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ABSTRACT 
COMPOSITION, PHASE STRUCTURE, AND CORROSION  

OF NICKEL-FREE AND NICKEL-CONTAINING  
STAINLESS STEEL ORTHODONTIC WIRES 

 
 

Amrita Rakalla, DDS 
 

Marquette University, 2014 
 
 

Stainless steel wires have long been used in orthodontics.  The austenitic stainless 
steel used in orthodontics contains approximately 18 wt% chromium and 8 wt% nickel.  
Nickel improves the corrosion resistance and helps maintain the austenite structure of 
stainless steel.  Nickel is the most allergenic metal and is the most common metal 
associated with contact dermatitis in orthodontics.  Nickel-free wires have been 
developed, and it was the goal of this study to compare nickel-free and nickel-containing 
stainless steel orthodontic wires to determine and compare their composition, phase 
structure, and corrosion properties. 

 For each test, nickel-free and conventional stainless steel wires were compared 
from four companies: Acme Monaco, Dentaurum, Leone, and Scheu-Dental.  Phase 
structure was determined using x-ray diffraction.  Composition was measured using 
scanning electron microscopy with energy dispersive spectroscopy.  For each wire, 
straight lengths were sectioned into 1-inch segments, arranged side-by-side, to create a 1-
inch by 1-inch planar array of wires secured with sticky wax.  Resultant XRD pattern 
peaks were indexed using standard methods or via ICDD files.   Electrochemical 
corrosion tests were completed using a 3-electrode cell with a potentiostat and Gamry 
corrosion test software.  Fusayama-Meyer artificial saliva solution was used as the 
electrolyte at room temperature.  For each wire brand, wire lengths were isolated using 
nail polish, exposing a consistent surface area to account for varying diameters of the 
wires among brands.  Open circuit potential, polarization resistance, and corrosion 
current density were determined.  Data were compared using one-way analysis of 
variance (ANOVA) at a 0.05 significance value with a Tukey’s Studentized Range 
(HSD) Test post hoc analysis, where required. 

 Two nickel-free wires had detectable amounts of nickel.  All nickel-free stainless 
steel wires had an increased amount of manganese, chromium, and molybdenum with 
decreased iron content.  The orthodontic stainless steel wires are mostly austenitic, but 
martensite may be present in both types.  Although there were significant differences 
among the wires for the three corrosion parameters, there was not a general difference 
between nickel-free and conventional stainless steel wires.  Overall, despite composition



differences between the nickel-free and nickel-containing stainless steel wires, they 
generally had the same phase structure and similar corrosion properties.
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CHAPTER 1 
INTRODUCTION 

 
 
 Wires have multiple uses in orthodontics.  Archwires are used in conjunction with 

brackets to move and align teeth, larger wires are used to fabricate orthodontic 

appliances, and others are used as retainers to prevent orthodontic relapse.  There are 

several compositional types of orthodontic wires, including stainless steel, nickel-

titanium, beta-titanium, and cobalt-chromium; each used for a different purpose due to 

certain desirable properties.  Stainless steel wires have long been used in orthodontics for 

several reasons: high resistance to corrosion, high strength and springiness, ability to be 

easily formed and manipulated (through cold working and annealing during the 

manufacturing process), and low cost (Nie et al., 2011; Proffit, 2013).   

 The composition of stainless steel can vary greatly with over 100 variations 

developed (Verstrynge et al., 2006), but the austenitic stainless steel used to make most 

orthodontic products contains approximately 18 wt% chromium and 8 wt% nickel 

(Barrett et al., 1993).  This is classified as AISI (American Iron and Stainless Steel 

Institute) type 304 (Daems et al., 2009).  Stainless steel’s high resistance to corrosion is 

mostly due to the significant amount of chromium present.  Chromium oxide forms a 

passive layer over the surface of the steel, preventing oxygen from penetrating the alloy 

(Ortiz et al., 2011).  Increased corrosion reduces biocompatibility and may hinder 

orthodontic treatment progress as a result of increased friction between the archwire and 

bracket (Widu et al., 1999).  Molybdenum is added to stabilize the chromium, and copper 

is present in low amounts, adding to the corrosion resistance.  Nickel forms salts that 

prevent chromium salts from forming, which leaves more chromium to form the passive 
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layer.  Nickel also provides firmness and ductility to stainless steel (Ortiz et al., 2011) 

and acts as an austenite stabilizer, making the austenitic form more stable at lower 

temperatures (Kusy, 1997; Eliades and Athanasiou, 2002).  Carbon, manganese, silicon, 

phosphorus, and sulfur are also present in small amounts. 

