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ABSTRACT 
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NICKEL-FREE AND  

NICKEL-CONTAINING STAINLESS STEEL ORTHODONTIC WIRES 
 
 

Amanda Olejniczak, D.D.S. 
 

Marquette University, 2014 

Introduction:  In orthodontics, contact dermatitis caused by nickel allergy should be of 
concern with the number of nickel-containing appliances and wires used. Stainless steel 
archwires are commonly used throughout orthodontic treatment. With the release of 
nickel from these wires, some manufacturers have turned to nickel-free stainless steel 
alternatives. The goal of this research was to compare nickel-free stainless steel with 
traditional stainless steel archwires with regard to mechanical properties and 
microstructure.  
 
Materials and Methods: Nickel-free stainless steel and regular stainless steel archwires 
from four companies were included. Five random samples of each wire, vertically 
mounted in fast-set acrylic, were indented three times to determine their Vickers 
microhardness. Force deflection properties were investigated with the three point bending 
test in which fifteen random samples of each wire were tested. Wire samples were 
horizontally mounted in fast-set acrylic, acid-etched for variable amounts of time, and 
then analyzed with a metallurgical microscope to assess microstructure. All quantitative 
data were compared using one-way analysis of variance (ANOVA) at a 0.05 significance 
level with a Tukey's HSD (honest significant difference) test post hoc analysis, when 
necessary. 
 
Results: Vickers microhardness number, activation stiffness, elastic recovery, and 
activation bending force values were calculated for each sample. Activation modulus 
showed no significant differences between Dentaurum wires. All wires were statistically 
different when considering percent recovery. Scheu and Dentaurum stainless steel wires 
were statistically similar to the respective nickel-free alternatives when investigating 
activation stiffness. Scheu Chromium bending force values were always greater than 
Scheu Menzanium. Acme Monaco’s nickel-free alternative had force values greater than 
Acme stainless steel. Force values for Dentaurum wires through 1.0 mm of deflection 
showed no significant differences. Nickel-free alternatives and stainless steel wires 
manufactured by Scheu, Acme-Monaco, and Pozzi/Leone showed no statistical 
significant difference with regards to microhardness values. Microstructure analysis 
revealed differences between grain structure and sizes between all wires. 
 
Conclusions: Dentaurum Remanium and Noninium archwires appear to have the most 
similarities with regards to the mechanical and microstructure properties investigated in 
this study. With regards to the mechanical properties tested, nickel-free stainless steel 
may be a viable alternative to traditional stainless steel archwires.  
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CHAPTER 1 
INTRODUCTION 

 Orthodontics is the dental specialty focusing on movement of the dentition and 

alteration of the dentofacial complex as a whole (Huang et al., 2003). Treatment goals for 

orthodontists include achieving a stable, esthetic, and functional occlusion while still 

maintaining, or possibly improving, the facial balance. Archwires play a critical role 

throughout treatment, delivering force to move and align the dentition, transmit forces 

within the dentofacial complex, and even prevent unwanted movements. The first step 

often involves aligning the dentition (Nikolai, 1997). In order to achieve this tooth 

movement, a series of archwires can be utilized, as no one archwire is ideal to progress 

solely through treatment in its entirety (Kusy, 1997). Initial stages of orthodontics rely 

mainly on flexible wires composed of nickel-titanium (NiTi) or multistranded stainless 

steel (Kusy, 1997; Nikolai, 1997). Once teeth are aligned, a stiffer wire can be used, very 

commonly composed of stainless steel (Kusy, 1997; Proffit, 2013). For those patients 

with nickel hypersensitivity issues, using materials such as NiTi or stainless steel may be 

a potential cause for concern with regards to one’s health.  

 Nickel sensitivity continues to be a health concern throughout the population with 

the increased awareness of allergic reactions (Kusy, 2004). It has been reported that the 

prevalence of nickel sensitivity among the general population has increased from about 

10% to 20% (Bass et al., 1993; Menezes et al., 2004). Contact dermatitis, an adverse 

allergic reaction, is most frequently caused by nickel (Rahilly & Price, 2003). In 

orthodontics, nickel is readily found in NiTi and stainless steel wires, stainless steel 

brackets, as well as other fixed and removable appliances. Few studies have investigated 
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the prevalence of nickel sensitivity in orthodontic patients specifically; however, reports 

have ranged from 17.2% to 21.2% (Bass et al., 1993; Menezes et al., 2004). For those 

with severe nickel allergies, orthodontists may be required to find alternative materials 

for providing the patient with treatment of the same standards (Kolokitha et al., 2008). As 

long as the allergy to nickel remains a worldwide concern, nickel-free alternatives will be 

a necessity, especially in the area of orthodontics.  

 As mentioned above, metal orthodontic brackets and wires are commonly made of 

stainless steel or nickel-titanium, materials that contain nickel. For example, the 

austenitic stainless steel used to make orthodontic brackets and archwires contains 

approximately eight percent nickel (Barrett et al., 1993; Daems et al., 2009). It is possible 

for stainless steel archwires to contain up to 12% nickel (Kerosuo & Dahl, 2007).  

Alternatives to nickel-containing materials in orthodontics include ceramic or polymer-

based brackets and wires, beta-titanium wires, and “nickel-free” stainless steel brackets 

and wires (Kolokitha et al., 2008). As different materials are being introduced for the 

fabrication of wires and brackets in orthodontics, one can expect significant variability in 

physical and mechanical properties as compared with the traditional stainless steel. In 

orthodontics, it is important that materials have the proper composition and properties to 

withstand the physical, mechanical, and biological forces within the oral cavity (Kusy, 

2004; Daems et al., 2009). Early in orthodontic treatment, nickel-titanium archwires are 

frequently used. With such qualities as high resiliency, high yield strength and 

springback, and low elastic modulus these wires are ideal for beginning the leveling and 

aligning phase of treatment (Ballard et al., 2012). Stainless steel is more traditionally an 

archwire utilized later in treatment when low friction, good formability, but greater 
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stiffness and lower springback compared to nickel-titanium are typically desired 

(Verstrynge et al., 2006). Studying the properties of nickel-free orthodontic wires will 

provide orthodontists with the information to determine if these are acceptable for clinical 

use during treatment.  

 A study comparing one nickel-free stainless steel wire to conventional stainless 

steel wires found no difference between them with regard to elastic modulus, hardness, 

ductility, and yield strength (Verstrynge et al., 2006). In addition, stainless steel is 

frequently used for medical applications. Incorporation of nickel-free stainless steel 

implants within the medical field has been done so successfully (Zardiackas et al., 2003; 

Zardiackas et al., 2003). However, with limited research on the properties and structure of 

nickel-free stainless steel alternatives, little is known about how these materials would 

behave as archwires in orthodontics. The goal of this study was to determine if the nickel-

free stainless steels exhibit these properties and could, therefore, be viable alternatives for 

orthodontists treating patients with nickel hypersensitivity concerns. 

