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ABSTRACT 

THE EFFECT OF FOCUSED EXTRACORPOREAL SHOCK WAVE (ESW)  

ON CALVARIA BONE EX VIVO 

 

Syrah Quraishi, DDS 

Marquette University, 2013 

 

Introduction: Extracorporeal shock wave (ESW) is low frequency high-pressure wave, 
regularly used to destroy calcifications e.g. kidney stone. Recent evidence shows that 
ESW produces micro-cracks in the bones of horse legs. As micro-cracks in bone can lead 
to an increased rate of bone turnover (remodeling), we hypothesize that proper 
application of ESW will increase bone turnover rate through generating micro-cracks in 
bone.  

Materials and Methods: To test our hypothesis, we used a mouse calvaria bone organ 
culture model and explored the effects of ESW on bone tissues ex vivo. The calvaria 
bone pieces were collected from 3 days old C57BL/6 neonatal mice and cultured in 10% 
FBS supplemented DMEM. After dissection, each quadrant (1/4) of calvaria was 
randomly assigned into one control and three experimental groups which were 
subjected to a single dose of 2000 shocks of 3 energy levels of ESW i.e. low (0.1mJ/mm², 
6 Hz), medium (0.25mJ/mm², 4 Hz), and high (0.5mJ/mm², 3 Hz,) doses, respectively. 
After ESW stimulation, the bone tissues were further cultured for 1 week and fixed in 
10% formalin. The same experiment was repeated three times (n=3). The bone samples 
were (1) examined by using a customized radiographic analysis program to measure the 
bone microdensity, and (2) demineralized and processed to undergo H&E staining to 
observe the cellular changes histologically.  

Results: Radiographically the mid dose group exhibited a higher microdensity but not 
statistically significant (P > 0.05) compared to the other two ESW and the control 
groups. Histologically, some empty osteocytic lacunae exhibited in all the three dose 
ESW groups, with nearly all osteocytes disappeared in the high dose group. Hypertrophy 
of osteoblasts was mainly found in the low dose group. No microcracks were observed 
on all the H&E staining tissue slides. Histological differences cannot be calculated 
statistically mainly due to the high heterogeneity of the samples.    

Conclusion: Although not statistically significant, the mid dose ESW group seems to gain 
bone microdensity. Due to the lack of statistical differences, definite conclusions cannot 
be drawn, leaving further endeavors be put on this topic.  
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CHAPTER I 

INTRODUCTION 
 
 

Bone tissues are dynamically adapted to the mechanical environment in maintaining 

its quality and quantity, via two mechanisms – modeling and remodeling. Both of them 

involve two processes, namely bone resorption by osteoclasts and bone formation by 

osteoblasts. A large number of cells must be recruited to maintain the structural 

integrity of bone. Different cells are responsible for the formation, the resorption and 

the maintenance of the osseous structure.  

Bone physiology is controlled by 3 groups of cells, 

1. Osteoblasts: Bone matrix is secreted by these mononucleated cells, derived from 

pluripotent stem cells. They are plump, cuboidal cells when active or slightly 

flattened, lying at the surface of the existing matrix responsible for depositing 

new layers of bone onto it (Figure 1-1). This newly formed uncalcified matrix 

called osteoid is composed mainly of collagen and proteoglycans, which act as a 

scaffold for the deposition of the apatite crystals of bone.  Some osteoblasts 

remain at the surface forming bone, while others become entrapped within the 

matrix that is secreted (Nanci, 2008). 

2. Osteocytes: These are the cells that become embedded within the matrix and 

are derived from the osteoblasts (Figure 1-2). Once formed, they reduce in size 

and do not secrete matrix proteins in appreciable quantities. The number of cells 

that become osteocytes depends on the rapidity of bone formation. Embryonic 
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bone and repair bone have more osteocytes than the lamellar bone. The space 

 

 

Figure 1-1: A and B, Mandibular bone soon after birth. By this time the bone has 
undergone substantial turnover and appears more compact. Bone-forming surfaces are 
covered by plump osteoblasts or flattened, less active cells. Quiescent areas are covered 
by bone lining cells. Osteocytes are present within the calcified matrix and in some cases 
within osteoid (asterisks). Osteoclasts usually are found opposite actively forming bone 
surfaces (Nanci, 2008). 

 

occupied by the osteocytes is called, osteocytic lacuna. Narrow extensions from each 

lacuna, called canaliculae contain radiating osteocytic processes that maintain contact 

with neighboring osteocytes and with osteoblasts. They thus form a network that can 

sense the biochemical and mechanical environment that maintains bone integrity 

especially for the repair of microcracks (Nanci, 2008). 
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Figure 1-2: Light microscope of rat mandibular bone (A) and scanning electron 
micrograph of rat tibia bone (B). Osteocytes (Oc), residing in lacunae, populate the 
bone. A, Abundant cement lines (CL) are present in the mandibular bone. (C), 
Osteocytes have an extensive network of cell processes (cp; Nomarski optics). BV, Blood 
vessel (Nanci, 2008). 

