-2 illustrate.  
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CHAPTER 5. RSSI-INFORMED PHASE METHOD FOR RFID DISTANCE CALCULATIONS 

5.1 Overview 

Trilateration, which was the selected method of localization from Chapter 2, relies 

on distance estimation to locate beacons.  Received Signal Strength Indication (RSSI) is 

the most common means for distance estimation for indoor RF devices [12].  Other 

methods use phase angle in various ways, such as the difference in phase angle between 

two receiving antennas, or the difference in phase angle between two different carrier 

frequencies by the same receiving antenna. (Note: Phase angle difference between carrier 

frequencies is the primary method of phase-based distance estimation in this work, as it 

requires the least equipment).  These methods however, are more complex than using signal 

strength, as phase is more difficult to measure than RSSI and less straightforward to convert 

into a distance.  Bluetooth devices do not have the ability to measure phase shift in signals 

to date, so the method for distance estimation described in this chapter applies only to RFID 

devices.  

Phase based distance measurements have the advantage of being more robust 

against multipath, therefore often more accurate for distance estimation than signal strength 

measurements.  In comparing the two methods, it was discovered a combination of the two 

could be used to leverage the benefits of each, since each method provided slightly different 

information.  This new method of distance estimation was called RSSI-Informed Phase, 

and the work that lead to and verified this discovery is detailed in this chapter.   

RSSI-Informed Phase became one of the benchmarks used in comparing localization 

algorithms at the end of this work.  This distance estimation method was found to excel in 

real-world, complex, and changing environments, which is specifically the type of 
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environment of greatest interest to this research.  The RSSI-Informed Phase method was 

presented at the IEEE/ASME Advanced Intelligent Mechatronics Conference in 2015 [1]. 

This chapter will start with an explanation of the current distance estimation methods 

using either RSSI or phase angle.  Then the process of RSSI-Informed Phase distance 

calculations will be described. Next, several different experiments are described to test the 

accuracy and robustness of the RSSI-Informed Phase method. The results of the 

experiments will be discussed, and finally a summary and conclusion on the RSSI-

Informed Phase method will be given. 

5.2 State of the Art in Combining RSSI and Phase 

Range estimation for passive UHF RFID tags typically relies on either RSSI or phase 

angle metadata [23], [34].  RSSI is known to be susceptible to the multipath of the 

surrounding environment [30], [35], whereas phase-based measurements are subject to 

cycle ambiguity [34], [36].  There have been many proposed methods to resolve the cycle 

ambiguity of phase-based range estimations [37], [34], [36], [38], [24], but nearly at the 

same time as this RSSI-Informed Phase method was presented at the IEEE/ASME 

Advanced Intelligent Mechatronics Conference in 2015, Martinelli et. al. [35] similarly 

proposed the idea of using the combination of RSSI and phase angle for distance estimation 

in passive UHF RFID tags.  For this method, Martinelli uses RSSI for an initial 

measurement, with a secondary step combining RSSI and phase measurements for a more 

accurate distance estimation and localization of the tag.  For the RSSI and phase 

measurements to be effectively combined, Martinelli’s method requires an initial RSSI 

distance measurement with accuracy to within one wavelength before the phase portion of 
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the algorithm can be implemented.  It should be noted Martinelli operated in the narrow 

band of 865-868 MHz, making it difficult to use the phase vs. frequency slope, and 

therefore a formula he used required the measured phase angle as well as an initial distance 

estimate to calculate the final phase-based distance estimations.  This is the main 

distinction between the RSSI-Informed Phase method presented here, and the method 

proposed by Martinelli.  This RSSI-Informed Phase method is a single distance calculation, 

rather than first calculating distance then secondarily honing the accuracy of the initial 

estimation. 

RSSI-Informed Phase method proposed in this work, yields a robust distance 

estimation for passive RFID tags in the 902-928 MHz band, which is the band utilized by 

RFID in the United States.  This method works by using an initial phase vs. frequency 

slope calculated from the measured RSSI, then resolves the phase cycle ambiguity by 

adding or subtracting increments of π to the phase points such that they align as closely as 

possible with the RSSI slope.  This method simultaneously combines information from 

RSSI and phase for all measurements.  In doing so this distance estimation method utilizes 

the robustness of phase angle measurements along with the speed of an RSSI measurement, 

and eliminates the need for an initialization step which had been required by Martinelli.   

The proposed method is faster than a two-step approach and more easily integrates into a 

localization algorithm.  
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The contributions are as follows: 

1) A new method which combines RSSI and phase angle data for a more robust 

distance estimation that does not require an initialization stage. 

2) An experimental investigation of this new method to demonstrate its robustness 

with respect to mobile tags, extreme antenna angles, and multipath.  

5.3 Background 

The RFID reader (more generally referred to as a satellite in localization) to tag 

(beacon) separation distance can be calculated by using either the RSSI or phase angle from 

the tag’s return signal.  RSSI and phase distance estimation methods take advantage of the 

change in the signal as a function of the distances between the transmitter and the receiver 

of the signal.  This section describes how each of those methods produce a distance 

estimate, and how they each contain inherent issues that must be addressed by the system 

designer.   

5.3.1 RSSI Distance Estimation 

Most methods of localization begin with a distance estimation [12].  Chapter 3 

describes how the strength of the received signal is a function of the distance between the 

reader and the receiver.  RSSI is the most common way of calculating separation distance 

and is in many cases the best option available.  Nearly RFID readers are capable of 

measuring RSSI (though some are not calibrated and merely report a relative value) [39] 

and using RSSI to predict distance is a quick calculation.  The distance is calculated by 

knowing the propagation loss, or in other words, the relationship between RSSI and 
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separation distance.  This relationship, which most accurately is calculated with an 

empirical version of the Friis Equation [13], as described in Equation 3-1 and seen in Figure 

5-1. Experimental set-up for Figure 5-1 is given in Appendix A, section A.4.2.   Chapter 4 

discusses this relationship in greater detail.  Once the best fit curve of the data is found, the 

equation can be used to solve for the separation distance using the RSSI value as the input.   

 

Figure 5-1: RSSI vs. Distance best fit curve 
 

Unfortunately, RSSI is a measure of the power level of the tag’s return signal and 

is easily distorted by environmental factors, such as absorption or multipath.  Therefore, in 

many “real world” environments using the RSSI to predict separation distance can lead to 

large errors in the estimated distance.  

Fingerprinting techniques, as discussed in Chapter 2, attempt to overcome this issue 

by mapping out the unique absorption and reflection characteristics at a matrix of locations 

in which a measurement might need to be made [12].  The method of fingerprinting is 
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therefore sensitive to changes in the physical environment with time, for example the 

movement of furniture or equipment.  The map of the RSSI values, which constitutes the 

fingerprint of the environment, must therefore be continuously updated to maintain 

accuracy. 

5.3.2 Phase-based Distance Estimation 

The phase shift (φ) depends upon the round trip time of a signal, and therefore the 

distance between a radio and tag can be computed, but there are issues with cycle ambiguity 

when the phase shift is greater than 2π. For RFID systems, the tag produces a signal that is 

phase locked to the reader, so an appropriately equipped reader can determine the phase 

shift between the sent and received signals.  The use of phase angle to calculate distance is 

significantly less common than the use of the measured RSSI value.  One possible reason 

is fewer RFID readers report phase metadata. Another reason may be that using phase angle 

to calculate separation distance is more complex than RSSI.   

A shift in phase angle between the emitted query signal and the returned response 

from the tag can be used as an indication of distance that is significantly more robust against 

multipath than the strength of the returned signal, due to the fact that the frequency of a 

wave is less impacted than an amplitude. Distance is ultimately calculated by measuring 

the phase shift between two or more different carrier frequencies.  Note, this is a different 

way of calculating distance than the use of an antenna array, which would look at the phase 

difference between two antennas but on the same carrier frequency.  The diagram in Figure 

5-2 shows how two carrier frequencies will have slightly different phase angles.  
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Figure 5-2: Phase-based Spatial Identification of UHF RFID Tags 
 

The first step in using phase angle to calculate separation distance is to measure the 

phase angle at all or nearly all possible hop frequencies for that particular radio.  

Measurements at more hop frequencies reduce issues with cycle ambiguity.  These hop 

frequencies are based upon the United States Federal Communication Commission 

requirements for the 902-928 MHz frequency range, where the radio must “hop” between 

a minimum of 25 to 50 different frequencies. 

Radios capable of calculating phase angle do so by taking the inverse tangent of the 

quadrature over the in-phase [40], as shown in Equation 5-1.  Hence the phase angle is 

further limited to from 0 to π radians.  When the phase angle is measured and graphed with 

respect to its carrier frequency, the result is a saw-tooth pattern as shown in Figure 5-3. 

𝜑𝜑 = tan−1 �𝑄𝑄𝑎𝑎𝑛𝑛
𝐼𝐼𝑎𝑎𝑛𝑛
�                        Equation 5-1 
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Where: 

φ = phase angle 

Qnk = quadrature, and 

Ink = in-phase 

 

To calculate distance from phase, the following equation is applied [40] [34], which 

utilizes the change in phase over the change in frequency.  Here, β is an empirically found 

offset, with its values dependent on the radio setup.   

 

𝑑𝑑 = − 𝑅𝑅
4𝜋𝜋

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛽𝛽      Equation 5-2 

Where: 

d = predicted reader to tag distance (m) 

c = speed of light (m/s) 

φ = phase angle (radians) 

f = frequency (Hz) 

β = experimental offset (m) 
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Figure 5-3: Example of a saw-tooth phase curve 
 

In order to apply Equation 5-2, the overall shape must be found.  To more easily 

calculate the slope, increments of π are added or subtracted at each jump in the saw-tooth 

pattern to create one line.  It should be noted since only the slope is needed, it is not 

important if the data are shifted up or down through this process, as the y-intercept value 

of the line is not used.  The experimental set-up for Figures 5-3 and 5-4 can be found in 

Appendix A, section A.4.7.  The program used to automate the linearization of the data is 

found in Appendix C. 
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Figure 5-4: An example of a linearized phase graph 
 

The next step is to use linear regression, an example of a linearized phase graph is 

shown in Figure 5-4, to find the best fit line of the phase vs. frequency data.  The slope of 

this best fit line can then be applied to Equation 5-1, and used to solve for separation 

distance, as shown in Equation 5-2.  The MATLAB code to do this is located in Appendix 

C, section C.1. 

Even though phase angle is more complicated to use than RSSI, the use of phase 

angle for distance calculations holds a great deal of promise.  Phase angle is based upon 

the frequency of the signal, rather than the amplitude like RSSI, therefore it is not impacted 

by signal attenuation to the extreme extent RSSI is.  This makes phase angle distance 

estimations more accurate in most “real world” environments.   

However, the phase angle distance calculations are highly sensitive to small 

movements of the tag as they rely on multiple reads of the tag, so this method assumes the 
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reader and tag are both stationary.  If in fact the tag is moving, then this disturbance can 

create large errors in the separation distance calculation. 

Additionally, the time to fully capture the frequency vs. phase angle relationship to 

the point where the cycle ambiguity is eliminated is significant, especially since federal 

regulations require the reader to hop pseudo-randomly between frequencies.  This means 

the changes in frequency cannot be intentional or systematic except in a controlled research 

setting. The ideal method will allow for an understanding of the 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 value with a minimum 

number of measurements.   

5.4 RSSI-Informed Phase Distance Calculation 

The proposed method of RSSI-Informed Phase [41], [1] combines the accuracy and 

environmental robustness of the phase calculations, while utilizing the speed of the RSSI, 

to make the distance estimation less susceptible to error caused by motion, or multipath.  

One of the issues with phase-based calculations is confidently knowing where the jumps 

in the saw-tooth curve are located to eliminate cycle ambiguity, requires a nearly complete 

array of the measured phase angles.  If large gaps are left in the phase angle vs. frequency 

graph, and the number and/or location of the jumps are not clear, an inaccurate guess can 

change the slope of the phase vs. frequency line significantly and ultimately result in 

extreme errors in the distance calculations.  

Collecting all the necessary phase angle data takes several seconds.  This process of 

measuring the phase angle at every hop frequency takes even longer when the radio is 

frequency hopping pseudo-randomly.  While the exact amount of time depends upon both 
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the hardware and software being used, in the following experiments it took an average of 

15.3 sec to measure the phase angle at each of the 50 hop frequencies when using pseudo-

random frequency hopping.  Even at a slow walking speed, many meters can be covered 

over the course of 15 seconds.  This potential change in distance over the course of the 

phase measurements results in extreme distance estimation error, given the necessary 

assumption that the tag is remaining stationary.   

For the RSSI-Informed Phase method, the RSSI value is incorporated to solve both 

of these problems simultaneously.  The first step in the RSSI-Informed Phase method is to 

read the RFID tag a few times (four measurements are used for this work) at different hop 

frequencies.  Measuring at only four pseudo-random frequencies took an average of 1 

second during the following experiments, which is a significant decrease in sampling time 

in comparison to the phase method.  Additionally, this time could likely be reduced with 

more straight-forward programming of the radio to take less processing time.  While the 

user is unable to choose which frequency due to the pseudo-random frequency hopping 

requirements, ideally these frequencies will be spaced throughout the possible frequency 

band.  Therefore, if the points measured do not span a wide range of frequencies within the 

frequency band, it could be helpful to wait for and collect an additional data point.  With 

each read the RSSI and phase angle of the tag’s return signal is recorded. 

The next step is to take an average of the RSSI values.  The RSSI value will likely 

be different at the various hop frequencies even when holding all other conditions constant 

as described in further detail in Chapter 6 [2].  Therefore, an average of the four measured 

RSSI values is the most reliable.  Using this average RSSI value, an initial RSSI distance 

estimation can be found using the empirical relationship between RSSI and separation 
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distance, as seen in Figure 5-1.  This initial distance is then applied to Equation 5-2 and 

used to solve backwards for an approximate phase vs. frequency slope.  One of the mid-

frequency points can then be used as a fixed location with which the estimated slope passes 

through.  This initial RSSI-based line serves as an approximation to which the other phase 

points can be adjusted. 

Increments of π can be added or subtracted from the remaining phase points in order 

to align them as closely as possible with the slope from the RSSI measurement.  Note 

because slope rather than intercept is used, which point is chosen as the fixed point is 

unimportant. Next a best fit slope of the altered phase data points is calculated, resulting in 

the phase angle slope.  Finally, in order to encompass the benefits of both RSSI and phase 

distance estimations and give more robust results, the average of the two slopes (RSSI 

estimated slope, and phase angle slope) is found.  This average slope is applied to Equation 

5-2 to find the final RSSI-Informed Phase distance calculation.  One example of this 

process is illustrated in Figure 5-5. 
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Figure 5-5: Calculation of final phase slope in RSSI-Informed Phase process 
 

The MATLAB code for RSSI-Informed Phase can be found in Appendix C, section C.2. 

5.5 Experimental Analysis 

5.5.1 Experiment 1: Mobile Tag 

The purpose of this initial experiment was to test the hypothesis that a moving tag 

would create large errors in phase estimated distance in comparison to both RSSI and 

RSSI-Informed Phase methods, which are believed to be more robust with respect to 

motion.  The experiment was conducted in a 10 m semi-anechoic chamber, using a 

ThingMagic M6e radio, a circular polarized antenna, and a vertically polarized Alien 

Squiglette passive UHF RFID tag. The experimental set-up is described in Appendix A, 

section A.4.8.  The MATLAB code can be found in Appendix C, section C.3. Both the 
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RFID tag and the reader antenna were 1 m above the ground plane.  Using a stepper motor 

and pulley system, the tag began 6 m away from the reader antenna, then was moved at a 

constant rate towards the reader antenna.  RSSI and phase were continuously measured 

using pseudo-random frequency hopping, and this metadata was used to calculate 

separation distance by employing the three previously mentioned methods: RSSI, phase, 

and RSSI-Informed Phase.  The results are shown below in Figure 5-6.   The true separation 

distance was assumed to be the distance from the reader antenna to the mid-point between 

the RFID tag’s beginning and ending positions.  The experiment was run three times for 

each speed, and the distance error for each distance estimation method was averaged at 

each speed.  Different speeds were tested, ranging from a control where the tag remained 

stationary, to 0.1 m/s toward the reader antenna. 

 

Figure 5-6: Distance Error of the Three Methods of Distance Estimation, Average 
Moving Error: Phase = 16 m, RSSI = 0.87 m, RSSI-Informed Phase = 1.3 m 

 



65 

After analyzing the results, it was found that when completely stationary, the phase 

distance estimation method had the least error, at 0.47 m error.  However, even when the 

tag barely begins to move at a speed of 0.03m/s, the phase distance estimation method 

already has over 10.38 m of error.  This is a significant amount of error at such a slow 

speed.  To put it in context the average adult walks at a speed of 1.4m/s [42], which is 

nearly 50 times faster than this initial tag speed of 0.03m/s.  This would indicate a distance 

estimation method which purely relies on the collection of phase angle and variation in hop 

frequency is likely to incur large amounts of error with even small amounts of motion. The 

error from phase distance calculations for mobile tags was found to be statistically 

significantly larger than both the RSSI and RSSI-Informed Phase methods. When in motion 

the RSSI-Informed Phase method had statistically significantly less error than even the 

RSSI method (with a p-value of 0.0021 and α = 0.05), making it the best performing method 

for this mobile experiment. 

5.5.2 Experiment 2: Orientation and Polarization Mismatch 

One of the leading contributors to error in RFID distance estimation is extreme tag 

orientation resulting in a polarization mismatch between the reader antenna and the tag 

[43], [24].  While there is currently no easy solution to this problem, each distance 

estimation algorithm will behave distinctively.  Therefore, to test the impact of polarization 

mismatch between RFID tag and reader antenna on the same three distance estimation 

methods, the following experiment was devised.   

For this experiment, which took place in a 5 meter fully anechoic chamber, the 

same ThingMagic M6e RFID radio was used. However, in order to create extreme 

polarization mismatches a vertically (linearly) polarized half-wave dipole was used as the 
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reader antenna rather than a circularly polarized antenna as used in the previous 

experiment.  The RFID tag used was the same Alien Squiglette tag which is also linearly 

polarized.  Both the reader antenna and the Alien Squiglette RFID tag were placed 1 m 

above the ground plane and at a 1.5 m separation distance.  This makes the tag relatively 

close, but still in the far field. The tag was then attached to a rod which was pivoted in 10 

degree increments by a stepper motor.  In Figure 5-7, 0° and 180° are the angles of complete 

polarization match, where the RFID tag and half wave dipole antenna are both vertically 

polarized.  In contrast, 90° and 270° are the angles of cross-polarization where the half 

wave dipole reader antenna is vertically polarized, and the tag is horizontally polarized.  At 

each increment of the stepper motor (turning the tag by 10°), RSSI and phase angle 

metadata were recorded at 50 hop frequencies.  This process of rotating the tag and then 

measuring the RSSI and phase angle was repeated for 30 full revolutions of the tag, yielding 

30 measurements at each angle.  Once recorded, the data was analyzed using the RSSI, 

phase, and RSSI-Informed Phase methods of distance estimation.  The distance estimation 

error from each of the three methods at various angles of polarization mismatch is 

displayed in Figure 5-7 and the MATLAB code used to generate the graph is given in 

Appendix C, section C.4. 
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Figure 5-7: Distance error from RSSI, Phase, and RSSI-Informed Phase Methods, 
with various degrees of polarization mismatch.  Average error: Phase = 1.1 m, RSSI 
= 2.2 m, RSSI-Informed Phase = 0.8 m 

 

While the RFID reader was able to communicate with the tag at most of the 

polarization mismatch angles, as expected there were a few angles where the tag could not 

be read.  These angles were: 80°, 90°, 260°, 270°, and 280°.   

In this experiment it was found RSSI distances calculations resulted in the greatest 

error; significantly greater than both the phase (2 x) and RSSI-Informed Phase (2.75 x) 

methods.  The phase and RSSI-Informed Phase methods perform similarly and produce 

fairly accurate results for a wide range of polarization mismatch angles, but RSSI-Informed 

Phase ultimately was the most accurate. 
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5.5.3 Experiment 3: Multipath 

Multipath is a phenomenon where the transmitted or received signal takes more 

than one path, as described in greater detail in Chapter 3.  By traveling different paths, the 

radio waves travel different distances, leading to errors in reader to tag distance estimates.  

Although difficult to account or compensate for, multipath is inherent to non-anechoic 

environments.  RSSI is known to be impacted more significantly than phase angle by 

multipath, and therefore phase angle measurements are hypothesized be more robust in 

high multipath environments [34].  

This last experiment for RSSI-Informed Phase compares the three methods of 

distance estimation: RSSI, phase, and RSSI-Informed Phase, in various environments, with 

varying levels of multipath.  For this experiment the ThingMagic M6e radio was used along 

with the circularly polarized reader antenna and the Alien Squiglette tag.  The first set of 

experiments was conducted in relatively “low multipath” environments, which included 

semi and fully anechoic chambers.  The second set of experiments was conducted in 

“normal multipath” settings, including open spaces within warehouse or laboratory 

environments.  The final set of data was collected in “high multipath” environments, which 

were cluttered warehouse and laboratory settings. A description of these environments can 

be found in Appendix A, section A.3.  In each of the various settings the tag was placed at 

varying separation distances and positioned in a vertically polarized orientation.  The 

absolute distance was based upon the separation distance measured manually, which was 

found to have a 95% confidence interval of 0.047 cm (see Chapter 12 for error analysis).  

Finally, the three methods were used to calculate the measured separation distance.  The 

results of these experiments are shown in Table 5-1. 



69 

Table 5-1: Average and Standard Deviation of Magnitude of Distance Error from 
RSSI, Phase, and RSSI-Informed Phase Methods.   

 

 

In Table 5-1 the following definitions apply: 

• Low Multipath = Anechoic & Semi-Anechoic Environments  

• Normal Multipath = Open Warehouse & Laboratory Environments  

• Extreme Multipath = Cluttered Warehouse & Laboratory Environments 

In each of the situations with varying levels of multipath in the environment, the 

RSSI-Informed Phase method is the best in terms of the average magnitude of error.  

Additionally, for each scenario, the standard deviation of error for the RSSI-Informed 

Phase method is either best or second best.  It is only in the case of the lowest multipath 

environments (the fully anechoic and semi-anechoic chambers) the standard deviation of 

error for the phase method surpasses that of the RSSI-Informed Phase method. 
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5.6 Results 

Merging the data from the Multipath Experiment together, a histogram of distance 

estimation error was created which can be seen in Figure 5-8.  The MATLAB code which 

produced this figure can be found in Appendix C, section C.5. 

 

Figure 5-8: Histogram of RSSI, Phase, and RSSI-Informed Phase distance 
estimation error, various multipath environment data combined average error: 
Phase = 0.5 m, RSSI = 0.6 m, RSSI-Informed Phase = 0.4 m 

 

The RSSI-Informed Phase method has the most zero-centered error distribution, yet 

also has the furthest outliers on either side of the bell curve. In analyzing the distribution 

of error, 63.0% of all RSSI-Informed Phase measurements are within ± 0.3 m of zero (the 

center two bars), as compared to 39.5% for RSSI and 33.2% for phase.  All three methods 
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contain data which fall between -2.42 and 3.02 m, and those maximum and minimum 

values are from the RSSI-Informed Phase method.  It should be noted even the most 

extreme errors fall within the RFID tag’s read distance.  In Figure 5-8 the most extreme 

errors on either side of the histogram are from the RSSI-Informed Phase method. This is 

likely due to one of the phase data points being incorrectly moved, which would occur 

when the RSSI slope was somewhere in the middle (𝜋𝜋
2
 ) of a jump from the original phase 

point.  Nevertheless, this method still maintains the highest level of overall accuracy.  

5.7 Discussion 

An ideal method of distance estimation is be both accurate and robust.  The accuracy 

would be demonstrated by a low average magnitude of error, and robustness by 

consistently low error in a wide range of conditions and a low standard deviation.   

For the RSSI-Informed Phase method the average magnitude of error was the lowest 

for a range of situations including: mobile tag, varying degrees of polarization mismatch, 

and different levels of multipath.  This demonstrates not only a general accuracy, but the 

overall robustness of this method of distance estimation, making it highly suitable for a 

distance based localization algorithm designed for “real world” environments and 

applications. 

5.8 Conclusion 

The RSSI-Informed Phase method for distance estimation was compared to both 

RSSI and phase methods of distance estimation in a variety of situations: mobile tag, 

polarization mismatch, and varying levels of environmental multipath.  In all situations the 
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RSSI-Informed Phase had the lowest average magnitude of error.  The overall consistency 

and accuracy of the RSSI-Informed Phase method is extremely compelling. It demonstrates 

that the RSSI-Informed Phase method is likely the best method for calculating the 

separation distance of an RFID tag given a variety of unknown conditions and possible 

sources of error. 
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CHAPTER 6. REDUCING RF DISTANCE ERROR BY CHARACTERIZING MULTIPATH 

6.1 Abstract 

This chapter is a slightly modified version of “Reducing RF Distance Error by 

Characterizing Multipath” published in IEEE Transactions on Instrumentation and 

Measurement in November 2018 [3] and explores the RSSI versus frequency pattern (the 

RSSI signature) and its ability to reliably quantify the effect of environmental multipath, 

specifically on RSSI-derived distance measurements for RFID and BLE systems.  Radar 

technology has demonstrated the use of frequency information for range measurements, 

given an extremely large bandwidth.  In contrast this work shows the applicability of these 

concepts to the ultra-high frequency Radio Frequency spectrum and the relatively narrow 

bandwidth.  Primarily this chapter will focus on RFID technology, but section 6.8 will also 

verify the applicability to BLE devices and distance calculations.  

First, this chapter presents a theoretical model illustrating the need for frequency 

information to separate multipath error from RSSI measurements.  Practically, a closed-

form method to extract the multipath component using data from a complex environment 

is not feasible; therefore, a neural network is used to emulate theoretical variable separation 

and extract measurement error from multipath via the RSSI signature.  The subsequently 

predicted distance error not only captures the error magnitude, but also informs the 

direction of the error, thus making it possible to compensate for this error and significantly 

improve the original distance prediction, even in a completely new environment. 



74 

6.2 Introduction and Related Work 

There are many commercial applications for radio frequency identification (RFID), 

and an increasing number of these applications include localization [44] [17] [28] [29] . 

RFID localization techniques are typically classified into 5 categories: 

trilateration/multilateration, triangulation, hybrid direction/range methods, radio map 

matching methods, and proximity sensing as discussed in greater detail in Chapter 2 [45].  

Trilateration/multilateration techniques are based on multiple range estimations from 

satellite points, while triangulation relies on direction of arrival measurements from 

multiple points, and hybrid techniques use a combination of these approaches.  In radio 

mapping, such as fingerprinting, an RF environment is charted, and new measurement 

signals are compared to stored information for a closest match.   

 Each method balances the trade-offs between accuracy, logistical complexity and 

flexibility. While some applications employ additional means for enhanced accuracy, such 

as establishing reference points, for example in a matrix of devices covering an area of 

interest, or frequent mapping of the environment to mitigate changes, these methods are 

not appropriate for all applications.   

Many applications for localization are more appealing to potential customers if they 

allow for maximum flexibility of installation and modification, and minimal up-front 

investment.  For example, radio mapping can be quite accurate, but requires a significant 

amount of time and human effort to maintain.  Reference tag systems can always be made 

more accurate with additional reference locations, but this also means additional time and 

cost [17].   
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When investigating logistically simple and inexpensive methods of indoor 

localization, range estimation input to a trilateration algorithm is one of the best, if not the 

best alternative as discussed in Chapter 2.  However, range estimation measurements 

therefore become the main source of error for these methods, specifically due to issues with 

multipath [17].   

 Currently in the literature, there are three main methods of dealing with multipath 

error in range estimation.  The first and most common is to model multipath error as 

random noise and mitigated accordingly, for instance using Kalman filters [17], [46], [47].  

The second is to create a simple multipath model with a single or double bounce.  Research 

in radar based target location has used Doppler mapping and Time Of Arrival (TOA) to 

address outdoor moving targets, which allowed for some exploitation of multipath signals; 

however, when modeling signals, only a single bounce or double bounce for multipath was 

assumed [48].  For indoor RFID sensing modeling, Subedi et al. [28] created a simulation 

with included multipath, but limited the situation scenarios to ones where a single bounce 

would be the only significant multipath factor.  While this process was promising for a 

simulation or a semi-anechoic environment, an actual complex environment could have a 

multitude of multipath signals with similar intensity, making accurate distance estimation 

challenging. In some instances, RSSI signals from multipath can exceed its direct 

measurement in signal strength.   

 A third and more effective approach was described by Wu et al. for stepped 

frequency Through-the-Wall Radar Imaging (TWRI) [47].  TWRI is used to identify 

military targets hidden behind opaque obstacles. Unlike traditional TWRI, which assumes 

a frequency-independent scattering model, Wu et al used frequency dependent signals to 
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improve target identification accuracy.  In the TWRI approach, transmitted signals span an 

extremely wide bandwidth, “from Megahertz to a few Gigahertz” and the radar cross 

section principle (RCS) suggests that the frequency impact on multipath signal is not 

negligible across this large range.  The stepped frequency approach, combined with this 

algorithm, and constraints designating where targets could be found, improved accuracy in 

the experiment.  

 The theory of frequency based multipath information described by Wu et al. was 

founded upon the assumption that the information could be extracted owing to the 

extremely wide bandwidth (MHz-GHz). In contrast, commercial use of range 

measurements requires a relatively narrow bandwidth to operate within regulatory (FCC) 

requirements.   Therefore, the wide bandwidth assumption, which can be used effectively 

for military purposes, is not available for normal ultra-high frequency (UHF) applications. 

It would be significant if frequency based multipath, such as that used effectively for 

military TWRI, also contains enough information for range improvement within a narrow 

frequency range, like that of UHF RFID or BLE.  

 In this chapter, a new method is proposed to correct range estimation error for 

passive UHF RFID and secondarily for BLE in the presence of multipath. The proposed 

method improves upon similar that described in Wu [47] by examining the frequency 

response in the North American (NA) 902-928 MHz band (and 2.402-2.480 GHz band) 

and its ability to distinguish multipath, extracting relevant information about the multipath 

in the environment in this case by using a neural network.  Typical results from experiments 

in this chapter showed a 20% to 60% reduction in error in similar environments and a 12% 

reduction in range error for a completely new, untrained, complex environment. 
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 This chapter will next describe a theoretical model which explicitly considers the 

effect of frequency on the direct and multipath signal components is presented.  Addition 

of the frequency response signal allows for the theoretical separation of multipath error 

from the primary signal.  Next, experimental results are presented to demonstrate the 

influence of multipath from the surrounding physical environment on RSSI signatures, 

extending the authors’ previous work [2].  Finally, the main contribution of this chapter is 

to demonstrate that an RSSI signature even within a narrow frequency band can enable 

separation of direct and multipath signals. A trained neural network is applied to extract 

this multipath information from the RSSI signature in real environments and utilize it to 

reduce range estimation error. 

6.3 Background 

Due to the low cost of an individual passive UHF RFID tag, this technology is 

frequently deployed to track a large numbers of objects.  BLE is also becoming wide 

spread, and is used for tracking fewer objects over a longer space. Range errors in 

localization measurements have slowed the adoption of RF localization technology, 

resulting in a strong push for reducing error in distance measurements [30], [34], [14], [49]. 

6.3.1  Signal strength response to excitation frequency 

 There are many factors which are known to impact RSSI values, including 

impedance mismatches and polarization mismatching. Additionally, multipath is known to 

have a considerable effect [30], [34]. The impact of the carrier frequency on the RSSI 

measurements for UHF applications is an area that has not been well-studied.  In Wu et al. 

[50], it is noted that the impact on RSSI from the multipath of the surrounding environment 
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and the observation that RSSI is not constant with respect to frequency.  Conference 

publications represented by both this chapter and Chapter 5, this phenomenon is further 

explored, and its potential utility as a unique RSSI vs. frequency signature and its relation 

to multipath is demonstrated [2], [1].  The RSSI signature is simply the measurement of 

RSSI values over a spectrum of carrier frequencies.  This RSSI signature is further shown 

to be repeatable under identical multipath conditions.  An example RSSI signature is shown 

in Fig. 6-1.  The experimental set-up used to generate this data is given in Appendix A, 

section A.4.9. 

 

Figure 6-1: Example RSSI signature (RSSI vs. Frequency) 
 

 The RSSI signature represented in Figure 6-1 demonstrates not only how 

significantly RSSI can vary with respect to the carrier frequency, but also the repeatability 

of this signature given the same environmental surroundings and multipath. The United 

States Federal Communication Commission rules specify that a radio in the 902-928 MHz 

frequency band must jump between a minimum of 25-50 different carrier frequencies 
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within that range over a brief time interval to allow for frequency sharing between multiple 

devices operating in that bandwidth.   The 50 hop frequencies shown in Figure 6-1 are 

those used by the ThingMagic M6e radio in observance of this requirement. In the 

following sections, a new approach is presented, in order to demonstrate the novel finding 

that the RSSI signature can be used to significantly reduce error in RFID distance 

estimations due to multipath. This work is an extension of the authors’ previous 

investigations [2]. 

6.4   Theoretical Discussion 

 The hypothesis of this chapter is the concept that multipath error cannot be 

sufficiently identified by varying just distance and environment, and the frequencies used 

to obtain the measurements are critical in accounting for multipath effects, even across a 

relatively narrow bandwidth.  This theoretical section is provided to demonstrate the 

necessity of utilizing variations with respect to frequency for isolating multipath error, 

without which the decoupling would not be possible. 

 Given a measurement (Ϻ) of the reported value of signal strength from an RFID 

tag or passive UHF RF device as seen by the receiving radio, the measurement will include 

environment multipath and the impact from the instrumentation, the variations of which 

are assumed to be included but not expressed by analytic equations.  As discussed later in 

this section, the impact of the equipment, like multipath, varies with respect to frequency, 

and is therefore included.  This measurement, Ϻ, can be defined as: 
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Ϻ =  𝑃𝑃𝜋𝜋𝐷𝐷 + ∑ (𝑃𝑃𝜋𝜋𝑅𝑅 sin𝜓𝜓)𝑗𝑗
𝑗𝑗=𝐾𝐾
𝑗𝑗=0                   Equation 6-1 

Where: 

 PRD is the power received from the tag’s direct signal (in Watts),  

PRM is the power received from a tag’s multipath signal (in Watts),  

ψ is the phase offset between the direct signal and multipath signal (radians) and  

K is the number of multipath signals. 

 

 In Equation 6-1, additional error due to factors such as the quantization of the 

reported RSSI, is assumed to be normally distributed and negligible in this study.  Thus, 

an error term representing the signal’s multipath can be obtained from Equation 6-1; this 

error term is represented as Φ and also given in Watts. 

Φ = ∑ (𝑃𝑃𝜋𝜋𝑅𝑅 sin𝜓𝜓)𝑗𝑗
𝑗𝑗=𝐾𝐾
𝑗𝑗=0                           Equation 6-2 

 All waves traveling indirect paths will travel a greater total distance to the receiver 

than the direct wave.  The time difference in arrival between the direct and various indirect 

signals at the receiver will result in a phase difference (ψ).  This phase difference can yield 

either constructive or destructive interference.  Changes in the carrier frequency cause these 

constructive and destructive interference effects to shift and result in changes in amplitude 

with respect to frequency.  In a simple environment, one might expect a sinusoidal 

transition with frequency changes but, with increasing complexity of the multipath of the 

environment, this amplitude to frequency relationship becomes more intricate and 

representative of the environment’s unique multipath.   
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 The complexity resulting from the compounding multipath signals means that even 

small changes in the environment can have a drastic impact on the multipath error.  

Therefore, in a real-world situation, it is feasible to assume that multipath error may change 

due to even small changes in the environment.  This is true even if the separation distance 

and direct path remain constant, as described by Equation 6-3.  

Ϻ1 =  Φ1 + 𝑃𝑃𝜋𝜋𝐷𝐷  ≠  Ϻ2 =  Φ2 + 𝑃𝑃𝜋𝜋𝐷𝐷           Equation 6-3 

 Several traditional approaches to indoor RF distance measurements and 

localization systems, such as radio mapping (fingerprinting), chart the RSSI response as a 

function of the location (x, y) for all areas of interest in an environment.  A measurement 

Ϻ would therefore be recorded for each of the x and y coordinates, specifying the location 

of the tag or device with respect to the radio. These measurements are then used as a look-

up table to convert any future measurement in that environment back to a separation 

distance, s.  In this method, a measurement Ϻ is understood to be dependent on the 

separation distance and unique to the particulars x, y location with the multipath 

environment, as represented in Equation 6-4. 

Ϻ𝑥𝑥𝑥𝑥 = (Φ + 𝑃𝑃𝜋𝜋𝐷𝐷)𝑥𝑥𝑥𝑥 = 𝑓𝑓(𝑠𝑠)                    Equation 6-4 

 The issue with the fingerprinting method is twofold.  Firstly, the mapping process 

is time consuming, costly, and labor intensive.  Secondly, Φxy is not guaranteed to be 

constant with time, due to typical changes in real-world environments.  A model for this 

type of variation could be given such that: 

Ϻ𝑥𝑥𝑥𝑥(𝑡𝑡 = 1) ≠ Ϻ𝑥𝑥𝑥𝑥(𝑡𝑡 > 1) + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡       Equation 6-5 
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 Using this type of model in a control algorithm for an actual localization 

implementation, if the difference in measurements is greater than the tolerance, then the 

re-mapping process must be repeated to update the table of reference measurements to 

maintain the specified system accuracy.  

It is known that the variation in antenna gain with respect to frequency has a non-

trivial and measurable effect on RSSI data [14], and similar variations were empirically 

verified in Chapter 12.  Thus, the gain of both the transmit and receive antennas are 

functions of frequency, as shown in Equation 6-6. 

𝐺𝐺𝜋𝜋 ,𝐺𝐺𝑇𝑇 = 𝑓𝑓(𝜆𝜆)                                 Equation 6-6 

In this equation GR is the gain of receiving antenna (dB), GT is the gain of 

transmitting antenna (dB) and λ is the wavelength (meters).  Thus, the power received from 

the tag’s direct signal is dependent on the carrier wavelength, as can be seen in Equation 

6-7. 

𝑃𝑃𝜋𝜋𝐷𝐷 = 𝑓𝑓�𝜆𝜆,𝐺𝐺𝜋𝜋(𝜆𝜆),𝐺𝐺𝑇𝑇(𝜆𝜆)�                         Equation 6-7 

 This forms a unique relationship such that the power from the direct signal is not 

only based upon the separation distance, but also has a dependence on the frequency (or 

wavelength) as well.  Therefore, if the separation distance was held constant, the result is 

expected to be a distinct pattern of received power with respect to frequency, related to the 

hardware of that system.   

Without this additional understanding of the frequency dependence of the 

hardware, the only frequency or wavelength dependence in free space transmission would 

be from the carrier wave frequency.  The dependence of a circularly polarized antenna on 
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frequency was measured in a 5 meter anechoic chamber as described in Chapter 12, and 

the results illustrate this effect. 

The experimental set-up and the resulting measured signal variation due to 

frequency are shown in Figure 6-2. In this experiment, the received amplitude was 

compared to the transmitted amplitude at three different frequencies and, taking into 

account other factors such as the bi-log antenna gain, the cable losses for the 6ft long cable, 

and the pre-amp, the antenna gain could be determined. The experimental set-up is given 

in Appendix A, section A.4.10.   

 

Figure 6-2: Antenna gain measurements as a function of the sent frequency 
 

The complex relationship between antenna gain (and other equipment properties) and 

frequency means that even a small difference in the carrier frequency yields a new feature 

in the coupling of the transmit and receive antennas.  However, this new feature can 

potentially serve as additional information used to separate the direct signal power, needed 

for distance calculations, from the multipath error. 
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 If a set of measurements is considered, each would have some separation distance 

s, and vary by x and y locations. The set of measurement data, Xs, which is a set of 

measurements containing both multipath error Φ𝜕𝜕,𝑇𝑇𝑎𝑎 and the base direct signal, 𝑃𝑃𝜋𝜋𝐷𝐷𝜕𝜕,𝑇𝑇𝑎𝑎
, is 

shown in Equation 6-8.  

𝑋𝑋𝑇𝑇 =

⎣
⎢
⎢
⎡
Ϻ𝑇𝑇1
Ϻ𝑇𝑇2
⋮

Ϻ𝑇𝑇𝑎𝑎⎦
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡�Φ𝜕𝜕,𝑇𝑇1 + 𝑃𝑃𝜋𝜋𝐷𝐷𝜕𝜕,𝑇𝑇1

�

�Φ𝜕𝜕,𝑇𝑇2 + 𝑃𝑃𝜋𝜋𝐷𝐷𝜕𝜕,𝑇𝑇2
�

⋮
�Φ𝜕𝜕,𝑇𝑇𝑎𝑎 + 𝑃𝑃𝜋𝜋𝐷𝐷𝜕𝜕,𝑇𝑇𝑎𝑎

�⎦
⎥
⎥
⎥
⎥
⎤

                            Equation 6-8 

 Each set of training data, X, varies separation distance s between the radio and tag 

or RF device.  Even with many training examples, which vary the environmental noise, it 

is not possible using this approach to separate the multipath error Φ, from the direct signal 

PRD, because both are related to the wavelength of the carrier signal.  

 In free-space conditions [13], Φf,s = 0, such that each measurement Ϻ, is simply 

given by: 

Ϻ = 𝑃𝑃𝜋𝜋𝐷𝐷𝑓𝑓,𝑇𝑇                                         Equation 6-9 

 This is because in free-space conditions there is no multipath effect, and all 

measurements are functions of the direct signal.  If a series of training measurements was 

taken in free-space conditions with the same hardware, while varying distance, the result 

would only be a function of the direct signal and the carrier frequency wavelength.  This is 

shown in the free-space training set in Equation 6-10, where ΔXS is the difference in 

measurement data, 𝜕𝜕Ϻ
𝜕𝜕𝑇𝑇𝑎𝑎

 is the derivative of measurement (Ϻ) with respect to separation 
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distance (s) and ∆𝑃𝑃𝜋𝜋𝐷𝐷𝑓𝑓,𝑇𝑇𝑎𝑎
is the change in power of the tag’s direct signal which is dependent 

on frequency f, and separation distance sn. 

∆𝑋𝑋𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎡�

𝜕𝜕Ϻ
𝜕𝜕𝑇𝑇1

∆𝑃𝑃𝜋𝜋𝐷𝐷𝑓𝑓,𝑇𝑇1
�

�𝜕𝜕Ϻ
𝜕𝜕𝑇𝑇2

∆𝑃𝑃𝜋𝜋𝐷𝐷𝑓𝑓,𝑇𝑇2
�

⋮
�𝜕𝜕Ϻ
𝜕𝜕𝑇𝑇𝑎𝑎

∆𝑃𝑃𝜋𝜋𝐷𝐷𝑓𝑓,𝑇𝑇𝑎𝑎
�⎦
⎥
⎥
⎥
⎥
⎤

                                  Equation 6-10 

 If instead, a set of training examples was collected in a real-world environment, the 

additional multipath error term would be present. The variations in measured distance for 

a real-world data set contain both multipath and direct power terms, as shown in Equation 

6-8.   In contrast, the real-world training set, represented by Equation 6-11, contains the 

two signal components, but accounts for variations with respect to frequency. In this 

equation ∆Φ𝜕𝜕,𝑇𝑇𝑎𝑎is the change in multipath error between measurements, and is also 

dependent on frequency f, and separation distance sn. 

∆𝑋𝑋𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎡ �

𝜕𝜕Ϻ
𝜕𝜕𝑇𝑇1

∆Φ𝜕𝜕,𝑇𝑇1 + 𝜕𝜕Ϻ
𝜕𝜕𝜋𝜋1

∆𝑃𝑃𝜋𝜋𝐷𝐷𝑓𝑓,𝑇𝑇1
�

�𝜕𝜕Ϻ
𝜕𝜕𝑇𝑇2

∆Φ𝜕𝜕,𝑇𝑇2 + 𝜕𝜕Ϻ
𝜕𝜕𝜋𝜋2

∆𝑃𝑃𝜋𝜋𝐷𝐷𝑓𝑓,𝑇𝑇2
�

⋮
�𝜕𝜕Ϻ
𝜕𝜕𝑇𝑇𝑎𝑎

∆Φ𝜕𝜕,𝑇𝑇𝑎𝑎 + 𝜕𝜕Ϻ
𝜕𝜕𝜋𝜋𝑎𝑎

∆𝑃𝑃𝜋𝜋𝐷𝐷𝑓𝑓,𝑇𝑇𝑎𝑎
�⎦
⎥
⎥
⎥
⎥
⎤

                   Equation 6-11 

 In most RSSI-based distance or location calculations, only an average frequency 

for the range is assumed rather than the precise hop frequency for each measurement.  

These variations in frequency within training sets are generally neglected for distance and 

location calculations, but are actually significant because two measurements even at the 

same separation distance if at different carrier frequencies both the power from the direct 
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signal as well as differences in multipath, as described by the difference in measurements 

in Equation 6-12. 

 

  ∆𝑃𝑃𝜋𝜋𝐷𝐷𝑓𝑓,𝑇𝑇𝑇𝑇
≠ 0 

                                                                   ∆Φ𝜕𝜕,𝑇𝑇𝑇𝑇 ≠ 0                                 Equation 6-12 

 Furthermore, without specifically accounting for the carrier frequency, there is 

simply not enough information in the collected complex environment data to effectively 

separate multipath error from the power of the direct signal. 

 The method proposed in this chapter attempts to separate multipath error from the 

power of the direct signal by considering each measurement to be a function of both 

separation distance and carrier frequency.  Thus, a series of measurements Xf,s are obtained, 

by varying both the frequency and separation distance, as shown in Equation 6-13 where n 

is the number of separation distances in training set and m is the number of hop frequencies 

in training set. 

𝑋𝑋𝜕𝜕,𝑇𝑇 =

⎣
⎢
⎢
⎡
Ϻ𝜕𝜕1𝑇𝑇1
Ϻ𝜕𝜕1𝑇𝑇2
⋮

Ϻ𝜕𝜕1𝑇𝑇𝑎𝑎

Ϻ𝜕𝜕2𝑇𝑇1
Ϻ𝜕𝜕2𝑇𝑇2
⋮

Ϻ𝜕𝜕2𝑇𝑇𝑎𝑎

⋯
⋯
⋱
⋯

Ϻ𝜕𝜕𝑇𝑇𝑇𝑇1
Ϻ𝜕𝜕𝑇𝑇𝑇𝑇2
⋮

Ϻ𝜕𝜕𝑇𝑇𝑇𝑇𝑎𝑎⎦
⎥
⎥
⎤
                Equation 6-13 

 Given any separation distance si, Equations 6-4 and 6-13 can be combined to yield 

Equation 6-14: 
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𝑋𝑋𝜕𝜕,𝑇𝑇𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
⎡ �Φ𝜕𝜕1,𝑇𝑇𝑇𝑇 + 𝑃𝑃𝜋𝜋𝐷𝐷𝜕𝜕1,𝑇𝑇𝑇𝑇

�

�Φ𝜕𝜕2,𝑇𝑇𝑇𝑇 + 𝑃𝑃𝜋𝜋𝐷𝐷𝜕𝜕2,𝑇𝑇𝑇𝑇
�

⋮
�Φ𝜕𝜕𝑇𝑇,𝑇𝑇𝑇𝑇 + 𝑃𝑃𝜋𝜋𝐷𝐷𝜕𝜕𝑇𝑇,𝑇𝑇𝑇𝑇

�⎦
⎥
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⎥
⎥
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                      Equation 6-14 

A closed-form solution to extract the multipath component using data from a 

complex environment is not feasible for real environments; therefore, a neural network is 

used to emulate variable separation and extract measurement error due to multipath.

 Training examples are created specifically to incorporate variations in the 

surrounding physical environment.  These differences in the environment result in variation 

in the multipath error Φ, but the direct signal will be a consistent function of 

frequency/wavelength and distance, based upon the hardware.  Thus, the difference in 

training sets is given by: 

∆𝑋𝑋𝜕𝜕,𝑇𝑇𝑇𝑇 =

⎣
⎢
⎢
⎢
⎢
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             Equation 6-15 

 Unlike Equation 6-12, when frequency is accounted for, in Equation 6-15 the 

change in power from the direct signal given a constant frequency and separation distance 

should be zero. 

∆𝑃𝑃𝜋𝜋𝐷𝐷𝑓𝑓𝑗𝑗, 𝑇𝑇𝑇𝑇
= 0                               Equation 6-16 

 For a given si, Equation 6-15 can be simplified to the following form: 
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∆𝑋𝑋𝜕𝜕𝑗𝑗 =  
𝜕𝜕Ϻ𝑓𝑓𝑗𝑗
𝜕𝜕Φ𝑓𝑓𝑗𝑗

∆Φ𝜕𝜕𝑗𝑗                          Equation 6-17 

Equation 6-17 shows that the signal’s multipath error has been theoretically 

separated from the power of the direct signal, which is used to obtain separation distance.  

This separation of the multipath error makes it possible to account for it and ultimately 

reduce error in range estimation. Without the additional frequency dimension, this 

separation would not be possible.  For this reason multipath effects cannot be adequately 

accounted for if the specific carrier frequency is ignored, as is the case in most applications.  

 In practice, this separation is extremely complex, but the relationship between  

𝑃𝑃𝜋𝜋𝐷𝐷𝑓𝑓𝑗𝑗   (the direct power) and 𝑃𝑃𝜋𝜋𝑅𝑅𝑓𝑓𝑗𝑗
  (a 2-D pattern of the multipath power) is a correlation 

machine learning algorithms are well suited to resolve.  A series of experiments were 

performed to validate the hypothesis that a separation between multipath error and the 

direct signal was feasible in a bandwidth such as UHF, and this separation could potentially 

be used to improve the distance estimation. 

6.5 Experiments 

 The experiments in this section used the following equipment: a ThingMagic M6e 

radio with a circular polarized reader antenna [51], and an Alien Squiglette passive UHF 

RFID tag [4], vertically polarized.  The reader antenna and tag are both at a height of 1 

meter above the ground. Appendix A, sections A.4.9 – A.4.11 can been seen for additional 

information on experimental set-up.  
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6.5.1 Distance Measurements Using RSSI 

When the RFID tag is measured in a fully anechoic chamber, simulating free space 

propagation loss, the RSSI vs. separation distance curve closely matches the Friis 

transmission formula [13].   

Figure 6-3 compares this theoretical free-space Friis transmission formula, 

Equation 3-1, to the measured fully anechoic data, along with data from semi-anechoic 

chamber in comparison to a simulated single ground plane reflection [18].  The data sets 

in Figure 6-3 are normalized with respect to the maximum values of each curve for ease 

of comparison; the actual offsets between the theoretical free-space and ground plane 

models and the experimental data presented in Figure 6-3 are likely due to the power lost 

from backscatter from the passive RFID tag as well as any errors in antenna gain or cable 

loss [31] , [27] additionally discussed in Chapters 4 and 12.  Experimental set-up for Figure 

6-3 is given in Appendix A, section A.4.3. 
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Figure 6-3: RSSI vs. Distance for ideal free space conditions and a single ground 
plane reflection 

 

As described in Chapter 3 and section 6.2, multipath is the phenomena where the 

radio signal takes more than one path from the transmitter to receiver due to the presence 

of one or more nearby reflectors.  When the signals collide at the receiver, the possible 

outcomes range from a complete cancellation of the signal to an increase in signal 

amplitude.  For example, in Figure 6-3 the single ground plane refection both increases and 

decreases the RSSI in comparison to free-space, due to this constructive and destructive 

interference effect. 

6.5.2 Experiment: Moving Entire Setup by Increments 

 It was hypothesized earlier that small changes in the environment would yield 

gradual changes in the RSSI signature due to multipath.  To confirm this hypothesis, the 

following experiment was designed using a room filled with common office objects 
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including wood and metal furniture, providing a range of multipath sources. See Appendix 

A, section A.3 for a more detailed description of this environment. The goal was to change 

the surrounding environment slowly enough that the gradual transformation in the RSSI 

signature could be observed.   Therefore, the RFID reader and tag were kept at a constant 

separation distance and orientation with respect to each other.  Then together the reader 

and tag were moved by small (approximately 0.1 wavelength increments) through the non-

anechoic environment described above.  For each increment, the RFID tag was read at 

every hop frequency and the RSSI signature recorded.   

 When analyzed, it was found that gradually shifting the RFID setup through the 

“real world” environment did result in gradual transitions in the RSSI signature, as 

expected. A smooth change in the signature was observed as the RFID tag and reader 

together moved through the environment.   To better observe this transition, 4th order 

polynomials fits for the (quantized) signatures were used to approximate the “true 

signature.”   Examples of these curve fits are presented in Figure 6-4.   
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Figure 6-4: 4th order polynomial fit of typical sequential signatures. 
 

Figure 6-5 and 6-6 utilize the 4th order polynomial fits to illustrate this transition of 

the RSSI signature as the setup moved through the environment using the sequential steps 

as the third dimension.  The shape of the signature gradually changes, revealing a fluid 

transition from one signature to the next in a wave-like motion. The experimental set-up 

for Figures 6-5 and 6-6 is given in Appendix A, section A.4.11.  The MATLAB code which 

was created to generate these figures is given in Appendix C, section C.6. 
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Figure 6-5: Wave effect of signature with sequential shifts in environment in 2D 
 

 

Figure 6-6: Wave effect of signature with sequential shifts in environment in 3D 
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As predicted and demonstrated in the figures above, gradual wave-like transitions 

were observed in the measured RSSI signatures.  Due to the fact that the reader and tag 

remained stationary with respect to each other, the changes in the RSSI signature therefore 

relate directly to changes in the surrounding environment.  Thus, these wave-like 

transitions of the signatures are likely due to gradual multipath changes caused by the 

shifting position of reflective surfaces surrounding the RFID setup.  This experiment served 

as another validation that the multipath of the surrounding environment has a significant 

impact on the RSSI signature, resulting in a unique representation of the surrounding 

multipath, even across a relatively narrow bandwidth. 

