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ABSTRACT 
AN INVESTIGATION INTO THE BONDING PROPERTIES OF NEW GENERATION 

CERAMIC BRACKETS AS COMPARED TO A STAINLESS STEEL BRACKET 
 
 

Ami Inoue, D.D.S. 
 

Marquette University, 2014 
 
 

Introduction:  More patients are seeking esthetic alternatives for their orthodontic 
treatment options, which has led to increased use of ceramic brackets in recent years. 
These brackets were marketed before independent scientific research was completed. 
Many of the early ceramic brackets used a silane coupling agent to allow for a chemical 
bond between the bracket and the adhesive resin. Early reports from clinicians of 
increased bond strengths and iatrogenic tooth damage after bracket removal were 
common. Manufacturers have made changes to their base designs, relying more on 
mechanical retention for bond strength. The goal of this study was to test the shear bond 
strength of two newer generations of mechanically retained ceramic brackets and 
compare them to a traditional stainless steel bracket.  

 
Materials and Methods: Two types of ceramic brackets, Clarity Advanced (3M Unitek, 
Monrovia, CA), and Avex CX (Opal Orthodontics, South Jordan, UT) and one type of 
metal bracket, Victory Series MBT (3M, Unitek, Monrovia, CA) were used in this study.  
Exemption from IRB Application was granted by the Marquette University Institutional 
Review Board (IRB) on 7-12-13. The shear bond strength of the three groups of brackets 
were examined after bonding to extracted premolars. Brackets were debonded with a 
universal testing machine (Instron Corporation, Canton, MA) in a motion parallel to the 
bracket/tooth interface. Each tooth and bracket was viewed under an optical 
stereomicroscope at 10x magnification and given an adhesive remnant index (ARI) score. 
The one way ANOVA and Tukey’s post hoc tests were used to determine significant 
differences in bond strengths, and the Kruskal-Wallis and Mann-Whitney post hoc tests 
were used to analyze the difference in ARI scores. 
 
Results: Statistically significant (p<0.01) differences were found between the shear bond 
strengths of the Victory Series and Clarity Advanced groups, with the Victory Series 
having a mean strength of 199.4 N and the Clarity Advanced having an average of 136.0 
N. Significant (p<0.0001) differences in ARI scores were found between the Victory 
Series and both ceramic groups, with an average score of 1 for the Victory Series and an 
average score of 2 for both ceramic groups. The two ceramic brackets were not 
statistically different from each other in bond strength or ARI score. 
 
Conclusions:  The shear bond strengths of the new generations of ceramic brackets are 
lower than those of the metal bracket tested, which suggests a safer bond to enamel. 
Further research on clinical debonding characteristics and behavior intra-orally are 
needed to support the in vitro results found in this study. 
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CHAPTER 1 
INTRODUCTION 

 
 
 The dental specialty of orthodontics has in recent years become more concerned 

with esthetics. The evolution of the specialty has shown a change in esthetic ideals, and 

the commonly used materials have also evolved (Britton et al., 1990). Patients are not 

only concerned with the appearance of their teeth and smile, but also with the appearance 

of the appliances that will be used. An increase in the number of adults seeking 

orthodontic treatment in recent years has led to a parallel increase in demand for more 

esthetic appliances (Russell, 2005).  

Many options for appliances to be used in orthodontic treatment are available to 

practitioners. Historical appliances involved banding every tooth with a metal bracket 

attached to the band. The development of acid etching enamel and direct bonding by 

Buonocore removed the need for banding every tooth, and the bonded miniature bracket, 

much preferred by patients, appeared in the 1960s (Buonocore, 1955; Kusy, 2002). 

Patient desire for more esthetic options has driven the development of more esthetic 

materials. The evolution of orthodontic appliances has led to the development of smaller 

metal brackets, which offer some esthetic advantage, as well as lingual appliances, clear 

aligner trays, and clear brackets made of ceramic or polymers. Patient surveys conclude 

that patients find lingual and clear tray appliances more attractive than any fixed 

appliance, and that ceramic brackets were ranked as more esthetic than metal or self 

ligating hybrid brackets (Rosvall et al., 2009).  

Orthodontic treatment with clear aligner trays, such as Invisalign, is a more 

visible example of the market’s response to consumer demand with numerous 



2 

 

commercials and magazine advertisements aimed directly at consumers. These trays offer 

treatment with clear overlay trays, although their capabilities in achieving complex 

movements are limited (Rosvall et al., 2009). Many patients with more advanced 

treatment requirements end up completing their treatment with conventional fixed 

appliances (Russell, 2005). Lingual appliances are an alternative esthetic option that may 

offer more control than the clear trays of Invisalign, with the caveat of more technical 

difficulties and a decrease in performance as compared to traditional labial appliances 

(Russell, 2005). Plastic brackets were introduced in the 1970s, but their performance was 

limited by their lack of strength and dimensional stability (Wang at al., 1997; Kusy, 

2002; Graber et al., 2005). Their esthetics were also compromised by discoloration 

(Bishara et al., 1997; Russell, 2005; Chen et al., 2007). 