 

3. Osteoclasts: These bone resorbing cells are large, multinucleated cells often 

present in clusters. They are present against the bone surface in hollow 

depressions called, Howship’s lacunae. At the site of attachment to the bone 

matrix, there is a clear zone and resorptive activity occurs along the 

characteristic ruffled border. These cells are derived from hematopoetic 

stem cells that give rise to various lines of macrophage-like cells (Mundy, 

1983; Nanci, 2008). 

Bone modeling and remodeling are carried out essentially by osteoblasts and 

osteoclasts and are regulated by systemic hormones, parathyroid hormone, 1,25 

dihydroxyvitamin D3 and calcitonin. Some local factors such as, prostaglandin E2, 
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Interferon-gamma, Interleukin 1, tumor necrosis factor α and transforming growth 

factors, also play a role in regulating these cellular activities.  

Orthodontic tooth movement (OTM) occurs due to prolonged pressure applied on a 

tooth which results in bone modeling around the tooth. Bone is selectively resorbed in 

some areas and is deposited in other areas (Proffit et al., 2012).  The modeling of bone is 

a complex series of events orchestrated by the osteoblasts and osteoclasts which 

determines the modeling rate of OTM.  Bone remodeling in the alveolus is influenced by 

both local factors like teeth and occlusion and systemic factors related to the general 

metabolism of the bone (Verna et al., 2000). Several studies have shown that bone 

metabolism plays an important role in tooth movement (Midgett et al., 1981; Goldie 

and King, 1984; Engström et al., 1988; Hellsing and Hammasström, 1991). It has also 

been shown that OTM is influenced by pharmacological agents (Yamasaki et al., 1984; 

Chumbley and Tuncay, 1986; Collins and Sinclair, 1988; Mohammed et al., 1989; Takano 

Y et al., 1992).  It is known that a key component in OTM is alveolar bone remodeling 

and that remodeling is accelerated during wound healing (Frost, 1994).  Corticotomy has 

been proposed to accelerate tooth movement but has not gained wide acceptance due 

to its invasiveness (Kole, 1959; Gunderson et al., 1978).  

Extracorporeal shock waves (ESW) are high pressure low frequency waves that are 

generated by a device outside the body and are applied to the tissue in a site-specific 

manner. It is a minimally invasive approach and was first introduced in medicine more 

than 20 years ago to disintegrate kidney stones (Capaccio et al., 2009). Over the past 10 
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years, ESW has been used in various fields of medicine (orthopedics, veterinary 

medicine, traumatology, treatment of impaired wound healing and burn injuries) to 

stimulate healing processes (Wang CJ, 2003; Da Costa Gomez TM et al., 2004; Hofmann 

et al., 2008). In dentistry, ESW has been studied on its effect on periodontitis, peri-

implantitis and orthodontic treatment time (Sathishkumar et al., 2008; Li et al., 2010; 

Hazan-Molina et al., 2011).  

A recent study shows that ESW generated microcracks in leg bones of horses (Da 

Costa Gomez et al., 2004). Microcracks can lead to an increased bone remodeling rate 

(Verna et al., 2004) which determines the rate of orthodontic tooth movement. Based 

on these, the aim of our study is to use an ex vivo calvaria bone culture model to explore 

the effect of ESW on bone modeling.            
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CHAPTER II  

LITERATURE REVIEW 
 
 

 Orthodontic Tooth Movement 

When orthodontic forces are applied for tooth movement, modeling occurs in 

dental and paradental tissues, including gingiva, dental pulp, periodontal ligament (PDL) 

and alveolar bone. Orthodontic tooth movement (OTM) occurs as a result of bone 

resorption and deposition in the compressed and stretched side of the PDL, respectively 

(Krishnan and Davidovitch, 2006). On the compressed or pressure side, the PDL fibers 

are unloaded leading to unloading of the alveolar bone, resulting in resorption (Melsen, 

2001). On the stretched or tension side, the PDL fibers are stretched, causing active 

loading of the alveolar bone leading to apposition (Henneman et al., 2008) (Figure 1-3)

 

Figure 1-3: Diagram showing the displacement of the tooth during orthodontic tooth 
movement. A) The PDL fibers are at equilibrium when no force is applied. B) In the 
direction of the applied force, the PDL fibers are compressed, unloading the bone. Away 
from the force, the PDL fibers are stretched causing loading of the bone. C) When the 
PDL fibers are compressed, the bone is unloaded and resorption takes place in the 
direction of the force. When the PDL fibers are stretched, the bone is loaded and bone 
apposition takes place in the opposite direction of the force (Henneman et al., 2008). 
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Bone resorption; the removal of alveolar bone from the path of the moving 

tooth is needed for orthodontic movement. Osteoclasts are critical for this to occur. The 

osteoclasts resorb alveolar bone adjacent to the root of the tooth to make tooth 

movement possible, but these cells also attack cementum as the PDL is remodeled 

(Brudvik and Rygh, 1995) (Figure 1-4). It is noted that when orthodontic forces are 

applied, osteoclasts appear within days (Tsay PT, 1999).  Cementum is, however more 

resistant to resorption than the alveolar bone and root repair happens regularly during 

OTM (Proffit et al., 2012). After resorption of alveolar bone by osteoclasts, mononuclear 

cells from the macrophage linage, are involved in further degradation of collagen, 

deposition of proteoglycans and release of growth factors to initiate the deposition 

phase (Raisz, 1999). The end of bone deposition and the start of bone formation occur 

through a coupling mechanism that ensures an equivalent amount of bone is laid down 

after the resorptive phase (Hill, 1998).  