 

  

  



4 

 

CHAPTER 2 
LITERATURE REVIEW 

Introduction to Orthodontics 
 
 

Orthodontics relies on light, continuous forces in order to produce the most 

efficient biologic response and, therefore, the anticipated tooth movement (Kusy, 1997; 

Proffit et al. 2013). A critical component in fixed appliance orthodontic tooth movement 

is the wire. Wires can be used in a number of fixed and removable appliances utilized by 

the orthodontist. In addition, ligature wires can be used to engage the archwire into 

brackets or join individual teeth together as “anchorage” (Nikolai, 1997). Wire can also 

be shaped into open and closed coil helices to manage space concerns while moving the 

surrounding dentition (Nikolai, 1997). Still, the most utilized wire in orthodontics 

remains to be the archwire. By engaging the archwire into brackets adhered to the 

crowns, the orthodontist is able to activate the wire, transmitting its mechanical properties 

to the dentition (Nikolai, 1997). The forces delivered by the archwires causes controlled 

orthodontic tooth movement in all three planes of space. The edgewise appliance 

introduced by Dr. Edward Angle in the 1920s marked the beginning of the archwire era 

in orthodontics (Nikolai, 1997). Initially, archwires were composed of precious metals, 

such as gold (Kapila & Sachdeva, 1989; Nikolai, 1997). By the 1930s, alternative alloys 

were being considered due to the cost of gold wires, as well as the need for more 

springiness and less fracturing under tension in an archwire (Kusy, 2002). This is when 

stainless steel archwires were introduced to orthodontics; however, it was not until the 

1960s when stainless steel archwires became widely accepted, replacing the gold wires 

previously utilized (Kusy, 2002). While there are only two different cross-sectional 
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geometries of orthodontic wires, there are numerous sizes, introduction of new materials, 

and a variety of preformed archforms available to aid in providing the proper treatment 

(Nikolai, 1997). As the field of orthodontics evolves and goals of treatment change, the 

demand for still different archwire alloys continues.  

 
Development of the Ideal Archwire 
 
 

Development of orthodontic archwires involves critical analysis of a number of 

characteristics, including springback, resilience, weldability, friction, formability, 

esthetics, and biocompatibility (Kusy, 1997). The ideal archwire would have a large 

springback, low stiffness, good formability, low surface friction, high stored energy, 

biocompatibility, stability, and have the ability to be welded and soldered (Kapila & 

Sachdeva, 1989). Another characteristic important in an orthodontic archwire would be 

for it to be heat treatable to reduce brittleness after bends are placed (Kapila & Sachdeva, 

1989; Nikolai, 1997). In fact, there is no one archwire that is ideal for use through all 

stages of orthodontic treatment (Kusy, 1997).  As a result, different archwires are utilized 

in order to fulfill the varying goals of each stage of treatment. The different archwire 

alloys utilized offer different mechanical properties and structural composition (Kusy, 

1997). Currently, the available materials for orthodontic archwires include stainless steel, 

nickel-titanium, beta-titanium more commonly known as titanium-molybdenum alloy, 

cobalt-chromium, and, more recently, esthetic composite (Nikolai, 1997; Verstrynge et 

al., 2006; Spendlove, 2013). Beta-titanium wires provide the orthodontists with average 

stiffness, good formability and weldability, and effective springback. Cobalt-chromium 

archwires behave similarly to stainless steel after heat treatment; however, manipulation 
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of the wires can only occur prior to the heat treatment. Nickel-titanium archwires provide 

high springback, low stiffness, and flexibility. These archwires are time tested, show 

resistance to plastic deformation, as well as the ability to maintain a continuous light 

force over a long range of time, regardless of the amount of deflection (Kapila & 

Sachdeva, 1989; Verstrynge et al., 2006). Initial archwires, used for alignment of the 

dentition, need to be flexible and resilient. Nickel-titanium archwires display 

characteristics ideal for the initial stages of orthodontic treatment. 

 
Stainless Steel Archwires in Orthodontics 
 
 
 Since its introduction to orthodontics in 1929, stainless steel has become one of 

the most common materials used for orthodontic archwires. When compared with the 

previously utilized precious metals, stainless steel proved to impose less cost to the 

orthodontist, as well as provide greater strength and a higher modulus of elasticity 

(Kapila & Sachdeva, 1989; Nikolai, 1997). These beneficial characteristics led to 

eventual replacement of gold, and other precious metals, with stainless steel archwires in 

orthodontics (Kusy, 2002). Although stainless steel archwires have many favorable 

properties, the force levels may be higher than ideal and the amount of springback is very 

low (Valiathan & Dhar, 2006). In order to overcome such forces, wires of smaller 

diameter or longer lengths by incorporating loops would be required clinically.  

 A typical composition of stainless steel wires in orthodontics ranges from 17-25 

wt% chromium, 8-25 wt% nickel, 0.20 wt% carbon, and the remainder being iron. Most 

commonly used is 18-8 stainless steel which is composed of 8 wt% nickel and 18 wt% 

chromium (Proffit et al., 2012). Each element contributes important qualities to the 
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traditional stainless steel wire used in orthodontics. The percent by weight of chromium 

creates an increased corrosion resistance when compared with carbon steel. Chromium 

forms a thin passivating oxide layer which blocks the diffusion of oxygen to the stainless 

steel alloy underneath (Verstrynge et al., 2006; Izquierdo et al., 2010). The incorporation 

of nickel is critical to ensure the stabilized austenitic nature, as well as to help improve 

the corrosion resistance of orthodontic stainless steel archwires (Kusy, 1997). It is known 

that the austenitic structure is metastable and cold-working can induce phase 

transformation. Low temperature heat treatment causes a reduction in internal stresses in 

stainless steel wires (Asgharnia & Brantley, 1986). Maintaining austenite stabilization in 

orthodontic wires increases the strength of the stainless steel (Izquierdo et al., 2010).  

 A distinctive type of steel wire, known as Australian wire, is incorporated into a 

number of orthodontic techniques and mechanics. It was developed to provide 

orthodontists with a light, flexible stainless steel wire that demonstrated high resiliency 

and toughness. While this wire provides benefits for the practitioner, it also poses a 

number of disadvantages, including brittleness and decreased formability for some 

tempers of Australian wire. An increased carbon content compared with traditional 

stainless steel may account for the rough, irregular, porous nature of the surface of 

Australian wires. Such characteristics may be the reason for these wires to not readily 

accept bends. In addition, the increased carbon content may contribute to an increase in 

hardness and brittleness. These qualities make Australian wire an inadequate option 

during sliding mechanics as there is an increase in binding. The aforementioned 

characteristics, along with the fact that nickel is still used in manufacturing, make 

Australian wire not a viable option in those with nickel sensitivity (Pelsue et al., 2009). 
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Austenitic Stainless Steel 
 
 
 As mentioned previously, in orthodontics it is important for the stainless steel 

archwires to remain in the austenite stabilized phase. In fabrication of stainless steels, 

there are three major types based on phase, or the crystal structures the iron forms. These 

are the ferritic, martensitic, and austenitic stainless steels. The most commonly used 

stainless steel in orthodontics is the austenitic grade. The main structure of austenitic 

stainless steels is face-centered-cubic. While chromium acts as a ferrite-stabilizing 

element, carbon, nickel, nitrogen, and manganese may be included at sufficient 

concentrations to maintain austenite stable at room temperature (Davis, 1994). Extensive 

plastic deformation or rapidly cooling the metal to very low temperatures can readily 

transform the austenitic stainless steel to martensite (Davis, 1994). Transformation to 

martensite stainless steel can alter the properties of the archwire. It has been suggested 

that this transformation can decrease the ductility and, thus, increase the tendency to 

fracture. In addition, the martensite phase of stainless steel has an increased hardness 

when compared with the austenite phase, thus, increasing the torque resistance (Izquierdo 

et al., 2010). As demonstrated, altering the phase of the stainless steel wires could lead to 

the development of undesirable properties. Maintaining the austenitic nature during the 

fabrication of nickel-free orthodontic wires is critical to preserving the desirable 

properties observed in traditional stainless steel.  

