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ABSTRACT 
 

 

APPLICATION OF MECHANICAL VIBRATION TO MODULATE ORTHODONTIC 
TOOTH MOVEMENT (OTM) IN MICE 

-A PILOT MICRO CT STUDY 

 

 

Andrew Rummel 

 

Marquette University, 2010 

 

 

Purpose:  The purpose of this study was to use micro CT to evaluate the effect of 
mechanical vibration on orthodontic tooth movement (OTM) in mice.  Materials and 
Methods:  Thirty-six mice (C57BL/6, 20 weeks old, male) were randomly divided into 
four groups: spring/vibration (SV), spring only (S), vibration only (V), control (C).  A 
nickel-titanium (NiTi) spring was fabricated and inserted bilaterally between the 
maxillary 1st molars, delivering an initial force of 20 grams.  From day 0, mechanical 
vibration (4Hz frequency, 20micron displacement, 5 min per session duration) was 
applied to the left maxillary 1st molar every three days for 3 weeks (21 days). Following 
the completion of the experiment, animals were euthanized and the harvested maxillae 
were evaluated by micro CT analysis. Various variables (5 on coronal view and 6 on 
axial view) were defined and measured on the micro CT images. One way ANOVA with 
Dunnett’s post hoc was employed to determine the statistical significance of differences 
between the vibrated and non-vibrated sides, and among the treatment groups (p value set 
at 0.05). Results: Significant orthodontic tooth movement was observed in the spring and 
spring/vibration groups versus the control and vibration alone groups (p<0.05). 
Differences between spring and spring/vibration groups as targeted were not identified 
statistically however an overall tendency was observed demonstrating that the vibrated 
side had increased OTM when compared to its contra-lateral non-vibrated side in the 
spring/vibration group. Conclusion: Micro CT can be used to evaluate orthodontic tooth 
movement in mice, which however requires improvement to further study the effect of 
mechanical vibration on orthodontic tooth movement.
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CHAPTER I: INTRODUCTION 
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The specialty of orthodontics is very rewarding practice both for the patient and 

practitioner.  Orthodontists are able to change smiles, improve self esteem, and improve 

function.  However, there are drawbacks associated with orthodontics such as root 

resorption, increased susceptibility to oral hygiene issues, compliance, and treatment 

duration.  Of importance to orthodontists in reference to these issues is treatment time. 

The less time fixed appliances are used, there is less likelihood these factors could cause 

problems to the patient’s health.1  The use of mechanical vibration to modulate 

orthodontic tooth movement might be a strategy towards decreasing treatment time.   

 

 

 

 

 

 

 

 

 

 

 

 



3 
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Mouse-Experimental Model 

At the present time, the laboratory mouse has become a central tool for skeletal 

studies, mainly because of the extensive use of genetic manipulations in this species.2  

The ability to manipulate the genetics of the mouse model provides many opportunities 

for researchers in different disciplines.  Examples of genetic manipulations include 

transgenic and knockout species.  Knockout mice have one or more genes that have been 

turned off by a targeted mutation.3  By turning off particular genes, it may be possible to 

determine the function of the targeted gene.  Mice are currently the most related 

laboratory animal species to humans, where knockouts can be easily produced.3  A 

transgenic mouse contains additional, artificially-introduced genetic material in every 

cell.3  This often confers a gain of function, for example, the mouse may produce a new 

protein, but a loss of function may occur if the integrated DNA interrupts another gene.3  

A transgenic mouse is a very useful system for studying mammalian gene function and 

regulation because analysis is carried out on the whole organism.  Until 2003, researchers 

were unable manipulate the rats genetic code to produce knockout specimens.4  However, 

given the method that was used, the genes may only be altered at random.  The vast 

majority of information and ease of creating knockout mice may continue to entice 

researchers to use the mouse model.   

 

Mouse Anatomy 

The inbred strain C57BL/6 mice have maxillary 1st, 2nd, and 3rd molars 

with two incisors (Figures 1, 2).  No premolars or canines are present.  Each 

molar has three roots present: mesio-buccal, disto-buccal, and palatal.  The roots 
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of the 1st molar are more defined and separated when compared to the 3rd molar, 

where the roots appear to be more convergent.    

 

Figure 1: Diagram of mouse anatomy, axial view.5 

 



6 

 

 

 

Figure 2: Diagram of mouse anatomy, sagittal view.5 

 

 

Age of Mice 

Barnett et al, compared alveolar bone in young and aged mice.6  Young 

mice were 12 weeks old, while aged mice were 94 weeks old.6  In the current 

study we looked at 20 week old mice, comparing our study to the previous studies 

we could consider our mice to be grouped as adult.  In regards to tooth movement 

in young or aged mice, there is very little information in the literature.  However, 

it has been shown in rats who are 6 weeks old, that in the initial phase of tooth 

movement the rate was faster in the young rats than in aged rats (9-12 months 

old).7  Although once tooth movement reached the linear phase, the rate of tooth 

movement was the same in both groups.7 
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Bone 

There are several different types of bone that are formed depending on the 

physiologic situation.  The following list describes the various types of bone formed and 

cites situations where they may be present.   

1. Woven Bone:  weak, disorganized, and poorly mineralized.  Plays a crucial role in 

wound healing by rapidly filling osseous defects, providing initial continuity for 

fractures and osteotomy segments and strengthening a bone weakened by surgery or 

trauma.8  Orthodontic tooth movement results in rapid formation of relatively 

immature new bone, which is woven bone.8    Woven bone can also be seen in the 

mid-palatal suture after rapid palatal expansion has taken place.   

2. Lamellar Bone:  strong, highly organized, well-mineralized, and makes up over 99% 

of the adult human skeleton.8  The full strength of lamellar bone that supports an 

orthodontically moved tooth is not achieved until about 1 year after completion of 

active treatment.8  

3. Composite Bone:  an osseous tissue formed by the deposition of lamellar bone within 

a woven bone lattice.  Composite bone is an important intermediary type of bone in 

the physiologic response to orthodontic loading and it usually is the predominant 

osseous tissue for stabilization during the early process of retention or postoperative 

healing.8 

4. Bundle Bone: a functional adaptation of lamellar structure to allow attachment of 

tendons and ligaments.  Distinct layers of bundle bone are usually seen adjacent to the 

PDL along physiologic bone-forming surfaces.9 
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Mechanical Adaptation of Bone 

Stress, in its simplest definition, occurs when a load is placed on bone which 

stretches the intermolecular bonds that resist with an elastic force.10  Strain occurs when a 

load is placed on bone and deforms it.10  Frost suggested that living bone may depend 

more on strain than stress to generate the signals that control its biological reactions to 

mechanical loads.  Small strains would help to guide the remodeling and modeling phases 

of bone healing, however, excessive strains can usually prevent bony union.10  The 

naturally permissible strains might lie in the 100-2000 microstrain region, compared to 

bone’s fracture strain which is in the 25,000 microstrain region.11  Microstrain is a 

measurement defined as deformation per unit length (unit of strain, a microstrain is 10-6 

of length change).12  In 1987, Frost developed the mechanostat theory (Figure 3) to show 

the relationship between dynamic loading, strain, and bone response.   