The demand for an esthetic appliance with acceptable performance has made 

ceramic brackets one of the most commonly used esthetic appliances (Eliades et al., 

1993). Patients like the minimal look of clear or tooth colored brackets, and the strength 

of the material allows for more control over tooth movement by the clinician. Ceramic 

brackets were introduced in the 1980s and have gone through significant evolution over 

the past 30 years (Bishara et al., 1997). Manufacturers have made changes to brackets in 

response to claims of excessively high bond strength, causing difficulties in bracket 

removal. Patients also report discomfort during bracket removal. The higher forces used 

to debond ceramic brackets can also cause them to break or shatter, leaving fragments on 

the teeth that must be removed with alternative techniques. The changes that have been 

made, specifically eliminating the silane treatment with a transition to mechanical 

retention, significantly decreased the bond strength as well as accounts of iatrogenic 
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enamel damage. Even with these latest developments, problems during debonding still 

persist, including bracket breakage and portions of brackets remaining bonded to the 

tooth. Another concern with the lower bond strengths is the possibility for more clinical 

bond failures. The goal to reduce bond strength may have led to problems with 

insufficient bond strength for clinical use. 

The aim of this study was to determine if the most recent ceramic brackets could 

perform similarly to their metal counterparts in reference to bond strength. The study 

compared the shear debond strength of two of the most recently developed ceramic 

brackets with a standard metal bracket, as well as the location of the bond failure. Little 

research exists on the Clarity Advanced bracket (3M Unitek, Monrovia, CA) and the 

Avex CX bracket (Opal, South Jordan, UT), while their clinical use is growing. In vitro 

studies may help predict the clinical strengths and weaknesses of these brackets, as well 

as evaluate their consistency in debond strength and performance.
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CHAPTER 2 
LITERATURE REVIEW 

 

 The introduction of bonded brackets and the reduced need to band anterior teeth, 

marked the beginning of esthetic orthodontics in the 1960s (Kusy, 2002). In 1955, 

Buonocore wrote about treating the surface of enamel with acid to make it more receptive 

to adhesion of acrylic drops. The acid treatment was performed with 85% phosphoric 

acid for 30 seconds and dramatically increased the adhesion of acrylic filling material by 

what we now know is due to an increase in surface area (Buonocore, 1955). The success 

achieved in bonding acrylic to teeth following etching with phosphoric acid was a 

milestone in esthetic dentistry. Brackets became bondable to teeth instead of attached to 

bands that fit around the teeth and were hence smaller in size, which was the first major 

step in creating more esthetic orthodontic appliances. 

Orthodontic treatment has for many years been achieved with stainless steel 

appliances that are attached to the teeth and an assortment of wires of variable size and 

moduli of elasticity that are then engaged in the tooth-borne appliances. The first 

orthodontic material that is documented is a gold ligature wire. The use of gold continued 

throughout the early 20th century, until the deficiencies of the material were pointed out 

in 1931 at the meeting of the American Association of Orthodontists (Kusy, 2002). 

Stainless steel was available in the early 1930s but experienced a period of development 

with the start of World War I. By 1960, stainless steel was accepted as the standard 

material in orthodontic appliances, due to its desirable stiffness, the ability to make 
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appliances smaller and seemingly more esthetic, and its low friction (Kusy, 2002). 

Stainless steel also has better strength and springiness than gold, while maintaining a 

resistance to corrosion (Proffit et al., 2013). Gold universally fell out of favor when 

stainless steel became part of the market (Kusy, 2002). 

A review of orthodontic supply catalogs will illustrate the market dominance of 

stainless steel in the orthodontic specialty. Manufacturers still make bands, brackets, and 

wires of the material because of its predictable and reliable properties. Most brackets are 

either cast or milled from stainless steel, which is then polished to obtain a smooth 

surface that will be less likely to damage wires that must slide through the bracket 

(Proffit et al., 2013). The bracket base of most modern stainless steel brackets is welded 

to the wings of the bracket and has a mesh pad attached to the base, providing mechanical 

undercuts for retention, and some brackets also include an etched metal surface by lasers 

or microetching for additional retention (Graber et al., 2005). Some brackets are 

manufactured using a process called metal injection molding, or MIM, which produces a 

single piece bracket by combining fine metal particles with organic particles and 

lubricants that are later removed (Zinelis et al., 2005). 

Many studies and clinical application in the mouth over the past twenty years with 

stainless steel brackets have proven their consistent nature of debond (Kusy, 2002). 

Whether using chemical cured or light cured resins, stainless steel brackets show similar 

bond strengths and fracture sites that illustrate a cohesive failure within the resin when 

shear bond strength is tested (Joseph and Rossouw, 1990). Some studies suggest more 

precisely that the weakest link in the bond of a metal bracket to enamel is at the bracket 

adhesive interface, and the predominant pattern of failure when removing stainless steel 
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brackets leaves a majority of the composite bonding material on the tooth. This is 

described with a high Adhesive Remnant Index (ARI) score, which is an ideal pattern of 

debond that decreases the risk of enamel damage during bracket removal (Odegaard and 

Segner, 1988; Blalock and Powers, 1995; Bishara et al., 1997; Soderquist et al., 2006). 

There are multiple scales used for the ARI score, generally using four to five categories. 