6.6 Machine Learning Analysis 

 This initial work indicated both that the RSSI signature was responding strongly to 

multipath across the UHF bandwidth, and that this response was repeatable for a constant 

environment, as had been theoretically predicted and hypothesized.  The experiment 

described in Section 6.5 demonstrated how a different location of the RFID setup even 

within the same setting can result in different RSSI signatures.  The process of decoupling 

the base signal from the multipath was found to be sufficiently complex, so a neural 

network was selected as an appropriate tool for pattern recognition and separation.   

 For a neural network, each element of an input dataset is called a feature, and these 

datasets are called observations.  In order to train a neural network one must input a large 

number of observations in proportion to the number of features; at least 10 times as many.  

For this analysis, the input features were the RSSI values at each of the 50 hop frequencies, 

providing the neural network with a complete RSSI signature.   



95 

A sample size of greater than 500 signatures was therefore required for a valid 

analysis.  These signatures were collected in six different complex environments, including 

warehouse-like environments with large open spaces and pallets of product, laboratory 

settings with a variety of office furniture and laboratory equipment, and a room with an 

arrangement of typical domestic furniture.  Appendix A, section A.3, further describes 

these environments.  The variety of environments was important because an assortment of 

settings would likely yield diverse RSSI signatures from varying amounts and types of 

multipath.  It was expected that this diversity would yield an algorithm (trained neural 

network) that would generalize better. 

 One other key component needed for the neural network analysis was the desired 

output, otherwise known as the prediction.  Based on the theoretical model from section 

6.4, the neural network was trained using the RSSI signatures to predict the multipath error 

in RSSI-based distance estimations.  The measured error in RSSI-based distance 

estimations was found by the difference between the calculated separation distance and the 

physically measured distance from the reader antenna to the tag, and assumed to be 

primarily caused by multipath.  If this assumption is incorrect, the result would be that the 

neural network would be unable to significantly predict and reduce distance error.  

The neural network selected to model the relationship between the RSSI signature 

and separation distance was a machine learning library-based MATLAB configurable 

model.  The three-hidden-layer, fully connected, neural network was trained using a 

random 90% of the data, tested using the remaining 10%. Care was taken not to allow data 

contamination during training.  Incomplete RSSI signatures (those sets with missing hop 
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frequencies) were not used for this analysis, due to the fact that neural networks cannot 

handle incomplete data sets [52] [53].  Chapter 7 will address this challenge.   

The physically measured distance, which for these purposes was considered to be the 

true value, had a 95% confidence interval of 0.047cm. The confidence interval is discussed 

in greater detail in Chapter 12.  For the original distance predictions used as the control, 

RSSI values were measured at each of the 50 hop frequencies.  An average of these 50 

RSSI values was then compared to an RSSI vs. distance best fit to generate the predicted 

distance for the control.  If fluctuations in frequency were truly random, then this average 

should mitigate that error, and there would be no improvement from the frequency values 

applied to the neural network. 

6.7 Results 

6.7.1  Reduction in Error Using RSSI Predicted Distance 

 Neural networks use gradient descent for their nonlinear regression algorithm, 

which finds the local rather than global minimum, thus several neural networks were 

trained.  Then using the remaining withheld data, consisting of approximately 30 datasets, 

the following results were generated.  Initially, only the absolute value of the error was 

used; however it was quickly evident that the neural network regression results were 

capable not only of predicting the magnitude of the distance error, but also whether that 

error was positive or negative. 

 Due to the complexity of the relationship, and the nature of non-linear optimization, 

there were several trained neural networks that were rejected for poor performance due to 
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convergence on a local minimum.  However, often the neural network was able to predict 

RSSI distance estimation error, and typical improvements ranged from 30% to 70% 

reduction in error, for data from a similar environment.  The results from the 30 datasets 

of withheld test data from one such neural network are shown in Figure 6-7.  This trained 

network achieved an average of 50.2% reduction in distance error.  

 

Figure 6-7: Neural network predictions of RFID RSSI distance estimation error. 
When used to correct error, achieves 50.2% reduction of error. 

 

6.7.2  Applying Signature to Phase Distance Estimations 

 Another commonly-used method of distance estimation for RFID is phase-based 

distance estimations [34].  This method relies on the relationship between phase angle and 

carrier frequency described in detail in Chapter 5 and illustrated in Figure 5-2.  If the 

separation distance between the reader and the tag remains constant, and the carrier 

frequency is incremented, then the phase angle will also shift.  Due to the way in which the 

phase angle is calculated within an RFID radio, the phase angle will range from 0 to π 
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radians and appear as a saw tooth curve as shown in in the previous chapter, Figure 5-3. 

This change in phase angle with respect to the change in frequency yields a line whose 

slope is proportional to the reader to tag separation distance.  This relation is given by 

Equation 5-2. 

 Although the use of phase angle for distances estimations is understood to be more 

robust with respect to multipath than RSSI distance estimations [34], multipath can still 

significantly impact phase angle measurements and therefore cause errors in distance 

estimations.   

Figure 6-8 shows the experimental set-up to examine the phase vs. frequency 

response and sensitivity to small changes in environment. The experiment was conducted 

in a warehouse-like environment (see Appendix A, section A.3). The radio and tag were 

positioned 1m above the ground plane and secured to non-RF reflecting materials.  Figure 

6-9 shows a comparison of the phase vs. frequency RFID data taken in the same room at a 

constant reader to tag separation distance, but with different locations of the metal cart, 

thus providing a simple modification in the surrounding environment. 
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Figure 6-8: Illustration of experiment noting the impact of changes in multipath on 
phase angle by moving a metal cart from one side of the room to the other.   

 

 

Figure 6-9: Phase vs. Carrier frequency data for cart in Location (1) and (2) 
 

As shown, the change of multipath which occurred when the metal cart was moved 

had a noticeable impact on the phase angle measurement.  If multipath has a significant 

impact on phase angle, then it could also be expected to be a key contributor to error in 

phase-based distance estimations.  Therefore, it was hypothesized that implementation of 

the RSSI signature in a neural network might also be able to predict error in phase-based 

RFID distance estimations.   
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Similar to the discussion in Section 6.6, a neural network was used to extract 

multipath error in RFID distance estimation for phase distance estimations.  It should be 

noted that the phase distance error was used as the prediction or output for both training 

and testing of the neural network, while the standard RSSI signature was used as the input 

observations.   

When using only the 30 sets of withheld test data for performance analysis, it was 

found that the RSSI signature used in conjunction with a phase-error trained neural network 

could predict phase distance estimation error and ultimately be used to reduce overall 

phase-distance error.  Typical results ranged from a 20% in environments with low total 

error due to minimal multipath signals, to 60% reduction in error for environments 

containing many objects that produced multipath responses. The range of environments 

was similar to those used in Section 6-5 and discussed in Appendix A, section A.3.  

Additionally, within an environment, different neural network based algorithms had a 

variation in performance due to convergence on different local minimums. 

An example of neural network predicted error vs. the initial distance error for phase 

data across multiple types of environments is shown in Figure 6-10. The RSSI signature 

interpreted by the neural network for phase was similarly able to not only to predict the 

magnitude of error from the environmental multipath, but also whether the error was 

positive or negative.  This distinction confirms the utility of the neural network as a tool to 

extract multipath error and improve upon the original phase distance prediction. 
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Figure 6-10: Neural network prediction of Phase-Distance estimation error for a 
range of environments and distances. 

 

6.7.3 Reducing Distance Error in New Environment 

 To validate the theoretical prediction that the neural network would be able to 

separate the direct signal measurement from the multipath error, the trained neural network 

was then tested with a data set from a completely new and significantly different 

environment. This environment was a room with different domestic furniture, room 

proportions and layout.   If the neural network had merely learned the patterns of the 

environments it had seen, the resulting distance prediction would show no improvement 

from the standard RSSI vs. distance best fit.  However, if the neural network had succeeded 

in separating the multipath error from the direct measurement then that information should 

result in improved distance estimation for the new environment.   
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 The results of this experiment, shown in table 6-1, support the hypothesis that the 

neural network could, at least to some extent, separate the direct path signal, PRD, from the 

multipath error, Φ, for the new environment, using information contained in a frequency 

sweep.  With these variables separated, the neural network compensated estimate was more 

accurate because the quantified multipath error was removed from the distance estimate.  

The table shows the uncompensated error in both cases.  The average percent reduction in 

error of 11.8% was found for distance estimation in the new environment using a 

previously trained neural network.  Additionally, these results show that the variation in 

RSSI with respect to frequency could be generalized, otherwise no improvement would 

have been found.  If the neural network had not been able to quantify the multipath error 

there would have been a negligible decrease or an increase in the average distance error.  

Table 6-1: Comparison of control vs. completely new environment for location 
error. 

 

 

This experiment represents the results of nearly the minimum number of training sets 

required for training a neural network, approximately 500 samples from six environments. 

Further reduction in error would be anticipated with a larger training dataset and additional 

variation in environments from more significantly varied multipath. 

 Original 
Distance Error 
Φ 

Neural Network 
Compensated 
Error Φ 

Mean (m) 0.49 0.35 
Standard 
Deviation (m) 

0.65 0.53 

Percent 
Reduction  

 11.8 % 
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6.8 Using RSSI Signature with Bluetooth Low Energy 

It was theorized that the same factors which led to the correlation between the RSSI 

signature, multipath, and distance error in RFID technologies, might also have a similar 

effect using Bluetooth.  To test this theory, the Bluetooth Low Energy (BLE) Texas 

Instruments CC2541 Mini Development Kit [15]was used to collect 380 RSSI signatures.   

Bluetooth operates on the 2404 – 2480 MHz band and has 40 distinct hopping 

channels.  Channels 37, 38, and 39 at 2402, 2426, and 2480 MHz respectively are used for 

advertisement, leaving the rest of the channels for data exchange [54].  Therefore in 

collecting a Bluetooth RSSI signature, 37 different hopping frequencies can be used. 

Due to space limitations, all of the data was collected in a 10 meter semi-anechoic 

chamber.  The signatures were recorded at a variety of separation distances ranging from 

1 to 9 meters.  The resulting RSSI vs. distance curve was used for the initial distance 

calculation, given by Equations 6-18 and 6-19. 

 

Best Fit of RSSI vs. Distance for BLE 
 

𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅 = −5.49 ln(𝑑𝑑) − 53.56   Equation 6-18 
 

Or  
 

𝑑𝑑 = 𝑡𝑡�
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅+53.56

−5.49 �          Equation 6-19 

 

Where: 

RSSI = measured BLE RSSI value (dBm) 

d = reader to tag separation distance (m) 



104 

 

When the neural network was trained and tested using the BLE RSSI signatures it 

was found that, similar to RFID, the neural network was able to predict the distance 

estimation error.  Figure 6-11 is a graph of the neural network predicted BLE distance error 

vs. the actual distance error.   

 

 

Figure 6-11: Neural network predictions of BLE distance estimation error vs. actual 
error 

 

For BLE distance estimations, the neural network was able to reduce error by varying 

amounts, and up to 40%.  It is quite possible the reason for the smaller reduction in error 

was simply due to the location which the data was collected.  All of the BLE data was 

collected in a semi-anechoic chamber, which would have significantly less multipath than 

in the “real world” environments in which the RFID data was collected.  It would be 
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expected that the BLE data would have less initial error due to multipath, and therefore 

reducing the remaining error from multipath would be difficult. 

6.9 Conclusion 

A variable separation model was presented that demonstrated that a frequency-based 

RSSI signature might be capable of separating the direct signal measurement from 

multipath error.  The model used variations with respect to frequency to predict multipath 

error.  While a simple correlation of the shape of the RSSI versus frequency signature 

directly to multipath present in the environment was not feasible nor was it a closed for 

solution, it was found that machine learning via a neural network has the pattern 

recognition capabilities necessary to analyze the RSSI signature, and extract this error.     

Through experimentation, the relationship between the RSSI signature and multipath 

of the surrounding environment was investigated.  Given identical multipath situations, the 

RSSI signature is repeatable, as expected.  However, even small changes in multipath result 

in noticeable changes in the RSSI signature, as theoretically predicted.    

 A series of experiments were performed to demonstrate a generalizable method to 

improve distance measurements using the RSSI signature.  After training the neutral 

network, test data reserved to analyze the predictive capabilities showed the neural network 

was able to not only extract the magnitude of the multipath error, but also whether the 

multipath generated positive or negative error.   

While the exact reduction in error varied with each neural network trained and the 

data with which it was trained, the output from the neural network could potentially be 
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used to reduce the distance estimation error by upwards of 50%. Moreover, it was found 

that the RSSI signature could be used to reduce error in both RSSI and phase distance 

estimations methods for RFID and RSSI distance estimates for BLE. A larger reduction in 

error was achieved when applied to the RSSI distance estimations than phase, likely due to 

the fact that phase measurements are more robust than RSSI with respect to multipath. 

 Finally, to validate this generalizable process, data was collected from an entirely 

new environment for RFID.  When a previously trained neural networks were used to 

predict the distance error in the new environment, the result was an 11.8% reduction in 

distance error.   

 The RSSI signature is shown in this chapter to be a unique representation of the 

multipath of the surrounding environment.  In this work, it was demonstrated that changes 

in the environment yield transformations of the RSSI signature.  Secondly, by using the 

RSSI signature with machine learning, this method was able to significantly reduce 

distance estimation errors from multipath. 

6.10 Resources 

The MATLAB code used for each of these methods is given in Appendix C, section 

7. The code to train the neural network is given in section C.7.1.  The code to generate an 

RSSI signature from RFID data is given in section C.7.2, to leverage the RSSI Signature 

to improve phase in C.7.3 and to create an RSSI Signature for a BLE network in C.7.4.   
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CHAPTER 7. REPRESENTING THE RSSI SIGNATURE 

7.1 Overview 

In the previous chapter the relationship between an RSSI vs. frequency pattern (RSSI 

signature) and the multipath of the surrounding environment were explored.  The RSSI 

signature could be used by a trained neural network to predict distance estimation error in 

both magnitude and direction.  This allows the RSSI signature to compensate for multipath 

error and ultimately reduce error in real world distance estimations by approximately 50% 

in trained environments. The key issue being that incomplete signatures cannot be input 

into a neural network, and therefore cannot be used by the methods described in the 

previous chapter.   In this chapter, the practical aspects of implementing an RSSI signature 

in a manner that addresses both complete and incomplete RSSI signatures for distance error 

reduction are discussed.  The innovation presented in this chapter does not modify the 

neural network, but rather explores the ways in which the signature can be represented in 

a feature set and delivered to the neural network.  A thorough statistical analysis and 

discussion of the various methods of representing the RSSI signature is also presented.  

Through this research it was discovered that a close fit approximation of the RSSI signature 

yields the best results for error reduction.  The MATLAB code used in this chapter can be 

found in Appendix C, section C.8. 

7.2 Introduction 

The accuracy of received signal strength indication (RSSI) based trilateration 

systems for the localization of indoor wireless devices is often poor due to the large error 

in RSSI distance estimations.  While errors may arise from a number of different sources, 
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RSSI is known to be prone to multipath error from reflection in the surrounding 

environment.  In Chapter 6, the way in which multipath impacts the shape of an RSSI vs. 

frequency plot, named an RSSI signature, was investigated.  That shape was analyzed using 

a neural network to predict error in initial range estimations for both RFID and Bluetooth 

systems.  Because standard neural networks require a constant number of input features 

[52] [53], this method of using the RSSI signature to reduce distance estimation error was 

limited to situations where complete signatures had been collected.  In order to create a 

robust method for RSSI signature use, it’s necessary to develop methods using incomplete 

RSSI signatures to reduce error. The method proposed in this chapter, of training neural 

networks with incomplete information, is to represent the signature in a compressed feature 

space, and subsequently use the compressed feature space to train the neural network.   

7.3 Background 

In the previous chapter, a significant reduction in error in distance measurements was 

achieved by decoupling the multipath error from the base distance signal using the 

information from a frequency vs. RSSI “signature”.  This improvement in distance 

measurement accuracy ultimately reduces the localization error when determined by 

multiple distance measurements from multiple readers as will be discussed in Chapter 11. 

However, it is impractical for a distance measurement to require measuring RSSI at all hop 

channel frequencies prior to determining a distance result for two reasons.  First, requiring 

all RSSI measurements at all hop frequencies requires considerable processing time, which 

is not compatible with the need for rapid distance acquisition in most tracking applications. 

Second, the regulatory requirements of hop patterns prevent users from requesting the order 
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of frequencies required to make such a determination, or verifying that all frequencies are 

measured making the process more time consuming and the signature more likely to be 

incomplete.   

Reducing error allows for significant improvements into accuracy, utility and 

expanded applications of localization, and therefore motivates the investigation in this 

chapter into methods that circumnavigate complete data constraints, and thus permit 

effective neural network training in realistic data-limited conditions.  The goal of this work 

is to determine if a representation of the signature, constructed from incomplete data, would 

be sufficient to train a neural network and still achieve the desired error reduction.  

7.3.1 Received Signal Strength Indication 

There are several different methods of indoor wireless localization such as: 

fingerprinting, near neighbor, triangulation, and trilateration, as described in greater detail 

in Chapter 2. The method selected for this research is trilateration, which relies on distance 

estimation and primarily RSSI measurements.  RSSI is the power level of the returned 

signal from the queried devices as seen by the reader.  Due to the laws of wave propagation 

the power level of the signal decreases (by a function of the inverse square) the further the 

signal travels as discussed in Chapter 3.  Therefore, RSSI can be used to estimate separation 

distance from the reader to the unknown device.   

Unlike measurement techniques such as Time-of-Arrival or Angle-of-Arrival, 

RSSI is available in most wireless devices.  Thus, RSSI is commonly used for localization 

despite its susceptibility to multipath error by assuming it as random noise. Some methods 

which use RSSI attempt to compensate for its inherent vulnerability to multipath error by 
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assuming it as a random noise.  In methods such as fingerprinting or near neighbor, the 

RSSI of the unknown device is compared with either a map of known RSSI values, or to 

other known devices within the area.  This allows the multipath error to be mitigated by 

comparing the RSSI values to other sources similarly impacted by multipath.  

Unfortunately, fingerprinting requires frequent updates of the RSSI map, and near neighbor 

requires a large number of known devices in the field.  These requirements are prohibitive 

in real world applications which may have variable numbers of devices, and exist in 

dynamic or unmapped environments.  For this reason, RSSI distance estimation based 

trilateration was selected in Chapter 2, and ways in which to make it more robust with 

respect to multipath are therefore further explored in this chapter. 

7.3.2  RSSI Signature 

In Chapter 6, a unique investigation of the pattern of RSSI values vs. frequency, 

which was called an RSSI signature is described.  In the previous chapter the characteristics 

of the RSSI signature from an RFID system are investigated, such as its repeatability in 

identical conditions, and the influence of the surrounding environment on its particular 

shape.  It was hypothesized that the variable paths of reflection and refraction of waves 

traveling to and from the reader, otherwise known as multipath, were causing the distinct 

patterns.  Figure 7-1 is an example of an RSSI signature; demonstrating both how RSSI 

changes with respect to frequency, and how under identical environmental conditions the 

signature is repeatable.  The experimental set-up used to create this figure is given in 

Appendix A, section A.4.9. 
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Figure 7-1: Example RSSI signature (RSSI vs. Frequency) 
 

The RSSI in Figure 7-1, is measured at 50 distinct frequencies for RFID.  These 

frequencies are based upon the 50 hop frequencies used by the ThingMagic M6e radio in 

compliance with the Federal Communication Commission rules on radios operating within 

the 902-928 MHz frequency band, and their requirement to jump between a minimum of 

25 to 50 different carrier frequencies. 

7.3.3 Using RSSI Signature to Reduce Error 

In Chapter 6 the potential of the RSSI Signature method to reduce error range 

estimation in both RFID and Bluetooth systems was demonstrated.  This was accomplished 

by first collecting over 500 signatures from a variety of different environments and 

separation distances.  For each signature the separation distance was measured manually.  

Then the empirical RSSI vs. distance curve, as shown in Figure 5-1, was used to calculate 

an initial separation distance. 
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The estimated separation distance was compared to the absolute distance (the error 

of which is discussed in Chapter 12) to find the distance error.  A neural network was then 

trained using the RSSI signature data as the input, each of the RSSI values of the signature 

were used as features, and each signature as an observation.  For RFID systems this meant 

50 features, and 37 for Bluetooth.  In this training process the error in the initial distance 

estimation was used as the prediction; thus the neural network was trained to use the 

signature in order to predict the error in the initial distance estimation.    

Through this process it was found that not only could the signature be use to predict 

the magnitude of distance error, but also determine if the initial estimation was an over or 

under prediction.  Thus, a trained neural network could use the RSSI signature to 

compensate for, and ultimately reduce, errors in distance estimations by approximately 

50%.  The signature was found to be effective for both RFID and Bluetooth systems, as 

well as RSSI and phase angle based distance estimations, although the percent reduction 

of error varied among the different methods.  

To validate that the result was real and not a result of the bleed of information 

during the training phase, a new set of data collected in a completely new environment was 

used as a validation set.  This set of data also saw a reduction in error of about 12%.    

7.3.4 Incomplete RSSI Signatures 

For the data sets used in Chapter 6, only complete signatures were used as inputs 

for both training and testing the neural networks.  This is due to the fact that, as discussed 

in the previous chapter, neural networks are unable to handle a varying number of feature 

inputs.  Neural Networks function by mapping a set of input features into a structure of 
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nodes and hidden layers [55]. This machine learning algorithm finds patterns in the features 

by multiplying them by a series of nodes called hidden layers.  It adjusts these node values 

using an optimization algorithm until the nodes become tuned to patterns of features which 

correlate with the desired classification, resulting in a statistically optimized prediction 

based on a learned model.  Unfortunately, in real world applications there are a number of 

different reasons why it would be impractical or impossible to collect a complete signature.  

In situations of extreme multipath, the reader could be unable to read at certain frequencies 

due to destructive interference, often from its own signal.  When a device is nearly out of 

range, there may be frequencies at which the reply signal is near the noise floor, and the 

reader is incapable of measuring the response.  Alternatively, when using pseudorandom 

frequency hopping in RFID systems, it takes an average of 15 seconds to measure at every 

one of the 50 hop frequencies (as discussed in Chapter 5), which is time prohibitive in 

many distance estimation or localization applications.  Therefore, it is of significant interest 

to find methods for improving accuracy from RSSI signatures when complete signatures 

are not available. 

One possible approach is to use machine learning algorithms capable of 

incorporating variable numbers of features, such as those resulting from incomplete 

datasets.  There is currently a major field of investigation and development surrounding 

machine learning algorithms which can use incomplete datasets [55]. However, due to their 

complexity and variability, it was determined that a more practical approach would be to 

represent the signal intensity at variable frequencies as a curve, which could be found by 

sampling at a smaller number of frequencies and then fit to the measured data.  This 
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reconstructed intensity/frequency relationship could then be used as an input into a neural 

network to estimate and compensate for error.    

It was hypothesized that a mathematical curve fit the RSSI signature might be able 

to preserve the multipath information, and provide a consistent number inputs for the neural 

network, while maintaining approximately the same level of error reduction.  While there 

may be a nearly unlimited number of ways to represent the signature, the purpose of this 

investigation is to demonstrate that there are effective ways to represent signatures (both 

complete and incomplete), which do not significantly impact the neural network’s ability 

to predict distance estimation error. 

In this chapter the error reduction method described in Chapter 6 is expanded to 

investigate ways in which RSSI signatures can be represented using a variable number of 

measured inputs.  

7.4 Experimentation 

The collected RSSI signatures used for the analysis in this paper are the same datasets 

used in Chapter 6, but without excluding incomplete sets.  For the collected data, the 

following equipment was used: a ThingMagic M6e radio, a circular polarized reader 

antenna, and an Alien Squiglette passive UHF RFID tag vertically polarized.  The reader 

antenna and tag are both at a height of 1m above the ground plane.  Given that the RSSI 

Signature method was found to be applicable to both RFID and Bluetooth in the previous 

chapter, here just RFID data will be used with the assumption that the findings on 

incomplete datasets will translate to Bluetooth technology as well.  The RSSI signatures 

were collected in a variety of environments including: fully-anechoic, semi-anechoic, 
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laboratory, and warehouse-like.  The signatures collected, therefore, represent a wide range 

of multipath environments.  Additionally, for each environment the RSSI signatures were 

recorded at a range of separation distances.  A total of 550 signatures were collected, and 

in contrast to the method described in Chapter 6, incomplete signatures were included. 

7.5 Representing the RSSI Signature 

For each of the following methods to represent the signature, neural networks were 

trained and tested using 5, 25, and 50 features.  The purpose of training and testing the 

different neural networks with a varying number of features is to investigate not only 

preferred RSSI signature approximations, but also the advantages and disadvantages of 

using more or less input features.  The RFID ThingMagic M6e systems yields 50 distinct 

hop frequencies, and thus providing the neural network with the same 50 features would 

be preserving the entirety of the collected RSSI signature information.  In this way, using 

more points would be expected to produce greater reduction in error because it would mean 

additional information.  However, given that there are only a set number of training 

observations (because one cannot collect an infinite amount of data), reducing the number 

of input features would increase the feature-to-observation radio, essentially leveraging the 

number training observations.  Reducing the number of features therefore could result in 

greater error reduction by reducing overfitting.  Thus in this chapter some of the analysis 

will cover the performance of a neural network as a function of the number of input 

features, to determine the optimal feature set when using the RSSI signature for error 

reduction purposes. 
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7.5.1 Sine Wave Curve Fit 

One method used to represent the RSSI signature is a custom systematic sine wave 

curve fit.  This line form can be represented using the following general equation: 

General Form of Sine Wave 

𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅 = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑡𝑡(𝐵𝐵𝑓𝑓 − 𝐶𝐶) + 𝐷𝐷        

      Equation 7-1 

Where: 

RSSI = vertical axis (dBm) 

A = amplitude from center (dBm) 

f = horizontal axis (Hz) 

B = angular frequency (radians/Hz) 

C = phase shift (radians) 

D = vertical offset (dBm) 

 

When optimally fitting a sine wave to a signature, the initial step is to determine 

approximate values for each of the unknowns (A, B, C, and D).  Initially, the MATLAB 

Curve Fitting Toolbox was used to find a best fit sine representation of the RSSI signature.  

Unfortunately, these results were not ideal, and thus a sine curve fitting algorithm was 

specifically developed for this purpose.  The MATLAB code to do the sine wave fit is 

given in Appendix C, section C.8.2.  The values were optimized using Gradient Descent; 
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a non-linear algorithm which uses the derivative of a cost function to iterate towards a final 

result.  The nature of nonlinear algorithms is such that they find local but not global 

minimums, therefore an accurate initial estimate of the constants is crucial.   

𝐴𝐴 =
𝑌𝑌𝑇𝑇𝑡𝑡𝑥𝑥 − 𝑌𝑌𝑇𝑇𝑅𝑅𝑇𝑇

2
 

Equation 7-2 

 An initial approximation of the amplitude (A) is found by taking the highest RSSI 

value (Ymax) minus the lowest RSSI value (Ymin) and dividing by two (as given by Equation 

7-2).  The angular frequency (B) is found by observing the number of changes in direction 

of the RSSI signature.  The length of a period is approximated by the distance between the 

first peak and value of the signature.  Then the number of periods within the signature’s 

range is found by looking at the number of changes in direction (divided by two).  Finally, 

B is found by Equation 7-3. 

𝐵𝐵 =  2𝜋𝜋∗𝑁𝑁𝑁𝑁𝑇𝑇 𝑃𝑃𝑅𝑅𝑟𝑟𝑅𝑅𝑃𝑃𝑅𝑅𝑇𝑇
𝐿𝐿𝑅𝑅𝑇𝑇𝑡𝑡𝑡𝑡ℎ 𝑃𝑃𝑅𝑅𝑟𝑟𝑅𝑅𝑃𝑃𝑅𝑅𝑇𝑇

                                             Equation 7-3 

 

Where: 

Num Periods = Estimated Number of Periods (#) 

Length Periods = Estimated Period Length (Hz) 

 

 The phase shift (C) is found by locating the center point between the high and low 

points within one period, then locating the middle, and using this as the offset.  The vertical 
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offset (D) is simply the middle vertical height between the highest and lowest points.  

Figure 7-2 shows an initial fit of RSSI signature points using these initial measurements. 

 

Figure 7-2: Example initial sine wave curve fit of an incomplete RSSI signature. 
 

The cost function used to optimize the constants was an R2 function, which finds the 

distance between the true value and the value predicted by the function.  Gradient descent 

worked well to find the optimal values of A, C, and D, but B was more complex.  Due to 

the irregular contour of the objective function, several initial values were tested to find the 

optimal (or near optimal) curve fit of the RSSI signature.  Figure 7-3 shows the complexity 

of the contour of the objective function, and Figure 7-4 shows the final solution of an 

example sine wave curve fit of an RSSI signature. 
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Figure 7-3: The complex objective solution space for the variable B. 

 

Figure 7-4: Final sine wave curve fit of an example RSSI signature. 
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Whether using 5, 25, or 50 features for the neural network, these points were selected 

by using the RSSI value taken from the sine wave curve fit at evenly spaced increments, 

rather than the signature itself.  This approach also allowed the sine wave curve fit to 

represent the RSSI signature as the constants (A, B, C, and D) of the best fit sine wave.  

Thus, another variation of this method was to use these constants as the inputs to the neural 

network, reducing the number of input features from 50 to just 4. 

7.5.2 Polynomial Curve Fit 

 A polynomial fit of the RSSI signature was investigated due to the irregularity of 

the signature, and the ability of polynomials to fit irregular waveforms.   Several different 

order polynomials were used from 2nd order to 6th order polynomials of the form: 

General Form of Polynomial Curve 

                                        𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅 = 𝐴𝐴0 + 𝐴𝐴1𝑓𝑓 + 𝐴𝐴2𝑓𝑓2 + ⋯+ 𝐴𝐴𝑇𝑇𝑓𝑓𝑇𝑇      

       Equation 7-4 

  Where: 

  RSSI = vertical axis (dBm) 

  Ai = polynomial coefficients (dBm/Hzi) 

  f = horizontal axis (Hz) 

 

The polynomial curve fit of the RSSI signature was optimized using the “polyfit” 

function in MATLAB. The code used to generate this signature approximation can be 
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found in Appendix C, section C.8.3.  In this function, MATLAB calculates a Vandermonde 

matrix, which is then used to calculate best fit polynomial coefficients, as seen in Figure 

7-5. 

 

Figure 7-5: Polynomial curve fit of 6th order of an example RSSI signature. 

When selecting points for the input features of the neural network, for each 

deviation, 5, 25, or 50 evenly spaced points were selected along the polynomial curve fit 

and used as neural network inputs.  This method also allowed the coefficients of the best 

fit polynomial (A0, A1, … An) to represent the RSSI signature as input features for the 

neural network. 
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7.5.3 Cubic Spline Interpolation 

A cubic spline is a piecewise equation fit of a set of points using 3rd order 

polynomial equations.  For this paper the “spline” function from MATLAB was used to fit 

the RSSI signature.  The code to create the cubic spine can be found in Appendix C, section 

C.8.4. A cubic spine is a spline constructed through a piece-wise third order polynomial 

which passes through some number of control points that define it. The definition of a cubic 

spline is given as follows: [56] 

Let K={xo, … , xm} be a set of given knots with a=xo<x1<…<xm=b 

A function s ϵC2[a,b] is called a cubic spline on [a,b], if s is a cubic polynomial si 

in each interval [xi, xi+1].   

It is common to set the second derivative of each polynomial equal to zero at its 

endpoints to provide boundary conditions to solve the set of equations created by the spline. 

This is done automatically in MATLAB in the spline function.   

For each situation of 5, 25, or 50 features, MATLAB was used to calculate the 

polynomial.  A vector of the desired number of evenly spaced frequency points are given 

to the “spline” function, which in turn provides the corresponding RSSI nodes for that 

particular cubic spline interpolation.  Figure 7-6 shows a cubic spline curve fit of an 

example RSSI signature using 5, 25 and 50 points. 



123 

 

Figure 7-6: Cubic spline curve fit using 5, 25, and 50 points. 

7.5.4  Rolling Mean and Linear Interpolation 

The RSSI values measured using the ThingMagic M6e radio are solely integer 

values, which leads to discretization of the data, and a possible loss of precision.  It is likely 

that the true RSSI values in the signature would yield a smoother curve than is depicted by 

the measured data.  Therefore, another method to represent the RSSI signature is to smooth 

the data by using a rolling mean.  In this analysis, each point in the rolling mean was 

calculated as the average of the original neighboring five points.  This was accomplished 

by using the “smooth” function in MATLAB, as can be seen in Figure 7-7. 

9 9.05 9.1 9.15 9.2 9.25 9.3

Frequency (Hz) 10 8

-90

-88

-86

-84

-82

-80

-78

-76

-74

-72

-70

R
SS

I (
dB

m
)

Cubic Spline Interpolation

Signature Points

5 Point Spline

25 Point Spline

50 Point Spline



124 

 

Figure 7-7: Running average smoothing of and example RSSI signature. 

After the data was smoothed to make a less discretized signature, any missing 

points were replaced using linear interpolation of the surrounding two points.  Missing 

points from at the beginning or end of a signature were replaced with the nearest measured 

value.  When selecting 5, 25 or 50 input features, evenly spaced RSSI values were selected.  

If there were not an RSSI value at the desired location, then this was also calculated using 

the linear interpolation of the surrounding points. 

7.5.5 Constants for Incomplete Data Sets 

The final method for representing the RSSI signature and handling incomplete 

signatures is to simply use a constant value in place of missing data points.  Often when a 
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tag or device is nearly out of range, or multipath creates destructive interference, points are 

lost due to the return signal being too close to the noise floor.  Thus filling in all lost points 

with a constant also near the noise floor, such as -80 dBm, could preserve the multipath 

information, while maintaining a constant number of input for the neural network. 

For the choice of neural network features, the desired number of evenly spaced 

RSSI values would be used.  If an RSSI value did not exist at the desired frequency, then 

that point would be assumed as -80dBm. 

7.6 Testing: 

The purpose of this investigation is to characterize the utility of several possible 

methods of representing the RSSI signature, typically by fitting it to a y=f(x) function, 

where x is the frequency and y is the RSSI signature at that frequency.  This allows for data 

at missing or unobtainable frequencies to be predicted using a smaller set of obtainable 

data, and satisfies the neural network’s need for  a constant number of input features, 

without significantly reducing the neural network’s ability to reduce error in distance 

estimation.  Thus, each of the methods discussed in the previous section were used to train 

and test several neural networks, and were evaluated based on neural network performance.    

The 550 collected, complete and incomplete, RSSI signatures were first 

approximated by one of the previously discussed methods.  The next step was to use 5, 25, 

or 50 input features from the signature approximation method as input features for the 

neural network.  For the sine wave and polynomial models, the constants from their curve 

fits were used as another variation for representing the signature.  The neural networks 

were trained using error in distance estimation from the RSSI vs. distance prediction as the 
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desired output.  For this analysis, 80% of the data was used for training, 10% for validation, 

and 10% for testing.  When comparing the different RSSI signature representation 

methods, only the test data sets were used for the analysis.  Each neural network was trained 

with four hidden layers. 

Neural networks typically use a nonlinear optimization method called gradient 

descent, thus local optimums rather than global optimums are found.  Therefore, each 

trained neural network is likely to be different from the next, even if it is based upon the 

same training data.  To compensate for this variability, for each of the methods to represent 

the RSSI signature 500 neural networks were trained and tested.  With this larger sample 

set, along with an analysis of variance (ANOVA), it’s possible to determine that is the 

optimal model despite the fluctuations in results. 

7.7 Results 

While the median reduction in error from the 500 trained and tested neural networks 

was often around 20% as shown in Figure 7-8, the neural network with the best 

performance would be selected for use in an application.  However, given the inherent 

variability of the situation simply determining the best method based upon the single 

maximum reduction could be misleading.  Therefore, both the maximum and median 

percent reduction in error are given in Table 7-1. 
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Figure 7-8: Distribution of percent reduction in sum error 
 

Table 7-1: Summary of results for percent reduction of error 

 

 

7.8 Analysis 

Upon initial inspection of the results there are a few notable trends which appear.  

The most noticeable difference is how much greater error reduction is achieved when using 

% Reduction in Error ( Max | Med ) 
 5 Points 25 Points 50 Points Best Fit Consts 
Sine Wave 47.1 | 21.8 49.6 | 23.1 44.2 | 22.7 30.0 | 10.6 
2nd Order Poly 47.6 | 19.2 44.8 | 19.9 44.4 | 20.8 24.0 | 7.1 
3rd Order Poly 47.5 | 20.5 46.2 | 20.0 45.7 | 19.8 20.13 | 1.6 
4th Order Poly 46.4 | 21.1 46.9 | 21.1 49.6 | 22.4 17.7 | 1.3 
5th Order Poly 45.0 | 22.0 47.0 | 23.9 51.3 | 23.9 16.6 | 1.6 
6th Order Poly 44.5 | 21.5 51.3 | 25.1 55.3 | 24.1 17.0 | 2.6 
Cubic Spline 46.6 | 21.6 44.6 | 22.2 48.2 | 22.4  
Rolling Mean 47.8 | 22.5 55.1 | 25.0 47.8 | 23.1  
-80 in Holes 48.0 | 22.0 53.2 | 22.4 48.8 | 21.7  
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points along one of the curve fits, rather than using the coefficients or constants from the 

best fit equation.  The minimal reduction in error from the use of best fit constants could 

potentially be due to the ambiguity of how these input features relate to the actual RSSI 

Signature.  In this scenario, the neural network would be relied upon to essentially 

determine what equation these constants are in reference to.  Therefore, using the more 

straightforward methods of simply providing the RSSI data points appears to be 

significantly more effective. 

Another observation is which methods of representing the signature achieve a 

percent reduction of error greater than 50%; these are the 5th and 6th order polynomials, the 

rolling mean, and using -80 dBm in place of missing data points.  Each of these methods 

are close fits of the original signature.  The 5th and 6th order polynomials are relatively high 

order polynomial fits, such that they appear as a continuous and smoothed version of the 

original RSSI signature.  It is quite likely that even higher order polynomial fits would also 

be successful representations of the RSSI signature.  The rolling mean in many ways is 

similar to a high order polynomial fit.  It appears as a smoothed version of the signature, 

and therefore is quite a close approximation.  Use of the constant -80 dBm in the holes of 

incomplete datasets is maintaining the original signature as closely as possible.  It seems 

that the main characteristic all of these methods have in common is that these 

approximations are very close to the original signature.  As discussed in [3] and Chapter 6, 

it appears that the RSSI Signature contains information about the surrounding multipath 

which can be used to reduce error.  Thus the best representations of the signature appear to 

be those that closely fit the original data. 
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To further explore the statistical significance of the various representation methods, 

an ANOVA analysis was employed.  In Figure 7-9 the methods of: sine wave, 6th order 

polynomial, cubic spline, rolling mean, and -80 dBm for holes in incomplete datasets, are 

compared.  The corresponding ANOVA analysis yielded a p-value of 4.7e-8.  Given a 

standard α = 0.05, this analysis concludes that the deviation among methods is statistically 

significant.  

Figure 7-10 is a comparison of the various order polynomial fits of the RSSI 

signature, and from comparison of the box and whisker plot it can be seen that the overall 

reduction in error increases with higher order polynomials.  This shows the variation 

among the different order polynomial fits in predicting error is even more distinct than 

between the different types of curve fits, with a p-value of 1.5e-33.  For this reason, the 

results of the 6th order polynomial fit, which had the highest reduction in error, are used in 

the analysis shown in Figure 7-9 as part of the overall comparison of the methods of 

representing the signature.   

For the analysis shown in Figures 7-9 and 7-10 the results from 5, 25, and 50 points 

were combined for each method, resulting in 1,500 points for comparison.     
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Figure 7-9: Boxplot of percent reduction in sum of error for sine wave, 6th order 
polynomial, cubic spline, rolling mean, and -80 dBm in place of missing data points 

 

 

Figure 7-10: Boxplot of percent reduction in sum of error for 2nd, 3rd, 4th, 5th, and 
6th order polynomial fits. 
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The statistical analysis of the methods in Figure 7-9 concludes that they are 

statistically significantly different; therefore, the next step it to determine which have the 

potential for better overall performance in real world situations.  Each time a neural 

network is trained it will likely produce a different result, but in application only the one 

neural network, which gives the greatest reduction in error, will be used.  Thus, comparing 

the methods of representing the signature based upon the lower quantiles, whiskers, or 

outliers is ineffectual.  Rather, a contrast of the upper quantiles, or whiskers would provide 

more meaningful insight.  While an argument could be made to compare the different 

representation approaches based upon the maximum reduction in error achieved, the 

analysis will not be made off of the statistical outliers.  The location of the medians, upper 

quantiles, and upper whiskers from Figure 7-9 are listed in Table 7-2. 

Table 7-2: Comparison of Box and Whisker Plot Results 
 

 

Based upon the upper whisker and upper quantile it appears that the rolling mean 

approach yields the largest percent reduction in error when neglecting statistical outliers.  

The 6th order polynomial fit, cubic spline, and -80 dBm for holes in datasets, are all quite 

comparable.  Of those three, using -80 dBm in holes has the highest reduction in error of 

the upper whisker; and the 6th order polynomial has the highest reduction for the upper 

quantile and median.  Use of a best fit sine wave appears to attain the least reduction in 

error, producing the lowest results for both the upper whisker and upper quantile.   This is 

% Reduction in Error 
 Upper Whisker Upper Quantile Median 
Sine Wave 47.1 28.3 22.5 
6th Order Poly 47.5 29.8 23.7 
Cubic Spline 48.2 29.1 22.1 
Rolling Mean 50.2 30.5 23.4 
-80 in Holes 48.8 28.8 22.0 
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likely due to the fact that a sine wave doesn’t appear to be an effective or close 

approximation for the RSSI signature. 

The next comparison of methods of representing the RSSI signature is that of using 

points from the actual signature or curve fit vs. using constants or coefficients of the best 

fit equation.  For this analysis only five points from the sine wave and polynomial curve 

fits are used, such that there is a similar number of input features to the neural networks as 

the best fit equation constants.  The ANOVA analysis produced statistically significant 

results, and the boxplot of the data shown in Figure 7-11 makes the comparison evident. 

Using constants from the best fit equation yields a median reduction in error only slightly 

greater than zero.  It is clear that using points directly from the curve fit of the signature or 

from the signature itself obtains significantly larger reductions in error.  It is quite possible 

that the neural network has difficulty determining what fundamental equation the constants 

are defining, and therefore the correlation between the features and the signature curve is 

ambiguous.   
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Figure 7-11: Boxplot showing differences in percent reduction in error from the use 
of constants from best-fit equations vs. using 5 RSSI values from the curve fits as 
input features to the neural network. 

 

The comparison of the number of input features used for the neural network is also 

a critical facet of representing the signature.  In order to significantly reduce distance 

estimation error, it would be ideal to provide the neural network with the greatest amount 

of information in the most succinct way possible.  Thus, the comparison of the number of 

input features could shed some light on how this tradeoff impacts the reduction in error 

results.  
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Figure 7-12: Boxplot of percent reduction in error from the use of 5, 25, and 50 
points from the representation of the signature at input features to the neural 
network. 

 

 

Table 7-3: Box and Whisker plot results from 5, 25 and 50 features 
 

 

From the comparison of the results from using different number of features, as 

shown in Figure 7-12 and Table 7-3, use of 25 input features obtains the greatest reduction 

in error for each the upper whisker, upper quantile, and median.  These results would 

indicate that there exists a balance between the number of input features and the 

information provided to the neural network.  Simply providing every possible point may 

% Reduction in Error 
 Upper Whisker Upper Quantile Median 
5 Points 45.8 27.3 21.3 
25 Points 48.9 29.0 22.5 
50 Points 48.3 28.5 22.1 
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not attain the best outcome even though theoretically it is supplying the neural network 

with the greatest amount of information.  In contrast using only 5 input features appears to 

be an oversimplification, significantly reducing the multipath information and negatively 

impacting the percent reduction of error.  It is likely that the ideal number of input features 

is not exactly 25, and further investigations should be made to identify the ideal number of 

input features for the representation of the RSSI signature. 

7.9 Discussion 

It is clear that there are a nearly infinite number of ways to represent the RSSI 

signature.  The purpose of this particular investigation is to demonstrate the potential for 

representing the RSSI signature, such that incomplete signatures can be effectively utilized.   

When examining the various methods proposed in this paper, it appears that a close 

fit approximation of the RSSI signatures achieves the highest reduction in distance error.  

The rolling mean technique achieved the highest reduction in error for both the upper 

quantile and upper whisker values when comparing the distribution error reduction.  Other 

methods such as cubic spline, 6th order polynomial fits, and the replacement of missing 

data with constant ( -80 dBm ) values also achieved large reductions in error.  Each of these 

methods is a close approximation of the initial RSSI signatures, indicating the importance 

of preserving the multipath information contained within the original RSSI Signature.  This 

is also demonstrated by the varying order polynomial fits.  In this analysis,  2nd through 6th 

order polynomials were used to approximate the RSSI signature, and it was evident that 

increasing the order of the polynomial fit also had the effect of increasing the potential for 

reduction in error.  While not fully investigated in the scope of this paper, it is likely that 
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increasing the order fit of the polynomial would continue to increase the percent reduction 

in error until this effect eventually asymptotically leveled out.    

Another interesting observation is that the rolling mean attains a slightly higher 

reduction in error than using -80 dBm in the holes of the incomplete data sets, which is 

closer to the original signature.  The rolling mean is a very close smoothed fit of the original 

RSSI Signature, but the -80 dBm method contains a larger number of points from the 

original signature.  One hypothesis for this observation involves the measurement error 

inherent in the RFID radio due to discretization.  Each RSSI value measured by the RFID 

radio is only reported to the nearest integer, while the true RSSI is unlikely to be such 

discretized values.  Therefore, the true RSSI values are likely to lie somewhere along a 

close fitting smooth curve of the measured RSSI signature.  If this was the case, then one 

would expect a close fit approximation of the RSSI signature to yield the best results.  This 

is an interesting outcome because it indicates that using a smoothing or curve fitting 

method to represent the signature may produce the optimal results regardless of whether 

the RSSI Signature is complete or not. 

A typical reduction in error for the RFID systems used in Chapter 6 ranged from 30% 

to 70%.  In this investigation the maximum reduction in error achieved was 55%.  One 

reason for this difference might lie in the difference of datasets used for the analysis.  In 

Chapter 6 only complete datasets were used in the analysis, whereas this investigation used 

those datasets as well as a large number of incomplete datasets.  By using the incomplete 

datasets there was less information available to the neural network, and thus it may not be 

possible to achieve the same percent reduction in error. 
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Another aspect tested was varying the number of input features to the neural network.  

It was anticipated that there would be a tradeoff between increasing the number of features 

to increase the amount of information, vs. decreasing the number of features to improve 

the observation to feature ratio.  In the statistical analysis, it became evident that using 25 

features yielded better results than either 5 or 50 input features.  While 25 points may not 

be the ideal number of features, this is an indication that the optimal number lies 

somewhere between 5 and 50 features.  The use of the best fit constants or coefficients as 

input features was also investigated as a method of representing a complex curve using 

very few points, and thus leveraging the observation to feature ratio.  However, based upon 

these results, it appears that the neural network was unable to effectively decipher what 

equation the constants and coefficients were modeling.  Thus the percent reduction in error 

from using the constants from the best fit equations had little or no effect.  

While each of the proposed methods was compared based upon the median, upper 

quantile, and upper whisker values, in a real world application the neural network which 

consistently achieves the largest reduction in error would be employed.  Thus based upon 

this investigation using a close-fit approximation of the RSSI signature, whether that be a 

rolling mean, high order polynomial, cubic spline, or another method, can effectively be 

used to represent complete and incomplete RSSI signatures such that a neural network can 

predict and reduce multipath error in a trained environment by approximately 50%.  
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CHAPTER 8. CHARACTERIZING THE ENVIRONMENT USING RSSI SIGNATURE 

8.1 Introduction 

Chapter 6 investigated the relationship between the RSSI signature and the multipath 

present in the surrounding environment.  This chapter builds upon analysis conducted in 

Chapter 6 to investigate the utility of the RSSI signature in characterizing the surrounding 

environment.  The idea is to understand how the signature can be used to identify attributes 

of an environment, and to what extent this is feasible.  First in this investigation the goal 

was to distinguish between fully anechoic (idealized) and example room (real world) 

environments. The hypothesis was that an RSSI signature can be used to characterize the 

environment and therefore distinguish between environments of distinctly different levels 

of multipath (such as real world vs. anechoic chambers).  This hypothesis was tested by 

using a neural network trained using data from these two categories, and then tested to 

determine how effective the trained neural network can be at distinguishing between these 

environments.  Using the results, an initial observational comparison was made to identify 

possible characteristics of RSSI signatures as a result of the environments in which they 

were collected.   

The next experiment in this analysis compared the RSSI signatures using zero, one, 

and two reflectors in the fully anechoic chamber.  For this experiment, the neural network 

was trained and applied to determine the number of objects in the environment.  

Observational correlations are made between the RSSI signatures of this experiment as 

well as those from the previous anechoic (no-multipath) and real world (complex 

multipath) experiments. It should be noted that while in Chapter 6 the RSSI signature was 
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demonstrated to be an effective tool for mitigating the multipath effects in distance 

estimations for both RFID and Bluetooth technologies, in this chapter, only passive RFID 

technology is evaluated.  It is hypothesized that the general principles will be applicable to 

Bluetooth but not specific features.    

This chapter will be organized as follows: first a brief background will be given as 

a summary of the relevant RSSI signature findings, followed by a classification analysis 

for different environments using the RSSI Signature method.  The next section will explore 

classifying environmental settings based upon objects within an environment, and finally 

a conclusion will discuss the potential to use the RSSI signature to characterize 

environments. 

8.2 Background 

In Chapter 6, the complexity of the RSSI Signature was explored in an experiment 

where the reader and tag maintained a constant distance and orientation with respect to 

each other and were moved together through the environment.  The resulting RSSI 

signature patterns (which can be seen in Figure 6-5 or 6-7) were a wave-like transition of 

the magnitude vs. frequency plot, essentially yielding a range of signatures even with 

without any change in the environment.  This experiment demonstrated the intricate and 

elaborate relationship between the RSSI signature, objects in the environment, and the 

difficulty involved in correlating the two.  The environment itself was unchanged, but 

simply by varying the experimental setup location the RSSI signature varied drastically.  

Nevertheless, there is a desire to at least begin to investigate and understand more generally 
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how the RSSI signature is related to the environment, and how it can be used to derive 

information about the surrounding environment. 

8.3 Fully Anechoic vs. Real World 

The first step in characterizing the signature, or using the signature to characterize 

the environment, is to simply determine if any such characterization is even possible.  For 

this reason, a neural network is used to determine if this basic information about the 

environment is contained within the RSSI signature.  Secondarily, the RSSI signatures 

from each test environment situation can be observationally evaluated to begin to 

hypothesize about the shape of the RSSI signature and how it may be correlated to its 

current setting. 

The RSSI signature data, originally used in Chapter 6 to examine distance error, was 

recorded in several different environments of varying levels of multipath, including a fully 

anechoic chamber, and several warehouse and laboratory type environments, as described 

in Appendix A, section A.3.   

The categories for classification for the following experiment were: 

1. Fully Anechoic (no additional objects) 

2. Real World (non-anechoic, with few or many objects) 

 

In each instance, the ThingMagic M6e radio was used, along with the circularly 

polarized reader antenna, and an Alien Squiglette tag vertically polarized described in more 
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detail in Appendix A.  The same passive RFID tag was used for all experiments for the 

sake of consistency.  Both the tag and reader antenna were maintained at a distance 1m 

above the ground plane.  The method of smoothing, as described in Chapter 7, was used 

for the analysis of the RSSI signatures to reduce the number of features to 25 points and 

handle any incomplete signatures.  

A subset of these signatures was used for training a classification neural network 

(90%), and the remaining (10%) were used solely for testing the efficacy of the neural 

network.  The neural network was trained using four hidden layers and all analysis of the 

neural network’s predictive accuracy was done using the results from the test datasets.  In 

previous analysis, it was found that more than four hidden layers would likely result in 

overfitting of the data.  A “smoothed” or rolling mean version of each RSSI signature was 

used as the input, as was discussed in the previous chapter to handle incomplete datasets.  

Exactly 100 neural networks were trained and tested to find the typical level of 

classification accuracy.  The results of this experiment can be seen in Figure 8-1. 
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Figure 8-1: Histogram of accuracy from neural network classification of the 
environment (into fully anechoic vs. real word) based on RSSI signature. 

 

These results (seen in Figure 8-1) illustrate that a RSSI signature trained neural 

network can in fact classify if the environment in which the signature was recorded was 

fully anechoic or real world.  Given that there were two categories, a completely random 

chance would result in a histogram centered about 50%.  While the neural network does 

not yield high classification accuracy, it is statistically significantly greater than random 

chance, with a median classification accuracy of 69% (and a p-value of 3*10-41).  

As a first step in understanding the relationship between the shape of the RSSI 

Signature and the type of environment it was recorded in, the mean and standard deviation 

were calculated at every frequency to give an average RSSI signature shape for both the 

anechoic and non-anechoic settings.  The vertical offsets between the two were eliminated 
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for a simpler comparison of the overall shape (allowing them to overlap).  The resulting 

average RSSI signature shapes for the two environments can be seen in Figure 8-2. 

