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ABSTRACT 

THE EFFECT OF EXTRACORPOREAL SHOCK WAVE (ESW)  

ON CEMENTOBLASTS IN VITRO 

 

 

Joshua Barta, DDS 

 

Marquette University, 2012 

 

 

 Root resorption is an adverse consequence of orthodontic treatment, and currently 

no effective treatment method exists. Extracorporeal shock wave (ESW) has been applied to 

enhance angiogenesis, growth and healing of bone, but the effects of ESW on root 

resorption have not been studied. Cementoblasts are the cells responsible for forming and 

repairing cementum covering the dental root, and ESW may enhance this reparative 

process. The purpose of this study was to investigate the effects of ESW on cementoblasts 

to determine if ESW could potentially be used to treat root resorption. OCCM.30 

cementoblasts were prepared in suspension at a density of 10
7
/ml and placed in Eppendorf 

tubes which were held in a specially designed apparatus to focus the shock waves at the 

cells. Using the focused shock wave stimulator (Storz Medical AG, Switzerland), the cells 

were subjected to a single dose of 2000 impulses of ESW at their assigned energy level 

(0.1mJ/mm
2
, 0.25mJ/mm

2
 or 0.5mJ/mm

2
). Controls were set under identical conditions 

without ESW application. Immediately after ESW stimulation, the amount of ATP release 

was measured since ATP is an early messenger in bone modeling regulation. Cell viability 

was tested to determine if any dose level caused cell death. After 24 hours of post 

stimulation incubation, the cells were lysed to test functional protein productions of 

sclerostin (SOST), a negative regulator of bone formation, receptor activator NFκB ligand 

(RANKL), a direct stimulator of bone resorption, and osteopontin (OPN), a regulator of 

osteoclastogenesis. After ESW application, ATP levels in the medium and high-dose groups 

were found to be significantly increased in a dose-dependent manner. High-dose ESW 

significantly decreased cell viability. SOST protein was significantly decreased only at the 

dose level of 0.25mJ/mm
2
 (n=3, p<0.05). OPN was significantly increased at 0.1mJ/mm

2
 and 

0.5mJ/mm
2
 (n=3, p<0.01), but not at the 0.25mJ/mm

2
energy level. RANKL was not 

significantly changed with any of the doses. Our data suggest that ESW at an energy level of 

0.25mJ/mm
2
 anabolically modulates bone remodeling by decreasing SOST production but 

not affecting RANKL and OPN production significantly. These findings suggest that ESW 

could potentially be used to treat root resorption in orthodontics. 
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Root resorption is the adverse loss of cementum and dentin from the root surface of 

the tooth. Patients undergoing comprehensive orthodontic therapy experience increased 

incidence and severity of root resorption. This type of root resorption is termed 

orthodontically induced inflammatory root resorption (OIIRR) and may occur in as many as 

90% of orthodontically treated teeth (Weltman et al., 2010). While it is unusual for minor 

root resorption to create serious clinical problems, severe root resorption can result in 

decreased periodontal support and reduced crown-to-root ratio. Additionally, root 

resorption increases the liability of the orthodontist to malpractice claims (El-Bialy et al., 

2004; Mizrahi, 2010; Franklin, 2002). 

Orthodontic tooth movement occurs as a result of bone resorption and deposition 

in the compressed and stretched side of the periodontal ligament (PDL), respectively 

(Krishnan and Davidovitch, 2006). When the PDL is compressed in response to the 

application of orthodontic force, osteoclasts are activated. The osteoclasts resorb alveolar 

bone adjacent to the root of the tooth to make tooth movement possible, but these cells 

also attack cementum as the PDL is remodeled (Brudvik and Rygh, 1995) (Figure 1-1). While 

cementum is more resistant to resorption than bone, root repair happens regularly during 

orthodontic tooth movement. Permanent root structure loss occurs when the resorbed 

cementum and underlying dentin is not fully repaired (Proffit et al., 2007). With increased 

duration of orthodontic treatment, the potential for loss of root length becomes greater 

(Weltman et al., 2010; Taithongchai et al., 1996; Killiany, 1999). 

Currently, there are no effective treatment methods for root resorption and no 

high-level evidence has been presented to support any form of treatment (Ahangari et al., 
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Figure 1-1: Diagram showing the histological cross section of a premolar being moved in the 

direction of the arrow. A) The PDL is stretched away from the direction of the force. B) The 

PDL is compressed in the direction of the force and areas of bone resorption can be seen. C)  

Resorption occurring into the cementum and dentin of the dental root (Proffit et al., 2007) 

 

 

2010). The purpose of this study was to investigate the effects of extracorporeal shock wave 

(ESW) on cementoblasts to determine if ESW could potentially be used to treat root 

resorption. Cementoblasts are the primary cells responsible for the repair of root 

resorption, and if the cementoblast rate of repair could be increased through ESW 

stimulation, root resorption could be prevented or reduced accordingly. Cementoblasts 

were cultured and subjected to three different energy levels of ESW. The changes in the 

production of several metabolic bone markers were measured after the application of ESW. 

The results of this study will shed light on the effects of ESW on root resorption. 
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Root Resorption 

 

 

One of the most common and unpredictable complications found during 

orthodontic treatment is root resorption. Thus, it is important to advise patients of the risks 

before starting treatment. External root resorption is thought to be caused by a wide range 

of mechanical and chemical stimuli such as infection, pressure, trauma and orthodontic 

tooth movement (Ahangari et al., 2010). The amount of root resorption experienced by an 

individual is also influenced by biological variability and genetic predisposition. External 

apical root resorption can happen with or without orthodontic treatment, and root 

resorption is seen in approximately 7 to 13% of individuals who have not received 

orthodontic treatment (Hartsfield, 2009). 

The occurrence of root resorption experienced during orthodontic treatment has 

been reported to be as high as 90% from histological studies and approximately 73% when 

radiographic techniques are used for diagnosis (Weltman et al., 2010). Usually, the amount 

of lost root structure is clinically insignificant. Severe root resorption, which is often defined 

as the loss of greater than one fourth of the root length, has been reported to range from 

1% to 5% of teeth measured (Weltman et al., 2010; Lupi et al., 1996; Killiany, 1999). Severe 

loss of root structure can decrease the usefulness of these teeth as abutments in the future. 

Periodontitis can also progress more rapidly in a patient who experiences severe root 

resorption because 3 mm of lost root length is equivalent to 1 mm of crestal bone loss 

(Kalkwarf et al., 1986). However, loss of a tooth from root shortening has rarely been 

reported. Additionally, since the loss of tooth structure is normally towards the narrower 

apex of the tooth, the loss of 5 mm of root structure still leaves three fourths of the tooth’s 

periodontal attachment intact (Killiany, 1999; Taithongchai et al., 1996). 
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A positive correlation has been established between root resorption and mechanical 

loading applied during orthodontic tooth movement (Brezniak and Wasserstein, 1993; 

Baumrind et al., 1996). While it is accepted that orthodontic treatment does cause root 

resorption, the exact aspects of treatment that cause root resorption remain unclear. There 

is no evidence that root resorption is affected by mechanical treatment variables such as 

archwire sequencing, slot size, elastic use, bracket prescription, or self-ligation (Hartsfield, 

2009). Extractions were associated with greater amounts of root resorption, but this was 

not consistently found in all studies (Jung and Cho, 2011; Sharpe et al., 1987; Krishnan and 

Davidovitch, 2006; Sameshima and Sinclair 2001b). Presumably, the increased retraction of 

incisors in premolar extraction cases produced more root resorption. Some studies showed 

a correlation between increased overbite or overjet with root resorption, but there was a 

lack of consensus in this regard. When reviewing the published root resorption studies, it 

was not uncommon to find conflicting results. Most of the research conducted on root 

resorption has been clinical studies, case reports, or animal studies with few randomized 

clinical trials. 

