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ABSTRACT 

CYTOTOXICITY OF ORTHODONTIC TEMPORARY ANCHORAGE DEVICES 

ON HUMAN PERIODONTAL LIGAMENT FIBROBLASTS 

IN VITRO 

 

 

Manika Patwari, D.M.D 

 

Marquette University, 2013 

 

Introduction: Cytotoxicity is a major concern in the clinical application of dental 

materials including Temporary Anchorage Devices (TADs). The purpose of this study 

was to test the cytotoxicity of  four of the commercially available brands of TADs 

(Aarhus, American Orthodontics; Dual top, RMO; Vector TAS, ORMCO; Unitek TAD, 

3M UNITEK).  

 

Materials and Methods: Twenty-four (six from each brand) TADs were individually 

incubated in complete cell culture medium and shaken at a rate of 1.5 rpm at 37ºC for 30 

days to generate the conditioned medium (CM). To test the cytotoxicity, human 

periodontal ligament fibroblasts (hPDLF) were exposed to the CM for 24 hours. As 

endpoints, morphological changes were observed along with cell death and damage 

which were quantified by MTT and LDH assays, followed by statistical analysis of one-

way ANOVA with Bonferroni adjustment. 

 

Results: No morphological changes were found in any of the four types of TADs 

compared to the control cells. LDH assay showed that none of the tested TADs caused 

significant cell death after CM treatment in contrast to the positive control (P > 0.05). No 

significant intragroup differences were found between any of the four brands of TADs (P 

> 0.05). MTT assay showed similar results as for the LDH assay, except for a marginally 

significant increase of MTT release found in the TADs from 3M UNITEK compared to 

the negative control (P = 0.047). 

 

Conclusions: According to the ISO10993:5 standards, none of the tested TADs exhibited 

statistically significant cytotoxicity, suggesting their safe clinical application.           

 

 

 



i 

 

 

ACKNOWLEDGEMENTS 

Manika Patwari, D.M.D 

 

My sincere appreciation and thanks to Dr. Dawei Liu for his vital role in the inception, 

study design, methodology and statistics of this project. His utmost help, support and 

guidance throughout every step of this project and during my education at Marquette 

University has been phenomenal. This project would not have been realized without the 

time and sincere efforts of Dr. Zhibin Chen. She made the tedious laboratory procedure of 

the project simple and straight forward.  

 

I truly appreciate Dr. Jeffery Toth, Dr.Jose Bosio and Dr.Arthur Hefti for being a part of 

my thesis committee and for their constructive feedback, support and guidance. 

 

I would also like to extend my thanks to American Orthodontics, Rocky Mountain 

Orthodontics, 3M Unitek and Ormco for their generous donations of miniscrew implants. 

A warm thanks to Mr. James Brozek for helping us with the photographs and Dr. Lobner 

for his help in troubleshooting with the experimental set up for our project. 

 

I am especially grateful to my husband Apoorv, our parents and my sister for their 

unconditional love and support. I feel truly blessed to have such a wonderful family. 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 

 

 

TABLE OF CONTENTS 

 

 

ACKNOWLEDGEMENTS……………………………………………….i 

LIST OF TABLES…………………….……………………………..........iv 

LIST OF FIGURES…………………………………………………..……v 

         CHAPTERS  

 

1. INTRODUCTION……………………………………………….... 1 

2. REVIEW OF LITERATURE…………………………………......2 

 Anchorage: The backbone of orthodontics………………………….. 2 

 Need for skeletal anchorage : historical development………..……....2 

 Classification of temporary anchorage devices .......……………........3 

 Types of applications as anchorage…...………………………………6 

 Indications and contraindications………………………………….....6 

 Composition of TADs…………………………………………….......7 

 Components of TADs ….......……………………………….…...........8 

 Biocompatibility………………………………………………………9 

               Host – miniscrew interactions……………………………........11 

               Biocorrosion…………………………………………………...11 

               Stability ……………………………………………………….14 

               Measuring biological response- in vitro testing………….........17 

               Principles of in vitro cytotoxicity testing……………………...18 

               In vitro cytotoxicity test procedures ……………………..........20 

                   Determination of cytotoxicity ………………………………....21 



3 

 