 

Figure 8-2: Shape of RSSI signature for fully anechoic and real-world environments 
and the standard deviation range at each frequency. 

 

When observing the different overall shapes of the anechoic and real world (non-

anechoic) signatures, there are a few distinctions between the two.  Primarily, the standard 

deviation range of the anechoic signature is much narrower than that of the real-world 

environments.  This makes sense given that a fully anechoic chamber should essentially be 

simulating free-space, thus any positioning of the RFID tag and reader should theoretically 

yield the same results.  Perhaps the deviation that does exist in the fully anechoic data is 

indicative of the slight imperfection of the anechoic chamber.  Even fully anechoic 
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chambers have a few areas of the floor not covered by absorbers, for researchers to move 

about and set up experiments these and other imperfections could be the source of these 

variations. 

A second key difference in Figure 8-2 is in the shape of the average signature.  The 

fully anechoic signature has a gradual positive slope, while the real world signature is more 

horizontal with a dip in the middle of the signature.  Interestingly, if these two average 

signatures are compared to a theoretical free space signature calculated with the Friis 

equation, as can be seen in Figure 8-3, the theoretical signature instead has a negative slope. 

 

Figure 8-3: Average RSSI signature for real world, fully anechoic, and theoretical 
free space 

 

Theoretically the free space Friis equation signature, and the measured fully 

anechoic signature should be equivalent; however, the fully anechoic chamber is not 
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perfectly anechoic and Friis equation was not intended to be used in this manner.  

Typically, the Friis equation is used when calculating the power loss over a distance range, 

rather than the power loss with a set distance over a frequency range.  Therefore, it is likely 

that the Friis equation isn’t a suitable model for RSSI signatures.  

When observing the difference between the real world and fully-anechoic 

signatures in Figures 8-2 and 8-3, there is a discernable difference, yet no good reference 

or model which could describe what an RSSI signature should look like in a given 

environment.  The next step would therefore be a series of experiments which introduce a 

small number of RF reflective objects to the idealized environment.  It is likely that the 

complexity of multipath yields a multitude of possible signatures rather than a general 

signature which can be theoretically modeled.   

8.4 Grouping Similar RSSI Signatures 

For the next experiments, the idea of characterizing or classifying the environment 

was approached from a slightly different perspective.  Given a generally constant 

environment, could the signature be used to identify changes in an environment, or perhaps 

the number of additional objects?   

8.4.1 Aluminum Cube 

An experiment was devised in which a single (43 cm)3 aluminum covered cube was 

placed in a variety of locations within a fully anechoic chamber.  An RFID tag and reader 

remained unmoved at opposite ends of the chamber at a distance of 3.35m apart (as shown 

in Figure 8-4).  For each position of the cube, the RFID tag was read and the RSSI signature 
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measured.  This process was repeated twice for each location of the aluminum cube, 

including a control where the cube was removed entirely from the anechoic chamber.  For 

all cases the orientation of the cube remained constant, with the faces of the cube aligned 

with the grid shown in Figure 8-4; where each increment on the grid in represents 0.3 m.   

 

Figure 8-4: Diagram of locations of aluminum cube in anechoic chamber 
 

The aluminum-covered cube was used to induce multipath, since radio waves 

would be reflected off of its surface.  If the signal traveling between the reader and the tag 

hit the aluminum cube, this would serve as a small amount of introduced multipath.  Due 

to the fact that multipath is believed to be a key contributor to the patterns of the RSSI 

signature, the hypothesis for this experiment was that the various positions of the aluminum 

cube would result in related changes in the RSSI signatures. 
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Once the experiment was complete, and the RSSI signatures were analyzed, there 

were a few noticeable observations. While all of these signatures are quite similar to each 

other, further inspection revealed groups of nearly identical signatures.  The top graph of 

Figure 8-5 shows the two nearly identical signatures both measured at position 2 (from 

Figure 8-4), demonstrating measurement repeatability for similar environments.  In 

contrast, the bottom graph of Figure 8-5 is of visibly distinctive signatures measured when 

the cube was at two different positions, (1 and 7, respectively).  This illustrates how 

unchanged multipath environments yield repeatable signatures, but variations in the 

environment create varied RSSI signatures.   
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Figure 8-5: Top: Similar RSSI signatures recorded at cube position 2.  Bottom: 
Contrasting RSSI signatures recorded at cube positions 1 & 7 as shown in diagram 
8-6. 

 

Based upon these observed similarities and differences, the signatures were visually 

categorized into 5 different groups based upon their similar shapes.  Once these groups 

were created, the classification of each was then related back to the position of the 

aluminum cube, revealing the following pattern shown in Figure 8-6. 
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Figure 8-6: Groupings of RSSI signatures in relation to the location of the 
aluminum cube when the RSSI signatures were recorded. 

 

In Figure 8-6: 

• Each “♦” represents a recorded RSSI signature when the cube was at that location. 

• Each color “♦ ♦ ♦ ♦ ♦” represents a group of visually similar signatures. 

 

It is interesting to note that, except for position 5, the RSSI signatures at any 

individual location were visually grouped together as would be expected.  At position 5, 

these two signatures each make up groups of their own.  One possible reason is that position 

5 is almost half way between the reader and tag and would therefore be expected to have 
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the largest influence on the multipath.  This strong effect on multipath could cause even 

small unintended changes in the location or orientation of the cube to significantly impact 

the RSSI signature.  Also of interest is the fact that the RSSI signatures of positions 1, 2, 

and 3 look like that of the control, where the cube was located outside the chamber 

completely.  It’s conceivable that for these situations that the cube had negligible impact 

on the RSSI signature.  For positions 1 and 3, the box could be outside of the radiation 

pattern of the circular polarized reader antenna, resulting in negligible impact from 

multipath.  Given that the cube was only 43cm tall and the reader antenna was 1 m above 

the ground for position 2, the beam of the reader antenna may have passed completely over 

the cube, without generating any multipath reflections to or from the tag.   

Although the groupings of the RSSI signatures do not exactly parallel the location of 

the cube, there is a definite association.  This observed relationship is further indication of 

the intricate correlation between the multipath of the surrounding environment and the 

RSSI signature. 

8.4.2 Multiple Reflectors Experiment 

For the next experiment, a combination of two reflective surfaces were used to 

determine if it was possible to identify the number of electromagnetically significant 

objects in the room.  Three scenarios were tested and compared. 

The situations tested in this experiment were: 

1. Fully Anechoic (no additional objects) 
2. Fully Anechoic with One Reflector 
3. Fully Anechoic with Two Reflectors 
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Figure 8-7: Representation of experiment with two reflectors 
 

The data for this experiment was collected in a 5-meter fully-anechoic chamber 

with the ThingMagic M6e radio, circularly polarized antenna, and Alien Squiglette RFID 

tag vertically polarized.  The reflectors consisted of 0.5 x 0.5 m2 aluminum foil-covered 

cardboard as shown in the diagram (Figure 8-7).  The reader and tag were maintained at 

the same location, orientation and separation distance for all of the recorded samples.  Thus, 

the only changes to the environment were the addition of one or two reflective objects.   

For each of the three conditions, 100 RSSI signatures were collected, such that a neural 

network could be trained solely with the data from these datasets.  As in previous chapter 

and experiments a random 90% of the data was used for training the neural network, and 

the remaining 10% of test data was used for the analysis, as those shown in Figure 8-8.  

Several neural networks were trained and tested, and all of them had nearly identical results 

as in Figure 8-8.  
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Figure 8-8: Confusion matrix of classification of signatures/environments with 
situations:  1) empty anechoic chamber 2) one reflector and 3) two reflectors 

 

The confusion matrix shown in Figure 8-8 represents the actual conditions of each 

signature on the bottom, called the target class, and the neural network’s guess based on 

the RSSI signature on the left, called the output class.  For each classification the neural 

network had a 100% positive identification rate. 

This is an interesting result in comparison to the results of Fully Anechoic/Real 

World experiment.  For different environments, the classification rate for only two classes 

was around 69%, whereas the classification rate for the three classes of quantity of objects 

was 100%.  One likely reason for this is the higher level of consistency involved in this 

experimental set-up given that all of the data was recorded in one session.  For this the 
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reader and tag were kept in the same location for all of the measurements, thus the RSSI 

signatures would be more consistent.  In contrast, the RSSI signatures from fully-

anechoic/real-world experiments were from a variety of different environments, separation 

distances, and experiment sessions.  Thus it was likely easier for the neural network to 

distinguish between the signatures the different number of objects in the same environment, 

than to make generalizations about the environment as in the first experiment.  To further 

investigate how the RSSI signatures relate to the environments in which they were 

collected, the same analysis used in Figure 8-2 was applied to this experimental data set.  

The average signatures have been collected for each of the three conditions of the number 

of objects experiment and overlaid to observe the differences. The results are shown in 

Figure 8-9. 

 

Figure 8-9: Comparison of RSSI signatures from situations: 1) empty anechoic 
chamber 2) one reflector and 3) two reflectors 

 



154 

In Figure 8-9, the average RSSI signatures are graphed along with the standard 

deviation at each frequency for each of the situations 1) fully anechoic chamber 2) one 

reflector in the fully anechoic chamber and 3) two reflectors in the fully anechoic chamber.  

For the case of two reflectors, shown in blue, below 915 MHz the RSSI signature is 

horizontal and uniform.  This is due to destructive interference from the multipath of the 

RF signal, yielding amplitudes below the noise floor of the radio meaning the tag couldn’t 

be real.  While the radio simply did not read these frequencies, the smoothing algorithm 

developed in the previous chapter which was intended to handle incomplete RSSI 

Signatures filled in these gaps with the RSSI value at the nearest successfully measured 

frequency. 

Looking at Figures 8-9, it is easy to tell how the neural network was able to 

confidently classify these three situations.  Interestingly, the cases of the empty fully-

anechoic chamber and the fully-anechoic chamber with one reflector, shown in red and 

green respectively in Figures 8-9, are the most visually similar.  The RSSI signature from 

the second reflector, shown in blue, has the greatest distinction.  Due to angles of reflection, 

the greatest from the multipath of a reflector would be in the middle of the path between 

the reader and the tag.  It is possible that while both of the reflectors were placed between 

the reader and tag, the second reflector may have been slightly closer to the true mid-point, 

thus resulting in a more drastic change in the RSSI signature. 

Regardless of the reason why the second reflector seems to have had a larger impact 

on the RSSI signature, each of the RSSI signatures from the three cases are unique and 

easily distinguishable, even simply by observation.  Therefore, it could be hypothesized 
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that in other cases, given a baseline or reference RSSI signature, additional objects or 

changes in the environment could be detected by measuring and comparing the RSSI 

signatures. 

8.5 Conclusion 

Based on the experiments in this and previous chapters, it is clear that the RSSI 

signature is tightly correlated with the surrounding physical environment.  In this chapter, 

an initial investigation was made into the possibility of characterizing the RSSI signature 

and relating it to the environment in which it was recorded.  The fully-anechoic vs. real-

world comparison used RSSI signatures measured in a variety of real-world environments, 

and in a fully-anechoic chamber, then compared the signatures using a neural network 

classification algorithm.  When several neural networks were trained and tested, it was 

found that the neural networks achieved an accuracy of approximately 69% in correctly 

identifying the type of environment in which the RSSI signature was recorded.  While 69% 

is statistically significantly greater than a random chance, it is not generally considered a 

high level of accuracy.  This implies that while there may be some slight distinction 

between the RSSI signatures for the two environments, there seems to be a great deal of 

overlap and ambiguity as well.   

In contrast, the single environment with different quantities of objects consistently 

achieved the high level of accuracy of 100%.  For this experiment, many RSSI signatures 

were collected for the situations of 1) an empty fully anechoic chamber 2) one reflector in 

a fully anechoic chamber and 3) two reflectors in a fully anechoic chamber.  When the 
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RSSI signatures from these three conditions were compared, they were obviously and 

visually distinct.   

These experiments helped investigate the cause and effect relationship between the 

surrounding physical environment and the measured RSSI signature.  They indicated that 

while classifying general types of environments using the RSSI signature may not yield a 

high level of accuracy, the RSSI signature can effectively be used to distinguish between 

two different environments or changes in an environment, when given a baseline or 

reference RSSI signature for comparison. 

 MATLAB code for this work is given in Appendix C, section C.9.1 for code that 

classifies the environment and C.9.2 for code that characterizes the environment. 
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CHAPTER 9. METHODS OF TRILATERATION 

9.1 Overview 

Moving from distance estimation to localization (specifically trilateration as 

discussed in Chapter 2) involves comparing a variety of algorithms that use distance 

information and output the coordinates of the item in question.  For indoor localization, 

typically only a 2D location is necessary and the third dimension adds significantly more 

complexity to the problem and requires more satellites. Therefore, trilateration in this 

chapter will focus on 2D location estimates. The goal of this chapter is to identify and 

mathematically reproduce each of the key trilateration geometry methods used in 

localization.  Note that each method presented here is represented by MATLAB code 

which can be found in Appendix C, section C.10. 

9.2 Background 

Trilateration uses distance estimations from reference readers, more generally called 

satellites, in order to locate a device, known as a beacon.  The terminology of satellites and 

beacons is due to trilateration algorithms often being used for GPS type applications but 

have expanded to become general terms for technology agnostic localization.  For purely 

geometrical methods it is assumed that the circle’s radii will be absolutely accurate, and 

therefore trilateration will produce a single location (represented in Figure 9-1), in real 

world applications however, it is recognized that most likely the circles will not converge 

on a single location.  Thus, the various methods use combinations of trilateration and 

statistical algorithms to compensate for some error in the distance calculations\ in order to 

converge on a single likely location.   
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Figure 9-1: Zero error in distance estimation leading to a single location through 
trilateration 
 

Most trilateration methods begin by mapping the separation distance from the 

satellites to the beacon as a circle, with the satellite in the center of each circle.  

Theoretically for any one circle that means that the beacon could be located at any point 

along that circle.  When two circles overlap, they narrow down the possible beacon 

locations to the two points where the circles overlap as shown in Figure 9-2.  Thus three 

satellites are needed such that a single point is found, which gives the location of the 

beacon. 
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Figure 9-2: Overlapping satellite radii 
 

This chapter reviews nine distinctive trilateration algorithms from the literature 

search conducted for this research.  Based on the requirements of this research, these 

algorithms will be discussed for 2-D localization, requiring a minimum of three satellites.   

9.3 Linear Least Squares 

The method of linear least squares is the most common method of trilateration, since 

distance formulas inherently take the shape of a linear least squares equation.  One issue 

however, is that this method does not consider the nonlinearity of the fundamental problem 

of trilateration.  Linear least squares method essentially uses an assumption that 

measurements have equal variance and are completely uncorrelated.  Linear least squares 

is calculated as follows [57]: 

 

𝑋𝑋 = �
𝑥𝑥0
𝑦𝑦0�                                                  Equation 9-1 



160 

𝐴𝐴 =  �

2(𝑥𝑥1 − 𝑥𝑥0) 2(𝑦𝑦1 − 𝑦𝑦0)
2(𝑥𝑥2 − 𝑥𝑥0) 2(𝑦𝑦2 − 𝑦𝑦0)

⋮
2(𝑥𝑥𝑇𝑇 − 𝑥𝑥0)

⋮
2(𝑦𝑦𝑇𝑇 − 𝑥𝑥0)

�                             Equation 9-2 

𝑏𝑏 =

⎣
⎢
⎢
⎢
⎡(𝑥𝑥1 − 𝑥𝑥0)2 + (𝑦𝑦1 − 𝑦𝑦0)2 − 𝑑𝑑1

2

(𝑥𝑥2 − 𝑥𝑥0)2 + (𝑦𝑦2 − 𝑦𝑦0)2 − 𝑑𝑑2
2

⋮
(𝑥𝑥𝑇𝑇 − 𝑥𝑥0)2 + (𝑦𝑦𝑇𝑇 − 𝑦𝑦0)2 − 𝑑𝑑𝑇𝑇

2⎦
⎥
⎥
⎥
⎤
                         Equation 9-3 

Where 

x0 = x-coordinate of initial guess for location of beacon 

y0 = y-coordinate of initial guess for location of beacon 

xi = x-coordinate of satellite i 

yi = y-coordinate of satellite i 

di = RF measured distance from satellite i to the beacon 

n = number of satellites 

 
 

𝑡𝑡 = 𝐴𝐴 ∗ 𝑋𝑋 − 𝑏𝑏                                            Equation 9-4 

𝑋𝑋 = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇𝑏𝑏                                        Equation 9-5 

Unlike the weighted or iterative least squares methods, one major benefit is that 

linear least squares method is a closed form solution for trilateration.  The resulting 

coordinates of the location of the beacon are given by the vector X. 
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9.4 Linear Locus of Position 

Linear locus of position is a purely geometrical method of trilateration which uses 

the intersection of lines to find the location of the beacon in the solution space.  This method 

starts with the overlap of any two satellite circles.  With these overlapping circles, a line is 

fit through the two points where the circles overlap.  If this is repeated using a third or 

different pair of satellites, two lines are created, the intersection of these lines marks the 

location of the beacon.  Figure 9-3 shows two different scenarios using linear locus of 

position to find the location of a beacon.   

   

Figure 9-3: Two different linear locus of position scenarios 
 

Linear locus of position is an extremely quick and easy way to narrow down the 

solution space to a single location.  It even provides accurate results when both satellites 

have equal error, as can be seen in Figure 9-4.  This can often be the case in GPS systems, 

where a beacon may have a constant timing/clock offset, and yielding equal distance error 

to all of the satellites.   
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Figure 9-4: Linear locus of position in the presence of equal distance error  
 

For indoor environments, equal distance error is seldom a reasonable assumption, 

and thus the linear locus of position method can yield large location errors in less 

predictable indoor conditions.  Another potential issue of the linear locus of position 

method is that sometimes the satellites significantly underestimate the separation distance, 

meaning the circles don’t overlap at all.  For this research analysis, when this is the case 

the distance half-way between the satellites is used as a fixed point for the line, with the 

slope of the line perpendicular to an imaginary line between the two satellites.  Finally, the 

linear locus of position method cannot incorporate more than three satellites into its 

formulation, because that would yield multiple intersection points.  Thus when using this 

method for comparison in this research, the three satellites with the highest RSSI values or 

confidence levels are used in the algorithm. 



163 

9.5 Centroid 

Like the linear locus of position method, the centroid method uses the locations of 

where the satellite circles overlap.  The x and y coordinates of each point are compiled 

using a method similar to finding the center of mass of an object with a uniform density 

[58], [59], as can be seen in Figure 9-5.  

 

Figure 9-5: Beacon location found with Centroid Method. 
 

When there is little error in the system this method works well at finding the center 

of the overlapping area, essentially the beacon location. It is also highly adaptable to a 

varying number of satellites.  However, as with linear locus of position, when the radii of 

the satellites don’t overlap at all, this creates a problem.  Thus, in order to apply this method 

to all of the experimental data from this research, the following solution was implemented.   

The idea is to expand all of the circles by the same amount such that each has some 

overlap with another circle.  Once this is completed, the standard centroid method can be 

applied to find the beacon location.  Figure 9-6 shows the original satellite radii, and the 
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expanded radii used to employ the centroid method. The data in Figure 9-6 was taken in 

the 10 meter fully anechoic chamber using BLE devices. 

  

(a)                                                                   (b) 

Figure 9-6: (a) Original satellite radii and (b) expanded satellite radii to employ 
Centroid Method 

 

The other issue with the centroid method is that it simply finds the average 

coordinate (an average of the x and y coordinates) from the overlapping points.  Ideally 

there should be some weighting method which put more confidence in smaller radii circles 

and less confidence in larger circles.  This is because smaller radii circles are the result of 

larger RSSI values. The relationship between RSSI and distance, as shown in Figure 3-1 

ad reproduced here as Figure 9-7, illustrates how there is less distance resolution as the 

RSSI values decrease.  Therefore, theoretically, higher RSSI values should be weighted in 

some manner with a larger confidence.  The experimental set-up used to create Figure 9-7 

is described in Appendix A, section A.4.12. 
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Figure 9-7: The relationship between RSSI and the distance separating the satellite 
and beacon 
 

If weighting is to be implemented, alternative problems arise.  For example, the 

experimental BLE data collected in the 10-meter anechoic chamber, which can be seen in 

Figure 9-6(a), has a very small radius for the bottom right hand satellite, shown in yellow.  

When such a large underestimation occurs, it can be detrimental to the overall trilateration 

accuracy because of the large weight put on one inaccurate point.  To find a balance 

between these two issues, of no-weighting vs. overweighting, the solution previously 

mentioned was employed to address this problem as well.   

When the satellite circles are expanded, to make the centroid method possible, all of 

the radii are increased by the same amount.  Therefore, because the overall radii expanded 

equally, the ratio of the radii between satellites actually decrease.  Then a weight to each 

of the circle intersection points is applied using the inverse of the new radii for both of the 



166 

circles.  As radius increases, the weight will decrease, and an intersection point from two 

small circles will have a larger weight then on large and one small circle.  Additionally, 

circles which are so large that they encompass all the others, will not have an intersection 

point and won’t be used in the calculations.  This is another advantage because satellites 

with a vast radius, are often least reliable references.  To find the final value, the x and y 

coordinates, with their respective weights are averaged to find the likely location the 

beacon as shown in Equation 9-6 [58]. 

(𝑋𝑋𝐺𝐺 ,𝑌𝑌𝐺𝐺) = �∑ 𝑇𝑇𝑇𝑇𝑋𝑋𝑇𝑇𝑎𝑎
𝑇𝑇=1
∑ 𝑇𝑇𝑇𝑇
𝑎𝑎
𝑇𝑇=1

, ∑ 𝑇𝑇𝑇𝑇𝑌𝑌𝑇𝑇𝑎𝑎
𝑇𝑇=1
∑ 𝑇𝑇𝑇𝑇
𝑎𝑎
𝑇𝑇=1

�                          Equation 9-6 

9.6 Linear Approximation 

The linear approximation method uses some geometrical assumptions which 

mathematically move the satellites to convenient locations at the origin and along the y-

axis to turn the trilateration system of equations into a single linear solution.  The basic 

trilateration equation is the Pythagorean Theorem or the equation of a circle. 

𝑟𝑟1,2,3
2 = �𝑥𝑥 − 𝑥𝑥1,2,3�

2
+ �𝑦𝑦 − 𝑦𝑦1,2,3�

2
                      Equation 9-7 

Where  

r = read distance from satellite to beacon [m] 

x = x-coordinate of beacon location [m] 

y = y-coordinate of beacon location [m] 

x1,2,3 = x-coordinate of satellite 1, 2, & 3 locations [m] 

y1,2,3 = y-coordinate of satellite 1, 2, & 3 locations [m] 
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Theoretically, one would simply apply this equation three times for each of the 

satellites, and solve the equations for the x and y coordinates of the beacon.  However, 

these equations cannot simply be solved using standard mathematical methods, which is 

one of the key reasons why there are so many trilateration algorithms. 

In [60] the system of equations was simplified using assumptions about the center 

location of each of the satellites, see Figure 9-8. 

Locations of Satellites: 

Satellite 1 = (0, 0) 

Satellite 2 = (x2, 0) 

Satellite 3 = (x3, y3) 

 

 

Figure 9-8: Linear approximation using three satellites 
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Uses these satellite centers, the equations of the three circles become: 

𝑟𝑟12 = 𝑥𝑥2 + 𝑦𝑦2                                             Equation 9-8 

𝑟𝑟22 = (𝑥𝑥 − 𝑥𝑥2)2 + 𝑦𝑦2                                      Equation 9-9 

𝑟𝑟32 = (𝑥𝑥 − 𝑥𝑥3)2 + (𝑦𝑦 − 𝑦𝑦3)2                                  Equation 9-10 

These equations can then be simplified and solved for the x and y coordinates of the beacon. 

𝑥𝑥 = 𝑟𝑟12−𝑟𝑟22+𝑥𝑥22

2𝑥𝑥2
                                           Equation 9-11 

𝑦𝑦 = 𝑟𝑟12−𝑟𝑟32+𝑥𝑥32+𝑥𝑥32−(2𝑥𝑥3𝑥𝑥)
2𝑥𝑥3

                                 Equation 9-12 

Once the location of the beacon is solved for in this theoretical reference frame, it 

must be translated back into the original reference frame of the environment. 

This method of a linear approximation is an extremely efficient method of 

calculating the location of the beacon; however, it is a simplification of the problem which 

could potentially cause it to be less accurate in application.  One additional issue is the lack 

of flexibility.  These equations only work for exactly three satellites, which may not be the 

best solution, given that the problem statement requires a “varying number of readers.”  To 

deal with this issue when testing the algorithm, only the satellites with the highest RSSI 

values or greatest level of confidence were used. 

9.7 Hyperbolic Locus of Position 

The hyperbolic locus of position method works very similarly to the linear locus of 

position method, except that the nonlinearity of the hyperbolas add a weighting factor to 
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the algorithm by bending towards the satellite with the shortest read distance.  Hyperbolic 

based localization was described in [61], however an error in their description prevented 

that method from being directly applied here.  It is noted that the method is also generally 

described in [62], however not in detail that can be used to actually implement an 

algorithm.  One of the contributions of this work, the algorithm described below was 

developed based on these sources, but derived to be a functional localization algorithm that 

was successfully tested with experimental data.  

A shorter read distance will often relate to a more confident measurement, thus by 

using a hyperbola instead of a line, it’s possible to weight the confidence of the two 

measurements.  Figure 9-9 shows a comparison of the linear vs. hyperbolic locus of 

position methods. 

 

Figure 9-9:  Using linear vs. hyperbolic locus of position methods for (a) overestimation and 
(b) underestimation. 
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One of the major challenges with the hyperbolic locus of position was that it could 

only be found discussed in generalities in the literature.  Therefore the equation for this 

method had to be derived and created.   

As with the linear locus of position method, if the estimated distances from the 

satellites do not overlap, the midpoint between the two satellites is used as a fixed point, 

and in the case of the hyperbola, it is used as the vertex for the hyperbola (as can be seen 

in Figure 9-9(a)).   

Implementing this hyperbolic locus of position method begins with the basic 

equations for hyperbolas, given in Equations 9-13 and 9-14. 

𝑥𝑥2

𝑡𝑡2
− 𝑥𝑥2

𝑏𝑏2
= 1   𝑡𝑡𝑟𝑟     𝑥𝑥

2

𝑏𝑏2
− 𝑥𝑥2

𝑡𝑡2
= 1                   Equations 9-13 & 14 

Where: 

x, y = x and y Cartesian coordinates 

a, b = constants which relate to the eccentricity of the hyperbola. 

Equation 9-13 gives an East-West opening hyperbola, as shown in Figure 9-10(a), 

and Equation 9-14 models a North-South opening hyperbola as illustrated in Figure 9-

10(b). 
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Figure 9-10: Example hyperbolas (a) East-West Opening hyperbola and (b) North-
South Opening hyperbola 

 

The North-South or East-West opening hyperbola equations make it easy to 

calculate the eccentricity, by using Equations 9-15 and 9-16. 

𝑡𝑡2 = 𝑡𝑡2 + 𝑏𝑏2                                      Equation 9-15 

𝑡𝑡 =  𝑅𝑅
𝑡𝑡
                                               Equation 9-16 

Where 

c = Distance from the center to the focus 

e = Eccentricity 

Eccentricity is a geometrical characteristic which describes the curved nature of the 

hyperbola.  To put it in perspective:  

• The eccentricity of a circle = 0 
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• The eccentricity of an ellipse > 0 & < 1 

• The eccentricity of a parabola = 1 

• The eccentricity of a hyperbola > 1 

• The eccentricity a line = ∞ 

When using the hyperbolic locus of position method, the algorithm begins by applying 

the read distance from the satellite to find the eccentricity of the hyperbola as given by 

Equation 9-17 [61]. 

𝑡𝑡 =  𝐷𝐷|∆|                                           Equation 9-17 

Where: 

D = Distance between satellites (m) 

Δ = Difference in the predicted read distances from each of the satellites (m) 

 

The center is found by the midpoint between satellites, as shown in Equation 9-18. 

𝑡𝑡 = 𝐷𝐷
2
                                           Equation 9-18 

Using the center distance “c”, Equations 9-15 and 9-16 can be applied to solve for 

the constants “a” and “b”, which define the pair of hyperbolas.  When applying the 

hyperbolic locus of position method, only the hyperbola facing the satellite with the smaller 

radius is used. 

While the hyperbolic locus of position has distinct benefits over some of the other 

methods in terms of accuracy, there are four major issues with this method.  The first is 
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using the equations of a hyperbola.  Hyperbolas are typically given by two standard 

equation forms (Equations 9-15 and 9-16).  However, these equations only describe 

hyperbolas in exactly vertical or horizontal positions with their centers on the origin.  When 

applying hyperbolas for this method, they could have any center location or any orientation.  

One option to translate the basic hyperbola equation, by using Equation 9-19. 

𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝑥𝑥𝑦𝑦 + 𝐶𝐶𝑦𝑦2 + 𝐷𝐷𝑥𝑥 + 𝐸𝐸𝑦𝑦 + 𝐹𝐹 = 0                       Equation 9-19 

This version of the hyperbola equation gives the versatility of graphing a hyperbola 

in any orientation, but it can be difficult to relate the parameters to the shape of the 

hyperbola, as with the standard equations.  Thus, for this purpose the hyperbolas are 

calculated with the standard equations centered on the origin and aligned with the x axis, 

then translated and rotated in order to properly position with the associated satellites.  An 

example of the translated and rotated pair of hyperbolas can be seen in Figure 9-11. 

 

Figure 9-11: MATLAB graph of hyperbola after translation and rotation 
 

The second major problem has to do with the nonlinearity of the hyperbola 

equations.  Given that the hyperbola equations are nonlinear, an intersection of two 
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hyperbolas cannot be easily solved algebraically.  The solution to this problem was to solve 

for the intersection numerically, which was fairly simplistic using MATLAB.  If this 

algorithm was to be implemented as a real-time location algorithm, the method used to find 

the intersection of the hyperbolas could likely be improved to increase the computation 

speed. 

The third issue with the hyperbolic locus of position method is that there are times 

when the two hyperbolas don’t intersect at all.  This is a likely outcome if the eccentricity, 

using the satellite locations and read distances, this can yield an elliptical rather than 

hyperbolic shape.  To use this method, even when the hyperbolas and or ellipses don’t 

overlap, the intersection point was chosen to be the point in space where the two are closest 

to each other. 

The last problem is a common issue for trilateration algorithms, which is that only 

three satellites can be utilized.  Thus, just as with the other methods, only three satellites 

were selected to be used in this formula. 

9.8 Taylor Series Approximation 

A Taylor Series approximation of location theoretically should be a computationally 

reasonable trilateration method suitable for cost-effective, real time location tracking.  

Taylor Series is a linear iterative method that alters the linearized equations as it approaches 

the best solution. The method selected for this research is described in [63].   In this method 

a first order Taylor Series is used to approximate the range measurement distances and 

optimize those to a location for a beacon based on distance radii from multiple satellites 
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and has been shown to be effective as long as the optimization starts with an initial guess 

that is fairly close to the final values.   

The first order distance equations can be written as a series of simultaneous linear 

equations [Nr Na] in matrix form. Nr and Na correspond to the number of anchor nodes 

(satellites) and number of agents (beacons), respectively.   

𝛤𝛤𝛤𝛤 ≈ 𝑧𝑧 − 𝑡𝑡                                              Equation 9-20 

Where: 

𝛤𝛤 = 𝑑𝑑𝑠𝑠𝑡𝑡𝑑𝑑�𝛤𝛤1,𝛤𝛤2, … ,𝛤𝛤𝑁𝑁𝑎𝑎�                                     Equation 9-21 

𝑡𝑡 = �𝑡𝑡11, 𝑡𝑡21, … , 𝑡𝑡𝑁𝑁𝑟𝑟𝑁𝑁𝑎𝑎�
𝑇𝑇
                                     Equation 9-22 

𝛤𝛤 = �𝛤𝛤𝜃𝜃1 ,𝛤𝛤𝜕𝜕1 , 𝛤𝛤𝜃𝜃2 ,𝛤𝛤𝜕𝜕2 , … , 𝛤𝛤𝜃𝜃𝑁𝑁𝑎𝑎 , 𝛤𝛤𝜕𝜕𝑁𝑁𝑎𝑎�
𝑇𝑇
                       Equation 9-23 

𝛤𝛤𝑅𝑅 =

⎣
⎢
⎢
⎢
⎡ 𝑡𝑡1𝑅𝑅

(𝜃𝜃𝑇𝑇) 𝑡𝑡1𝑅𝑅(𝜕𝜕𝑇𝑇)

𝑡𝑡2𝑅𝑅(𝜃𝜃𝑇𝑇) 𝑡𝑡2𝑅𝑅(𝜕𝜕𝑇𝑇)

⋮ ⋮
𝑡𝑡𝑁𝑁𝑟𝑟𝑅𝑅

(𝜃𝜃𝑇𝑇) 𝑡𝑡𝑁𝑁𝑟𝑟𝑅𝑅
(𝜕𝜕𝑇𝑇)⎦

⎥
⎥
⎥
⎤
                                     Equation 9-24 

𝑧𝑧 =

⎣
⎢
⎢
⎢
⎡ �̃�𝑑11 − 𝑑𝑑′11

�̃�𝑑21 − 𝑑𝑑′21
⋮

�̃�𝑑𝑁𝑁𝑟𝑟𝑁𝑁𝑎𝑎 − 𝑑𝑑′𝑁𝑁𝑟𝑟𝑁𝑁𝑎𝑎⎦
⎥
⎥
⎥
⎤
                                       Equation 9-25 

The weighted least squares solution can now be written as:  

𝛤𝛤 = (𝛤𝛤𝑇𝑇𝛴𝛴−1𝛤𝛤)−1𝛤𝛤𝑇𝑇𝛴𝛴−1𝑧𝑧                              Equation 9-26 

Where Σ is the covariance matrix of the distance measurements. 
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𝛴𝛴 = 𝑑𝑑𝑠𝑠𝑡𝑡𝑑𝑑�𝜎𝜎112 , …𝜎𝜎𝑁𝑁𝑟𝑟𝑁𝑁𝑎𝑎
2 �                               Equation 9-27 

Given this matrix of linear equations, the solution method is as follows.  First an 

initial guess of the beacon location is made, this is the trial origin point (θ’,ϕ’) given as 

azimuth and polar angle. This location is then used in the first order Taylor Series 

expansion to determine the matrix in Equation 9-20.  The matrix Z can now be calculated 

using Equation 9-25 and the error “cost” term can be calculated using Equation 9-26.  If 

the solution has not sufficiently converged the estimate of the true location is updated using 

Equation 9-28. 

𝜃𝜃𝑅𝑅′ ← 𝜃𝜃𝑅𝑅′ + 𝛤𝛤𝜃𝜃𝚤𝚤�  

𝜑𝜑𝑅𝑅′ ← 𝜑𝜑𝑅𝑅′ + 𝛤𝛤𝜕𝜕𝚤𝚤�                                     Equation 9-28 

The system then iterates until a sufficiently accurate estimate of the location is obtained.  

9.9 Weighted Least Squares 

Unlike a linear least squares algorithm which assumes that all variables have equal 

variance, the weighted least squares method makes no such assumption.  For this for 

algorithm, a specific weight is calculated for each factor on every iteration, to arrive at the 

solution more quickly.  There are many versions of weighted least squares algorithms, as 

there are many ways in which to weight the factors.  The algorithm chosen for this research 

is given as follows [64]. 
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𝑿𝑿 = �
𝑥𝑥0
𝑦𝑦0�                                          Equation 9-29 

𝑨𝑨 =  �

2(𝑥𝑥2 − 𝑥𝑥1) 2(𝑦𝑦2 − 𝑦𝑦1)
2(𝑥𝑥3 − 𝑥𝑥2) 2(𝑦𝑦3 − 𝑦𝑦2)

⋮
2(𝑥𝑥𝑇𝑇 − 𝑥𝑥𝑇𝑇−1)

⋮
2(𝑦𝑦𝑇𝑇 − 𝑥𝑥𝑇𝑇−1)

�                    Equation 9-30 

 

𝒃𝒃 =

⎣
⎢
⎢
⎢
⎡ (𝑥𝑥22 − 𝑥𝑥12) + (𝑦𝑦22 − 𝑦𝑦12) + �𝑑𝑑1

2 − 𝑑𝑑2
2�

(𝑥𝑥32 − 𝑥𝑥22) + (𝑦𝑦32 − 𝑦𝑦22) + �𝑑𝑑2
2 − 𝑑𝑑3

2�
⋮

(𝑥𝑥𝑇𝑇2 − 𝑥𝑥𝑇𝑇−12) + (𝑦𝑦𝑇𝑇2 − 𝑦𝑦𝑇𝑇−12) + �𝑑𝑑𝑇𝑇−1
2 − 𝑑𝑑𝑇𝑇

2�⎦
⎥
⎥
⎥
⎤
      Equation 9-31 

Where 

x0 = x-coordinate of initial guess for location of beacon 

y0 = y-coordinate of initial guess for location of beacon 

xi = x-coordinate of satellite i 

yi = y-coordinate of satellite i 

di = RF measured distance from satellite i to the beacon 

n = number of satellites 

 

The error for this system of equations is given by: 

𝒆𝒆 = 𝑨𝑨 ∗ 𝑿𝑿 − 𝒃𝒃                                     Equation 9-32 

The weighting matrix adds a value to each of the elements of the error vector.   

𝑾𝑾 = 𝑑𝑑𝑠𝑠𝑡𝑡𝑑𝑑(𝒆𝒆)                                    Equation 9-33 

So that the resulting location vector for the weighted least squares will be determined by: 
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𝑿𝑿 = (𝑨𝑨𝑇𝑇𝑾𝑾−1𝑨𝑨)−1𝑨𝑨𝑇𝑇𝑾𝑾−1𝒃𝒃                            Equation 9-34 

For this process, arrays A and b can be calculated once, then arrays e, W, and X are 

found in sequence iteratively until the value e becomes quite small.  At this point X will 

contain the computed location coordinates of the beacon.   

9.10  Iterative Re-Weighted Least Squares 

The iterative least squares method is from [57] also uses a reweighting process, but 

the weighting algorithm is different. 

The process begins by initializing the weight Σ, with an identity matrix, and creating 

a matrix of satellite coordinates, B. 

𝛴𝛴 = 𝑅𝑅𝑇𝑇∗𝑇𝑇  and  𝐵𝐵 = �

𝑥𝑥1 𝑦𝑦1
𝑥𝑥2 𝑦𝑦2
⋮
𝑥𝑥𝑇𝑇

⋮
𝑦𝑦𝑇𝑇

�                  Equation 9-35 & 9-36 

Where 

xi = x-coordinate of satellite i 

yi = y-coordinate of satellite i 

n = number of satellites 

 

Then, the following steps are iterated until σ is appropriately small.   

𝜎𝜎 = �𝑑𝑑𝑠𝑠𝑡𝑡𝑑𝑑(𝛴𝛴)                                       Equation 9-37 

 

𝑋𝑋𝑅𝑅 =
∑ �

𝐵𝐵𝑗𝑗
𝜎𝜎𝑗𝑗� �𝑎𝑎

𝑗𝑗=1

∑ �1 𝜎𝜎𝑗𝑗� �𝑎𝑎
𝑗𝑗=1

                                      Equation 9-38 
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𝐴𝐴 =  �
1
1
⋮
1

2(𝑥𝑥1 − 𝑥𝑥0)
2(𝑥𝑥2 − 𝑥𝑥0)

⋮
2(𝑥𝑥𝑇𝑇 − 𝑥𝑥0)

2(𝑦𝑦1 − 𝑦𝑦0)
2(𝑦𝑦2 − 𝑦𝑦0)

⋮
2(𝑦𝑦𝑇𝑇 − 𝑦𝑦0)

�                      Equation 9-39 

 

𝑏𝑏 =  

⎣
⎢
⎢
⎢
⎡(𝑥𝑥1 − 𝑥𝑥0)2 + (𝑦𝑦1 − 𝑦𝑦0)2 − 𝑑𝑑1

2

(𝑥𝑥2 − 𝑥𝑥0)2 + (𝑦𝑦2 − 𝑦𝑦0)2 − 𝑑𝑑2
2

⋮
(𝑥𝑥𝑇𝑇 − 𝑥𝑥0)2 + (𝑦𝑦𝑇𝑇 − 𝑦𝑦0)2 − 𝑑𝑑𝑇𝑇

2⎦
⎥
⎥
⎥
⎤
                     Equation 9-40 

 

𝛽𝛽 = (𝐴𝐴𝑇𝑇𝛴𝛴−1𝐴𝐴𝐴𝐴)−1𝐴𝐴𝑇𝑇𝛴𝛴−1𝑏𝑏                        Equation 9-41 

 

𝑋𝑋𝑅𝑅+1 = 𝛽𝛽𝑇𝑇,2:3 + 𝑋𝑋𝑅𝑅                               Equation 9-42 

 

𝜎𝜎2 = �1
𝑇𝑇
∑ 𝑏𝑏𝑅𝑅𝑇𝑇
𝑅𝑅=1 �                                    Equation 9-43 

 

𝑑𝑑𝑟𝑟
2 =

⎣
⎢
⎢
⎡(𝑥𝑥1 − 𝑥𝑥0)2 + (𝑦𝑦1 − 𝑦𝑦0)2

(𝑥𝑥2 − 𝑥𝑥0)2 + (𝑦𝑦2 − 𝑦𝑦0)2
⋮

(𝑥𝑥𝑇𝑇 − 𝑥𝑥0)2 + (𝑦𝑦𝑇𝑇 − 𝑦𝑦0)2⎦
⎥
⎥
⎤
                         Equation 9-44 

 

𝛴𝛴 = 𝑑𝑑𝑠𝑠𝑡𝑡𝑑𝑑�4𝑑𝑑𝑟𝑟
2𝜎𝜎2�                              Equation 9-45 

 

Once the algorithm converges, the coordinates of the beacon will be contained in the 
variable X. 

9.11 Non-Linear Least Squares 

Nonlinear Least Squares is a form of the least squares method that fits a nonlinear 

model of order “n” to a series of data of quantity “m” where m>n.  The algorithm works 
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by first fitting a linear model and then refining that model for greater accuracy with higher 

parameters on successive iterations.   

The Euclidian distance between the actual location and the predicted one can be 

given by: 

𝑑𝑑𝑟𝑟𝑇𝑇 = �(𝑥𝑥𝑅𝑅 − 𝑥𝑥0)2 + (𝑦𝑦𝑅𝑅 − 𝑦𝑦0)2                     Equation 9-45 

 

𝐹𝐹 = 𝑑𝑑𝑟𝑟𝑇𝑇 −  𝑑𝑑𝑅𝑅                                   Equation 9-46 

In a nonlinear system the derivatives are function of both the independent variables 

and the parameters.   

𝐽𝐽 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑅𝑅1
𝜕𝜕𝑥𝑥

𝜕𝜕𝑅𝑅1
𝜕𝜕𝑥𝑥

𝜕𝜕𝑅𝑅2
𝜕𝜕𝑥𝑥

𝜕𝜕𝑅𝑅2
𝜕𝜕𝑥𝑥

⋮
𝜕𝜕𝑅𝑅𝑎𝑎
𝜕𝜕𝑥𝑥

⋮
𝜕𝜕𝑅𝑅𝑎𝑎
𝜕𝜕𝑥𝑥 ⎦
⎥
⎥
⎥
⎥
⎤

                                     Equation 9- 47 

The gradient equations do not have a closed solution, and the parameters are refined 

iteratively.  The minimum values occurs when the sums are zero.  The iteration is carried 

out until a minimal error is found.   

𝐽𝐽𝑇𝑇𝐽𝐽 = �
∑ (𝑥𝑥0−𝑥𝑥𝑇𝑇)2

𝑅𝑅𝑟𝑟𝑇𝑇
2

𝑇𝑇
𝑅𝑅=1 ∑ (𝑥𝑥0−𝑥𝑥𝑇𝑇)(𝑥𝑥0−𝑥𝑥𝑇𝑇)

𝑅𝑅𝑟𝑟𝑇𝑇
2

𝑇𝑇
𝑅𝑅=1

∑ (𝑥𝑥0−𝑥𝑥𝑇𝑇)(𝑥𝑥0−𝑥𝑥𝑇𝑇)
𝑅𝑅𝑟𝑟𝑇𝑇

2
𝑇𝑇
𝑅𝑅=1 ∑ (𝑥𝑥0−𝑥𝑥𝑇𝑇)2

𝑅𝑅𝑟𝑟𝑇𝑇
2

𝑇𝑇
𝑅𝑅=1

�               Equation 9-48 

 

9.12 Conclusion 

These algorithms together cover a wide range of trilateration approaches.  The 

MATLAB code for each can be found in Appendix C.  The next chapter will discuss an 
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entirely new and developed trilateration algorithm, then all of the algorithms will be 

compared in Chapter 11. 
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CHAPTER 10. ANTENNA PATTERN METHOD OF LOCALIZATION 

10.1 Overview 

The goal of this work is to reduce system and signal error in localization methods.  

Multipath error is addressed with respect to individual measurements using machine 

learning to separate multipath information from the base signal.  The other key source of 

error is the variation in signal strength caused by antenna radiation patterns known as 

pointing error.  This error cannot be predicted from single distance measurements, as it 

depends on the relative orientations of the transmitting and receiving antennas.  The goal 

of this section of the work was to create a new method of localization, which rather than 

ignoring error from non-isotropic antenna patterns, would leverages this information to 

assist with localization and ultimately reduce error. 

In this chapter pointing error is addressed by fitting a simplified antenna pattern to the 

measured distance data to determine the beacon location. The method for deriving both the 

pattern and the way in which it was incorporated into a deep optimization algorithm is 

described.  The iterative process described here addresses the significant issue of non-

isotropic antenna radiation patterns, which is a challenge for the vast majority of 

trilateration methods [65] [66] [67] [17] [44] [29].  Similar to the RSSI Signature method 

described in Chapter 6 [3], the Antenna Pattern method utilizes additional information not 

incorporated into traditional methods, to reduce overall error.  
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10.2 Background 

As discussed in the previous chapter, most trilateration algorithms essentially work by 

finding the location at the center of overlapping circles [66], [23], [46], [12], [68], [69].  In 

those algorithms, the circle surrounding the anchor is produced by using the location of the 

anchor as the center of the circle, and the distance from the anchor to the device is used as 

the radius of the circle, as shown in Figure 10-1. 

 

Figure 10-1: A graphic representation of a trilateration situation in which the 
readout distances given as blue lines surround the satellite (anchor) location.  
Standard methods will yield the green * as the location of a device, actually located 
at the black *. 

 

Using the measured distances as the circle radii assumes all signals are returned at 

the same strength all the way around, and ignores the variation in returned signal strength 

due to the variation in antenna sensitivity at different relative positions [14].  Antenna to 

antenna relative alignment is usually unknown or difficult to determine, thus this antenna 

angle mismatch is stated as a known source of error in descriptions of most localization 
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methods [66] [70] [71] [72].  Antennas are sensitive in different directions based on their 

geometry.  When an antenna is aligned with an incoming signal the antenna has a high 

efficiency when receiving that signal.  When aligned (approximately) with a null in the 

antenna pattern the signal received is highly inefficient or not read at all.  In other words, 

antennas radiate energy in a non-uniform pattern, creating areas of high signal intensity 

and nulls or zero signal intensity in different locations even at the same radius away.   

The orientation of the antenna can make a large impact on the distance estimation, 

and therefore the localization error.  Figures 10-2 and 10-3 below demonstrate how signal 

strength can be significantly impacted by antenna alignment, and in extreme cases the error 

from misalignment can exceed the true distance or even the entire read range. 

 

Figure 10-2: It is quite possible that an anchor and device have a large separation 
distance, but if they are directly facing each other, the pointing error will be low, 
and thus the calculated separation distance smaller. 

 

Figure 10-3: In contrast to the arrangement in Figure 10-2, the device and anchor 
could be right next to each other, but if one of them happens to be in the null of the 
other’s antenna pattern, the calculated separation distance would be extremely 
large. 
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Antenna patterns are complex but are characterized by areas of high and low 

sensitivity.  The research hypothesis is that a simplified model of an antenna pattern could 

be used to inform the localization algorithm and further reduce location error.  For this 

hypothesis to be validated it would be necessary to leverage information from a set of 

measurements to inform the shape and orientation of the modeled pattern.  Implementing 

this proposed solution would result in a new method of trilateration, which incorporates a 

generalized antenna pattern into the location optimization algorithm.  

10.3 Generalized Approach 

The proposed new trilateration method is an extension of methods currently in use for 

RF localization.  The generalized approach to the new trilateration algorithm would 

however insert a key additional optimization step into standard trilateration.  Measurements 

would be taken from multiple anchors and an approximate area of interest would be 

identified.  These measurements could utilize the improved measurements described in 

Chapters 5 or 6, with error reduced by machine learning with the RSSI Signature, the RSSI-

Informed Phase method, or any other distance estimation available.  At this point an 

antenna sensitivity optimization algorithm based on an idealized antenna pattern would be 

used to further reduce error.  As the distance measurements for the anchors will inherently 

be impacted by the antenna orientation of the tag or beacon being located, all measurements 

will contain information about that pattern.  An optimization algorithm then rotates or 

scales an idealized antenna model until the model best fits the measurement data.  The 

beacon location would be at the center of that antenna model, as the beacon antenna is 

creating the radiation pattern.  By fitting an antenna pattern this algorithm allows for 
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measurement signals to be weighted uniquely as they may be near a null or the center of a 

lobe.  This step should further reduce pointing error which would still remain after 

multipath error had been minimized.   This method was proposed for both Bluetooth and 

RFID systems, having a representative antenna with various orientations representing the 

location where the tag or beacon is to be found.   

10.3.1 Algorithm Process 

1. Just as in a normal trilateration algorithm, circles are placed around each of the 
anchor locations to indicate the distance from the anchor to the device. 

2. An initial estimate for the location of the device is found using a linear method.  
(Such as: Linear Least Squares, Centroid, or even simply using the average x and 
y coordinates of the anchors) 

3. The basic antenna pattern is overlaid at the initial device location. 
4. The distance between each of the circles, and the nearest point on the antenna 

pattern is found. 
5. The gradients of each of these distances is calculated, looking at how the distance 

would change with variations in the antenna pattern orientation, size and location. 
6. Gradient descent is used to minimize the sum of square errors, with distance 

between the antenna pattern and the nearest point on the anchor’s circles serving 
as the error.  The iterative process of gradient descent is used to find the most 
likely location of device.  This minimum is the location where the antenna pattern 
best fits into the cluster of circles, and therefore the most likely location of the 
device.  

 

10.3.2 Algorithm Process Explained 

 The center of the antenna pattern as shown in Figure 10-4 is used as the location of 

the device.  Thus the x and y coordinates of the center of the antenna pattern are values to 

be optimized in the gradient descent algorithm, as well as the size and angle of the antenna 

pattern. 
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Figure 10-4: The dark red 4 lobed design represents the simplified antenna pattern 
which can be rotated or scaled to best fit the data being provided by the real world 
measurement. 

 

The antenna pattern selected for this model takes into account antenna sensitivity 

due to its non-uniformity.  Using large and small lobes in the model it is possible to emulate 

an antenna pattern which can then be rotated, expanded or contracted, and optimized to 

match the distance measurements.  The antenna pattern is used in the 

localization/optimization algorithm (seen in Figure 10-4) is greatly simplified in 

comparison to the actual antenna pattern of the device.  Most antenna patterns have many 

small lobes and nulls.  These features in an optimization algorithm would result in a 

significant number of local minima, making it hard to find the most likely global minimum.  

The antenna pattern created and used for this algorithm was a reduced version of the 

original BLE antenna pattern and was characterized by a combination of a large front lobe 
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and a slightly smaller back lobe, with two smaller side lobes, as described in greater detail 

in this chapter.   

 One final addition to the algorithm was to have the initial orientation of the antenna 

pattern in the optimization algorithm be with the smaller of the main two lobes (back lobe) 

facing the circle with the smallest radius.  A circle with smaller radii means a shorter 

separation distance, and shorter separation distances are frequently more accurate.  Thus 

by having the slightly shorter lobe in the direction of the smaller circle, this forces the sum 

of square errors to bring the antenna pattern closer to the smaller circle in order to 

compensate for the shortened lobe.  This is essentially a way of weighting the smaller 

circle, which has a higher confidence.  This effect can be seen in Figure 10-4. 

10.3.3 Selection of Parameters 

The Antenna Pattern method is effective because it’s a trilateration method that 

accounts for the non-uniformity of the beacon antenna.  This is accomplished by using the 

measured distance from the anchors to the beacon, not to resolve to a single point, but 

rather to arrange the lobbed antenna pattern such that its edges correlate with these RF 

measured distances.  Given the arduous nature of nonlinear point trilateration, the antenna 

trilateration algorithm begins with the same information as other algorithms, and adds the 

optimization of a multi degree of freedom beacon antenna representation.  The antenna 

trilateration uses three key features.  The first is the additional optimization parameters.  In 

addition to an x and y coordinate, the Antenna Pattern method includes scaling and 

orientation of the antenna shape.  The second component is the increased difficulty in 
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calculating distance.  For point trilateration, distance is found between two points; the 

position of the anchor and the supposed position of the beacon.  In contrast, the Antenna 

Pattern method must find the two points which are closest to each other on a circle and a 

complex geometrical shape, and then use those to calculate distance.  Finally, the derivative 

or change in this distance must be calculated for any change in each of the four optimization 

parameters.  These gradients serve as a key component of the optimization process. 