The teeth exhibiting the greatest amount of root resorption are the maxillary 

incisors followed by the mandibular incisors (Jung and Cho, 2011; Weltman et al., 2010; 

Taithongchai et al., 1996; Sameshima and Sinclair, 2001a; Krishnan and Davidovitch, 2006). 

It is often suggested that teeth with abnormal root shape, such as pointed or dilacerated 

roots, show increased likelihood of root resorption (Semshima and Sinclair, 2001a; Brin et 

al., 1993; Mirabella and Artun, 1995; Linge and Linge, 1991). However, a recent systematic 

review concluded that teeth with unusual root morphology before treatment were only 
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slightly more likely to have moderate or severe root resorption than those with normal root 

forms and the difference was not statistically significant (Weltman et al., 2010). 

The most common conclusion from studies looking at root resorption was a positive 

correlation with the duration of treatment and the amount of root resorption (Sameshima 

and Sinclair, 2001b; Weltman et al., 2010; Taithongchai et al., 1996; Killiany, 1999, Jung and 

Cho, 2011). Unfortunately, no pre-treatment factors have shown a high correlation to the 

development of root resorption during treatment. Currently, the most accepted predictive 

factor of severe resorption is the occurrence of mild resorption early in orthodontic 

treatment (Artun et al., 2005). For this reason, all patients must be informed of the 

possibility of root resorption before treatment, and progress panoramic radiographs are 

recommended throughout treatment (Figure 1-2). 

 

 

Figure 1-2: Root resorption from orthodontic treatment. Panoramic radiograph showing 

severe root resorption of the maxillary incisor roots during orthodontic treatment.  

 



8 

 

Root Resorptive Process and Repair 

 

 

Orthodontic tooth movement is traditionally described using the pressure-tension 

theory which states that when a force is placed on a tooth, the tooth moves within the PDL 

space creating a compression side in the direction of the force and a tension side away from 

the force. The theory suggests that the change in blood flow and subsequent release of 

chemical messengers induces progenitor cells within the PDL to differentiate into 

compression-associated osteoclasts and tension-associated osteoblasts, causing bone 

resorption and apposition, respectively (Masella and Meister, 2006). This hypothesis has 

been challenged recently, however, because it contradicts current much of orthopedic 

literature which has shown that mechanical compression stimulates bone formation and 

tension stimulates resorption (Melsen, 1999). To align the orthodontic and orthopedic 

theories, it has been hypothesized that on the pressure side, the PDL fibers are unloaded 

leading to unloading of the alveolar bone which results in resorption. On the tension side, 

the PDL fibers are stretched, which causes active loading of the alveolar bone leading to 

apposition (Melsen, 2001; Henneman et al., 2008) (Figure 1-3). 

The level of force used to compress the tooth determines the type of resorption that 

is observed. Light forces will cause direct resorption as described above, while “indirect 

resorption,” or undermining resorption, is seen when excessive force is applied. Under 

sustained, heavy force, the blood vessels are totally occluded and the blood supply is cut off 

to an area of the PDL. Instead of cells being recruited to the area, a sterile necrosis ensues 

as cell death occurs. Because of its histological appearance after the cells die, the avascular 

area in the PDL is termed hyalinized. After several days, cells invade the hyalinized area and 

begin to resorb the underside of the bone immediately adjacent to the necrotic PDL (Proffit 
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et al., 2007). During orthodontic tooth movement, it is advised to avoid creating areas of 

undermining resorption as much as possible to allow for more efficient tooth movement 

and reduce the pain experienced by the patient during treatment. 

When high orthodontic forces induce the formation of a hyalinized zone, 

odontoclasts are recruited to the tooth surface for the removal of necrotic tissue. These 

cells have almost identical morphologies to osteoclasts, but are generally smaller in size and 

form smaller resorption lacunae. The odontoclasts, which are sometimes called 

cementoclasts, mediate root resorption in a process that appears to be quite similar to the 

cellular mechanisms of osteoclastic bone resorption (Tyrovola et al., 2008). When 

cementum is resorbed, the dentin is exposed, allowing the multinucleated odontoclasts to 

degrade the root surface (Reitan, 1974). The odontoclasts create small “inlets,” called 

resorption lacunae, in the root surface, and these cavities can coalesce at the root apex, 

causing shortening of the root (Figure 1-4). Normally, however, these defects are repaired 

by cementoblasts. 

Cementoblasts are a group of cells lining the dental roots that deposit the organic 

matrix of cementum onto the root surface, eventually embedding in the mineralized 

cementum and becoming cementocytes. The cementocytes in the cellular cementum of the 

dental root maintain the ability for repair after the resorption of root dentin or cementum. 

As a protective function, the cementoblasts are programmed to maintain a smooth surface 

of the root (Avery, 2000). When orthodontic forces are applied, cementum is sometimes 

removed from the root surface by odontoclasts and then restored by cementoblasts in a  
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Figure 1-3: Diagram showing the displacement of the tooth during orthodontic tooth 

movement. A) The PDL fibers are at equilibrium when no force is applied. B) In the direction 

of the applied force, the PDL fibers are compressed, unloading the bone. Away from the 

force, the PDL fibers are stretched causing loading of the bone. C) When the PDL fibers are 

compressed, the bone is unloaded and resorption takes place in the direction of the force. 

When the PDL fibers are stretched, the bone is loaded and bone apposition takes place in 

the opposite direction of the force (Henneman et al., 2008). 

 

 

 

Figure 1-4: Diagram of resorption lacunae at the root apex. When odontoclasts resorb 

dentin, resorption lacunae are created. When multiple resorption lacunae are formed at the 

root apex, the cavities can coalesce and root shortening takes place (Proffit et al., 1997). 
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similar process to the way that the alveolar bone is remodeled. Root repair is constantly 

taking place during orthodontic tooth movement, and permanent loss of root structure only 

occurs if the lost tooth structure is not fully repaired (Proffit et al., 2007). 

When active forces are discontinued or reduced below a certain level, the reparative 

process commences in the bottom of the resorption cavities created by odontoclasts 

(Owman-Moll and Kurol, 1998; Brudvick and Rygh, 1995) (Figure 1-5). The process has been 

shown to start as soon as a week into retention and increase over time (Owman-Moll and 

Kurol, 1998; Timms and Moss, 1971; Barber and Sims, 1981). Ownman-Moll and Kurol 

showed that after 2 weeks, 38 percent of root resorptions showed some healing, and this 

increased to 82 percent after 6 to 7 weeks (1998). After 8 weeks, the repair process 

appeared to reach a baseline level. Individual variations in healing potential were shown to 

be large, but Henry and Weinmann found that 72 % of resorptive areas were shown to 

exhibit full repair in adults (1951). 

 

Molecular Regulation of Root Resorption 

 

 

Many layers of networked reactions occur in and around the PDL and alveolar bone 

cells to change mechanical force into the molecular events making orthodontic tooth 

movement possible. Fibroblasts, osteoblasts, osteocytes and osteoclasts are part of the 

complex regulatory network that induces PDL and bone remodeling. Since we have already 

established that root remodeling takes place during orthodontic tooth movement, 

odontoclasts, cementoblasts and cementocytes can also be considered to be involved in this 

cascade of molecular events. Cementum and bone are very similar hard tissues, and 
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Figure 1-5: Diagram showing the histology of varying degrees of repair after root resorption.  