 Of known metals, nickel is the most allergenic.  Nickel sensitivity has an incidence 

between 10 to 20% of the population (Wataha, 2003), and nickel is also the most 

common metal associated with contact dermatitis in orthodontics (Rahilly and Price, 

2003).  Patients previously sensitized to nickel, most frequently due to body piercings, 

may be more likely to have an allergic response to nickel-containing orthodontic 

materials (Rahilly and Price, 2003), such as metal orthodontic brackets and wires.  

Alternatives to nickel-containing materials in orthodontics include ceramic or resin-based 

brackets and wires, beta-titanium wires, and nickel-free stainless steel brackets and wires.  

Common oral manifestations of a nickel allergy include a burning sensation, glossitis, 

gingivitis, gingival hyperplasia, erythema multiforme, metallic taste, and lip peeling 

(Staerkjaer and Menné, 1990; Bishara et al., 1993; Lindsten and Kurol, 1997; Janson et 

al., 1998).   

Composition 
 
 
 Nickel-free orthodontic wires usually do not contain zero percent nickel, but rather 

a significantly reduced amount of nickel.  For example, BioDur 108 Alloy is a low-nickel 

stainless steel with 0.10% nickel (Verstrynge et al., 2006).  In order to maintain similar 

desirable properties to traditional stainless steel, the composition of nickel-free stainless 

steel must be altered.  It is important to identify the exact composition of these wires as 

composition influences phase structure and multiple properties, including corrosion. 
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Phase structure 
 
 
 As stated above, the stainless steel used in orthodontic wires is usually austenitic 

stainless steel with 8% nickel.  Altering the composition by reducing the nickel content 

may affect the phase structure.  In the case of the BioDur 108 alloy, for example, the 

level of nitrogen is increased to maintain the austenitic phase structure (Zardiackas et al., 

2003).  

Corrosion 
 
 
 According to ISO standards, corrosion is identified as a “physicochemical 

interaction between a metal or an alloy and its environment that results in a partial or total 

destruction of the material or in a change of its properties” (ISO, 2001).  Nickel adds to 

the corrosion resistance of stainless steel; therefore, nickel-free stainless steel wires may 

demonstrate increased corrosion.  It is important to address this potential property 

change, as reduced corrosion rate is a desired property in orthodontic archwires.  

Corrosion of orthodontic materials, including stainless steel, has been studied extensively 

with various reports demonstrating potential cytotoxic effects (Eliades et al., 2004; 

Eliades, 2007).  Several studies have demonstrated that even nickel-free wires may 

release nickel due to the presence of nickel in trace amounts (Rose et al., 1998; Schuster 

et al., 2004; Arndt et al., 2005; Milheiro et al., 2012 ) as well as demonstrate cytotoxic 

effects such as DNA damage (Fernández-Miñano et al., 2011) and inhibiting cell 

proliferation (Rose et al., 1998).  
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 It was the goal of this study to compare nickel-free stainless steel and nickel-

containing stainless steel orthodontic wires to determine and compare their composition, 

phase structure, and corrosion potential. 
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CHAPTER 2 
LITERATURE REVIEW 

 
 
 Tooth movement occurs when prolonged pressure is applied to a tooth and the 

surrounding bone remodels (Proffit, 2013).  In modern orthodontics, there are several 

ways this can be achieved.  Most commonly, an orthodontic archwire is engaged in 

brackets bonded to the teeth.  As the deflected wire is engaged, the force is transmitted to 

the bracket and indirectly to the tooth itself (Nikolai, 1997).  Clear aligners are also used 

to produce tooth movement, but their effect is limited and less reliable.  Tooth movement 

is best achieved with a light, continuous force (Proffit, 2013).   