 

Figure 3:  Diagram representing the ranges of microstrain and its result.12  
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The following is a set of interacting mechanical variables that may provide the 

signal for skeletal adaptation13  

1. Strain Magnitude: The percentage change in length of a bone.  If bone adapts to 

the magnitude of strain, then surface strains on bone should be proportional to cortical 

thickness.  Burr suggested it may be more reasonable to expect a bone to adapt not to 

peak principal strain, but to the lower physiologic strain limit, the limit above which bone 

mass is retained rather than lost.   

2. Strain Distribution/Strain Direction :  The pattern of strain magnitude across a 

section of bone.  The adaptive response of bone may be related to the way that strains are 

distributed within the bone. Lanyon (1987) proposed that the stimulus required to 

produce an adaptive response may change, depending upon the strain distribution.14  

Lanyon proposed that the strain required to elicit an adaptive response may be lower if 

the manner of loading is different from the usual pattern of loading.14  Additionally, if the 

strain distribution is usual, the threshold to initiate an adaptive change may be higher, 

requiring a larger strain stimulus.14   

3. Stimulus Duration:  Total number of deformation cycles or the period of time 

over which they are applied.  Burr mentioned that the overwhelming majority of evidence 

indicates that the duration of loading is a minor determinant of the magnitude of the 

adaptive remodeling response.  A stimulus may be required to exceed the threshold for a 

relatively few cycles to elicit an adaptive response.   Rubin and Lanyon demonstrated that 

1800 cycles per day did not increase the remodeling more than 36 cycles per day did 

when using the same loading regimen.15   
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4. Strain Rate:  The speed at which bone is deformed.  Bone is considered to be a 

viscoelastic material.  Repetitive loading is necessary to cause bone adaptation. 

5. Strain Frequency:  The number of deformation cycles/second or harmonics 

associated with these.  Burr explained that frequency analysis of the strain signal 

generated during locomotion shows that there are significant strain frequency 

components up to about 50 Hz.  McLeod and Rubin found that strain magnitudes 

normally associated with bone loss at 1 Hz cause significant new bone formation when 

applied at 15 Hz.16  They also found that high frequency components of strain (12-30Hz) 

predict a maximum osteogenic response for bone in the strain range of 2000-3000 

microstrain, the range generally conceded to be the peak principal strain for most 

animals.16  Given this information it would be possible that bone is more or less 

responsive at different frequencies. 

6. Strain Polarity :  Tension, compression, or shear in particular planes of space.  

Burr described the different views of orthopedists and orthodontists, suggesting that the 

observation that cortical drift occurs is clear evidence that bone may either form or resorb 

on compressive and tensile surfaces.  In general, orthodontists would argue that bone 

resorbs on the compressive side and apposition occurs on the tension side.   

7. Strain Energy Density:  The elastic energy stored in bone during deformation, or 

energy dissipated.  The strain energy is equal to the product of the stress and strain, or the 

area under the stress/strain curve.   
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Remodeling/Modeling 

  Both trabecular and cortical bone grow, adapt, and turn over by two 

fundamentally distinct mechanisms: modeling and remodeling.17  Bone modeling involves 

independent sites of resorption and formation that change the form (shape and/or size) of 

a bone.17  However, bone remodeling is a specific coupled sequence of resorption and 

formation events to replace previously existing bone.17  Due to the difference of the two 

mechanisms, you are able to visually see modeling on x-rays, while remodeling is 

apparent at the microscopic level using histological analysis.  According to Roberts, bone 

modeling is the dominant process in growth as well as in adaptation to applied loads such 

as headgear, rapid palatal expansion, and functional appliances.17 Both modeling and 

remodeling are controlled by an interaction of metabolic and mechanical signals.17  These 

signals include functional and applied loads, in addition parathyroid hormone and 

estrogen can play a role in the response of remodeling.  Such as in pregnant women, 

orthodontic tooth movement is faster in contrast, patients with low bone turnover, such as 

hypothyroidism, see delayed appearance of resorption and formative activities.18,19 

 

 

Root Resorption 

The loss of tooth substance has been referred to by many names; root absorption, 

external apical resorption, external resorption, and root resorption.20  Factors associated 

with external apical root resorption include trauma, infection, and tooth movement.  

However, the effect of drugs, role of genetics, the immune system, patient age, patient 

gender and the patient’s medical history have also been reviewed as factors that may be 
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associated with root resorption.21,22,23,24  In regards to resorption and tooth movement, 

many factors can play a role in the prediction and the amount of resorption that will take 

place.   

1. Tooth Vulnerability : Most studies report that the upper lateral, upper central and 

lower incisors are the most frequently affected teeth.  In addition, risk is also 

associated with the shape of the root, especially for those with blunt or pipette-shaped 

roots.  Malmgren et al reported that traumatized teeth were not more prone to 

resorption than uninjured teeth.25  However, Malmgren noted that traumatized teeth 

with signs of root resorption prior to treatment, may be more prone to root resorption 

during treatment. 25   Endodontically treated teeth have been suggested to be more 

resistant to resorption because of increased dentin hardness and density.26 

2. Age:  Adult patients experience more resorption than younger patients.8   This was 

substantiated by the moderate number of cells and the fact that the fibrous tissue 

reacts more slowly and the turnover rate of collagen is in general slower in adults.8 

3. Orthodontic Appliances:   According to Linge and Linge, in regards to orthodontic 

appliances, highly significant risk factors were the use of rectangular archwires and 

Class II elastics.27  Additionally, fixed appliances caused significantly more apical 

root resorption than removable appliances.27   

4. Application of Force:   Studies have demonstrated that intermittent forces move 

teeth more physiologically than continuous forces.28,29  It is believed that this may 

allow the resorbed cementum to heal, which would lead to less resorption.29   

5. Duration of Force:  Baumrind et al described that increased length of treatment time 

was positively associated with increased root resorption.30   
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6. Type of tooth movement:  As discussed by Graber, intrusion and torque are probably 

the most detrimental tooth movements.8  During these movements, radiographs must 

be taken, light forces used and frequent rest periods to provide an intermittent type 

force.   

Resorption can be detected by the use of panoramic x-rays or periapical x-rays.  

Either form of diagnosis will show a blunting of the apical portion of the root in mild 

cases, to loss of more than one-third of the root in more severe cases.  Detection of 

resorption radiographically is most obvious in the apical area; however, histologic 

investigation provides evidence that the same resorptive process also occurs on the side 

surface of the roots, which is difficult to find using routine radiographs.20  Interestingly, 

no articles have reported tooth loss caused by severe apical root resorption associated 

with orthodontic therapy where no other form of trauma or infection was involved.20  If 

apical root resorption is detected during treatment it is advisable to stop treatment for a 

period of time.   

During orthodontic tooth movement many changes take place within the 

periodontium.  The forces that are applied create strains in the tooth-supporting tissues 

that manifest almost immediately and can be roughly categorized as compressive and 

tensile.31   However, recently it was found that given the nonlinear behavior of the PDL, 

the classical zones of tension and compression could not be found.32  Rather than in 

distinct areas, the tension and compression zones are correlated to the alveolar bone 

morphology.32 
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Resorption of the alveolar bone takes place on the compression side of the 

periodontal ligament, while apposition takes place on the tension side.  When orthodontic 

forces are applied, if heavy, pain will develop almost immediately as the periodontal 

ligament is crushed.33  The pain associated with the application of forces is related to the 

ischemic areas of the periodontal ligament.  Initially, the force that is placed on the tooth, 

could be big enough to partially or totally occlude the blood supply to the periodontal 

ligament.  During this occlusion of the periodontal ligament, necrosis ensues within the 

compressed area of the ligament.33  Histologically, cells disappear in the areas of necrosis, 

and this avascular area becomes referred to as “hyalinized”.33  During this period of 

hyalinization, tooth movement is ceased and a process of undermining resorption occurs.               