A) Resorption lacuna with odontoclasts at the bottom of the cavity (Odontoclasts are 

marked “dc” for dentinoclasts). B) Partial repair of a resorption lacuna by acellular 

cementum. C) Partial repair of a resorption lacuna by cellular cementum. D) Full anatomic 

repair of a resorption lacuna by acellular cementum (Owman-Koll and Kurol, 1998). 

 

 

 

 

osteocytes and cementocytes share many morphological biological characteristics. 

However, it is still unclear if cementocytes function in the homeostasis of cementum similar 

to the way osteocytes do in bone. Like osteoblasts, cementoblasts have been shown to 

express various bone regulatory proteins such as osteopontin (OPN), receptor activator of 
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NFκB ligand (RANKL), and sclerostin (SOST) (Dalla-Bona et al., 2008; Huang et al., 2009; Jäger 

et al., 2010). 

In bone biology, the OPG/RANKL/RANK system has been established as the method 

by which osteoblasts modulate osteoclastogenesis (Khosla, 2001; Masella and Meister, 

2006). The biological effects of RANKL are produced when it binds to receptor activator of 

nuclear kappa beta (RANK). The biological effects of osteoprotegerin (OPG) are opposite to 

the effects of RANKL, because OPG acts as a soluble receptor antagonist which neutralizes 

RANKL and therefore prevents RANKL-RANK interaction (Tyrovola et al., 2008). Osteoblasts 

and stromal stem cells (pre-osteoblasts) express RANKL, which binds to RANK on the surface 

of osteoclast precursor cells and promotes the differentiation, activation and survival of 

osteoclasts (Hartsfield, 2009). OPG is also secreted by osteoblasts and osteogenic stromal 

stem cells and it binds to RANKL preventing it from interacting with RANK and thus, 

decreases bone resorption by blocking the activation of osteoclasts (Figure 1-6). 

Recently, the OPG/RANKL/RANK system has been applied to explain orthodontic tooth 

movement. These same proteins have been found to be expressed in the cells of the PDL 

and participate in the bone modeling making orthodontic tooth movement possible 

(Ogasawara et al., 2004; Low et al., 2005; Yamaguchi et al., 2006). It is now known that 

RANKL is expressed in PDL fibroblasts and osteoblasts on the compressed side of the PDL, 

playing a critical role in the differentiation of osteoclasts in response to mechanical stress 

(Tyrovola et al., 2008). As expected, the synthesis of OPG is increased on the tensile side 

during orthodontic tooth movement. It has therefore been concluded that the relative 
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Figure 1-6: Diagram showing the pre-osteoblast/stromal cell regulation of 

osteoclastogenesis. The pre-osteoblast/stromal cells release RANKL which binds to RANK 

receptors on the osteoclast precursors leading to the differentiation and activation of 

mature osteoclasts. OPG is a decoy receptor which blocks the ability of RANKL to bind to 

RANK, thus preventing the activation of osteoclasts (Khosla, 2001). 

 

 

 

 

expression of OPG and RANKL on the tension and compression sides of the tooth regulates 

bone remodeling during orthodontic tooth movement. 

The coordination of the OPG/RANKL/RANK system seems to contribute not only to 

alveolar remodeling, but also to resorption during orthodontic tooth movement and 

physiological root resorption (Tyrovola et al., 2008). It has also been proposed that PDL 

cells, in cases of severe external apical root resorption, may produce a larger amount of 

RANKL and up-regulate osteoclastogenesis (Sasaki, 2003). In fact, an increase in RANKL was 
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seen in samples of gingival crevicular fluid from orthodontic patients that exhibited root 

resorption (George and Evans, 2009). Therefore, the RANKL to OPG ratio in PDL cells may 

contribute to root resorption during orthodontic tooth movement (Tyrovola et al., 2008; Al-

Qawasmi et al., 2003; Krishnan and Davidovitch, 2006). 

Sclerostin, the protein product of the SOST gene, is a cysteine knot-secreted 

glycoprotein that is a potent inhibitor of bone formation. Loss of the SOST gene in humans 

causes the high bone mass disorders Van Buchem’s disease and schlerosteosis. Modulation 

of sclerostin levels may be one of the mechanisms by which osteocytes regulate local 

osteogenesis in response to increased mechanical stimulation (Robling et al., 2008). This is 

supported by the finding that transgenic mice with over-expression of SOST exhibit low 

bone mass (Loots et al., 2005). Sclerostin has been found to decrease bone formation by 

reducing osteoblasts numbers through apoptosis (Masella and Meister, 2006). Originally 

thought to only be expressed in osteocytes, SOST was recently shown to be expressed in 

cementocytes (Jäger et al., 2010). This suggests that sclerostin may play a role in 

orthodontically induced bone modeling and root resorption. 

Another molecule involved in osteoclastogenesis that may be linked to root 

resorption is osteopontin (OPN). OPN is expressed most often by osteoblasts and bone-

lining cells on the pressure side of the tooth suggesting that OPN participates in bone 

resorption. OPN is thought to promote and regulate the adhesion and attachment of 

osteoclasts to the bone surface during bone resorption (Terai et al., 1999). OPN shows 

chemotactic activity for osteoclasts and the precursors of osteoclasts, triggering bone 

remodeling in response to mechanical stress. Since odontoclasts share common 

morphological and functional characteristics with osteoclasts, OPN may play a role in the 
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regulation of odontoclast function, and subsequently, root resorption. Two studies with 

OPN knockout mice have shown that these mice experienced less root resorption due to 

both a decrease in the number of osteoclasts in the alveolar bone and a decrease in 

odontoclasts (Fujihara et al., 2006; Chung et al., 2007). One can therefore hypothesize that 

an increase in OPN would increase the amount of osteoclastogenesis and root resorption 

seen in a patient. 

Adenosine triphosphate (ATP) has been recognized as an important and ubiquitous 

intracellular and extracellular messenger in various kinds of tissues. Mechanical stress has 

been shown to induce an increase in ATP release in several cell types (Wongkhantee et al., 

2008). ATP is generally seen as an early messenger to modulate the cellular response to 

mechanical load. The actions of ATP inside the cell are mediated by cAMP, while 

extracellular ATP binds to P2 purinoceptors on target cells (Hoebertz et al., 2002). As a 

mediator for activating several signaling pathways, ATP is believed to be one of the 

regulators of bone homeostasis. ATP has an inhibitory effect on OPG expression and 

recently, ATP was shown to induce the expression of RANKL in PDL cells (Luckprom et al., 

2010). Therefore, ATP could play a role in the regulation of the OPG/RANKL/RANK pathway. 

Additionally, research by Wongkhantee et al. suggested the ATP may up-regulate OPN 

expression (2008). This data suggests that ATP plays an important role in bone remodeling 

and it likely plays a similar role in both orthodontic tooth movement and root resorption. 

 

Treatment of Root Resorption 

 

 

The orthodontist must be aware of root resorption, because there are both clinical 

and legal implications associated with its occurrence. Any evidence of the development of 
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root resorption during treatment needs to be communicated to the patient. Progress 

panoramic x-rays should be taken to monitor these patients, and adjustments may need to 

be made to treatment including using lighter forces, shortening treatment time and 

reducing treatment goals. 