 
Nickel Allergies in Orthodontics 
 
 
 Nickel allergies and sensitivities continue to rise in prevalence throughout the 

population. It is estimated that nickel hypersensitivity affects 4.5% to 28.5% of the 
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population, with females being affected ten times more frequently than males (Kolokitha 

& Chatzistavrou, 2009). Nickel is the most common metal associated with contact 

dermatitis in orthodontics (Rahilly & Price, 2003). One study has indicated a nickel 

sensitivity prevalence of 17.2% among orthodontic patients (Pazzini et al., 2009). This 

reaction is a Type IV delayed hypersensitivity response occurring at least one day after 

introduction of the nickel-containing appliances. The leached nickel ions are capable of 

binding to proteins eliciting the formation of antigens that then go on to activate T 

lymphocytes. It is the Langerhans cells present in the oral mucosa which present the 

nickel allergen to memory cells, eliciting the allergic response (Bakula et al., 2011). The 

tissue damage or irritation noted in such a reaction is caused by activated specialized T-

cells circulating in the patient’s circulatory system (Kolokitha & Chatzistavrou, 2009). In 

patients, it typically presents itself as redness, swollen tissues, rashes, sores, or ulcers 

within the oral cavity (Eliades & Athanasiou, 2002; Kusy, 2004). The impact of nickel on 

gingival hyperplasia and periodontal health appears to be caused by the release of the 

cytokines, interferon λ and interleukins, IL-2, IL-5, and IL-10, induced by T lymphocytes 

(Pazzini et al., 2009). However, it is also important to remember that extraoral metal 

appliances may contain nickel. Studies conducted by Norwegian orthodontists have 

shown dermal reactions such as redness, eczema, itching, and desquamation due to these 

extraoral appliances may be observed more frequently in patients (Hensten-Pettersen, 

1989; Eliades & Athanasiou, 2002).  

 The concern may be amplified in patients previously sensitized to nickel, most 

frequently due to body piercings. In these instances, one may be more likely to have an 

allergic response to nickel-containing orthodontic materials (Rahilly & Price, 2003). The 
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reason for the delay in allergic response is due to the two distinct phases of the immune 

response. The first, or sensitization, phase is when the allergen enters the body and is 

recognized for the first time by the immune system. The second, or elicitation, phase is 

when the affected person is exposed to the allergen for a second time. It is during the 

latter phase in which the clinical allergic reaction is readily observed (Kolokitha & 

Chatzistavrou, 2009). For these reasons, stainless steel brackets and nickel-containing 

archwires and appliances have been of concern for orthodontists when treating patients 

with known nickel allergies. As long as nickel hypersensitivity issues remain prevalent in 

the population, orthodontists will need to provide alternative archwires and appliances for 

patients with known nickel allergies. 

 
Biocompatibility Concerns with Nickel 
 
 
 Nickel-containing products have been utilized for a number of medical and 

implant procedures. These products have undergone extensive testing to ensure 

biocompatibility standards were achieved. However, nickel alloys in orthodontics pose a 

unique situation when compared with these implants. Although invasive, implanted 

materials form a connective tissue capsule surrounding this newly introduced foreign 

body. When nickel-containing stainless steel is used in orthodontic patients, the 

environment of the oral cavity is free to react with these wires in a continuous nature. 

Saliva and acidic substances increase the risk for extensive corrosion of orthodontic wires 

and appliances, posing a potential for more harm in those with nickel allergies (Eliades & 

Athanasiou, 2002). The oral environment is favorable for activity of microorganisms. In 

combination with hindered oral hygiene, dental biofilms accumulate in thick layers on the 
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orthodontic appliances. This can increase the anaerobic activity of oral bacteria, 

stimulating further corrosion of the metal appliances (Pazzini et al., 2009). As stated 

previously, one of the biocompatibility concerns with stainless steel archwires is the 

potential of nickel release intraorally. Due to the fact that the nickel atoms are not bound 

strongly to form an intermetallic compound, the likelihood of slow nickel ion release over 

time in vivo is increased. In vitro studies have demonstrated about 40 µg of nickel ion 

can be released per day (Eliades & Athanasiou, 2002). Nickel ions, when tested in vitro, 

have been implicated as a potential cause in promoting the inflammatory response. Such 

processes including chemotaxis of leukocytes and calcium ion-dependent contractile 

activity both have been shown to be inhibited by nickel ions (Torgersen et al., 1995; 

Eliades & Athanasiou, 2002).  

 Studies have drawn varying conclusions with respect to nickel content in the 

saliva after the introduction of fixed appliances in orthodontic patients (Eliades & 

Athanasiou, 2002). For instance, in vivo investigations have revealed an increased nickel 

concentration in saliva after three weeks; however, individual variation and variability in 

number and type of fixed appliances can contribute to statistically significant differences 

in observed salivary nickel concentrations (Gjerdet et al., 1991). Conversely, one day to 

one month after insertion of orthodontic appliances did not demonstrate increased 

concentrations of nickel in patient’s saliva in another study (Kerosuo et al., 1997). Still, 

other studies have concluded that nickel released from orthodontic fixed appliances 

cannot be detected in saliva or blood after one week (Bishara et al., 1993). In many 

studies, salivary nickel concentrations are investigated over short time periods, as well as, 

early on in orthodontic treatment. In addition, it is difficult to use these short-term release 
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patterns as a way to predict long-term nickel release potential. One study investigating 

the periodontal health in nickel allergic patients has indicated a possible cumulative effect 

of the nickel ions throughout orthodontic treatment (Pazzini et al., 2009). As a result, it is 

difficult to draw accurate conclusions about the release of nickel from appliances during 

orthodontic treatment (Eliades & Athanasiou, 2002). However, nickel release from 

orthodontic archwires and appliances should remain as a concern for orthodontists today. 

It is still recommended that nickel-free alloy substitutes or nickel alternatives be used in 

those orthodontic patients that have a history of nickel hypersensitivity. 