Lower scores indicate more resin was attached to the bracket after debonding, while 

higher scores indicate more resin left on the tooth. Thus, a high score with more resin on 

the tooth reflects a low risk of enamel damage during debond (Odegaard and Segner, 

1988; Blalock and Powers, 1995; Bishara et al., 1997; Soderquist et al., 2006). One study 

suggests that air entrapment within the mesh of the pad and the inability of visible light to 

cure underneath a metal bracket may be responsible for this weakness, though others 

claim that transillumination through the enamel allows for complete polymerization of 

the resin under these brackets (Greenlaw et al., 1989; Bradburn and Pender, 1992; Wang 

and Meng, 1992). While excess adhesive requires a lengthier removal process, it is 

generally safer than if the bond between the bracket and adhesive is stronger than the 

adhesive to enamel. Metal brackets also have the advantage of deformation before the 

cohesive failure of the resin, which allows the bracket to remain intact during the 

debonding procedure (Joseph and Rossouw, 1990). Adequate strength during treatment 

so as to resist distortion while possessing a modulus of elasticity that enables deformation 

and bending under excess force is one of the positive characteristics of stainless steel, 

making it a desirable and frequently used material in orthodontics (Bordeaux et al., 1994; 

Kusy, 2002). 
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The desire for more esthetic brackets helped propel the development of the plastic 

bracket in the 1970s (Bordeaux et al., 1994; Kusy, 2002). Plastic brackets are most often 

made of an injection-molded polymer called polycarbonate, a material that lacks strength 

and stability (Wang et al., 1997; Kusy, 2002; Graber et al., 2005). These brackets have 

fallen out of popular use due to distortion caused by water absorption and creep, unstable 

slot size, and staining (Britton et al., 1990; Bordeaux et al., 1994; Blalock and Powers, 

1995; Wang et al., 1997; Graber et al., 2005; Chen et al., 2007). The brackets also require 

the use of a plastic primer when using diacrylate cements (Blalock and Powers, 1995). 

Attempts to improve the performance of the brackets have been unsuccessful in 

overcoming their weaknesses. Polycarbonate brackets have been reinforced with ceramic 

and fiberglass fillers to increase the strength and decrease the distortion, in addition to 

lining the slot with metal to increase rigidity (Bishara et al., 1999; Russell, 2005). These 

changes have improved the technical specifications of the brackets, but the problems with 

torque movements and resisting distortion remain, leaving their clinical performance less 

than satisfactory (Russell, 2005). The limited studies of bond strength of polycarbonate 

brackets demonstrated significantly lower bond strength for polycarbonate versus 

ceramic brackets. The location of bond failure for polycarbonate brackets in the study 

cited showed a similar debond behavior to metal brackets with most of the adhesive 

remaining on the enamel (Ozcan et al., 2008). 

The limiting physical properties of esthetic polycarbonate brackets led to further 

development of esthetic appliances and the introduction of ceramic brackets in the mid-

1980s (Kusy, 2002; Chen et al., 2007). These brackets are made from either a single 

crystal, also called monocrystalline sapphire, or of polycrystalline aluminum oxide 
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(Kusy, 2002; Graber et al., 2005; Russell, 2005; Chen et al., 2007; Reddy et al., 2013). 

Brackets made of polycrystalline zirconia have also been developed, and they are 

reported to have the greatest toughness of ceramics, but they do not exhibit the same 

translucent characteristic of the alumina ceramics and are used less frequently (Kusy, 

2002; Russell, 2005).  

The difference between the two types of alumina brackets is in the manufacturing 

process. Monocrystalline brackets are machined from a single crystal of aluminum oxide 

that has been heated and cooled slowly. Polycrystalline brackets use either injection 

molding or a sintering process that blends aluminum oxide particles with a binder, 

creating a mixture that is formed into a shape from which the bracket is then machined 

and heated to remove the imperfections and stresses that are created by the cutting 

process. Injection molding removes the cutting process from manufacturing and therefore 

eliminates structural imperfections and the need to heat the brackets after machining 

(Bordeaux et al., 1994; Russell, 2005). Monocrystalline ceramics are the more translucent 

of the two types of alumina brackets, and therefore might be considered more esthetic, 

but they are also more susceptible to the propagation of cracks from any imperfections or 

scratches (Russell, 2005).  

Some of the positive features of ceramics include its color stability and resistance 

to staining, as well as its strength and resistance to deformation and slot distortion 

(Chaconas et al., 1991; Merrill et al., 1994; Bishara et al., 1997; Kukiattrakoon and 

Samruajbenjakul, 2010).  The nature of the ceramic also lends itself to brittleness, which 

is due to low fracture toughness and may be considered the limiting physical property of 

the material (Bordeaux et al., 1994; Bishara et al., 1997). This property alone makes the 
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material more prone to fracture during debonding, as well as fracture of the bracket 

and/or wings during treatment (Chaconas et al., 1991; Bishara et al., 1997; 

Theodorakopoulou et al., 2004; Russell, 2005). Numerous studies on the debonding 

characteristics of ceramic brackets have shown a propensity for bracket fracture when 

applying force to debond the bracket (Chaconas et al., 1991; Eliades et al., 1993; Bishara 

et al., 1997; Liu et al., 2005; Kitahara-Céia et al., 2008).  The facture toughness of 

alumina ceramic brackets has been reported at 3.0 to 5.3 MPa x m1/2 while the fracture 

toughness of steel is around 80 to 90 MPa x m1/2 (Kusy, 1990; Bordeaux et al., 1994). 