Bone formation is a complex series of events involving differentiation of 

osteoblast precursor cells from mesenchymal cells, maturation of osteoblasts, matrix 

formation and mineralization (Mundy, 1987). The osteoblasts gradually flatten and 

become quiescent lining cells and some are embedded in the newly formed matrix and 

are now called osteocytes. Osteocytes are the longest lived bone cell. They live for 

decades within their mineralized environment. The osteoid osteocyte performs two 

major functions simultaneously. It regulates mineralization and form connective 

dendritic processes (Bonewald, 2011).  These cells are critical in maintaining fluid flow 

through bone and any changes in fluid flow are transmitted to osteoblasts and  
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Figure 1-4: Diagram showing the histological cross section of a premolar being moved in 
the direction of the arrow. A) The PDL is stretched away from the direction of the force. 
B) The PDL is compressed in the direction of the force and areas of bone resorption can 
be seen. C) Resorption occurring into the cementum and dentin of the dental root 
(Proffit et al., 2012) 

 

osteoclasts which then again carry out modeling and remodeling activities (Bozal CB, 

2001). 

 The amount of orthodontic force used to compress the tooth determines the 

type of resorption that is observed. Light forces ensure survival of cells within the PDL 

and the activity of osteoclasts and osteoblasts is synchronized (Melsen, 1999). In this 

direct or frontal resorption of the tooth socket, the PDL width is maintained and the 

tooth moves with bone along with its alveolus. When excessive orthodontic force is 
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applied, indirect or undermining resorption is seen and there is little formative activity 

that takes place at PDL tension sites and only minor displacement of the tooth occurs. 

Under heavy sustained forces, the blood vessels are totally occluded and the supply is 

cut off to an area of the PDL causing necrosis of the cellular elements within the PDL as 

cell death occurs. The histological appearance of this avascular area in the PDL is 

referred to as hyalinized. After several days, cellular elements invade the hyalinized area 

and start to resorb the underside of the bone immediately adjacent to the necrotic PDL 

area (Proffit et al., 2012). When the hyalinized tissue is removed, the tooth begins its 

displacement and becomes mobile due to the widened PDL. In orthodontic tooth 

movement, it is ideal to avoid creating areas of PDL necrosis and undermining 

resorption to allow for efficient tooth movement and reduce the pain experienced by 

the patient during treatment.  

Accelerated Tooth Movement 

 Remodeling of alveolar bone is crucial for orthodontic tooth movement and the 

remodeling of bone is accelerated during wound healing (Frost, 1994). Hullihan, a 

pioneer American oral surgeon in the late nineteenth century proposed to move teeth 

after making cuts in alveolar bone (Proffit et al., 2012). This approach was not widely 

accepted due to infections and bone loss in this pre-antibiotic era. Later, Köle a German 

surgeon (1959) and Gunderson et al. (1978) proposed that cuts between teeth could 

result in faster tooth movement. However the theory was again not widely accepted 

due to its invasive nature. The idea of corticotomy gained some acceptance in the late 
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1990’s due to better understanding of the mechanism. Corticotomy is considered a 

demineralization and remineralization process that allows a regional acceleration of 

bone remodeling leading to faster tooth movement (Liu, 2009). However, the cost of the 

surgery, morbidity and inconvenience to the patient remain concerns.  The widespread 

remodeling of alveolar bone is still recommended to move teeth more physiologically 

using lighter forces (Proffit et al., 2012).  

 Recently, three other methods have been proposed to accelerate tooth 

movement i.e. vibration of the teeth, use of phototherapy (LASER) to the alveolar 

process and the application of ultrasound to teeth and adjacent bone (Proffit et al., 

2012).  

Microcracks in bone 

 Microcracks and microdamage have been associated with bone remodeling 

(Verna et al., 2004). Frost (1960) was the first to describe microdamage in bone. 

Microdamage is the result of fatigue, creep and other mechanical processes that alter 

the microstructure permanently (Martin, 2003). It was proposed that physiologic strains 

continue to produce fatigue damage in bone which weakens bone and is associated with 

activation of osteocyte apoptosis and remodeling.  Apoptosis of osteocytes is observed 

in rats during experimental tooth movement. This apoptosis is essential for damage 

repair and normal skeletal replacement (Hamaya et al., 2002). Remodeling is the means 

of removal of the damage caused by microdamage (Noble, 2003). Four types of 

microdamage has been described: (1) microcracks found in cortical bone that extend 
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about 100 μm and are limited by osteonal cement lines; (2) diffuse damage found in 

sectioned trabeculae that are patches of intensely stained mineralized matrix disrupted 

by locally intense deformations; (3) cross-hatching cracks, which are small cracks that 

appear in trabeculae as localized networks, (4) microfractures, which are trabecular 

structures that are completely fractured (Martin, 2003).  