History of Orthodontic Archwires 
 
 

Orthodontic archwires have evolved significantly since the initiation of 

orthodontics in the late 1800s.  Edward Angle, the father of modern orthodontics, 

developed the E-arch in 1887.  This appliance consisted of a rigid labial wire extending 

around the arch, attached only to the molar bands.  The wire, made of either nickel-silver 

or platinum-gold, had a dimension of 0.032 or 0.036 inches.  Nuts were placed on the 

threaded ends of the archwire to allow the wire to be expanded, and teeth were ligated to 

the wire individually (Nikolai, 1997; Proffit, 2013).   However, this appliance was limited 

as it only allowed the teeth to be tipped into position.  Angle then began putting bands on 

all of the teeth.  Each band had a rectangular vertical slot behind a vertical tube (Proffit, 

2013).  The round archwire was rolled to form a ribbon arch, which was a gold wire with 

dimensions of 0.020 x 0.050 inches (Nikolai, 1997).  The wire was held in the vertical 

slot with pins.  Although this wire was more effective at controlling tooth movement, it 

still lacked the ability of torque control and root positioning.  Angle made a breakthrough 
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in 1928 with the development of the edgewise appliance.  Instead of a vertical slot, Angle 

reoriented the slot 90 degrees.  The slot had dimensions of 0.022 x 0.028 inches, and 

either round or rectangular archwires made of precious metal alloys were used.  This 

appliance led to the development of currently used archwires and allowed control of 

individual tooth movement in all three planes of space as desired (Proffit, 2013). 

Stainless Steel Wires 
 
 

Modern wires have developed for different purposes in orthodontic treatment.  No 

single wire is ideal for all phases of treatment, but wires should have certain desirable 

properties.  These properties include high strength, low stiffness, high range, high 

formability, weldability, resilience, springback, and biocompatibility (Kusy, 1997; 

Proffit, 2013).  Stainless steel wires were introduced to orthodontics in the late 1920s and 

soon replaced precious metal alloys due to increased strength and springiness, greater 

elastic modulus, ductility, better resistance to corrosion, and lower cost (Nikolai, 1997).  

Orthodontic stainless steel wires are typically AISI type 302 or 304 with a composition of 

17-20% chromium, 8-12% nickel, 0.08-0.15% carbon, and iron forming the balance.  

These types are also referred to as 18-8 stainless steel, based on the chromium and nickel 

content.  There may also be small amounts of manganese, silicon, phosphorus, sulfur, 

nitrogen, molybdenum, copper, and cobalt (Brantley, 2003). 

There are three main types of stainless steel: ferrite, martensite, and austenite.  

The classification depends on the crystal structure of iron atoms.  Ferrite is characterized 

by a body-centered cubic crystal, martensite is organized in a body-centered tetragonal 

crystal, and austenite is a face-centered cubic crystal.  It should be noted, however, that 

the martensite phase in orthodontic stainless steel wires has been characterized as body-
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centered cubic (Khier et al., 1988).  Orthodontic stainless steel is typically the austenitic 

form, which is the most corrosion resistant.  The austenitic stainless steel is formed with 

the addition of nickel.   Austenitic stainless steel has other desirable properties compared 

to the ferritic and martensitic forms.  Austenitic stainless steel has greater ductility.  It can 

undergo a greater degree of cold working, which strengthens it considerably.  It is more 

easily formed and has greater weldability (Brantley, 2003). 

The addition of 12-30 wt% chromium to iron forms the stainless steel alloy.  

When exposed to an oxidizing environment, chromium oxide forms a passive layer on the 

surface, preventing oxygen from penetrating the alloy and providing resistance to tarnish 

and corrosion (Brantley, 2003; Ortiz et al., 2011).  Preventing corrosion is important to 

maintain biocompatibility and reduce the amount of friction between the archwire and 

bracket that may hinder orthodontic tooth movement (Widu et al., 1999).  Molybdenum 

and nickel add to the corrosion resistance of stainless steel.  Molybdenum acts to stabilize 

the chromium, while nickel forms salts that use up ions to prevent chromium salts from 

forming, thereby allowing more chromium to form the passive layer (Ortiz et al., 2011).  