       Objectives of study ……………………………………………....24 

3. MATERIALS AND METHODS……………………………… 25 

4. RESULTS…………………………………………………….....30 

5. DISCUSSION…………………………………………………...39 

6. CONCLUSIONS………………………………………………..44 

BIBLIOGRAPHY...…………………………………………………….45 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                         



4 

 

LIST OF TABLES 

 

Table 1. Atomic percentages of elements in commercially available TADs ....................... 8 

Table 2.  Cell viability (MTT) measurements of hPDLF cells subjected to extractions       

               from TADs for 24 hours  .................................................................................... 31 

Table 3. Descriptive statistics for MTT assay results ....................................................... 32 

Table 4. ANOVA for MTT assay results ........................................................................... 32 

Table 5. Bonferroni adjustment for MTT assay results .................................................... 33 

Table 6. Cell damage (LDH) measurements of hPDLF cells subjected to extractions 

              from TADs for 24 hours  ..................................................................................... 35 

 

Table 7. Descriptive statistics for LDH assay results ....................................................... 36 

Table 8. ANOVA for LDH assay results ........................................................................... 36 

Table 9. Bonferroni adjustment for LDH assay results ..................................................... 37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

LIST OF FIGURES 

 

 

Figure 1. Orthodontic appliance for vitallium screw anchorage…………………………..3 

Figure 2. Biocompatible temporary anchorage devices. ..................................................... 4 

Figure 3. Biological temporary anchorage devices. ........................................................... 4 

Figure 4. Labanauskaite’s classification ............................................................................. 5 

Figure 5. Indirect anchorage ............................................................................................... 6 

Figure 6. Direct anchorage  ................................................................................................. 6 

Figure 7. Components of TADs .......................................................................................... 8 

Figure 8. The different host- material  interfaces of mini-screws ..................................... 10 

Figure 9. Postulated model involving the effects of titanium ions released by  

               biocorrosion on the immune system and the bone metabolism in the  

               pathophysiological  mechanisms of aseptic loosening. ..................................... 12 

 

Figure 10. The classic paradigm: biocompatibility assessment of new materials ............ 17 

Figure 11.  In vitro cytotoxicity test procedures ............................................................... 20 

Figure 12. Schematic representation of in vitro cytotoxicity procedures ......................... 20 

Figure 13. MTT cytotoxicity test work flow .................................................................... 22 

Figure 14. The principles of MTT colorimetric assay  ..................................................... 22 

Figure 15. Representative TADs from the four brands used for this experiment ............. 25 

Figure 16. The TADs incubated in cell culture medium on shaker…………………….  26 

Figure 17. A 24 well plate with seeded cells during the MTT assay ................................ 27 

Figure 18. Schematic representation of the princples of LDH assay ................................ 28 

Figure 19. Micro-plate reader (Bio-Tek Power Wave XS2, Winooski, VT) .................... 28 

Figure 20.  Morphological changes of the hPDLF cells subjected to the conditioned     

                   media from TADs for 24 hours ...................................................................... 30 



vi 

 

 

Figure 21.  Cell viability (MTT) measurement of the hPDLF cells subjected to the                           

                   conditioned media from TADs for 24 hours .................................................. 34 

 

Figure 22.  Cell damage (LDH) measurement of the hPDLF cells subjected to the  

                  conditioned media from TADs for 24hours……………………………….…38 

 

 

 

 

 

 

 

 

 



1 

 

INTRODUCTION 

 

 

Temporary Anchorage Devices (TADs) are routinely used as a means of skeletal 

anchorage in contemporary orthodontics. Their multifaceted use has revolutionized our 

specialty as we can use them as means for direct or indirect anchorage for various types 

of orthodontic tooth movements. Historically, pure titanium (cpTi) has been used widely 

as an implant material because of its excellent biocompatibility. However, cpTi has low 

fatigue strength and alloying it with aluminum and vanadium to form the titanium alloy 

Ti–6Al–4V helps in overcoming this disadvantage. The corrosion resistance of the alloy 

Ti-6Al-4V is lower than of cpTi, giving rise to potential metal ion release. There are 

complications associated with TAD insertion such as localized inflammation, clinical 

failure of TADs, osteolysis, cutaneous allergic reactions, remote site accumulation, 

cytotoxicity, hypersensitivity and carcinogenesis (de Morais et al., 2009).  Therefore, 

from the stand points of either biosafety or potential cause of failure of the clinical 

application of TADs, it is imperative to study the biocompatibility of TADs. Although 

many studies have been done on dental implants, the biological effects of TADs on oral 

cells are poorly understood. The aim of our research project was to explore the biological 

effects of four brands of commercially available TADs on human periodontal ligament 

fibroblasts (hPDLF). The null hypothesis was that none of the tested TADs will exhibit 

cytotoxic effects on hPDLF cells.     
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REVIEW OF LITERATURE 