 Verna et al. (2004) evaluated microcracks as a trigger for alveolar bone 

remodeling after orthodontic force application in pigs. An increased presence of 

microcracks was found in the direction in which the tooth had been moved. This is the 

direction where bone resorption is normally observed. It was concluded that 

microcracks represent the first damage from orthodontic force to the bone that must be 

remodeled.  

Extracorporeal Shock Wave Therapy 

 Extracorporeal shock waves (ESW) produce high energy acoustic waves 

generated by high voltage explosion and vaporization under water (Sathishkumar et al., 

2008). They are generated outside the body and can be focused at a specific site within 

the body. Shock waves are generated by three main methods, electrohydraulic, 

electromagnetic, and piezoelectric. All three methods represent a different technique of 

producing the shock wave but they all involve the conversion of electrical energy to 

mechanical energy (Ogden et al., 2001). ESW and LIPUS (low-intensity pulsed 

ultrasound) are both forms of sound wave treatment, but ESW differs in that shock 

waves have lower frequency, minimal tissue absorption and no thermal effect. These 
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shock waves can travel through fluid and soft tissue and change their physical properties 

by attenuation when they travel through a medium and by reflection and refraction 

when entering another medium making it possible to focus these waves within the 

tissue. When these waves meet an interface of two different media, one part of the 

shock wave will be reflected and the other part will be transmitted and at that interface, 

high pressure, shear forces and the most biologic effects occur (Li et al., 2010). ESW are 

generated under water and transferred to the subject by means of a contact medium. 

This ensures minimal loss due to attenuation and reflection at the interface and the 

energy can be focused on the treatment area (Coombs et al., 2000). 

Developed in the 1970’s, the application of ESW was used in medicine for 

disintegration of kidney stones and has become the standard nonsurgical method for 

treating uroliths.  It has been used in the management of gall stones and sialolithiasis 

and is considered a safe and minimally invasive method to break down salivary duct 

stones (Capaccio et al., 2009) (Figure 1-5). The success with ESW in lithotripsy led to its 

application in orthopedics but not to disintegrate tissues rather than induce 

neovascularization to promote tissue regeneration and improve blood supply in both 

humans and animals. The convenient and cost-effective use of ESW has led to its 

application in the healing of non-union long bone fractures, calcifying tendonitis of the 

shoulder, lateral epicondylitis of the elbow, proximal plantar fasciitis, avascular necrosis 

of femoral head, patellar tendonitis, osteochondritis dessicans and non-calcifying 

tendonitis of the shoulder (Wang, 2003). It has also been shown that ESW stimulates the  
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Figure 1-5: Diagram showing the procedures of ESW application for the treatment of 

sialolithiasis. Tooth guards and ear plugs are inserted on the side to be treated. 

Ultrasound jelly is applied to the side of the face. The focused ESW hand piece is placed 

over the affected area, and the prescribed impulses are applied (Capaccio et al., 2009). 



14 
 

early expression of angiogenesis-related growth factors, including eNOS (endothelial 

nitric oxide synthase), VEGF (vessel endothelial growth factor) and PCNA (proliferating 

cell nuclear antigen), resulting in neovascularization and improving blood supply and 

also accelerates healing by modifying the local intracellular and extracellular biological 

environment. There is up-regulation of growth factors and activation of osteoblasts and 

fibroblasts to accelerate injury repair (Wang et al., 2008). Recent research has shown 

that ESW stimulates bone healing by inducing periosteal detachment and hemorrhage 

resulting in new bone formation (Da Costa Gomez et al., 2004). Shock waves can cause 

microfracture and hematoma formation that can lead to maturation of human 

osteoblasts, increased callus formation and bone healing (Hoffman et al., 2008). 

ESW is minimally invasive and is advantageous to the patient due to avoidance of 

any surgical procedure. Its use is considered safe and without any serious risks. Any side 

effects from treatment depend on the energy and impulses used since bone responds in 

a dose dependent manner to the shock waves. It has been reported that when excessive 

amounts of shock wave energy is applied to bone, induction of trabecular and cortical 

fracture can occur whereas lower energy waves can stimulate osteogenesis (Da Costa 

Gomez et al., 2004). Petechiation of the skin, local hematomas and swelling have been 

reported but they tend to disappear within a few days without any complications 

(Shrivastava and Kailash, 2005). Some of the contraindications for treating a patient 

with ESW are pregnancy and the use of a cardiac pacemaker (Capaccio et al., 2009) and 

ESW must also be never focused on gas-filled cavities like lung or intestine due to 

considerable tissue damage at the interface (McClure, 2004).   
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In dentistry, ESW was used to determine its effect on the healing of periodontal 

tissue and alveolar bone resorption resulting from periodontitis (Sathishkumar et al., 

2008). It was also used as an adjuvant treatment for peri-implantitis (Li et al., 2010). 

Hazan-Molina et al. found that the application of shock waves in a rat model after 

induction of orthodontic force influences the expression of IL-1β and VEGF resulting in 

enhanced periodontal remodeling (Hazan-Molina et al., 2011, 2012).   