Osteoclastogenesis, formation of osteoclasts, in orthodontic tooth movement is 

initiated by two related changes brought upon by the application of forces: tissue damage, 

with the subsequent production of inflammatory processes in the periodontal ligament; 

and deformation of the alveolar process.31  Osteoclasts appear within the adjacent bone 

marrow spaces and attack the underside of the bone immediately adjacent to the necrotic 

periodontal ligament area.33  The delay that is experienced with this process results from 

the delay in cell differentiation in the necrotic areas and the amount of bone that has to be 

removed by undermining resorption.  In regards to root resorption, the cells that resorb 

the necrotic tissue may also resorb the root surface indiscriminately.20  This resorption 

process continues until no hyaline tissue is present and/or the force level decreases.34  

Reviewing reactivation schedules of force, Brezniak and Wassersten noted that the extent 

of root resorption was increased only when force reactivation was performed at the peak 

presence of osteoclast counts.34   
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Repair of resorption has been observed as early as 3-5 weeks after the initiation of 

light orthodontic tooth movement.20 Additionally, it is believed that the healing process 

of a resorption cavity starts when orthodontic force is discontinued or reduced to below a 

certain level.8  In regards to repair, secondary cementum is laid down in the resorption 

lacunae, which can be located in the apical, middle, or coronal portions of the root.  

Interestingly, Ownman-Moll et al demonstrated that human 1st premolars 8 weeks into 

retention had nearly 50% of the resorption lacunae with no repair or only partial coverage 

with healing cementum.35  

In 2006, Al-Qawasmi et al studied the genetic contributions associated with root 

resorption with the application of orthodontic forces in 8 different groups of inbred 

mice.36  The study, which included the inbred strain C57BL/6 (the strain used for our 

study), applied 25 g of force using a coil spring from the maxillary first molar to the 

incisor for nine days.36  Using histological analysis, it was found that the C57BL/6 inbred 

strain is actually fairly resistant to root resorption.36   

 

 

Mechanical Vibration   

Currently in the literature there is limited information on using vibration to 

modulate orthodontic tooth movement.  Nishimura et al looked at the effects of resonance 

vibration (application of vibration with continuously changing frequency onto teeth) on 

tooth movement and root resorption in rats.37  Twelve male wistar rats were divided into 

2 groups, .012 nickel titanium (NiTi) expansion spring with an initial force of 12.8 grams 

for 21 days.37  Resonance frequency was performed on the occlusal surface of 1st molars 

for 8 minutes once a week, with an average frequency and displacement of 61.02 Hz and 
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.014 mm, respectively.37  After 21 days, the amount of tooth movement in the vibration 

group was significantly greater (15%) than the control group.37  There was no significant 

difference in the level of root resorption between the control group and vibration group. 

37  

Studies in animals and humans have shown whole body vibration provides an 

anabolic potential to bone.38,39  Whole body vibration is thought to provide increased 

bone density to patient’s with osteoporosis or for preventing bone loss in an aging or bed 

ridden patient.38  Christiansen et al tested adult male C57BL/6 mice, whole body vibration 

was done at 45 Hz for 15min/day, seven days/week for five weeks with varying 

magnitudes.38  A non-dose dependent response of bone volume was found when varying 

magnitudes.38  In humans, whole body vibration was done at 30 Hz, which was found to 

be strongly anabolic in animal studies.39  At this low frequency, prevention of bone loss 

was seen but no formation of bone was noted.39 

In addition to mechanical vibration, several other methods have been used to try 

to increase the rate of orthodontic tooth movement such as pulsed electromagnetic field 

driven vibration.  Magnets are attached intra-orally into the specimen of interest, springs 

or coils are used to induce tooth movement, then an electromagnetic field is created to 

cause the vibration.  Using this method with a frequency of 30 Hz in rats, orthodontic 

tooth movement was increased when coil springs were added.40  In 1997, an 

electromagnetic field was used with a frequency of 15 Hz and orthodontic force of 15g to 

test orthodontic tooth movement in guinea pigs.41  At the end of the 10-day experimental 

period, the amount of tooth movement noted in the magnet and pulsed electromagnetic 

field groups was significantly greater than that of the group that used springs alone.41  
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The increase in the rate of tooth movement was suggested to be the result of a reduction 

of the initial lag phase when force is applied.41  However, it is impossible to distinguish 

the magnetic field’s effect vs. the magnetic field driven force’s effect.  These results 

suggest that the presence of the magnetic field had induced multipotential stem cells to 

differentiate more rapidly into active osteoclasts, thereby increasing the rate of bone 

resorption and hence tooth movement.41   

Stark and Sinclair used a stainless steel coil with a force of 12g and a frequency of 

25 Hz.42  They found that at the end of 10 days, the experimental group had an additional 

0.9 mm of tooth movement when compared to the controls.40   Additionally, the 

incremental pattern of tooth movement found was similar to that seen in humans with an 

initial rapid movement, followed by a lag phase, and then a gradual increase for the 

remainder of the study.42  

  The purpose of this study is two-fold: (1) to develop a standardized protocol for 

applying mechanical vibration to mice;  (2) use this model to explore the hypothesis that 

mechanical vibration (4Hz frequency, 20micron displacement, 5min/session duration) 

increases OTM and decreases root resorption.   
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CHAPTER III:  MATERIALS/METHODS 
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Subjects 

This pilot study included thirty-six male, 20 week old, inbred strain C57BL/6 

mice (Charles River Laboratories Inc., Wilmington, MA).  Mice were acclimated for a 

minimum of 2 weeks to a 12-hour/light/dark cycle.  Approval for the project was 

obtained through the IACUC at Marquette University, protocol # AR-218.  No special 

eating or drinking patterns were imposed during this study.  They were randomly 

assigned to 4 groups: control (n=6), spring only (n=10), vibration only (n=10), and spring 

and vibration (n=10).  Mice were anesthetized using a combination of Ketamine 

(100mg/kg) / Xylazine (10mg/kg) placed as an intra-peritoneal injection.  Anesthesia was 

given initially for spring placement and then repeated every third day for vibration 

application.  Following the duration of the experiment (21 days), all mice were 

euthanized by CO2 inhalation. The maxilla was dissected and fixed in 4% 

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) with springs in place for further 

examination. 

 

 

Orthodontic Appliance 

Springs (G & H Wire Company, Greenwood, IN), were fabricated using .010’’ 

NiTi (Figure 4). Springs, in the shape of an omega loop, were placed across the palate 

with the terminal curve placed around the disto-lingual line angle on the maxillary 1st 

molars (Figures 5 and 6). 
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Figure 4: Diagram of approximate dimensions of NiTi spring. 

 

Figure 5:   Schematic of NiTi spring placed across the palate between the 
maxillary 1st molars. 
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Figure 6:  Photo of spring inserted in a mouse with a custom made mouth retractor 
holding the jaws apart.   