The difference between the two materials is marked and a cause for concern when 

applying force to remove orthodontic brackets that are bonded to teeth. Increased friction 

is another drawback when using ceramic brackets, as they show the highest amount of 

friction when used with any type of arch wire except nickel-titanium (Kusy, 2002). 

The low fracture toughness of alumina ceramics necessitates a bulkier design with 

a larger profile and wings to resist fracture, a characteristic that is generally considered 

unesthetic and undesirable (Kusy, 2002). Without adequate mass of material, especially 

in the mono-crystalline bracket types, the tie-wings had a propensity to break while tying 

in a wire, or when torque was added to the arch wire. Another consequence of a larger 

profile was the increased incidence of wear and chipping of maxillary teeth opposing 

ceramic brackets that were bonded to the lower incisors and canines (Kusy, 2002). 

Alumina ceramics are by nature an inert material, rendering them unable to be 

chemically bonded to any adhesive resin that is used (Bishara et al., 1997; 

Theodorakopoulou et al., 2004; Russell, 2005; Kitahara-Céia et al., 2008). Lack of a 

chemical bond caused early ceramic bracket manufacturers to use a silane-coupling agent 
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to mediate a chemical bond between the ceramic and resin (Bishara and Trulove, 1990; 

Britton et al., 1990; Bishara et al., 1997; Theodorakopoulou et al., 2004; Russell, 2005; 

Chen et al., 2007; Habibi et al., 2007; Reddy et al., 2013). One end of the silane molecule 

bonds strongly to acrylic resins while the other end binds to glass (silica). The inert 

aluminum oxide bracket crystals must be coated with a layer of glass in order for the 

silane to work as a coupler, therefore each bracket was coated with silica glass on the 

base to allow this coupling (Bishara & Trulove, 1990). The strength of the silane bond to 

the silica base of the bracket is stronger than the enamel bond to the resin, which forces 

the bond failure into the enamel resin interface, a less desirable clinical outcome, 

increasing the risk for failure within the enamel itself (Bishara and Trulove, 1990; Habibi 

et al., 2007; Kitahara-Céia et al., 2008).  

Many of the early reports of silane modified ceramic brackets confirmed a clinical 

finding of greater bond strengths than necessary and an increase in enamel damage 

during bracket removal. Most literature reports higher bond strengths for chemically 

retained brackets than mechanically retained ceramic brackets (Bordeaux et al., 1994; 

Wang et al., 1997; Kusy, 2002; Russell, 2005; Habibi et al., 2007; Ozcan et al., 2008), 

though one study by Merrill et al. (1994) reported no significant difference between 

chemically retained and mechanically retained brackets. The risk of damage to teeth has 

even led some researchers to examine the method of debonding brackets, looking toward 

lasers, chemical treatments, ultrasonic instruments, and electrothermal treatments to 

facilitate the process without damaging teeth (Bishara and Trulove, 1990; Chen et al., 

2007). Others theorize that changing the enamel treatment with different etching 

techniques may help avoid enamel damage (Britton et al., 1990). 
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The clinical drawbacks discussed above have led to a change in ceramic bracket 

design, particularly in the method of retention used in the bracket base (Chen et al., 

2007).  While some studies report mechanical retention and associate weak bonds in the 

earliest ceramic brackets (Odegaard & Segner, 1988), most studies report that early 

ceramic brackets quickly moved to use of the silane coupler to produce the chemical 

retention described above (Bishara and Trulove, 1990). The increased iatrogenic damage 

necessitated a redesign in retention, with a later move to mechanical retention features in 

the base of the bracket. One attempt to decrease the bond strength involved the 

attachment of a flexible polycarbonate base to the bracket wings, but this decreased the 

bond strength too dramatically to be clinically useful (Olsen et al., 1997; Bishara et al., 

1999). The incorporation of a metal insert in the slot of the ceramic brackets was an 

attempt to increase the resistance to fracture when applying force to remove brackets 

(Bishara et al., 1999). One of the advantages of the metal insert was a decrease in friction 

between the archwire and the bracket (Bishara et al., 1997; Chen et al., 2007). 

Manufacturers then started making grooves and slots in the bases of the brackets to 

increase surface area available for mechanical interlocking (Bordeaux et al., 1994). More 

recent developments have resulted in base designs that include mechanical ball base, 

dimpled, and silane coated buttons (Chen et al., 2007; Russell, 2005). The apparent 

roughness of these designs is readily visible to the naked eye on the base of the brackets.  

Previous studies comparing chemically and mechanically retained ceramic 

brackets found a significant difference in failure pattern between the two retention types. 

The chemically retained brackets showed the silane layer reinforced the adhesive, which 

fractures at a higher level than the enamel, and thus were more likely to result in enamel 
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failures during debond. The mechanically retained brackets without silane treatment 

minimized enamel fracture and increased the amount of adhesive remaining on the tooth 

after debond (Harris et al., 1992; Eliades et al., 1993). Recent literature reports that even 

mechanically retained ceramic brackets have greater bond strengths than metal brackets 

(Reddy et al., 2013). In an evaluation of the bond strength of ceramic brackets to glazed 

aluminous and fluorapatite ceramics, it was found that bead base ceramic brackets, a 

mechanical retention design, showed the highest shear bond strength of the brackets 

studied (Kukiattrakoon and Samruajbenjakul, 2010). 