Hypothesis 

 Since micro-cracks in bone can lead to a higher bone turnover (remodeling) rate, 

we hypothesize that proper focused application of ESW will increase bone turnover rate 

through generating micro-cracks in bone. To test our hypothesis, we used a mouse 

calvaria bone organ culture model to explore the cellular mechanism and the proper 

dose of ESW on bone ex vivo.  
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CHAPTER III 

MATERIALS AND METHODS 
 
 

Tissue (Calvarial bone) Culture 
 

Calvarial bones were harvested from 3 day old male neonatal mice (provided by 

Dr. Stephen Downs, Department of Biological Science, MU). Briefly, the fresh sacrificed 

neonatal mice were placed on surgical table. Steps: (1) Scalp was incised and calvarial 

bone was exposed. (2) The calvarial bone was removed using surgical blade and scissors, 

and placed in a culture dish containing α-minimal essential medium (α-MEM) 

supplemented with antibiotics (100 U/ml penicillin and 100 μg/ml streptomycin). (3) The 

calvarial bones were cleaned by removing the soft tissue and washed 2 times with the 

culture medium mentioned above (Figure 2-1). (4) Each of the cleaned calvarial bone 

was cut along the sagittal suture and along a transverse line half way perpendicular to 

the suture (Figure 2-2). (5) All the bone cuts from all the mice at the time of the 

experiment were pooled together and rinsed again with culture medium. At the time of 

experiment, each one of the bone cuts was randomly assigned to a designated group 

and cultured in a 24-well culture plate (1 bone cut/well) filled with 2 ml/well of 

complete growth medium (α-MEM with 10% fetal bovine serum (FBS)) at 37°C with 5% 

CO2 in a humidified incubator (Figure 2-3). All cell culture supplies were purchased from 

Sigma (St. Louis, MO) unless otherwise noted.  
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Experimental Protocols  

The bone cuts were randomly assigned into four groups as (1) control (n = 4-6), 

(2) low dose (n = 4-6), (3) medium dose (n = 4-6), and (4) high dose (n = 4-6) of ESW. 

Each group of bone cuts received one episode of ESW treatment consisting of 2000 

 

 

Figure 2-1: Calvarial bone cultured in α-MEM supplemented with antibiotics (100 U/ml 
penicillin and 100 μg/ml streptomycin) 

 

 

 

Figure 2-2: The mouse calvaria dissected sagittally and transversally into four equal 
parts 
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Figure 2-3: The bone cuts cultured in a 24-well culture plate (1 bone cut/well) filled with 
2 ml/well of complete growth medium (α-MEM with 10%FBS)  

 

impulses at their assigned energy level. The three energy levels of ESW used for 

experimentation were low (0.1mJ/mm², 6.0 Hz), medium (0.25mJ/mm², 4.0 Hz), and 

high (0.5mJ/mm², 3.0 Hz,). After ESW treatment, the tissue sample from each treatment 

group was re-placed in the 24-well plates with complete culture medium for 6 days.  

Focused Extracorporeal Shock Wave Application  

The focused ESW system used to apply the shock waves was the Extracorporeal 

Pulse Activation Treatment System (Duolith SD1®, Storz Medical AG, Postfach, 

Switzerland) (Figure 2-4). This system utilizes high-energy, focused, cylindrical-source, 

electromagnetic shock wave technology that is applied with a corded, Focused Shock 

Wave (F-SW) hand piece (Figure 2-5). This is the apparatus specially and only designed 

for the in vitro study using ESW. It has a short pulse length and is concentrated on areas 

of a few millimeters in diameter. The F-SW hand piece used in this experiment was 

equipped with the stand-off device I, which is able to provide a therapeutically effective 
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penetration depth up to 105 mm. Its focal zone is 30 mm in diameter and its depth of 

focal zone ranges from 15 to 45 mm. The effective distance from the surface of the hand 

piece to the center of the focal zone is approximately 30 mm. The F-SW hand piece was 

attached to the bottom of a specially designed holder (Figure 2-6). The top of this holder 

contained a slot that held a single Eppendorf tube so that the tube would be at the 

center point of the focal zone. The holder was then filled with water, which has been 

shown to be an ideal medium for transmission of shock waves (Shrivastava and Kailash, 

2005). The water was filled to the level of the suspension in the tubes but not high 

enough to completely immerse the tubes. Each tube then received one administration 

of 2000 impulses at their assigned dosage during the entire experiment. The control 

group was placed in identical conditions without ESW stimulation.  

 

Figure 2-4: Storz Medical Duolith®SD1 shock wave therapy system. The model pictured 
is the table top version which was used during experimentation. 
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2-5: F-SW hand piece with stand-off device I for 30 mm depth of focus.  
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Calvaria Bone 

 

 

 

Figure 2-6: Picture of the Duolith® SD1 system used for experimentation. The F-SW hand 
piece was attached to the bottom of the specially designed holder. Eppendorf tubes 
with cell suspensions were placed into the top of the holder. 