Several ways have been suggested to slow the rate of orthodontic root resorption 

including the application of drugs, hormones, and growth factors (Krishnan and Davidovitch, 

2006). Topical administration of a bisphosphonate was shown to significantly inhibit root 

resorption in rats, but bisphosphonates inhibit bone resorption and would affect 

orthodontic tooth movement (Igarashi et al., 1994). Unfortunately, treatment options are 

generally case-dependent and there is no high level of evidence to support any treatment 

modality (Ahangari et al., 2010). To date, no randomized controlled trials have been 

completed that have looked at the effectiveness of different interventions for the 

management of external root resorption. Weltman et al. suggested that there is some 

evidence to support a 2 to 3 month treatment pause to decrease further root resorption 

(2010). Sameshima and Sinclair also found evidence to recommend an inactive phase of 4 to 

6 months before the resumption of treatment if root resorption is noted (2001b). 

One promising treatment method discussed in the literature is the use of low-

intensity pulsed ultrasound (LIPUS) to enhance the repair of root resorption. LIPUS consists 

of mechanical energy that is transmitted transcutaneously by high frequency acoustic 

pressure waves. Research has shown that LIPUS can enhance healing of various types of 

traumatized connective tissues and accelerate bone fracture healing (Heckman et al., 1997; 

Kristiansen et al., 1997; Mayret al., 2000). The mechanism of this process is not well 
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understood, but it is believed to be mediated by micromechanical stimuli and increased 

local angiogenesis (Oyonarte et al., 2009).     

Root resorption that occurs as a result of orthodontic treatment has all of the 

features of an inflammatory reaction, thus the term “orthodontically induced inflammatory 

root resorption.” When ultrasound was found to have an anti-inflammatory action, LIPUS 

was suggested as a possible method of reducing root resorption. In addition to possessing 

anti-inflammatory properties, LIPUS has also been proven to stimulate the production of 

growth factors, up-regulate bone proteins and enhance dental tissue formation (EL-Bialy et 

al., 2004). Liu et al. suggested ultrasound might be useful to protect against root resorption 

when they found that ultrasound significantly up-regulated the expression of OPG and 

down-regulated RANKL expression (2011). Similarly, Dalla-Bona et al conducted another 

study using the same cementoblast cell line that was used in this study (OCCM.30 cells) and 

found that ultrasound induced an increase in cementoblastic OPG synthesis, while RANKL 

protein levels were unaffected (2008). 

Ultrasound has been shown to increase the healing of root resorption in rats (Liu et 

al., 2012) and minimize root resorption in replanted teeth in rats (Rego et al., 2011). 

Furthermore, a clinical study conducted by El-Bialy et al. suggested that LIPUS minimized 

root resorption and accelerated healing by reparative cementum in humans during 

orthodontic treatment (2004). The results demonstrated a reduction of root resorption and 

acceleration in healing of already resorbed sites over a 4 week period of application. While 

these results were promising, it still is unclear whether ultrasound repairs root resorption or 

just prevents it by decreasing the osteoclastogenesis process. 
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Extracorporeal Shock Wave Therapy 

 

Extracorporeal shock wave (ESW) therapy and LIPUS are both forms of sound wave 

treatment, but ESW differs in that shock waves have lower frequency, minimal tissue 

absorption and no thermal effect (Li et al., 2010). Shock waves are single high-amplitude 

sound waves generated by electrohydraulic, electromagnetic, or piezoelectric methods that 

propagate in tissue with a sudden rise from ambient pressure to its maximum pressure at 

the wave front, followed by lower tensile amplitude (Gerdesmeyer et al., 2002). These 

waves propagate through water or soft tissue just as ultrasound does. 

ESW was introduced into medical use over 20 years ago to be used for the 

disintegration of kidney stones. Later, ESW came into regular use as a minimally invasive 

method to break down salivary duct stones in the management of sailolithiasis (Capaccio et 

al., 2009) (Figure 1-7). The potential repair shown by ESW treatment has lead to its 

application in musculoskeletal disorders such as plantar fasciitis, lateral epicondylitis, 

calcifying tendinitis and avascular necrosis of the femoral head (Zelle et al., 2010). Recent 

research has begun to shed light on how ESW stimulates bone healing. ESW produces 

maturation of human bone osteoblasts (Hofmann et al., 2008) and stimulates osteoblasts in 

cell cultures via increased release of alkaline phosphatase and osteocalcin (Martini et al., 

2003). Angiogenesis is also stimulated by ESW, presumably in response to the increased 

expression of early angiogenesis-related growth factors, such as endothelial nitric oxide 

synthase (eNOS), vascular endothelial growth factor (VEGF), and proliferating cell nuclear 
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Figure 1-7: Diagram showing the procedures of ESW application for the treatment of 

sialolithiasis. Tooth guards and ear plugs are inserted on the side to be treated. Ultrasound 

jelly is applied to the side of the face. The focused ESW handpiece is placed over the 

affected area, and the prescribed impulses are applied (Capaccio et al., 2009). 
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antigen (PCNA) (Wang, 2003). ESW is believed to accelerate healing by modifying the local 

intracellular and extracellular biological environment and stimulating the in-growth of new 

blood vessels.  

The routine use of ESW on patients seems to be safe and without serious risks. The 

side effects from treatment by ESW are dependent on the energy and impulses used, and it 

has been observed that shock waves at low levels create low side effects on the way 

through muscles, fat and connective tissue. If excessive shock wave energy is applied to 

bone, induction of trabecular and cortical fracture can occur (Da Costa Gómez et al., 2004). 

Local hematomas, petechial hemorrhage and local swelling have also been reported, but 

they disappeared within a few days without any complications (Shrivastava and Kailash, 

2005). The only contradictions for treating a patient with ESW are pregnancy and the 

presence of a cardiac pacemaker (Capaccio et al., 2009). Another advantage of ESW 

treatment is low invasiveness since the patient avoids any surgical procedure. 

In dentistry, ESW has begun to be explored for the regeneration of periodontal 

defects (Sathishkumar et al., 2008), a treatment for peri-implantitis (Li et al., 2010), and the 

acceleration of periodontal remodeling to shorten orthodontic treatment time (Hazan-

Molina et al., 2011). LIPUS and ESW have been shown to elicit stimulatory effects on human 

periosteal cells in vitro (Tam et al., 2008). Both methods of transcutaneous mechanical 

stimulation also have been proven to modulate bone remodeling and promote healing 

(Zelle et al., 2010; Mayr et al., 2000). LIPUS is being considered as a possible form of 

treatment for root resorption, and similarly, ESW should also be studied to find out if the 

cementum responds in a similar manner to this form of mechanical stimulation. 
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Tamma et al. applied shock waves to murine osteoblasts and found a decreased 

ratio of RANKL/OPG production suggesting an inhibition of osteoclastogenesis (2009). The 

research conducted on ESW to date appears to suggest that the effects of ESW are 

produced by stimulating the differentiation of osteoblasts (Sathishkumar et al., 2008) and 

reducing osteoclastogenesis (Tamma et al., 2009). Assuming that cementoblasts on the root 

have the ability to regulate the activity of odontoclasts the way that osteoblasts regulate 

osteoclasts, one could hypothesize that ESW may reduce that amount of root resorption by 

reducing osteoclastogenesis and stimulating the anabolic process of osteoblasts. 

 

Cementoblasts 

 

 

Cementum is the hard tissue that covers the entire surface of the dental root. A thin 

layer of cementum, approximately 20 µm thick, covers the cervical half of the root, while 

the cementum becomes the thickest at the apex of the root approaching 200 µm. 

Cementoblasts form cementum by incrementally depositing cementoid, a collagenous 

matrix, which becomes secondarily mineralized to form mature cementum. Once formed, 

the cementum seals the tubules of the root dentin and serves as an attachment for 

periodontal fibers to hold the tooth in the alveolus (Avery, 2000). Once the cementum 

surrounds the cementocytes, they reside in lacunae and communication via a canalicular 

network. 