In further attempts to improve the debond performance of ceramic brackets, 3M 

Unitek (Monrovia, CA) added a vertical slot to the base of their polycrystalline alumina 

Clarity bracket to encourage a predictable bracket failure that would eliminate excess 

stress during debond (Bishara et al., 1997; Liu et al., 2005; Chen et al., 2007). The more 

recent version of the bracket is the Clarity Advanced, which no longer has a metal insert 

in the bracket slot, but still incorporates the vertical score line in the base for easy 

debonding. The manufacturer of the Clarity Advanced brackets, like many others, have 

specific instructions detailing the recommended method for debonding their brackets, and 

claim that the specific pliers designed for debonding change the direction of stress on the 

enamel, making it safer for the tooth (Viazis et al., 1990; Theodorakopoulou et al., 2004). 

They also warn against bonding the ceramic brackets to any compromised teeth with 

large restorations. The bracket is claimed to use a smaller grain crystal than the original 

Clarity (with metal inserts) when making the injection molded brackets, contributing to 

increased strength, and allowing for a smaller bracket. Retention is achieved via a 

microcrystalline mechanical-locking bonding surface which appears as roughness to the 
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naked eye (3M Unitek, 2014). While there are reports in published literature about the 

Clarity brackets with metal inserts, there have been few, if any, publications that tested 

the Clarity Advanced brackets.  

Another new ceramic bracket that has little published data is the Avex CX from 

Opal Orthodontics (South Jordan, UT). This bracket is also made of polycrystalline 

aluminum oxide, and the manufacturer cites a unique surface treatment or roughening of 

the bonding pads along with retention grooves to provide mechanical retention and safe 

debonds (Opal Orthodontics, 2014). The surface treatment appears as two elliptical 

grooves cut into the base of the bracket oriented in an occlusal-gingival direction. They 

also note an increased shoulder between the wings of the bracket, which increases 

strength and decreases the chance of fracture during debonding (Opal Orthodontics, 

2014). They do not have a specific instrument made to debond the brackets, a notable 

difference from the Clarity Advanced brackets. 

The difference in debond technique makes a comparison in bond strength difficult 

as the Clarity Advanced brackets are designed to purposely fail in the middle and the 

Avex CX brackets are designed to be removed as one piece without failure. Most study 

designs test the shear bond strength with a Universal Testing Machine, thereby making it 

the standard method of evaluating the bond strength (Chen et al., 2007; Finnema et al., 

2010). Some studies have examined the debond strength when using different pliers, 

which may provide more insight to their clinical performance (Bishara et al., 1999, Chen 

et al., 2007).  
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CHAPTER 3 
MATERIALS AND METHODS 

 
 
 This study compared the shear debond strengths of the Victory series metal 

brackets (3M Unitek, Monrovia, CA), Clarity Advanced ceramic brackets (3M Unitek, 

Monrovia, CA), and Avex CX ceramic brackets (Opal Orthodontics, South Jordan, UT). 

Each of the three groups had a sample size of fifteen brackets. A photo of the brackets 

used is shown in Figure 1 from the labial surface and in Figure 2 from the bracket base.

 

Figure 1: View of the labial surface of brackets used in this study from left to right: Victory 
Series, Clarity Advanced, and Avex CX. 

 

Forty-five extracted human premolars that had been previously collected (use in 

this study was approved without submission of an IRB Application for Human Subjects 

Research as determined by the Marquette University Institutional Review Board on 7-12-

2013) and stored in distilled water were randomly assigned to each of the three groups. 

The teeth were inspected and showed no signs of enamel irregularities or previous 

bonding on their facial surfaces.  
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 Brackets were bonded according to the Opal Orthodontics protocol, using their 

etchant (Opal Etch), bonding agent (Opal Seal), and cement (Opal Bond MV). Each tooth 

was pumiced for 10 seconds with oil free and fluoride free pumice, then rinsed and dried 

with oil free air. Teeth were etched with 37% phosphoric acid on their facial surface for 

20 seconds, then rinsed for 15 seconds and air dried with oil free air. The teeth were air 

dried, and a chalky appearance of etched enamel was verified. Next, a thin layer of Opal 

Seal was painted onto the base of the bracket and the etched surface of the tooth and 

thinned with a gentle stream of air. Opal Bond MV was applied to the base of each 

bracket, which was positioned in the middle of the facial surface of the tooth, and all 

flash was removed before curing with an LED curing light for 10 seconds. 

 

 

 

Figure 2: View of bracket base of the brackets used from left to right: Victory Series, Clarity 
Advanced, and Avex CX. Note the surface texture and vertical score line of the Clarity Advanced 
and the retention grooves of the Avex CX. 
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 Bonded teeth were stored for 24 hours in distilled water before mounting them in 

acrylic blocks. Each tooth was suspended in the center of a PVC cylinder by a wire tied 

in the bracket slot, then mounting acrylic was added to cover the greatest convexity of the 

tooth, leaving the bracket and facial tooth surface exposed. Photos of the setup and a 

mounted tooth are seen in Figures 3 and 4, respectively. 

 

 

 

 

Figure 3: Bonded tooth suspended in a PVC cylinder before adding acrylic. 
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Figure 4: Sample of a freshly mounted sample in the PVC cylinder with acrylic covering the 
height of contour. 