 

The spring was secured by etching (self etching primer, 3M Unitek, Monrovia, 

CA) the enamel surface, followed by placement of light cure adhesive (flow-tain, 

Reliance, Itasca, IL).  G & H wire constructed springs to deliver an initial 20 grams of 

force.  The forces being delivered by the spring were tested by G & H with an MTS 

Insight 1, electro mechanical load cell and frame, manufactured by MTS (Eden Prarie, 

MN).  Placement was aided by the use of a custom made retractor, .036’’ stainless steel 

wire (GAC International Inc., Bohemia, NY). 
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Method of Vibration 

In collaboration with the School of Engineering at Marquette University, a device 

was developed and fabricated to deliver vibration (Figure 7).  Vibration was applied to 

animals in two groups, vibration only and spring/vibration, as a split mouth design 

(vibrated side vs. non-vibrated contra-lateral side).  All vibration was performed on the 

maxillary left 1st molar with the maxillary right 1st molar serving as a control.  The 

regimen for vibration was a frequency of 4 Hz, displacement of 20 µm, and 5 minutes per 

session.  Sessions were repeated every three days, for a total of 7 sessions within the 12-

day experimental period.  

 

Figure 7: Diagram of vibration instrument. 
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µCT Scans 

The upper jaws/skull of the mice were scanned using a micro CT (µCT) system at 

the Milwaukee VA hospital (Figure 8). The use of the µCT system has been previously 

discussed and outlined by Karau et al43, and will be reviewed in the following paragraphs.  

Figur

e 8: Diagram showing µCT setup.43 

The µCT x-ray system consisted of a micro-focal x-ray source in conjunction with 

an image-intensifier detector optically coupled to a digital charge-coupled device (CCD) 

camera.  The x-ray was mounted on a precision optical rail, with the conical x-ray beam 

emerging in a horizontal orientation. The image intensifier was mounted on the rail with 

provision for movement along the beam axis with source-detector distance variable 

continuously between 30 and 150 cm. Also mounted on the rail, between the source and 

detector and adjustable between 0 and 120 cm, is a micro-positioning stage allowing 

animal preparations or other specimens to be manipulated in space with four degrees of 
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freedom, x-y-z-θ, providing the ability to acquire the desired x-ray projections through 

the specimen, variable magnification, and rotation for acquiring the image sequences for 

three dimensional reconstruction. Stage and camera operations were under the control of 

a Dell Precision 610 workstation. The physical design principle exploited to achieve high 

magnification, and thereby superior spatial resolution, is the combination of the very 

small x-ray source focal spot with the large-format, digital detector. In this imaging 

geometry, when the sample is placed in close proximity to the source and the detector 

some distance away, geometric magnification is achieved with minimal penumbral 

blurring. Available computing hardware include an Apple MacPro workstation, a Dell 

workstation, and several Pentium-based personal computers. These computers were 

connected to a local area network and have Internet access. These resources were 

accessible for signal and image processing, image reconstruction, and real-time data 

acquisition and analysis.  Samples of mouse maxilla were fixed on the specimen stage 

and rotated in 1 degree increments to acquire 360 projection images.  After each µCT 

session, phantom images were taken to characterize and evaluate the aspects of the 

imaging acquisition and analysis.  The phantom images included flood-field image with 

the mouse skull removed.  The flood-field image was used to correct for spatial variations 

in the x-ray beam and/or image-intensifier gain.  The second image was of a uniform grid 

of 1-mm diameter stainless steel spheres (BB’s) spaced at 1.5-cm intervals and embedded 

in a Plexiglas disk (Figure 9).  The BB phantom image was used to correct for spatial 

distortion due to the beam geometry and image intensifier.   
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Figure 9: Diagram of BB phantom.43 

 

Reconstruction 

High spatial resolution 3-D volume data was reconstructed using the FeldKamp 

cone-beam algorithm.  As explained by Karau et al, prior to reconstructing the image 

volume from the 360 planar images, preprocessing of the individual images was 

performed in the following steps: 1) two-dimensional polynomial dewarping to correct 

the image-intensifier spatial distortion, 2) locating the axis of rotation and cropping the 

projection images to center on that axis, 3) flood-field division to correct for nonuniform 

illumination intensity, and 4) normalization of the intensity between projections to correct 

for any temporal drift.43  Preprocessing produced a final image size of 497x497 pixels.43 

 Reconstruction was done using X-11(X_windows) and Image J (downloaded 

from http://rsbweb.nih.gov/ij/).  Using these programs reconstruction was performed on 

the projection data to yield an isotropic reconstruction matrix of 497x497x497 voxels.43 
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Measurements 

Micro-CT scans were reconstructed. Axial and coronal views were used to 

measure the various structures using Analyze (Biomedical Imaging Resource, Mayo 

Clinic, MN).44,45,46  Five random specimens were selected to determine intra-rater 

reliability.  The Five specimens were measured by the same examiner at three different 

time points with a minimum of 1 week in between.  

 

 

Coronal View   

The reconstruction was manipulated to provide a view of the palatal root 

on the maxillary 1st molar.  The image was adjusted by using in/out, up/down, 

left/right, and rotation adjustments to provide an image where the left portion of 

the image was nearly identical to the right portion of the image (dividing line for 

the left/right was done by the mid line of the skull).  The image was considered 

suitable if the crown anatomy, root anatomy, skull symmetry, and open apex were 

similar for both the right and left sides.  Left and right sides were determined by 

scrolling through slices to determine the sequence of anatomy, such as where the 

2nd and 3rd molars were located, or by the direction of the spring if present.  Once 

the image was obtained, the coordinates were saved allowing that particular image 

to be brought up for further measuring. 
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Coronal Measurements  

Assuming the midline of the skull did not change during 

the experiment, several measurements used the midline to provide 

a reliable reference in order to compare measurements and gather 

information.  Midline structures may include vomer, perpendicular 

plate of ethmoid, and palatal suture (Figure 10).   

 

 

Figure 10: Diagram demonstrates midline structures used for measuring.2 

 

1. Midskull / CEJ:  Distance from lingual CEJ to midline of the skull.  

Measurement is taken from CEJ along line to contact point with midline line.  Left and 

right sides measured (Figure 11).  
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2. Midskull / Long axis of tooth:  Angle formed between the long axis of the 

palatal root of the maxillary 1st molar and midline of the skull.  Left and right sides 

measured, provides the amount of tipping (Figure 11).  

3. Midskull / occlusal table:  Angle formed between a line representing the occlusal 

table and the midline of the skull.  Left and right sides were measured, provides the 

amount of tipping (Figure 11).   

4. Root Length at 90:  Base line formed from connecting lingual and buccal CEJ’s. 

A second line is drawn at a 90 degree angle to the base line down to the most apical 

portion of the root.  Measurement is taken from apical portion of root to where long axis 

line bisects CEJ line.  Left and right sides were measured, provides length of (Figure 11). 

5. PDL width at 90:  Base line is connecting lingual and buccal CEJ’s.  Two lines 

are then drawn to form a 90 degree angle with the line connecting the CEJ’s; one to most 

apical portion of root, second is to the alveolar bone.  Measurement is taken from the end 

point of each long axis line to where the line bisects with CEJ line.  The difference 

between the two lines is recorded.  Left and right sides were measured, provides width of 

periodontal ligament (Figure 11).  
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Figure 11: Diagram representing the various coronal measurements. 