Although the composition of cementum resembles bone, there are distinct 

structural and functional differences between these two mineralized tissues. Cementum 

does not have the lamellar organization found in bone, is avascular, is non-innervated, does 

not contain bone marrow and does not undergo physiological remodeling (Jäger et al., 
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2010). Cementum seems to be excluded from remodeling activities associated with 

maintenance of calcium homeostasis. Even though the cementum has a greater ability than 

bone to resist resorption, orthodontic force can sometimes cause resorption of root 

cementum, which may then proceed into the dentin (Krishnan and Davidovitch, 2006). 

When resorption occurs, repair cementum is deposited in the defects by cementoblasts. 

In the past, the lack of availability of a cementoblast cell line has made it difficult to 

study these cells in culture. With the recent development of an immortalized murine cell 

line, OCCM.30, we were able to test the effects of ESW stimulation on these cementoblasts 

to see how they respond. Cementoblasts have already been shown to express molecules 

that are critical in bone remodeling including SOST, RANKL and OPN proteins (Dalla-Bona et 

al., 2008; Huang et al., 2009; Jäger et al., 2010). It has been shown that cementoblasts are 

sensitive to mechanical strain and ultrasound, and this study will determine if the 

cementoblasts respond to ESW stimulation (Huang et al., 2009, Dalla-Bona et al., 2008). This 

study will also evaluate any change in the expression of the previously mentioned proteins 

to determine if ESW could affect the remodeling of cementum by cementoblasts. 

 

Hypothesis 

 

 

It has been shown that ESW can reduce osteoclastogenesis and stimulate the 

maturation of osteoblasts. As discussed previously, this is believed to be the mechanism by 

which ESW produces anabolic effects on bone. Additionally, bone metabolism is thought to 

be regulated in the same way that alveolar remodeling and root resorption are regulated. 

Therefore, our working hypothesis is that when ESW is applied to OCCM.30 cementoblasts, 
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it will produce an anabolic response evidenced by a decrease in the markers for bone 

resorption such as RANKL, OPN and a decrease in the bone formation inhibitor SOST. 
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CHAPTER III 

 

MATERIALS AND METHODS 
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Cell Culture 

 

 

An immortalized murine cementoblastic cell line of OCCM.30 cells were provided by 

Dr. MJ Somerman (University of Washington). The OCCM.30 cells were cultured in α-

minimal essential medium (α-MEM) with 10% fetal bovine serum (FBS), 100 U/ml penicillin 

and 100 μg/ml streptomycin. Cells were cultured in T75 cell culture flasks maintained at 

37°C with 5% CO2 in a humidified incubator. Cells were routinely divided and passaged at 

confluence. Passages 10-20 were used for experimentation. Prior to ESW application, cells 

were serum starved with 0.2% FBS containing medium for 24 hours in order to synchronize 

cell cycles and attain a basal level of metabolic activities. The cementoblasts were then 

prepared in suspension at a density of 10
7
/ml. One ml of cell suspension was placed into 1.5 

ml Eppendorf tubes for ESW experimentation. All cell culture supplies were purchased from 

Sigma (St. Louis, MO) unless otherwise noted.  

 

Protocols 

  

The cells were divided into four groups including control, low, medium and high 

dose of ESW. Each group of cells received one episode of ESW treatment consisting of 2000 

impulses at their assigned energy level. The three energy levels of ESW used for 

experimentation were low (0.1 mJ/mm
2
, 6.0 Hz), medium (0.25 mJ/mm

2
, 4.0 Hz), and high 

(0.50 mJ/mm
2
, 3.0 Hz). Immediately after ESW treatment, the cell suspension from each 

tube was divided into two portions; 40% (0.4ml out of 1 ml) of the cell suspension was used 

to test ATP release and cell viability, while the other 60% (0.6ml out of 1 ml) was further 

cultured for 24 hours to test functional protein productions.    
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Extracorporeal Shock Wave Application 

 

 

The ESW system used to apply the shock waves was the Extracorporeal Pulse 

Activation Treatment System (Duolith SD1®, Storz Medical AG, Postfach, Switzerland) 

(Figure 2-1). This system utilizes high-energy, focused, cylindrical-source, electromagnetic 

shock wave technology that is applied with a corded, Focused Shock Wave (F-SW) 

handpiece (Figure 2-2). It has a short pulse length and is concentrated on areas of a few 

millimeters in diameter. The F-SW handpiece used in this experiment was equipped with the 

stand-off device I, which is able to provide a therapeutically effective penetration depth up 

to 105 mm. Its focal zone is 30 mm in diameter and its depth of focal zone ranges from 15 to 

45 mm. The effective distance from the surface of the handpiece to the center of the focal 

zone is approximately 30 mm. The F-SW handpiece was attached to the bottom of a 

specially designed holder (Figure 2-3). The top of this holder contained a slot that held a 

single Eppendorf tube so that the tube would be at the center point of the focal zone. The 

holder was then filled with water, which has been shown to be an ideal medium for 

transmission of shock waves (Shrivastava and Kailash, 2005). The water was filled to the 

level of the suspension in the tubes but not high enough to completely immerse the tubes. 

Each tube then received one administration of 2000 impulses at their assigned dosage 

during the entire experiment. The control group was placed in identical conditions without 

ESW stimulation.  

Detection of ATP 

 

 

The 0.4 ml of cell suspension used for ATP testing was spun at 1000 rpm for 5 

minutes to separate the cells and any cellular debris from the suspension. The supernatant  
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Figure 2-1: Storz Medical Duolith®SD1 shock wave therapy system. The model pictured is 

the table top version which was used during experimentation. 

 

Figure 2-2: F-SW handpiece with stand-off device I for 30 mm depth of focus. 
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Figure 2-3: Picture of the Duolith® SD1 system used for experimentation. The F-SW 

handpiece was attached to the bottom of the specially designed holder. Eppendorf tubes 

with cell suspensions were placed into the top of the holder. 

 

 

was removed from the tube and used to test the ATP released. To measure ATP release, we 

used the ATP Bioluminescence Assay Kit HS II from Roche (Indianapolis, IN). This kit uses the 

F-SW handpiece 

Cells 
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enzyme luciferase to catalyze the reaction from D-luciferin into oxyluciferin and light. This 

reaction requires ATP as a co-factor. The light produced by the reaction is directly related to 

the ATP concentration in each sample. The resulting luminescence was measured using a 

Berthold Sirius Luminometer detection system (Zylux Corp, Huntsville AL). Experimental 

samples were compared to α-MEM containing 0.2% FBS as a control. Samples were run in 

duplicates.  

 

Cell Viability Assay 

 

In parallel with the ATP assay, the cell precipitate was lysed by adding 100 μl of 

sample buffer. Previously we determined the linear relationship between viable cell 

numbers and the total protein of the cells. Total protein of the whole cell lysate was then 

quantified using the amido black method to determine cell viability. 

 

Protein Production 

 

 

Following 24 hours of post-ESW incubation, protein samples were centrifuged at 

14,000 rpm for 10 min. Proteins were separated by gel electrophoresis by loading 50 μg of 

whole cell lysate and 5 μl pre-stained molecular weight marker (Bio-Rad Laboratories, 

Hercules, CA ) and running through a 10% sodium dodecyl sulfate polyacrylamide gel. For 

western blotting, separated proteins were transferred overnight to nitrocellulose 

membranes and then blocked with 1X Tris-buffered saline (TBS) containing 5% nonfat dry 

milk (Bio-Rad Laboratories, Hercules, CA) and 0.1% Tween-20 (TBST) for 2 hours at room 

temperature. Membranes were blotted with primary antibodies overnight at 4°C on a 

shaker. Primary antibodies used were anti-OPN (Assay Designs, Ann Arbor, MI), anti-RANKL 
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(EMD Chemicals Inc, San Diego, CA) and anti-SOST (R&D Systems Inc, Minneapolis, MN). 