 

 

Anchorage: The backbone of orthodontics 

 

 

      Newton’s third law of motion “Every action has an equal and opposite 

reaction” has been realized as a truth and holds the key to success in orthodontics. In 

1923, Louis Ottofy defined it as “the base against which orthodontic force or reaction of 

orthodontic force is applied” (Ottofy, 1923).  It has been defined as “resistance to 

unwanted tooth movement” by Daskalogiannakis (Daskalogiannakis 2009). Different 

classifications based on anchorage needs have emerged over the years including 

maximum, moderate, and minimum and so called type A, B, and C (Gianelly et al., 1971; 

Marcotte 1990; Burstone 1995). 

Need for Skeletal anchorage: Historical development 

 

 

     The need for skeletal anchorage in orthodontics increased with the growing 

numbers of adult patients seeking orthodontic treatment.  In addition, complex treatment 

goals, patients with missing teeth, non-compliance with extra-oral anchorage all added to 

the growing need to the skeletal anchorage. 

The idea of using bone screws dates back to 1945, when Gains forth and Higley 

placed vitallium screws in the ascending ramus in dogs for canine retraction (Gainsforth 

BL and Higley LB 1945). The first clinically reported use in humans came from 

Creekmore and Eklund in 1983 when they inserted vitallium bone screws in the anterior 

nasal spine to treat a patient with deep bite. An elastomer was used from the screw to 

intrude the incisors 10 days after the screw was placed (Creekmore and Eklund, 1983). 

Soon after, in 1985 Jenner used mini-plates successfully as anchorage (Jenner and 
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Fitzpatrick, 1985).  However, the use of mini-implants was not embraced until 1997, 

when Kanomi described a mini-implant specifically made for orthodontic use (Kanomi, 

1997). Soon after in 1998, Costa et al. presented a screw with a bracket like head (Costa 

et al., 1998). These mini-screws which were temporarily fixed to bone for the purpose of 

enhancing orthodontic anchorage came to be known as temporary anchorage devices 

(TADs) and ever since, rapid developments ensued in this area of skeletal anchorage. 

              

Figure 1.Orthodontic appliance for vitallium screw anchorage. (Redrawn from Gainsforth 

and Higley, 1945) 

 

 

Classification of TADs 

 

 

A. Cope’s classification 

           In 2005, Cope classified TADs as biocompatible and biological in nature. He 

proposed that ankylosed or dilacerated teeth which are inherently present in the jaws can 

serve as temporary anchorage devices and are biological TADs which will later be 

removed. Dental implants and their modifications, fixation screws and wires were 
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biocompatible temporary anchorage devices. 

 

Figure 2.Biocompatible temporary anchorage devices. Redrawn with permission from  

from Cope JB 2005 

 

 

 

Figure3. Biological temporary anchorage devices. Redrawn with permission from Cope 

JB 2005 
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B.  Labanauskaite’s classification:  

Dental implants placed for the ultimate purpose of supporting a prosthesis, are not 

considered temporary anchorage devices since they are not removed and discarded after 

orthodontic treatment. 

 

Figure 4. Labanauskaite’s classification (Adapted from Labanauskaite B et al 2005)  

 

 

C. Insertion Modality 

 Self -drilling (self-cutting) 

 Self – tapping: require pre-drilling at full length 

Types of application as anchorage
  
 

 

 

Direct: Force is applied directly to the tooth /group of teeth from the mini-screw 

Indirect: Mini-screw anchors teeth to which the force is applied and prevents movement 

of these teeth (Papadopoulos MA and Tarawneh F 2007).
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Figure5. Indirect anchorage from a TAD(A) Right buccal with Class II malocclusion. (B) 

Right buccal with TAD inserted after upper 1
st
 molar distalization. (C) Radiograph 

showing interproximal location of TAD (D) Upper right canine ligated to the TAD to 

distalize 1st premolar( From Maino BG et al 2005). 