 

 

After mounting, teeth were again stored in distilled water at 37 degrees Celsius 

for 24 hours before debonding. Teeth were debonded with a Universal Testing Machine 

(Instron Corporation, Canton, MA). Each cylinder was mounted with the bonded surface 

parallel to the cutting blade of the machine, which is depicted in Figure 5. The blade was 

positioned to debond in the mesial distal direction at the tooth-adhesive interface as seen 

in Figure 6 with a crosshead speed of 0.1 mm per minute. The maximum force before 

debond was recorded for each sample and results are depicted in Figure 7. Teeth and 

brackets were then examined under 10x magnification after debond and an adhesive 

remnant index (ARI) score was recorded for each.  
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Figure 5: View of the blade of the Instron machine paralleled to the surface of the tooth at the 
bracket to tooth interface.

 

Figure 6: View of the Instron machine with the blade positioned to debond in a mesial distal 
direction. 
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 Collected data was analyzed using a one way ANOVA to determine significance 

of shear bond strength values. The Tukey’s post hoc test was used to determine which 

groups were statistically different from the ANOVA test. The Kruskal-Wallis test was 

used to analyze the ARI scores and determine significance. The post hoc analysis used 

the Mann-Whitney test to determine which groups were different. A Weibull analysis 

was also completed to predict the probability of failure of each group. 
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CHAPTER 4 
RESULTS 

 
 
 Of the 45 brackets that were debonded, there was one enamel fracture noted with 

the Avex CX bracket. The shear bond strength for this bracket specimen was not used for 

statistical analysis because the bracket itself was still bonded to the tooth. Two Clarity 

Advanced brackets fractured in a manner that varied from the intended fracture along the 

vertical scribe line. All of the other Clarity Advanced brackets either debonded as a 

single piece or one half of the bracket debonded up to the vertical scribe line, leaving the 

other half of the bracket still attached to the tooth. The remaining Victory and Avex CX 

brackets were debonded intact. 

The force values of each bracket were measured in kgf and multiplied by the 

acceleration of gravity for a force value in N. The maximum force recorded for each 

sample is depicted in Figure 7. The kgf values are reported in Table 1 and the converted 

values are reported in Table 2. The average value for the Victory series was 199.4 N ± 

77.4 N; the Clarity Advanced was 136.0 N ± 33.4 N, the Avex CX was 178.7 N ± 32.6 N, 

which are shown in Table 3. A one way ANOVA test was used to determine if any of 

these values were significantly different from one another and returned a test statistic of 

F=5.611 and a p value of 0.007. The Tukey’s post hoc test results are detailed in Table 4 

and determined the Victory Series to be significantly different from the Clarity Advanced 

group. 



 

Figure 7: Maximum force level at debond

 

 

Table 1: Shear bond strength

 Victory Series
Max kgf 22.37
 17.73
 
 28.72
 12.17
 15.55
 
 27.53
 
 18.52
 27.61
 27.27
 
 29.92
 25.02
Average 20.35
St. Dev. 
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, N

mum force level at debond 

Shear bond strength values (kgf) 

Series Clarity Advanced Avex CX 
22.37 13.58 20.42
17.73 10.26 14.84
8.66 15.53 23.21

28.72 13.66 15.29
12.17 12.37 12.66
15.55 11.04 19.99
7.62 14.44 18.95

27.53 11.93 12.6
10 13.2 21.5

18.52 12.21 Enamel Fracture
27.61 21.03 16.39
27.27 21.96 20.36
26.5 12.96 19.51

29.92 13.55 20.91
25.02 10.47 18.65
20.35 13.88 18.23
7.94 3.41 3.32

5 6 7 8 9 10 11 12 13 14 15

Sample

Victory

Clarity Advanced

Opal
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20.42 
14.84 
23.21 
15.29 
12.66 
19.99 
18.95 
12.6 
21.5 

Enamel Fracture 
16.39 
20.36 
19.51 
20.91 
18.65 
18.23 
3.32 

Victory

Clarity Advanced

Opal
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Table 2: Shear bond strength values converted to Newtons (N) 

N Victory Clarity 
Advanced 

Opal 

1 219.2 133.1 200.1 
2 173.8 100.5 145.4 
3 84.9 152.2 227.5 
4 281.5 133.9 149.8 
5 119.3 121.2 124.1 
6 152.4 108.2 195.9 
7 74.7 141.5 185.7 
8 269.8 116.9 123.5 
9 98 129.4 210.7 
10 181.5 119.7 Enamel fx 
11 270.6 206.1 160.6 
12 267.2 215.2 199.5 
13 259.7 127.0 191.2 
14 293.2 132.8 204.9 
15 245.2 102.6 182.8 
    
Avg 199.4 136.0 178.7 
St. Dev. 77.9 33.4 32.6 
 

 

 

 

Table 3: Statistical description of data in Newtons (N) 

Group Bond Strength (N) 

N Mean Std. 
Dev. 