 

Radiographic examination of the bone cuts 

 All the tissue samples from each experiment group were placed on a radio-

sensor on a table surface and an x-ray unit was placed perpendicular to the film (Figure 

2-7). Each slide was radiographed with an exposure time of 0.05 sec at a setting of 70 

KvP and 8 mA. To get an equal exposure to X-ray, the following procedures were 
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followed. (1) All the samples (n = 4-6) from the same treatment group were 

radiographed together, to avoid the variation between bone cuts; (2) the X-ray tube was 

oriented 10 cm perpendicular to the table surface where the samples were placed on a 

radio-sensor; (3) a gradient aluminum wedge was placed aside as a standard control of 

method (Figure 2-7). The radiographs were analyzed for bone microdensity as the 

primary outcome parameter of the study.  

 

 

Figure 2-7: Radiographic measurement of the bone microdensity  

 

The method followed in this study was adopted from a previous publication in 

which bone microdensity was measured (Rothe, 2006).  An application to measure 

differences between samples in the radiographs was developed using a densitometer 

(Delphi XE2 Embarcadero, San Francisco, CA).  The application displays the radiograph as 

an image with width of 900 pixels and height of 641 pixels (Figure 2-8). A separate 

marker image, with 75 pixel width and height, is used to indicate the location from 

which to record the grayscale level of pixels from the radiograph image.  The marker 
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image has a transparent background and contains 4, 25 pixel by 25 pixel yellow squares.  

Two squares are centered, one between rows 1 to 25 and other between rows 51 to 75.  

The other 2 squares about the outer edges between rows 26 to 50.  Using the keyboard 

arrow keys, the user positions the marker image over a sample in such a way so that the 

4 yellow squares are completely within the sample.  When the user presses the “Record 

Measurements for this marker” button, the application adds a line to a measurement 

file including the name of the radiograph file, a date/time stamp, the upper left 

coordinate of the marker image, and 2500 integers which are the grayscale value for 

each pixel in the radiograph image covered by the 4 yellow squares in the marker image.  

The average pixels for all samples recorded in one radiograph were computed to 

represent the bone density level for that radiograph/sample. 

  

Figure 2-8: Procedure steps of measuring bone microdensity for the bone cut samples.  

 

 



24 
 

Histological Examination of the bone cuts 

After radiographic examination, the bone cuts were treated for histological study 

in order to find the histological changes of bone cells at the tissue level.  Steps: (1) 

demineralization: all the bone cuts were treated with 4% ethylenediaminetetraacetic 

acid (EDTA) for 4 weeks, with the treatment medium changed every week, until fully 

demineralized. (2) The demineralized bone cuts were dehydrated and embedded in 

paraffin blocks for tissue sectioning. When embedded, all the bone cuts were oriented 

along the same line in order to get a consistent series of sections of bone samples. For 

each paraffin block, three series of cuts were made as one in the middle of the block, 

and two side cuts series 100 µm away from the middle one. (3) Hematoxylin and eosin 

(H&E) staining was performed for all bone sections. During microscopic analysis to 

observe the histological changes, digital images of the microscopic histology were made 

with image analysis software (Image Pro Plus Software v 5.1, Media Cybernetics, Silver 

Spring, MD) running on a Windows XP workstation. A video camera (Model DFC 280, 

Leica Microsystems, Cambridge, UK) was coupled to the microscope (Zeiss Universal, 

Oberkochen, Germany) camera tube and used to acquire digital images of the 

microscopic appearance of the stained sections. A variety of magnifications were used. 

All of the pictures taken were labeled with the magnification used. 

Statistical Analysis  
 

For the radiographic data, all the values were graphed as mean ± standard 

deviation (SD) of the individual groups. SPSS software (version 17.0) was used to 
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complete the statistical analysis of the bone microdensity measurements. All samples 

were averaged and the means for each group were compared using one way analysis of 

variance (ANOVA) with Tukey’s post-hoc test to determine where the significance lies 

between the different groups. Statistical significance was determined at p < 0.05.  
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CHAPTER IV 

RESULTS 
 
 

Bone Microdensity Measurement   

The raw data of the representative images of the bone cuts (Figure 3-1) is 

presented in Table 3-1 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Radiographic images of the bone cuts from the 3 experimental groups and 
control 

 

 

Table 3-1: Radiographic measurements of bone microdensity  

Low 

Mid 

High 

Background 

(control) 

A 

B 

C 

D 
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Table 3-3: ANOVA analysis for radiographic measurements of bone microdensity 

 

 

Treatment 
Sample group #  

 
Microdensity 

(average grayscale 
intensity/2500 pixels) 

Control 1 44.7213 

 2 46.5304 

 3 46.34947 

Low dose 1 45.6469 

 2 46.96936 

 3 45.45567 

Mid dose 1 46.3911 

 2 48.55553 

 3 47.10045 

High dose 1 44.8108 

 2 46.8668 

 3 45.29153 

  
  
  
  
  
  

  
  
  
  
  
  

 

 

 

 

Table 3-2: Descriptive statistics for radiographic measurements of bone microdensity  

 

 

Table of Descriptive Statistics 

Microdensity 

 

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum 

Lower 

Bound 

Upper 

Bound 

1.00 3 45.87 .997 .576 43.39 48.34 45 47 

2.00 3 46.03 .822 .475 43.98 48.07 45 47 

3.00 3 47.35 1.103 .637 44.61 50.09 46 49 

4.00 3 45.66 1.075 .621 42.98 48.33 45 47 

Total 12 46.22 1.102 .318 45.52 46.92 45 49 
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ANOVA 

 

Microdensity 

 Sum of 

Squares df 

Mean 

Square F Sig. 