 
Alternatives to Nickel-Containing Appliances 
 
 
 During the initial stages of orthodontic treatment, NiTi is the most commonly 

utilized archwire. Due to the very high content of nickel in these archwires, they are not 

recommended in patient with nickel hypersensitivity. There are limited alternatives to the 

NiTi archwire. However, there are a number of alternatives that can be used in the later 

stages of orthodontic treatment to replace the use of stainless steel. These alternatives 

may decrease the patient’s exposure to nickel. One such alternative is a nickel-free 

stainless steel archwire. In some instances, these are described as “nickel-lite” as the 

nickel content is less than 0.2% but still present. Nickel-free stainless steel variants, such 

as Dentaurum Noninium, mainly use manganese, molybdenum, and chromium as 

substitute elements (Verstrynge et al., 2006). One concern of replacing nickel is the 

introduction of δ–ferrite because of the ferrite-stabilizing influence caused by the 

elements, such as molybdenum (Davis, 1994). Research has suggested that in order to 

maintain the austenitic structure, nickel-lite stainless steels contain high levels of 
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nitrogen. Introduction of nitrogen has the potential to increase the strength of these 

austenitic alloys (Davis, 1994). In the study conducted by Verstrynge et al., properties of 

stainless steel wires were investigated, including samples of the nickel-free variant by 

Dentaurum. Dentaurum Noninium was found to be more ductile than the traditional 

stainless steel wires, as well as having the lowest flexural Young’s modulus (Verstrynge 

et al., 2006). 

 Currently, there is limited research available on the mechanical properties, 

structure, and efficacy of the nickel-free or nickel-lite stainless steel archwires available 

to orthodontists. It was the goal of this study to compare the nickel-free stainless steel 

wires offered by four manufacturers with traditional stainless steel wires containing 

nickel offered by the same manufacturers by investigating bending force values, 

activation modulus, activation stiffness, percent recovery, microstructure, and hardness.  
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CHAPTER 3 
MATERIALS AND METHODS 

 For each test, nickel-free and nickel-containing wires were utilized for 

comparison. Round archwires of similar size were utilized for the samples. The preferred 

specimens were straight pieces of round laboratory wires or archwires. However, if 

straight wires were not available, then preformed archwires or spools of wire were used 

for comparison. The nickel-free and nickel-containing wires received from the same 

company were of the same size and shape in order to achieve the best possible 

comparison. Acme Monaco (New Britain, CT, USA) stainless steel archwires measuring 

0.018” in diameter were compared against the ultra-low nickel stainless steel of the same 

diameter. Noninium straight wires by Dentaurum (Inspringen, Baden-Württemberg, 

Germany) with 0.2% trace nickel were tested against the company’s Remanium stainless 

steel archwire. Both Dentaurum wires measured 0.016” in diameter. Pozzi/Leone 

(Florence, Tuscany, Italy) offered Biosteel laboratory wires which consisted of 0.2% 

nickel traces. These were compared with Leowire, a chromium stainless steel laboratory 

wire, manufactured by the same company. The Leone wires were received on spools and 

straightened prior to three-point testing. Finally, Scheu (Iserlohn, North Rhine-

Westphalia, Germany) offered Menzanium, nickel-free stainless steel straight wires 

which were compared against the company’s Chromium stainless steel. Leone and Scheu 

laboratory wires were 0.024” in diameter (Table 1). 
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Table 1. Manufacturers and characteristics of the orthodontic wires tested. 

Company Wire Nickel Presence Size (inches) 
Acme Monaco Nickel-Free No 0.018 
Acme Monaco Stainless Steel Yes 0.018 

Scheu Menzanium No 0.024 
Scheu Chromium Yes 0.024 

Pozzi/Leone Biosteel No 0.024 
Pozzi/Leone Leowire Yes 0.024 
Dentaurum Noninium No 0.016 
Dentaurum Remanium Yes 0.016 

 
 

 Three tests were conducted in order to determine the mechanical properties and 

microstructure of the nickel-free and nickel-containing stainless steel wires under 

investigation in this study. The investigation included the three-point bend test, Vickers 

microhardness test, as well as microstructure analysis. Appropriate statistical analyses 

were utilized for each test when indicated.  

 The three-point bending test allows one to analyze the bending forces for a given 

deflection for the eight wire products utilized. The test was conducted at room 

temperature. A sample size of 15 wires made up each group. A 25 mm segment of each 

wire was utilized. Materials were tested in the condition they were received from the 

manufacturer, with the exception of the Acme Monaco and Pozzi/Leone wires. In order 

to test the straightest portion from the preformed Acme Monaco archwires, segments 

were taken from the most distal segment of 15 different archwires. The two Pozzi/Leone 

wires were straightened by hand to straight pieces to ensure adequate placement on the 

testing apparatus and avoid errors. Fifteen continuous segments were cut from the spools 

for testing. Segments for the Scheu wires were taken from 15 different wires. A random 

sampling of 25 mm segments were taken from a number of the Dentaurum straight wires.  
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Wires were deflected with the universal testing machine (Instron, Canton, MA) at 

a rate of 2 mm/min to a midspan deflection of 3.1 mm (Figure 1) and then reversed. The 

space between lower supports was 14 mm, with the upper member being centered at 7 

mm (Figure 2). Force was monitored during loading and unloading (Figure 3). Loading 

slope was measured from the collected data and converted to bending modulus (Segal et 

al., 2009; Ballard et al., 2012). In addition, elastic recovery was calculated and activation 

bending force values at 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, and 3.0 mm were obtained from the 

test for comparison. Data were compared using one-way analysis of variance (ANOVA) 

at a 0.05 significance level with a Tukey's HSD (honest significant difference) test post 

hoc analysis, where required. Statistical analysis was performed using SAS software 

(SAS Institute Inc., Cary, NC). 

 

 

Figure 1. Instron 5500R utilized for data collection during the 
three-point bending test. 
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Figure 2. Testing set-up for three-point bending.  A 14 mm 
span length between lower supports was used with 
the upper beam centered at 7 mm. 

 

 
Figure 3.  Three-point bending test in progress.   
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  The Vickers microhardness test was conducted on as received wires to determine 

their abilities to resist plastic deformation. Five 25 mm segments of each wire group were 

randomly selected for testing. The cylindrical wire samples were mounted vertically in 

acrylic resin and prepared under standard metallographic procedures (Figure 4). A 

Vickers microhardness tester (Kentron; Torsion Balance Co., Clifton, NJ) was used with 

a 500 g load lasting 15 seconds (Figure 5). Prior to indentation, each sample was ground 

with SiC paper at 240, 400, 600, and 1200 grits until adequate surface smoothness was 

achieved (Figure 6). Each mounted wire was indented three separate times, which 

allowed for an average of indentations per sample to be calculated. Then, an average of 

all samples was generated. A Vickers microhardness number was calculated via the 

formula: 

  VHN=2*F*sin(136°/2)/d2  

 Where F is the force applied in kilograms and d is the calculated average of indentations 

in millimeters. Data were compared using ANOVA testing at a 0.05 significance level. A 

Tukey's HSD (honest significant difference) test post hoc analysis was used, when 

necessary. Statistical analysis was performed with SAS software.  
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Figure 4. Sample segment of wire placed 
vertically in quick-set acrylic for 
Vickers microhardness test. 