 

 

Axial View 

The reconstruction was manipulated to provide a cross section of the left 

and right 1st, 2nd, and 3rd maxillary molar roots.  The image was adjusted by using 

in/out, up/down, left/right, and rotation adjustments to provide a reliable view of 

the palate.  When reviewing the anatomy of the mouse, it was determined that 

when the palate was in full view it would provide as a reliable marker that the 

image was showing a cross section of the 1st molar roots halfway down the root 

structure.2  The image was considered suitable if the root anatomy, skull 

symmetry, and clear view of the palate were similar for both the right and left 
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sides.  Left and right sides were determined by scrolling through slices to 

determine the sequence of anatomy, such as where which direction the apex or 

crown was, or by the direction of the spring if present.  Once the image was 

obtained, the coordinates were saved allowing that particular image to be brought 

up for further measuring.   

 

 
Axial measurements 

Assuming the midline of the skull did not change during the 

experiment, several measurements used the midline to provide a reliable 

marker in order to compare measurements and gather information (Figure 

12).   

 

1. Palatal suture width: The width of the palatal suture was measured (mm).  The 

suture for each specimen was measured adjacent to the palatal root of the maxillary 1st 

molar in order to have a standardized point for measuring (Figure 12).    

2. Midskull / buccal root:  Angle formed by a line through the midline of the skull 

and a line bisecting the center of disto-buccal and mesio-buccal roots.  Left and right 

sides were measured, used to provide information on tipping movement (Figure 12).   

3. PDL width buccal:  Two lines were drawn bisecting the center of mesio-buccal 

root and forming a 90 degree angle with midline.  The first line was drawn to the most 

buccal portion of the PDL space, while the second line was drawn to the most buccal 
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portion of the root.  Distance between the two lines was the width of the buccal PDL 

space (mm).  Left and right sides measured (Figure 12).   

4. Midskull to buccal plate:  A line was then drawn through the center of the 

mesio-buccal root of the 1st molar to the most buccal portion of the buccal plate, 

perpendicular to midline.  The distance (mm) from the buccal plate to midline was 

recorded.  Left and right sides were measured (Figure 12).       

5. PDL width lingual:  Two lines were then drawn bisecting the center of mesio-

buccal root and forming a 90 degree angle with the midline.  The first line was drawn to 

the most lingual portion of the root, while the second line was drawn to the most lingual 

portion of the PDL.  The difference between the two lines gave the width (mm) of the 

lingual PDL.  Left and right sides measured. (not shown) 

6. Midskull to lingual plate:   A line was then drawn through the center of the 

mesio-buccal root of the 1st molar, perpendicular to the midline.  The distance (mm) from 

the most lingual portion of the PDL to the midline was recorded.  Left and right sides 

were measured (not shown). 
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Figure 12: Diagram representing the various axial measurements. 

 
 

Statistical Analysis 

 Means and standard deviations were calculated for all measured variables and for 

the differences between paired variables (left – right).  One-way analysis of variance 

(ANOVA) was used to test the significance of differences among treatment groups.    

Dunnett’s test was used to assess comparisons between groups when the omnibus test 
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(ANOVA) was significant (P<0.05).  This test is useful when group variances show 

substantial differences. Differences between left side and right side within a treatment 

group were analyzed using the one-sample t-test.  Intra-examiner reliability was assessed 

using the intra-class correlation coefficients as described by Shrout and Fleiss (1979).47 

All computations were performed using SPSS 17.0 software (SPSS, Inc., Chicago, IL) 
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CHAPTER IV:  RESULTS 
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Intra examiner reliability 

Intra examiner reliability was completed for all variables (left and right sides).  

Outcomes were considered highly reliable when intra-class correlation coefficient 

(ICC)>0.8 and moderately reliable when ICC ranged from 0.5 to 0.8.  Variables with an 

intra-class correlation coefficient of less than .499 were considered unreliable.  Those 

variables were: root resorption by long axis (mm) (left and right) and width of mid-

palatal suture (mm).     

 

 

Results of variable measurements 

Results for the variables measured are shown below in tables 1-11 and figures 13-

33.   

Variables on coronal plane of space  

1. Midskull / CEJ (mm) 

The control and vibration groups were significantly different than the 

spring and the spring+vibration groups (p<0.05). 
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Table 1. Results of Midskull / CEJ (distance in mm)   

 Side Mean 
Std. 

Deviation N 

Control Right 1.475 .0437 6 

Left 

Diff 

1.491 

0.0177 

.0499 

0.0377 

6 

6 

Spring Right 1.746 .133 10 

Left 

Diff 

1.856 

0.110 

.180 

0.282 

10 

10 

Spring+Vibration Right 1.750 .0910 10 

Left 

Diff 

1.897 

0.147 

.214 

0.282 

10 

10 

Vibration Right 1.422 .0405 10 

Left 

Diff 

1.457 

0.035 

.0368 

0.070 

10 

10 
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Figure 13:  Graph depicting Mid-skull / CEJ length for left and right sides for 
each group.  Data were presented as mean±1SD. (p-value <0.05).  
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Figure 14:  Graph depicting Mid-skull / CEJ length differences between 
left side and right side (L-R) for each group. Data were presented as 
mean±1SD.  
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2. Midskull / Long axis of tooth (degree) 
 

Mean values for groups “Control” and “Vibration” were similar. A 
treatment effect was observed for groups “Spring” and “Spring+Vibration”. Any 
difference observed between “left” and “right” sides was not statistically 
significant.    

Table 2: Results of Midskull / Long axis of tooth (angle in degree)   

 Side Mean 
Std. 

Deviation N 

Control Right 12.525 1.534 6 

Left 

Diff 

11.665 

-0.860 

2.682 

3.957 

6 

6 

Spring Right 27.543 4.815 10 

Left 

Diff 

25.449 

-2.094 

8.515 

10.763 

10 

10 

Spring+Vibration Right 26.679 5.453 10 

Left 

Diff 

27.974 

1.295 

8.146 

11.621 

10 

10 

Vibration Right 12.071 2.645 10 

Left 

Diff 

12.292 

0.221 

2.795 

3.478 

10 

10 
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Figure 15:  Graph depicting Mid-skull / CEJ length for left and right sides for 
each group.  Data were presented as mean±1SD.  (p-value <0.05). 
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Figure 16:  Graph depicting Mid-skull / CEJ length differences between 
left side and right side (L-R) for each group. Data were presented as 
mean±1SD.  
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3. Midskull / Occlusal table (degree) 
Mean angle size was comparable for “Control” and “Vibration”. As 

expected, Spring treatment resulted in a smaller angle as seen in “Spring” and 

“Spring+Vibration” (p<0.05). Within “Spring+Vibration” group, the effect of 

vibration treatment was indicated by a trend towards further angle reduction.   

Table 3. Results of Midskull / Occlusal table (angle in degree) 

 Side Mean 
Std. 