10.3.4 Gradient Descent 

This method is unique because of its associated antenna pattern optimization 

algorithm.  Most trilateration algorithms use a form of least squares to find the most likely 

location.  However, this is generally a linear optimization, and due the fact that the distance 

equation or Pythagorean Theorem is a nonlinear equation, gradient descent (which is a 

nonlinear optimization algorithm) was selected.  Additionally, gradient descent is an 

extremely versatile algorithm which can be used for any differentiable equation.  The key 

issue of using gradient descent, like nearly all nonlinear optimization, is it won’t always 

find the global optimum, but rather the local optimum.  To mitigate this issue, Linear Least 

Squares is used to find an initial location, then the gradient descent algorithm is applied to 

find the nonlinear optimum. 

10.4 Creation and Validation of the Antenna Model 

The algorithm was created in two phases.  In the first phase, a test algorithm based 

on a numerical model was created.  After using this model to establish how the optimization 

algorithm would need to interact with an antenna model, a second final model was created 

to meet the computational speed requirement.  
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10.4.1 Numerical vs. Equation Based  

 Initially the Antenna Pattern method was completed numerically, using a set of 

points for the antenna pattern, calculating the distance between the anchor circle and 

beacon antenna pattern with interpolation methods, and a numerical gradient.  This work 

was used to verify the concept of an antenna model for improved error reduction.  The 

numerical model was more quickly implemented in code and allowed for a period of 

experimentation to determine general effectiveness and highlight areas for algorithm 

improvement.  However, these numerical methods, took approximately 2.5 seconds per 

case.  Given that this algorithm would be used for both localization and tracking, the 

computation time must be minimized, and 2.5 seconds would not meet the goal of rapid 

position determination.   

 To increase the processing speed, the algorithm was re-formulated using a 

theoretical equation based method.  For this technique, the antenna pattern had to be 

described in a single continuous equation.   

10.4.2 Selection of Antenna Pattern 

 When using an antenna pattern as part of the optimization algorithm, the goal is not 

to use an exact representation of the actual antenna pattern, but rather a reasonable 

alternative that would allow for a few peaks and nulls without creating too many local 

minima for the optimization algorithm.  Nevertheless, the process of identifying an 

appropriate representation began by measuring the radiation pattern itself.  The radiation 

pattern of the Bluetooth beacon was captured in a fully anechoic chamber and is shown 

below.  To create the pattern shown in Figure 10-5, the beacon broadcasted from the center 
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of the chamber, while slowly being rotated on a revolving platform.  The signal was 

received on the other side of the chamber with a stationary antenna.   

 

Figure 10-5: Bluetooth Antenna Pattern – this pattern was found experimentally by 
measuring the transmitted signal in a semi-anechoic chamber. 

 

In Figure 10-5 there are both blue and red lines.  These are because the BLE beacon 

had a wire attached to one side (approximately at 270° on in Figure 10-5).  Wires impact 

the measured radiation pattern, therefore the mirror image from 240° to 300° was used to 

create a more likely true antenna pattern.  It is important to note that, measuring the exact 

pattern is unnecessary however because only a very rough approximation will be used in 

the final analysis. 

 A measured antenna pattern is not effective as a tool for optimization because of 

the complexity of the radiance, which is both difficult to differentiate and susceptible to 

having an optimization algorithm stop at one of many local minima.  Although the 

measured antenna pattern did not directly provide an effective model, it did inform a basis 
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for a more general model.  Several variations of this pattern were examined to find the best 

option. 

 

Figure 10-6: Actual vs. Approximate Antenna Pattern.  The approximate pattern 
utilizes two large and two small lobes to simulate the general structure of the 
measured antenna pattern. 

 

The approximate antenna pattern decided upon, shown in Figure 10-6, was chosen 

for several reasons.  The first reason is it has distinct front and back lobes, which relate to 

the main lobes of the actual beacon.  These lobes are smooth, and therefore easily 

differentiable.  Two smaller side lobes create some sensitivity in the model for the multiple 

side lobe areas, but creating fewer local minima for the optimization. The selected pattern 

is a variation of a radiation pattern from two isotropic point sources [14].  While the antenna 

pattern method was tested against both BLE and RFID data, there was not an expectation 

that RFID data would show an improvement with this method.  All RFID data taken for 

the analysis was taken with the tag vertically (linearly) polarized and therefore on the 

horizontal plane was not directional but appeared more isentropic.  
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10.4.3 Converting the antenna pattern into a differentiable equation 

Creating an equation for the representative antenna pattern began by using the 

equation for two isotropic point sources one wavelength apart, given by Equation 10-1 and 

shown in Figure 10-7: 

𝑟𝑟 = cos �𝜋𝜋𝑡𝑡𝑡𝑡𝑠𝑠(𝜃𝜃)�                                    Equation 10-1 

 

 This equation by itself created much too wide of a pattern, therefore it was reduced 

in the vertical direction using a multiplication factor of 0.5 in the y direction.  This was 

accomplished by first expressing in Cartesian coordinates, resulting in Equations 10-2 and 

10-3. The impact on the shape of the antenna pattern can also be seen in Figure 10-7. 

𝑥𝑥 = 𝑟𝑟cos (𝜃𝜃)                                         Equation 10-2 

  

𝑦𝑦 = 0.5𝑟𝑟sin (𝜃𝜃)                                   Equation 10-3 

 

 

Figure 10-7: Reducing the antenna pattern in the vertical direction 
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Then reverting back and expressing the equation in polar coordinates results in Equations 
10-4 and 10-5. 

 

𝑟𝑟(𝜃𝜃) =  ��𝑡𝑡𝑡𝑡𝑠𝑠𝜃𝜃𝑡𝑡𝑡𝑡𝑠𝑠(𝜋𝜋𝑡𝑡𝑡𝑡𝑠𝑠𝜃𝜃)�
2

+ �0.5𝑠𝑠𝑠𝑠𝑡𝑡𝜃𝜃𝑡𝑡𝑡𝑡𝑠𝑠(𝜋𝜋𝑡𝑡𝑡𝑡𝑠𝑠𝜃𝜃)�
2

 (𝜃𝜃)       Equation 10-4 

 

𝜑𝜑(𝜃𝜃) =  tan−1 �0.5𝑇𝑇𝑅𝑅𝑇𝑇𝜃𝜃
𝑅𝑅𝑃𝑃𝑇𝑇𝜃𝜃

�                         Equation 10-5 

 
  

 The necessary form for this model is r as a function of φ, instead of r and φ both as 

functions of θ.  To reduce and combine terms, Equation 10-5 was transformed into 

Equation 10-6, then 10-7. 

 

 tanφ = 0.5tan𝜃𝜃                                        Equation 10-6 

𝜃𝜃 = tan−1(2tan𝜑𝜑)                                 Equation 10-7 

 With θ in terms of φ, a single equation can be written with r as a function of φ.           

r = (cos(tan−1(2 tan𝜑𝜑)) ∗ cos(𝜋𝜋 cos(tan−1(2 tan𝜑𝜑)))2
+ (0.5 sin(tan−1(2 tan𝜑𝜑)) ∗ cos(𝜋𝜋 cos(tan−1(2 tan𝜑𝜑))))2)0.5 

Equation 10-8 

 

 The approximate antenna pattern shown in Figures 10-6 and 10-7, have equal length 

front and back lobes. The ability to separate the size of the font and back lobes, and have 
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one of the main lobes slightly smaller was considered superior as it relates to the true 

antenna pattern having asymmetrical front and back lobes.  The challenge with shortening 

one lobe, was again to create a single differentiable (continuous) equation.   

 Based on a recommendation from Dr. Brandon Kemp, Arkansas State University, 

a Fourier Series was chosen as a means to reduce one of the main lobes. The lobe chosen 

was between -45° and 45°, therefore a Fourier Series was constructed which had a value 

of one for all values except those between -45° and 45° (or -π/4 and π/4), as illustrated in 

Figure 10-8 and given in Equation 10-9. 

 

Figure 10-8: Fourier Step function for transforming antenna pattern 
 

 

Fourier Step =  �3+h
4
� + �2h−2

π√2
� cosφ + �2h−2

π
� cos 2φ + �2h−2

3π√2
� cos 3φ +

�−2h+2
5π√2

� cos 5φ + �−2h+2
6π

� cos 6φ + �−2h+2
7π√2

� cos 7φ Equation 10-9 
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Where: 

h = Reduction factor of back lobe 

 

 By multiplying Equations 10-8 and 10-9, the back lobe of the antenna pattern can 

be reduced, as shown in Figure 10-9, and given by Equation 10-10. 

 

Figure 10-9: Shortened Back Lobe of Antenna Pattern. 
 

r(𝜑𝜑) =  

⎝

⎜
⎛
�

𝑡𝑡𝑡𝑡𝑠𝑠(𝑡𝑡𝑡𝑡𝑡𝑡−1(2 𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑)) ∗
𝑡𝑡𝑡𝑡𝑠𝑠�𝜋𝜋𝑡𝑡𝑡𝑡𝑠𝑠(𝑡𝑡𝑡𝑡𝑡𝑡−1(2 𝑡𝑡𝑡𝑡𝑡𝑡𝜑𝜑))�

�
2

+

�
0.5𝑠𝑠𝑠𝑠𝑡𝑡(𝑡𝑡𝑡𝑡𝑡𝑡−1(2 𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑)) ∗
𝑡𝑡𝑡𝑡𝑠𝑠�𝜋𝜋𝑡𝑡𝑡𝑡𝑠𝑠(𝑡𝑡𝑡𝑡𝑡𝑡−1(2 𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑))�

�
2

⎠

⎟
⎞

0.5

∗ ��3+ℎ
4
�+ �2ℎ−2

𝜋𝜋√2
� 𝑡𝑡𝑡𝑡𝑠𝑠 𝜑𝜑 +

�2ℎ−2
𝜋𝜋
� 𝑡𝑡𝑡𝑡𝑠𝑠 2𝜑𝜑 + �2ℎ−2

3𝜋𝜋√2
� 𝑡𝑡𝑡𝑡𝑠𝑠 3𝜑𝜑 + �−2ℎ+2

5𝜋𝜋√2
� 𝑡𝑡𝑡𝑡𝑠𝑠 5𝜑𝜑 + �−2ℎ+2

6𝜋𝜋
� 𝑡𝑡𝑡𝑡𝑠𝑠 6𝜑𝜑 + �−2ℎ+2

7𝜋𝜋√2
� 𝑡𝑡𝑡𝑡𝑠𝑠 7𝜑𝜑�   

 

Equation 10-10 
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 This equation for the approximate antenna pattern was then ready to be applied to 

the optimization algorithm to increase the accuracy by accounting for the non-isotropic 

pattern of the actual beacon antenna. 

10.5 Formulation of the Algorithm 

With the antenna pattern created, the location optimization begins with formulating 

the gradient descent algorithm for this scenario.  The equations that need to be optimized 

represent the distance from the radii of each anchor to the scalable and rotatable theoretical 

sensitivity model, which is a nonlinear set of equations. Again, gradient descent was 

selected for its robustness and versatility to handle this type of equation set.  The first step 

for gradient descent is to create a vector containing the optimization parameters, in this 

case they are: size of antenna pattern, angle of antenna pattern, x-coordinate, y-coordinate. 

The size of the antenna pattern allowed the pattern to be scaled to fit the gap occurring 

between the different measurement circles.  The angle allowed for rotation to accommodate 

orientation variations, and the x and y coordinate moved the pattern and therefore located 

the beacon or tag.  

𝑋𝑋 = �

𝑆𝑆
𝐴𝐴

𝑥𝑥𝑇𝑇𝑡𝑡𝑡𝑡
𝑦𝑦𝑇𝑇𝑡𝑡𝑡𝑡

�                                              Equation 10-11 

 

Where: 

X = Vector of optimization parameters 

S = (Size) Multiplication factor for the radius of the antenna pattern 



198 

A = (Angle) Additive angle to the antenna pattern 

xTag = X-coordinate of tag/beacon center 

yTag = Y-coordinate of tag/beacon center 

 

 The vector G, is created to contain the functions to be optimized.  In this case these 

are the distances from the antenna pattern to the radius of each anchor. 

𝐺𝐺 =  

⎣
⎢
⎢
⎢
⎡𝑑𝑑1�𝑆𝑆,𝐴𝐴, 𝑥𝑥𝑇𝑇𝑡𝑡𝑡𝑡,𝑦𝑦𝑇𝑇𝑡𝑡𝑡𝑡�
𝑑𝑑2�𝑆𝑆,𝐴𝐴, 𝑥𝑥𝑇𝑇𝑡𝑡𝑡𝑡,𝑦𝑦𝑇𝑇𝑡𝑡𝑡𝑡�

⋮
𝑑𝑑𝑇𝑇�𝑆𝑆,𝐴𝐴, 𝑥𝑥𝑇𝑇𝑡𝑡𝑡𝑡,𝑦𝑦𝑇𝑇𝑡𝑡𝑡𝑡�⎦

⎥
⎥
⎥
⎤
                              Equation 10-12 

 

Where: 

d = Distance from anchor radius to the antenna pattern 

n = Number of anchors 

G = Vector of functions 

 

 The distance between the antenna pattern and the radius of the anchor is essentially 

the error, and therefore must be minimized, as illustrated in Figures 10-10 and 10-11. 

The cost function is then given by [73]: 

𝐹𝐹(𝑋𝑋) =  1
𝑇𝑇−1

𝐺𝐺𝑇𝑇𝐺𝐺                                 Equation 10-13 
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Where: 

F(X) = Cost function 

 The gradient of the cost function is found by using the Jacobian of vector G. 

∇𝐹𝐹(𝑋𝑋(0)) =  𝐽𝐽𝐺𝐺�𝑋𝑋(0)�
𝑇𝑇
𝐺𝐺�𝑋𝑋(0)�                   Equation 10-14 

 

 

𝐽𝐽𝐺𝐺 =  

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑅𝑅1
𝜕𝜕𝑆𝑆

𝜕𝜕𝑅𝑅1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅1
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

𝜕𝜕𝑅𝑅1
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

𝜕𝜕𝑅𝑅2
𝜕𝜕𝑆𝑆

𝜕𝜕𝑅𝑅2
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅2
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

𝜕𝜕𝑅𝑅2
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

⋮
𝜕𝜕𝑅𝑅𝑎𝑎
𝜕𝜕𝑆𝑆

⋮
𝜕𝜕𝑅𝑅𝑎𝑎
𝜕𝜕𝜕𝜕

⋮
𝜕𝜕𝑅𝑅𝑎𝑎
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

⋮
𝜕𝜕𝑅𝑅2
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇⎦

⎥
⎥
⎥
⎥
⎤

                    Equation 10-15 

 

Where: 

JG = Jacobian of set of equations G with respect to X(S, A, xTag, yTag) 

 Thus, with gradient descent the Equation 16 can be iterated to converge on the best 

parameter values, including the beacon location. 

𝑋𝑋(1) =  𝑋𝑋(0) − 𝛾𝛾∇𝐹𝐹�𝑋𝑋(0)�                       Equation 10-16 

 

Where: 

γ = Regularization parameter  
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The resulting gap between the antenna pattern and the anchor is a measure of how 

good the fit is. This distance is minimized to create an optimum antenna placement. 

𝑑𝑑𝑇𝑇 =  ��𝑥𝑥𝜕𝜕𝑇𝑇𝑡𝑡𝑎𝑎 − 𝑇𝑇𝑥𝑥�
2

+ �𝑦𝑦𝜕𝜕𝑇𝑇𝑡𝑡𝑎𝑎 − 𝑇𝑇𝑥𝑥�
2
− 𝑅𝑅𝑇𝑇              Equation 10-17 

       

Where: 

Rn = Radius of anchor n 

dn = Resulting gap between antenna pattern and anchor n 

𝑥𝑥𝜕𝜕𝑇𝑇𝑡𝑡𝑎𝑎  = X-coordinate of anchor n (center of anchor circle) 

𝑦𝑦𝜕𝜕𝑇𝑇𝑡𝑡𝑎𝑎 = Y-coordinate of anchor n (center of anchor circle) 

Tx = X-coordinate of the antenna pattern 

Ty = Y-coordinate of the antenna pattern 

 

Figure 10-10: The distance dn is given by the distance between the antenna pattern 
and circle surrounding the anchor. 

 

The circle around the anchor, shown as an orange curve in Figure 10-10, is the 

representation of the anchor to beacon distance estimation, calculated using one of several 
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methods discussed in previous chapters.  The variables Tx and Ty are a means of 

representing a point on the antenna pattern, as can be seen in Figure 10-11. 

 

Figure 10-11: The variables Tx and Ty are the x and y coordinates on the antenna 
pattern 

 

To calculate the Jacobian, the derivative of distance dn must be found with respect 

to each parameter (S, A, xTag, yTag). 

𝜕𝜕𝑅𝑅𝑎𝑎
𝜕𝜕𝑆𝑆

=
�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑥𝑥�

−𝜕𝜕𝑇𝑇𝑥𝑥
𝜕𝜕𝑅𝑅 +�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑦𝑦�

−𝜕𝜕𝑇𝑇𝑦𝑦
𝜕𝜕𝑅𝑅

��𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑥𝑥�
2
+�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑦𝑦�

2
                         Equation 10-18 

 

𝜕𝜕𝑅𝑅𝑎𝑎
𝜕𝜕𝜕𝜕

=
�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑥𝑥�

−𝜕𝜕𝑇𝑇𝑥𝑥
𝜕𝜕𝐴𝐴 +�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑦𝑦�

−𝜕𝜕𝑇𝑇𝑦𝑦
𝜕𝜕𝐴𝐴

��𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑥𝑥�
2
+�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑦𝑦�

2
                  Equation 10-19 

 

𝜕𝜕𝑅𝑅𝑎𝑎
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

=
�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑥𝑥�

−𝜕𝜕𝑇𝑇𝑥𝑥
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

+�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑦𝑦�
−𝜕𝜕𝑇𝑇𝑦𝑦
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

��𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑥𝑥�
2
+�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑦𝑦�

2
                Equation 10-20 
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𝜕𝜕𝑅𝑅𝑎𝑎
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

=
�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑥𝑥�

−𝜕𝜕𝑇𝑇𝑥𝑥
𝜕𝜕𝑦𝑦𝑇𝑇𝑎𝑎𝑇𝑇

+�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑦𝑦�
−𝜕𝜕𝑇𝑇𝑦𝑦
𝜕𝜕𝑦𝑦𝑇𝑇𝑎𝑎𝑇𝑇

��𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑥𝑥�
2
+�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡𝑎𝑎−𝑇𝑇𝑦𝑦�

2
                 Equation 10-21 

 
 
 The next step is to represent Tx and Ty in terms of the optimization parameters (S, 
A, xTag, yTag). 

 
𝑇𝑇𝑥𝑥 = 𝑆𝑆 ∗ 𝑟𝑟(𝜑𝜑) ∗ cos(𝜑𝜑 + 𝐴𝐴) + 𝑥𝑥𝑇𝑇𝑡𝑡𝑡𝑡                  Equation 10-22 

 
 

𝑇𝑇𝑥𝑥 = 𝑆𝑆 ∗ 𝑟𝑟(𝜑𝜑) ∗ sin(𝜑𝜑 + 𝐴𝐴) + 𝑦𝑦𝑇𝑇𝑡𝑡𝑡𝑡                  Equation 10-23 

 
 
Where: 

𝜑𝜑 = Orientation angle of beacon 

 

 The variables Tx and Ty must also be differentiated with respect to each of the 

optimization parameters to feed into the Jacobian, J. 

 
𝜕𝜕𝑇𝑇𝑥𝑥
𝜕𝜕𝑆𝑆

= 𝑟𝑟 𝑡𝑡𝑡𝑡𝑠𝑠(𝜑𝜑 + 𝐴𝐴)                             Equation 10-24 

 
𝜕𝜕𝑇𝑇𝑥𝑥
𝜕𝜕𝜕𝜕

= 𝑆𝑆 𝑡𝑡𝑡𝑡𝑠𝑠(𝜑𝜑 + 𝐴𝐴) 𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕(𝜕𝜕) − 𝑆𝑆𝑟𝑟 𝑠𝑠𝑠𝑠𝑡𝑡(𝜑𝜑 + 𝐴𝐴) �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 1�         Equation 10-25 

 
𝜕𝜕𝑇𝑇𝑥𝑥

𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇
= 𝑆𝑆 𝑡𝑡𝑡𝑡𝑠𝑠(𝜑𝜑 + 𝐴𝐴) 𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕�𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇�
− 𝑆𝑆𝑟𝑟 𝑠𝑠𝑠𝑠𝑡𝑡(𝜑𝜑 + 𝐴𝐴) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇
+ 1        Equation 10-26 

 
𝜕𝜕𝑇𝑇𝑥𝑥

𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇
= 𝑆𝑆 𝑡𝑡𝑡𝑡𝑠𝑠(𝜑𝜑 + 𝐴𝐴) 𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕�𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇�
− 𝑆𝑆𝑟𝑟 𝑠𝑠𝑠𝑠𝑡𝑡(𝜑𝜑 + 𝐴𝐴) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇
         Equation 10-27 

 
𝜕𝜕𝑇𝑇𝑦𝑦
𝜕𝜕𝑆𝑆

= 𝑟𝑟 𝑠𝑠𝑠𝑠𝑡𝑡(𝜑𝜑 + 𝐴𝐴)                              Equation 10-28 
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𝜕𝜕𝑇𝑇𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝑆𝑆 𝑠𝑠𝑠𝑠𝑡𝑡(𝜑𝜑 + 𝐴𝐴) 𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕(𝜕𝜕) + 𝑆𝑆𝑟𝑟 𝑡𝑡𝑡𝑡𝑠𝑠(𝜑𝜑 + 𝐴𝐴) �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 1�        Equation 10-29 

 
𝜕𝜕𝑇𝑇𝑦𝑦
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

= 𝑆𝑆 𝑠𝑠𝑠𝑠𝑡𝑡(𝜑𝜑 + 𝐴𝐴) 𝜕𝜕𝑟𝑟
𝜕𝜕𝜕𝜕�𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇�

+ 𝑆𝑆𝑟𝑟 𝑡𝑡𝑡𝑡𝑠𝑠(𝜑𝜑 + 𝐴𝐴) 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

        Equation 10-30 

 

 
𝜕𝜕𝑇𝑇𝑦𝑦

𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇
= 𝑆𝑆 𝑠𝑠𝑠𝑠𝑡𝑡(𝜑𝜑 + 𝐴𝐴) 𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕�𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇�
+ 𝑆𝑆𝑟𝑟 𝑡𝑡𝑡𝑡𝑠𝑠(𝜑𝜑 + 𝐴𝐴) 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇
+ 1      Equation 10-31 

 

 
 The next step is to find the angle on the antenna pattern φ, and how it relates to the 

overall orientation of the antenna pattern.  This relationship between the overall orientation 

of the antenna pattern, and the angle on the antenna pattern based on the relative position 

of the anchor, as can be visualized in Figure 10-12. 

 

Figure 10-12: Angle φ is from the center of the main lobe to the line between the 
center of the antenna pattern to the center of the anchor. 
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In Figure 10-12, Angle θ is the angle from the horizontal to the line between the 

center of the antenna pattern and the center of the anchor.  “A” is the angle between the 

horizontal and the main lobe of the antenna pattern.  In Figure 10-12 it can be seen that the 

angle A controls the orientation of the antenna pattern, as it is the angle between the 

horizontal axis and the main lobe of the antenna pattern.  The angle φ is also dependent 

upon the orientation of the antenna pattern, as it is the angle between the main lobe of the 

antenna pattern and the line between the center of the antenna pattern and the center of the 

anchor.  Angle θ relates the other two angles, as it is the difference between φ and A.  Using 

these relationships, the equation of φ can be formulated as follows: 

 

𝜑𝜑 = 𝜃𝜃 − 𝐴𝐴 = tan−1 �𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡−𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇
𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡−𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

� − 𝐴𝐴                Equation 10-32 

 
Where: 

θ = Angle between the horizontal and the line between the center of the antenna pattern 

and the center of the beacon. 

 

 With an equation for φ in terms of the optimization parameters, the next step is to 

differentiate in terms of each optimization parameter. 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆

= 0                                           Equation 10-33 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −1                                          Equation 10-34 

 
𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇
= 𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡−𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇

�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡−𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇�
2
+�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡−𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇�

2                    Equation 10-35 
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𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇
= 𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇−𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡

�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡−𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇�
2
+�𝑥𝑥𝐴𝐴𝑎𝑎𝑡𝑡−𝑥𝑥𝑇𝑇𝑎𝑎𝑇𝑇�

2                  Equation 10-36 

 
 The next step is to incorporate the antenna pattern from Equation 10-10.  Equations 

10-37 through 10- 41 represent Equation 10-10 in a simpler form for differentiation. 

 
r = �(r1 ∗ r2)2 + (r1 ∗ r3)2 ∗ r4                     Equation 10-37 

Where: 

r1 = cos(π cos(tan−1(2 tanφ)))                         Equation 10-38 

r2 = cos(tan−1(2 tanφ))                         Equation 10-39 

r3 = 0.5 sin(tan−1(2 tanφ))                      Equation 10-40 

r4 = Equation 9 (Fourier Step Function)                Equation 10-41 

 The antenna pattern is then differentiated with respect to each of the optimization 

parameters, the equations of which can be viewed in the MATLAB code in Appendix C, 

section C.11.  The resulting equations are combined to give the derivative of the distance 

dn with respect to S, A, xTag, and yTag. 

10.6 Conclusion 

One of the most novel discoveries to come from the research was the use of the fitting 

of a simplified antenna pattern to the distance data in order to determine a location.  This 

multistep process addressed a significant issue with trilateration methods; antenna 

directionality. Antenna directionality cannot be predicted in the field when the 

measurements are being generated.  However, like the RSSI Signature, the data that exists 

in the distance measurements can be used as additional information about the actual 
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environment at the time of measurement, and this in turn can be used to reduce error 

overall. 

The Antenna Pattern method of optimization is based upon the hypothesis that 

localization can be improved if antennas aren’t assumed to be perfectly isotropic, as is the 

case in most algorithms.  This method uses an approximation of the beacon antenna pattern, 

by incorporating a large front lobe, a slightly smaller back lobe, and two small side lobes.  

By using this pattern, the optimization algorithm can allow for the fact that a beacon may 

be close to an anchor, yet still not receive a strong signal, as it may be in the null of the 

beacon antenna.  Similarly, a beacon could be a great distance away from an anchor, but 

have a strong received signal strength, because the main lobe could be directly facing the 

anchor.   

 In the next chapter, this Antenna Pattern method will be compared to several others 

to determine its effectiveness for localization and the overall best combination of 

technology and localization algorithm. 
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CHAPTER 11. EXPERIMENTAL COMPARISON OF TRILATERATION 

11.1 Overview 

Localization of an unknown tag or beacon using trilateration requires both a series 

of distance measurement addressed in Chapters 3-7, and the algorithms used to move from 

distance measurements to actual location information described in Chapters 2, 9 & 10.  The 

goal of this work was to make contributions in both of these areas.  Distance measurement 

error has been experimentally reduced using 1) signal combinations (RSSI-Informed Phase 

Chapter 5) and 2) information from the frequency response of the system referred to as the 

RSSI Signature in Chapter 6.  Known trilateration methods have been enhanced with 

improved weighting models in the case of the Centroid method, the derived method of the 

Hyperbolic LOP described in Chapter 9 and the addition of an Antenna Pattern method in 

Chapter 10.  The goal of this chapter was to theoretically compare the performance of all 

possible combinations of these distance measurements and localization algorithms to 

understand their strengths and weaknesses.   

While it is difficult to get a good comparison of actual error in meters that should 

be expected from trilateration of BLE device networks, a few experiments described in the 

literature, compare a proposed unique solution to  “standard” trilateration methods using 

Bluetooth devices, and the location error reported ranged from 3 – 3.75 meters [74] [75].  

Papers where localization are systems set-up with unlimited anchor nodes usually have a 

location accuracy of about 0.7 meters [60] [76] [77], but that higher accuracy comes with 

a large infrastructure and maintenance overhead as was specifically to be avoided in the 

problem statement of this work.  The methods explored in this analysis all require minimum 
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infrastructure and maintenance, and as such the distance errors found in this work of 1.5 to 

2 meters on average, as will be shown later in this chapter, compare favorably.   

In Chapter 9 a survey of current trilateration methods was presented.  These current 

methods use a variety of mathematical techniques to deal with issues such as error in 

distance measurements, but negate the possibility of a closed form solution.  The benefit 

of a closed form solution is the fast computation speeds, whereas algorithms which account 

for the nonlinearity of the problem will be iterative.  Chapter 10 proposed a new method 

of trilateration, which accounted for the non-isotropic antenna pattern of the beacon, but is 

also iterative.  This new method uses a simplified model of an antenna radiation pattern to 

compensate for antenna error in the distance measurements.   

In this chapter, a thorough examination the different localization algorithms methods 

surveyed in Chapter 9 and 10 are presented. This analysis includes the impact of 

improvements to distance estimates and therefore input data, including improvements to 

distance estimates due to reduced multipath error (the RSSI Signature in Chapter 6), as 

well as the new Antenna Pattern method proposed in Chapter 10. The resulting localization 

accuracy for all combinations of methods for data taken in a controlled environment are 

simulated using empirical data.  This represents 525 different combinations of technology 

and algorithms.  At each level of technology/algorithm chose, the results are presented to 

show how each impacts the final trilateration accuracy.  This chapter then explores the 

results and discusses which technologies or algorithms are the best choice for different 

applications or requirements.  
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11.2 Comparison of Localization Algorithms 

Information available describing localization algorithms are reported for different 

environments and different constraints.  There is currently no published information which 

effectively compares methodologies in comparable situations with similar metrics of 

accuracy or computational time.  It was one of the goals of this work to create such a data 

set and resulting analysis, so that given the same settings each algorithm could be compared 

against the others do understand the tradeoffs of potential application design decisions on 

system performance.  

In order to compare the algorithms using empirical data, a large amount of data was 

taken for both RFID and BLE systems where there was one beacon or tag and many readers 

surrounding it.  Localization systems will function by getting multiple distance 

measurements from multiple readers at the same time from the same beacon.  This 

reinforces the issue of antenna radiance patterns as the beacon will, by the constraints of 

the application, be facing different readers differently when a measurement is taken.  For 

the RFID system, four circular polarized antennas were connected to a single ThingMagic 

M6e radio, and positioned one meter above the ground plane.  Figure 11-1 is a diagram of 

the experimental setup.  A vertically polarized Squiglette tag was placed one meter above 

the ground plane and at numerous locations within the area, and each location was 

measured in terms of a constant Cartesian coordinate system.  It was moved incrementally 

using a stepper motor/pulley system and location was recorded and calculated using an 

encoder attached to the motor.  Both RSSI and phase values were collected from each 

antenna for all 50 hop frequencies (or all frequencies which were readable).  As mentioned 

in earlier chapters, interference or low signal response can cause a null reading at a 
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particular frequency.  This data was then collected and organized for use in each of the 

possible localization algorithms.   

 

Figure 11-1: RFID Experimental setup showing 4 circularly polarized antennas 
reading one Squiglette RFID tag.   

 

The BLE setup had 5 transponders surrounding a center beacon.  All of the BLE 

device locations were accounted for using a common coordinate system.  The beacon was 

moved incrementally using a stepper motor and pulley system, and the position was 

communicated using an encoder.  Due to their physical geometry the BLE devices were 

placed horizontally polarized and similarly 1m above the ground plane.  RSSI values were 

collected from the transmission of the center beacon to each of the surrounding 

transponders, at each of the hop frequencies.  The diagram in Figure 11-2 shows how the 

system slowly pulled the target center beacon through the room allowing for a gradual 

change in orientation and distance for all transponders simultaneously.   
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Figure 11-2:  A diagram of the interaction between Bluetooth devices in a network. 
 

This experiment required the development of an automated pulley system which 

had the dual benefit of allowing the data to be collected over many hours’ time, overnight 

when the semi-anechoic chamber was available, and also allowed it to be collected with no 

people in the chamber which improved data quality.  

Figure 11-3 is a photograph of the actual automated test set-up of the BLE 

localization in the 10 meter semi-anechoic chamber at Lexmark.  Material selection for the 

equipment needed to be RF transparent, light weight and inexpensive.  The data acquisition 

program was developed to handle the multiple beacon inputs and the computational time 

delays.  The program is running on the laptop in the foreground of the picture.   
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Figure 11-3: BLE localization data collection in 10 meter anechoic chamber. 
 

Once the data was collected, the trilateration algorithms and distance estimation 

methods were compared for both the RFID and BLE systems.  The data was applied to 

each algorithm and combination of algorithms using MATLAB and the results were 

compared to the “known” location in the coordinate system.  It should be noted that there 

is some error associated with the “known” position as described in Chapter 12, however 

this error was the same for all systems and should therefore not significantly impact the 

analysis.  

The distance estimation methods which fed the different algorithms are shown in 

Table 11-1 below.  
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Table 11-1: The different distance measurement methods used in this analysis and 
a brief description of each. 

Name Description Chapter  

RSSI Distance is calculated from an 
empirical RSSI vs. distance 

relationship 

2-4 

RSSI Signature Distance is calculated initially using 
RSSI then improved with the error 
estimation of the RSSI signature. 

5-8 

Phase Distance is calculated by observing 
changes in phase angle with changes 

in the carrier frequency. 

5 

Phase Signature As with RSSI Signature, phase 
distance was modified by using 

information from the RSSI Signature 
to reduce the error. 

6 

RIP (RSSI-Informed 
Phase) 

This hybrid approach developed over 
the course of this work uses both 

RSSI information and Phase 
information for more robust readings. 

5 

 

Five different distance estimation methods are described in Table 11-1. RSSI 

Signature, Phase Signature and RSSI-Informed Phase were developed as a result of this 

work.  RSSI and phase are commercially available methods of distance measurement with 

RF systems. 

As described earlier, these different distance measurements where then each fed 

into a matrix of localization algorithms.  This yielded a large matrix in which each 

combination of distance measurement input with each method of localization method could 

be compared for accuracy and time. 



214 

The different localization algorithms used in this analysis are described in Chapters 

9 and 10.  Since all measurements contain errors there is no closed form solution to move 

from distance estimations to a tag or beacon location.  Localization therefore relies not only 

on distance measurements but on the algorithms to move from those measurements to a 

reported tag/beacon location.  These methods are shown in table 11-2 below.  
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Table 11-2: Localization Algorithms used in the following analysis and 
comparison. 

Number Name Description 

1 Linear Locus of 
Position (Linear LOP) 

A purely geometrical method which uses the 
intersection of line produced from the distance 

estimation radii. 

2 Lear Least Squares 
(Linear LS) 

A commonly used linearized method that 
assumes that all measurements have equal 

variance and are uncorrelated. 

3 Centroid A method that looks at the center point of all 
distance radii overlap.  Since not all distances will 

have this overall all distance radii are expanded 
equally until the overlap is created in the centroid 

of the overlap can be found. 

4 Linear Approximation A translation of the beacon/tag location to a 
mathematically more convenient location along a 

coordinate axis based on simplifying 
assumptions, and then translated back to their 

global position. 

5 Hyperbolic Locus of 
Position (Hyperbolic 

LOP) 

The non-linearity of the hyperbolas adds a 
weighting factor to the Linear LOP algorithm.   

6 Taylor Series A linear iterative method that alters the linearized 
equations as it approaches the best solution. 

7 Weighted Least Squares 
(Weighted LS) 

This differs from Linear LS in that it is iterative 
and a specific weight is calculated for every 

iteration making converging on a solution faster. 

8 Iterative Least Squares 
(Iterative LS) 

Similar to the Weighted LS but with a different 
weighted algorithm. 

9 Non-Linear Least 
Square (Nonlinear LS) 

A version of the Least Squares algorithm used to 
fit a non-linear model. 

10 Antenna Pattern A weighting on the distance measurements based 
on the optimized simplified antenna pattern 

oriented to best match the distances measured. 
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Of the 10 methods shown in Table 11-2 it should be noted that Centroid and 

Hyperbolic Locus of Position were significantly improved upon during this work.  

Additionally, the Antenna Pattern method is an entirely new method developed during this 

work.  

11.3 Levels of Trilateration 

When employing any trilateration algorithm, there are a variety of options (e.g. 

technology or algorithms) to consider when choosing the optimal combination.  For this 

work, these will be described as “levels” of the trilateration algorithm. Figure 11-4 is an 

illustration of the various levels for trilateration explored in this chapter. 

• Level 1 – Technology 

o This research investigates both RFID and Bluetooth transponders. 

• Level 2 – Distance Estimation Method 

o The next step in trilateration is to find a range estimation, as discussed in 

Chapters 5, 6 and 9.  These differ between RFID and Bluetooth, because 

Bluetooth does not provide phase information. 

• Level 3 – Selection of Distance Measurements 

o Trilateration requires a minimum of three distance estimates; while four or 

more satellites were used in this research in order to explore the use of 

additional satellites, some algorithms can only incorporate three.  Thus, 

for Level 3 different strategies were compared using all or particular 

distance estimates from the satellites.   

• Level 4 – Non-Iterative Trilateration (or Initial Location Estimation) 

o Most non-iterative trilateration algorithms are linear simplifications of a 

complex solution space.  These can be used as a final localization result, 

or can be used as an initial value for the iterative trilateration algorithms. 
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• Level 5 – Iterative Trilateration 

o These algorithms initialize using the non-iterative solutions, and leverage 

optimization tools to resolve higher order models. 

 

 

Figure 11-4: Levels of options investigated for trilateration 
 

Figure 11-4 graphically illustrates the matrix of options discussed in this analysis.  

Level 1 selects the appropriate technology for the particular application.  In this research 

both RFID and Bluetooth were used as options, and empirical data was collected for both, 

such that any algorithm (or combination of algorithms) could be tested using the data.  The 

second level is the type of data/distance estimation method.  RFID is able to use phase 

angle, thus the distance estimation methods of: phase, RSSI-Informed phase, and phase 

signature are all available, as well as RSSI and RSSI Signature.  Bluetooth is only able to 

measure RSSI, thus RSSI and RSSI Signature are the only two methods available for Level 
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2.  The third level is a choice of either using the data from every anchor, or choosing the 

best three, by either the highest three RSSI values, or those of the highest confidence.  

Confidence is chosen by finding the approximate error in the distance measurement by 

employing the RSSI Signature.  The three distances with the least error as estimated by the 

trained RSSI Signature neural network, would then be utilized in the remaining levels of 

the trilateration process.  The fourth and fifth levels are both localization algorithms.  As 

discussed above, the difference between the two is that level 4 contains closed form 

solutions, and thus become the starting point for the fifth level, which are the iterative 

methods.  The algorithms chosen represent a variety of key trilateration methods discussed 

in the literature, therefore by comparing all combinations using the same set of empirical 

data, it is possible to truly evaluate the of the merits of each technique or combination of 

techniques.  

11.4 Overall Results 

A high level comparison of the different distance techniques for RFID is shown in 

Figure 11-5 below.  This graph and the following table summarize the overall mean error 

for all the data by the Level 2 distance measurement techniques.   

RFID distance measurements are limited to a shorter range than BLE due to the 

non-powered nature of the device, but they have the advantage of being able to use phase-

based distance estimations. The phase method of distance estimation is found to be the best 

for low error, and is superior with the variations of that measurement, including the Phase 

Signature and the RSSI-Informed Phase methods.  This is possibly due to the data being 

collected while stationary in a fully anechoic chamber, thus the RSSI-Informed Phase and 
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RSSI Signature methods were not as necessary for compensating for multipath, motion, or 

other large sources of error.  Phase-based measurements require more data per 

measurement (more frequency information) than the RSSI-Informed Phase method and 

may not be suitable for fast processing.  Additionally the equipment required to do phase 

measurements is more expensive than just RSSI measurements and for that reason phase-

based techniques will be limited to situations where the combined value of the items being 

track warrants the higher capital outlay.  

RSSI measurements for trilateration are the most common method for the reasons 

just mentioned.  For these measurements the RSSI signature was superior to the RSSI 

traditional methods.    

 

Figure 11-5: The error (in meters) from each distance estimation method for RFID 
system. Resulting error is the mean of all data for all trilateration methods. 
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Table 11-3 Level 2 Results 

 

 

Figure 11-6 shows the results including Level 3 and 4 algorithms evenly distributed 

among the data types for each RFID distance estimation method.  For all the iterative 

methods which require an initialization point the results from the hyperbolic locus of 

position algorithm were used as the starting point for iterations to begin.  This algorithm 

was chosen since it often achieved high accuracy in comparison to the other closed form 

solutions. 

 

Row Labels Average of 2.050406904
P_Sig 1.13543794
Phase 0.653476406
R_Sig 1.668292554
RSSI 1.98153388
RSSI Informed Phase 2.546218189
Grand Total 1.603218376

RFID Level 2 Results
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Figure 11-6: Each distance estimation method for RFID System with respect to 
different trilateration algorithms (numbers are listed in Table 11-2).   

 

Figure 11-6 illustrates how not all trilateration techniques behave the same with 

various distance methods.  Different algorithms work better with different distance 

measurements. The Centroid method, item 3 in Table 11-2, is an excellent example of this 

as it had the highest error for the two overall most accurate distance techniques, phase and 

Phase Signature.  For this reason the selection of a trilateration method is also a critical 

part of the final result as will be discussed later in this chapter. 

11.4.1 RSSI Signature 

 While employing phase is typically more accurate for range estimation, it requires 

more expensive hardware to implement.  Therefore, for more cost sensitive applications, 
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an RSSI-based technique will likely be selected.  When comparing the RSSI and RSSI 

Signature techniques, the results demonstrate that the RSSI Signature method does in fact 

increase accuracy significantly for nearly all the localization algorithms.  Given that all the 

trilateration measurements were collected in a fully anechoic chamber, there was less RSSI 

multipath error to be compensated for.  Thus, the potential for increased accuracy in 

complex environments is significant. 

11.4.2 Phase Signature  

 Based on the results displayed in table 11-3, it can be seen that for most of the 

trilateration algorithms, the phase-based distance estimation has the lowest total error.  

Utilizing the Phase Signature, while also fairly accurate in comparison to all of the 

methods, actually lowers the accuracy from simply using phase angle.  With the data 

having been collected in an anechoic chamber with minimal multipath, and with phase 

measurements being more robust with respect to multipath it’s possible that by applying 

the signature to reduce multipath the total error increased because there was minimal 

multipath error to compensate for.  

11.4.3 RSSI-Informed Phase 

 In these experiments RSSI-Informed Phase is shown to be the least accurate of the 

Level 2 options; however, RSSI Signature, phase, and Phase Signature are all movement 

sensitive, and RSSI is sensitive to multipath and antenna angle and can yield extreme 

errors.  RSSI-Informed Phase was intended to be used in situations of extreme multipath, 

antenna angle, and motion; therefore it makes sense that it doesn’t perform well on this 
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particular experiment which has none of those factors.  The RSSI-Informed Phase is the 

most generally robust technique, and therefore for some applications this method would 

still be the appropriate choice.  For instance, when using the Centroid method, which has 

high levels of error for both phase and phase signature, the RSSI-Informed Phase method 

significantly decreased the error by incorporating RSSI distance estimation. The 

experimental conditions for the trilateration comparison, were completely stationary tags 

in a fully anechoic chamber.   Thus, the advantages of the RSSI-Informed Phase method 

are not expected to be evident.   

 There are different ways to observe the results from Table 11-3.  Either from the 

perspective of a combination of levels which achieves the highest accuracy could be 

selected, for this analysis that combination would be would be phase, hyperbolic locus of 

position, and nonlinear least squares.  In contrast, another way to interpret the data is to 

look at the general trends as to what methods typically perform well.  It should also be 

noted which methods are fast (RSSI and RSSI-Informed Phase) and which are slow (RSSI 

Signature, phase, and Phase Signature).  As discussed in Chapter 7, the RSSI Signature can 

represented in such a way that decreases the number of data points needed, and thus speeds 

up the distance estimation time but this time is still larger than methods considered “fast”.  

If a fast method is needed and high levels of accuracy are unnecessary, but occasional reads 

with extreme error cannot be tolerated, then the RSSI-Informed Phase method is likely the 

best choice.  If instead high precision is required and more time can be taken, then the RSSI 

Signature or phase distance estimation methods are the best options.   
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11.5 Localization Comparison – Level 2 

11.5.1 Bluetooth Low Energy 

A similar process was performed for BLE systems, however there are only two 

possible distance estimation methods for BLE, given that there is no phase measurement.  

The overall comparison shows that the mean of the distance error is less for RSSI Signature 

than for traditional RSSI measurements.  These results are shown in the graph and table in 

Figure 11-7. 

 

 

Figure 11-7: Comparing the two distance estimation methods, and a combination 
for the BLE System.  Data for the graphic is shown in the pivot table.  The lowest 
mean error for all data was using RSSI signature. 

 

In the histogram shown in Figure 11-8, it can be seen that not only does that RSSI 

Signature method shift the bell curve to be more centered about zero, but it also reduces 
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the tails (especially to the right).  This is a strong indication that the RSSI Signature method 

is very effective for both reducing outlier measurements and improving overall 

measurement accuracy.   

 

Figure 11-8: Histogram of RSSI and RSSI Signature distance estimation error. 
 

The results of the comparison of each of the trilateration algorithms with respect to 

the two distance estimation methods is shown in Figure 11-9.  This further slicing of the 

data, as was demonstrated for the RFID analysis, shows that the individual trilateration 

method has different sensitivities to the types of error generated by the different methods.   
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Figure 11-9: Comparison of the trilateration algorithms for BLE system 
 

It is interesting to note that when moving between simple RSSI and RSSI Signature 

distance estimation methods, some of the trilateration algorithms improve, while others 

digress.  This data was collected in a semi-anechoic chamber, and therefore the RSSI 

Signature did not have as much multipath error to compensate for, and yet on average it 

still out-performed the non-compensated values.  In tested situations where complex 

environments existed the RSSI Signature was able to reduce error consistently over the 

RSSI algorithm, and therefore if this analysis had been expanded into more complex 

environments it would be anticipated that the RSSI Signature would have shown a greater 

advantage over RSSI alone.   

The difference in part, as indicated by the histogram in Figure 11-8, is the RSSI 

Signature’s ability to suppress extreme outlier values.  These values occur occasionally 

even in very controlled environments as is shown in the graph in Figure 11-10 below.  This 
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compares the error from the original distance measurement to the error after it was reduced 

by the RSSI Signature.  The horizontal axis is the difference between the maximum RSSI 

value for that measurement and the RSSI Signature value, yielding what should be a 

reduced error.  Note that positive numbers means that the RSSI had an error value larger 

than the RSSI Signature value.  If RSSI resulted in larger inaccuracies the points would be 

high on the y-axis.  If then the RSSI Signature was adept at reducing error this would mean 

the points would be more to the left (centered at zero).  Figure 11-10 shows that most points 

have a larger y value than x value.  This means that the RSSI Signature method is effective 

for reducing error.     

 

Figure 11-10: A comparison of the likelihood of outlier data points given the same 
RSSI signal input for the RSSI and RSSI Signature method in the semi-anechoic 
chamber localization experiment. Positive numbers mean that the RSSI distance 
had the larger error. 
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11.6 Level 3 – Which Data to Use 

While three distance measurements are required for a 2D location calculation, five 

satellites or beacons were actually taking measurements at each location spot for BLE and 

4 for RFID.  For those methods which can use more than three data points, is the additional 

data useful or not?  This issue has been minimally discussed in the literature and it is mainly 

suggested to eliminate down to 3 points without any justification and there was no clear 

hypothesis that this choice could or would make a difference in the final result [12] [57] 

[62].   

The three options tested were selected to test different theories.  The first theory is 

that the more data the better, and each additional data point brings additional information 

to the result.  The second theory was that the highest RSSI value was likely the most 

accurate and so just using those values with the highest RSSI value might prevent 

erroneous readings from detracting from the correct value.  The third theory was that using 

the signals with the highest confidence level as determined by the RSSI Signature of the 

distance measurement, would eliminate the high risk values and lead to a better result.  This 

analysis compares those choices to see if they had an impact and at what significance.  

The results of the selection of input data is shown in Figure 11-11.  This indicates 

that selecting those measurements with the highest RSSI values yielded the best result.   
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Figure 11-11: Overview of effect of input data selection on trilateration error. 
 

The RFID data had more types of distance measurements due to its use of phase 

angle and some had significantly lower error than others. However, in every case, using 

the measurements from the satellites with the strongest signal from the tag resulted in the 

most accurate estimate of tag location. This includes using the strongest RSSI signal on a 

measurement to best select which phase measurement to use.  Those results are shown in 

Figure 11-12 below.  While the difference was not large compared to the method chosen 

for the distance estimate, it still repeated with all the measurement types.  
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Figure 11-12: The average error for the data for RFID measurements grouped by 
data selection.  Using the three distance measurements with the highest RSSI 
consistently gave the lowest localization error across all distance measurement 
methods. 

 

This suggests that for RFID trilateration methods, even if data from more than one 

satellite exists the accuracy is improved by selecting the three strongest signals rather than 

trying to use a more consensus view from the entire data set.  This would make algorithm 

application easier as the system could filter a varying number of satellites and select the 

three highest for the rest of the computation.  This therefore would scale better than a 

method that uses all the data available or one that required more computation before 

selecting the final three.   

Bluetooth technology has fewer distance measurement choices as phase was not 

possible.  The result for the BLE hardware was very much the same as for the RFID 

hardware, and can be seen in the graph and table in Figure 11-13.   
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Figure 11-13: BLE location error as a function of the method of selecting input 
measurements to use in a trilateration algorithm. 

 

Independent of the method of distance estimate (RSSI or RSSI Signature) using the 

three highest RSSI signals resulted in the best outcome.  Figure 11-14 shows how this 

method was superior for all of the trilateration methods.   
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Figure 11-14: Bluetooth average localization error as a function of the type of data 
input into the different localization algorithms.  In every case using the 3 highest 
RSSI values as inputs gave the lowest error result. 

 

In addition to the average error, the maximum localization error was also examined 

to see if the choice made in the Level 3 (all distances, 3 highest RSSI, or 3 highest 

confidence) also impacted the outlier values.  Table 11-3 below shows that using the 3 

highest RSSI values reduced the number of outlier values while still having many low 

values for error.  Outliers are shown in dark red in this table and at a glance it is easy to see 

that using the highest RSSI value almost removed all outliers from the analysis for this 

study, and combining that technique with RSSI Signature to determine the distance was 

even more effective.     



233 

Table 11-4: Comparison of the maximum error for each type of data selection 
option for Bluetooth technology. 

 

11.7 Non-Iterative Location Algorithms 

The next step in the localization process is to choose a non-iterative method to find 

a likely location for the beacon/tag in question or possibly the final location. If the 

application requires that the final algorithm be iterative, one of the non-iterative methods 

will most likely serve as a starting point.  

Outlier Check for BLE Measurements  

 

Confidence
RSSI RSSI Sig RSSI RSSI Sig RSSI RSSI Sig

12.27542 14.45772 5.999893 6.28861 10.04575 8.169646
6.002618 5.538338 6.002618 6.293417 10.05611 8.43099
4.406218 5.345154 3.55076 4.259383 7.573617 7.912672
6.002618 5.538338 6.002618 6.293417 10.05611 8.43099
3.736001 5.618716 3.333524 4.808111 7.357459 8.2283
4.036575 5.167062 4.90062 5.527408 8.921752 9.318229
15.86442 18.44037 6.002618 6.293417 10.05611 8.43099

4.40952 5.353037 3.55076 4.259383 7.573617 7.912672
10.60421 8.660768 6.002618 6.293417 10.05611 8.43099
3.736005 5.618418 3.333524 4.808111 7.357459 8.2283
7.242481 8.982151 4.90062 5.527408 8.921752 9.318229
4.294791 4.355755 4.176317 4.279495 4.923596 5.08395

4.4062 5.345519 3.550759 4.259394 7.573534 7.009073
11.38401 10.86289 6.002618 6.293417 10.05611 8.43099
3.735999 5.618495 3.333524 4.807836 7.357461 7.00489
4.441083 4.829423 3.850771 4.491264 6.702625 6.25625
6.075053 4.941785 6.075053 4.94529 10.7102 7.48147
4.406784 5.345773 3.550765 4.260677 7.573578 7.905052
26.13094 33.67344 6.002618 6.293417 10.05611 8.43099
3.735996 5.618073 3.333524 4.807849 9.567589 7.917931
5.249575 5.16385 4.069613 4.418456 8.263195 7.810304
20.47427 6.538127 20.47427 8.514765 18.61382 12.10394
4.406088 5.345221 3.550743 4.259452 7.573533 7.009074
10.57912 10.65273 6.002618 6.293417 10.05611 8.43099
3.735994 5.620695 3.333524 4.808592 7.357468 7.00489
6.953959 4.79897 7.670422 5.775822 7.337746 6.845935

All Highest 
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The non-iterative location methods examined here were: Linear Locus of Position 

(Linear LOP), Linear Least Squares (Linear LS), Centroid, Linear Approximation, and 

Hyperbolic Locus of Position.  As mentioned in Chapter 9 one of the products of this 

research was an improved weighting for the Centroid method and taking the Hyperbolic 

Locus of Position to a theoretical concept to a working algorithm.   

The importance of this level of comparison is that the measurements are already done 

and which algorithm is applied is a zero cost difference choice to any potential customer.  

Knowing how the different algorithms behave should allow for any systems developer to 

select the best performing algorithm for their particular application. 

For the RFID data the Hyperbolic LOP had the lowest average error of all the non-

iterative types, as shown in Figure 11-15.  Recall that the Hyperbolic LOP is like the Linear 

LOP except that the non-linear weighting factor of a hyperbola causes the algorithm to 

bend the location vector towards the satellite with the shortest read distance.  Essentially 

this incorporates the nonlinear weighting directly into the trilateration rather than shifting 

a linear result.  As the higher RSSI readings are apparently more accurate the algorithm 

that appropriately weights this is also more accurate.  It is interesting that the Linear LOP 

is not the next most effective algorithm, suggesting that the non-linear hyperbola is a 

significant improvement.  In fact the single best result from these experiments was with 

the Hyperbolic LOP with no further localization improvement form an iterative method.  
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Figure 11-15: Average location error for RFID by non-iterative location algorithm. 
This is an average of all data taken using all the Level 2 and Level 3 options. 