 
 

 
Figure 5. Kentron Vickers microhardness tester with   

acrylic block mounted.  
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Figure 6. Polished acrylic block with wire vertically 
positioned for Vickers microhardness test. 

 
 
 
 The final test investigated the microstructure characteristics of the sampled wires. 

Analysis of the microstructure of the nickel-free alternatives could provide valuable 

information about mechanical properties needed to determine the efficacy of these wires 

in orthodontic treatment. Two of the vertically mounted wires used for the microhardness 

testing and two randomly selected wires mounted horizontally in the same acrylic resin 

were prepared under standard metallurgic procedures. Grinding of the samples utilized 

for the microhardness test began with 120 grit SiC paper, followed by 240, 400, 600, and 

1200 grits. The horizontally mounted samples, having not undergone previous testing, 

were prepared with 240, 400, 600, and 1200 grit SiC papers. Polishing procedures 

utilized a microcloth and 1.0 micron, 0.3 micron, and 0.05 micron suspensions of alumina 

(Figure 6). Each sample was then etched in dilute aqua regia (HCl:HNO3:H2O::3:1:20) 

solution for progressive time periods until the microstructure of each wire was revealed. 
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After grinding, polishing, and etching the vertically mounted samples used previously for 

the Vickers microhardness test, it was determined that horizontally mounted wires would 

provide more effective results for the microstructure analysis (Figure 7). A metallurgical 

microscope (Olympus PME3; LECO Corp., St. Joseph, MI) with a digital image 

acquisition device (SPOT Insight 2MP FirewireMono; Diagnostic Instruments Inc., 

Sterling Heights, MI) and software (SPOT Software 4.5; Diagnostic Instruments Inc.) 

was utilized to evaluate the specimens. Digital micrographs were obtained to display 

data. Magnifications using 10x, 20x, and 50x objective lenses were used for obtaining 

micrographs. 

 

 

 
Figure 7. Acrylic block curing. Wire horizontally 

placed inside PVC mold, not visible in 
photograph. 
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CHAPTER 4 
RESULTS 

Three tests were conducted to investigate the microstructure and mechanical 

properties of a number of nickel-free and nickel-containing stainless steel wires. For data 

that were extrinsic measures, i.e. those differing based on the size of the wires, 

differences between stainless steel and nickel-free stainless steel wires were most 

effectively only compared against wires manufactured by the same company. In the case 

of this investigation, data for percent recovery, stiffness, and force values were compared 

in this manner. In contrast, data classified as intrinsic measures, those that do not differ 

with size of the wire due to normalization, could be compared amongst all eight of the 

stainless steel and nickel-free stainless steel wire samples. Activation modulus and 

hardness values were analyzed as intrinsic measures.  

A number of measures were analyzed from the data collected during the three 

point bending test. Force values from various deflection points, percent recovery, 

stiffness values, and activation modulus were calculated for each of the wire products. 

Each of the wires was compared against each other via ANOVA and Tukey's HSD 

(honest significant difference) test for the analysis of activation modulus. The Dentaurum 

wires of Noninium and Remanium showed no statistically significant (p>0.05) difference 

with regards to activation modulus, while all other manufacturers showed statistically 

significant (p<0.05) differences between their nickel-free and stainless steel wires. There 

was no statistically significant difference between Scheu Chromium and Pozzi/Leone 

Biosteel and Leowire; however, there was a statistically significant (p<0.05) difference 

between the two Pozzi/Leone samples. The highest activation modulus at 209.6 GPa was 
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noted for Dentaurum Noninium, while the lowest was observed for Pozzi/Leone Leowire 

(154.1 GPa). With regards to activation modulus, nickel-free stainless steel wires 

produced by 3 of the 4 manufacturers included in this study showed significantly 

(p<0.05) higher values than the stainless steel counterparts (Table 2). 

Activation stiffness and percent recovery were investigated by comparing the 

nickel-free alternative with the traditional stainless steel manufactured by each company. 

Analyses did not investigate comparisons between all eight wires. The stainless steel 

wires produced by Pozzi/Leone and Scheu had the largest activation stiffness values 

because they were the largest diameter wires, whereas the Dentaurum wires had the 

lowest activation stiffness due to their smallest diameter.  Pozzi/Leone and Acme 

Monaco nickel-free stainless steel wires all showed significantly (p<0.05) higher 

activation stiffness values than their respective stainless steel counterpart. Percent 

recovery is similarly affected by cross-sectional area of the wires.  Each of the 

manufacturers showed statistically significant (p<0.05) differences between the nickel-

free alternatives and the traditional stainless steel wires. For Acme Monaco and Scheu 

samples, the nickel-free stainless steel alternatives had slightly higher percent recovery 

values. Findings for Dentaurum and Pozzi/Leone samples were opposite with stainless 

steel wires have higher values for percent recovery. 

Force deflection values were calculated at 0.25 mm, 0.5 mm, 0.75 mm, 1.0 mm, 

1.5 mm, 2.0 mm, and 3.0 mm (Table 3). Nickel-free alternatives were compared with 

their stainless steel counterpart manufactured by the same company. In addition, a 

comparison was made of all eight wires and their respective force deflection curves. 

Dentaurum wires showed no significant differences until 1.5 mm of deflection at which
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Table 2.  Activation stiffness and elastic recovery during bending for the stainless steel wires. 

Wire 
Activation Stiffness 

(g/mm) 
Activation Modulus 

(GPa) 
Elastic Recovery (%) 

Acme Monaco Nickel-Free 703±12   * 195.7±3.3    B 55.7±0.9   * 
Acme Monaco Stainless 

Steel 
642±14   * 178.6±4.0    C 54.9±0.7   * 

Scheu Menzanium 1766±15 166.4±1.4    D 44.1±0.7   * 
Scheu Chromium 1786±11 157.3±1.0    EF 43.2±0.4   * 

Pozzi/Leone Biosteel 1819±82   * 160.2±7.3    E 38.2±0.4   * 
Pozzi/Leone Leowire 1749±81   * 154.1±7.2    F 41.7±0.4   * 
Dentaurum Noninium 470±2 209.6±0.9    A 59.7±0.2   * 
Dentaurum Remanium 464±6 206.9±2.8    A 65.5±1.0   * 

For intrinsic measures, within each parameter, a different letter denotes significant differences (p<0.05) exist between the 
wires. For extrinsic measures, within each parameter, * denotes significant differences (p<0.05) exist between nickel-free and 
nickel-containing stainless steel wires from the same manufacturer.   
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Table 3.  Activation bending force values at various deflections for the stainless steel wires. 