Membranes were washed three times in 1X TBST and then incubated with secondary 

antibodies: goat anti-rabbit or goat anti-mouse IgGhydroperoxidase (1:5000) for one hour at 

room temperature. Protein band images were developed using enhanced 

chemiluminescence (ECL) method (Pierce, Rockford, IL) and documented using a FUJIFILM 

LAS-1000 gel documentation system (Stamford, CT). Protein quantities were normalized by 

comparing the optical densities of each interested band to that of vinculin as a house 

keeping protein (internal loading control). 

 

Statistical Analysis 

 

 

SPSS software (version 17.0) was used to complete the statistical analysis. All 

samples were averaged and the means for each group were compared using one way 

analysis of variance (ANOVA) with Tukey’s post-hoc test to determine where the significance 

lies between the different groups. Values were graphed as mean ± standard deviation of the 

individual groups. Statistical significance was determined at p < 0.05.  
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Cell Viability 

 

 ESW treatment did not affect cell viability at the low and medium doses. There was 

not a significant change in the total protein of the cells that were viable in the low and 

medium groups after the application of ESW. The high-dose group, however, showed a 

significant decrease in cell viability compared to the control (Figure 3-1, Table 3-1). 

 

ATP Release 

 

 

ESW induced ATP release from the cementoblasts.  As the dose of ESW was 

increased, the release of ATP increased (Figure 3-2). The increase in ATP was significant in 

the medium and high-dose groups, but not in the low-dose group. The most significant 

increase in ATP release compared to the control group was observed in the high-dose group 

(p = 0.000) (Table 3-2). 

 

 

Protein Production 

 

 

OPN Production  

 

 

ESW increased OPN production from the cementoblasts with all of the applied doses 

(Figure 3-3). Compared to the control, OPN production was significantly increased at the low 

and high-dose groups. Although a small increase was seen in OPN production in the 

medium-dose group, the change was not significant (ANOVA, *p<0.04) (Table 3-3). 
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RANKL Production 

 

ESW increased the production of RANKL from the cementoblasts (Figure 3-4). The 

increase in RANKL, while much greater in the low and high-dose groups, was not found to 

be significant in any of the groups (Table 3-4). Statistically, the medium dose produced a 

nearly unaltered level of RANKL when compared to the control. 

SOST Production 

 

 

ESW decreased SOST production in all groups of cementoblasts (Figure 3-5). The 

medium dose significantly decreased SOST production compared to the control group, while 

the low and high doses did not (Table 3-5). 
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SAMPLE# CONTROL LOW MID HIGH 

1 1.416 1.317 1.379 0.726 

2 1.311 1.626 1.343 0.722 

3 1.364 1.239 1.377 1.067 

Mean  1.36366667 1.394 1.366333 0.838333 

SD 0.05250079 0.204668 0.020232 0.198041 
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Cell viability of OCCM.30 cementoblasts in response to ESW

 

 

Figure 3-1: Cell viability was unchanged after application of the low and medium doses of 

ESW.  Significant cell death was seen with the high dose. 
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Cell Viability – ANOVA 

 Sum of Squares df Mean Squares F Sig. 

Between 

Groups 

0.6489 3 0.2163 10.27 0.004 

Within Groups 0.1685 8 0.0211   

Total 0.8175 11    

 

Cell Viability – Post Hoc Comparisons 

 

(I) VAR00001 (J) VAR00001 

Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound 

Upper 

Bound 

Control LOW -.03033 .11852 .994 -.4099 .3492 

MID -.00267 .11852 1.000 -.3822 .3769 

HIGH .52533* .11852 .009 .1458 .9049 

LOW Control .03033 .11852 .994 -.3492 .4099 

MID .02767 .11852 .995 -.3519 .4072 

HIGH .55567* .11852 .007 .1761 .9352 

MID Control .00267 .11852 1.000 -.3769 .3822 

LOW -.02767 .11852 .995 -.4072 .3519 

HIGH .52800* .11852 .009 .1485 .9075 

HIGH Control -.52533* .11852 .009 -.9049 -.1458 

LOW -.55567* .11852 .007 -.9352 -.1761 

MID -.52800* .11852 .009 -.9075 -.1485 

*. The mean difference is significant at the 0.05 level. 

 
Table 3-1: Statistical analysis of cell viability. ANOVA and Post-hoc analysis performed by 

SPSS 17.0 software. Analysis shows that both the low and medium-dose groups have similar 

cell viability when compared to the control, while the high-dose group showed a significant 

decrease in cell viability. 
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SAMPLE# CONTROL LOW MID HIGH 

1 3723098 5066501 9094292 14223524 

2 3623786 5043251 9252124 14030246 

3 3703831 5037131 9716656 14091180 

4 3127314 3321577 9060150 14178000 

5 3221606 3265177 8995754 14207814 

6 3178470 3355668 9021094 14264778 

Mean 3429684.17 4181551 9190012 14165924 

SD 281693.622 950690.3 273315.8 88301.37 
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Figure 3-2: ATP release increased with ESW application. As the dose level increased, the 

release of ATP was increased. 
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ATP – ANOVA 

 Sum of Squares df Mean Squares F Sig. 

Between 

Groups 

4.88488E+14 3 1.62829E+14 121.18 0.000 

Within Groups 3.22487E+13 24 1.34370E+12   

Total 5.20736E+14 27    

 

ATP - Post Hoc Comparisons  

(I) VAR6 (J) VAR6 

Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Control LOW -1330313.28571 619607.22020 .167 -3039567.3116 378940.7402 

MID -5553757.71429* 619607.22020 .000 -7263011.7402 -3844503.6884 

HIGH -10698404.57143* 619607.22020 .000 -12407658.5973 -8989150.5455 

LOW Control 1330313.28571 619607.22020 .167 -378940.7402 3039567.3116 

MID -4223444.42857* 619607.22020 .000 -5932698.4545 -2514190.4027 

HIGH -9368091.28571* 619607.22020 .000 -11077345.3116 -7658837.2598 

MID Control 5553757.71429* 619607.22020 .000 3844503.6884 7263011.7402 

LOW 4223444.42857* 619607.22020 .000 2514190.4027 5932698.4545 

HIGH -5144646.85714* 619607.22020 .000 -6853900.8831 -3435392.8312 

HIGH Control 10698404.57143* 619607.22020 .000 8989150.5455 12407658.5973 

LOW 9368091.28571* 619607.22020 .000 7658837.2598 11077345.3116 

MID 5144646.85714* 619607.22020 .000 3435392.8312 6853900.8831 

*. The mean difference is significant at the 0.05 level. 

 
Table 3-2: Statistical analysis of ATP release. ANOVA and Post-hoc analysis performed by 

SPSS 17.0 software. Analysis shows that the increase in ATP release was significant in both 

the medium and high-dose groups, while it was not significant in the low-dose group. 
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SAMPLE# CONTROL LOW MID HIGH 

1 2.20082744 3.024325 2.569341 3.780964 

2 2.13693026 3.688779 2.971915 3.182373 

3 2.24067002 3.173725 3.160656 3.868326 

Mean 2.19280924 3.295609 2.900637 3.610554 

SD 0.05233262 0.348592 0.302033 0.37338 
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Figure 3-3: OPN production increased in all groups after the application of ESW. 
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OPN – ANOVA 

 Sum of Squares df Mean Squares F Sig. 