Nickel also adds to the alloy’s firmness and ductility (Ortiz et al., 2011) and stabilizes the 

austenite phase structure at lower temperatures (Kusy, 1997; Eliades & Athanasiou, 

2002). 

 Australian wire is a different type of stainless steel that has high resiliency and 

toughness, historically used in the Begg technique.  Australian wire differs in 

composition from traditional stainless steel wires with 10 times more carbon (Pelsue et 

al., 2008).  The increased carbon content contributes to hardness but also makes 

Australian wire more brittle.   
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Nickel Allergy, Corrosion, and Nickel-Free Stainless Steel 
 
 
 Of all metals, nickel is the most allergenic to humans with an incidence between 10 

to 20% (Wataha, 2003).  Nickel is also the most common metal associated with contact 

dermatitis in orthodontics (Rahilly and Price, 2003).  The percentage of orthodontic 

patients who exhibit an allergic reaction to nickel is unknown, but one study determined 

that 17.2% of their sample (16 out of 93 patients) were allergic to nickel, based on patch 

testing (Pazzini et al., 2009).  Patients allergic to nickel may not always elicit an oral 

mucosal response (Staerkjaer and Menné, 1990), but several case reports have 

documented that this can occur (Temesvári and Rácz, 1988; Trombelli et al., 1992; Veien 

et al., 1994; Kerosuo and Kanerva, 1997).  Females are more likely to exhibit 

hypersensitivity, perhaps due to more exposure from nickel-containing jewelry; however, 

the incidence of nickel allergy in males is increasing (Wataha, 2003).  Other sources of 

nickel exposure that may contribute to sensitization are cosmetics, detergents, the 

professional environment, and dentistry (Janson et al., 1998; Schuster et al., 2004).  

Patients who have been previously sensitized to nickel may be more likely to have an 

allergic reaction to nickel-containing orthodontic materials (Rahilly and Price, 2003).  

The allergic response is a type IV allergic reaction, or delayed-type hypersensitivity.  

This type of reaction is mediated by T cells, primarily CD4+ T cells.  Langerhans cells 

present the antigen to CD4+ T cells, which then activate memory CD4+ cells in the 

lymph nodes.  Memory cells were created from previous exposure and sensitization to 

nickel.  These CD4+ T cells secrete various cytokines that increase the permeability of 

blood vessels, causing edema and allowing neutrophils, monocytes, and macrophages to 

infiltrate the nearby tissues.  Enzymes from these cells can damage the tissue and cause 
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necrosis (Bakula et al., 2011).  The oral mucosa may have a diminished allergic response 

compared to the skin for several reasons: Saliva may remove the allergen before it 

reaches a certain threshold; the oral mucosa is highly vascular and may disperse the 

allergen; and the lack of a stratum corneum in the oral mucosa provides fewer antigen-

presenting cells to elicit an immune response (Setcos et al., 2005).  A nickel allergy can 

exhibit both intraoral and extraoral manifestations including a burning sensation, 

glossitis, gingivitis, gingival hyperplasia, erythema multiforme, metallic taste, and lip 

peeling (Staerkjaer and Menné, 1990; Bishara et al., 1993; Lindsten and Kurol, 1997; 

Janson et al., 1998).  Because some intraoral manifestations resemble periodontal 

inflammation, nickel allergy may not be identified initially since poor oral hygiene 

around orthodontic appliances can cause a similar appearance of the periodontal tissues. 

According to ISO standards, corrosion is identified as a “physicochemical 

interaction between a metal or an alloy and its environment that results in a partial or total 

destruction of the material or in a change of its properties” (ISO, 2001).  An allergic 

response to nickel can occur when nickel ions are released from the alloy through 

corrosion, making them available to interact with the surrounding tissues (Wataha, 2000).  