Deviation N 

Control Right 84.561 4.251 6 

Left 

Diff 

84.176 

-0.385 

1.906 

5.667 

6 

6 

Spring Right 64.475 5.353 10 

Left 

Diff 

65.464 

0.989 

6.978 

8.949 

10 

10 

Spring+Vibration Right 68.129 3.267 10 

Left 

Diff 

63.778 

-4.351 

10.123 

9.8346 

10 

10 

Vibration Right 85.359 2.166 10 

Left 

Diff 

84.524 

-0.835 

2.613 

4.011 

10 

10 
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Figure 17. Graph depicting Midskull / occlusal table for left and right sides for 
each group. Data were presented as mean±1SD. (p-value <0.05). 
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Figure 18. Graph depicting mid-skull / occlusal table differences between 
left side and right side (L-R) for each group. Data were presented as 
mean±1SD.  
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4. Root Length at 90 (distance in mm) 
There was a statistically significant (p<0.05) difference for this outcome 

among treatment groups. 

Table 4. Results of Root Length at 90 (distance in mm) 

 Side Mean 
Std. 

Deviation N 

Control Right 1.136 .0136 6 

Left 

Diff 

1.103 

-0.03 

.00816 

0.020 

6 

6 

Spring Right 1.108 .0446 10 

Left 

Diff 

1.144 

0.044 

.0587 

0.074 

10 

10 

Spring+Vibration Right 1.123 .0505 10 

Left 

Diff 

1.158 

0.025 

.0373 

0.040 

10 

10 

Vibration Right 1.084 .0347 10 

Left 

Diff 

1.081 

0.003 

.0360 

0.048 

10 

10 
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Figure 19. Graph depicting RR at 90 for left and right sides for each group. Data 
were presented as mean±1SD.  (p-value <0.05). 
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Figure 20. Graph depicting RR at 90 differences between left side and 
right side (L-R) for each group. Data were presented as mean±1SD.  
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5. PDL width at 90 (distance in mm)  

There was a statistically significant (p<0.01) tendency towards greater 

PDL width in treatment groups “Spring” and “Spring+Vibration” from “Control” 

and “Vibration”. No differnece was observed between left and right in any 

treatment group.   

Table 5: Results of PDL width (distance in mm)  

 Side Mean 
Std. 

Deviation N 

Control Right .0683 .0204 6 

Left 

Diff 

.0850 

0.027 

.0207 

0.035 

6 

6 

Spring Right .157 .0290 10 

Left 

Diff 

.145 

-0.015 

.0359 

0.0474 

10 

10 

Spring+Vibration Right .151 .0360 10 

Left 

Diff 

.155 

0.015 

.0432 

0.0619 

10 

10 

Vibration Right .0880 .0154 10 

Left 

Diff 

.0960 

0.007 

.0217 

0.0271 

10 

10 
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Figure 21. Graph depicting PDL width at 90 for left and right sides for each 
group. Data were presented as mean±1SD.  (p-value <0.05). 
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Figure 22. Graph depicting PDL at 90 differences between left side and 
right side (L-R) for each group. Data were presented as mean±1SD.  
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Variables on axial plane of space  

 

1. Palatal suture width (distance in mm) 
A statistically significant (p<0.05) treatment effect was observed in groups 

“Spring” and “Spring+Vibration”. The difference between “Control” and 

“Vibration” was explained by chance (p>0.5). Similarly, the difference 

between “Spring” and “Spring+Vibration” was not statistically significant.  

Table 6: Results for Palatal suture width (distance in mm) 

Group  Mean 
Std. 

Deviation N 

Control  .0683 .0160 6 

Spring  .185 .0432 10 

Spring+Vibration   .188 .0949 10 

Vibration  .0940 .0157 10 
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Figure 23: Graph depicting mid-palatal suture width for each group. Data 
were presented as mean±1SD.  (p-value <0.05). 
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2. Midskull / buccal root (degree) 
A statistically significant (p<0.05) treatment effect was observed between 

the groups that had spring activation and those that did not.  The difference 

between “Spring” and “Spring+Vibration” was not statistically significant.  

Table 7: Results of Midskull / buccal root 

 Side Mean 
Std. 

Deviation N 

Control Right 4.775 .923 6 

Left 

Diff 

4.905 

0.130 

.597 

0.7399 

6 

6 

Spring Right 9.089 3.598 10 

Left 

Diff 

10.118 

1.029 

4.630 

2.591 

10 

10 

Spring+Vibration Right 9.097 3.390 10 

Left 

Diff 

10.030 

0.933 

4.388 

2.067 

10 

10 

Vibration Right 4.536 1.169 10 

Left 

Diff 

4.400 

-0.136 

1.423 

1.7165 

10 

10 
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Figure 24: Graph depicting angle formed by Midskull / buccal roots of 1st molar 
for left and right sides in each group. Data were presented as mean±1SD. 
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Figure 25. Graph depicting mid-skull / buccal root differences between 
left side and right side (L-R) for each group. Data were presented as 
mean±1SD. 
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3. PDL width buccal (mm) 
A statistically significant (p<0.05) treatment effect was observed only in 

the Control group.  The difference between “Spring” and “Spring+Vibration” 

was not statistically significant.  

Table 8: Results of PDL width buccal  

 Side Mean 
Std. 

Deviation N 

Control Right .0717 .0160 6 

Left 

Diff 

.0667 

-0.005 

.0225 

0.0321 

6 

6 

Spring Right .0980 .0301 10 

Left 

Diff 

.0989 

0.002 

.0284 

0.0323 

10 

10 

Spring+Vibration Right .103 .0374 10 

Left 

Diff 

.109 

0.006 

.0395 

0.0384 

10 

10 

Vibration Right .0930 .0188 10 

Left 

Diff 

.0920 

-0.001 

.0122 

0.02685 

10 

10 
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Figure 26: Graph depicting width of buccal PDL of mesiobuccal root on 1st molar 
for left and right sides in each group. Data were presented as mean±1SD.  (p-
value <0.05). 
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Figure 27. Graph depicting PDL width buccal differences between left 
side and right side (L-R) for each group. Data were presented as 
mean±1SD.  
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4. Midskull to buccal plate (mm) 
A statistically significant (p<0.05) treatment effect was observed between 

the vibration group and the other three groups.   

Table 9: Results of Midskull to buccal plate 

 Side Mean 
Std. 

Deviation N 

Control Right 2.585 .134 6 

Left 

Diff 

2.566 

-0.1833 

.0484 

0.1175 

6 

6 

Spring Right 2.517 .0377 10 

Left 

Diff 

2.522 

0.0111 

.0438 

0.03655 

10 

10 

Spring+Vibration Right 2.533 .0666 10 

Left 

Diff 

2.539 

0.006 

.0570 

0.0401 

10 

10 

Vibration Right 2.461 .0409 10 

Left 

Diff 

2.470 

0.009 

.0496 

0.0484 

10 

10 
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Figure 28: Graph depicting length from midskull to buccal portion of 
buccal plate at 1st molar mesio-buccal root for left and right sides in each 
group. Data were presented as mean±1SD.  (p-value <0.05). 
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Figure 29. Graph depicting Mid-skull / buccal plate differences between 
left side and right side (L-R) for each group. Data were presented as 
mean±1SD.  
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5. PDL width lingual (mm) 
A statistically significant (p<0.05) treatment effect was observed between 

the control group and the other three groups.   

Table 10: Results of PDL width lingual  

 Side Mean 
Std. 

Deviation N 

Control Right .0617 .0160 6 

Left 

Diff. 