Wire 
Force at 

0.25 mm (g) 
Force at 0.5 

mm (g) 

Force at 
0.75 mm 

(g) 

Force at 1.0 
mm (g) 

Force at 1.5 
mm (g) 

Force at 2.0 
mm (g) 

Force at 3.0 
mm (g) 

Acme Monaco 
Nickel-Free 

169±5   * 342±6   * 520±9   * 671±11   * 869±10   * 950±7   * 936±21   * 

Acme Monaco 
Stainless Steel 

153±10   * 311±12   * 475±20   * 620±33   * 811±50   * 883±34   * 890±19   * 

Scheu Menzanium 461±9   * 896±10   * 1264±12   * 1528±10   * 1841±12   * 1954±8   * 1883±16   * 
Scheu Chromium 475±10   * 915±9   * 1316±7   * 1624±8   * 1968±7   * 2055±8   * 1983±19   * 

Pozzi/Leone Biosteel 467±9   * 915±25   * 1314±54 1554±44 1779±20   * 1861±13   * 1855±26   * 
Pozzi/Leone Leowire 434±9   * 865±25   * 1282±55 1586±61 1899±23   * 1988±13   * 1961±36   * 
Dentaurum Noninium 113±2 229±2 342±2 435±3 573±4   * 641±4   * 643±6   * 

Dentaurum 
Remanium 

113±2 227±3 343±4 449±6 623±8   * 722±9   * 752±16   * 

Within each parameter, * denotes significant differences (p<0.05) exist between nickel-free and nickel-containing stainless 
steel wires from the same manufacturer 
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point the difference in force values between Noninium and Remanium were statistically 

significant. Data for Pozzi/Leone wires at 0.75 mm and 1.0 mm of deflection were the 

only other instances of nickel-free stainless steel and stainless steel wires produced by the 

same manufacturer to show no significant difference of force values. At all deflection 

points, the stainless steel samples from Scheu had larger force values than the nickel-free 

stainless steel samples. The opposite trend was observed with the Acme Monaco wires, 

with the nickel-free stainless steel demonstrating higher force values. Data collected for 

Pozzi/Leone wires showed a transition at 0.75 mm and 1.0 mm whereby the nickel-free 

stainless steel wires initially demonstrated higher force values but at larger deflection 

values, the stainless steel wires demonstrated larger force values. For Dentaurum, no 

difference in force values was found between the nickel-free and stainless steel wires 

until the 1.5 mm deflection mark whereupon the stainless steel delivered more force.  In 

general, the nickel-free alternative illustrated a similar force deflection curve as the 

stainless steel produced by each company; however, in most instances, there was a 

statistically significant difference between the compared wires (Figures 8-12). 

 



 

Figure 8.  Comparison of typical force
archwire and Acme 

 

Figure 9.  Comparison of typi
nickel-containing (Chromium) wires

Comparison of typical force-deflection curves of Acme Monaco 
archwire and Acme Monaco Stainless Steel archwire. 

Comparison of typical force-deflection curves of nickel-free (Menzanium) and 
containing (Chromium) wires manufactured by Scheu.
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Monaco Nickel-free 

 

free (Menzanium) and 
 



 

Figure 10.  Comparison of typical force
nickel-containing (Biosteel) wires

 

Figure 11.  Comparison of typi
nickel-containing (Remanium) wires

Comparison of typical force-deflection curves of nickel-free (Leowire) and 
containing (Biosteel) wires manufactured by Pozzi/Leone

Comparison of typical force-deflection curves of nickel-free (Noninium) and 
containing (Remanium) wires manufactured by Dentaurum
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free (Leowire) and 

manufactured by Pozzi/Leone. 

 
free (Noninium) and 

manufactured by Dentaurum. 



 

Figure 12. Comparison of typical 
 
 
 
 Mean hardness values from the Vickers microhardness test 

amongst all eight samples, as previously stated. The ANOVA test

calculated mean hardness value 

post hoc analysis was conducted when necessary. 

wire, was found to be the hardest wire tested. 

difference in hardness between 

wires. The nickel-free stainless steel wires produced by Scheu and Pozzi/Leone 

numerically the softest wires tested, with statistically significant differences in hardness 

compared only with the stainless steel wire from 

Remanium. For the four manufacturers included in this study, the stainless steel samples 

. Comparison of typical force-deflection curves for all wires. 

ardness values from the Vickers microhardness test were compared 

amongst all eight samples, as previously stated. The ANOVA test was conducted for each 

calculated mean hardness value and the Tukey's HSD (honest significant difference) test

was conducted when necessary. Dentaurum Remanium, a 

the hardest wire tested. There was a statistically significant 

between Dentaurum Remanium and the other seven 

free stainless steel wires produced by Scheu and Pozzi/Leone 

the softest wires tested, with statistically significant differences in hardness 

the stainless steel wire from Acme Monaco and Dentaurum 

For the four manufacturers included in this study, the stainless steel samples 
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were compared 

was conducted for each 

(honest significant difference) test 

m Remanium, a stainless steel 

There was a statistically significant 

m and the other seven sampled 

free stainless steel wires produced by Scheu and Pozzi/Leone were 

the softest wires tested, with statistically significant differences in hardness 

and Dentaurum 

For the four manufacturers included in this study, the stainless steel samples 
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demonstrated larger hardness values than their respective nickel-free stainless steel 

counterparts, although as mentioned it was only significant for the Dentaurum wires. 

Refer to Table 4 for further analysis of the tested wires and their calculated mean 

hardness values. 

 

Table 4.  Vickers microhardness values for the stainless steel wires. 

Wire Hardness Value (kg/mm2) 
Acme Monaco Nickel-Free 514±8       BC 

Acme Monaco Stainless Steel 525±7        B 
Scheu Menzanium 503±18      C 
Scheu Chromium 524±11     BC 

Pozzi/Leone Biosteel 503±5       C 
Pozzi/Leone Leowire 504±5       BC 
Dentaurum Noninium 515±7       BC 
Dentaurum Remanium 568±14      A 

Different letters denote significant differences (p<0.05) exist between the wires.   
 

 

The results from the microstructure investigation indicate different grain 

structures and sizes for the stainless steel and nickel-free stainless steel wires produced 

by each manufacturer. The stainless steel archwire by Acme Monaco had flat, elongated 

grains whereas the nickel-free alternative had a grain structure closer to equiaxed, being 

roughly equal in all dimensions (Figures 13-16). Scheu stainless steel and nickel-free 

stainless steel wires differed mostly by grain size. Both Scheu Chromium and 

Menzanium wires had elongated grain structures with the stainless steel wire 

demonstrating grains smaller in size (Figures 17-20).The Pozzi/Leone wires differed 

significantly by grain structure. Biosteel, the Pozzi/Leone  nickel-free stainless steel wire, 

had a coarse grain structure with internal texturing evident, whereas Leowire, the same 

company’s stainless steel, had more elongated grains (Figures 21-24). Comparison of 
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Dentaurum Noninium and Remanium wires revealed more elongated grains in the nickel-

free stainless steel (Figure 25-28). With the exception of the stainless steel wire from 

Acme Monaco and the nickel-free stainless steel from Pozzi/Leone, elongated grains 

were observed, consistent with the structure observed in wrought orthodontic wires.  
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Figure 13. Optical micrograph of Acme Monaco Nickel-free archwire surface at 20x 
magnification 