Corrosion of stainless steel in orthodontics has been studied extensively, and various 

reports have demonstrated its potential cytotoxic effects (Eliades et al., 2004; Eliades, 

2007; Ortiz et al., 2011).  Due to biocompatibility concerns, nickel-free stainless steels 

have been introduced more recently.  Typically, these alloys still have some nickel, but a 

significantly decreased amount.  Because nickel is an important component of 

conventional austenitic stainless steel, the absence or minimal amount of nickel may 

affect certain properties, such as phase structure and resistance to corrosion.   
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Corrosion of conventional stainless steel has been studied extensively in 

orthodontics with various studies demonstrating potential cytotoxic effects (Eliades et al., 

2004; Eliades, 2007).  Nickel-free stainless steel has been studied considerably less, but 

several studies have demonstrated that these wires still release nickel because it is still 

present in trace amounts (Rose et al., 1998; Schuster et al., 2004; Arndt et al., 2005; 

Milheiro et al., 2012).  Nickel-free stainless steel brackets may demonstrate cytotoxic 

effects such as DNA damage (Fernández-Miñano, et al., 2011; Ortiz et al., 2011), and the 

release from wires may inhibit cell proliferation (Rose et al., 1998). 
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CHAPTER 3 
MATERIALS AND METHODS 

 
 
 For each test, nickel-free stainless steel and conventional stainless steel wires were 

compared.  Wires of each type were obtained from four companies.  From Acme Monaco 

(New Britain, CT, USA), their Ultra Low Nickel stainless steel (Acme Ni-Free) and 

bright stainless steel archwires (Acme SS), size 0.018” (0.45 mm), were compared.  

Dentaurum (Ispringen, Germany) has a low nickel stainless steel wire called Noninium 

that was compared to their Remanium stainless steel wire with diameters of 0.016” (0.40 

mm).  Leone (Florence, Italy) has a low nickel stainless steel product called Biosteel that 

was compared with Leowire, a stainless steel wire in size 0.024” (0.60 mm).  Menzanium 

from Scheu-Dental (Iserlohn, Germany) is a nickel-free stainless steel wire that was 

compared to their stainless steel wire (Chromium) with a diameter of 0.024” (0.60 mm).  

It was not possible to obtain wires of the same diameter from all companies because a 

common size was not offered.  All wires were straight lengths except the wires from 

Acme Monaco in the form of archwires and from Leone in the form of spools.  Wires 

were tested as-received from the manufacturers.   

 Phase structure was determined by using x-ray diffraction (XRD).  For each wire 

brand, multiple straight lengths of wire were sectioned into 1-inch segments, arranged 

side-by-side, to create a 1-inch by 1-inch planar array of wires secured with sticky wax (n 

= 2/wire brand) (Figure 1).  The specimens were analyzed with an x-ray diffractometer 

(D8 Advance, Bruker Corp., Billerica, MA, USA) using Cu-Kα radiation at a voltage of 

40 V, a current of 30 mA, with a scanning rate of 0.02°/s over a scan range (2θ angle) of 

35 to 100° in a 72 minute period.  The wires were analyzed at the surface, with the beam 
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parallel to their long axes.  Resultant XRD pattern peaks were indexed using standard 

methods or via ICDD files (International Center for Diffraction Data, Swarthmore, PA, 

USA).  X-ray diffraction determines the crystal structure (austenite, martensite, ferrite, 

etc.) of the wires and was used to determine if the omission of nickel from the 

composition changed the crystal structure of the wires compared to standard stainless 

steel (Khier et al., 1988). 