 

 

 

Figure 6.Direct anchorage from TAD to retract anterior teeth. (A) Frontal (B) Right 

buccal (C) Left buccal (From Maino BG et al 2005). 

 

 

Indications and Contraindications 

 

 

TADs are now used for a plethora of orthodontic tooth movements including 

insufficient number of teeth and/or lack of occlusion in the anchorage unit, extrusion or 

intrusion of single teeth or units of teeth without antagonists; asymmetric tooth 

movements, unilateral expansion, asymmetric cant correction; retraction and/or intrusion 

of anterior teeth, mesial or distal movement of molars, proclination of anterior teeth in 

cases where no posterior anchoring element is available, space closure in maximum 

anchorage cases, non-compliant cases. With their smaller sizes, wider applications in 

tooth movements, simpler surgical placement and immediate loading, TADs have become 

a mainstay in contemporary orthodontics (Costa et al., 1998; Papadopoulos et al., 2007; 
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Wahl 2008; Yanosky et al., 2008; Reynders et al., 2009; Melsen 2010; Shirck et al., 2011; 

Yamaguchi et al., 2012). Contraindications to the use include, but are not limited to, 

patients with systemic conditions such as metabolic bone diseases, immune suppressive 

therapy, bisphosphonate medication, poor quality bone tissue, hypersensitivity, 

radiotherapy in the head and neck damage (Melsen, 2005).  

Composition of TADs 

 

 

Most commercially available orthodontic mini-implants are made of titanium 

alloys, primarily Ti-6Al-4V (titanium grade IV- V).  Although stainless steel screws were 

marketed initially, the greater biocompatibility of titanium made it a more attractive 

option (Maino et al., 2005; Reynders et al., 2009; Proffit WR 5
th

 ed). Titanium has the 

property of oxidizing in the presence of  air and aqueous electrolytes to form a passive 

titanium dioxide film which contributes to its biocompatibility and corrosion resistance 

(Velasco-Ortega E et al., 2010), but needs to be alloyed to improve its strength and 

fatigue resistance (Eliades et al., 2009). The titanium alloy is composed of a fusion of 

two phases, alpha (6% aluminum) and beta (4% vanadium). Both phases in equilibrium 

contribute towards advantages of mechanical resilience (alpha phase), good formability 

and fatigue resistance (beta phase), however this leads to a decrease in the corrosion 

resistance of the Ti alloy in body fluids (Cotrim-Ferreira et al., 2010). 
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Table1. Atomic percentages of elements in commercially available TADs (Malkoc et al., 

2012) 

 Atomic percentages 

Brand C Al S Cr Fe Ni Ti  V Manufacturer 

Mini Ortho 

implant 

6.7 1.34 2.53 18.4 58.1 12.4 - - Leone, Italy 

Abso 

Anchor 

5.8 8.56 - 0.77 0.84 0.42 83.41 0.18 Dentos, South 

Korea 

MTN 6.2 8.21 - 0.54 0.49 0.51 83.81 0.15 MTN, Turkey 

IMTEC 

Ortho 

4.56 8.83 - 0.43 0.46 0.49 84.83 0.32 3M Unitek, Okla 

Vector TAS 4.19 8.12 - 0.62 0.47 0.42 86.56 0.13 Ormco, Calif 

 

 

Components of TADs  

 

 

Figure7. Components of TADs 

 

Temporary anchorage devices 

Extraosseous  

Head 

- Working end 

- Different    shapes/designs 

Neck  

-Transition from head to collar 

- Under tie area for ligatures, 
springs 

Transmucosal collar 

-Resides in the soft tissue 

-Provides definite stop  

Intraosseous 

Body  

-Central shaft with terminal tip 

-Spiraling threads 
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A successful material to be used as for TAD should have good mechanical properties, 

corrosion resistance and should be biocompatible. 

Biocompatibility 

 

 

 Biocompatibility has been defined as “the ability of a material to function in a 

specific application in the presence of an appropriate host response” by Williams in 1987. 

This definition rebuked the original philosophy that a material is to be inert in every 

biological and physicochemical manner to be considered biocompatible. This also helped 

in defining the basic ideas of biocompatibility and is described below. 

a. Interactions at the material–tissue interface affect both the host and the material. 