 

Figure 14. Optical micrograph of Acme Monaco Nickel-free archwire surface at 50x 
magnification 



33 

 

 

Figure 15. Optical micrograph of Acme Monaco Stainless Steel archwire surface 
at 20x magnification 

 

Figure 16. Optical micrograph of Acme Monaco Stainless Steel archwire surface 
at 50x magnification  



34 

 

 

Figure 17. Optical micrograph of Scheu Menzanium wire surface at 20x 
magnification 

 

Figure 18. Optical micrograph of Scheu Menzanium wire surface at 50x 
magnification 



35 

 

 

Figure 19. Optical micrograph of Scheu Chromium wire surface at 20x 
magnification 

 

Figure 20. Optical micrograph of Scheu Chromium wire surface at 50x 
magnification 
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Figure 21. Optical micrograph of Pozzi/Leone Biosteel wire surface at 20x 
magnification 

 

Figure 22. Optical micrograph of Pozzi/Leone Biosteel wire surface at 50x 
magnification 



37 

 

 

Figure 23. Optical micrograph of Pozzi/Leone Leowire wire surface at 20x 
magnification 

 

Figure 24. Optical micrograph of Pozzi/Leone Leowire wire surface at 50x 
magnification 



38 

 

 

Figure 25. Optical micrograph of Dentaurum Noninium wire surface at 20x 
magnification 

 

Figure 26. Optical micrograph of Dentaurum Noninium wire surface at 50x 
magnification 
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Figure 27. Optical micrograph of Dentaurum Remanium wire surface at 20x 
magnification 

 

Figure 28. Optical micrograph of Dentaurum Remanium wire surface at 50x 
magnification  



40 

 

CHAPTER 5 
DISCUSSION 

 The increasing prevalence of nickel allergies requires orthodontists to utilize 

nickel-free alternatives throughout treatment to avoid hypersensitivity reactions in nickel-

sensitive patients. Since its introduction to orthodontics in 1977, beta-titanium alloy has 

been commonly utilized for patients with nickel allergies due to its excellent clinical 

properties and nickel-free composition (Kapila & Sachdeva, 1989; Kusy, 2002; Kolokitha 

et al., 2008).  However, depending on the mechanics involved in treatment, the 

practitioner may require an archwire with different properties. For example, beta-titanium 

archwires have a rough surface compared with stainless steel, posing potential problems 

with certain sliding mechanics. Nickel-free stainless steel archwires could provide an 

alternative for orthodontists when treating patients with nickel allergies. In order for 

orthodontists to incorporate this alternative stainless steel archwire into treatment, the 

nickel-free stainless steel archwires must provide clinically effective mechanical 

properties. Another critical component in determining the properties and efficacy of 

nickel-free stainless steel archwires in orthodontics is to investigate the microstructure in 

comparison to traditional stainless steel.  

 In this study, the bending properties were similar between nickel-free stainless 

steel and traditional stainless steel orthodontic archwires. For example, the ratio of the 

activation stiffness between the two wires from each respective manufacturer ranged 

between 91 and 99%.  For all of the bending force values displayed in Table 3, the ratio 

of forces at a given deflection between the two wires from each respective manufacturer 

averaged 94% and in only two instances did this ratio fall below 90% (for the Dentaurum 
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wires at 2 and 3 mm deflections).  The reason for the similarity in stiffness and applied 

force values between the nickel-free and regular stainless steel wires most likely involves 

what element was used in place of nickel in the nickel-free stainless steel.  A concurrent 

investigation into the composition of the wires tested showed manganese (Mn) was the 

main element used to replace nickel.  Additionally, the nickel-free wires had a few wt% 

more Cr and Mo, but less Fe.  Manganese does not differ appreciably from nickel in 

atomic radius (Fe = 140 pm, Mn = 140 pm, Ni = 135 pm), thus alloy strengthening via 

substitutional solid solution strengthening would not be expected to be that different. 

Further, the Young’s modulus of nickel is 200 GPa and Mn is 198 GPa, further limiting 

any difference in strengthening.  

Despite the overall similarities in bending properties, statistical significance was 

frequently observed when comparing the nickel-free and regular stainless steel wires.  In 

addition, a few general trends were noticeable.  With the exception of the Acme Monaco 

wires, the nickel-free stainless steel, in general, delivered lower force levels than their 

respective stainless steel counterparts. As seen in Figure 12, wires with similar cross-

sections exhibit comparable bending profiles. As expected, orthodontic archwires with 

smaller cross-sections deliver lower force levels throughout the entirety of deflection. 

Dentaurum archwires showed higher activation modulus values indicating more 

inherently rigid materials. Larger diameter wires produced by Scheu and Pozzi/Leone 

demonstrated lower modulus values. All manufacturers showed higher modulus values 

for their nickel-free stainless steel archwires. The reason this may not be consistent with 

the activation stiffness for the Scheu wires is because the Chromium wire measured 0.60 

mm in diameter whereas the Menzanium wire measured 0.59 mm in diameter.  Thus, the 
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activation stiffness was greater but, when normalized for size as in the modulus 

determination, the nickel-free variety (Menzanium) actually had a slightly greater 

activation modulus. Although minimal as mentioned above, the different modulus values 

for the nickel-free stainless steel archwires could be a result of different composition and 

different processing, such as heat treatment or temperature during fabrication. In general, 

the nickel-free wires exhibited slightly greater activation stiffness and modulus but 

typically had lower force values at larger deflections. Although contradictory at first 

glance, it should be reiterated that the stiffness/modulus were measured between 

deflections of 0.25 and 0.5 mm, which lie in the elastic region of the bending curve 

whereas many of the forces beyond 0.75-1.25 mm, depending on wire size, resided in the 

plastic region.  Elastic deformation and force values result from stretching of interatomic 

bonds whereas force levels during plastic deformation are influenced by the ease of 

dislocation movement.  From Figure 12, it is apparent that the nickel-free wires generally 

experience less work hardening which shows as decreased amounts of force required to 

continue deflecting the wire in the plastic deformation region (greater than 0.75-1.25 mm 

deflections).  Once again, although the effect is relatively small, it could be caused by the 

different composition and different processing between wires.  

 As would be expected with stainless steel, the archwires included in this study 

showed minimal percent recovery values. Scheu and Pozzi/Leone wires demonstrated 

less recovery than Acme Monaco and Dentaurum. While Acme Monaco and Dentaurum 

wires showed elastic recovery beyond 1.5 mm deflection, the larger wires by Scheu and 

Pozzi/Leone were permanently deformed with no further springback after returning to a 

deflection of 1.75 mm on deactivation. This data demonstrates the stiffer nature of larger 
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diameter archwires and the corresponding greater permanent deformation. Less 

springback, as demonstrated by Scheu and Pozzi/Leone archwires, correlate to an 

expected increased force on teeth during orthodontic treatment for these wires. However, 

definitive conclusions are difficult to draw with regards to nickel-free compared with 

traditional stainless steel wires. Pozzi/Leone and Dentaurum stainless steel archwires had 

larger observed percent recovery when compared with their nickel-free counterparts, 

while Acme Monaco and Scheu nickel-free stainless steels demonstrated higher 

springback than stainless steel wires manufactured by the same companies. 