Figure 1. Wire configuration for XRD and EDS analysis 
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 Composition was measured using scanning electron microscopy (SEM; JSM 

6610LV, Jeol Ltd, Tokyo, Japan) with energy dispersive spectroscopy (EDS; Oxford 

Instruments, Abingdon, UK).  Wire samples were prepared in the same planar array (n = 

2/wire brand) used for the XRD analysis.  One wire from each mounting was removed 

and cleaned in an ultrasonic bath for 10 minutes prior to SEM analysis.  SEM imaging 

was performed at the surface of each wire using backscattered electrons (BE) at a voltage 

of 25 kV, a current of 78 µA, and at 1000X and 3000X nominal magnifications.  For the 

EDS analysis, the wires were analyzed at the surface in the collecting window (120 x 90 

µm) at a voltage of 25 kV, an acquisition time of 200 seconds, and a working distance of 

11 mm.  To identify the elemental composition in different areas where BE SEM analysis 

revealed a contrast in mean atomic number, spot analysis was carried out under the same 

conditions. Results are expressed in wt% for major (Fe, Cr, etc.) and minor elements.  

Composition determination shows which element(s) replaced nickel in the composition of 

the nickel-free wires. 

 Electrochemical corrosion tests were completed using a 3-electrode cell with a 

potentiostat and Gamry corrosion test software (PC4, Gamry Instruments, Warminster, 

PA, USA).  A saturated calomel electrode (SCE; Gamry Instruments) served as the 

reference electrode and graphite was used as the counter electrode.  Fusayama-Meyer 

artificial saliva solution (pH = 5.8) was used as the electrolyte at room temperature and 

was made with the following composition: KCl (0.4 g/L), NaCl (0.4 g/L), CaCl2 (0.6 

g/L), NaH2PO4 (0.690 g/L), Na2S·9H2O (0.005 g/L), and urea (1 g/L).  For each wire 

brand (n = 8/wire), wire lengths were isolated using nail polish, exposing a consistent 
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surface area (0.71 cm2) to account for varying diameters of the wires among brands 

(Figure 2).  

   
Figure 2. Wire isolated with nail polish 
 
 
 Electrochemical corrosion testing was comprised of three steps (Segal et al., 2009; 

Knutson and Berzins, 2013).  Initially, the open circuit potential (OCP) was monitored 

for two hours.  Second, a linear polarization test was performed.  In this component, the 

current was measured while the potential of the wire was scanned at 0.05 mV/s from -20 

to +25 mV (versus OCP).  This test determines the polarization resistance (Rp), a measure 

of how easily the metal alloy electrochemically oxidizes during the application of an 

external potential.  The final component is a cyclic polarization scan conducted between -

300 to +700 mV (versus OCP) at a scan rate of 1 mV/s.  This test determines the 

corrosion current density (or Icorr), which indicates how much the alloy corrodes. 

 Data were compared using one-way analysis of variance (ANOVA) at a 0.05 

significance value with a Tukey’s Studentized Range (HSD) Test post hoc analysis, 

where required.  SAS software (SAS Institute, Cary, NC, USA) was used to perform the 

statistical analysis. 
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CHAPTER 4 
RESULTS 

 
 
 Table 1 shows the composition results of the EDS analysis by element (wt%) for all 

wires tested.  This can be compared to the information in Table 2, which is the elemental 

composition of each wire provided by the manufacturer. 

 
Table 1. EDS analysis of elemental composition (wt%) 

 
 
 Biosteel and Menzanium still have detectable amounts of nickel.  The nickel-free 

wires have a significantly higher percentage of manganese and a lower percentage of iron 

compared to the conventional stainless steel wires.  They also tend to have slightly more 

chromium and molybdenum. 

Material Fe Cr Ni Mo Mn Si Al Cu V 
Acme Ni-Free 53.2 22.0  0.8 23.4 0.3 0.3   

Acme SS 70.7 18.8 7.9 0.4 1.3 0.3 0.3 0.3  
Noninium 53.1 22.0  0.9 23.4 0.3 0.2 0.1  
Remanium 70.9 17.9 8.2 0.4 1.1 1.0 0.3 0.2  
Biosteel 61.9 20.0 0.2 2.8 13.8 1.0 0.2 0.1  
Leowire 71.2 17.5 8.4 0.7 1.2 0.4 0.3 0.2 0.1 

Menzanium 65.4 19.5 0.2 2.5 13.7 0.7 0.3   
Chromium 70.3 18.1 7.9 0.6 1.4 1.0 0.3 0.4  
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Table 2. Elemental composition as provided by manufacturers 

 
 
 Figures 3 to 6 show the indexed XRD patterns of all wires tested.  Austenite (γ 

phase) and martensite (α΄ phase) were the main phases identified in the analysis. 