Between Groups 5.264 3 1.755 1.735 .237 

Within Groups 8.090 8 1.011   

Total 13.353 11    

 

 

Table 3-4: Tukey adjustment for radiographic measurements of bone microdensity 

 

 

 

Multiple Comparisons 

Microdensity 

Tukey HSD 

(I) group (J) group 

Mean 

Difference (I-

J) 

Std. 

Error Sig. 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

1.00 2.00 -.160 .821 .997 -2.79 2.47 

3.00 -1.482 .821 .337 -4.11 1.15 

4.00 .210 .821 .994 -2.42 2.84 

2.00 1.00 .160 .821 .997 -2.47 2.79 

3.00 -1.322 .821 .425 -3.95 1.31 

4.00 .370 .821 .968 -2.26 3.00 

3.00 1.00 1.482 .821 .337 -1.15 4.11 

2.00 1.322 .821 .425 -1.31 3.95 

4.00 1.693 .821 .244 -.94 4.32 

4.00 1.00 -.210 .821 .994 -2.84 2.42 

2.00 -.370 .821 .968 -3.00 2.26 

3.00 -1.693 .821 .244 -4.32 .94 

Note: 1-control (no ESW); 2-low dose ESW; 3-mid dose ESW; 4-high dose ESW 
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Microdensity of calvarial bone cuts after expsoure to focused ESW
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Figure 3-2: Microdensity of calvarial bone cuts. 

 

Histological Observations  

  The histological observations made on the four groups are as follows. 

1. Control Group (no ESW)  

Intramembranous bone formation of calvaria in the control group was observed. 

Normal osteocyte lacunae were filled with osteocytes. Osteoblasts were located 

along the surface of intramembranous ossification. No identifiable osteoclasts 

were seen and no microcracks were observed (Figure 3-2). 

 

2. Low dose ESW group   

Intramembranous bone formation of calvaria in the low dose group was 

observed. Some regions showed filled osteocyte lacunae. Some cartilage 

resembling suture was observed along the length and some areas showed only 

cartilage. Hypertrophied 
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Figure 3-2: Intramembranous bone formation of calvaria in control (no ESW) group. As 
found, normal osteocyte lacunae were filled with osteocytes. Osteoblasts were located 
along surface of intramembranous ossification. No identifiable osteoclasts and no 
microcracks were observed. Magnification: x79 (A) and x200 (B).   
 
 

osteoblasts were observed in some areas and other areas had few flattened 

bone-lining cells (osteoblasts). No osteoclasts or microcracks were observed in 

the low dose group (Figure 3-3). 

 

 

 

Figure 3-3: Intramembranous bone formation of calvaria in low dose ESW group. As 
shown, some regions show filled osteocyte lacunae. Some cartilage resembling suture 
along the length – some areas just cartilage. Hypertrophied osteoblasts. Few flattened 
bone-lining cells (osteoblasts) along other surfaces. No osteoclasts, no microcracks.  
Magnification: x79 (A) and x200 (B).   

A B 

A B 
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3. Mid dose ESW group   

There was intramembranous bone formation of calvaria in the mid dose ESW 

group. In some regions, there were filled osteocyte lacunae while other regions 

showed empty osteocyte lacunae. There were mixed regions of hypertrophied 

osteoblasts in intramembranous ossification along some surfaces and flattened 

bone-lining cells (osteoblasts) along other surfaces. No osteoclasts or 

microcracks were observed (Figure 3-4). 

 

 

Figure 3-4: Intramembranous bone formation of calvaria in mid dose ESW group. As 
shown, some regions show filled osteocyte lacunae, other regions show empty 
osteocyte lacunae. Mixed regions of hypertrophied osteoblasts in intramembranous 
ossification along some surfaces. Flattened bone-lining cells (osteoblasts) along other 
surfaces. No osteoclasts and no microcracks were observed.  Magnification: x79 (A) and 
x200 (B).   
 

4. High dose ESW group   

Intramembranous bone formation of calvaria in the high dose ESW group was 

observed. Many regions showed empty osteocyte lacunae. No osteoblasts were 

seen and there was no intramembranous ossification along the surface. In some 

samples, karyorrhexis and karyopyknosis was observed. In all the samples, no 

osteoclasts or microcracks were observed (Figure 3-5). 