Between 

Groups 

3.365 3 1.122 12.642 0.02 

Within Groups .710 8 .089   

Total 4.075 11    

 

OPN – Post Hoc Comparisons 

(I) VAR00001 (J) VAR00001 

Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Control LOW -1.10280* .24320 .008 -1.8816 -.3240 

MID -.70783 .24320 .075 -1.4867 .0710 

HIGH -1.41775* .24320 .002 -2.1966 -.6389 

LOW Control 1.10280* .24320 .008 .3240 1.8816 

MID .39497 .24320 .418 -.3839 1.1738 

HIGH -.31494 .24320 .591 -1.0938 .4639 

MID Control .70783 .24320 .075 -.0710 1.4867 

LOW -.39497 .24320 .418 -1.1738 .3839 

HIGH -.70992 .24320 .075 -1.4887 .0689 

HIGH Control 1.41775* .24320 .002 .6389 2.1966 

LOW .31494 .24320 .591 -.4639 1.0938 

MID .70992 .24320 .075 -.0689 1.4887 

*. The mean difference is significant at the 0.05 level. 

 
Table 3-3: Statistical analysis of OPN production. ANOVA and Post-hoc analysis performed 

by SPSS 17.0 software. Analysis shows that while OPN increased in all groups, the increase 

was only significant in the low and high-dose groups. 
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SAMPLE# CONTROL LOW MID HIGH 

1 1.50663515 1.598076 1.491152 1.797349 

2 1.32666566 1.945426 1.719012 2.112389 

3 1.41055696 1.791687 1.279718 1.661363 

Mean 1.41461926 1.778396 1.496628 1.857034 

SD 0.09005349 0.174056 0.219698 0.231361 
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RANKL changes of OCCM.30 cementoblasts in response to ESW

 

 

Figure 3-4: RANKL production increased in all groups after the application of ESW, but the 

increase seen in the medium-dose group was very small. 

 



42 

 

 

RANKL – ANOVA 

 Sum of 

Squares 

df Mean 

Squares 

F Sig. 

Between 

Groups 

0.4127 3 0.1376 3.92 0.054 

Within Groups 0.2804 8 0.0351   

Total 0.6931 11    

 

RANKL – Post Hoc Comparisons 

(I) VAR00001 (J) VAR00001 

Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Control LOW -.36378 .15286 .159 -.8533 .1257 

MID -.08201 .15286 .948 -.5715 .4075 

HIGH -.44241 .15286 .077 -.9319 .0471 

LOW Control .36378 .15286 .159 -.1257 .8533 

MID .28177 .15286 .322 -.2077 .7713 

HIGH -.07864 .15286 .953 -.5682 .4109 

MID Control .08201 .15286 .948 -.4075 .5715 

LOW -.28177 .15286 .322 -.7713 .2077 

HIGH -.36041 .15286 .164 -.8499 .1291 

HIGH Control .44241 .15286 .077 -.0471 .9319 

LOW .07864 .15286 .953 -.4109 .5682 

MID .36041 .15286 .164 -.1291 .8499 

 

Table 3-4: Statistical analysis of RANKL production. ANOVA and Post-hoc analysis performed 

by SPSS 17.0 software. Analysis shows that the increase in RANKL production was not 

significant in any of the groups. While the change was nearly significant in the low and high-

dose groups, the medium-dose group was nearly unchanged. 
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SAMPLE# CONTROL LOW MID HIGH 

1 3.06639281 3.069941 2.640428 3.056942 

2 3.23675865 2.66652 2.73636 2.98472 

3 3.14233642 3.007215 2.283719 3.130958 

Mean 3.14849596 2.914559 2.553502 3.05754 

SD 0.08534978 0.217086 0.238512 0.073121 
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Figure 3-5: SOST production decreased in all groups of cementoblasts after application of 

ESW. 
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SOST – ANOVA 

 Sum of 

Squares 

df Mean 

Squares 

F Sig. 

Between 

Groups 

0.6164 3 0.2055 7.05 0.012 

Within Groups 0.2333 8 0.0292   

Total 0.8497 11    

 

SOST – Post Hoc Comparisons 

 

Table 3-5: Statistical analysis of SOST production. ANOVA and Post-hoc analysis performed 

by SPSS 17.0 software. Analysis shows that the decrease seen is SOST production was 

significant only in the medium-dose group when compared to the control. 

 

 

 

Dependent 

Variable (I) VAR1 (J) VAR1 

Mean Difference 

(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

VAR2 Control LOW .23394 .13943 .393 -.2126 .6804 

MID .59499* .13943 .012 .1485 1.0415 

HIGH .09096 .13943 .912 -.3555 .5375 

LOW Control -.23394 .13943 .393 -.6804 .2126 

MID .36106 .13943 .119 -.0854 .8076 

HIGH -.14298 .13943 .740 -.5895 .3035 

MID Control -.59499* .13943 .012 -1.0415 -.1485 

LOW -.36106 .13943 .119 -.8076 .0854 

HIGH -.50404* .13943 .028 -.9505 -.0575 

HIGH Control -.09096 .13943 .912 -.5375 .3555 

LOW .14298 .13943 .740 -.3035 .5895 

MID .50404* .13943 .028 .0575 .9505 

*. The mean difference is significant at the 0.05 level. 
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CHAPTER V 

DISCUSSION 
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The aim of this project was to determine the effects of different levels of ESW 

stimulation on cementoblasts. One of the primary issues to be investigated before ESW 

application could be used as a treatment for root resorption is whether the cells remain 

viable after ESW stimulation. Obviously, if cell death was induced by shock waves, then ESW 

would not improve the ability of the cementum to repair itself and could not be considered 

as a treatment modality. One of the reasons that ESW has begun to be used in the 

treatment of segmental bone defects is that cell proliferation is seen in the callus after ESW 

treatment (Chen et al., 2004). High energy ESW has been well reported to have a necrotic 

effect on cells, while lower doses have been shown to maintain cell viability or slightly 

increase it (Tamma et al., 2009). Dalla-Bona et al. studied the same cell line used in this 

study and found that the mechanical stimulation by ultrasound actually caused an increase 

in cell number and collagen synthesis (2007). A recent study conducted by Lyon et al. at 

Children’s Hospital in Wisconsin using the same shock wave device as this study found that 

a dose of 0.25 mJ/mm
2
 significantly improved the cell viability of chondrocytes, while a 

higher dose of 0.55 mJ/mm
2 

decreased cell viability (In Press). This agreed with our results 

that showed that ESW at the low and medium dose maintained cell viability. Cell death was 

significant after application of the high energy level which agrees with the previously 

mentioned necrotic effect of high energy ESW on cells. When looking at the rest of the 

results in this study, it must be taken into account that the release of ATP and protein 

production may be affected by the increased cell death seen in the high-dose group. 

The results of this study indicated that the cementoblasts were responsive to the 

mechanical stimulation produced by the shock waves, and established that OCCM.30 

cementoblasts express proteins involved in bone modeling, specifically OPN, RANKL and 
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SOST. These proteins were positively identified by western blot analysis confirming the 

findings by other studies that cementoblasts do express SOST, RANKL and OPN protein 

(Dalla-Bona et al., 2008; Huang et al., 2009; Jäger et al., 2010). Further, the results for each 

measurement revealed a dose-dependent response of the cells to ESW. The dose-

dependent effect of ESW has been the subject of several investigations, and it has been 

found that there is a minimum energy threshold necessary to effect bone cell growth (Zelle 

et al., 2010). Other studies have confirmed the dose-dependent effect of ESW on cells and 

shown that the number of impulses is not as important as the energy level of the shock 

waves (Tamma et al., 2009). Three energy levels were chosen based on effective doses that 

were reported in other cell studies, and these energy levels were found to elicit a change in 

the cementoblast release of ATP and expression of bone regulatory proteins. 