Std. 
Error 

Lower 
Bound 

Upper 
Bound 

Min. Max. Range 

Victory 15 199 78 20 156 243 75 293 218 

Clarity 
Advanced 

15 136 33 8.6 118 155 101 215 114 

Avex CX 14 178 33 8.7 160 198 123 227 104 

Total 44 171 58 8.7 154 189 75 293 218 
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Table 4: Tukey’s post hoc summary, *significantly different groups 

 

 

The average ARI score for the Victory series was 1.00 ± 0; the Clarity Advanced 

was 2.07 ± 0.26; the Avex CX was 1.86 ± 0.36, as depicted in Table 6. The Kruskal-

Wallis test was used to determine if any groups were significantly different. A post hoc 

analysis was performed using the Mann-Whitney test, and found the Victory series to be 

significantly different from both the Clarity Advanced and the Avex CX with a p value of 

<0.0001, summarized in Table 7. The Clarity Advanced and the Avex CX were not 

significantly different from each other. A Weibull analysis was completed for the data 

sets to determine the probability of failure at increasing force levels. A summary of the 

Weibull test is given in Table 8, followed by a graph depicting the predicted failure 

probability in Figure 8. 

 

 

 

 
(I) Group 

 
(J) Group 

Mean 
Difference 
(I-J) 

 
Std. Error 

 
Sig. 

95% Confidence Interval 
Lower 
Bound 

Upper 
Bound 

Victory 
Series 

Clarity 
Advanced 

63.37333 19.27745 *0.006 16.4973 110.2494 

 Avex CX 20.6948 19.61867 0.547 -27.011 68.4006 
Clarity 
Advanced 

Victory 
Series 

-63.37333 19.27745 *0.006 -110.2494 -16.4973 

 Avex CX -42.67853 19.61867 0.088 -90.3843 5.0272 
Avex CX Victory 

Series 
-20.6948 19.61867 0.547 -68.4006 27.011 

 Clarity 
Advanced 

42.67853 19.61867 0.088 -5.0272 90.3843 
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Table 5: Adhesive Remnant Index (ARI) Scores by group 

 
 
 
 
 
 
 
 
 

 
 
 

Table 6: Average ARI scores of each group and the calculated p-value from ANOVA analysis 

 Mean p-value 
Group  <0.0001 
     Victory 1.00  ±  0  
     Avex CX 1.86 ± 0.36  
     Clarity Advanced 2.07 ± 0.26  
 

 

Table 7: Multiple comparison p-values via the Mann-Whitney test 

 p-value 
Clarity Advanced vs. Avex CX 0.0829 
Avex CX vs. Victory <0.0001 
Clarity Advanced vs. Victory <0.0001 
 

Table 8: Weibull Modulus and characteristic strength results 

Group  Weibull 
modulus 

(β) 

Characteristic 
Strength (α; N) 

Shear Bond 
Strength (N) at 
10% Probability 

of Failure 

Shear Bond 
Strength (N) at 90% 

Probability of 
Failure 

Victory 2.19 228 82 334 

Clarity Advanced 3.99 148 84 182 

Opal 5.24 193 126 226 

Group 

ARI Scores* 

0 1 2 3 

Victory 0 15 0 0 

Clarity Advanced 0 0 14 1 

Opal 0 2 12 0 
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Figure 8: Weibull probability of failure 
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CHAPTER 5 
DISCUSSION 

 
 

 Ceramic brackets are now the most commonly used esthetic bracket, after 

previous attempts with polycarbonate materials proved inadequate for clinical use. The 

original concern with ceramic brackets was a bond strength that exceeded the strength of 

the enamel to which they were bonded, creating a risk for damage to teeth during bracket 

removal. This problem led to iatrogenic enamel fractures during debond (Bordeaux et al., 

1994). Continuing research has led to a change in the retention design of many ceramic 

brackets, moving in the direction of mechanical retention rather than chemical. Some 

manufacturers still combine mechanical and chemical, but the chemical treatment with a 

silane coupler is usually performed only on part of the bracket. 

 Manufacturers have also modified the debond technique and some companies, 

such as 3M Unitek and American Orthodontics, have designed pliers specifically for 

ceramic bracket removal. The testing that was performed on the brackets in this study 

was a shear bond test, the industry standard for bond strength testing, though it does not 

mimic the clinical debond technique recommended by the manufacturer (Finnema et al., 

2010).  The 3M Unitek plier advised for use with the Clarity Advanced bracket has two 

beaks that reach around the mesial and distal tie wings of the bracket with a vertical piece 

of metal that fits between the wings. Upon squeezing the plier and thus the bracket in a 

mesial-distal direction, the bracket fails in the midline and the two halves of the bracket 

peel off the tooth. This unique failure design was noted during the shear debond test, as 

many of the brackets failed in the middle, leaving the other half of the bracket attached to 
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the tooth. While this does not accurately reproduce what happens clinically, it can still 

give us an idea of the strength of the bond. 

 Opal Orthodontics recommends first removing all adhesive flash with a high 

speed handpiece, then using a Weingart plier to gently squeeze the Avex CX bracket in a 

mesial distal direction, while rocking gently until the bracket releases. It was noted all of 

the brackets that were debonded in the Avex CX group were debonded intact, without 

fracture. The unique retention grooves that were cut in the base of the bracket were often 

filled with adhesive resin, while the adhesive that was sandwiched between the tooth and 

the flat surfaces of the base often remained on the tooth. 