A B 
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Figure 3-5: Intramembranous bone formation of calvaria in high dose ESW group. As 
shown, many regions with empty osteocyte lacunae. No osteoblasts, no 
intramembranous ossification along surface, no osteoclasts, no microcracks.  
Magnification: x79 (A) and x200 (B).   
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CHAPTER V 

DISCUSSION 
 
 

Long treatment time is one of the biggest challenges in clinical orthodontics, 

with negative consequences such as root resorption and white spot lesions. The 

reduction of treatment time has become a priority for many orthodontic clinicians and 

the focus of researchers. Orthodontic tooth movement (OTM) is a mechanically induced 

bone modeling process wherein bone resorbed on the pressure side of periodontal 

ligament and deposited on the tension side. Decortication (surgically drilling and/or 

cutting alveolar bone between dental roots) has been used to move teeth faster 

through wound healing (an accelerated bone remodeling process), which however is a 

surgical procedure and not well accepted by patients with questionable results in the 

literature (Proffit et al., 2012). Therefore if a non-surgical approach can be found to 

accelerate bone modeling to help move teeth faster, it will be a benefit to patient care. 

As shown in previous studies, ESW can generate microcracks which have been shown to 

be able to increase the rate of bone remodeling. This led us to speculate whether the 

ESW can be used to modulate alveolar bone remodeling rate (possibly through 

microcracks), in turn to help move teeth faster. Since ESW is non-invasive with few side-

effects, a proven effect on bone remodeling may be a viable alternative to various forms 

of invasive decortication procedures being used in a limited population of orthodontic 

patients.  

The main aim of this project was to determine the effects of different levels of 

ESW stimulation on mouse calvaria bone organ culture model. Secondary aims were to 

explore the cellular mechanism and the proper dose of ESW on bone ex vivo. In the 

current literature several studies have reported negative or no effect of ESW on bone. 

Augat et al. applied 500 shock waves at a relatively low energy (14kV) to sheep 

calcaneous in vivo and found no new bone formation at the periosteal surface even 

(1995). From this study it was concluded that there was insufficient energy to reach the 

threshold needed for bone stimulation. High energy ESW has been well reported in the 
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literature to have a necrotic effect on cells, while lower doses have been shown to 

maintain cell viability or slightly increase it (Tamma et al., 2009). In one study, human 

osteoblastic cells in a culture were treated with 0.15 or 0.31 mJ/mm2 for 500 or 1000 

pulses and found that low levels of ESW resulted in cytostimulation and no biologic 

adverse effects (Martini et al., 2003).  Lyon et al. conducted a study using the same 

shock wave device as this study and found that a dose of 0.25mJ/mm2 significantly 

improved the cell viability of chondrocytes, while a higher dose of 0.55mJ/mm2 

decreased cell viability (personal communication). Using cell culture model and the 

same experimental set up as used in this study, Barta showed that the mid dose of ESW 

showed a significant anabolic (forming bone) effect, comparing to low (0.10mJ/mm2) 

and high (0.50mJ/mm2) doses  (Barta, 2012). This agrees with our results showing that 

although not statistically significant (P = 0.237) the mid dose group showed a relatively 

higher bone microdensity than the control, low and high ESW groups. The high dose 

group (0.50mJ/mm2) had evidence of cell death. This group exhibited no osteoblasts, 

and no intramembranous bone formation with evidence of karyopyknosis and 

karyorrhexis. Therefore, the high dose is not appropriate due to the adverse events. 

The type of ESW energy generator can also affect its application. The 

experimental set up (ESW machine) used in our study was specially designed to 

generate a focused (with a focal point) ESW. This is especially important and meaningful 

because a serious concern is that when applied intra-orally (if in the future), many of the 

oral and dental tissues approximate to interdental alveolar bone will be potentially 

exposed to ESW if its energy is not focused.  In order to achieve the desired outcome, it 

is necessary that the shock wave is precisely focused on the fracture or osteotomy 

(Gerdesmeyer and Hausch, 2001). For this reason, in our study we used focused ESW 

that can target the interdental alveolar bone without damaging the surrounding 

mineralized tissues like enamel.  
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Limitations 

This study was performed in an ex vivo model with no blood flow or intact 

innervation. A special attention needs to be paid when interpreting the ex vivo data to 

clinical application.  

A limitation in this study is the heterogeneity of the bone cuts of calvaria. Due to 

the lack of neonatal mice, we cut each calvaria into four equal (approximate) quadrants, 

and pooled all the bone cuts together. This introduced variation from cut to cut, 

although random assignment into the experimental groups was done. If halves of the 

calvaria along sagittal suture can be used as individual samples, the standard deviation 

of the results can be reasonably reduced.  

Contrary to our expectation, no microcracks were found in our study. This can be 

due to several reasons. The mineralization degree of our collected calvaria is relatively 

low (3 days after birth) when used as a model to target bone remodeling. However, the 

viability of the tissue organ culture can also be a challenge if older calvaria are used. 

Another possible reason is we did not use the authentic method of Basic Fuchsin 

staining to reveal microcracks. H&E staining may be enough for relatively bigger cracks 

but may not be sufficient for micro-cracks. 

Conclusions 

Based on the radiographic and histological results, our hypothesis that proper 

application of ESW will increase bone turnover rate through generating micro-cracks in 

bone cannot be proved in this study.  
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Future Studies 

Future endeavors will be required to overcome the shortcomings of this study 

and advance the study on this topic.  
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