 

On the other side of the performance spectrum it is interesting to note that the 

Centroid method had the worst performance.  Even with the improved weighting the 

Centroid proved most susceptible to outlier distance measurements. The Bluetooth data 

results however are very different as seen in Figure 11-16 below.  For the Bluetooth 

arrangement the Centroid method turned out to be the most accurate and the Hyperbolic 

LOP one of the worst.   
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\ 

Figure 11-16: A comparison of the average error for all the Bluetooth data by Level 
4 method of non-iterative localization.  Unlike the RFID data, the Centroid method 
appears to work very well with Bluetooth devices 

 

So why is the Centroid so much more accurate for a Bluetooth system than for an 

RFID system?  The answer might be in the non-passive (powered) nature of the Bluetooth 

devices.  The system was not as susceptible during this test to low power reads.  Even 

though the experiment was conducted in a 10 meter semi-anechoic chamber, these 

distances were easily within range for the Bluetooth system.  In contrast these 

measurements were frequently much closer to being out of range for the RFID devices.  It 

is possible that if this experiment were repeated in a larger arena such that the Bluetooth 

device could be closer to their real limit, that the graph in Figure 11-16 might start to look 

more like to the graph in Figure 11-15. 
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11.8 Iterative Localization Methods 

The final level in the localization hierarchy is the iterative methods of localization.  

These build on a starting point from one of the non-iterative methods and try and move the 

initial location estimation to a more accurate final position.  Since these algorithms need a 

starting point, the Hyperbolic LOP was used as the starting point for all but the Iterative 

Least Squares which is not dependent on a starting point from some other algorithm.  

Ideally the added work from an iterative solution should be able to improve somewhat on 

the initial result, although that did not necessarily turn out to be the case.  As mentioned 

above for the RFID data the non-iterative methods actually achieved a better performance 

with less error.  

The table and graph in Figure 11-17 compares the iterative methods of localization 

for all data for RFID tags.   
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Figure 11-17: RFID based error results for location based on different iterative 
techniques to attempt to improve performance. 

 

Appendix B of this document contains a comparison for iterative output results as 

a function of all the different non-iterative inputs and data selection techniques.  As 

expected the better the input from the non-iterative method, the better the final result from 

the iterative one. The best iterative method in this set of experiments for RFID was the 

Iterative Least Squares and the Weighted Least Squares methods. 
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The Bluetooth data however had different results when testing the Level 5 iterative 

algorithms.  The results of that comparison are shown in the table and graph of Figure 11-

18. 

 

 

Figure 11-18: Iterative algorithm techniques for Bluetooth device data 
 

As the Centroid method had performed the best in the non-iterative location, when 

used as the starting point, it gave each of the iterative methods their best result.  The 

Antenna Pattern method apparently was best able to take advantage of this good starting 

point and yielded the overall lowest error on the table with that combination.  This is shown 

in Table 11-4 below. This could be an indication that the Antenna Pattern method is 
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effective at incorporating additional information about the beacon antenna pattern, but is 

susceptible to local minima. Thus a more accurate starting location would give the Antenna 

Pattern method a chance at narrowing in on the true and global minima. 

Table 11-5: A pivot table showing the relative average error for the different 
iterative methods given the different initial non-iterative starting point for the 
Bluetooth data. 

 

In the experimental results shown in Table 11-4 the Taylor Series was the most 

accurate method followed by the Antenna Pattern method if using any starting point.  

However, the best overall value is the Centroid and Antenna Pattern combination.    

11.9 Accuracy is not the only criteria 

While the analysis in this chapter to this point has focused on the accuracy 

contributions of the different levels of the localization algorithm process, it should be noted 

that accuracy is not the only design feature that must be considered.  Table 12-5 below 

reviews the different iterative and non-iterative location algorithm and compares them by 

computational speed, the ability to handle varying numbers of satellites (flexibility) and 

demonstrated robustness against highly erroneous results.   
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Table 11-6: A comparison of the different location algorithms using the RSSI 
Signature method for Bluetooth localization. 

 

Summary of Algorithm Attributes 
Algorithm Computational Speed Satellite # Flexibility Outlier Robustness 

Linear LOP fast no average 

Linear LS fast yes average 

Centroid fast yes poor 

Linear Approximation fast no good 

Hyperbolic LOP Fast, more complex no good 

Taylor Series iterative yes average 

Weighted LS iterative yes average 

Iterative LS iterative yes average 

Nonlinear LS iterative yes average 

Antenna Pattern iterative yes good 

 

In Table 11-5 speed refers to whether the algorithm would be capable of tracking 

applications in indoor environments, flexibility has to do with whether it can take a variety 

of reader/beacon inputs, and robustness was the relative sensitivity of the method to outlier 

data.   

Depending on the system requirements, a flexible system with good robustness to 

outliers may be an important criteria.  Conversely the speed of computation may be more 

important in other applications.  The same type of considerations feed into the selection of 

a distance estimation algorithm as shown in Table 11-6. 
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Table 11-7: A comparison of the different distance measurement techniques, 
accuracy is compared for average of best 3 algorithms. 

Measurement Method Comparison 
Distance 
Method 

Accuracy Outlier 
Performance 

Relative 
Hardware 

Cost 

Tracking 
Applicable 

Available 
for BLE 

Complex 
Environment 

RSSI good Movement 
tolerant 

moderate fast Yes poor 

RSSI 
Signature 

good Movement 
sensitive 

moderate slower Yes Best across 
most 

methods 

Phase best Movement 
sensitive 

high slower No Best for 
simple 

conditions 

Phase 
Signature 

good Movement 
sensitive 

high slower No good 

RSSI-
Informed 

Phase 

good Movement 
tolerant 

high fast No Better for 
extreme 

conditions 

 
In Table 11-6 accuracy refers to distance error, while outlier performance was the 

likelihood of the method to produce high error values.  Relative hardware cost refers to the 

cost of a reader system.  Tracking applicable means the speed of the method fast enough 

for tracking applications.  Complex environments column shows how well different 

distance measurements perform in different conditions, or environments.  

While defining the best method of distance estimation or trilateration depends upon 

the environment being used, for these experiments the phase-based distance estimation 

method with a nonlinear least squares algorithm, based in the 3 highest RSSI values (or 

RSSI Signature if phase is not available) was the best solution for RFID systems.  In 
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contrast a RSSI Signature distance estimation in conjunction with the Antenna Pattern 

method using the Centroid method as a starting point achieved the highest accuracy for the 

BLE system.   

11.10 Conclusion 

The purpose of this chapter was to compare the different combinations of distance 

estimation methods and localization algorithms for both the RFID system and the 

Bluetooth system.  While the right combination of design choices will vary based on the 

particular needs of the application, there were some noticeable winners in this test. 

For the RFID system the phase distance estimation had the lowest error, while more 

expensive it gives the most accurate results.  If cost is an issue the RSSI Signature is very 

effective and might have performed even better if this analysis was performed in a more 

complex environment.  For the Bluetooth the RSSI Signature was the best performer, 

though again a more complex environment is expected to favor the RSSI Signature method 

even more. 

For the data to feed into the trilateration algorithms, both the RFID and the BLE 

systems benefited from using just the three strongest RSSI signals.  This was the only level 

of this research for which both technologies responded the same, which is significant 

though not originally a focus of this localization research.   

For non-iterative trilateration algorithms the Hyperbolic LOP was the best performer 

for the RFID system.  This method was developed into a functional algorithm for the 

purposes of this work. The Hyperbolic LOP performed well enough to be the best overall 
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method for the RFID system.  For the Bluetooth system, the Centroid method, for which a 

better weighting method was developed for this work, gave the best results.  Additionally 

for the Bluetooth data the best overall result was the combination of the Centroid and the 

Antenna Pattern method developed by this investigation.   

Finally it should be noted that the best hardware and algorithm for any application will 

ultimately depend on the application, and thus the pros and cons of the technology’s 

combination with each level of trilateration have been addressed.  It is hoped that the 

system design engineer will be able to use this information to more easily select the 

technology and algorithm most suited to their customer’s needs.  
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CHAPTER 12. ERROR ANALYSIS  

12.1 Introduction 

Every measurement system contains some amount of error, but confidence in the 

findings comes from understanding and quantifying the error as much as possible.  This 

research involved measurements that generated error from electronic instrumentation 

which can be modeled using traditional signal response techniques.  Additionally, error 

was generated in attempting to identify the true location for comparison.  The error in this 

work is the difference between the “true” position and calculated position for a tag using 

different localization techniques.  For localization systems, determining the range from tag 

to reader is the largest source of position error (as discussed in previous chapters), and so 

items contributing to those errors are the source of closest scrutiny. 

12.2 Overview 

This chapter explores the most likely sources of error involved in this 

research.  These include: 

Types of Error 

•       Actual Location Determination 
o   “True” Distance 

•       Instrument Error 
o   Reader Error 
o   Cable Losses 
o   Antenna Error 
o   Polarization Mismatch  
o   Balance Error 
o   Impedance Mismatch to Reader 
o   Power and Frequency Output of Radio 
o   Frequency Response of RFID Tag and BLE Device 

•       Environment Errors 
o   Ambient RF Noise 
o   Directivity and Pointing Error 
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o   Environment and Multipath 

  

The errors listed above can be grouped into three general categories.  The first 

category addresses the measurement of “true” distance; against which RF localization and 

distance measurements were compared.   Most of the remaining error falls into the second 

category of instrumentation errors associated with making the RF distance measurements. 

These errors include factors listed above from reader error to the frequency response of the 

RFID tag or BLE device.  Lastly, there are errors which arise from potential application 

environments: ambient RF noise, antenna directionality, and multipath.  These errors will 

vary from situation to situation; and in this chapter it has been attempted to decouple and 

quantify each type of error. 

12.3 Actual Location Determination 

12.3.1 “True” Distance 

When preforming experiments using RF to find either distance or location e.g., in 

Chapters 5 and 6, “true” or “absolute” distance was used to find the error from the RF 

measurement.  This value was found by using a tape measure, and was selected for cost 

and availability, and provided results well within measurement system requirements.   As 

is the case with any type of measurement method, there is inherently some error in this 

approach as well.  Therefore, the magnitude of error was quantified by repeated 

measurements of the same distance, to give a confidence interval for this method of 

measurement.  The bias error from a potentially incorrectly calibrated measuring tape was 

deemed to be insignificant upon inspection, and the main source of error would be accuracy 

and repeatability in reading the measurement from the measuring tape itself. 
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To quantify the error, many measurements were made for a single distance.  Each 

measurement was recorded such that the deviation between measurements could be 

observed and calculated.  Figure 12-1 is a histogram of 100 recorded measurements of the 

same distance.  This type of distance measurement is a classic example for the statistical 

Central Limit Theorem [78] and thus this law can be used both to find the most likely true 

distance value as well as the confidence interval from using this distance measurement 

technique. 

 

Figure 12-1: Histogram of tape measure distance measurement for calculation of 
confidence interval 

 

This experiment had 100 samples with a mean measurement of 200.624 cm and a 

standard deviation of 0.241259 cm.  The 95% confidence interval for this data set is 0.047 

cm meaning that there is a high probability that the mean lies within the range of values 

taken.   



248 

12.4 Instrument Error 

12.4.1 Reader Error 

One potential source of error is the RFID radio or Bluetooth beacon error.  This 

would be any error incurred from within the RFID or Bluetooth receiver when quantifying 

the RSSI or phase values of the incoming signal.  While reader error would be incredibly 

difficult to quantify, there are some likely characteristics of this error.  The first and most 

important for the purposes of localization is the reader error would remain constant 

between reads.  The equipment was used well within the specified interval for additional 

calibration, and calibration had been performed to appropriate standards prior to use.  No 

instances of impact, extreme temperature excursions or other incidents were noted during 

the course of the experiments that might call the assumption of reasonably repeatable 

measurement to measurement error into question.  

Another expected attribute would be that the RSSI and phase values would be more 

accurate when the signal strength is greater.  When a signal gets close to the noise floor, 

the radio has a difficult time distinguishing that particular signal from the ambient noise. 

Thus weaker signals will probably have greater error in the measurement, but would be 

consistent between similar measurements. This could also be partly why the trilateration 

comparison found greatest accuracy when simply relying on the measurements with the 

greatest signal strength.  

For the purposes of this research it was assumed that reader error is a constant offset 

for all measurements, with the exception of values obtained near the noise floor, which 

would be those obtained at the edge of the read range for the device being measured.  
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Constant offsets would not impact the analysis given, regardless of size.  For measurements 

near the noise floor, these are expected to have the same constant offset with the 

quantization offset superimposed.  In this case this +/- 0.5dBm error for these edge of read 

measurements is the estimated amount attributed to both quantization and reader error near 

the noise floor.  

12.4.2 Cable Losses 

When an antenna captures an RF signal it relays the signal to the reader which then 

determines signal magnitude and phase shift.  Therefore, any energy lost within the cable 

between the antenna and reader will yield a lower measured RSSI value.  For a functional 

cable, this energy loss is directly proportional to the length of the cable, thus will be 

constant between measurements as long as the same cable is used.  There are also some 

slight differences of cable losses when the transmitted frequency changes.  Ultimately, 

given the same cable and the same frequency, cable losses should remain constant between 

measurements. 

The cable energy loss was measured for the 6 ft. cable between the antenna and 

RFID reader using a signal analyzer.  For each measurement the signal analyzer was 

calibrated using ideal open and closed conditions for comparison.  The cable loss was 

measured at 900, 914, and 930 MHz yielding the results in Table 12-1.   

Table 12-1Cable losses and antenna gain with respect to frequency of RFID system 

 

Cable Loss and Antenna Gain 

Frequency (MHz) Cable Loss (dB) Antenna Gain (dB) 
900 -7.59 5.99 
914 -7.64 5.44 
930 -7.34 4.48 
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In addition to a drop in RSSI with cable length, the phase angle measurement will 

also change proportionally to cable length.  This is due to the fact that the signal doesn’t 

stop once it reaches the antenna, but continues to travel through the cable to the reader.  

Thus, when using phase angle to calculate distance there will be an offset which must be 

accounted for based upon the length of the cable between the reader and antenna.  This was 

estimated by several different cable lengths and using phase to calculate the tag to reader 

separation distance in a fully anechoic chamber, then solving back for the phase offset due 

to the different cables.  The relationship between cable length and phase distance offset 

was confirmed to be a linear relationship, yielding the following correlation. 

𝑃𝑃ℎ𝑡𝑡𝑠𝑠𝑡𝑡 𝐷𝐷𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐶𝐶𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡 = 1.925 ∗ 𝐶𝐶𝑡𝑡𝑏𝑏𝑡𝑡𝑡𝑡 𝐿𝐿𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡ℎ + 0.334 [𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠] 

𝑊𝑊𝑠𝑠𝑡𝑡ℎ 𝐶𝐶𝑡𝑡𝑡𝑡𝑓𝑓𝑠𝑠𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑓𝑓 ± 0.37 [𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠] 

The confidence interval calculation yielded a high level of uncertainty, but this is 

mostly due to the small sample size from the limited supply of cables with different lengths. 

For the Bluetooth devices the antenna and reader were contained within the same 

device, and so it wasn’t possible to measure the loss between the cable and reader.  

However, due to the significantly reduced distance between antenna and reader, it is likely 

that the error is negligible in those devices.  Even if the loss between the BLE antenna and 

reader is significant in and absolute sense, it would still have the characteristics of being 

constant between reads, which is the most important criteria for this study. 
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12.4.3 Antenna Error 

Manufacturers typically provide information and specifications about antennas they 

sell, and one of the most important is the antenna gain [16].  The gain of an antenna is 

related to the directivity of the antenna and is used in equations such as path loss.  It should 

be noted that this gain is separate from the error produced by the orientation of the antenna 

to the tag or BLE device, as addressed in section 12.5.2.   

Some error in the published antenna gain is always expected due to manufacturing 

tolerances.  To quantify this error, the circular polarized antenna typically used in the RFID 

reader system was connected to a signal analyzer.  Then to calculate the gain a signal was 

transmitted using a signal generator and a bi-log antenna (all within a fully-anechoic 

chamber) as seen Figure 12-2.   

 

Figure 12-2: Test set up to check the error in the circularly polarizing antenna 
 

The received amplitude was compared to the transmitted amplitude at three 

different frequencies, and taking into account other factors such as the bi-log antenna gain, 

the cable losses for the 6ft long cable described in section 12-6 above, and the preamp, the 

antenna gain of the circular polarized antenna was calculated.  The resulting circular 

polarized antenna gain values, with respect to frequency, are given in Table 12-1. 
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As was the case with cable loss, antenna gain of BLE devices is difficult to quantify 

because the antenna is contained within the device.  However, it is assumed in this study 

that the antenna of the BLE device has the same error characteristics as other antennas of 

similar design and manufacture. 

Just like many of the other sources of error, the error in antenna gain changes 

slightly with frequency, but is constant between reads.  Given that all of the calculation in 

this study with calculated distance or location use experimental values rather than 

absolutes, slight deviations of the antenna gain from the manufacture’s published 

information doesn’t significantly impact the results of this work.  Additionally, slight 

changes with respect to frequency play a role in analyzing the RSSI signature as discussed 

in Chapter 6. 

12.4.4 Polarization Mismatch and Balance Error 

One of the basic characteristics of any RF wave it its polarization.  Electromagnetic 

waves can have linear, elliptical, or circular polarizations.  A polarization mismatch occurs 

when the transmitting and receiving antennas have different polarizations.  A diagram of 

antenna polarization is shown in Figure 12-3. 
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Figure 12-3: Illustration of electromagnetic circular, vertical, and horizontal 
polarization [79] 

 

In the RFID system used, the reader antenna is circularly polarized while the Alien 

Squiglette tag is linearly polarized.  Thus it is expected that there will be a polarization 

mismatch between the two.  However, one of the benefits of using a circular polarized 

reader antenna is that the polarization mismatch will be constant with changes in the 

vertical or horizontal orientation of the RFID tag.  For example, if the RFID tag is oriented 

vertically, giving it a vertical polarization, this should yield exactly the same polarization 

mismatch as if the RFID tag is oriented horizontally (or horizontally polarized).  Thus, the 

source of inconstant error with respect to a polarization mismatch, is based upon how close 

the reader antenna actually is to being truly circularly polarized.  If the reader antenna is 

perfectly circularly polarized, then there will be no changes in the polarization mismatch 

as the RFID tag rotates; however, if it isn’t truly circularly polarized then this will introduce 

some error into the measurement. 
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Antenna balance is a characteristic of how symmetrical an antenna is.  If an antenna 

is perfectly balanced, then it will yield the same results if turned by 180°.  The imbalance 

is another possible source of error associated with relative antenna orientation.   

While it can be quite difficult to separate the source of orientation error (true 

circular polarization vs. balance) from the reader antenna or tag, it is possible to quantify 

these combined sources of error.  To do so, the typical Alien Squiglette RFID tag and 

circularly polarized reader antenna were used in a fully anechoic chamber.  The RFID tag 

was read (at every hop frequency), and then rotated by 10° increments, measuring the RSSI 

value at each orientation.  By doing so it was possible to see any error in the measurement 

due to a combination of polarization mismatch and antenna imbalance.  The results can be 

seen in Figure 12-4. 

 

Figure 12-4: Combined polarization mismatch and balance error 
 

 

 

Orientation (deg) 

RSSI (dBm) 
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Each value was calculated by taking the average RSSI value over the 50 hop 

frequencies.  It should be noted that in Figure 12-7 the RSSI value at 0° is -65.74 dBm, 

while the RSSI at 360° (which should be the same) is -65.64.  These measurements were 

repeated such that at any particular orientation the standard error was found to be 0.01 dB. 

In Figure 12-4, an orientation of 0° or 180°corresponds to a vertical polarization of 

the RFID tag, and an orientation of 90° or 270° corresponds to a horizontal polarization.  

Thus, the balance of the antennas can be analyzed by comparing the RSSI at 0°/360° to 

180°, and the RSSI at 90° to 270°, or any measurements 180° apart.  When each RSSI 

value was compared to the value 180° away, the standard error from the difference between 

the two measurements was found to be 0.03 dB.  This indicates that there is in fact a small 

amount of error from antenna imbalance; with a standard error magnitude of approximately 

0.03 dB.  

The polarization error can be observed by the non-uniform, and more elliptical 

shape of the plot in Figure 12-4.  If the other possible variables are isolated as intended, 

then this non-circular shape should be the error associated with the reader antenna not being 

perfectly circularly polarized.  The standard error due to this non-uniformity was found to 

be 0.06dB, from the difference between the widest and narrowest point; then by subtracting 

out the general measurement error of 0.01 dB found above. The result is a standard 

polarization mismatch error of 0.05 dB. 

For the BLE system there will absolutely be polarization mismatches with changes 

in orientation, due to the fact that both transmitting and receiving antennas are horizontally 

(linearly) polarized.    
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12.4.5 Impedance Mismatch to Reader 

In order for a reader to transmit or receive the maximum amount of power to or 

from the antenna, the impedance of the reader and reader antenna must be the same.  If this 

is not the case, there will be some power loss due to the impedance mismatch between the 

antenna and the reader.   

Both the M6e ThingMagic RFID reader [49] and the MT-262013/TRH/AK circular 

polarized antenna [16]  are listed as having impedances of 50 ohms, therefore theoretically 

they should have zero impedance mismatch.  While it would be extremely difficult to 

measure the reader’s impedance, the circular polarized antenna was measured at 46.6 Ω at 

918.4 MHz (approximately the center of the frequency range).  The frequency dependence 

of the antenna impedance can be seen in Figure 12-5. 

 

Figure 12-5: Impedance measurement of the circular polarizing antenna as a 
function of frequency. 
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In Figure 12-5 the 918.4MHz reading represents the approximate center of the 

frequency band for RFID in the United States.  At that frequency the measured impedance 

was slightly under the rated specification of 50 Ω. This however would also be a source of 

error consistent between readings, and therefore should not impact these studies.  

12.4.6 Power and Frequency Output Radio 

One possible source of error would be the reader transmitting at inconsistent 

amplitudes.  The peak of power for each transmission is very close to the 20 dBm mark 

(top of the scale of the graph in Figure 12-6).  This is expected as the measurement system 

had a 10 dBm attenuator which lowered the reading from the 30 dBm actual output power.  

The power output is very uniform across frequencies.     

 

 

Figure 12-6: Spectrum analyzer measurement of RFID radio output as a function 
of frequency. 
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The goal of this test was to confirm power output of the radio over the frequency 

spectrum.  A spectrum analyzer was used to measure power output from the system. 

Measurements taken of the system suggest that the radio is capable of producing the desired 

power output independent of the hop frequency.   

12.4.7 Frequency Response of Tag of BLE Device 

Another source of error is from the frequency response of the RFID tag or Bluetooth 

device. When excited by the radio at a given frequency, the device responds with an 

efficiency which is impacted by small mismatches and losses within each device.  Unlike 

the RFID reader, where the antenna can be analyzed separately from the radio, for the RFID 

tags and BLE devices the IC chip or radio is imbedded into the circuit with the antenna.  

Thus the radio and antenna must be analyzed as a whole.   

The frequency response of an RFID tag or BLE device is an interesting problem 

because, as was demonstrated in Chapters 6, the RSSI vs. frequency response of the BLE 

device or RFID tag relies mostly on the surrounding physical environment.  Even in a fully 

anechoic chamber, changes in the separation distance or positioning of the transmitter and 

receiver can change the RSSI signature.   

The following experiment was performed to investigate frequency response as 

shown in Figure 12-7 below. The fully-anechoic chamber is a 5 meter long chamber with 

acoustic deadening on all 6 walls.  The antenna was placed on a raised stand and the target 

tag was placed at the same elevation of 1 meter above the ground. In Figure 12-7 the 

circularly polarizing antenna is seen as the square device on top of a stand.  Data was taken 

at a several distances and angles between the tag and the reader antenna.  The maximum 



259 

standard deviation in this data set was found to be +/- 0.4dB, occurring at the lowest 

measured frequency.   

 

Figure 12-7: RFID experimental set-up 
 

If all RSSI signatures measured in the fully-anechoic chamber are analyzed 

together, the possible error due to the frequency response of the tag (or BLE device) 

becomes a little clearer.  Figure 12-8 shows the average RFID RSSI Signature along with 

the range at each frequency; similarly Figure 12-9 illustrates the same for BLE devices. 
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Figure 12-8: RFID RSSI signature range for measurements in a fully anechoic 
chamber 

 

 

Figure 12-9: BLE RSSI signature variation in a fully anechoic chamber 
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The data collected represented many data points that include extreme antenna 

angles and distances.  The fact that the signal varied shows the importance of finding a 

good localization algorithm.  The frequency response issue is reflected by the variation of 

the mean.  Ideally the dark line in the center of Figures 12-8 and 12-9 would be flat, straight 

lines.  The up and down variation of that line represents the frequency response error of 

the device. 

In both the BLE and RFID systems it is difficult to distinguish between the true 

frequency response of the tag or BLE device and the impact of the surrounding 

environment.  Although these measurements were taken within a fully-anechoic chamber, 

this research has shown that even relatively small changes in the surrounding environment 

can noticeably impact the resulting RSSI signature.  In both cases however, the general 

response of the system to changes in frequency is minimal for the devices themselves.   

There is a noticeable difference between the two systems in the range of signals that 

were recorded.   RFID systems have a more limited range of readings due to their passive 

nature.  The highest signal they can return is limited by the power from the radio.  The low 

end of the range is also restricted because at low signal strengths the RFID response drops 

out to no reading.  This results in a narrow range across all of the frequencies.  At the 

extremes of the designed frequency range the frequency sensitivity becomes more 

pronounced for this system. The powered nature of the BLE does not limit the range of 

response strengths across the experiments to the same extent, however the frequency 

response characteristic is still relatively flat. 
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12.5 Environmental Errors 

12.5.1 Ambient RF Noise Error 

Background RF radiation could potentially add error to measurements taken in real 

(non-anechoic chamber) environments.  To measure the impact of ambient RF signals on 

RSSI values, two experiments were performed.  For the first experiment a spectrum 

analyzer was used to measure variations in ambient RF noises, and simultaneously the 

RSSI signature was recorded (measuring RSSI at each hop frequency).  It was found that 

even with significant fluctuations in the surrounding RF signals at the same frequency, the 

RSSI signature remained nearly unchanged, as can be seen in Figure 12-2.  The small 

variation could be due to ambient RF noise but also likely impacted by discritization, since 

even the small changes in RSSI values could appear larger as they switch between two 

integer values.  Essentially, if an RSSI value was truly half way between to integer values, 

then the measured discretized RSSI would be unstable and recorded at either of the nearest 

whole dBm values, yielding an apparent change in reading.  
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Figure 12-10: RSSI signatures in varying ambient RF noise. 
 

In Figure 12-2 the signal varies in power level as a function of frequency, but 

random background RF signals which were verified by a spectrum analyzer did not seem 

to impact reading repeatability.   While most of the data points are duplicates, discretization 

could account for the few which are not.  

As part of the work exploring RSSI Signatures for Chapter 6, Bluetooth device 

output was measured as a function of frequency and ambient RF noise was investigated.  

For this situation it was easier to control the ambient RF signal by purposefully producing 

a Wi-Fi signal which occupies the same frequency band as Bluetooth.  Figure 12-11 is a 

diagram showing the overlap between the Wi-Fi channels and the Bluetooth hopping 

frequencies, while Figure 12-12 shows the Wi-Fi band. 
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Figure 12-11: Bluetooth and Wi-Fi band overlap 
 

 

Figure 12-12: WiFi Band for United States usage.   
 

A continuous Wi-Fi data exchange was initiated at each of the channels 2, 4, 6, 8 

and 10 as shown in Figure 12-11, while at the same time the Bluetooth RSSI signature was 

recorded, measuring every hop frequency.  This was also repeated without Wi-Fi 

broadcasting for a control measurement.  In each instance the Bluetooth RSSI signature 

was almost exactly the same as the control, with the exception of the portion where it 

overlapped with the Wi-Fi channel.  In the frequency band where the two transmissions 

overlapped, instead of significantly changing the measured RSSI value of the Bluetooth 

device, the Bluetooth simply did not read at several of those frequencies.  The results of 

the Bluetooth RSSI signature when measured simultaneously with Wi-Fi channel 8 

broadcasting can be seen in Figure 12-13.  
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Figure 12-13: Bluetooth RSSI signature measured simultaneously with Wi-Fi 
Channel 8 broadcast. The blue symbols represent data taken in an anechoic chamber 
with no background RF. 

 

It can be observed that the Bluetooth RSSI signature remains very close to the 

control measurement even within the Wi-Fi channel 8 range.  RSSI readings vary in 

intensity as a function of frequency, but background RF does not impact the measurement 

value other than where Wi-Fi noise prevents a reading. There are, however, several BLE 

hop frequencies within that range which simply drop out.  This is an important finding 

because it means that when there is significant impact from ambient RF, the receiver will 

not read at that frequency, rather than reporting a skewed value. This means measured 

values are more reliable.  For the two experiments performed,  RF noise error was found 

to be negligible for the measurement values reported by the readers.   

 



266 

12.5.2 Directivity and Pointing Error 

Directivity is a characteristic of an antenna, which describes how uniform the 

radiation pattern is.  In effect it is the power density of the peak in relation to the mean 

power density at any set distance from the antenna.  While directivity itself is not an error 

but a characteristic of an antenna, error from changes in antenna orientation or angle will 

be related to the directivity of the antenna being moved. 

Pointing error is the angular offset from the main lobe of an antenna.  Zero pointing 

error would mean that the antenna’s main lobe is directly pointing at the target location.  

For non-isotropic antennas, as the pointing error increases, the main lobe begins to point 

away from the target, and thus the theoretical gain of the antenna is no longer applicable.  

Instead, the target will see a drop in power related to the directivity of the transmitting 

antenna.  Figure 12-14 graphically demonstrates how pointing error can impact the signal 

strength of a measurement.  
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Figure 12-14: Illustration of pointing error 
 

In order to calculate the error due to antenna orientation, the first step is to find the 

standard pointing error.  Using the pointing error and the directivity of the antenna, it’s 

possible to calculate the standard error from changes in antenna orientation. 

Since the pointing error cannot be mitigated in real-world situations, methods 

(specifically the Antenna Pattern method)  in this research allowed for pointing error to be 

compensated for in some way.  One of the goals of this work was to find ways to 

compensate for variations in alignment between the target and the antenna, in the 

developed algorithms.   
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12.5.3 Environment and Multipath 

Much of this research discussed error due to multipath of the surrounding physical 

environment and ways to compensate for the error, or overcome it through optimization.  

The work described demonstrated how environment and multipath error can be 

characterized using only the RSSI signature to reduce the error in localization algorithms.   

Information contained in signal variations was found to contain repeatable patterns 

that could be analyzed by machine learning algorithms to result in corrections in distance 

measurements.  Based on the assumption that the RSSI signature can be used in 

combination with a trained neural network to extract error due to multipath, it was found 

that the standard error for multipath in the BLE system was 0.113 meters, and 0.033 meters 

for RFID. 
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CHAPTER 13. CONCLUSION 

13.1 Overview 

The work presented in this document covers an exploration into localization 

technologies based on UHF RF devices.  The goal of the work was to identify and 

potentially improve upon the state-of-the-art technologies for practical RF based 

localization for applications to indoor environments.  From this effort has come innovations 

in the areas of RF signal processing, multipath error reduction, and localization algorithms 

for UHF devices.   

This chapter will review the contributions made to localization through this work.   

13.2 Improvements in RF signal processing 

RSSI is the standard method for determining a distance based on a tag/reader pair.  

This method uses the drop in signal strength as a function of distance between tag and 

reader to calculate separation distance.  Multipath signals are a significant source of error 

in real-world settings, resulting from any non-RF transparent object such as furniture, 

walls, people and devices.  These are incredibly prevalent in modern offices, warehouses, 

hospitals, etc., and serve as barriers and reflective surfaces for RF waves.  Phase distance 

provides more precise information about distance as it is more robust with respect to 

multipath; however all phase measurements require additional information (often requiring 

more time) to resolve the issue of cycle ambiguity.    
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The work described extends the methods of RSSI and phase by combining them in 

a leveraged approach that allows for a fast and robust measurement to calculate distance. 

The new method leverages the macro-distance benefits of the RSSI distance measurement 

technique with the enhanced accuracy of the phase technique.  This method was found to 

be the most robust among RSSI and phase measurements in terms of mobile tags, high 

multipath, and extreme antenna angle, and was presented in [1]. 

13.3 Improvements in Error Estimation 

Multipath error is most often the largest source of error in “real-world” distance 

estimation.  Through studying RF measurements in this research, a relationship was found 

between the multipath environment and the pattern of RSSI measurements with respect to 

the hop frequency.  This was first presented at the IEEE/ASME Advanced Intelligent 

Mechatronics conference in 2014 [2]. The work was expanded with a theoretical analysis 

of the ability to separate multipath error from a base measurement signal using the extra 

information provided by the RSSI Signature. 

A neural network was used to demonstrate that multipath information could be 

separated from empirical data and used to predict the magnitude and direction of multipath 

error of the distance measurement.  Likely application of this method would be to use big 

data techniques to train neural networks on a wide range of potential environments.  The 

concept was proven on a more limited set of environments, and using the trained neural 

network on new test data was able to reduce the distance error estimation by approximately 

50%.  To verify that the neural network had truly been able to pull from the relatively small 

data set the fundamentals of the patterns associated with the base signal vs. the multipath, 
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an additional data set from a completely new environment was used to test the resulting 

algorithm.  The algorithm was able to reduce the error for this untrained environment as 

well.  This was reported in the journal article from IEEE Transactions on Instrumentation 

& Measurement "Reducing RF Distance Error by Characterizing Multipath," [3]. 

To improve the RSSI Signature method further, the next step was to make it 

practical by approximating the signature in such a way that the neural network could use 

the incomplete data sets.  These various representations of the RSSI Signature were used 

for error predictions then the results were statistically analyzed to determine which curve 

fitting methods were viable for representing incomplete RSSI signatures.  The best results 

were found to be very close fit approximations of the RSSI signature, but it was in fact 

demonstrated that the abstracted representations of the signature could be used effectively 

to reduce error in a distance measurement, even with incomplete data.   

13.4 Improved RF Based Trilateration 

The goal of the project was to determine the best localization algorithm for use in 

an indoor environment for locating objects such as: critical equipment, sensitive 

documents, tools, or even individuals.  A literature search was performed and a large 

number of algorithms for trilateration were found; however nearly all could be categorized 

into approximately 10 types of methods.  Interestingly two of these methods described in 

the literature contained significant errors, which had to be resolved in this work before the 

method could actually be tested. One of the contributions of this work was deriving of the 

Hyperbolic Locus of Position method, which was described with erroneous calculations in 

the article [61].  Additionally, the Centroid algorithm had to be altered to use smaller 
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distance estimations, which should not be neglected as they are likely the most accurate 

distance estimations; while at the same time adding appropriate weightings. 

As the trilateration methods were compared, the way in which the methods failed 

was analyzed and the issue of non-uniform antenna radiation patterns was identified as key 

contributor.  It was hypothesized that instead of overlooking this error and simply assuming 

an isotropic antenna, the information from the antenna radiation pattern could be 

incorporated into the trilateration to improve localization accuracy.  For this method an 

approximate antenna pattern was arranged and optimized among the distance 

measurements from the satellites to find where it best fit, thus providing the beacon 

location.  To make this method practical for tracking as well as localization the original 

numerical approach was replaced with a theoretical model, which took significantly less 

time to process and made it feasible for tracking.  The Antenna Pattern method will be soon 

submitted as a journal article.  

13.5 Comparison of Trilateration Accuracy 

The final contribution of this work is a survey of the accuracy of all major current 

methods of distance estimation and trilateration for RFID and BLE technologies.  The same 

data sets were used against all trilateration methods so a direct comparison of algorithms 

could be made.  The various technologies and methods had different strengths, and the best 

localization method was different for each.  The following tables (13-1 and 13-2) 

summarize the trilateration comparison work.   
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Table 13-1: Summary of results of trilateration study comparing the location 
accuracy of all combinations of methods.  Green highlights are methods developed 
in this research.  Yellow highlights are methods significantly improved through this 
work. 

 

The accuracy of a given RF localization system will be a function of the choices 

made at each level of the design, and the environment in which the system must operate.  

Typical location accuracy using RFID tags is between 1.5 to 2 meters.  The maximum read 

range for this type of device in an ideal environment of an anechoic is about 8 meters.  In 

comparison a powered device working in the same frequency band, the Bluetooth system 

has an almost identical localization accuracy but can reach up to 70 meters.  The testing in 

this study was all done indoors and was limited to 10 meters for both device types.   

The absolute lowest error found in this study for RFID was using Phase distance 

estimation, the three highest RSSI signals and the Hyperbolic Locus of Position non-

iterative method.  For this experiment that combination produced an average error of 0.42 

meters.  Similarly, for BLE the experiment the absolute lowest localization error used the 

distances with the three highest RSSI values.  However, all of the other levels were 

Results of Trilateration Study 

 

Technology Best Method
Expensive - Phase
Inexpensive- RSSI signature

Bluetooth RSSI signature

RFID 3 Highest RSSI values

Bluetooth 3 Highest RSSI values

RFID Hyperbolic Locus of Position

Bluetooth Centroid

Iterative Least Squares

Weighted Least Squares
Bluetooth Antenna Pattern based on Centriod

Distance Estimation

Data used in 
algorithm

Non-iterative 
trilateration 

algorithm

RFID

RFIDIterative 
trilateration 

algorithm
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different, with the lowest error for BLE resulting from a combination of the RSSI Signature 

for distance, the Centroid algorithm for an initial location estimation, and the Antenna 

Pattern method for a more enhanced final estimate.  This yielded an average accuracy of 

1.32 meters, which is significantly improved over the literature for a similar infrastructure. 

This information will be submitted soon for a journal article.  

It should also be noted that the experiments were performed in a semi-anechoic 

chamber, and it is believed that the methods more robust to multipath (such as the RSSI-

Informed Phase method) would likely perform better in comparison if similar experiments 

were repeated across a set of more RF complex environments.   

13.6 Summary of Contributions 

Through the process of working with RF signals, distance estimation methods, and 

trilateration algorithms, multiple new methods were developed and others were improved 

upon.  A summary of the contributions of this work to the field of RF localization are 

shown in Table 13-2. 
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Table 13-2: Author contributions to Localization using RFID and Bluetooth 
technologies.  More detail about each can be found in the locations listed in this 
chart. 

 

 

With the rapid adoption of the Internet of Things, emphasis has been placed on 

leveraging existing systems of devices to generate additional information such as 

localization of devices.  In this work RFID and BLE devices have been used to leverage 

information in the signal to locate items in a complex environment.  The main hindrances 

for implementation of localization are cost, time, and accuracy, all of which have been 

Name Contribution Covered in
Chapter 5 - RSSI Informed Phase method for 

RFID Distance Calculations
"RSSI Informed Phase Method for Distance 
Calculations," in IEEE/ASME International 

Conference on Advanced Intelligent 
Mechatronics, (2015).

RSSI Signature

Created distance estimation method to 
significantly reduce multipath error using 
RSSI vs. frequency pattern and a trained 
Neural Network

Chapter 6 - "Reducing RF Distance Error by 
Characterizing Multipath," in IEEE Transactions 

on Instrumentation & Measurement DOI 
10.1109/TIM.2018.2875899 (2018) & 

"Received Signal Strength Indicaiton Signature 
for Passive UHF Tags" (2014)

Phase Signature

Created distance estimation method, 
reducing in phase measurements using the 
RSSI Signature and a trained Neural 
Network

Chapter 9 - Using RSSI Signature to reduce 
phase error

Antenna Pattern

Created a trilateration method using 
antenna radiation pattern and a 
optimization algorithm to increase location 
accuracy

Chapter 11- Antenna Pattern Method of 
Localization  (Manuscript to be submitted)

Hyperbolic Locus of 
Position

Reduced described model to practice, 
generating the mathematical rotation of a 
hyperbola for non-linear weighting Chapter 10 - Methods of Trilateration

Centroid

Allowed for the incorporation of small 
distances and applied weighting algorithm 
for this method to reduce loalization error 
for RF systems Chapter 10 - Methods of Trilateration

Comparision of 
trilateration Methods

Experimentally compared new and existing 
methods of trilateration and distance 
estimation for accuracy in a controlled 
environment using the same data sets.  
Found variations among the methods which 
can be used for system design. 

Chapter 12 - Experimental Comparison of 
Trilateration (Manuscript to be submitted)

Author Contributions to Localization

Created distance estimation method robust 
with respect to multipath, mobile tags, and 
antenna angle.

RSSI Informed Phase
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addressed in this work.  First by choosing low cost technologies, with fast response time, 

then selecting localization methods which require minimal time and infrastructure, and 

then by improving distance and trilateration algorithms to make the system more accurate 

and robust with respect to “real world” conditions. 



277 

  
APPENDICES 

APPENDIX A:  EXPERIMENTAL SET-UP AND DATA 

This Appendix contains the data and experimental set-ups used to generate graphics 

and figures in the dissertation. Graphics are reproduced for reference. 

A.1: RFID Experimental Set-Up 

 The majority of RFID data was collected in a 5-meter anechoic chamber as seen in 

Figure A-1, but some of the data was also collected in each of the environments described 

in A.3.  A ThingMagic M6e radio [49] was used primarily with circular polarized antennas 

[16].  When specifically addressing polarization mismatch, a half-wave dipole antenna was 

used in place of the circular polarized antenna.  An Alien Squiglette RFID tag [4] was used 

in a vertically polarized position, unless otherwise stated.  Both RFID tag and reader 

antenna were consistently held 1 meter above the ground plane.  RF transparent materials 

of paper and Styrofoam were used to support both the RFID tags and antenna. 

 For localization, 4 antennas were used to surround the RFID tag.  And for mobile 

tag experiments a stepper motor pulley system was used to move the RFID tag at a constant 

speed through the environment.   
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Figure A-1: Photo of RFID localization experimental setup. 

 

A.2: Bluetooth Experimental Set-Up 

 Bluetooth data was primarily collected in a 10 meter anechoic chamber using Texas 

Instruments BLE CC Debugger Wireless Development Kit [15], as can be seen in Figure 

A-2.  Due to the geometry of the BLE device, the data was collected in a horizontally 

polarized orientation.  Satellites and beacons were all the same type of device for BLE data, 

and all of the data was collected with the instrumentation 1 meter above the ground plane 

on Styrofoam pillars which are RF transparent.  A stepper motor pulley system was used 

both to collect stationary data autonomously as well as data for a mobile device.  An 
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Arduino was programmed to control the BLE devices, record the data, control the stepper 

motor, and read the encoder.   

 

Figure A-2: Photo of BLE localization experimental setup. 
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A.3: Experiment Environments 

Table A-1: Various environments for data collection  

Environments used for Data Generation 

Real World Environments RF Controlled Chamber 

A. Domestic - This environment was composed of a single room 
with a varying assortment of domestic furniture such as 
upholstered chairs and wooden tables. 

D. 5 Meter Fully Anechoic 
Chamber - Lexmark 
International 

B. Office - This environment was similar to the domestic 
environment except the floor was left as solid concrete (no carpet) 
and furniture was more metal and wood tables and chairs. 

E. 5 Meter Semi-Anechoic 
chamber.  This was the 5 Meter 
Fully Anechoic Chamber with 
the floor absorbers removed. 

C. Warehouse - This was a large commercial room with stored 
electronic equipment in boxes.  

F. 10 Meter Semi-Anechoic 
Chamber - Lexmark 
International 

 

Data for distance measurements was acquired in a variety of environments to 

improve the generalizability of experimental results.  These environments are broken into 

two categories:  Real World and Chamber. 

The following table shows a general description of these environments.  This code 

will be referred to in this Appendix to identify the environment in which the data was 

taken.   
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A.4: Specific Experiment Data 

A.4.1- Fingerprinting Data Chapter 2 

 
 

MAX 89.2 

MIN 63.75 

COLOR CODING 

60  

65 

70 

75 

80 

85 

90 
 

 

Figure A-3: The data in each square represents the data taken for beacons in every point 
on the grid.  (Reproduction of Figure 2-5)   
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Table A-2: Additional experimental information used to generate Figure 2-5 

Experiment Information 

2/25/2013 

Chamber Environment D 

Half Wave Dipole Antenna 

M5e ThingMagic Radio 

H4 Squiggle White Wet RFID Tag 

Reading RSSI 

Each increment of RSSI ≈ 1.2dB 

Vertical Polarization 

Transmit Antenna 39.75” above ground plane 
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A.4.2- RSSI vs. Separation Distance 

 

Figure A-4: Empirical RSSI vs. Separation Distance (Figure 3-1, 5-1 reproduced) 

Table A-3: Experimental Set-up used to produce Figure 3-1, 5-1 

Experiment Information 
6/8/16 

Chamber Environment D 

Circularly Polarized Antenna – 1 Meter Above Ground Plane 

Alien Squiglette – 1 Meter Above Ground Plane 

Thing Magic M6e Radio 

Measuring RSSI with Changing Separation Distance 
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Table A-4: Experimental Data used to produce Figure 3-1, 5-1 

 

 
  



285 

A.4.3- RFID Free Space and Single Ground Plane Reflection 

 

Figure A-5: Empirical RSSI vs. Separation Distance (Figure 3-4, 6-3 reproduced) 

Table A-5 Experimental Set-up for Figures 3-4 and 6-3 

Experiment Information 
2/10/2014 
File Name: Ground Plane Comparison with Half Wave Dipole.xlsx 
RF Controlled Chambers D & E 
Half Wave Dipole Antenna – 1 Meter Above Ground Plane 
Alien Squiglette – 1 Meter Above Ground Plane 
Thing Magic M6e Radio 
Measuring RSSI with Changing Distance 
With and Without Absorbers on Anechoic Chamber Floor 
Phase linearization Chapter 5, Figures 5-3 and 5-4 

 

 

 

 

 

 



286 

A.4.4 – RSSI Returned vs. Transmitted Power from Radio 

 

Figure A-6:  RSSI remains constant for a given distance of tag to radio, even as 
transmitted power from the radio is reduced. (Figure 4-7 reproduced) 

 

Table A-6: Experimental set-up for RSSI vs. Transmitted Power (Figure 4-7) 

Experiment Information 
7/1/2013 
File Name: Many Locations 5 M Chamber.xlsx 
RF Controlled Environment D 
35.5" Tag to Ground Plane 
35.5" Circular Polarized Antenna to Ground Plane 
14" Circular Polarized Antenna to Tag 
Alien Squiglette Tag Vertically Polarized 
ThingMagic M6e Radio 
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A.4.5- Measuring RFID Tag Signal 
 

 
Figure A-7:  Oscilloscope trace of radio to tag communication (Figure 4-6 reproduced) 
 

 
Figure A-8: Diagram of experimental set-up  
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Table A-7:  Experimental set-up for RFID tag signal measurement (Figure 4-6) 
Experiment Information 
7/17/2013 
File Name: Finding Tag’s Signal Using Oscilloscope.xlsx 
RF Controlled Environment D 
35.5" ground to circular polarized antenna for ThingMagic M6e radio 
35" ground to Alien Squiglette Tag  
6.75" tag to half wave dipole antenna for oscilloscope 
120" tag to circular polarized antenna (reader) 
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A.4.6- RSSI vs. Distance for Many RFID Tags 

 

Figure A-9: Data collected on RSSI as a function of distance follows a one-way 
propagation model. (Figure 4-9 reproduced) 

 

Table A-8: Experimental set up for one way vs. two way propagation (Figure 4-9) 

Experiment Information 
4/30/2014 
File Name: Different tag.xlsx 
RF Controlled Chambers D (5 Meter Fully Anechoic) 
Half Wave Dipole Antenna – 1 Meter Above Ground Plane 
Thing Magic M6e Radio 
RFID Tags – 1 Meter Above Ground Plane 
Measuring RSSI with Changing Distance 
Tags Measured: Squiglette, Short White, Hammer, and Rafsec 
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A.4.7- Collected Phase Angle Data 

 

Figure A-10: Phase Angle Sawtooth Curve (Figure 5-3 reproduced) 

 

 

Figure A-11: Phase Angle Linearized Curve (Figure 5-4 reproduced) 
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Table A-9: Experimental Set-up for Figures 5-3 and 5-4 

Experiment Information 
7/9/13 
Real World Environment A 
Circularly Polarized Antenna – 1 Meter Above Ground Plane 
Alien Squiglette – 1 Meter Above Ground Plane 
Thing Magic M6e Radio 
Measuring RSSI with Changing Separation Distance 

 

Table A-10 Experimental data used to create Figures 5-3 and 5-4

 

Experimental Data 

Frequency 
(MHz) 

Phase 
(radians) 

Linearized 
Phase 

(radians) 

902.669 1.902409 1.902409 

903.181 1.710423 1.710423 

903.693 1.570796 1.570796 

904.205 1.361357 1.361357 

904.717 1.117011 1.117011 

905.229 0.872665 0.872665 

905.741 0.977384 0.977384 

906.253 0.785398 0.785398 

906.765 0.872665 0.872665 

907.277 0.733038 0.733038 

907.789 0.383972 0.383972 

908.045 0.244346 0.244346 

908.557 0.488692 0.488692 

909.069 0.139626 0.139626 

909.581 0.279253 0.279253 

910.093 3.036873 -0.10472 

910.605 2.984513 -0.15708 

911.117 3.089233 -0.05236 

911.629 2.844887 -0.29671 

912.141 2.600541 -0.54105 

912.653 2.740167 -0.40143 

913.165 2.879793 -0.2618 

913.677 2.391101 -0.75049 

914.189 2.548181 -0.59341 

914.701 2.391101 -0.75049 

915.213 2.495821 -0.64577 

915.725 2.146755 -0.99484 

916.237 2.007129 -1.13446 

916.749 2.059489 -1.0821 

917.518 1.710423 -1.43117 

918.03 1.658063 -1.48353 

918.542 1.518436 -1.62316 

919.054 1.22173 -1.91986 

919.566 1.064651 -2.07694 
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920.078 0.820305 -2.32129 

920.59 0.925025 -2.21657 

921.102 0.628319 -2.51327 

921.614 0.785398 -2.35619 

922.126 0.383972 -2.75762 

922.638 0.191986 -2.94961 

923.15 0.436332 -2.70526 

923.662 0.034907 -3.10669 

924.174 2.984513 -3.29867 

924.686 2.984513 -3.29867 

925.198 2.932153 -3.35103 

925.71 2.740167 -3.54302 

926.222 2.844887 -3.4383 

926.734 2.600541 -3.68264 

927.246 2.303835 -3.97935 

927.758 2.146755 -4.13643 

 



 

A.4.8- RSSI-Informed Phase with Mobile Tag 
 

 
Figure A-12: A comparison of method distance error as a function of tag movement 
(Figure 5-6 reproduced) 
 
Table A-11:  Experimental setup for Figure 5-6 
 
Experiment Information 
5/12/2015 
File Name: RSSI Informed Phase Comparison for AIM 2015.xlsx 
RF Controlled Environment E 
Circularly Polarized Antenna – 1 Meter Above Ground Plane 
Alien Squiglette – 1 Meter Above Ground Plane 
Thing Magic M6e Radio 
NEMA-17 stepper motor for moving the tag 
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A.4.9- RSSI Signature Data 

 
Figure A-13: Measured RSSI Signature (Figure 6-1 and 7-1 reproduced) 

 
Table A-13: Experimental setup for Figure 6-1, 7-1 

Experiment Information 
9/30/13 
File Name: Spectrum Analyzer.xlsx 
Real World Environment C 
Circularly Polarized Antenna – 1 Meter Above Ground Plane 
Alien Squiglette – 1 Meter Above Ground Plane 
Thing Magic M6e Radio 
Measuring RSSI with Varying Hop Frequency 
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A.4.10- Antenna Gain Calculations 

 

 

Figure A-14: Antenna Gain Calculations (Figure 6-2 reproduced) 

Table A-14: Experimental setup for Figure 6-2 

EXPERIMENT INFORMATION 
7/15/16 
File Name: CalculatingAntennaGain.xlsx 
RF Controlled Chamber D 
1.2 Meters Above Ground Plane 
Signal Generator + Bi-Log Antenna 
Signal Analyzer + Circular Polarized Antenna 
Measuring Power at 3 Frequencies and using it to calculate Gain 
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A.4.11- Incremental Changes in RSSI Signature 

 

Figure A-15 – The change in RSSI with frequency as the tag and reader are moved 
together through a complex environment. (Figures 6-5 and 6-6 reproduced) 
 
Table A-15: Experimental set-up for Figure 6-5 and 6-6 

EXPERIMENT INFORMATION 
1/23/2014 
File Name: RSSI Signature inch increments.xlsx 
Real World Environment A 
ThingMagic M6e Radio  
Circular Polarized Antenna 1 Meter Above Ground Plane 
Alien Squiglette Tag Vertically Polarized 1 Meter Above Ground Plane 
RSSI vs. Frequency recorded at 1-inch increments 
Maintaining Distance and Orientation between Reader Antenna and Tag 
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A.4.12- RSSI vs. Distance in All Environments 

 

 
Figure A-16: RSSI measurement vs. separation distance (Figure 9-7 reproduced) 

Table A-16: Experimental setup for Figure 9-7 

EXPERIMENT INFORMATION 
RFID RSSI Measurements 
Date: Many Experiments 
File Name: M6e Data Combined.xlsx 
Environments A, B, C, D, E, F 
1 Meters Above Ground Plane 
Alien Squiglette Tag Vertically Polarized 
Circular Polarized Antenna and M6e Radio 
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APPENDIX B: TRILATERATION RESULTS TABLES BY LEVEL 

The following pivot tables were created based on all data taken.  The average 

values represent the average error in meters for all localization estimate combinations.   