Material Fe Cr Ni C Mo Mn Si P S Other 

Acme Ni-
Free 

Bal 21.0 ≤0.1 ≤0.08 0.7 23.0 ≤0.75 ≤0.03 ≤0.01 
Cu 
≤0.25, 
N 0.97 

Acme SS Bal 
18.0-
20.0 

8.0-
10.5 

0.08  2.0 1.0 0.045 0.03  

Noninium Bal 
16.0-
20.0 

≤0.2 ≤0.1 
1.8-
2.5 

16.0-
20.0 

≤1.0 ≤0.05 ≤0.05 
V≤0.2, 
N 0.7-

1.0 

Remanium Bal 
18.0-
20.0 

8.0-
10.5 

≤0.08  ≤2.0 ≤1.0 ≤0.045 ≤0.03  

Biosteel Bal 18.0 0.2  2.0 18.0    N 1.0 

Leowire N/A 

Menzanium Bal 
16.0-
20.0 

≤0.2 ≤0.1 
1.8-
2.5 

16.0-
20.0 

≤1.0 ≤0.005 ≤0.05 
V≤0.2, 
N 0.7-

1.0 

Chromium Bal 
18.0-
20.0 

6.0-
9.0 

≤0.12 ≤0.8 ≤2.0 ≤1.5 ≤0.045 ≤0.03  
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Figure 3. Indexed XRD patterns of Acme Monaco Ni-Free and Acme SS wires 
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Figure 4. Indexed XRD patterns of Dentaurum Noninium and Remanium wires 
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Figure 5. Indexed XRD patterns of Leone Biosteel and Leowire wires 
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Figure 6. Indexed XRD patterns of Scheu-Dental Menzanium and Chromium wires 
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 Table 3 summarizes the results of the electrochemical corrosion testing: the mean 

OCP, Rp, and Icorr values, as well as the significant differences resulting from the 

ANOVA/Tukey’s Studentized Range (HSD) Test. 

 
Table 3. Means with standard deviations for electrochemical measurements 

 
OCP  

(mV vs SCE) Rp (MΩΩΩΩ/cm2) Icorr (nA/cm2) 

Acme Ni-Free 146 ± 40  ABC 55.1 ± 21.5  A 24 ± 9  B 

Acme SS 105 ± 23  CD 8.4 ± 3.3  C 89 ± 16  B 

Noninium 152 ± 24  AB 36.7 ± 11.9  B 25 ± 10  B 

Remanium 156 ± 25  AB 31.5 ± 11.8  B 53 ± 20  B 

Biosteel 97 ± 36  D 12.1 ± 6.6  C 173 ± 105  A 

Leowire 175 ± 9  A 30.0 ± 8.3  B 57 ± 19  B 

Menzanium -38 ± 40  E 1.3 ± 0.1  C 201 ± 52  A 

Chromium 115 ± 19  BCD 10.7 ± 2.5  C 203 ± 35  A 
Tested in artificial saliva (Fusayama-Meyer solution) 
SCE = Saturated Calomel Electrode 
Wires with different letters denote significant differences (p<0.05) exist for each 
parameter (OCP, Rp, Icorr).   
 
 
Figures 7-9 show a composite of the OCP graphs, polarization resistance curves, and 

potentiodynamic curves, respectively, of all wires. 
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CHAPTER 5 
DISCUSSION 

 
 

 Nickel-free stainless steel wires can be an alternative to conventional stainless 

steel wires for orthodontic patients who are allergic to nickel.  Because nickel is a key 

component to conventional austenitic stainless steel, the composition of nickel-free 

stainless steel must be altered to account for the absence (or very low amount) of nickel 

while still maintaining similar properties.  The composition of four conventional stainless 

steel and four nickel-free stainless steel wires were determined using scanning electron 

microscopy with energy dispersive spectroscopy.   