 Load deflection properties provide valuable information about the wires effect on 

biologic tooth movement during orthodontic treatment. Lower values required for 

deflection of the wire indicate more controlled, lighter forces to the tooth, as well as the 

surrounding tissues. Scheu Chromium, a traditional stainless steel archwire, consistently 

demonstrated the largest forces at all deflection values, indicating more force applied to 

the dentition compared with Scheu Menzanium. As demonstrated with stiffness, the 

larger wires in this study demonstrated greater force values reliably at all deflection 

values. It would be expected that these larger stainless steel wires would provide greater 

force to the teeth and surrounding tissues. This is why smaller stainless steel archwires 

are utilized when lesser forces are required. Acme Monaco nickel-free stainless steel 

showed significantly greater force levels than Acme Monaco stainless steel at all 

deflection points. However, similar definitive results cannot be drawn for Dentaurum or 

Pozzi/Leone samples. It can be pointed out that through 1.0 mm of deflection, no 

significant difference was observed between Dentaurum Noninium and Remanium 
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suggesting minimal difference between the stainless steel and nickel-free alternative 

produced by this manufacturer. 

 Hardness, with regards to surface characteristics of metals, refers to the 

“resistance to indentation”. The Vickers microhardness test investigates the surface 

hardness of very small areas, such as stainless steel orthodontic archwires. The data 

obtained from the bending and Vickers microhardness tests provides a measure for being 

able to compare the nickel-free stainless steel wires to the nickel-containing stainless 

steel wires. Mechanical properties that contribute to surface hardness include strength, 

ductility, malleability, and resistance (Anuradha Acharya & Jayade, 2005). In 

orthodontics, hardness refers to the wear pattern of archwires. Typically, stainless steel 

archwires have the hardest surface, followed by beta-titanium, suggesting less wear of 

stainless steel during treatment (Yu et al., 2011). This study found that three of the 

traditional stainless steel wires had statistically similar Vickers microhardness values 

compared to the nickel-free stainless steel wires produced by their corresponding 

manufacturers. The only nickel-free alternative that tested significantly softer than its 

nickel-containing stainless steel counterpart was Dentaurum Noninium. Dentaurum 

Remanium, a traditional stainless steel, was significantly harder when compared with all 

other samples included in this study. 

 Microstructure investigation revealed differences in processing for stainless steel 

and nickel-free stainless steel wires produced by all manufacturers included in this study. 

In addition, the difference observed in grain size and shape amongst the Scheu samples 

could be due to a difference in laboratory processing. All wires, except the Acme Monaco 

and Pozzi/Leone nickel-free stainless steel archwires, showed elongated grains aligning 
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parallel to the long axis of the wire. These findings are consistent with a wrought 

orthodontic wire having undergone mechanical reduction steps during processing. The 

Pozzi/Leone Biosteel and Acme Monaco nickel-free stainless steel archwires 

microstructures, differing from the typical wrought wire characteristics, indicate different 

intermediate manufacturing processes, such as heat treatments. As a result of these 

inconsistencies, no significant observations could be made from the data gathered during 

the microstructure analysis of the tested stainless steel and nickel-free stainless steel 

archwires. 

 While the results demonstrated by this study do not necessarily reflect the clinical 

situations to which orthodontic archwires are subjected intraorally, they do provide a 

comprehensive basis of mechanical properties in order to compare stainless steel and 

nickel-free stainless steel archwires. The results may provide the necessary information 

needed for orthodontists to assess the potential for replacing traditional stainless steel 

archwires with nickel-free stainless steel alternatives in those patients with known nickel 

allergies. The nickel-free alternative wire, beta-titanium, is currently readily available to 

orthodontists, providing adequate properties to act as a good archwire for intermediate 

and finishing stages of treatment. Beta-titanium demonstrates higher springback and 

lower forces than stainless steel; however, these archwires still provide clinically 

sufficient strength and formability (Kapila & Sachdeva, 1989; Gurgel et al., 2011; Proffit 

et al., 2012). One of the major disadvantages of beta-titanium archwires is the cost 

(Gurgel et al., 2011). For nickel-free stainless steel to become more commonplace in 

orthodontic offices, the characteristics of these archwires would need to be more similar 

yet remain as cost-effective as traditional stainless steel.  
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There remains debate whether nickel is released from stainless steel archwires in 

sufficient concentrations to cause hypersensitivity reactions in the oral cavity. Some 

research suggests that the way nickel is bound in a crystal lattice within stainless steel it 

would be unlikely that significant reactions would develop during typical orthodontic 

treatment (Rahilly & Price, 2003). It may be necessary to continue nickel allergy research 

to determine conclusively the detrimental effects of stainless steel archwires during 

orthodontic treatment. In those patients presenting with known nickel allergy, it would be 

necessary to replace all nickel-containing appliances. The archwire alone may not be 

deemed the major contributing factor to a hypersensitivity reaction in a patient with 

nickel allergies. While it is critical to find nickel-free replacements for the traditional 

stainless steel archwire, it is also imperative to find alternatives to brackets, bands, and 

other orthodontic appliances containing nickel. Determining the efficacy of nickel-free 

stainless steel archwires in orthodontic treatment is just one step towards providing 

satisfactory treatment for patients with nickel allergies.  
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CHAPTER 6 
CONCLUSION 

 This study investigated the mechanical properties and microstructure of nickel-

free stainless steel and traditional stainless steel orthodontic archwires produced by the 

same manufacturers. In general, the three-point bending test revealed nickel-free stainless 

steel archwires are stiffer with higher activation modulus values. With the exception of 

Acme Monaco, nickel-free stainless steel archwires demonstrated lower force levels than 

their stainless steel counterparts during deflection. Force deflection values for Acme 

Monaco nickel-free stainless steel were consistently larger than the corresponding 

stainless steel. Scheu Chromium displayed the largest force deflection values and the 

most similarity was noted between the two wires manufactured by Dentaurum. With 

regards to percent recovery, all archwires tested showed significant differences with the 

larger diameter archwires by Scheu and Pozzi/Leone showing earlier permanent 

deformation during deflection. Dentaurum Remanium was the hardest archwire tested, 

demonstrating significant differences when compared with all other archwires. The 

stainless steel wire from each manufacturer was found to be harder than its respective 

nickel-free stainless steel counterpart, with the only statistically significant difference 

found for the Dentaurum samples. The data gathered in this study suggests that, with 

mechanical similarities to stainless steel, nickel-free stainless steel archwires may be an 

adequate alternative for treatment in patients with nickel allergies. However, in order to 

draw more definitive conclusions about the efficacy of nickel-free stainless steel wires 

during orthodontic treatment, a comprehensive clinical study would need to be 

conducted. 
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