B.1 RFID Results by level 

Table B.1.1 – RFID Error results in meters by Level 2 (type of distance measurement) 

RFID Level 2 Results 

Row Labels 
Mean of dist error 

(m) 
P_Sig 1.13543794 
Phase 0.653476406 
R_Sig 1.668292554 
RSSI 1.98153388 

RSSI-Informed 
Phase 2.546218189 

Grand Total 1.603218376 
 

Table B.1.2 – RFID Error results in meters by Level 3 (which distance measurements 
were used in the analysis) 

RFID Result by Level 3 Input Selection 
Row Labels Average Error 

3 Highest Confidence 1.626600305 
3 Highest RSSI 1.576110394 

All Dist 1.606103871 
Grand Total 1.603218376 
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Table B.1.3 – RFID Error results in meters by Level 4&5 (Type of trilateration algorithm 
tested) 

RFID Iterative vs. Non-iterative  

Row Labels 
Mean 
Error 

Non Iterative Location 1.40 
Iterative Least Squares 1.52 

Weighted Least 
Squares 1.56 

Taylor Series 1.63 
Nonlinear Least 

Squares 1.71 
Antenna Pattern 1.74 

 

Table B.1.4 – RFID Error results in meters by Level 5 (iterative trilateration method) 

RFID Level 5 Iterative Algorithm 
Results 

Row Labels Mean Error 
Antenna Pattern 1.741353981 

No Additional 1.399025548 
Iterative Least 

Squares 1.522418357 
Nonlinear Least 

Squares 1.705379824 
Taylor Series 1.629420832 

Weighted Least 
Squares 1.555106292 

Grand Total 1.603218376 
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Table B.1.5 – RFID Error results in meters by Level 3,4 & 5 Showing the interaction 
between the algorithm choices for RFID localization. 
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B.2 Bluetooth Low Energy Summary in Pivot tables by each level 

 

Table B.2.1 – BLE Error results in meters by Level 2 (Type of distance measurement 
method used) 

 

BLE Level 2 Summary 

Row Labels 
Average of 

Mean 
Half_Sig_Half_RSSI 1.796 

RSSI 1.811 
RSSI Signature 1.760 

Grand Total 1.789 
  

  

Table B.2.2 – BLE Error results in meters by Level 3 (Type of distance measurement 
data selected to be included)  

BLE Error by Level 3 Data Selection 

Row Labels 
Average 

error 
3 Highest 

Confidence 2.099078833 
3 Highest RSSI 1.599569873 

All Dist 1.667754302 
Grand Total 1.788801003 
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Table B.2.3 – BLE Error results in meters by Level 4 (Type of non-iterative trilateration 
method used) 

BLE Level 4 
Summary  

Row Labels 
Average of 

Mean 
Centroid 1.645232336 

Hyperbolic LOP 1.808021189 
Linear 

Approximation 1.892432802 
Linear Least 

Squares 1.853972017 
Linear LOP 1.728918094 

Not Dependent 1.753934638 
Grand Total 1.785024404 

 

Table B.2.4 – BLE Error results in meters by Level 5 (Type of iterative trilateration 
method used) 

BLE Level 5 Iterative Algorithm 
Results 

Row Labels 
Average of 

Error 
Antenna Pattern 1.638142402 

Iterative Least 
Squares 1.865943875 

Nonlinear Least 
Squares 1.634888901 

Taylor Series 1.579915244 
Weighted Least 

Squares 2.09863089 
Grand Total 1.743991955 
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Table B.2.5 – BLE Error results in meters by Level 5 (A more in depth look at the impact 
of the type of non-iterative method that fed the iterative method) 

 

 

Table B.2.6 – BLE Error results in meters showing detailed results by full breakdown of 
input options.  

 

BLE Trilateration Data Summary 

Row Labels 
Average of 

Mean 
Antenna Pattern 1.638142402 

3 Highest Confidence 1.979390355 
Centroid 1.659797748 

Hyperbolic LOP 2.028937342 
Linear Approximation 2.377296069 
Linear Least Squares 1.915460307 

Linear LOP 1.915460307 
3 Highest RSSI 1.495491345 

Centroid 1.379312318 
Hyperbolic LOP 1.564910049 

Linear Approximation 1.561073015 
Linear Least Squares 1.486080672 

Linear LOP 1.486080672 
All Dist 1.439545507 
Centroid 1.382924961 

Hyperbolic LOP 1.475282465 
Linear Approximation 1.468407373 
Linear Least Squares 1.478573682 

Linear LOP 1.392539056 
Error 1.976999001 

3 Highest Confidence 2.319949242 
Centroid 1.77980494 

Hyperbolic LOP 2.550371504 
Linear Approximation 2.807734089 
Linear Least Squares 2.230917838 

BLE by Iterative Method - Level 5
Average of error Column Labels
Row Labels Antenna Pattern Iterative Least Squares Nonlinear Least Squares Taylor Series Weighted Least Squares Grand Total
Centroid 1.48961242 1.651070551 1.582151012 1.979607385 1.675610342
Hyperbolic LOP 1.713593953 1.650550499 1.583613924 1.962591271 1.727587412
Linear Approx 1.809883629 1.694581303 1.605993498 2.213567518 1.831006487
Linear LOP 1.608666589 1.665483335 1.594713905 1.928227595 1.699272856
Linear LS 1.634785321 1.665303227 1.594693213 1.964542214 1.714830994
Not Dependent 1.885004985 1.885004985
Grand Total 1.651308382 1.885004985 1.665397783 1.59223311 2.009707197 1.737058921
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Linear LOP 2.230917838 
3 Highest RSSI 1.803346787 

Centroid 1.467043158 
Hyperbolic LOP 2.015793904 

Linear Approximation 2.017447717 
Linear Least Squares 1.758224578 

Linear LOP 1.758224578 
All Dist 1.807700974 
Centroid 1.468420064 

Hyperbolic LOP 1.98249162 
Linear Approximation 2.04228721 
Linear Least Squares 1.794840739 

Linear LOP 1.750465239 
Iterative Least Squares 1.865943875 

3 Highest Confidence 2.222086444 
Not Dependent 2.192283427 

(blank) 2.236987952 
3 Highest RSSI 1.75764111 
Not Dependent 1.723077554 

(blank) 1.774922889 
All Dist 1.61810407 

Not Dependent 1.61810407 
Nonlinear Least Squares 1.634888901 

3 Highest Confidence 2.049849173 
Centroid 2.011898145 

Hyperbolic LOP 2.013178367 
Linear Approximation 2.112728167 
Linear Least Squares 2.055720593 

Linear LOP 2.055720593 
3 Highest RSSI 1.483721333 

Centroid 1.484454558 
Hyperbolic LOP 1.482632623 

Linear Approximation 1.482033586 
Linear Least Squares 1.484742949 

Linear LOP 1.484742949 
All Dist 1.371096198 
Centroid 1.371593401 

Hyperbolic LOP 1.371870442 
Linear Approximation 1.370708095 
Linear Least Squares 1.370598813 

Linear LOP 1.370710239 
Taylor Series 1.579915244 

3 Highest Confidence 1.890686035 
Centroid 1.862888826 
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Hyperbolic LOP 1.866907412 
Linear Approximation 1.923229412 
Linear Least Squares 1.900202264 

Linear LOP 1.900202264 
3 Highest RSSI 1.425407048 

Centroid 1.425752817 
Hyperbolic LOP 1.42545128 

Linear Approximation 1.425175116 
Linear Least Squares 1.425328014 

Linear LOP 1.425328014 
All Dist 1.423652648 
Centroid 1.423269344 

Hyperbolic LOP 1.4237732 
Linear Approximation 1.423334159 
Linear Least Squares 1.424114531 

Linear LOP 1.423772005 
Weighted Least Squares 2.09863089 

3 Highest Confidence 2.230917838 
Centroid 2.230917838 

Hyperbolic LOP 2.230917838 
Linear Approximation 2.230917838 
Linear Least Squares 2.230917838 

Linear LOP 2.230917838 
3 Highest RSSI 1.758268604 

Centroid 1.758297955 
Hyperbolic LOP 1.758297955 

Linear Approximation 1.758297955 
Linear Least Squares 1.758224578 

Linear LOP 1.758224578 
All Dist 2.306706227 
Centroid 1.972108968 

Hyperbolic LOP 1.929501836 
Linear Approximation 2.385822229 
Linear Least Squares 3.495632862 

Linear LOP 1.750465239 
Grand Total 1.788801003 
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APPENDIX C: MATLAB CODE USED FOR ANALYSIS 

C.1  MATLAB Code used in Chapter 5 

 

 

Figure C-1:  Figure 5-3 and Figure 5-4 reproduced 

C.1.1- linearize_phase.m 

%%Ann Whitney%% 
%%linearize_phase.m%% 
%%Last Edited: 1/23/14%% 
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%Inputs: column vector of frequencies (50) in Hz, a matrix of rssi 
values  
%in dBm,and a matrix of phase angles in radians.(each column is a 
different 
%measurement) 
%Output: a vector of the approximated antenna to tag distances for each 
%measurement in meters 
  
function [dist_app,phi,slope] = 
linearize_phase(freq,rssi,phi,cableLength) 
ln_coeff = -9.809; 
offset = -60.907; 
c = 2.99e8; 
  
cableLength=2.16;%(m) = 7ft long cable 
beta = -((1.925*cableLength)+0.334); %Experimental Phase Offset 
%%due to cable length from radio to antenna 
  
[numfreq,numpts]=size(rssi); 
    for x=1:numpts 
%         %%If Graphing: 
%         close all 
%         plot(freq,phi(:,x),'-*','MarkerSize',7); 
%         axis([900000000 930000000 0 3.5]) 
%         xlabel('Frequency (Hz)','FontSize',12); 
%         ylabel('Phase Angle (Radians)','FontSize',12); 
%         title('Original Phase Sawtooth Curve','FontSize',15); 
        first = 0; 
        if isnan(rssi(1,x))==1 
            for k = 2:size(rssi,1) 
                if (isnan(rssi(k,x))==0)&&(first==0) 
                    phi(1,x)=phi(k,x); 
                    RSSI_dist = exp((rssi(k,x)-offset)./ln_coeff); 
                    first = 1; 
                end 
            end 
        end 
        for i = 2:numfreq 
            if isnan(rssi(i,x))==0 
%                 %%If Graphing: 
%                 close all 
%                 plot(freq(1:i-1),phi(1:i-1),'*'); 
%                 axis([900000000 930000000 -10 10]) 
                dif = phi(i-1,x)-phi(i,x); 
                inc = round(dif/pi); 
                if i>5 
                    if min(J(:,x))<inc 
                        if abs((dif/pi)-inc)>0.3 
                            inc = min(J(:,x)); 
                        end 
                    end  
                end 
                J(i-1,x)=inc; 
                phi(i,x)= phi(i,x)+(inc*pi); 
            else 
                if first ==0 
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                    RSSI_dist = exp((rssi(i-1,x)-offset)./ln_coeff); 
                    first = 1; 
                end 
                RSSISlope = (-beta+RSSI_dist).*-((4*pi)/c); 
                phi(i,x)=phi(i-1,x)+((freq(i)-freq(i-1))*RSSISlope); 
            end 
        end 
%         %%If Graphing: 
%         close all 
%         plot(freq,phi(:,x),'-*','MarkerSize',7); 
%         xlabel('Frequency (Hz)','FontSize',12); 
%         ylabel('Phase Angle (Radians)','FontSize',12); 
%         title('Linearized Phase Sawtooth Curve','FontSize',15); 
         
        slope(x)=(mean(freq.*phi(:,x))-
(mean(freq)*mean(phi(:,x))))/((mean(freq.^2))-(mean(freq)^2)); 
        dist_app(x)=((-c/(4*pi))*slope(x))+beta; 
        d_ft(x)=dist_app(x)/.3048; 
    end %end of loop through measurements 
     
%     %%If Graphing: 
%     plot(freq,phi(:,x),'*');   %use this to plot the linearized phase 
line 
%     axis([9e8 9.3e8 -10 3]) 
%     xlabel('Frequency (Hz)') 
%     ylabel('Phase Angle (radians)') 
%     title('Linearized Phase') 
end  
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C.2: RSSI-Informed Phase Function 

C.2.1- RIP.m 

function [newDist,RIPpts,fixedpt,slope,b,newSlope,newInt] = RIP( 
freq,phase,RSSI,cableLength ) 
%%Ann Whitney%% 
%%RIP.m% 
%%Last Edited 12/13/16%% 
%%This function analyzes using the new RSSI-Informed Phase method.   
%%Using the lowest frequency phase point as the anchor 
%%It returns the estimated distance. 
  
%%Inputs: 
%% frequency - 2 or more by 1 vector (Hz) 
%% Phase - 2 or more by 1 vector (rad) 
%% RSSI - 2 or more by 1 vector (dBm) 
%% ActDist - actual distance (m) 
%% graph - if graph ==1 then graph the data 
  
%%Output: 
%% distance - horizontal vector (m) 
%% RSSI distance  - horizontal vector (m) 
  
%%Constants%% 
ln_coeff = -10.04; 
offset = -58.657; 
c = 2.99e8; 
% beta = -((1.925*cableLength)+0.334); %Experimental Phase Offset 
beta = -4.5; 
  
%%Initial Calculations%% 
rssiDist = exp((mean(RSSI)-offset)/ln_coeff); 
slope = (rssiDist-beta)*((4*pi)/-c); 
[freq,idx] = sort(freq); 
phase = phase(idx); 
  
%%Spacing%% 
diff = freq(2:length(freq))-freq(1:length(freq)-1); 
for j = 1:length(freq)-2 
    FreqGap(j) = mean([diff(j),diff(j+1)]); 
end 
% FreqGap 
if exist('FreqGap','var') 
    fixedpt = find(FreqGap==max(FreqGap))+1; 
    fixedpt = fixedpt(1); 
else 
    fixedpt = (1); 
end 
% fixedpt = myRand(2,length(freq)-1,1); 
b = phase(fixedpt)-slope*freq(fixedpt); 
RIPpts(fixedpt)=phase(fixedpt); 
  
%%RSSI-Informed Phase%% 
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for i =[1:fixedpt-1 fixedpt+1:length(freq)] 
    Rgap(i) = phase(i)-(freq(i)*slope+b); 
    Rgap(i) = Rgap(i)/pi; 
    inc(i) = round(Rgap(i)); 
    newpt = phase(i)-inc(i)*pi; 
    RIPpts(i)=newpt; 
end 
  
newSlope = (mean(freq'.*RIPpts)-
(mean(freq)*mean(RIPpts)))/(mean(freq.^2)-mean(freq)^2); 
newSlope = mean([newSlope,slope]); 
newInt = phase(fixedpt)-newSlope*freq(fixedpt); 
newDist = ((-c/(4*pi))*newSlope)+beta; 
% error = ActDist-newDist; 
  
%     %Graphing%% 
%     allFreq = [902669000:0510000:927758000]; 
%     Figure; 
%     h4 = plot(freq,phase,'sr','MarkerFaceColor','r','MarkerSize',7); 
%     hold on 
%     h3 = plot(allFreq,(slope*allFreq+b),'g','LineWidth',1); 
%     h1 = plot(freq,RIPpts,'*b','MarkerSize',7); 
%     h2 = plot(allFreq,(newSlope*allFreq+newInt),'b','LineWidth',1); 
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C.3: Moving RSSI-Informed Phase vs. RSSI and Phase 

 
Figure C-2: Comparison of distance estimations from moving tag (produced using the 
code below) 
 
Note: MovingRIP.m (C.3.1) uses linearize_phase.m (C.1.1) and stationary_linearize_phase.m 
(C.3.2) 
 

C.3.1- MovingRIP.m 

%%MovingRIP.m%% 
%%Ann Whitney%% 
%%Originally Written%% 
%%5/17/16%% 
%%Last Edited%% 
%%5/17/16%% 
  
%%The purpose of this program is to use the MovingRIPData.mat file to 
%%Figure compare distance estimation methods (rssi, phase, rip) 
  
close all 
clear all 
clc 
  
load('D:\My Stuff\School\RFID\MATLAB\Data\Moving 
RIP\MovingRIPData.mat') 
numFiles = size(Data,2); 
for i = 1:numFiles 
    close all 
     
    %%Inputs%% 
    rssi = Data(i).rssi; 
    phase = Data(i).phase; 
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    time = Data(i).time; 
    freq = Data(i).freq; 
    encoder = Data(i).encoder; 
    if length(encoder)>length(rssi) 
        encoder(length(rssi)+1:end)=[]; 
    end 
    which = Data(i).which; 
    finalDist = Data(i).dist/100; 
    initialDist = 6; 
    whichNaN = isnan(rssi)+isnan(phase)+isnan(freq)+isnan(encoder); 
    where = find(whichNaN~=0); 
    whichNaN(where)=1; 
    rssi = rssi(~whichNaN); 
    phase = phase(~whichNaN); 
    time = time(~whichNaN,:); 
    freq = freq(~whichNaN); 
    encoder = encoder(~whichNaN); 
     
     
    %%Time%% 
    if length(unique(encoder))>1 
        beginLoc = find(encoder~=encoder(1),1,'first'); 
        if length(encoder)>length(time) 
            endLoc = length(time); 
        else 
            endLoc = find(encoder~=encoder(end),1,'last'); 
        end 
    else 
        beginLoc = 1; 
        endLoc = length(encoder); 
    end 
    beginTime = time(beginLoc,:); 
    beginseconds = num2str(round(str2double(beginTime(7:end)))); 
    if strcmp(beginseconds,'60') 
        beginminute = num2str(str2double(beginTime(4:5))+1); 
        beginTime(4:8)=strcat(beginminute,':00'); 
    elseif length(beginseconds)<2 
        beginseconds = strcat('0',beginseconds); 
        beginTime(7:8)=beginseconds; 
    else 
        beginTime(7:8)=beginseconds; 
    end 
    beginTime(9:end)=[]; 
    endTime = time(endLoc,:); 
    endseconds = num2str(round(str2double(endTime(7:end)))); 
    if strcmp(endseconds,'60') 
        endminute = num2str(str2double(endTime(4:5))+1); 
        endTime(4:8)=strcat(endminute,':00'); 
    elseif length(endseconds)<2 
        endseconds = strcat('0',endseconds); 
        endTime(7:8)=endseconds; 
    else 
        endTime(7:8)=endseconds; 
    end 
    endTime(9:end)=[]; 
    elapsedTime = datetime(endTime)-datetime(beginTime); 
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    elapsedTime = seconds(elapsedTime); 
    if elapsedTime<0 
        hourBack = num2str(str2num(beginTime(1:2))-1); 
        PretendbeginTime=beginTime; 
        PretendbeginTime(1:2)=hourBack; 
        PretendendTime = endTime; 
        PretendendTime(1:2)='23'; 
        elapsedTime = datetime(PretendendTime)-
datetime(PretendbeginTime); 
        elapsedTime = seconds(elapsedTime); 
    end 
    speed(i) = ((initialDist-finalDist)/elapsedTime); 
  
     
     
    %%RSSI Dist%% 
    R_dist = exp((rssi(beginLoc)+58.365)./-10.64); 
    ActRdist = initialDist; 
    R_Error(i) = ActRdist-R_dist; 
     
    %%Phase Dist%% 
    for j = 1:length(freq) 
        l = length(unique(freq(1:j))); 
        if l ==50 
            break 
        end 
    end  
    [Phasefreq,idx]=sort(freq(1:j)); 
    Phasephase = phase(idx); 
    Phaserssi = rssi(idx); 
    if (i==1)||(i==2)||(i==3) 
        [P_dist,phi,slope] = 
stationary_linearize_phase(Phasefreq,Phaserssi,Phasephase); 
    else 
        [P_dist,phi,slope] = 
linearize_phase(Phasefreq,Phaserssi,Phasephase); 
    end 
    endPhaseTime = time(j,:); 
    endPhaseseconds = num2str(round(str2double(endPhaseTime(7:end)))); 
    if strcmp(endPhaseseconds,'60') 
        endPhaseminute = num2str(str2double(endPhaseTime(4:5))+1); 
        endPhaseTime(4:8)=strcat(endPhaseminute,':00'); 
    elseif length(endPhaseseconds)<2 
        endPhaseseconds = strcat('0',endPhaseseconds); 
        endPhaseTime(7:8)=endPhaseseconds; 
    else 
        endPhaseTime(7:8)=endPhaseseconds; 
    end 
    endPhaseTime(9:end)=[]; 
    elapsedPhaseTime = datetime(endPhaseTime)-datetime(beginTime); 
    elapsedPhaseTime = seconds(elapsedPhaseTime); 
    stopPhasePosition = abs(encoder(j)); 
    ActPdist = (((stopPhasePosition-encoder(1))/(encoder(end)-
encoder(1)))*(finalDist-initialDist))+initialDist; 
    if isnan(ActPdist) 
        ActPdist = initialDist; 
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    end 
    P_Error(i) = ActPdist-P_dist; 
    TotalPhaseTime(i)=elapsedPhaseTime; 
  
  
     
    %%RIP%% 
    num=3; 
    RIPfreq = freq(beginLoc:beginLoc+num); 
    if length(unique(RIPfreq))<4 
        num = num+1; 
        RIPfreq = freq(beginLoc:beginLoc+num); 
    end 
    RIPrssi = rssi(beginLoc:beginLoc+num); 
    RIPphase = phase(beginLoc:beginLoc+num); 
    endRIPTime = time(beginLoc+num,:); 
    endRIPseconds = num2str(round(str2double(endRIPTime(7:end)))); 
    if strcmp(endRIPseconds,'60') 
        endRIPminute = num2str(str2double(endRIPTime(4:5))+1); 
        endRIPTime(4:8)=strcat(endRIPminute,':00'); 
    elseif length(endRIPseconds)<2 
        endRIPseconds = strcat('0',endRIPseconds); 
        endRIPTime(7:8)=endRIPseconds; 
    else 
        endRIPTime(7:8)=endRIPseconds; 
    end 
    endRIPTime(9:end)=[]; 
    elapsedRIPTime = datetime(endRIPTime)-datetime(beginTime); 
    elapsedRIPTime = seconds(elapsedRIPTime); 
    stopRIPPosition = abs(encoder(beginLoc+num)); 
    ActRIPdist = (((stopRIPPosition-encoder(1))/(encoder(end)-
encoder(1)))*(finalDist-initialDist))+initialDist; 
    if isnan(ActRIPdist) 
        ActRIPdist = initialDist; 
    end 
    [RIP_dist,error,RIPpts,fixedpt,newSlope,newInt] = 
RIP(RIPfreq,RIPphase,RIPrssi,ActRIPdist); 
    RIP_Error(i) = ActRIPdist - RIP_dist; 
end 
clearvars -except R_Error P_Error RIP_Error i speed TotalPhaseTime 
  
count = 0; 
for j = 1:3:length(speed)-2 
    count = count+1; 
    Avgspeed(count) = mean(speed(j:j+2)); 
    AvgP_Error(count) = mean(abs(P_Error(j:j+2))); 
    AvgR_Error(count) = mean(abs(R_Error(j:j+2))); 
    AvgRIP_Error(count) = mean(abs(RIP_Error(j:j+2))); 
end 
clearvars -except AvgR_Error AvgP_Error AvgRIP_Error i Avgspeed 
TotalPhaseTime 
P_Error = AvgP_Error; 
R_Error = AvgR_Error; 
RIP_Error = AvgRIP_Error; 
speed = Avgspeed; 
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close all 
h1 = plot(speed,abs(P_Error),'sr','MarkerSize',7); 
hold on 
h2 = plot(speed,abs(R_Error),'og','MarkerSize',7); 
h3 = plot(speed,abs(RIP_Error),'b*','MarkerSize',7); 
axis([-0.005 0.06 -1 20]) 
xlabel('Speed (m/s)','FontSize',12); 
ylabel('Distance Estimation Error (m)','FontSize',12); 
str=({['Distance Estimation Error'];['For Moving RFID Tag']}); 
title(str,'FontSize',15) 
leg = legend('Phase Error','RSSI Error','RSSI-Informed Phase Error'); 
set(leg,'FontSize',12); 
 
 

C.3.2- stationary_linearized_phase.m 

%%Ann Whitney%% 
%%stationary_linearized_phase.m%% 
%%Last Edited: 6/7/16%% 
%Inputs: column vector of frequencies (50) in Hz, a matrix of rssi 
values  
%in dBm,and a matrix of phase angles in radians.(each column is a 
different 
%measurement) 
%Output: a vector of the approximated antenna to tag distances for each 
%measurement in meters 
  
function [dist_app,phi,slope] = 
stationary_linearize_phase(freq,rssi,phi) 
ln_coeff = -9.809; 
offset = -60.907; 
c = 2.99e8; 
beta = -4.5; %Experimental Phase Offset 
  
[numfreq,numpts]=size(rssi); 
    for x=1:numpts 
        first = 0; 
        if isnan(rssi(1,x))==1 
            for k = 2:size(rssi,1) 
                if (isnan(rssi(k,x))==0)&&(first==0) 
                    phi(1,x)=phi(k,x); 
                    RSSI_dist = exp((rssi(k,x)-offset)./ln_coeff); 
                    first = 1; 
                end 
            end 
        end 
        for i = 4:numfreq 
            m = (mean(freq(1:i-1).*phi(1:i-1,x))-(mean(freq(1:i-
1))*mean(phi(1:i-1,x))))/((mean(freq(1:i-1).^2))-(mean(freq(1:i-
1))^2)); 
            b = mean(phi(1:i-1,x))-m*mean(freq(1:i-1)); 
            if isnan(rssi(i,x))==0 
%                 close all 
%                 plot(freq(1:i-1),phi(1:i-1),'*'); 
%                 hold on 
%                 plot(freq,m*freq+b) 
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%                 axis([900000000 930000000 -15 10]) 
                dif = phi(i-3,x)-phi(i,x); 
                inc = round(dif/pi); 
                if i>4 
                    if J(end,x)<inc 
                        inc = J(end,x); 
                    end  
                end 
                phi(i,x)= phi(i,x)+(inc*pi); 
                if phi(i,x)-(m*freq(i)+b)>2.25 
                    phi(i,x)= phi(i,x)+(-1*pi); 
                    inc = inc-1; 
                elseif phi(i,x)-(m*freq(i)+b)<-2.25 
                    phi(i,x)= phi(i,x)+(pi); 
                    inc = inc+1; 
                end 
                J(i-1,x)=inc; 
            else 
                if first ==0 
                    RSSI_dist = exp((rssi(i-1,x)-offset)./ln_coeff); 
                    first = 1; 
                end 
                RSSISlope = (-beta+RSSI_dist).*-((4*pi)/c); 
                phi(i,x)=phi(i-1,x)+((freq(i)-freq(i-1))*RSSISlope); 
            end 
             
        end 
%         close all 
%         plot(freq,phi(:,x),'-*','MarkerSize',7); 
%         xlabel('Frequency (Hz)','FontSize',12); 
%         ylabel('Phase Angle (Radians)','FontSize',12); 
%         title('Linearized Phase Sawtooth Curve','FontSize',15); 
        slope(x)=(mean(freq.*phi(:,x))-
(mean(freq)*mean(phi(:,x))))/((mean(freq.^2))-(mean(freq)^2)); 
        dist_app(x)=((-c/(4*pi))*slope(x))-4.5; 
        d_ft(x)=dist_app(x)/.3048; 
        if (sum(unique(J))>0)&&(length(J)>1) 
            jump1(x) = find(J(1,x)~=J(:,x), 1 ); 
        else 
            jump1(x)=0; 
        end 
    end %end of loop through measurements 
     
     
%     Figure 
%     plot(freq,phi(:,x),'*')   %use this to plot the linearized phase 
line 
end %end of function 
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C.4: Polarization Mismatch with RSSI, Phase, and RSSI-Informed Phase 

 
Figure C-3: Comparison of distance estimations from various tag positions (produced 
using the code below, and reproduction of Figure 5-7) 
 

C.4.1- Orientation_Comparison.m 

%%Orientation_Comparison.m%% 
%%Ann Whitney%% 
%%Last Edited: 6/11/2015%% 
%%The purpose of this program is to compare Standard Phase data to RSSI 
%%Informed Phase data with changes in polarization angle 
  
clear all 
close all 
clc 
  
  
%%RSSI Informed Phase Error with Respect to Orientation%% 
load('RSSIInformedPhase.mat');%data comprising of two vectors Angle & 
Error 
Error = abs(Error); 
j = 1; 
k = 0; 
start = 1; 
deg = [0:10:360]; 
for i = 1:length(Angle) 
    if deg(j)==Angle(i) 
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        k = k +1; 
    elseif sum(Angle==deg(j))==0 
        deg(j)=[]; 
        k=1; 
    else 
        stop = i-1; 
        finalError(j) = mean(Error(start:stop)); 
        start = stop+1; 
        j = j+1; 
        k = 1; 
    end 
end 
stop = i; 
finalError(j) = mean(Error(start:stop)); 
RP_Error = finalError; 
degRP = deg; 
clearvars -except RP_Error degRP 
  
%%Phase and RSSI Error with Respect to Orientation%% 
load('StandardPhase.mat'); %data comprising of two vectors Angle & 
Error 
Error = abs(Error); 
RSSI_Error = abs(RSSI_Error); 
j = 1; 
k = 0; 
start = 1; 
deg = [0:10:360]; 
for i = 1:length(Angle) 
    if deg(j)==Angle(i) 
        k = k +1; 
    elseif sum(Angle==deg(j))==0 
        deg(j)=[]; 
        k=1; 
    else 
        stop = i-1; 
        finalSPError(j) = mean(Error(start:stop)); 
        finalRError(j) = mean(RSSI_Error(start:stop)); 
        start = stop+1; 
        j = j+1; 
        k = 1; 
    end 
end 
stop = i; 
finalSPError(j) = mean(Error(start:stop)); 
finalRError(j) = mean(Error(start:stop)); 
SP_Error = finalSPError; 
R_Error = finalRError; 
degSP = deg; 
clearvars -except RP_Error SP_Error R_Error degSP degRP 
  
%%Conversion%% 
degSP = degSP*(pi/180); 
degRP = degRP*(pi/180); 
  
  
%%Graphing%% 
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polar(degSP(1:8),R_Error(1:8),'-r*') 
hold on 
polar(degRP(1:8),RP_Error(1:8),'-b*') 
polar(degSP(1:8),SP_Error(1:8),'-g*') 
  
polar(degSP(9:23),R_Error(9:23),'-r*') 
polar(degSP(9:23),SP_Error(9:23),'-g*') 
polar(degRP(9:22),RP_Error(9:22),'-b*') 
  
polar(degSP(24:31),R_Error(24:31),'-r*') 
polar(degSP(24:31),SP_Error(24:31),'-g*') 
polar(degRP(23:30),RP_Error(23:30),'-b*') 
  
Legend = legend('Standard RSSI Error','RSSI Informed Phase 
Error','Standard Phase Error'); 
set(Legend,'FontSize',10) 
title('Error Comparison of Distance Estimation Methods','FontSize',15) 
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C.5: Comparing Error for RSSI, Phase, and RSSI-Informed Phase 

 

Figure C-4: Comparison of distance estimations from various multipath environments 
(produced using the code below, and reproduction of Figure 5-8) 
 

C.5.1- Compare_Distance_Estimation_Methods.m 

%%Compare Distance Estimation Methods%% 
%%Ann Whitney%% 
%%Last Edited%% 
%%5/2/16%% 
  
%%The purpose of this program is to compare the accuracy of the 
different 
%%methods of distance estimation 
  
clear all 
close all 
clc 
  
%%Load Data%% 
load('D:\My Stuff\School\RFID\MATLAB\Data\CompleteRealWorld.mat') 
  
  
dist = dist'; 
% phase=phase*(pi/180); 
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obs = length(dist); %number of observations 
WhatObs = [1:obs]; 
  
%%Phase Distance Estimation%% 
[P_dist_app,phi,slope] = stationary_linearize_phase(freq,rssi',phase'); 
P_Error = P_dist_app-dist; 
Avg_P_Error = mean(abs(P_Error(WhatObs))); 
clearvars -except dist freq phase rssi P_Error WhatObs 
  
  
%%RSSI Distance Estimation%% 
AvgRSSI = mean(rssi,2); 
% AvgRSSI = avgRSSI; 
%R_dist_app = exp((AvgRSSI+58.365)/-10.64); 
R_dist_app = exp((AvgRSSI+57.95)/-9.977); 
R_Error = R_dist_app-dist'; 
% Avg_R_Error = mean(abs(R_Error(WhatObs))); 
Avg_R_Error = mean(abs(R_Error)); 
clearvars -except dist freq phase rssi P_Error R_Error R_dist_app YY 
  
%%RSSI Informed Phase%%  
cableLength = 6*0.3048; 
for i = 1:length(dist) 
    [newDist,RIPpts,fixedpt,slope,b,newSlope,newInt] = RIP( 
freq,phase(i,:)',rssi(i,:)',cableLength ); 
    RIP_Error(i) = newDist-dist(i); 
    clearvars -except dist freq phase rssi P_Error R_Error RIP_Error i 
cableLength 
end  
  
  
%%Graphing%% 
figure 
histogram(R_Error,'FaceColor','g'); 
hold on 
histogram(P_Error','FaceColor','r'); 
histogram(RIP_Error,'FaceColor','b'); 
l=legend('RSSI Error','Phase Error','RSSI Informed Phase Error'); 
set(l,'FontSize',11); 
xlabel('Distance Error (m)') 
ylabel('# Instances') 
t = {'Histogram of RSSI, Phase, and';'RSSI Informed Phase Distance 
Error'}; 
title(t,'FontSize',13) 
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C.6: RSSI Signature Gradual Change in Environment  

 

Figure C-5: Looking at the smooth transition of the RSSI Signature with small changes in 
the surrounding environment. (produced using the code below, and reproduction of 
Figure 6-5 and 6-6) 

 

C.6.1- Compare_Distance_Estimation_Methods.m 

%Sig_Small_Increments% 
%1/23/14% 
%last edited% 
%2/24/16% 
  
clear all 
close all 
clc 
  
name='..\Excel Data\RSSI Signature inch increments.xlsx'; 
sheet='Data'; 
range = 'C4:EV53'; 
  
  
[freq,rssi,phi,num_measure]=Load_Data(name,sheet,range); 
%rows are different frequencies 
%columns are different measurements 
colors = [1 0 0;1 0.5 0;1 1 0;0.5 1 0;0 1 1;0 0.5 1;0 0 1;... 
    0.5 0 1;1 0 1;1 0 0.5]; 
count = 0; 
start = 20; 
y = freq/1e6; 
x = [19:2:45];%[31:2:41] 
% surf(x,y,rssi(:,x)); 
subplottitle = ['Step 1';'Step 2';'Step 3';'Step 4';'Step 5';'Step 6']; 
  
for i = x 
    count = count+1; 
    [p,S] = polyfit(freq/1e6,rssi(:,i),4); 
    clc 
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%     subplot(3,2,count+2) 
%     plot(freq/1e6,polyval(p,freq/1e6),'k') 
%     hold on; 
%     plot(freq/1e6,rssi(:,i),'*') 
  
%     plot(freq/1e6,polyval(p,freq/1e6),'Color',colors(count,:)) 
    Z(:,count) = polyval(p,y); 
%     hold on; 
  
%     xlabel('Frequency (MHz)','FontSize',10); 
%     ylabel('RSSI (dBm)','FontSize',10); 
%     title(subplottitle(count,:),'FontSize',14); 
%     subtitle('Curve Fit of RSSI Signatures') 
     
%     title('RSSI Signature with Incremental Movement','FontSize',18) 
%     Leg =legend('Step 1','Step 2','Step 3','Step 4','Step 5','Step 
6'); 
%     set(Leg,'FontSize',12) 
%     set(gca,'FontSize',10) 
end 
h =surf([1:length(x)],y,Z,'EdgeColor','none') 
  
% colormap(gray) 
colorbar 
xlabel('Step #','FontSize',14) 
ylabel('Frequency (MHz)','FontSize',14) 
zlabel('RSSI (dBm)','FontSize',14) 
title('RSSI Signature with Incremental Movement','FontSize',18) 
  
%%Making a Movie%% 
% [freq,rssi,phi,num_measure]=Load_Data(name,sheet,range); 
% mov = VideoWriter('Signature 1 inch all.avi'); 
% mov.FrameRate=6; 
% open(mov) 
% for i = 1:2:num_measure 
%     figure; 
%     plot(freq/1e6,mean([rssi(:,i),rssi(:,i+1)],2),'+') 
%     axis([900 930 -75 -66]) 
%     xlabel('Frequency (MHz)'); 
%     ylabel('RSSI (dBm)'); 
%     title('RSSI Signature') 
%     frame=getframe(gcf); 
%     writeVideo(mov,frame) 
% end 
% close(mov); 
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C.7: Training and Testing a Neural Network with the RSSI Signature 

Note: Neural_Network.m (C.7.1) is used in RFID_Sig.m (C.7.2), RSSI_Sig_for_Phase.m (C.7.3), and 
BLE_Signature.m (C.7.4) 
 

C.7.1- Neural_Network.m 

function [net, Actual, Guess,Reduction] = Neural_Network( 
input_data,desired_output,hidden_layers) 
%%input_data = n x m matrix of data, where n is the number of features 
and 
%%m is the number of observations 
%%desired_output = 1 x m vector of data, where m is the number of 
%%observations 
%%hidden_layers = number of desired hidden layers 
  
%%Cross Validation%% 
k=10; 
cvFolds = crossvalind('Kfold', desired_output, k);   % get indices of 
10-fold CV for each fold 
i=1; 
testIdx = (cvFolds == i);               % get indices of test instances 
trainIdx = ~testIdx;                    % get indices training 
instances 
  
%%Training Network%% 
net = fitnet(hidden_layers); 
net.divideParam.trainRatio = .8; 
net.divideParam.valRatio = .1; 
net.divideParam.testRatio = .1; 
[net,tr] = train(net,input_data(:,trainIdx),desired_output(trainIdx)); 
Actual = desired_output(testIdx); 
Guess = net(input_data(:,testIdx)); 
After = mean(abs(Actual-Guess)); 
Before = mean(abs(Actual)); 
Reduction = (1-(abs(After)/abs(Before)))*100; 
end 
 

C.7.2- RFID_Sig.m 

%%RFID_Sig.m%% 
%%Ann Whitney%% 
%%Originally Written%% 
%%5/2/16%% 
%%Last Edited%% 
%%3/11/19%% 
  
%%The purpose of this program is to train and test a neural network to 
%%analyze the RFID RSSI Signature using RSSI distance 
  
clear all 
close all 
clc 
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%%Load Data%% 
load('D:\My Stuff\School\RFID\MATLAB\Data\CompleteRealWorld.mat') 
  
dist = dist'; 
% phase=phase*(pi/180); 
obs = length(dist); %number of observations 
WhatObs = [1:obs]; 
  
%%RSSI Distance Estimation%% 
AvgRSSI = mean(rssi,2); 
% AvgRSSI = avgRSSI; 
%R_dist_app = exp((AvgRSSI+58.365)/-10.64); 
R_dist_app = exp((AvgRSSI+57.95)/-9.977); 
R_Error = R_dist_app-dist'; 
% Avg_R_Error = mean(abs(R_Error(WhatObs))); 
Avg_R_Error = mean(abs(R_Error)); 
clearvars -except dist freq phase rssi P_Error R_Error R_dist_app YY 
  
% %%RSSI Signature Using RSSI%% 
% %%Training R Signature%% 
%%No Smoothing%% 
%%Only Complete Signatures%% 
addpath('D:\My Stuff\School\RFID\MATLAB\Programs') 
count = 0; 
for k = 1 
    for i = 1:10 
        [R_net, Actual, Guess, Reduction] = Neural_Network( 
rssi',R_Error',k); 
        count = count+1; 
        info(count,:)=[k Reduction]; 
        if count==1 
            best_Rnet = R_net; 
            best_Red = Reduction; 
        else 
            if Reduction>best_Red 
                best_Rnet = R_net; 
                best_Red = Reduction; 
            end 
        end 
    end 
end 
h1 = histogram(info(:,2),10);  %differnt % reduction of error from 
different neural networks 
best_Red 
clearvars -except best_Rnet 
best = best_Rnet; 
clear best_Rnet 
%save('D:\My Stuff\School\RFID\MATLAB\Programs\best_Rnet.mat'); 
%%TEST ON 201 Environment%% 
load('D:\My Stuff\School\RFID\MATLAB\Data\201Environment.mat') 
AvgRSSI = mean(rssi,2); 
R_dist_app = exp((AvgRSSI+57.95)/-9.977); 
Original_Error = R_dist_app-dist; 
Computed_Error = best(rssi')'; 
Computed_Dist = R_dist_app-Computed_Error; 
Final_Error = Computed_Dist-dist; 
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Before = mean(abs(Original_Error)) 
After = mean(abs(Final_Error)) 
Reduction = (1-(abs(After)/abs(Before)))*100 
figure; 
plot(Original_Error,Computed_Error,'*') 
xlabel('Original_Error') 
rand_rssi=std2(rssi)*randn(size(rssi))+mean(mean(rssi)); 
Rand_Computed_Error=best(rand_rssi')'; 
Rand_Computed_Dist=R_dist_app-Rand_Computed_Error; 
Rand_Final_Error = Rand_Computed_Dist-dist; 
Rand_After = mean(abs(Rand_Final_Error)) 
Y=[Final_Error Rand_Final_Error]; 
[p,~,~]=anova1(Y) 
  
  
% %%RSSI Signature Using RSSI%% 
% %%Using Smoothing%% 
% % for j=1:size(rssi,1) 
% %     [xx,yy]=Smooth(freq,rssi',25); 
% %     YY(j,:)=yy; 
% % end 
% %%%OR 
% YY = rssi; 
% addpath('D:\My Stuff\School\RFID\MATLAB\Programs') 
% count = 0; 
% for k = 2 
%     for i = 1:1000 
%         [R_net, Actual, Guess, Reduction] = Neural_Network( 
YY',R_Error',k); 
%         count = count+1; 
%         info(count,:)=[k Reduction]; 
%         if count==1 
%             best_Rnet = R_net; 
%             best_Red = Reduction; 
%         else 
%             if Reduction>best_Red 
%                 best_Rnet = R_net; 
%                 best_Red = Reduction; 
%             end 
%         end 
%     end 
% end 
% h1 = histogram(info(:,2),10); 
% best_Red 
% clearvars -except best_Rnet 
% best = best_Rnet; 
% clear best_Rnet 
% % save('D:\My Stuff\School\RFID\MATLAB\Programs\best_Rnet.mat'); 
  
  
% %%Testing R Signature%% 
% load('D:\My Stuff\School\RFID\MATLAB\Programs\best_Rnet.mat'); 
% GuessError = best(rssi'); 
% GuessDist = R_dist_app+GuessError' ; 
% After = GuessDist'-dist; 
% plot(dist,dist) 
% hold on 
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% plot(dist,R_dist_app,'*') 
% plot(dist,GuessDist,'*') 
% legend('Ideal','Before','After') 
%  
% After = mean(abs(After)); 
% Before = mean(abs(R_Error)); 
% Reduction = (1-(abs(After)/abs(Before)))*100 
  
  
  
% %%Application of RSSI Sig to RSSI Method%% 
% load('best_Rnet.mat') 
% R_Guess = best_Rnet(rssi'); 
% plot(R_Guess,R_Error,'r*') 
% set(gca,'FontSize',15) 
% xlabel('Neural Network Predicted Error (m)') 
% ylabel('Original Error (m)') 
% title('Original vs. Predicted Error') 
% R_dist_app = R_dist_app'-R_Guess; 
% R_Sig_Error = R_dist_app-dist; 
% Avg_R_Sig_Error = mean(abs(R_Sig_Error)) 

 

C.7.3- RSSI_Sig_for_Phase.m 

%%RSSI_Sig_for_Phase.m%% 
%%Ann Whitney%% 
%%Originally Written%% 
%%5/2/16%% 
%%Last Edited%% 
%%3/11/19%% 
  
%%The purpose of this program is to train and test a neural network to 
%%analyze the RFID RSSI Signature using phase distance estimation 
  
clear all 
close all 
clc 
  
%%Load Data%% 
load('D:\My Stuff\School\RFID\MATLAB\Data\CompleteRealWorld.mat') 
  
dist = dist'; 
% phase=phase*(pi/180); 
obs = length(dist); %number of observations 
WhatObs = [1:obs]; 
  
%%Phase Distance Estimation%% 
[P_dist_app,phi,slope] = stationary_linearize_phase(freq,rssi',phase'); 
P_Error = P_dist_app-dist; 
Avg_P_Error = mean(abs(P_Error(WhatObs))); 
clearvars -except dist freq phase rssi P_Error WhatObs 
  
%%RSSI Signature Using Phase%% 
count = 0; 
for k = 4:8 
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    for i = 1:100 
        [P_net, Actual, Guess, Reduction] = Neural_Network( 
rssi',P_Error,k); 
        count = count+1; 
        info(count,:)=[k Reduction]; 
        if count==1 
            best_Pnet = P_net; 
            best_Ped = Reduction; 
        else 
            if Reduction>best_Ped 
                best_Pnet = P_net; 
                best_Ped = Reduction; 
            end 
        end 
    end 
end 
save('best_Pnet.mat','best_Pnet'); 
best_Ped 
plot(info(:,1),info(:,2),'*'); 
axis([1 10 0 40]) 
  
%%Application of RSSI Sig to Phase Method%% 
load('best_Pnet.mat') 
P_Guess = best_Pnet(rssi'); 
figure; 
plot(P_Guess,P_Error,'g*') 
P_dist_app = P_dist_app-P_Guess; 
P_Sig_Error = P_dist_app-dist; 
Avg_P_Sig_Error = mean(abs(P_Sig_Error)) 
 
 
 

C.7.4- BLE_Signature.m 

%%BLE_Signature.m%% 
%%Ann Whitney%% 
%%9/28/16%% 
 
%%The purpose of this program is to find the best neural network for 
the BLE RSSI Signature 
  
close all 
clear all 
clc 
  
load('D:\My Stuff\School\Bluetooth\Data\BLE_Dist_Data.mat') 
num = size(RSSI,1); 
  
%%RSSI Distance Estimation%% 
    coeff = -5.786; 
    offset = -55.154; 
    freq = [0:36]; 
for i  = 1:num %number of datasets 
    rssi = RSSI(i,:); 
    AvgRSSI(i) = mean(rssi(rssi~=0)); 
    DistPred(i) = exp((AvgRSSI(i)-offset)/(coeff)); 
end 
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R_Error = DistPred'-(dist./100); 
Avg_R_Error = mean(abs(R_Error)); 
  
%%Average/Smooth%% 
numpts = round(size(RSSI,2)/2); 
top = strcat('Using ',{' '},num2str(numpts),' Points from Smoothed 
Signature'); 
top = [{'Histogram of Percent Reduction of Error'};top]; 
for i = 1:num 
    x = freq; 
    y = RSSI(i,:); 
    incomplete = find(y==0); 
    if ~isempty(incomplete) 
        y(incomplete)=[]; 
        x(incomplete)=[]; 
    end 
    [ xx,yy ] = Smooth( x,y,numpts,'BLE' ); 
    input(:,i)=yy'; 
end 
  
%%Apply to Neural Network%% 
 count = 0; 
for k = 4 %hidden layers 
    for i = 1:500 
        [net, Actual, Guess, Reduction] = Neural_Network( input 
,R_Error',k); 
        count = count+1; 
        info(count,:)=[k Reduction]; 
        if count==1 
            best = net; 
            best_Red = Reduction; 
        else 
            if Reduction>best_Red 
                best = net; 
                best_Red = Reduction; 
            end 
        end 
    end 
end 
h1 = histogram(info(:,2),10); 
xlabel('Percent Reduction in Error') 
ylabel('Number of Instances') 
title(top) 
max(info(:,2)) 
clearvars -except best 
save('D:\My Stuff\School\Bluetooth\Data\best_Rnet.mat') 
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C.8: Representing the RSSI Signature 

Note:  
• RepresentingSig.m (C.8.1) uses the other curve fitting functions below. 
• The method for replacing null values with a constant is completely contained in this code 

and does not need an additional function 
• All of these functions rely on myR2 (8.6.1) and myRand (8.6.2)  
• This code is used by uncommenting the section of code associated with the desired curve 

fit. 
 