.0683 

0.0067 

.0204 

0.0273 

6 

6 

Spring Right .126 .0337 10 

Left 

Diff 

.0970 

-0.029 

.0275 

0.0289 

10 

10 

Spring+Vibration Right .118 .0541 10 

Left 

Diff 

.103 

-0.015 

.0231 

0.051 

10 

10 

Vibration Right .0810 .0119 10 

Left 

Diff 

.0990 

0.018 

.0191 

0.0155 

10 

10 
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Figure 30: Graph depicting width of lingual PDL of mesiobuccal root on 
1st molar for left and right sides in each group. Data were presented as 
mean±1SD. 
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Figure 31. Graph depicting PDL width lingual of tooth differences 
between left side and right side (L-R) for each group. Data were presented 
as mean±1SD.  
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6. Midskull to lingual plate (mm) 
A statistically significant (p<0.05) treatment effect was observed between 

the vibration group and the other three groups.   

 

 

Table 11: Results of Midskull to lingual plate  

 Side Mean 
Std. 

Deviation N 

Control Right 1.733 .0582 6 

Left 

Diff 

1.721 

0.0117 

.0591 

0.0445 

6 

6 

Spring Right 1.759 .0517 10 

Left 

Diff 

1.773 

0.014 

.0742 

0.0652 

10 

10 

Spring+Vibration Right 1.756 .0514 10 

Left 

Diff 

1.799 

0.043 

.0392 

0.0501 

10 

10 

Vibration Right 1.671 .0321 10 

Left 

Diff 

1.666 

-0.005 

.0359 

0.0417 

10 

10 
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Figure 32: Graph depicting length from Midskull to lingual portion of 1st molar 
mesio-buccal root PDL for left and right sides in each group. Data were presented 
as mean±1SD.  (p-value <0.05). 

 

 

 

 

 



67 

 

 

 

Figure 33. Graph depicting Mid-skull / lingual plate differences between 
left side and right side (L-R) for each group. Data were presented as 
mean±1SD.  
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CHAPTER V: DISCUSSION 
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Animal Species   

Researchers that study orthodontic tooth movement (OTM) in animals generally 

use rats as their model.37,40,48,49,50  The ability to use mice rather than rats is of interest 

mainly due to the array of knockout mice available for experimental testing and the 

relevance these knockouts have for understanding physiology. The difficulty of using 

mice rather than rats is their size. Simply said, it is easier to insert an orthodontic 

appliance and vibrate molar in a rat than a mouse. In addition, it is more challenging to 

make physiological measurements in mice. However, our attempt to provide a protocol to 

study OTM and vibration in mice is valuable because it may allow using knockout mice 

to test an almost unlimited numbers of very interesting hypotheses.4   

 

 

Experimental OTM Models  

1. Appliances 

To induce OTM, several different types of devices have been used. Studies have 

used a closed coil spring that is attached to the first molar and incisor.7,40,50 The drawback 

of this model is that the incisors are used as an anchor that could be relatively moved and 

fractured or quickly worn out during chewing function. Additionally, the closed coil 

spring may not provide continual and consistent force over time.  In our experience, once 

the spring was placed it was quite possible for food (mouse chew) to be caught in the 

individual coils, which made the coil less effective.  

In order to achieve our study goal of comparing the effects of vibration versus 

non-vibration on orthodontic tooth movement, it is necessary to have a carefully designed 
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experimental protocol. In this regard, if using the coil spring to move teeth, then two 

separate coil springs will be individually engaged between the 1st molars and incisors 

bilaterally. Our pilot trial showed it is almost impossible to keep the force levels exactly 

the same between the two sides, hence an error of unequal loading will be introduced. To 

offset the potential for unequal loading, Nishimura et al (2008 used an expansion spring 

that was retained by its own force and delivered 12.8g of force to the 1st molars in rats.37 

Therefore, we decided to use Nishimura’s expansion spring model, for two reasons: (1) 

the spring appliance delivers two equal and opposite forces on the bilateral 1st molars, 

avoiding the introduction of the error of loading force; (2) the spring appliance has the 

least possibility of being distorted by chewing and caught by food. However rather than 

have the spring be retained under its own force, we bonded the terminal curve end of the 

spring to the first molars. This is based on our prior experience with this spring appliance.  

We found that without bonding, the retention of the spring appliance in place could not 

be guaranteed for more than two weeks, which was not long enough for the current study.   

 

2. Force magnitude 

Forces used to induce experimental OTM have ranged from 5g to 57g7,37,40,50,51. In 

our study, NiTi expansion springs were designed and specially manufactured by G&H 

wire company who calibrated the initial force delivery to be 20 grams.  Two studies used 

a similar expansion spring. Nishimura37 and Hou51 reported forces of 12.8g on a NiTi 

spring and 57g on a steel spring, respectively. We decided to use 20g NiTi springs for 

two reasons: (1) 20 grams of force (larger than 12.8g as reported by Nishimura) should be 

able to cause a definite hyalinization on which the vibration is targeting. Producing a 
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hyalinization area was important in order to test our hypothesis that mechanical vibration 

can reduce the degree of hyalinization due to collapse of blood vessels in the compressed 

PDL during OTM; (2) our experience has shown that 20 grams of force would gain much 

better self retention of the spring appliance than using lower forces such as Nishimura’s 

12.8g.  

 

 

Vibration frequency   

The range of frequency used in the literature varies from 1Hz to 61Hz (Nishimura 

(61Hz), Christiansen (45Hz), Rubin (30Hz), Darendeliler (30Hz, 15Hz), Stark and 

Sinclair (25Hz), and Warden and Turner (1Hz, 5Hz, 10Hz, 20Hz, and 30Hz)).  A 

frequency of 4Hz was used in the current study.  Warden and Turner52 studied ulnar 

vibration in C57BL/6 mice and found that cortical bone adaptation to mechanical loading 

increased with increasing loading frequency up to 5-10Hz.  In contrast, Mcleod and 

Rubin16 predicted that a range of 15-30Hz will provide a maximum osteogenic response.  

Additionally, Mcleod and Rubin16 noted that strain magnitudes (force) that normally 

causes resorption when associated with a frequency of 1Hz, can cause new bone 

formation at 15Hz.  .  Christiansen38 suggested that it may be possible that some 

frequencies produce almost no osteogenic response, despite positive results at lower and 

higher frequencies.  Given the success of the previously mentioned authors in 

demonstrating an increase in the rate of bone formation or OTM at frequencies ranging 

from 5-61Hz, selecting 4Hz for the current study was certainly comparable considering 

the animal model used for testing.   
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Vibration duration 

There is little published evidence that would provide guidance for selection of 

optimum duration and timing of vibration episodes. Whole body vibration studies have 

applied vibration every day for 10-15 minutes.38,39  Orthodontic tooth movement studies 

have ranged from applying vibration once a week to every day.37,41  Orthopedic studies 

have demonstrated that applying vibration 5mins/day every three days is an effective 

regimen for ulna, tibia, and femur.52  Due to the lack of a standardized approach, we 

chose to apply vibration at 5mins/day every three days for two reasons.  First, Warden 

and Turner52 have shown success in their orthopedic studies, and secondly, animal care 

regulations required that mice needed three days of recovery after they were 

anesthetized.  Ketamine and Xylazine were delivered as an intra-peritoneal injection, 

which usually takes 2-3 days to be metabolized. Unfortunately it was also not possible to 

deliver isoflurane as an inhalant anesthetic because we were working in the oral cavity.  