The reaction of the cementoblasts to ESW can be divided into an early and a late 

response.  ATP release happens very rapidly and is considered to be an early messenger in 

signaling pathways. Mechanical stress has been shown to induce an increase in ATP release 

in many other cell types, but the reaction of cementoblasts to ESW has not been examined. 

In agreement with these studies, our results showed an increase in ATP release after the 

application of mechanical stress in the form of shock waves (Wongkhantee et al., 2008). The 

high-dose group, which exhibited increased cell death, actually showed the greatest 

increase in ATP release. This could be explained by the fact that ATP is not exclusive to bone 

remodeling and serves as an intracellular and extracellular messenger for several signaling 

pathways. The increase in ATP could be in response to the increased cell signaling of 

apoptosis in the high-dose group. The reason we were interested in the expression of ATP is 

because it may play a role in the regulation of the OPG/RANKL/RANK pathway and help us 
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understand the effect of ESW on cementoblasts. It has been suggested that ATP may 

decrease OPG expression and up-regulate both OPN and RANKL expression leading to bone 

resorption (Wongkhantee et al., 2008; Luckprom et al., 2010). Therefore, an increase in ATP 

could indicate increased osteoclastogenesis and root resorption. Our results showed an 

increase in ATP release at all dose levels with greater release as the energy level was 

increased. This may indicate that ESW induced the cementoblasts to create a resorptive 

state or the ATP may have been released due to another cellular signaling pathway that was 

up-regulated in response to the shock waves. The result alone does not allow us to make a 

statement about the effect of ESW on root resorption. It does, however, indicate that 

cementoblasts respond to shock waves and makes further investigation necessary. 

To examine the late response of cementoblasts to ESW, the production of certain 

proteins was measured. Three proteins were examined, because they all play an important 

role in the regulation of bone remodeling. OPN promotes the adhesion of osteoclasts to the 

bone surface increasing bone resorption. SOST inhibits bone formation by reducing the 

number of osteoblasts. RANKL regulates osteoclast formation and activation leading to 

increased bone resorption. Therefore, in a resorptive or catabolic state, increases in the 

expression of OPN, SOST and RANKL should be seen. In our study, the low-dose and high-

dose group showed increases in both OPN (significant) and RANKL (nearly significant) 

production suggesting an increase in bone resorption. Interestingly, all groups showed 

decreases in SOST protein, while one may have expected SOST to increase in the low and 

high dose groups to correspond with the changes seen in OPN and RANKL expression. 

However, the decrease of SOST expression in these two groups was not significant, so SOST 

expression was essentially unchanged in the low and high-dose groups. Conversely, the 
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expression of SOST was significantly decreased in the medium-dose group suggesting the 

stimulation of bone formation at this energy level. The expression of both OPN and RANKL 

was not significantly increased in the medium-dose group allowing us to say that the 

expression of these proteins was maintained at the same level as the control. Since these 

proteins were not significantly elevated and SOST was significantly decreased in the 

medium-dose group, one could expect to see reduced bone resorption. These results 

suggest that the medium dose could promote cementoblast anabolic activity while 

decreasing the further breakdown of cementum. The protein expression seen in the low and 

high-dose groups suggests that these dose levels would increase remodeling of adjacent 

bone and cementum, encouraging a catabolic state. 

The one proven risk factor of root resorption is increased duration of orthodontic 

treatment (Weltman et al., 2010; Taithongchai et al., 1996; Killiany, 1999). Therefore, 

patients who are in orthodontic treatment for longer periods of time could benefit most 

from a treatment to reduce root resorption. Mechanical stimulation of cementoblasts may 

be able to augment the repair process by changing the expression of proteins that regulate 

bone remodeling. Although the reaction of the cementoblasts to the medium energy level 

suggested the creation of an anabolic environment, the levels of OPG were not measured. 

RANKL was unchanged by the medium-dose group, but we do not know if OPG expression 

changed. If OPG was measured and a decreased RANKL/OPG ratio was seen, then we could 

more definitively state that the medium dose could inhibit osteoclastogenesis. Additionally, 

the increase of ATP release seen at the medium energy level seems to contradict the 

protein results. In order to confirm our hypothesis, we had expected to see a decrease in 

ATP and a decrease in the three proteins measured. As stated earlier, however, the ATP 
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release could be related to another cellular signaling pathway. ESW at the medium dose 

(0.25mJ/mm²) does appear to modulate cementoblasts anabolically, but further 

investigation is needed to confirm that ESW does decrease bone resorption.  If future 

studies find similar effects on cementoblasts, then ESW could be considered as a potential 

treatment for root resorption. 

 

Limitations 

 

This study sheds light on the cellular response of cementoblasts to ESW. Cell studies 

are usually the first step in order to determine the effects of new treatment modalities. This 

study would need to be followed by animal studies and eventual clinical studies to establish 

whether ESW could be used to treat root resorption.  

One major limitation to all cell studies is the fact that the cells are studied in 

isolation. In this case, the cementoblasts are not in their natural environment. When cells 

are studied in isolation, their complex interactions with other types of cells and the 

surrounding matrix are difficult to replicate. The shock waves would normally pass through 

tissue before reaching the targeted cells in a clinical setting. In this study, however, shock 

waves were focused directly at the cells passing only through the culture medium and the 

water in the holder. Although this design was not ideal, water was used as a transition 

medium for the shock waves because of its similarity in acoustic impendence to the tissue. 

Additionally, the cells were in suspension when exposed to ESW. Except for blood cells, 

most cells, including cementoblasts, are naturally adherent cells. 



51 

 

Another limitation to this study is the failure to measure OPG expression. Therefore, 

we were not able to determine if there was an alteration in the ratio of RANKL/OPG 

expression in cementoblasts after ESW application.  

The cementoblasts used in this study are murine cementoblasts. Cementum 

deposition was found to be different between humans and animals, such as rats and dogs, 

when observed with a scanning electron microscope (Boyde and Jones, 1968). Also, it is 

known that the growth pattern of cementum in lower animals involves continuous eruption, 

with cementum being formed throughout their lifetimes. Higher animals, such as monkeys, 

are more useful for studying root resorption, but are obviously very expensive to obtain.  

(El-Bialy et al., 2004). 

 

Future Studies 

 

We are planning to work with the company who provided the ESW equipment used 

in this study to design a new ESW apparatus that could be used to directly stimulate cell 

culture dishes. The cells would not have to be placed in suspension, and the experiment 

design could mimic the cells environment more accurately. 

To compliment this study, we also applied shock waves to murine calvaria to 

determine the effect of ESW on bone tissue. The organ culture experiment can reveal more 

about the effect of ESW on the tissue level.  

Eventual animal studies may shed more light on how ESW affects root resorption. 

There are already studies that looked at the effect of LIPUS on root resorption in rats, but 

there are no similar studies focusing on ESW treatment.  
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Conclusions 

 

 

Our results show that OCCM.30 cementoblast cells are responsive to the application 

of focused shock waves. This study confirmed that cementoblasts do express OPN, RANKL 

and SOST proteins and ESW can affect the production of these regulatory bone markers in a 

dose-dependent manner. We concluded that ESW at the medium dose (0.25mJ/mm
2
) 

modulates cementoblasts anabolically by decreasing SOST production while keeping RANKL 

production unaltered. This suggests the potential application of ESW to treat root 

resorption. 
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