C.8.1- RepresentingSig.m 

%%RepresentingSig.m%% 
%%Ann Whitney%% 
%%7/14/16%% 
%%Last Edited%% 
%%9/28/16%% 
%%RepresentingSig%% 
  
%%The purpose of this program is to analyze different ways of 
representing 
%%the signature, and use the different curve fits 
  
close all 
clear all 
clc 
  
% load('D:\My 
Stuff\School\RFID\MATLAB\Data\M6e_Data_AllIncludingIncomplete.mat') 
load('D:\My Stuff\School\RFID\MATLAB\Data\RealWorld.mat') 
num = size(rssi,1); 
  
% %%RSSI Distance Estimation%% 
% for i = 1:num 
%     x = freq; 
%     y = rssi(i,:)'; 
%     col = find(isnan(y)); 
%     x(col)=[]; 
%     y(col)=[]; 
%     AvgRSSI(i) = mean(y); 
% end 
% R_dist_app = exp((AvgRSSI+58.365)/-10.64); 
% R_Error = R_dist_app'-dist; 
% Avg_R_Error = mean(abs(R_Error)); 
  
  
% %%Sine Approximation%% 
% numpts = 5; 
% top = [{'Sine Wave Approximation'};{'Using 5 Points'}]; 
%  
% numpts = 25; 
% top = [{'Sine Wave Approximation'};{'Using 25 Points'}]; 
%  
% numpts = 50; 
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% top = [{'Sine Wave Approximation'};{'Using 50 Points'}]; 
% for i = 1:num 
%     x = freq; 
%     y = rssi(i,:)'; 
%     col = find(isnan(y)); 
%     x(col)=[]; 
%     y(col)=[]; 
%     [ xx,yy ] = SinFit(x,y,numpts); 
%     input(:,i)= yy; 
% end 
%  
% numpts = 5; 
% top = [{'Sine Wave Approximation'};{'Using Coefficients'}]; 
% for i = 1:num 
%     x = freq; 
%     y = rssi(i,:)'; 
%     col = find(isnan(y)); 
%     x(col)=[]; 
%     y(col)=[]; 
%     [ A,B,C,D ] = SinFit_Constants(x,y,numpts); 
%     input(:,i)= [A,B,C,D]'; 
% end 
  
  
  
  
% % %%Polynomial Approximation%% 
% numpts = 50; 
% order = 8; 
% top = [{'Histogram of Percent Reduction of Error'};{'Using 
Coefficients from 4th Order Polynomial'}]; 
%  
% for i = 1:num 
%     x = freq; 
%     y = rssi(i,:)'; 
%     col = find(isnan(y)); 
%     x(col)=[]; 
%     y(col)=[]; 
%     [p,xx,yy] = PolynomialFit(x,y,order,numpts); 
%     input(:,i)=yy'; 
% end 
  
  
% %% Cubic Spline %% 
% numpts = 5; 
% % top = [{'Histogram of Percent Reduction of Error'};{'Using 50 
Points from Cubic Spline'}]; 
% addpath('D:\My Stuff\School\RFID\MATLAB\Programs') 
% for i = 1:num 
%     x = freq; 
%     y = rssi(i,:)'; 
%     col = find(isnan(y)); 
%     x(col)=[]; 
%     y(col)=[]; 
%     [ xx,yy ] = CubicSpline(x,y,numpts); 
%     input(:,i)=yy'; 
% end 
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% %%-80 dBm%% 
% numpts = 50; 
% top = [{'Histogram of Percent Reduction of Error'};{'Using 50 Points 
Directly from Signature'}]; 
% for i = 1:num 
%     x = freq; 
%     y = rssi(i,:)'; 
%     col = find(isnan(y)); 
%     y(col)=-80; 
%     xx = [x(1):(x(end)-x(1))/(numpts-1):x(end)]; 
%     for j = 1:numpts 
%         where(j)=find((abs(x-xx(j)))==min(abs(x-xx(j)))); 
%     end 
%     yy = y(where); 
%     input(:,i)=yy'; 
% end 
  
% %%Average/Smooth%% 
% %%RSSI%% 
% numpts = 25; 
% WhichDevice='RFID'; 
% top = [{'Histogram of Percent Reduction of Error'};{'Using 25 Points 
from Smoothed Signature'}]; 
% for i = 1:num 
%     x = freq; 
%     y = rssi(i,:)'; 
%     [ xx,yy ] = Smooth( x,y,numpts,WhichDevice ); 
%     input(:,i)=yy'; 
% end 
  
% %%Average/Smooth%% 
% %%Phase%% 
% numpts = 25; 
% top = [{'Histogram of Percent Reduction of Error'};{'Using 25 Points 
from Smoothed Signature'}]; 
% for i = 1:num 
%     RSSI = rssi(i,:); 
%     Phi = phase(i,:)*(pi/180); 
%     Freq = freq; 
%     col = find(isnan(Phi)); 
%     Phi(col)=[]; 
%     Freq(col)=[]; 
%     RSSI(col)=[]; 
%     [dist_app,phi,slope] = linearize_phase(Freq,RSSI',Phi'); 
%     P_dist(i)=dist_app; 
%     P_Error(i) = P_dist(i)-dist(i); 
%     x = Freq; 
%     y = phi'; 
%     [ xx,yy ] = Smooth( x,y,numpts ); 
%     input(:,i)=yy'; 
% end 
%  
%  
%  
% %%Apply to Neural Network%% 
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%  count = 0; 
% for k = 6 %hidden layers 
%     for i = 1:500 
%         [net, Actual, Guess, Reduction] = Neural_Network( input 
,P_Error,k); 
%         count = count+1; 
%         info(count,:)=[k Reduction]; 
%         if count==1 
%             best = net; 
%             best_Red = Reduction; 
%         else 
%             if Reduction>best_Red 
%                 best = net; 
%                 best_Red = Reduction; 
%             end 
%         end 
%     end 
% end 
% h1 = histogram(info(:,2),10); 
% xlabel('Percent Reduction in Error') 
% ylabel('Number of Instances') 
% title(top) 
% max(info(:,2)) 
% clearvars -except best 
% save('D:\My Stuff\School\RFID\MATLAB\Data\best_Pnet.mat') 
  
% %%ANALYSIS%% 
% data = xlsread('C:\Users\Ann\Desktop\Rep Sig\Compare 
Methods.xlsx','Sheet1','D7:AR506'); 
% Med = median(data,1); 
% Max = max(data); 
% Pts5 = [1 5 8 11 15 19 23 27 39]; 
% Pts25 = [2 6 9 12 16 20 24 28 40]; 
% Pts50 = [3 7 10 13 17 21 25 29 41]; 
% Poly2 = [11 12 13]; 
% Poly3 = [15 16 17]; 
% Poly4 = [19 20 21]; 
% Poly5 = [23 24 25]; 
% Poly6 = [27 28 29]; 
% Poly = [Poly2 Poly3 Poly4 Poly5 Poly6]; 
% Coeff = [4 14 18 22 26 30]; 
% Full = [1 11 15 19 23 27]; 
% Sin = [1 2 3]; 
% Cubic = [5 6 7]; 
% Replace80 = [8 9 10]; 
% RollingMean = [39 40 41]; 
%  
% % %%Compare Basic Methods%% 
% % Poly2Data=[]; 
% % Poly3Data=[]; 
% % Poly4Data=[]; 
% % Poly5Data=[]; 
% % Poly6Data=[]; 
% % SinData=[]; 
% % CubicData=[]; 
% % Replace80Data=[]; 
% % RollingMeanData = []; 
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% % for i = 1:length(Poly2) 
% %     Poly2Data = [Poly2Data;data(:,Poly2(i))]; 
% %     Poly3Data = [Poly3Data;data(:,Poly3(i))]; 
% %     Poly4Data = [Poly4Data;data(:,Poly4(i))]; 
% %     Poly5Data = [Poly5Data;data(:,Poly5(i))]; 
% %     Poly6Data = [Poly6Data;data(:,Poly6(i))]; 
% %     SinData = [SinData;data(:,Sin(i))]; 
% %     CubicData = [CubicData;data(:,Cubic(i))]; 
% %     Replace80Data = [Replace80Data;data(:,Replace80(i))]; 
% %     RollingMeanData = [RollingMeanData;data(:,RollingMean(i))]; 
% % end 
% %  
% %  
% % clear data; 
% % % x=[{'Sin' '2nd' '3rd' '4th' '5th' '6th' 'Cubic' 'Roll' '-80'}]; 
% % % y = [SinData Poly2Data Poly3Data Poly4Data Poly5Data Poly6Data 
CubicData RollingMeanData Replace80Data]; 
% % x=[{'Sine Wave' '6th Poly' 'Cubic Spline' 'Rolling Mean' '-80 in 
Holes'}]; 
% % y = [SinData Poly6Data CubicData RollingMeanData Replace80Data]; 
% % % x=[{'2nd Poly' '3rd Poly' '4th Poly' '5th Poly' '6th Poly'}]; 
% % % y = [Poly2Data Poly3Data Poly4Data Poly5Data Poly6Data]; 
% % p = anova1(y,x); 
% % median(y,1); 
% % max(y); 
% % % xl = xlabel('Methods of Representing the Signature') 
% % yl = ylabel('% Reduction in Error'); 
% % % s = title('Boxplot of Percent Reduction of Error'); 
% % % set(s,'FontSize',15) 
% % % set(xl,'FontSize',12) 
% % set(yl,'FontSize',12) 
% % %%%%%%%%%%%%%%%%%%%%%%% 
%  
% %%Calculate Whiskers Etc.%%%%% 
% % %%Info matrix stores 
% % %% row (1) upper whisker 
% % %% row (2) upper quartile 
% % %% row (3) median 
% % %% row (4) lower quartile 
% % %% row (5) lower whisker 
% % data = sort(y,1); 
% % for i = 1:size(data,2) 
% %     Info(2:4,i)=fliplr(quantile(data(:,i),[0.25 0.5 0.75])); 
% %     UpWhisker = Info(2,i)+1.5*(Info(2,i)-Info(4,i)); 
% %     LowWhisker = Info(4,i)-1.5*(Info(2,i)-Info(4,i)); 
% %     Info(1,i)=UpWhisker; 
% %     Info(5,i)=LowWhisker; 
% % %     where = max(find(data(:,i)<=UpWhisker)) 
% % %     Info(1,i)=data(where,i) 
% % %     where = min(find(data(:,i)>=LowWhisker)) 
% % %     Info(5,i)=data(where,i) 
% % end 
%  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  
% % %% Coeff vs Points%% 
% % CoeffData=[]; 
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% % FullData=[]; 
% % for i = 1:length(Coeff) 
% %     FullData = [FullData;data(:,Full(i))]; 
% %     CoeffData = [CoeffData;data(:,Coeff(i))]; 
% % end 
% % x = {'Constants' '5 Points'} 
% % y = [CoeffData FullData]; 
% % p=anova1(y,x) 
% % median(y,1); 
% % max(y); 
% % yl = ylabel('% Reduction in Error'); 
% % set(yl,'FontSize',12) 
% % %%%%%%%%%%%%%%%%%%%% 
%  
% %% Number of points%% 
% Pts5Data=[]; 
% Pts25Data=[]; 
% Pts50Data=[]; 
% for i = 1:length(Pts5) 
%     Pts5Data=[Pts5Data;data(:,Pts5(i))]; 
%     Pts25Data=[Pts25Data;data(:,Pts25(i))]; 
%     Pts50Data=[Pts50Data;data(:,Pts50(i))]; 
% end 
% x = {'5 Points' '25 Points' '50 Points'} 
% y = [Pts5Data Pts25Data Pts50Data]; 
% p=anova1(y,x) 
% median(y,1); 
% max(y); 
% yl = ylabel('% Reduction in Error'); 
% set(yl,'FontSize',12) 
% %%%%%%%%%%%%%%%%% 
%  
% %Calculate Whiskers Etc.%%%%% 
% %%Info matrix stores 
% %% row (1) upper whisker 
% %% row (2) upper quartile 
% %% row (3) median 
% %% row (4) lower quartile 
% %% row (5) lower whisker 
% data = sort(y,1); 
% for i = 1:size(data,2) 
%     Info(2:4,i)=fliplr(quantile(data(:,i),[0.25 0.5 0.75])); 
%     UpWhisker = Info(2,i)+1.5*(Info(2,i)-Info(4,i)); 
%     LowWhisker = Info(4,i)-1.5*(Info(2,i)-Info(4,i)); 
%     Info(1,i)=UpWhisker; 
%     Info(5,i)=LowWhisker; 
% %     where = max(find(data(:,i)<=UpWhisker)) 
% %     Info(1,i)=data(where,i) 
% %     where = min(find(data(:,i)>=LowWhisker)) 
% %     Info(5,i)=data(where,i) 
% end 
%  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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C.8.2- Sine Wave Curve Fit of RSSI Signature 

 

Figure C-6: Using a sine wave to fit approximate the RSSI Signature (produced using the 
code below, and reproduction of Figure 7-4) 
 
Note: SinFit.m (C.8.2.1) fits a sine wave to the signature and then outputs a variable number of 
points. 
 
 
 

C.8.2.1- SinFit.m 

function [xx,yy] = SinFit( x,y,numpts ) 
%Fitting RSSI Signature to sin function 
%%Finding Best Sine Wave Fit%% 
%%of the form 
%% A*sin(Bx-C)+D 
  
%% Example of How To Use %% 
% data = xlsread('C:\Users\Ann\Desktop\Rep Sig\Example 
Sig.xlsx','C4:D53'); 
% x = data(:,1); 
% y = data(:,2); 
% numpts = 50; 
% [ xx,yy ] = SinFit( x,y,numpts); 
  
%% Initial Calculations %% 
top = max(y); 
bottom = min(y); 
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mid = (top+bottom)/2; 
range = top-bottom; 
A = range/2; 
D = mid; 
fudge = range*0.05; %to find points close to top or bottom 
  
%% Simplification of Changes in Curve %% 
for i = 1:length(x); %simplification of changes in curve 
    if y(i)>(top-fudge) 
        direction(i) = 1; 
    elseif y(i)<(bottom+fudge) 
        direction(i) = -1; 
    end 
end 
  
%% Counting Changes in Curve %% 
change = 1; 
up=-1; 
if exist('direction','var') 
    for i = 2:length(direction) 
        if direction(i)>direction(i-1) %%Going Up 
            if up==0; 
                change = change+1; 
            end 
            up = 1; 
        elseif direction(i)<direction(i-1) %%Going Down 
            if up==1; 
                change = change+1; 
            end 
            up=0; 
        end 
    end 
    low = find(direction==-1,1,'first'); 
    high = find(direction==1,1,'first'); 
else 
    low = 1; 
    high = length(x); 
end 
lengthPeriods = abs(x(high)-x(low))*2; 
numPeriods = round(change/2); 
B = (2*pi*numPeriods)/lengthPeriods; 
  
midX = round(abs(high-low)/2)+min(low,high); 
phi = x(midX); 
if low>high 
    phi = phi+lengthPeriods/2; 
end 
phi = 2*pi*(phi/lengthPeriods); 
C = phi; 
  
xx = [x(1):(x(end)-x(1))/(numpts-1):x(end)]; 
yy = A*sin(B*xx-C)+D; 
  
% %%Plot%% 
% h1 = plot(x/(10^6),y,'d','MarkerFaceColor','b'); 
% hold on; 
% %%%%%%% 
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% h2 = plot(xx,yy,'g'); 
  
  
% b = [0:1e-9:1e-6]; 
% for i = 1:length(b) 
%     f = (A*sin(b(i)*x-C))+D; 
%     saveRsqB(i) = myR2(x,y,f); 
% end 
% h5 = plot(b,saveRsqB); 
% hold on; 
% xlabel('Angular Frequency ( B )') 
% ylabel('R Squared') 
% title([{'Optimization Space of B'};{'Asin(Bx-C)+D'}]) 
% % axis([0 10 -5 1]) 
  
%%Optimize%% 
%%Gradient Descent%% 
N = length(x); 
nA = 0.5; 
nB = 1e-19; 
nC = 0.3; 
nD = 0.3; 
for i = 1:60 
    B = myRand(0,1e13,1)*nB; 
    for j = 1:10 
        f = A*sin(B*x-C)+D; 
        df_dA = -sin(C-B.*x); 
        dA = (2/N)*sum((f-y).*df_dA); 
        A = A - nA*dA; 
        df_dB = A.*x.*cos(C-B.*x); 
        dB = (2/N)*sum((f-y).*df_dB); 
        B = B - nB*dB; 
        df_dC = -A*cos(C-B.*x); 
        dC = (2/N)*sum((f-y).*df_dC); 
        C = C - nC*dC; 
        df_dD = 1; 
        dD = (2/N)*sum((f-y).*df_dD); 
        D = D - nD*dD; 
    end 
    saveRsq(i) = myR2(x,y,f); 
    Save(1,i)=A; 
    Save(2,i) = B; 
    Save(3,i) = C; 
    Save(4,i) = D; 
%     h6 = plot(xx,A*sin(B*xx-C)+D,'-','Color',[0.5 0 0.5]); 
%     pause(1) 
%     h3 = plot(Save(2,end),saveRsq(end),'-*','Color',[0.5 0 0.5]); 
%     pause(1) 
end 
  
which = find(saveRsq==max(saveRsq)); 
values = Save(:,which); 
A = values(1); 
B = values(2); 
C = values(3); 
D = values(4); 
yy = A*sin(B*xx-C)+D; 
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%%Plot%% 
% h4 = plot(xx/(10^6),A*sin(B*xx-C)+D,'-k','LineWidth',2); 
% legend('RSSI Signature','Sine Curve Fit') 
% xlabel('Frequency (MHz)') 
% ylabel('RSSI (dBm)') 
% set(gca,'FontSize',12) 
% title('Sine Wave Curve Fit') 
%%%%%%%% 
  
xx= xx'; 
yy=yy'; 
  
end 
 
 
Note: SinFit_Constants.m (C.8.2.2) fits a sine wave to the signature and then outputs the 
coefficients of the equation 
 

C.8.2.2- SinFit_Constants.m 

function [A,B,C,D] = SinFit_Constants( x,y,numpts ) 
%Fitting RSSI Signature to sin function 
%%Finding Best Sine Wave Fit%% 
%%of the form 
%% A*sin(Bx-C)+D 
  
%% Example of How To Use %% 
% data = xlsread('C:\Users\Ann\Desktop\Rep Sig\Example 
Sig.xlsx','C4:D53'); 
% x = data(:,1); 
% y = data(:,2); 
% numpts = 50; 
% [ xx,yy ] = SinFit( x,y,numpts); 
  
%% Initial Calculations %% 
top = max(y); 
bottom = min(y); 
mid = (top+bottom)/2; 
range = top-bottom; 
A = range/2; 
D = mid; 
fudge = range*0.05; %to find points close to top or bottom 
  
%% Simplification of Changes in Curve %% 
for i = 1:length(x); %simplification of changes in curve 
    if y(i)>(top-fudge) 
        direction(i) = 1; 
    elseif y(i)<(bottom+fudge) 
        direction(i) = -1; 
    end 
end 
  
%% Counting Changes in Curve %% 
change = 1; 
up=-1; 
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if exist('direction','var') 
    for i = 2:length(direction) 
        if direction(i)>direction(i-1) %%Going Up 
            if up==0; 
                change = change+1; 
            end 
            up = 1; 
        elseif direction(i)<direction(i-1) %%Going Down 
            if up==1; 
                change = change+1; 
            end 
            up=0; 
        end 
    end 
    low = find(direction==-1,1,'first'); 
    high = find(direction==1,1,'first'); 
else 
    low = 1; 
    high = length(x); 
end 
lengthPeriods = abs(x(high)-x(low))*2; 
numPeriods = round(change/2); 
B = (2*pi*numPeriods)/lengthPeriods; 
  
midX = round(abs(high-low)/2)+min(low,high); 
phi = x(midX); 
if low>high 
    phi = phi+lengthPeriods/2; 
end 
phi = 2*pi*(phi/lengthPeriods); 
C = phi; 
  
xx = [x(1):(x(end)-x(1))/(numpts-1):x(end)]; 
yy = A*sin(B*xx-C)+D; 
%  
%Plot%% 
%%graphs initial guess 
h1 = plot(x,y,'d','MarkerFaceColor','b'); 
hold on; 
h2 = plot(xx,yy,'g'); 
f = (A*sin(B*x-C))+D; 
RsqB = myR2(x,y,f); 
% title([{'Initial Estimate of Sine Curve'};{'Asin(Bx-C)+D'}]); 
% leg1=strcat('Initial Curve Fit with R2 Value ',{' '},num2str(RsqB)); 
% leg1=['Signature Points',leg1]; 
% legend('Signature',leg1); 
xlabel('Frequency (Hz)'); 
ylabel('RSSI (dBm)'); 
  
% %%plots objective function space%% 
% figure; 
% b = [0:1e-9:1e-6]; 
% for i = 1:length(b) 
%     f = (A*sin(b(i)*x-C))+D; 
%     saveRsqB(i) = myR2(x,y,f); 
% end 
% h5 = plot(b,saveRsqB); 
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% hold on; 
% xlabel('Angular Frequency ( B )') 
% ylabel('R Squared') 
% title([{'Optimization Space of B'};{'Asin(Bx-C)+D'}]) 
  
%%Optimize%% 
%%Gradient Descent%% 
N = length(x); 
nA = 0.5; 
nB = 1e-19; 
nC = 0.3; 
nD = 0.3; 
for i = 1:60 
    B = myRand(0,1e13,1)*nB; 
    for j = 1:10 
        f = A*sin(B*x-C)+D; 
        df_dA = -sin(C-B.*x); 
        dA = (2/N)*sum((f-y).*df_dA); 
        A = A - nA*dA; 
        df_dB = A.*x.*cos(C-B.*x); 
        dB = (2/N)*sum((f-y).*df_dB); 
        B = B - nB*dB; 
        df_dC = -A*cos(C-B.*x); 
        dC = (2/N)*sum((f-y).*df_dC); 
        C = C - nC*dC; 
        df_dD = 1; 
        dD = (2/N)*sum((f-y).*df_dD); 
        D = D - nD*dD; 
    end 
    saveRsq(i) = myR2(x,y,f); 
    Save(1,i)=A; 
    Save(2,i) = B; 
    Save(3,i) = C; 
    Save(4,i) = D; 
     
%     %%Plot%% 
%     h6 = plot(xx,A*sin(B*xx-C)+D,'-','Color',[0.5 0 0.5]); 
%     pause(1) 
%     h3 = plot(Save(2,end),saveRsq(end),'-*','Color',[0.5 0 0.5]); 
%     pause(1) 
end 
  
which = find(saveRsq==max(saveRsq)); 
values = Save(:,which); 
A = values(1); 
B = values(2); 
C = values(3); 
D = values(4); 
yy = A*sin(B*xx-C)+D; 
  
%Plot%% 
h4 = plot(xx,A*sin(B*xx-C)+D,'-k','LineWidth',2); 
leg1=strcat('Initial Curve Fit with R2 Value ',{' '},num2str(RsqB)); 
leg2 = strcat('Final Curve Fit with R2 Value ',{' 
'},num2str(saveRsq(which))); 
leg=['Signature Points',leg1,leg2]; 
legend(leg) 
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xlabel('Frequency (Hz)') 
ylabel('RSSI (dBm)') 
set(gca,'FontSize',12) 
title('Sine Wave Curve Fit') 
%%%%%%% 
  
xx= xx'; 
yy=yy'; 
  
end 
 
 
 
  

C.8.3- Polynomial Curve Fit 

 

Figure C-7: Using a 6th order polynomial to fit approximate the RSSI Signature 
(produced using the code below, and reproduction of Figure 7-5) 

 

C.8.3.1- PolynomialFit.m 

function [ p,xx,yy ] = PolynomialFit(x,y,order,numpts) 
%Using Polynomial to fit Signature 
  
% %%Example of How To Use%% 
% data = xlsread('C:\Users\Ann\Desktop\Rep Sig\Example 
Sig.xlsx','C4:D53'); 
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% x = data(:,1); 
% y = data(:,2); 
% order = 4; 
% numpts = 5; 
% coeff=PolynomialFit(x,y,order,numpts); 
  
  
xx = [x(1):(x(end)-x(1))/(numpts-1):x(end)]'; 
p = polyfit(x,y,order); 
clc 
yy = polyval(p,xx); 
f = polyval(p,x); 
RsqB = myR2(x,y,f); 
  
%Plot%%%%% 
plot(x/(10^6),y,'d','MarkerFaceColor','b') 
hold on; 
plot(xx/(10^6),yy,'-k','LineWidth',2) 
xlabel('Frequency (MHz)'); 
ylabel('RSSI (dBm)'); 
title('6th Order Polynomial Curve Fit'); 
leg1=strcat('Polynomial Curve Fit with R2 Value ',{' '},num2str(RsqB)); 
leg1=['Signature Points',leg1]; 
legend('Signature',leg1); 
set(gca,'FontSize',12) 
%%%%%%%%% 
hold off 
end 
 
 
 
 

C.8.4- Cubic Spline Curve Fit 

 

Figure C-8: Using a cubic spline with 5, 25, and 50 points to approximate the RSSI 
Signature (produced using the code below, and reproduction of Figure 7-6) 
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C.8.4.1- CubicSpline.m 

function [ xx,yy ] = CubicSpline(x,y,numpts) 
%The purpose of this function is to convert a sig to cubic spline 
  
%% Example of How To Use %% 
% data = xlsread('C:\Users\Ann\Desktop\Rep Sig\Example 
Sig.xlsx','C4:D53'); 
% x = data(:,1); 
% y = data(:,2); 
% numpts = 5; 
% [xx,yy] = CubicSpline(x,y,numpts); 
  
xx = [x(1):(x(end)-x(1))/(numpts-1):x(end)]; 
yy = spline(x,y,xx); 
  
plot(x,y,'d','MarkerFaceColor','b') 
hold on 
plot(xx,yy,'k','LineWidth',1.5) 
xlabel('Frequency (Hz)') 
ylabel('RSSI (dBm)') 
title('Cubic Spline Interpolation') 
  
numpts=25; 
xx = [x(1):(x(end)-x(1))/(numpts-1):x(end)]; 
yy = spline(x,y,xx); 
plot(xx,yy,'r','LineWidth',1.5) 
  
numpts=50; 
xx = [x(1):(x(end)-x(1))/(numpts-1):x(end)]; 
yy = spline(x,y,xx); 
plot(xx,yy,'g','LineWidth',1.5) 
  
legend('Signature Points','5 Point Spline','25 Point Spline','50 Point 
Spline') 
hold off 
end 
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C.8.5- Rolling Mean Curve Fit 

 

Figure C-9: Using a rolling average to approximate the RSSI Signature (produced using 
the code below, and reproduction of Figure 7-7) 
 

C.8.5.1- Smooth.m 

function [ xx,yy ] = Smooth( x,y,numpts,WhichDevice ) 

%% The purpose of this function is to smooth out an RSSI Signature 
  
    %% Eliminate NaN 
    col = find(isnan(y)); 
    x(col)=[]; 
    y(col)=[]; 
     
    %% Smooth Curve 
    [Y]=smooth(y); 
     
    %% Set # Of Points 
    if strcmp(WhichDevice,'RFID') 
        xmin = 902669000; 
        xmax = 927758000; 
    else 
        xmin=0; 
        xmax=36; 
    end 
    xx = [xmin:(xmax-xmin)/(numpts-1):xmax]; 
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    for k = 1:numpts 
        where = find(xx(k)>x); 
        where = max(where); 
        if isempty(where) 
            yy(k)=Y(1); 
        else 
            if where==length(x) 
                where = where-1; 
            end 
            yy(k)=((Y(where+1)-Y(where))*(xx(k)-x(where)))/(x(where+1)-
x(where))+Y(where); 
        end 
    end 
    yy(yy<-80)=-80; 
    %%%% Plot 
    close all 
    plot(x,y,'d','MarkerFaceColor','b') 
    hold on 
%     plot(xx,yy,'k-o') 
    plot(xx,yy,'k','LineWidth',1.5) 
    xlabel('Frequency (Hz)') 
    ylabel('RSSI (dBm)') 
    title('Smoothed RSSI Signature'); 
    legend('Original Signature','Smoothed Signature Points'); 
    pause; 
  %%%%%%%%% 
  
end 
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C.8.6- Supplemental Functions 

 
 
Note: myR2.m (C.8.6.1) is a function to quickly calculate goodness of fit 
 

C.8.6.1- myR2.m 

function [ Rsq ] = myR2( x,y,f ) 
%% The purpose of this function is to quickly calculate the R^2 value 
  
% %%Linear Regression%% 
% m1 = mean(x.*y); 
% m2 = mean(x)*mean(y); 
% m3 = mean(x.^2); 
% m4 = mean(x)^2; 
% m = (m1-m2)/(m3-m4); 
% b = mean(y)-m*mean(x); 
%  
% %%Coefficient of Determination%% 
% f = m.*x+b; 
SSres = sum((y-f).^2); 
SSreg = sum((f-mean(y)).^2); 
SStot = SSres+SSreg; 
Rsq = 1-(SSres/SStot); 
  
if isequal(y,f) 
    Rsq=1; 
end 
  
end 
 
 
 
 
 
Note: myRand.m (C.8.6.2) is a function which calculates a random number between two given 
numbers 
 

C.8.6.2- myRand.m 

function [ numVector ] = myRand( bottom,top,howMany ) 
%%Ann Whitney%% 
%%3/17/16%% 
  
%%The purpose of this program it to create a random number generator 
that 
%%gives a random number between the two given. 
  
range = top-bottom+1; 
for i = 1:howMany 
    num = rand; 
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    num=num*range; 
    num = ceil(num); 
    numVector(i) = num+bottom-1; 
    clear num 
end 
end 
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C.9: Characterizing the Environment using the RSSI Signature 

 
 
Note: ClassifyEnvironment.m (C.9.1) attempts to classify RSSI Signature into the type of 
environment it was collected in 
 

C.9.1- ClassifyEnvironment.m 

%%ClassifyEnvironment%% 
%%Ann Whitney%% 
%%Originally Written%% 
%%3/2/16%% 
%%Last Edited%% 
%%3/2/16%% 
  
%%The purpose of this program is to find if and to what degree a neural 
%%network can be applied in order to classify the environment based 
%%upon information within the RSSI Signature 
  
clear all 
close all 
clc 
  
  
  
% %%Fully Anechoic Data%% 
% load('F:\PhD Research\RFID\RFID Data\MATLAB\M6e_Data_FullyAnechoic'); 
% samples = size(rssi,1); 
% channel = [1:length(freq)]; 
% fullAnRSSI = rssi; 
% for i = 1:samples 
%     p1(:,i) = polyfit(channel,rssi(i,:),2); 
%     clc 
% end 
%  
% %%Semi Anechoic Data%% 
% clearvars -except fullAnRSSI p1 channel 
% load('F:\PhD Research\RFID\RFID Data\MATLAB\M6e_Data_SemiAnechoic'); 
% samples = size(rssi,1); 
% semiAnRSSI = rssi; 
% for i = 1:samples 
%     p2(:,i) = polyfit(channel,rssi(i,:),2); 
%     clc 
% end 
  
%%Anechoic Data Combined%% 
load('F:\PhD Research\RFID\RFID Data\MATLAB\M6e_Data_Chamber'); 
samples = size(rssi,1); 
channel = [1:length(freq)]; 
AnRSSI = rssi; 
for i = 1:samples 
    p1(:,i) = polyfit(channel,rssi(i,:),2); 
    clc 
end 
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%%Real World Data%% 
clearvars -except p1 channel 
load('F:\PhD Research\RFID\RFID Data\MATLAB\M6e_Data_RealWorld'); 
samples = size(rssi,1); 
realRSSI = rssi; 
for i = 1:samples 
    p2(:,i) = polyfit(channel,rssi(i,:),2); 
    clc 
end 
p3 = []; 
  
%%Machine Learning Analysis%% 
clearvars -except p1 p2 p3 
%2 Categories for SVM 
p1 = [p1;ones(1,size(p1,2))]; 
p2 = [p2;2*ones(1,size(p2,2))]; 
%2 Categories for Neural Network 
% p1 = [p1;ones(1,size(p1,2));zeros(1,size(p1,2))]; 
% p2 = [p2;zeros(1,size(p2,2));ones(1,size(p2,2))]; 
%3 Categories for Neural Network 
% p1 = [p1;ones(1,size(p1,2));zeros(2,size(p1,2))]; 
% p2 = [p2;zeros(1,size(p2,2));ones(1,size(p2,2));zeros(1,size(p2,2))]; 
% p3 = [p3;zeros(2,size(p3,2));ones(1,size(p3,2))]; 
totalObs = size(p1,2)+size(p2,2)+size(p3,2); 
combinedData = [p1 p2 p3]; 
r = randperm(totalObs); 
combinedData = combinedData(:,r); 
in = combinedData(1:3,:); 
out = combinedData(4:end,:); 
  
%Support Vector Machine% 
k=10; 
cvFolds = crossvalind('Kfold', (1:size(out,2)), k);   % get indices of 
10-fold CV for each fold 
i=1; 
testIdx = (cvFolds == i);               % get indices of test instances 
trainIdx = ~testIdx;      
cl=svmtrain(in(:,trainIdx),out(:,trainIdx)'); 
Actual = out(:,testIdx); 
Guess = svmclassify(cl,in(:,testIdx)'); 
for i = 1:length(Actual) 
    target(Actual(i),i)=1; 
    output(Guess(i),i)=1; 
end 
plotconfusion(target,output) 
  
  
% %Neural Network Classification% 
% clearvars -except in out 
% hidden_layers=3; 
% [net, Actual, Guess] = 
Neural_Network_Classification(in,out,hidden_layers); 
% plotconfusion(Actual,Guess) 
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Note: CharacterizeEnvironment.m (C.9.2) looks at the RSSI Signature from different 
environments to analyze the various characteristics 
 

C.9.2- CharacterizeEnvironment.m 

%%CharacterizeEnvironment%% 
%%Ann Whitney%% 
%%Originally Written%% 
%%1/19/16%% 
%%Last Edited%% 
%%1/25/17%% 
  
%%The purpose of this program is to find if and to what degree a neural 
%%network can be applied in order to characterize the environment based 
%%upon information within the RSSI Signature 
  
clear all 
close all 
clc 
  
%%EXPERIMENT D%% 
addpath('D:\My Stuff\School\RFID\MATLAB\Programs'); 
cd('D:\My Stuff\School\RFID\Data\Characterize Environment\1-29-16\Empty 
Fully Anechic Chamber'); 
file = dir; 
file(1:2)=[]; 
numpts = 25; 
for i = 1:size(file,1) 
    data = dlmread(file(i).name); 
    freq = data(:,1)*1000; 
    rssi = data(:,2); 
    [xx,yy]=Smooth(freq,rssi,numpts,'RFID'); 
    YY(i,:)=yy; 
    clearvars data rssi freq yy 
end 
p0 = [ones(size(YY,1),1) zeros(size(YY,1),2) YY]; 
clearvars -except p0 
  
cd('D:\My Stuff\School\RFID\Data\Characterize Environment\1-29-
16\Reflector A'); 
file = dir; 
file(1:2)=[]; 
numpts = 25; 
for i = 1:size(file,1) 
    data = dlmread(file(i).name); 
    freq = data(:,1)*1000; 
    rssi = data(:,2); 
    [xx,yy]=Smooth(freq,rssi,numpts,'RFID'); 
    YY(i,:)=yy; 
    clearvars data rssi freq yy 
end 
p1 = [zeros(size(YY,1),1) ones(size(YY,1),1) zeros(size(YY,1),1) YY]; 
clearvars -except p0 p1 
  



 

 352 

cd('D:\My Stuff\School\RFID\Data\Characterize Environment\1-29-
16\Reflector A & B'); 
file = dir; 
file(1:2)=[]; 
numpts = 25; 
for i = 1:size(file,1) 
    data = dlmread(file(i).name); 
    freq = data(:,1)*1000; 
    rssi = data(:,2); 
    [xx,yy]=Smooth(freq,rssi,numpts,'RFID'); 
    YY(i,:)=yy; 
    clearvars data rssi freq yy 
end 
p2 = [zeros(size(YY,1),2) ones(size(YY,1),1) YY]; 
XX = xx; 
clearvars -except p0 p1 p2 XX 
  
%%Graphing%%%%%%%%%%% 
figure; 
hold on; 
for i=0:2 
    switch i 
        case 0 
            YY=p0(:,4:end); 
            shade = [1 0.8 0.8]; 
            solid = [1 0 0]; 
        case 1 
            YY=p1(:,4:end); 
            shade = [0.8 1 0.8]; 
            solid = [0 1 0]; 
        case 2 
            YY=p2(:,4:end); 
            shade = [0.8 0.8 1]; 
            solid = [0 0 1]; 
    end 
    offset = mean(YY,2); 
    avgSig = mean(YY,1); 
    stdSig = std(YY,1); 
    top = avgSig+stdSig; 
    bottom = avgSig-stdSig; 
    vertical1 = linspace(top(1),bottom(1),25); 
    vertical2 = linspace(bottom(end),top(end),25); 
    xx = [XX(1)*ones(1,25) XX XX(end)*ones(1,25) fliplr(XX)]; 
    yy = [vertical1 bottom vertical2 fliplr(top)]; 
    h(i+1)=fill(xx,yy,shade); 
    set(h(i+1),'edgecolor',shade); 
    set(h(i+1),'FaceAlpha',0.5); 
    h(i+4) = plot(XX,avgSig,'Color',solid); 
    clearvars -except p0 p1 p2 i XX h 
end 
xlabel('Frequency (Hz)') 
ylabel('RSSI (dBm)') 
t={'Comparison of RSSI Signatures with';'Zero, One, and Two 
Reflectors'}; 
title(t); 
legend([h(4) h(5) h(6)],'Zero Reflectors','One Reflector','Two 
Reflectors'); 
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%%%%%%%%%%%%%%%%%%%%% 
  
% YY = [p0;p1;p2]; 
% totalObs = size(YY,1); 
% order  = randperm(totalObs); 
% YY = YY(order,:); 
% in =YY(:,4:end)'; 
% out = YY(:,1:3)'; 
%  
% %Neural Network Classification% 
% for i =1%:100 
%     which = rand(1,size(in,2)); 
%     test = which<0.1; 
%     train=~test; 
%     hidden_layers=3; 
%     [net, Actual, Guess] = 
Neural_Network_Classification(in(:,train),... 
%         out(:,train),hidden_layers); 
%     plotconfusion(Actual,Guess); 
%     GuessAgain = net(in(:,test)); 
% %     figure; 
% %     plotconfusion(out(:,test),GuessAgain) 
%     accuracy = (out(:,test)==round(GuessAgain)); 
%     Acc(i) = (sum(accuracy(1,:))/size(accuracy,2))*100; 
%     clearvars -except in out Acc 
% end 
  
  
%%EXPERIMENT C%% 
% %%Fully Anechoic Data%% 
% load('D:\My 
Stuff\School\RFID\MATLAB\Data\FullyAnechoicEmpty_Smoothed.mat') 
% freq = XX; 
% p0 = YY; 
% meanRSSI = avgRSSI'; 
% clear avgRSSI dist XX YY 
% %147 Data Sets 
% load('D:\My 
Stuff\School\RFID\MATLAB\Data\FullyAnechoicLocalization_Smoothed.mat') 
% p1 = YY; 
% p0=[p0;p1]; 
% meanRSSI = [meanRSSI;avgRSSI']; 
% clear avgRSSI dist XX YY p1 
% load('D:\My Stuff\School\RFID\MATLAB\Data\RealWorld_Smoothed.mat') 
% p2 = YY; 
% clear avgRSSI dist YY 
%  
% %%remove avg% 
% for i =1:size(p0,1) 
%     avgRSSI = mean(p0(i,:)); 
%     YY(i,:) = p0(i,:)-avgRSSI; 
% end 
% p0=YY; 
% clear YY 
%  
% for i =1:size(p2,1) 
%     avgRSSI = mean(p2(i,:)); 
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%     YY(i,:) = p2(i,:)-avgRSSI; 
% end 
% p2=YY; 
% clear YY 
%  
% %%Real World%% 
% for i = 1:size(p2,2) 
%     YY = p2(:,i); 
%     middle(i)=mean(YY); 
%     standD = std(YY); 
%     top(i) = middle(i) + standD; 
%     bottom(i) = middle(i) - standD; 
%     clear YY; 
% end 
% vertical1 = linspace(top(1),bottom(1),25); 
% vertical2 = linspace(bottom(end),top(end),25); 
% xx = [XX(1)*ones(1,25) XX XX(end)*ones(1,25) fliplr(XX)]; 
% yy = [vertical1 bottom vertical2 fliplr(top)]; 
% h1=fill(xx,yy,[1 0.8 0.8]); 
% hold on 
% set(h1,'edgecolor',[1 0.8 0.8]); 
% set(h1,'FaceAlpha',0.5); 
% h2=plot(XX,middle,'r'); 
% set(h2,'LineWidth',2); 
%  
%  
% %%Anechoic Chamber%% 
% clearvars -except freq meanRSSI p0 p2 XX h1 h2 
% for i = 1:size(p0,2) 
%     YY = p0(:,i); 
%     middle(i)=mean(YY); 
%     standD = std(YY); 
%     top(i) = middle(i) + standD; 
%     bottom(i) = middle(i) - standD; 
%     clear YY; 
% end 
% vertical1 = linspace(top(1),bottom(1),25); 
% vertical2 = linspace(bottom(end),top(end),25); 
% xx = [XX(1)*ones(1,25) XX XX(end)*ones(1,25) fliplr(XX)]; 
% yy = [vertical1 bottom vertical2 fliplr(top)]; 
% h3=fill(xx,yy,[0.8 0.8 1]); 
% set(h3,'edgecolor',[0.8 0.8 1]); 
% set(h3,'FaceAlpha',0.5); 
% hold on 
% h4=plot(XX,middle,'b'); 
% set(h4,'LineWidth',2); 
% h5=legend('Real World Sig Range','Avg Real World Sig','Fully Anechoic 
Sig Range','Avg Fully Anechoic Sig'); 
% xlabel('Frequency (Hz)') 
% ylabel('RSSI - Offset (dBm)') 
% t={'Comparing Shape of Fully Anechoic and';'Real World RSSI 
Signatures'}; 
% title(t); 
%  
% set(h1,'Visible','off') 
% set(h3,'Visible','off') 
%  
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% %%Friis%% 
% clearvars -except freq meanRSSI p0 p2 XX h1 h2 h3 h4 h5 
% delete(h5) 
% % Pt = 30; %30 dBm Transmit Power 
% Pt = 1; %1Watt Transmit Power 
% Gt = 1;%tag gain of 1 dB 
% R = 2.2727;%mean distance (in m) from data 
% % R = R/1000; %mean distance (in km) from data 
% % f = XX/1e6; %frequency in MHz 
% lamda = 2.99e8./XX; %wavelength (m) 
% Gr = 5.44; %circular polarized antenna gain at 914MHz dB 
% % Gr = -0.0504*f+51.441; %circular polarized antenna gain  
% %%and how it changes with frequency based on Zach's measurements 
% % Pr=Pt+Gt+Gr-(20*log10(R))-(20*log10(f))-32.44; %recieved power; 
% Pr = (Pt*Gt*Gr.*(lamda.^2))/((4*pi*R)^2); 
% Pr = 10*log10(Pr)+30; 
% Pr = Pr-mean(Pr); 
% h6 = plot(XX,Pr,'g'); 
% set(h6,'LineWidth',2); 
% h5 = legend([h2 h4 h6],'Real World Sig','Fully Anechoic 
Sig','Theoretical Free Space Sig'); 
% t={'Comparing Real World, Fully Anechoic and';'Theoretical Free Space 
RSSI Signatures'}; 
% title(t) 
  
  
  
% %%Machine Learning Analysis%% 
% clearvars -except p0 p2 
%  
% p0 = [ones(size(p0,1),1) zeros(size(p0,1),1) p0]; 
% p2 = [zeros(size(p2,1),1) ones(size(p2,1),1) p2]; 
%  
% totalObs = size(p0,1)+size(p2,1); 
% combinedData = [p0;p2]; 
% r = randperm(totalObs); 
% combinedData = combinedData(r,:); 
% in = combinedData(:,3:end)'; 
% out = combinedData(:,1:2)'; 
% % clearvars -except in out 
%  
% %Neural Network Classification% 
% for i =1:100 
%     which = rand(1,size(in,2)); 
%     test = which<0.1; 
%     train=~test; 
%     hidden_layers=3; 
%     [net, Actual, Guess] = 
Neural_Network_Classification(in(:,train),... 
%         out(:,train),hidden_layers); 
% %     plotconfusion(Actual,Guess); 
%     GuessAgain = net(in(:,test)); 
%     GuessAgain = GuessAgain>0.5; 
% %     figure; 
% %     plotconfusion(out(:,test),GuessAgain) 
%     accuracy = (out(:,test)==GuessAgain); 
%     Acc(i) = (sum(accuracy(1,:))/size(accuracy,2))*100; 
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%     clearvars -except in out Acc 
% end 
% histogram(Acc) 
% axis([0 100 0 30]) 
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C.10: Methods of Trilateration 

Note:  
• RFID_BLE_Localization.m (C.10.1) uses the trilateration functions below. 
• This code also uses the previous functions linearize_phase.m (C.1.1), RIP.m (C.2.1), and 

Smooth.m (C.8.5.1) 
• This code is used by varying “Type” 1 through 4 to select the different 

o Type of distance measurement used 
 RSSI  
 R_Sig (RSSI Signature for error reduction in RSSI calculated distance) 
 Half_Sig_Half_RSSI (using a combination of RSSI Signature compensated 

distance and the original RSSI calculated distance) 
 Phase  
 P_Sig (using the RSSI Signature to reduce error in phase distance 

estimation) 
 RIP (RSSI Informed Phase) 

o Number of distance measurements used in localization 
 All Dist 
 Highest RSSI 
 Highest Confidence (using RSSI Signature  

o Type of non-iterative trilateration method 
 Lin LOP (Linear Locus of Position – LinearLOP.m) 
 LLS (Linear Least Squares – LinearLeastSquares.m) 
 Cent (Centroid – Centroid.m) 
 Lin App (Linear Approximation – LinearApprox.m) 
 Hyp LOP (Hyperbolic Locus of Position – Hyperbolic.m) 

o Type of iterative trilateration method 
 None (not using any additional iterative trilateration method) 
 ILS (Iterative Least Squares – IterativeLeastSquares.m) 
 Taylor (Taylor Series – TaylorSeries.m) 
 WLS (Weighted Least Squares – WeightedLeastSquares.m) 
 NonLinLS (Non-Linear Least Squares – NonlinearLeastSquares.m) 
 AntPat (Antenna Pattern Method – AntGradientDescent.m) 

• BLE vs. RFID is selected by commenting or uncommenting the sections “Load BLE Data” 
or “Load RFID Data” 

 
 
 

C.10.1- RFID_BLE_Localization.m 

%%RFID_BLE_Localization.m%% 
%%Ann Whitney%% 
%%Originally Written%% 
%%8/25/2016 
%%last edited%% 
%%11/10/2017 
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%%The purpose of this program is to use the RFID and BLE data for 
%%localization simulation 
  
clear all 
close all  
% hold on 
clc 
  
Type{1}='RSSI'; %%RSSI %R_Sig %Half_Sig_Half_RSSI %Phase %P_Sig %RIP 
Type{2}='All Dist'; %%All Dist %Highest RSSI %Highest Confidence 
Type{3}='Cent'; %%Lin LOP %LLS %%Cent %%Lin App %%Hyp LOP 
Type{4}= 'AntPat'; %%ILS  %%None %%Taylor %%WLS %%NonLinLS %%AntPat 
CellNum = '41'; 
  
%% %Load BLE Data%% 
load('D:\My Stuff\School\General Research\Experimental 
Localization\BLE_Loc_Data.mat') 
% load('D:\My Stuff\School\General Research\Experimental 
Localization\InsideData_5_13_17.mat') 
WhichDevice = 'BLE'; 
% %  
% % %%Load RFID Data%% 
% load('D:\My Stuff\School\General Research\Experimental 
Localization\RFID_Loc_Data.mat') 
% WhichDevice = 'RFID'; 
% cableLength=[6*0.3048 3.75 6 6*0.3048]; 
  
  
%%%%%%%%% STEP 1 %%%%%%%%%% 
%%%% Estimate Distance %%%% 
%% General 
for i  = 1:size(Data,2) 
    for j =1:size(Data(i).RSSI,2) 
        DistAct(i,j) = Data(i).DistAct(j); 
        if DistAct(i,j)~=0 
%             if strcmp(WhichDevice,'BLE') 
%                 Step1(i).AntName(j)=Data(i).AntName(j); 
%             end 
            Step1(i).AntNumber(j)=Data(i).AntNumber(j); 
            Step1(i).ActDist(j) = Data(i).DistAct(j); 
        end 
    end 
    if strcmp(WhichDevice,'RFID') 
        Data(i).cableLength = cableLength; 
    end 
end 
clearvars -except Data Step1 Step2 Step3 Step4 CellNum Type WhichDevice 
  
%% RSSI vs. Distance 
if strcmp(WhichDevice,'BLE') 
    %% BLE_RSSI = -5.489ln(dist)-53.563 
    coeff = -5.786; 
    offset = -55.154; 
else 
    %% RFID_RSSI = -10.04ln(dist)-58.657 
    coeff = -10.04; 
    offset = -58.657; 
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end 
count = 0; 
for i = 1:size(Data,2) 
    for j = 1:size(Data(i).RSSI,2) 
        count= count+1; 
        DistAct(i,j) = Data(i).DistAct(j); 
        if DistAct(i,j)~=0 
            rssi = Data(i).RSSI; 
            rssi = rssi(:,j); 
            AvgRSSI(i,j) = mean(rssi(rssi~=0)); 
            DistPred(i,j) = exp((AvgRSSI(i,j)-offset)/(coeff)); 
            Step1(i).RSSI_Dist(j)=DistPred(i,j); 
            Data(i).AvgRSSI(j) = AvgRSSI(i,j); 
            RSSIerror(count)=DistPred(i,j)-Data(i).DistAct(j); 
            RSSIDist(count) = DistPred(i,j); 
        end 
    end 
end 
clearvars -except Data Step1 Step2 Step3 Step4 CellNum Type WhichDevice 
RSSIerror 
  
%% Phase 
count = 0; 
if strcmp(WhichDevice,'RFID') 
    for i = 1:size(Data,2) 
        for j = 1:size(Data(i).Phase,2) 
            count = count+1; 
            DistAct(i,j) = Data(i).DistAct(j); 
            if DistAct(i,j)~=0 
                freq = Data(i).Freq(:,j); 
                rssi = Data(i).RSSI(:,j); 
                phi = Data(i).Phase(:,j); 
                cableLength = Data(i).cableLength(j); 
                incomplete = find(freq==0); 
                if ~isempty(incomplete) 
                    freq(incomplete)=[]; 
                    rssi(incomplete)=[]; 
                    phi(incomplete)=[]; 
                end 
                addpath 'D:\My Stuff\School\RFID\MATLAB\Programs' 
                [dist_app,phi,slope] = 
linearize_phase(freq,rssi,phi,cableLength); 
                Step1(i).Phase_Dist(j) = dist_app;   
                Phase_Dist(count)=Step1(i).Phase_Dist(j); 
                ActDist(count)=Data(i).DistAct(j); 
                Phaseerror(count) =dist_app-Data(i).DistAct(j); 
            end 
        end 
    end 
end 
% plot(ActDist,Phase_Dist,'*') 
clearvars -except Data Step1 Step2 Step3 Step4 CellNum Type WhichDevice 
RSSIerror Phaseerror 
  
%% RIP 
cableLength=[6*0.3048 3.75 6 6*0.3048]; 
if strcmp(WhichDevice,'RFID') 
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    count = 0; 
    for i = 1:size(Data,2) 
        for j = 1:size(Data(i).Phase,2) 
            DistAct(i,j) = Data(i).DistAct(j); 
            if DistAct(i,j)~=0 
                count = count +1; 
                freq = Data(i).Freq(:,j); 
                rssi = Data(i).RSSI(:,j); 
                phi = Data(i).Phase(:,j); 
                incomplete = find(freq==0); 
                if ~isempty(incomplete) 
                    freq(incomplete)=[]; 
                    rssi(incomplete)=[]; 
                    phi(incomplete)=[]; 
                end 
                addpath 'D:\My Stuff\School\RFID\MATLAB\Programs' 
                [newDist,RIPpts,fixedpt,slope,b,newSlope,newInt] = 
RIP(freq,phi,rssi,cableLength(j) ); 
                Step1(i).RIP_Dist(j) = newDist; 
                RIPerror(count) =newDist-Data(i).DistAct(j); 
            end 
        end 
    end 
end 
clearvars -except Data Step1 Step2 Step3 Step4 CellNum Type WhichDevice 
RSSIerror Phaseerror RIPerror 
%% Sig - RSSI 
if strcmp(WhichDevice,'RFID') 
    load('D:\My Stuff\School\RFID\MATLAB\Data\best_Rnet.mat') 
%     load('D:\My Stuff\School\RFID\MATLAB\Programs\best_Rnet.mat') 
%     threshhold = 1; 
else 
    load('D:\My Stuff\School\Bluetooth\Data\best_Rnet.mat') 
%     threshhold = 0; 
end 
addpath('D:\My Stuff\School\RFID\MATLAB\Programs') 
count =0; 
for i = 1:size(Data,2) 
    for j = 1:size(Data(i).RSSI,2) 
        DistAct(i,j) = Data(i).DistAct(j); 
        if DistAct(i,j)~=0 
            count = count+1; 
            freq = Data(i).Freq(:,j); 
            numpts = round(length(freq)/2); 
            rssi = Data(i).RSSI(:,j); 
            incomplete=[]; 
            if strcmp(WhichDevice,'RFID') 
                if length(nonzeros(freq))<50 
                    incomplete = find(freq==0); 
                end 
            else 
                if length(nonzeros(freq))<36 
                    incomplete = find(freq(2:end)==0); 
                end 
            end 
            if ~isempty(incomplete) 
                freq(incomplete)=[]; 
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                rssi(incomplete)=[]; 
            end 
            [xx,yy]=Smooth(freq,rssi,numpts,WhichDevice); 
            SigError = best(yy'); 
            SigDist = Step1(i).RSSI_Dist(j)-SigError; 
            Step1(i).R_Sig_Dist(j) = SigDist; 
            Step1(i).R_Sig_Error(j) = SigError; 
            RSSISigerror(count) = SigDist-Data(i).DistAct(j); 
        end 
    end 
end 
clearvars -except Data Step1 Step2 Step3 Step4 CellNum Type WhichDevice 
RSSIerror Phaseerror RIPerror RSSISigerror 
  
%% Sig - Phase 
if strcmp(WhichDevice,'RFID') 
    load('D:\My Stuff\School\RFID\MATLAB\Data\best_Pnet.mat') 
    cableLength=[6*0.3048 3.75 6 6*0.3048]; 
    count = 0; 
    for i = 1:size(Data,2) 
        for j = 1:size(Data(i).RSSI,2) 
            DistAct(i,j) = Data(i).DistAct(j); 
            if DistAct(i,j)~=0 
                count = count+1; 
                freq = Data(i).Freq(:,j); 
                numpts = round(length(freq)/2); 
                phi= Data(i).Phase(:,j); 
                rssi=Data(i).RSSI(:,j); 
                incomplete = find(freq==0); 
                if ~isempty(incomplete) 
                    freq(incomplete)=[]; 
                    phi(incomplete)=[]; 
                    rssi(incomplete)=[]; 
                end 
                [dist_app,phi,slope] = 
linearize_phase(freq,rssi,phi,cableLength(j)); 
                [xx,yy]=Smooth(freq,phi,numpts,WhichDevice); 
                SigError = best(yy'); 
                SigDist = Step1(i).Phase_Dist(j)-SigError; 
                Step1(i).P_Sig_Dist(j) = SigDist; 
                PhaseSigerror(count) = SigDist-Data(i).DistAct(j); 
            end 
        end 
    end 
end 
clearvars -except Data Step1 Step2 Step3 Step4 CellNum Type WhichDevice 
RSSIerror Phaseerror RIPerror RSSISigerror PhaseSigerror 
  
count = 0; 
for i = 1:size(Step1,2) 
    for j=1:size(Step1(i).ActDist,2) 
        count = count+1; 
        DistAct(count) = Step1(i).ActDist(j); 
        R_Dist(count) = Step1(i).RSSI_Dist(j); 
        RSig_Dist(count)=Step1(i).R_Sig_Dist(j); 
        if strcmp(WhichDevice,'RFID') 
            PSig_Dist(count)=Step1(i).P_Sig_Dist(j); 
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            P_Dist(count) = Step1(i).Phase_Dist(j); 
            RIP_Dist(count) = Step1(i).RIP_Dist(j); 
        end 
    end 
end 
  
% plot(DistAct,DistAct) 
% hold on 
% plot(DistAct,R_Dist,'b*') 
% plot(DistAct,RSig_Dist,'g*') 
% % plot(DistAct,P_Dist,'*') 
% % plot(DistAct,RIP_Dist,'*') 
% legend({'Ideal';'RSSI Dis';'RSSI Sig Dist'}) 
% xlabel('Actual Distance (m)') 
% ylabel('Predicted Distance (m)') 
% title('RSSI Signature Predicted Dist') 
% mean(abs(DistAct-R_Dist)) 
% mean(abs(DistAct - RSig_Dist)) 
% % mean(abs(DistAct-P_Dist)) 
% % mean(abs(DistAct-PSig_Dist)) 
% % mean(abs(DistAct-RIP_Dist)) 
  
%%%%%%%%% STEP 2 %%%%%%%%%% 
%% Information Passed On %% 
switch Type{2} 
    case 'All Dist' 
        %%All Dist 
        for i = 1:size(Step1,2) 
            switch Type{1} 
                case 'RSSI' 
                    Step2(i).Dist = Step1(i).RSSI_Dist; %Select the 
type of distance estimation you want to use 
                case 'R_Sig' 
                    Step2(i).Dist=Step1(i).R_Sig_Dist; 
                case 'Half_Sig_Half_RSSI' 
                    
Step2(i).Dist=0.5*(Step1(i).R_Sig_Dist+Step1(i).RSSI_Dist); 
                case 'Phase' 
                    Step2(i).Dist=Step1(i).Phase_Dist; 
                case 'P_Sig' 
                    Step2(i).Dist=Step1(i).P_Sig_Dist; 
                case 'RIP' 
                    Step2(i).Dist=Step1(i).RIP_Dist; 
            end 
            Step2(i).ActDist = Data(i).DistAct; 
            Step2(i).AvgRSSI = Data(i).AvgRSSI; 
            Step2(i).AntLoc = Data(i).AntLoc; 
        end 
    case 'Highest RSSI' 
        %%3 Highest RSSI 
        num = 3; 
        for i=1:size(Step1,2) 
            rssi = Data(i).AvgRSSI; 
            [sorted,idx]=sort(rssi,'descend'); 
            maxRSSIs = sorted(1:num); 
            maxIdxs = idx(1:num); 
            switch Type{1} 
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                case 'RSSI' 
                    Step2(i).Dist = Step1(i).RSSI_Dist; %Select the 
type of distance estimation you want to use 
                case 'R_Sig' 
                    Step2(i).Dist=Step1(i).R_Sig_Dist; 
                case 'Half_Sig_Half_RSSI' 
                    
Step2(i).Dist=0.5*(Step1(i).R_Sig_Dist+Step1(i).RSSI_Dist); 
                case 'Phase' 
                    Step2(i).Dist=Step1(i).Phase_Dist; 
                case 'P_Sig' 
                    Step2(i).Dist=Step1(i).P_Sig_Dist; 
                case 'RIP' 
                    Step2(i).Dist=Step1(i).RIP_Dist; 
            end 
            Step2(i).Dist = Step2(i).Dist(maxIdxs); 
            Step2(i).ActDist = Data(i).DistAct(maxIdxs); 
            Step2(i).AvgRSSI = rssi(maxIdxs); 
            Step2(i).AntLoc = Data(i).AntLoc(:,maxIdxs); 
        end 
    case 'Highest Confidence' 
        %3 Highest Confidence 
        num = 3; 
        for i=1:size(Step1,2) 
            confidence = Step1(i).R_Sig_Error; 
            [~,idx]=sort(abs(confidence)); 
            maxIdxs = idx(1:num); 
            rssi = Data(i).AvgRSSI; 
            switch Type{1} 
                case 'RSSI' 
                    Step2(i).Dist = Step1(i).RSSI_Dist; %Select the 
type of distance estimation you want to use 
                case 'R_Sig' 
                    Step2(i).Dist=Step1(i).R_Sig_Dist; 
                case 'Half_Sig_Half_RSSI' 
                    
Step2(i).Dist=0.5*(Step1(i).R_Sig_Dist+Step1(i).RSSI_Dist); 
                case 'Phase' 
                    Step2(i).Dist=Step1(i).Phase_Dist; 
                case 'P_Sig' 
                    Step2(i).Dist=Step1(i).P_Sig_Dist; 
                case 'RIP' 
                    Step2(i).Dist=Step1(i).RIP_Dist; 
            end 
            Step2(i).Dist = Step2(i).Dist(maxIdxs); 
            Step2(i).ActDist = Data(i).DistAct(maxIdxs); 
            Step2(i).AvgRSSI = rssi(maxIdxs); 
            Step2(i).AntLoc = Data(i).AntLoc(:,maxIdxs); 
        end 
end 
clearvars -except Data Step1 Step2 Step3 Step4 CellNum Type WhichDevice 
  
%%%%%%%%% STEP 3 %%%%%%%%%% 
%%% Closed Form Localization %%% 
  
switch Type{3} 
    case 'Lin LOP' 
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        %% Linear Locus of Position 
        for i = 1:size(Step2,2) 
            [Step3(i).PredTagLoc,Step3(i).Error]=LinearLOP( 
Step2(i).AntLoc', Data(i).TagLoc, Step2(i).Dist ); 
            Error(i) = Step3(i).Error; 
        end 
        error = mean(Error); 
        stDev = std(Error); 
    case 'LLS' 
        %% Linear Least Squares 
        for i = 1:size(Step2,2) 
            [Step3(i).PredTagLoc,Step3(i).Error]=LinearLeastSquares( 
Step2(i).AntLoc', Data(i).TagLoc, Step2(i).Dist ); 
            Error(i) = Step3(i).Error; 
        end 
        % error = mean(Error) 
        % stDev = std(Error) 
    case 'Cent' 
        %%Centroid 
        for i = 1:size(Step2,2) 
            [Step3(i).PredTagLoc,Step3(i).Error] = Centroid( 
Step2(i).Dist,Step2(i).AntLoc,Data(i).TagLoc ); 
            Error(i) = Step3(i).Error; 
        end 
        % error = mean(Error) 
        % stDev = std(Error) 
    case 'Lin App' 
        %% Linear Approx 
        for i = 1:size(Step2,2) 
            [Step3(i).PredTagLoc,Step3(i).Error]=LinearApprox( 
Step2(i).AntLoc', Data(i).TagLoc, Step2(i).Dist ); 
            Error(i) = Step3(i).Error; 
        end 
        % error = mean(Error) 
        % stDev = std(Error) 
    case 'Hyp LOP' 
        %% Hyperbolic% LOP 
        for i = 1:size(Step2,2) 
            [Step3(i).PredTagLoc,Step3(i).Error]=Hyperbolic( 
Step2(i).AntLoc', Data(i).TagLoc, Step2(i).Dist ); 
            Error(i) =Step3(i).Error; 
        end 
        % error = mean(Error) 
        % stDev = std(Error) 
end 
switch Type{4} 
    case 'None' 
        Where=strcat('G',CellNum,':DB',CellNum); 
        xlswrite('D:\My Stuff\School\General 
Research\Data\LocalizationError.xlsx',Error,WhichDevice,Where) 
    otherwise 
        clearvars -except Data Step1 Step2 Step3 Step4 CellNum Type 
WhichDevice 
end 
  
  
%%%%%%%%% STEP 4 %%%%%%%%%% 
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%% Iterative Localization % 
  
switch Type{4} 
    case 'Taylor' 
        %% Taylor Series Approximation 
        for i = 1:size(Step2,2) 
            %     Guess = mean(Step2(i).AntLoc,2)'; 
            Guess = Step3(i).PredTagLoc; 
            [Step4(i).PredTagLoc,Step4(i).Error]=TaylorSeries( 
Step2(i).AntLoc', Data(i).TagLoc,Step2(i).Dist,Guess); 
            Error(i) = Step4(i).Error; 
        end 
        % error = mean(Error) 
        % stDev = std(Error) 
    case 'WLS' 
        %% Weighted Least Squares 
        for i = 1:size(Step2,2) 
            %     Guess = mean(Step2(i).AntLoc,2)'; 
            Guess = Step3(i).PredTagLoc; 
            [Step4(i).PredTagLoc,Step4(i).Error]=WeightedLeastSquares( 
Step2(i).AntLoc', Data(i).TagLoc, Step2(i).Dist,Guess); 
            Error(i) = Step4(i).Error; 
        end 
        % error = mean(Error) 
        % stDev = std(Error) 
    case 'ILS' 
        %% Iterative Least Squares 
        for i = 1:size(Step2,2) 
            [Step4(i).PredTagLoc,Step4(i).Error]=IterativeLeastSquares( 
Step2(i).AntLoc', Data(i).TagLoc, Step2(i).Dist); 
            Error(i) = Step4(i).Error; 
        end 
        % error = mean(Error) 
        % stDev = std(Error) 
    case 'NonLinLS' 
        %% Nonlinear Least Squares 
        for i = 1:size(Step2,2) 
            [Step4(i).PredTagLoc,Step4(i).Error]=NonlinearLeastSquares( 
Step2(i).AntLoc', Data(i).TagLoc, Step2(i).Dist, Step3(i).PredTagLoc); 
            Error(i) = Step4(i).Error; 
        end 
        % error = mean(Error) 
        % stDev = std(Error) 
  
    case 'AntPat' 
        % %% Incorporate Antenna Pattern SLOW METHOD 
        % tic 
        % for i =1:size(Step2,2) 
        %     [Step4(i).PredTagLoc,Step4(i).Error]=IncorpAntPatrn( 
Step2(i).AntLoc',... 
        %         Data(i).TagLoc,Step2(i).Dist,Step3(i).PredTagLoc); 
        %     Error(i) = Step4(i).Error; 
        % end 
        % error = mean(Error) 
        % stDev = std(Error) 
        % toc 
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        %% Incorporate Antenna Pattern FAST METHOD 
        % tic 
        for i =1:size(Step2,2); 
            [Step4(i).PredTagLoc,Step4(i).Error]=AntGradientDescent( 
Step2(i).AntLoc',... 
                