Given the regulations that had to be met and the reported evidence from the literature, 

applying vibration for 5mins/day every three days was deemed to be an effective 

protocol.      

 

 

Intra-examiner variability 

It is important that examiners can reliably exam the outcome variables selected 

for the study. Intra-examiner variability was acceptable for most outcomes. However, two 

exceptions were found: (1) coronal view, the measure of the length of the root from a line 
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bisecting the buccal and lingual CEJ’s through the long axis of the root to the most apical 

portion of the root. (2) axial view, the width of the palatal suture measured at the position 

of the palatal root on the maxillary first molar. The following reasons may have 

accounted for the lack of reliability: (1) insufficient image quality to determine 

parameters; (2) the sharp and clear boundaries of bony structures are based on bone 

mineral density. Bone density is low (not yet mineralized) during the modeling process of 

OTM, thus rendering the definition of boundaries extremely difficult.    

 

         

Differences of OTM between groups and between sides  

In this study, a protocol of using micro CT technique to evaluate the orthodontic 

tooth movement under mechanical vibration was developed. Five variables (2 angular 

and 3 linear) were constructed on the coronal view and 6 variables (1 angular and 5 

linear) on the axial view. By their definitions, the variables were determined to represent 

tooth positions except for the midpalatal suture, however they were not equally accurate 

and reliable. Some variables were hard to measure precisely on the CT image due to the 

image quality issue and lack of resolution. For example, distance “Midskull/CEJ” is well 

defined. However, because the expansion spring was left in place to avoid possible 

relapse of tooth movement during micro CT scanning, the image of the metal spring 

overlapped the CEJ. This made identifying the appropriate point along the CEJ difficult, 

affects the variable’s accuracy and reliability. Assessing the reliability of the various 

variables, although beyond the scope of this study, could be valuable for further studies. 

Clearly, most variables used in this study were associated with substantial variability. 

This could have masked subtle differences that may have existed between treatment 
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groups and between sides within treatment groups. Potential causes of the high variable 

are discussed in limitations (below). The split mouth design is based on the high level of 

symmetry of features observed on both sides of the jaw. To assess differences that occur 

on both sides of the jaw, it is convenient to subtract the measurement of the right side 

from the same measurement on the left side. If the difference (L-R) is a positive “+” 

number, it is indicative of the left side 1st molar moving more than the right side molar, 

and vice visa. Theoretically, the difference (L-R) in the control group should be zero, 

since both sides received no treatment. The spring group should also be zero, since the 

applied forces were equal on both sides. The vibration group would also most likely lie 

near the zero difference, although there may be a slight tendency in either the positive or 

negative direction. In the spring/vibration group, it was expected that the distance or 

angle measured on the left side would be bigger than that on the right side. For instance, 

the variable “Midskull / CEJ” showed that the mean difference (L-R) of the 

spring/vibration group was positive, indicating that the left side had a tendency to tip 

more than the right side.     

The present study failed to show statistical significance for the primary and most 

of secondary outcome variables. However, the study showed a strong overall treatment 

effect due to spring forces.  Mice that were exposed to spring force or spring force in 

combination with vibration exhibited, as expected, significantly more tooth movement or 

tipping than animals in the control group or those who received vibration alone.  

Root Resorption  

Root resorption is a major concern in orthodontic treatment today.  In an attempt 

to identify root resorption on the µCT scans, the length of the mesio-buccal root of the 
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first molar was measured on both sides of the jaw. The results showed that the root length 

in the vibration group was significantly smaller (p<0.05) than in the other three groups.  

No significant difference existed between the control, spring, and spring/vibration 

groups. Based on the theoretical consideration, the vibration and control groups were 

expected to have similar root lengths. In contrast, shorter roots were expected to occur in 

both groups that were exposed to spring forces. There is currently no adequate 

explanation for the vibration-induced root resorption. Possible reasons include the 

difficulty/error in locating the most apical portion of the tooth due to its irregularity, or 

pinpointing the exact location of CEJ’s. It may be possible that a more conclusive answer 

can be obtained from histology and histomorphometry analyses.   

 

 

Limitations and Future Directions 

This was a pilot study to evaluate the usefulness of a murine model for the study 

of vibration as an adjunct to spring forces in OTM. Several aspects of the protocol 

deserve special consideration.  

1.  Spring insertion and retention   

Given the size of mouse molars, it was very difficult to clean the tooth surface and 

place the adhesive on the spring and 1st molar only.  There was a chance that the adhesive 

spread onto the occlusal surface of the 1st or 2nd molars or interproximately, bonding the 

2nd molar to the 1st molar and spring, which potentially introduced another factor into the 

force system. 
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2.  Vibration   

Due to anesthesia requirements and recovery time the mice were vibrated once 

every three days.  Although there is little to no evidence currently in the literature, it 

would be interesting to determine if more frequent vibration would increase OTM.    

3. CT scan and reconstruction 

A big limitation of this study is that it was not possible to take baseline micro CT 

scans before force and vibration application. Micro CT uses high dose of radiation that 

was determined to be lethal if used repeatedly. A new generation µCT machine that uses 

a lower dose radiation would allow taking µCT images of living mice. Repeated µCT 

images would be a definite improvement, possibly also leading to improved measurement 

quality.   

Another crucial step was the method of taking the µCT scan. When the specimen 

was placed on the holder, it was necessary to assure no motion to prevent blurring of the 

image. We attempted to take the scan with mouse skull affixed inside a capped plastic 

cylinder with and without liquid, but found the cylinder affected the image quality. 

Movement could affect the reconstructed images by compromising the ability to define 

landmarks due to pixilation. The scanning process will be reassessed since this is the 

basis for obtaining a reliable image to complete the measurements.   

4. CT image measurement  

Once the image was reconstructed, it was necessary to orientate the image for 

obtaining proper coronal and axial views.  Since the force was applied only to the teeth 
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across the midpalatal suture, it was assumed that the cranial structures would provide 

sufficient stationary landmarks as reference for making measurements. Obtaining an 

absolutely symmetrical view is difficult when aligning the mesio-buccal root. The 

alignment was improved when it was based on the palatal root of the 1st molar. It is 

important to symmetrically align the left and right sides when obtaining the coronal and 

axial images. If the symmetry is off, the measurements will reflect the error. Although an 

honest effort was made to achieve symmetrical views, there may be errors associated 

with aligning and measuring the coronal and axial views.     

 In conclusion, this pilot study attempted to produce a murine protocol of using 

micro CT to study orthodontic tooth movement under mechanical vibration. A specially 

designed expansion spring was introduced to generate orthodontic tooth movement, upon 

which mechanical vibration (4Hz frequency, 20micron displacement, 

5min/session/3days) was imposed during a 21 day study period. Significant orthodontic 

tooth movement was observed in the spring and spring/vibration groups versus the 

control and vibration alone groups. Differences between spring and spring/vibration 

groups as targeted were not identified statistically, however an overall tendency was 

observed demonstrating that the vibrated side in the spring/vibration group had increased 

OTM when compared to its contra-lateral non-vibrated side. Further efforts need to be 

made to improve the protocol, especially with respect to measurement accuracy and 

selection of a reliable primary outcome variable.  
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