 There is a notably large standard deviation within the Victory Series group, which 

has not been reported in other studies. The large variation in bond strength could be the 

result of inconsistent blade placement prior to debond. The blade was placed at the 

bracket tooth interface, and because the metal brackets have a much thinner base than the 

ceramic brackets, it is conceivable that blade placement may not have been as consistent 

with the metal brackets. If the blade deviated from this interface, it may have caused the 

base to deform more easily.  Another possible contributing factor to this variability is a 

difference in bonding protocol. The protocol followed for this study involved coating the 

base of the bracket with primer before adding the adhesive resin. This is not the standard 

protocol used with metal brackets, which are usually bonded after applying the adhesive 

resin directly to the bracket pad. It is also of interest that the metal brackets all had an 

adhesive remnant index (ARI) score of 1, which means that a majority of the adhesive 

remained on the bracket. This is different than what is viewed clinically, when the entire 

imprint of the base of the bracket can often be seen in the adhesive resin that remains on 
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the tooth. This score would also suggest that the weakest part of the bond was between 

the adhesive resin and the tooth. Previous studies including the Victory series and 

original Clarity bracket in a shear bond test showed average ARI scores of 3, which is 

different than the findings of the current study, possibly due to differences in etching 

time, adhesive, or crosshead speed used during debond (Soderquist et al., 2006). The 

slow crosshead speed used in this study may not be indicative of the faster loads applied 

clinically, which is a consideration for further research (Viazis et al., 1990). Both ceramic 

brackets had average ARI scores closer to 2, which made them statistically different from 

the Victory Series metal bracket. A score of 2 also means that more of the adhesive resin 

was left on the tooth than the bracket, suggesting the weakest point of the bond was 

between the bracket and the adhesive. Previous chemically bonded ceramic brackets had 

a very strong bond between the adhesive resin and the bracket, forcing the failure to 

occur at the tooth surface (Viazis et al., 1990). This testing shows that mechanically 

retained brackets significantly decrease the risk of enamel damage by creating a weaker 

bond between the adhesive and the bracket. 

 The study reports the shear bond strength in Newtons, a unit of force. Most 

studies report the shear bond strength in MPa, which takes into account the surface area 

of the base of the bracket (Finnema et al., 2010). Because of the unknown value of the 

surface area and the inability of the clinician to change this parameter of the bracket, the 

force alone, which is the concern of the clinician, has been reported. Another concern 

was the micromechanical nature of the base of the bracket, and the ability to accurately 

calculate the surface area of the base of each bracket used. A rough calculation of the 

average forces recorded for each sample using bracket sizes reported in other studies 
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resulted in MPa values ranging from 13.6 MPa to 19.9 MPa . These estimates show the 

shear bond strength of all brackets in this study meet the minimum values of clinical 

acceptability, previously determined to be 6-8 MPa, when estimating the bracket base to 

be 10 mm2 (Habibi et al., 2007). The average shear bond strength of both ceramic groups 

is less than that of the Victory series stainless steel group used as a control, which 

suggests that mechanically retained ceramic brackets do not have an unacceptably high 

shear bond strength. 

 Another indication of safer ceramic brackets is the lower average shear bond 

strength calculated for both types of ceramic bracket. The Avex CX bracket had a lower 

bond strength than the Victory Series metal bracket and a higher bond strength than the 

Clarity Advanced. The smaller difference in bond strength between the Avex CX bracket 

and the Victory Series was statistically insignificant. While the difference between the 

Avex CX bracket and the Victory Series metal bracket is not statistically significant, the 

average bond strength of the Avex CX is lower than that of the Victory Series. While the 

average bond strength of the ceramic brackets was lower than metal, one enamel fracture 

was still noted in the Avex CX ceramic bracket group. The force had reached a level of 

164 N before the enamel fractured. This force level is far less than the maximum values 

recorded for each group, which indicates that the tooth may have had a pre-existing flaw 

in the enamel that was not detected at the time of bonding. Due to the variability of 

possible causes of failure, this sample was not included in the calculations. 

 The Weibull analysis was performed to evaluate the reliability of each group. 

Higher Weibull modulus values are more favorable, and the results showed the Opal 

Avex CX group performed better than the others. The higher values of the Opal group 
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can be seen in the graph presented in the results section. Mean values provide an 

overview of bracket performance, but clinicians may also be interested in the percentage 

of brackets that have a lower bond strength outside the mean, as these would be more 

likely to exhibit bond failures. Opal also performed better with a lower percentage of 

brackets exhibiting a low bond strength, without displaying an excessively high bond 

strength, which would also be undesirable. 
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CHAPTER 6 
CONCLUSION 

 
 

 This study demonstrated the shear debond characteristics of newer generations of 

ceramic brackets have improved in safety compared to previously chemically bonded 

brackets. Not only has the shear debond force decreased to a level less than a commonly 

used metal bracket, but a cohesive bond failure was consistently demonstrated with more 

resin remaining on the tooth, suggesting the weaker point of the bond was located 

between the bracket and the adhesive resin. This study may increase the confidence of the 

clinician in using mechanically retained ceramic brackets, but the direct correlation is 

limited by the unique methods of debond employed by the clinician and recommended by 

the manufacturer. Further research on the clinical debond characteristics is needed to 

support the in vitro findings of this study. It is evident that limitations of the material 

toughness and the unique design of the bracket play a significant role in the debond 

process.  
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