Data(i).TagLoc,Step2(i).Dist,Step3(i).PredTagLoc,Step1(i).R_Sig_Error); 
            %     [~,mostConfident] = min(abs(Step1(i).R_Sig_Error)); 
            %     confidenceGap(i) = sqrt(sum((Data(i).TagLoc-
Step2(i).AntLoc(:,mostConfident)').^2))... 
            %         -Step2(i).Dist(mostConfident); 
            Error(i) = Step4(i).Error; 
        end 
        % Error(end) 
        % error = mean(Error) 
        % stDev = std(Error) 
        % toc 
end 
% Where=strcat('G',CellNum,':DB',CellNum); 
% xlswrite('D:\My Stuff\School\General 
Research\Data\LocalizationError.xlsx',Error,WhichDevice,Where) 
% clearvars -except Data Step1 Step2 Step3 Step4 Type CellNum 
WhichDevice Error 
mean(Error) 
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C.10.2- LinearLOP.m 

function [ PredTagLoc,Error ] = LinearLOP( AntLoc, TagLoc, Dist ) 
  
%%Ann Whitney%% 
%%11/15/16%% 
%%Linear LOP%% 
%%The purpose of this program is to calculate the most likely location 
of 
%%the tag using the Linear LOP method from "Beyond Trilateration: GPS 
%%Positioning Geometry and Analytical Accuracy" 
  
% plot(TagLoc(1),TagLoc(2),'k*') 
% hold on 
% for i = 1:length(Dist) 
%     PlotCircle(AntLoc(i,1),AntLoc(i,2),Dist(i)) 
%     plot(AntLoc(i,1),AntLoc(i,2),'r*') 
% end 
  
  
  
[d,idx]=sort(Dist); 
x1 = AntLoc(idx(1),1); 
x2 = AntLoc(idx(2),1); 
x3 = AntLoc(idx(3),1); 
y1 = AntLoc(idx(1),2); 
y2 = AntLoc(idx(2),2); 
y3 = AntLoc(idx(3),2); 
r1 = d(1); 
r2 = d(2); 
r3 = d(3); 
  
X = [x2-x1;x3-x2;x3-x1]; 
Y = [y2-y1;y3-y2;y3-y1]; 
E = -[r1-r2;r2-r3;r3-r1]; 
Equals = 0.5*[x2^2+y2^2-x1^2-y1^2+r1^2-r2^2;x3^2+y3^2-x2^2-y2^2+r2^2-
r3^2;... 
    x3^2+y3^2-x1^2-y1^2+r1^2-r3^2]; 
M = [X Y E Equals]; 
M = rref(M); 
PredTagLoc = M(1:2,4)'; 
Error = sqrt(sum((PredTagLoc-TagLoc).^2)); 
     
%     plot(PredTagLoc(1),PredTagLoc(2),'b*') 
  
end 
 

C.10.3- LinearLeastSquares.m 

function [ PredTagLoc,Error ] = LinearLeastSquares( AntLoc, TagLoc, 
DistPred ) 
%%Ann Whitney%% 
%%Originally Written%% 
%%2/16/16%% 
%%Last Edited%% 
%%11/15/16%% 
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%%The purpose of this program is to find the most likely location of 
the 
%%unknown object using linear least squares method  
     
Thetabar= mean(AntLoc,1)'; 
xr = Thetabar(1); 
yr = Thetabar(2); 
Xstar = [2*(AntLoc(:,1)-xr) 2*(AntLoc(:,2)-yr)]; 
Y = [(AntLoc(:,1)-xr).^2+(AntLoc(:,2)-yr).^2-DistPred.^2']; 
Ystar = Y+Xstar*Thetabar; 
Theta = inv(Xstar'*Xstar)*Xstar'*Ystar; 
Error = sqrt(sum([Theta-TagLoc'].^2)); 
Theta = Theta'; 
PredTagLoc = Theta; 
  
end 
 

C.10.4- Centroid.m 

function [ final_loc,error] = Centroid( Dist,AntLoc,TagLoc) 
%This function calculates the most likely location of the unknown 
deivce 
%using the centroid method similar to that in "Automatic virtual 
%calibration of range-based indoor localization systems" 
  
%     %1st Plot 
%     figure(1); 
%     hold on; 
%     xlabel('X Coordinate (m)'); 
%     ylabel('Y Coordinate (m)'); 
%     title('BLE Localization Map'); 
%     for j = 1:size(Dist,2) 
%         PlotCircle(AntLoc(1,j),AntLoc(2,j),Dist(j)); 
%     end 
%     plot(TagLoc(1),TagLoc(2),'k*','MarkerSize',10); 
%     legend({'1','2','3','4','Act Loc'}); 
%     axis([-15 15 -10 20]) 
  
    AntLoc=AntLoc(:,~isnan(Dist)); 
    Dist=Dist(~isnan(Dist)); 
     
    %Calculate 
    smallest = find(Dist==min(Dist)); 
    loc_smallest = AntLoc(:,smallest); 
    radius_smallest = Dist(smallest); 
    for j = 1:size(Dist,2) 
        dist_to_others(j) = sqrt(sum((AntLoc(:,j)-loc_smallest).^2)); 
    end 
    [~,idx]=sort(dist_to_others); 
    close = idx(2:3); 
    radii_close = Dist(close); 
    how_far_apart = dist_to_others(idx(2:3))-
(radii_close+radius_smallest); 
    [biggest_diff,~] = max(how_far_apart); 
    if biggest_diff>0 
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        growth = (biggest_diff/2)+(0.1*(biggest_diff/2)); 
        all_radii = Dist+growth; 
    else 
        all_radii = Dist; 
    end 
    weight = 1./all_radii; 
    Intersect = []; 
    weighted_intersect = []; 
     
%     %2nd Plot 
%     figure(2); 
%     hold on; 
%     xlabel('X Coordinate (m)'); 
%     ylabel('Y Coordinate (m)'); 
%     title('BLE Localization Map'); 
    for j = 1:size(Dist,2) 
%         PlotCircle(AntLoc(1,j),AntLoc(2,j),all_radii(j)); 
        for k = 1+j:size(Dist,2) 
            x1 = AntLoc(1,j); 
            y1 = AntLoc(2,j); 
            r1 = all_radii(j); 
            x2 = AntLoc(1,k); 
            y2 = AntLoc(2,k); 
            r2 = all_radii(k); 
            [x,y] = IntersectingCircles(x1,y1,r1,x2,y2,r2); 
            Intersect = [Intersect;x',y']; 
            weighted_intersect = 
[weighted_intersect;x'*weight(j)*weight(k),y'*weight(j)*weight(k)]; 
        end 
    end 
    final_loc= sum(weighted_intersect,1); 
    if isempty(final_loc) 
        weight=weight/norm(weight); 
        final_loc=[sum(weight.*AntLoc(1,:)) sum(weight.*AntLoc(2,:))]; 
    elseif isnan(final_loc(1))||isnan(final_loc(2)) 
        weight=weight/norm(weight); 
        final_loc=[sum(weight.*AntLoc(1,:)) sum(weight.*AntLoc(2,:))]; 
    end 
    error = sqrt(sum((final_loc-TagLoc).^2)); 
%     plot(TagLoc(1),TagLoc(2),'k*','MarkerSize',10); 
%     plot(final_loc(1),final_loc(2),'b*'); 
%     plot(Intersect(:,1),Intersect(:,2),'rs'); 
%     legend({'1','2','3','4','Act Loc','Pred Loc','Intersect Pts'}); 
%     axis([-15 15 -10 20]) 
  
end 
 

C.10.5- LinearApprox.m 

function [ PredTagLoc,Error ] = LinearApprox( AntLoc, TagLoc, DistPred 
) 
%%Ann Whitney%% 
%%Originally Written%% 
%%11/16/16%% 
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%%The purpose of this program is to find the most likely location of 
the 
%%unknown object using the close form solution in "Indoor Robot 
Positioning 
%%using an Enhanced Trilateration Algorithm" and ignoring the z 
component; 
  
  
  
  
    [DistPred,idx]=sort(DistPred); 
    DistPred = DistPred(1:3); 
    AntLoc = AntLoc(idx(1:3),:); 
     
%     %%Plot%% 
%     plot(TagLoc(1),TagLoc(2),'k*') 
%     hold on 
%     for j =1:length(DistPred) 
%         PlotCircle(AntLoc(j,1),AntLoc(j,2),DistPred(j)); 
%     end 
%     %%%%%%% 
     
  
    
    r1 = DistPred(1); 
    r2 = DistPred(2); 
    r3 = DistPred(3); 
    x1 = AntLoc(1,1); 
    x2 = AntLoc(2,1); 
    x3 = AntLoc(3,1); 
    y1 = AntLoc(1,2); 
    y2 = AntLoc(2,2); 
    y3 = AntLoc(3,2); 
     
    horiz = x1; 
    x1=0; 
    x2 = x2-horiz; 
    x3 = x3-horiz; 
    vert = y1; 
    y1=0; 
    y2 = y2-vert; 
    y3 = y3-vert; 
     
    theta = atan2(y2,x2); 
    d2 = sqrt(x2^2+y2^2); 
    x2 = d2*cos(0); 
    y2 = d2*sin(0); 
    phi = atan2(y3,x3); 
    d3 = sqrt(x3^2+y3^2); 
    x3 = d3*cos(phi-theta); 
    y3 = d3*sin(phi-theta); 
     
    x=(r1^2-r2^2+x2^2)/(2*x2); 
    y = (r1^2-r3^2+x3^2+y3^2-(2*x3*x))/(2*y3); 
     
    d = sqrt(x^2+y^2); 
    x = d*cos(theta)+horiz; 
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    y = d*sin(theta)+vert; 
    PredTagLoc = [x y]; 
    Error = sqrt(sum((PredTagLoc-TagLoc).^2)); 
%     %%Plot%%% 
%     plot(x,y,'g*') 
%     %%%%%%%%% 
  
  
End 
 
 
 
 
C.10.6- Hyperbolic Locus of Position 

 
 
Note: Hyperbolic.m (C.10.6.1) uses IntersectingHyperbolas (10.6.2) 
 

C.10.6.1- Hyperbolic.m 

function [ PredTagLoc,Error ] = Hyperbolic( AntLoc, TagLoc, DistPred ) 
  
%%Ann Whitney%% 
%%Originally Written%% 
%%2/16/16%% 
%%Last Edited%% 
%%11/15/16 
  
%%The purpose of this program is to find the most likely location of 
the 
%%unknown object using Hyperbolic LOP. 
  
%%Rearrange%% 
[DistPred,idx]=sort(DistPred); 
AntLoc = AntLoc(idx,:); 
  
% %%Plot%% 
% hold on 
% for i=1:length(DistPred) 
% PlotCircle(AntLoc(i,1),AntLoc(i,2),DistPred(i)) 
% end 
% plot(TagLoc(1),TagLoc(2),'g*') 
% %%%%%%%% 
  
for i = 1:2%length(DistPred)-1 
     
    i1 = i; 
    i2 = i+1; 
    D = sqrt(sum((AntLoc(i1,:)-AntLoc(i2,:)).^2)); 
    c = D/2; 
    delta = abs(DistPred(i1)-DistPred(i2)); 
    if delta==0 
        delta = 0.001; 
    end 
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    e(i) = D/delta; 
    a(i) = c/e(i); 
    b(i) = a(i)*sqrt(abs(e(i)^2-1)); 
    phi(i) = atan2(AntLoc(i1,2)-AntLoc(i2,2),AntLoc(i1,1)-
AntLoc(i2,1)); 
    cent(i,:) = [mean([AntLoc(i1,1) AntLoc(i2,1)]) mean([AntLoc(i1,2) 
AntLoc(i2,2)])]; 
    focus(i,:) = AntLoc(i1,:); 
    if i>1 
        [x(i-1),y(i-1)]=IntersectingHyperbolas(a(i-1),b(i-1),cent(i-
1,:),e(i-1),phi(i-1),focus(i-1,:),... 
            a(i),b(i),cent(i,:),e(i),phi(i),focus(i,:)); 
    end 
end 
         
x = mean(x); 
y = mean(y); 
PredTagLoc = [x y]; 
Error = sqrt(sum((PredTagLoc-TagLoc).^2)); 
  
%  
%     %%Plot%% 
%     plot(PredTagLoc(1),PredTagLoc(2),'k*') 
%     %%%%%%%% 
  
  
end 
 

C.10.6.2- IntersectingHyperbolas.m 

function [ x,y ] = IntersectingHyperbolas( 
a1,b1,cent1,e1,phi1,focus1,a2,b2,cent2,e2,phi2,focus2 ) 
%%The purpose of this function is to calculate where two hyperbolas 
%%intersect. 
  
howBig=10; 
  
%%Hyperbola 1 
c1 = e1*a1; 
if abs(focus1-[(cent1(1)+c1*cos(phi1)) (cent1(2)+c1*sin(phi1))])<0.1 
%selcting focus 
    if e1>=1 
        hyp1Range = a1+howBig:-0.1:a1; %hyperbola 1 range 
    else 
        hyp1Range = -a1:0.01:a1; 
    end 
elseif abs(focus1-[cent1(1)-c1*cos(phi1) cent1(2)-c1*sin(phi1)])<0.1 
%seclecting focus 
    if e1>=1 
        hyp1Range = -a1-howBig:0.1:-a1; %hyperbola 1 range 
    else 
        hyp1Range = -a1:0.01:a1; 
    end 
else 
    fprintf('Not one of Foci') 
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end 
hyp1(1,:) = hyp1Range; % x vector 
hyp1(2,:) = b1*sqrt(abs((((hyp1(1,:)).^2)./a1^2)-1)); % y vector on top 
hyp1(3,:) = -b1*sqrt(abs((((hyp1(1,:)).^2)./a1^2)-1)); %y vector on 
bottom 
hyp1= [hyp1 [fliplr(hyp1(1,:));fliplr(hyp1(3,:));fliplr(hyp1(3,:))]]; 
%combine vectors 
hyp1(3,:) = []; % deleting extra row 
  
r1 = sqrt(sum(hyp1.^2,1)); %radius of points for rotation 
alpha1 = atan2(hyp1(2,:),hyp1(1,:)); %angle of points for rotation 
hyp1(1,:) = r1.*cos(phi1+alpha1); %rotating x of hyperbola 
hyp1(2,:) = r1.*sin(phi1+alpha1); %rotating y of hyperbola 
hyp1(1,:) = hyp1(1,:)+cent1(1);%translating x of hyperbola 
hyp1(2,:) = hyp1(2,:)+cent1(2);%translating y of hyperbola 
%%%%%%%%%%%%%%% 
  
%%Hyperbola 2 
c2 = e2*a2; 
if abs(focus2-[(cent2(1)+c2*cos(phi2)) (cent2(2)+c2*sin(phi2))])<0.1 
%selcting focus 
    if e2>=1 
        hyp2Range = a2+howBig:-0.1:a2; %hyperbola 1 range 
    else 
        hyp2Range = -a2:0.1:a2; 
    end 
elseif abs(focus2-[(cent2(1)-c2*cos(phi2)) (cent2(2)-
c2*sin(phi2))])<0.1 %seclecting focus 
    if e2>=1 
        hyp2Range = -a2-howBig:0.1:-a2; %hyperbola 1 range 
    else 
        hyp2Range = -a2:0.1:a2; 
    end 
else 
    fprintf('Not one of Foci') 
end 
hyp2(1,:) = hyp2Range; % x vector 
hyp2(2,:) = b2*sqrt(abs((((hyp2(1,:)).^2)./a2^2)-1)); % y vector on top 
hyp2(3,:) = -b2*sqrt(abs((((hyp2(1,:)).^2)./a2^2)-1)); %y vector on 
bottom 
hyp2= [hyp2 [fliplr(hyp2(1,:));fliplr(hyp2(3,:));fliplr(hyp2(3,:))]]; 
%combine vectors 
hyp2(3,:) = []; % deleting extra row 
  
r2 = sqrt(sum(hyp2.^2,1)); %radius of points for rotation 
alpha2 = atan2(hyp2(2,:),hyp2(1,:)); %angle of points for rotation 
hyp2(1,:) = r2.*cos(phi2+alpha2); %rotating x of hyperbola 
hyp2(2,:) = r2.*sin(phi2+alpha2); %rotating y of hyperbola 
hyp2(1,:) = hyp2(1,:)+cent2(1);%translating x of hyperbola 
hyp2(2,:) = hyp2(2,:)+cent2(2);%translating y of hyperbola 
%%%%%%%%%%%%%%%%%%% 
  
  
  
%%Calculate Intersection%% 
[x,y]=intersections(hyp1(1,:),hyp1(2,:),hyp2(1,:),hyp2(2,:),0); 
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%%If Hyperbolas Don't Intersect%% 
if isempty(x) 
    m = focus1-focus2; 
    m = m(2)/m(1); 
    b = focus1(2)-m*focus1(1); 
    lineRange=[min([focus1(1) focus2(1)]) max([focus1(1) focus2(1)])]; 
    lineRange = [lineRange(1)-1 lineRange(2)+1]; 
    lineX = lineRange(1):(lineRange(2)-lineRange(1))/20:lineRange(2); 
    lineY = m*lineX+b; 
    [x1,y1]=intersections(hyp1(1,:),hyp1(2,:),lineX,lineY,0); 
    [x2,y2]=intersections(hyp2(1,:),hyp2(2,:),lineX,lineY,0); 
    x = [x1;x2]; 
    y = [y1;y2]; 
end 
%%If The Hyperbolas Cross Twice%%     
if length(x)>1 
    d1 = sqrt((focus1(1)-x(1))^2+(focus1(2)-y(1))^2); 
    d2 = sqrt((focus1(1)-x(2))^2+(focus1(2)-y(2))^2); 
    if d1<d2 
        x=x(1); 
        y=y(1); 
    else 
        x=x(2); 
        y=y(2); 
    end 
end 
  
%  
% %%PLOT%% 
% plot(hyp1(1,:),hyp1(2,:)) 
% hold on 
% plot(hyp2(1,:),hyp2(2,:)) 
% plot(x,y,'b*') 
% axis([-15 15 -15 15]) 
% %%%%%%% 
  
  
end 
 
 
 
Note: PlotHyperbola.m (C.10.6.3) is used to graph the hyperbolas in a non-traditional orientation 
 
C.10.6.3- PlotHyperbola.m 

function  PlotHyperbola( a,b,cent,phi,plot_focus ) 
%originally written 
%10/13/16 
%last edited 
%10/17/16 
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%The purpose of this program is to plot hyperbolas based on a, b, c, 
and 
%slope inputs. 
  
%Calculations 
howBig = 10; %how big an area to graph; 
% xrange = [cent(1)-howBig cent(1)+howBig]; %range of x data points 
% yrange = [cent(2)-howBig cent(2)+howBig]; %range of y data points 
% x = xrange(1):xrange(2); %vector of x data points 
%  
% slope = tan(phi); %slope of center line 
% intercept = cent(2)-slope*cent(1); %intercept of center line 
% theta = asec(sqrt(a^2+b^2)/a); %angle of asymptote 
% theta_vect = -theta:0.0001:theta; %vector of angles for hyperbola 
vertex=[cent(1)+a*cos(phi) cent(2)+a*sin(phi);... 
    cent(1)-a*cos(phi) cent(2)-a*sin(phi)]; %vertex(1,:) = vertex1, 
vertex(2,:) = vertex 2 
% asym1 = (x-cent(1)).*tan(phi+theta)+cent(2); %asymptote 1 
% asym2 = (x-cent(1)).*tan(phi-theta)+cent(2); %asymptote 2 
c = sqrt(a^2+b^2); 
focus = [cent(1)+c*cos(phi) cent(2)+c*sin(phi);... 
    cent(1)-c*cos(phi) cent(2)-c*sin(phi)]; %focus(1,:) = focus1, 
focus(2,:) = focus 2 
  
%HYP #1 
hyp1Range = a+howBig:-0.1:a; %hyperbola #1 range 
hyp1(1,:) = hyp1Range; % x vector 
hyp1(2,:) = b*sqrt((((hyp1(1,:)).^2)./a^2)-1); % y vector on top 
hyp1(3,:) = -b*sqrt((((hyp1(1,:)).^2)./a^2)-1); %y vector on bottom 
hyp1= [hyp1 [fliplr(hyp1(1,:));fliplr(hyp1(3,:));fliplr(hyp1(3,:))]]; 
%combine vectors 
hyp1(3,:) = []; % deleting extra row 
  
r1 = sqrt(sum(hyp1.^2,1)); %radius of points for rotation 
alpha1 = atan2(hyp1(2,:),hyp1(1,:)); %angle of points for rotation 
hyp1(1,:) = r1.*cos(phi+alpha1); %rotating x of hyperbola 
hyp1(2,:) = r1.*sin(phi+alpha1); %rotating y of hyperbola 
hyp1(1,:) = hyp1(1,:)+cent(1);%translating x of hyperbola 
hyp1(2,:) = hyp1(2,:)+cent(2);%translating y of hyperbola 
  
%Hyp#2 
hyp2Range = -a-howBig:0.1:-a; %hyperbola #2 range 
hyp2(1,:) = hyp2Range; % x vector 
hyp2(2,:) = b*sqrt((((hyp2(1,:)).^2)./a^2)-1); % y vector on top 
hyp2(3,:) = -b*sqrt((((hyp2(1,:)).^2)./a^2)-1); %y vector on bottom 
hyp2= [hyp2 [fliplr(hyp2(1,:));fliplr(hyp2(3,:));fliplr(hyp2(3,:))]]; 
%combine vectors 
hyp2(3,:) = []; % deleting extra row 
  
r2 = sqrt(sum(hyp2.^2,1)); %radius of points for rotation 
alpha2 = atan2(hyp2(2,:),hyp2(1,:)); %angle of points for rotation 
hyp2(1,:) = r2.*cos(phi+alpha2); %rotating x of hyperbola 
hyp2(2,:) = r2.*sin(phi+alpha2); %rotating y of hyperbola 
hyp2(1,:) = hyp2(1,:)+cent(1);%translating x of hyperbola 
hyp2(2,:) = hyp2(2,:)+cent(2);%translating y of hyperbola 
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%%Plot 
hold on 
% axis([xrange yrange]) 
% plot(x,slope*x+intercept) 
% plot(cent(1),cent(2),'r*') 
% plot(vertex(1,1),vertex(1,2),'*b') 
% plot(vertex(2,1),vertex(2,2),'*b') 
% plot(x,asym1,'g') 
% plot(x,asym2,'g') 
if abs(focus(1,:)-plot_focus)<0.01 
    plot(hyp1(1,:),hyp1(2,:)) 
elseif abs(focus(2,:)-plot_focus)<0.01 
    plot(hyp2(1,:),hyp2(2,:)) 
else 
    fprintf('\nNot one of Foci\n') 
end 
end 
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C.10.7- TaylorSeries.m 

function [ PredTagLoc,Error ] = TaylorSeries( AntLoc, TagLoc, 
DistPred,Guess ) 
%%the purpose of this program is to practic taylor series method for 
%%localization 
%%Initial guess 
xo = Guess(1); 
yo = Guess(2); 
% plot(xo,yo,'b*') 
% hold on 
for j = 1:10 
    Gamma = []; 
    for i = 1:length(DistPred) 
        g = AntLoc(i,1); %x 
        h = AntLoc(i,2); %y 
        r = DistPred(i); 
%         if j==1 
%             PlotCircle(g,h,r); 
%         end 
        f(i) = sqrt((xo-g)^2+(yo-h)^2); 
        fx(i) = (2*(xo-g))/f(i); 
        fy(i) = (2*(yo-h))/f(i); 
        Gamma(i,:) = [fx(i) fy(i)]; 
        z(i,1) = f(i)-r; 
    end 
    sigma2 = var(DistPred); 
    delta = inv(Gamma'*inv(sigma2)*Gamma)*Gamma'*inv(sigma2)*z; 
    xo = xo-delta(1); 
    yo = yo-delta(2); 
%     plot(xo,yo,'b*') 
end 
PredTagLoc = [xo yo]; 
Error = sqrt(sum((PredTagLoc-TagLoc).^2)); 
end 
 

C.10.8- WeightedLeastSquares.m 

function [ PredTagLoc,Error ] = WeightedLeastSquares( AntLoc, TagLoc, 
DistPred, Guess ) 
%%the purpose of this program is to preform weighted least squares 
%%localization 
  
  
[DistPred,idx]=sort(DistPred); 
AntLoc=AntLoc(idx,:); 
count =0; 
for i = 1:length(DistPred) 
    if DistPred(i)<10 
        count = count+1; 
        dist(count)=DistPred(i); 
        antLoc(count,:)=AntLoc(i,:); 
    end 
end 
DistPred = dist; 
AntLoc = antLoc; 
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clear dist antLoc 
n=length(DistPred); 
x = Guess'; 
  
% %%Plot%% 
% plot(TagLoc(1),TagLoc(2),'k*') 
% hold on 
% for l=1:n 
%     PlotCircle(AntLoc(l,1),AntLoc(l,2),DistPred(l))  
% end 
% %%% 
  
for i = 1:n-1; 
    A(i,:) = [2*(AntLoc(i+1,1)-AntLoc(i,1)) 2*(AntLoc(i+1,2)-
AntLoc(i,2))]; 
    b(i,1) = [(AntLoc(i+1,1)^2-AntLoc(i,1)^2)+((AntLoc(i+1,2)^2-
AntLoc(i,2)^2))+... 
        (DistPred(i)^2-DistPred(i+1)^2)]; 
end 
  
for j = 1:10 
    e = A*x-b; 
     
    if sum(abs(e))<1e-13 
        break; 
    elseif sum(abs(e)<1e-13)>=1 
        break; 
    end 
     
%     % %%Plot%% 
%     plot(x(1),x(2),'b*') 
%     % %%%%%%%% 
     
    W = diag(e); 
     
    x = inv(A'*inv(W)*A)*A'*inv(W)*b; %new coordinate 
end 
  
  
PredTagLoc=x'; 
Error = sqrt(sum((PredTagLoc-TagLoc).^2)); 
  
end 
 

C.10.9- IterativeLeastSquares.m 

function [ PredTagLoc,Error ] = IterativeLeastSquares( AntLoc, TagLoc, 
DistPred ) 
%%Ann Whitney%% 
%%Originally Written%% 
%%3/1/16%% 
%%Last Edited%% 
%%8/25/16%% 
  
%%The purpose of this program is to find the most likely location of 
the 
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%%unknown object using iterative least squares 
  
  
%%Inputt%% 
stepSize = 1e-5; 
  
  
%%Solving%% 
n = size(AntLoc,1); 
Sigma = eye(n); 
B = AntLoc; 
%thetar = [mean(AntLoc(:,1)) mean(AntLoc(:,2))]; 
for i = 1:10 
    sigma = sqrt(diag(Sigma)); 
    thetar = sum(B./[sigma sigma],1)./sum(1./[sigma sigma],1); 
    xr = thetar(1); 
    yr = thetar(2); 
    X = [ones(n,1) 2*(AntLoc(:,1)-xr) 2*(AntLoc(:,2)-yr)]; 
    Y = [(AntLoc(:,1)-xr).^2+(AntLoc(:,2)-yr).^2-DistPred.^2']; 
    vInv = stepSize*eye(3); 
    beta = inv(X'*inv(Sigma)*X+vInv)*X'*inv(Sigma)*Y; 
    theta = beta(2:end)+thetar'; 
    x(i) = theta(1); 
    y(i) = theta(2); 
    di2 = [((x(i)-AntLoc(:,1)).^2+(y(i)-AntLoc(:,2)).^2)]; 
    sigma2 = abs((1/n)*sum((DistPred.^2')-di2)); 
    Sigma = diag(4*di2.*sigma2); 
%     Error = sqrt((x(end)-TagLoc(1))^2+(y(end)-TagLoc(2))^2) 
end 
PredTagLoc = theta; 
Error = sqrt((x(end)-TagLoc(1))^2+(y(end)-TagLoc(2))^2); 
  
end 
 

C.10.10- NonlinearLeastSquares.m 

function [ PredTagLoc,Error ] = NonlinearLeastSquares( AntLoc, TagLoc, 
DistPred, Guess ) 
%%Ann Whitney%% 
%%Originally Written%% 
%%3/21/16%% 
%%Last Edited%% 
%%11/14/17 
  
%%The purpose of this program is to find the most likely location of 
the 
%%unknown object using nonlinear iterative least squares 
%% From Statistical methods in surveying by trilateration 
% Guess = [0.0021 -0.0010]; 
% DistPred = [3.2558 5.3757 4.7103 1.7095]; 
% TagLoc=[-0.6909 2.2130]; 
% AntLoc = [0 0;2.0116 1.7738;0.3020 3.9090;-1.4946 0.6832]; 
%% 
Theta=Guess'; 
  
%% Theta1 Linear Least Squares Approximation %% 
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% Thetabar = mean(AntLoc,1)'; 
% xr = Thetabar(1); 
% yr = Thetabar(2); 
% Xstar = [2*(AntLoc(:,1)-xr) 2*(AntLoc(:,2)-yr)]; 
% Y = [(AntLoc(:,1)-xr).^2+(AntLoc(:,2)-yr).^2-DistPred.^2']; 
% Ystar = Y+Xstar*Thetabar; 
% Theta = inv(Xstar'*Xstar)*Xstar'*Ystar; 
x = Theta(1); 
y = Theta(2); 
  
AntLoc(abs(y-AntLoc(:,2))<0.005,2)=AntLoc(abs(y-
AntLoc(:,2))<0.005,2)+0.5; 
AntLoc(abs(x-AntLoc(:,1))<0.005,1)=AntLoc(abs(x-
AntLoc(:,1))<0.005,1)+0.5; 
  
%% Newton's Method Applied to Nonlinear Least Squares %% 
for i = 1:50 
    di2 = ((x-AntLoc(:,1)).^2+(y-AntLoc(:,2)).^2); 
    f = sqrt(di2)-DistPred'; 
    JacobianX = sum(((x-AntLoc(:,1)).^2)./di2); 
    JacobianY = sum(((y-AntLoc(:,2)).^2)./di2); 
    JacobianXY = sum(((x-AntLoc(:,1)).*(y-AntLoc(:,2)))./di2); 
    JtJ = [JacobianX JacobianXY;JacobianXY JacobianY]; 
    Jf = [sum(((x-AntLoc(:,1)).*f)./di2);sum(((y-
AntLoc(:,2)).*f)./di2)]; 
    Theta = Theta-inv(JtJ)*Jf; 
    x = Theta(1); 
    y = Theta(2); 
end 
PredTagLoc = Theta'; 
Error = sqrt(sum((PredTagLoc-TagLoc).^2)); 
  
End 
 
 
 

C.10.11- Additional Functions 

 

 

Note: PlotCircle.m (C.10.11.1) is used to graph circles to represent the distance measurement 
from the satellite antenna 
 

C.10.11.1- PlotCircle.m 

function PlotCircle( x,y,r,color ) 
%x and y are the coordinates of the center of the circle 
%r is the radius of the circle 
%0.01 is the angle step, bigger values will draw the circle faster but 
%you might notice imperfections (not very smooth) 
ang=0:0.01:2*pi;  
xp=r*cos(ang); 
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yp=r*sin(ang); 
plot(x+xp,y+yp,color); 
end 
 

C.10.11.2- mySlope.m 

function [ slope,b ] = mySlope( x,y ) 
%% The purpose of this function is to quickly calculate the slope and 
intercept 
  
%%Linear Regression%% 
m1 = mean(x.*y); 
m2 = mean(x)*mean(y); 
m3 = mean(x.^2); 
m4 = mean(x)^2; 
slope = (m1-m2)/(m3-m4); 
b = mean(y)-slope*mean(x); 
  
end 
 

C.10.11.3- atan3.m 

function [theta] = atan3(y,x) 
%The purpose of this function is to calculate the arctan function 
%accounting for the quadrents of x and y, and giving the output ranging 
%from 0 to 2pi 
theta = atan(y./x)+(pi/2)*(2-sign(y)-sign(y./x)); 
end 
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C.11: Antenna Pattern Method 

 

Note: AntGradientDescent.m (C.11.1) performs the trilateration method of the Antenna Method 
 

C.11.1- AntGradientDescent.m 

function [ TagLoc,Error ] = AntGradientDescent( AntLoc, ActTagLoc, 
Dist,InitTagLoc,SigError) 
  
addpath('D:\My Stuff\School\Bluetooth\MATLAB') 
x = AntLoc(:,1); 
x=x(~isnan(Dist)); 
y = AntLoc(:,2); 
y=y(~isnan(Dist)); 
Dist=Dist(~isnan(Dist)); 
S = 1; 
[~,small]=min(Dist); 
Cx = InitTagLoc(1); 
Cy = InitTagLoc(2); 
A = atan2(y(small)-Cy,x(small)-Cx); 
X = [S;A;Cx;Cy]; 
n = length(x); 
n=length(Dist); 
J = zeros(n,4); 
  
%%USER INPUTS%% 
graph =0; 
deepLearning = logical([1 1 1 1]); 
gamma = [0.1;0.01;0.1;0.1]; 
alpha= 0.1; 
h=0.8; 
iterations = 10; 
%%%%%%%%%%%%%%% 
  
  
  
gamma = gamma(deepLearning); 
for k = 1:iterations; 
    S = X(1); 
    A = X(2); 
    Cx = X(3); 
    Cy = X(4); 
    null = zeros(1,n); 
    for i =1:n 
        %Initial Values% 
        phi = atan2(y(i)-Cy,x(i)-Cx)-A; 
        if (abs(phi-(pi/4))<alpha)||(abs(phi-(3*pi/4))<alpha)||... 
                (abs(phi+(pi/4))<alpha)||(abs(phi+(3*pi/4))<alpha) 
            null(i)=1; 
        end 
        r1 = cos(pi.*cos(atan(2*tan(phi)))); 
        r2 =cos(atan(2*tan(phi))); 
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        r3 = 0.5*sin(atan(2*tan(phi))); 
        r4 = ((3+h)/4)+(((2*h-2)/(pi*sqrt(2))).*cos(phi))+... 
            (((2*h-2)/(2*pi)).*cos(2*phi))+(((2*h-
2)/(3*pi*sqrt(2))).*cos(3*phi))+... 
            (((-2*h+2)/(5*pi*sqrt(2))).*cos(5*phi))+(((-
2*h+2)/(6*pi)).*cos(6*phi))+... 
            (((-2*h+2)/(7*pi*sqrt(2))).*cos(7*phi)); 
        r5 = sqrt((r1*r2)^2+(r1*r3)^2); 
        r = r5*r4; 
        Tx = (r*S)*cos(phi+A)+Cx; 
        Ty = (r*S)*sin(phi+A)+Cy; 
        G(i,1)=sqrt((Tx-x(i))^2+(Ty-y(i))^2)-Dist(i); 
         
        %Gradient% 
        d_phi(1) = 0; 
        d_phi(2) = -1; 
        d_phi(3) = (y(i)-Cy)/((y(i)-Cy)^2+(x(i)-Cx)^2); 
        d_phi(4) = (Cx-x(i))/((y(i)-Cy)^2+(x(i)-Cx)^2); 
         
        d_r1=sin(pi*cos(atan(2*tan(phi))))*pi*sin(atan(2*tan(phi)))*... 
            (-4/(3*cos(2*phi)-5)); 
        d_r2=-sin(atan(2*tan(phi)))*(-4/(3*cos(2*phi)-5)); 
        d_r3 = 0.5*cos(atan(2*tan(phi)))*(-4/(3*cos(2*phi)-5)); 
        d_r4 = (((-(2*h-2)/(pi*sqrt(2))).*sin(phi))+... 
            ((-2*(2*h-2)/(2*pi)).*sin(2*phi))+... 
            ((-3*(2*h-2)/(3*pi*sqrt(2))).*sin(3*phi))+... 
            ((-5*(-2*h+2)/(5*pi*sqrt(2))).*sin(5*phi))+... 
            ((-6*(-2*h+2)/(6*pi)).*sin(6*phi))+... 
            ((-7*(-2*h+2)/(7*pi*sqrt(2))).*sin(7*phi)))*d_phi; 
        d_r5 = ((r1*r2)*(r2*d_r1*d_phi+r1*d_r2*d_phi)+... 
            
(r1*r3)*(r3*d_r1*d_phi+r1*d_r3*d_phi))/sqrt((r1*r2)^2+(r1*r3)^2); 
         
        d_r = (r4*d_r5)+(r5*d_r4); 
         
        d_Tx(1) = r*cos(phi+A); 
        d_Tx(2) = S*cos(phi+A)*d_r(2)-S*r*sin(phi+A)*(d_phi(2)+1); 
        d_Tx(3) = S*cos(phi+A)*d_r(3)-S*r*sin(phi+A)*d_phi(3)+1; 
        d_Tx(4) = S*cos(phi+A)*d_r(4)-S*r*sin(phi+A)*d_phi(4); 
         
        d_Ty(1) = r*sin(phi+A); 
        d_Ty(2) = S*sin(phi+A)*d_r(2)+S*r*cos(phi+A)*(d_phi(2)+1); 
        d_Ty(3) = S*sin(phi+A)*d_r(3)+S*r*cos(phi+A)*d_phi(3); 
        d_Ty(4) = S*sin(phi+A)*d_r(4)+S*r*cos(phi+A)*d_phi(4)+1; 
         
        J(i,:)=(((x(i)-Tx)*-d_Tx)+((y(i)-Ty)*-d_Ty))... 
            /sqrt((x(i)-Tx)^2+(y(i)-Ty)^2); 
    end 
    if graph==1 
        GraphAntLoc( AntLoc, ActTagLoc, Dist,Cx,Cy,S,A,SigError,h,null) 
    end 
         
    null = ~logical(null'); 
    J = J(null,deepLearning); 
    G = G(null); 
     
    grad_F = J'*G; 
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    X(deepLearning) = X(deepLearning)-gamma.*grad_F; 
    F = (1/(n-1))*G'*G; 
    clear J G 
end 
TagLoc = X(3:4)'; 
Error = sqrt(sum((ActTagLoc-TagLoc).^2)); 
end 
 
 

Note: GraphAntLoc.m (C.11.2) is used by AntGradientDescent (C.11.1) to graph the results 
 

C.11.2- GraphAntLoc.m 

function  GraphAntLoc( AntLoc, ActTagLoc, 
Dist,Cx,Cy,S,A,SigError,h,null ) 
%%The purpose of this function is to graph the current antenna 
localization 
%%algorithm 
hold off 
  
colors = [0 0.447 0.741;0.85 0.325 0.098;0.929 0.694 0.125;... 
    0.494 0.184 0.556;0.466 0.674 0.188;0.301 0.745 0.933;0.635 0.078 
0.184]; 
  
plot(ActTagLoc(1),ActTagLoc(2),'k*') 
hold on 
phi = 0:0.01:2*pi; 
r1 = cos(pi.*cos(atan(2*tan(phi)))); 
r2 =cos(atan(2*tan(phi))); 
r3 = 0.5*sin(atan(2*tan(phi))); 
r4 = ((3+h)/4)+(((2*h-2)/(pi*sqrt(2))).*cos(phi))+... 
    (((2*h-2)/(2*pi)).*cos(2*phi))+(((2*h-
2)/(3*pi*sqrt(2))).*cos(3*phi))+... 
    (((-2*h+2)/(5*pi*sqrt(2))).*cos(5*phi))+(((-
2*h+2)/(6*pi)).*cos(6*phi))+... 
    (((-2*h+2)/(7*pi*sqrt(2))).*cos(7*phi)); 
r = sqrt((r1.*r2).^2+(r1.*r3).^2).*r4; 
Tx = (r*S).*cos(phi+A)+Cx; 
Ty = (r*S).*sin(phi+A)+Cy; 
plot(Cx,Cy,'g*') 
plot(Tx,Ty) 
clear phi r Tx Ty 
for i = 1:length(Dist) 
    PlotCircle(AntLoc(i,1),AntLoc(i,2),Dist(i),'b') 
%     PlotCircle(AntLoc(i,1),AntLoc(i,2),Dist(i)-SigError(i),'r') 
    phi = atan2(AntLoc(i,2)-Cy,AntLoc(i,1)-Cx)-A; 
    r1 = cos(pi.*cos(atan(2*tan(phi)))); 
    r2 =cos(atan(2*tan(phi))); 
    r3 = 0.5*sin(atan(2*tan(phi))); 
    r4 = ((3+h)/4)+(((2*h-2)/(pi*sqrt(2))).*cos(phi))+... 
    (((2*h-2)/(2*pi)).*cos(2*phi))+(((2*h-
2)/(3*pi*sqrt(2))).*cos(3*phi))+... 
    (((-2*h+2)/(5*pi*sqrt(2))).*cos(5*phi))+(((-
2*h+2)/(6*pi)).*cos(6*phi))+... 
    (((-2*h+2)/(7*pi*sqrt(2))).*cos(7*phi)); 



 

 385 

    r = sqrt((r1.*r2).^2+(r1.*r3).^2).*r4; 
    Tx = (r*S).*cos(phi+A)+Cx; 
    Ty = (r*S).*sin(phi+A)+Cy; 
    if null(i)==1 
        plot(Tx,Ty,'r*'); 
    else 
        plot(Tx,Ty,'g*') 
    end 
    plot(AntLoc(i,1),AntLoc(i,2),'r*') 
end 
legend('Actual Tag Loc','Antenna Pattern','Anchor Radius','Point on Ant 
Patrn') 
% legend('Actual Tag Loc','Antenna Pattern','Original Radius','RSSI Sig 
Radius','Point on Ant Patrn') 
% legend('Actual Device Loc','Linear Loc Estimate','Anchor Radius/Read 
Dist','Anchor Location') 
title('Trilateration') 
xlabel('X Coordinate') 
ylabel('Y Coordinate') 
hold off 
% plot(Cx,Cy,'r*') 
  
End 
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APPENDIX D : OVERVIEW OF THE PROJECT 

D.1.1 Phase 1 

Phase 1Part 1: Review of the Literature. 

 A literature review was completed to identify state-of-the-art methods for 

localization based on the criteria of the problem statement.  

 

Phase 1Part 2: Initial testing of distance measurement techniques. 

RSSI (Received Signal Strength Indication) and phase-based distance 

measurements with RFID were tested as a viable option for accurate, low cost, indoor 

localization; as well as RSSI measurements for Bluetooth Low Energy (BLE) sensors for 

longer range applications.  Testing was also done using algorithms such as near neighbor 

and fingerprinting to identify the tradeoffs associated with these commonly used 

localization methods, as well as their potential to be used in conjunction with other 

algorithms.  Line of sight readings in 5 and 10 meter fully and semi-anechoic chambers 

were used to accurately model and understand the characteristics of the wireless 

technologies.  Additionally, testing was performed in a variety of “real world” 

environments observe the impact of common disturbances and how they can be mitigated 

to find effective solutions.   

Research into Distance Measurement Accuracy 

With the technology selection, both a literature search and experimental 

investigation were performed to test the accuracy of various distance estimation methods.  

RSSI measurements are possible for both RFID and BLE for distance estimation but are 

commonly understood to be significantly impacted by the surrounding physical 

environment, as will be discussed in detail in the coming chapters.  Phase angle, which in 
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this case measures phase change between different carrier frequencies, is possible with 

RFID but not BLE.  Phase measurements are believed to be more robust with regards to 

“real world” environments but are not suitable for all applications. 

D.1.2 Phase II 

Phase 2 Part 1: Localization accuracy using phase-based distance techniques.  

 As expected phase-based distance techniques provided improved accuracy over 

standard RSSI techniques.  A new and unique method, called RSSI-Informed phase, was 

developed using a combination of RSSI and Phase was developed through this work, to be 

robust with regards to “real world” environments, motion, and extreme tag angles.  This 

algorithm was presented in "RSSI-Informed Phase Method for Distance Calculations," at 

the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, in 2015. 

 

Phase 2 Part 2:  The role of walls and obstructions. 

 Methods such as fingerprinting and near neighbor are often used to mitigate the 

impact of a “real world” environment, such as obstacles and reflections.  These methods 

are time intensive to implement and maintain, therefore an alternative method to mitigate 

the impact was explored.  The unique pattern of RSSI vs. frequency was found to relate 

directly to the multipath of the surrounding environment, and therefore utilized for the 

mitigation of multipath effects. This work lead to an understanding of multipath error, and 

a subsequent reduction of the error in distance measurements by approximately 50%.  This 

work was published as a conference paper entitled "Received Signal Strength Indication 

Signature for Passive UHF Tags," [2]. 

 

Phase 2 Part 3: Moving toward a working prototype  
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 The next step in the research process was to move from improved distance 

estimations to an exploration of trilateration algorithms.  

D.1.4 Research into Distance Measurement Accuracy 

Using empirical data, this research was able to apply a variety of localization 

algorithms to determine which methods yielded the highest accuracy and could handle a 

varying number of devices.  Additionally, a method was developed in this research which 

enhanced accuracy by eliminating the assumption of isotropic antennas, and instead 

incorporating information about the antenna pattern to improve performance.  

 

Phase 3 Part 1: Evaluate Localization Algorithms 

 Based on distance measurement techniques determined in phase 1, this research 

explored algorithms for location of Bluetooth and RFID tags while addressing the criteria 

of the problem statement that the number of tags (beacons) will vary.  Location data was 

collected for both technologies and used to compare a variety of trilateration algorithms 

from the literature.  Ten different localization algorithms using all applicable combinations 

of distance techniques were compared.  The results for Bluetooth devices have resulted in 

a manuscript “Comparing Trilateration Algorithms for BLE Devices” which will soon 

submitted to IEEE for review. 

 

Phase 3 Part 2: Improved Localization 

 A new method of trilateration was designed to address error from extreme antenna 

angle by fitting a simplified antenna pattern to a set of distance measurements and allowing 

that model to find the most likely location using an optimization algorithm.  This method 

has been incorporated into a journal article “Antenna Pattern Method for Improved 
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Localization” which will soon be submitted to IEEE for review.  In the final analysis, this 

method proved to be the most accurate for Bluetooth systems.  
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