In this study, all of the nickel-free wires had an increased content of chromium, 

molybdenum, and manganese compared to the conventional stainless steel wires (Table 

1).  The difference in manganese content was the greatest difference with a range of 13.7-

23.4% in the nickel-free wires and a range of 1.1-1.4% in the conventional stainless steel.  

Nickel serves to stabilize the austenite phase in stainless steel (Kusy, 1997; Eliades & 

Athanasiou, 2002).  To substitute nickel as an austenite stabilizer, manganese, carbon, or 

nitrogen are typically used (Lai et al., 2012).  Of the three alternatives, carbon is the least 

frequently used due to increased sensitization (Wataha, 2003; Lai et al., 2012) in the 

metallurgical sense.  Sensitization from high carbon content leads to a decrease in 

corrosion resistance as the supply of chromium is depleted when carbide precipitates are 

formed with chromium and iron (Wataha, 2003).  Based on this study, the manganese 

content is increased in the nickel-free wires to maintain the austenitic phase structure.  

All of the manufacturers list the presence of nitrogen in their nickel-free wires, with a 

range of 0.7-1.0%, and all but Biosteel are listed as having 0.1% or less of carbon (Table 
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2).  Nitrogen and carbon are light elements and are not easily detectable by EDS; 

therefore, they are not listed in Table 1. 

Another important observation is the detection of nickel (0.2%) in two of the 

nickel-free wires, Biosteel and Menzanium (Table 1).  Most nickel-free stainless steels do 

have a small amount of nickel, but a significantly reduced amount (Rose et al., 1998; 

Schuster et al., 2004; Arndt et al., 2005; Verstrynge et al., 2006; Milheiro et al., 2012).  

All of the manufacturers listed the presence of nickel in their nickel-free wires as 0.2% 

nickel or less (Table 2). 

 Of the eight wires tested, only two demonstrated austenite as the only phase 

structure present, as determined by x-ray diffraction – the Acme Monaco Ultra Low 

Nickel stainless steel wire and Dentaurum’s Noninium wire (Figures 3 and 4).  The other 

two nickel-free wires, Leone Biosteel and Scheu Menzanium, had austenite and 

martensite phase structures present.  All of the conventional stainless steel wires had 

more than one phase structure present (Figures 3-6), which is consistent with previous 

investigations (Khier et al., 1988).  Multiple phase structures may be present due to the 

effect of cold working and the presence of carbon (Khier et al., 1988; Wataha, 2003).  An 

effect of the main substitution of manganese for nickel in the nickel-free wires is also 

apparent in the x-ray diffraction patterns.  The austenite and martensite peaks are shifted 

to lower angles, which is consistent with the larger manganese substitution for nickel (the 

atomic radii of manganese is 140 pm while that of nickel is 135 pm).     

 Although there were significant differences among the wires for the three 

corrosion parameters (open circuit potential, polarization resistance, and corrosion 

current), there was not a general difference between nickel-free and conventional 
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stainless steel wires (Table 3).  Menzanium had the lowest OCP and the lowest 

polarization resistance, while Leowire had the highest OCP, and Acme Monaco’s Ultra 

Low Nickel stainless steel had the highest polarization resistance.  Biosteel, Menzanium, 

and the stainless steel wire from Scheu had the highest corrosion current densities.  The 

two wires from Dentaurum, Noninium and Remanium, were not significantly different 

for any of the parameters.  The Leone Biosteel and Leowire were the only wire pair that 

was significantly different from each other for corrosion current density.  Overall, the 

amount of corrosion does not appear to be different for the conventional stainless steel 

and nickel-free stainless steel wires.   
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CHAPTER 6 
CONCLUSION 

 
 

In order to maintain similar properties to conventional stainless steel wires, 

nickel-free stainless steel wires must account for the decreased amount of nickel by 

altering the composition of other elements.  Manganese is significantly increased, but the 

content of chromium and molybdenum are also higher.  Orthodontic stainless steel wires 

are mostly austenitic, but martensite may also be present in both conventional stainless 

steel and nickel-free stainless steel.  There does not appear to be a difference in the 

corrosion properties of either type of stainless steel.   
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