Concomitant to the host response to the material, there is a response of the material in the 

host environment via corrosion, chemical modification, degradation, or other 

mechanisms. It is a dynamic interaction. It is not static and there are constant influences 

of aging, local and systemic factors in the host environment and this in turn makes for an 

ever changing interface where any equilibrium achieved is likely transient and vulnerable 

to perturbation (Williams, 2008).  

b. The reactions at the material–tissue interface are a function of the tissue where the 

interface is created.  The same biomaterial will create a different interface if implanted in 

the pulp, the bone, the skin. Therefore, favorable material-biological responses in one 

environment do not assure the same in other environments (Anderson, 2001).  

c. Biomaterials are foreign bodies, and biological responses to these materials are 

characterized by foreign body responses. Avoiding or limiting the foreign body response 

has been a major goal of material development. 
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d. Recently, the research in biocompatibility is looking to customize interactions at the 

material–tissue interface (Ratner, 2001; Ratner, 2004; Bryant 2004). The aim is to modify 

the surface of a material to limit nonspecific protein absorption, add peptide sequences to 

encourage native protein or cell interactions, or provide a three-dimensional structure to 

encourage matrix formation. This aids in developing materials that degrades by design 

over time, but additionally directs tissue responses via embedded cells, proteins or drugs. 

The above developments prompted Williams to update his original definition of 

biocompatibility “ability of a biomaterial to perform its desired function with respect to a 

medical therapy, without eliciting any undesirable local or systemic effects in the 

recipient or beneficiary of that therapy, but generating the most appropriate beneficial 

cellular or tissue response to that specific situation, and optimizing the clinically relevant 

performance of that therapy” (Williams, 2008). 

 
 

 

 

 

 

 

Figure 8.The different host- material interfaces of mini-screws 

(Adapted from Maino BG et al 2005). 
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Host – mini-screw interactions  

 

 

Placement of the implant in an intraoral site induces several phenomena, 

including reduction of the pH of the early exudative phases, activation of cells including 

polymorphonuclear granulocytes and macrophages, and the release of proteins, enzymes, 

and oxidizing agents that might significantly modify the mini-screw implant surface 

reactivity. The sequence of events after placement includes the selective adsorption of 

water, O2
–
, HPO4

2–
, and H2PO4

–
 and the release of Ti as Ti(OH)4 at the outer oxide layer, 

with oxide growth at the oxide-metal interface. These interactions result in Ti dioxide 

films having an outermost layer rich in Ti-hydrogen phosphates, along with increased 

thickness and a more crystalline and insoluble nature. Calcium-phosphate precipitates can 

subsequently form on this structure, changing the outer oxide layer to complex Ti and 

calcium phosphates. Retrieval analyses of mini-screws have shown morphologic 

alterations such as adsorption of iron, calcium, nitrogen, potassium, phosphorus from the 

surrounding tissue fluids and these are subsequently calcified with precipitation of 

calcium and phosphorus (Eliades et al., 2009). 

Biocorrosion 

 

 

 Metallic biomaterials implanted in the body undergo an inevitable corrosion 

process releasing undesirable metal ion/ corrosion products which may or may not be 

biocompatible. Titanium alloys release titanium {Ti(IV)}, vanadium and aluminum ions 

(Scales, 1991; Cadosch et al., 2009). Dissolved metal ions then have a propensity to 

accumulate in the tissue or get transported to remote organs via systemic circulation.  
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There are different mechanisms for corrosion in the physiological environment 

and the most common are:  

i. Physicochemical corrosion – Contact of metal surfaces with tissue fluids leading 

to an electrochemical redox reaction (Steinemann, 1996).  

ii. Cellular mechanism – Osteoclast precursors have been shown to grown and 

differentiate towards mature osteoclasts  on stainless steel , titanium and  aluminum 

surfaces and directly corrode the metal and take up the metal ions (Cadosch et al., 2009; 

Cadosch et al., 2010).

 

Figure 9. Postulated model involving the effects of titanium ions released by biocorrosion 

on the immune system and the bone metabolism in the pathophysiological mechanisms of 

aseptic loosening (Redrawn from Cadosch et al., 2010) 
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Similar processes likely take place in vivo. Ti-6Al-4V alloys used in orthopedics 

for joint replacements have shown to be susceptible to bio-corrosion in the physiological 

environment of the human body (Scales, 1991; Cadosch et al., 2009; Cadosch et al., 

2010). By the same rationale, Ti-6Al-4V alloys used as TADs would be susceptible to 

bio-corrosion albeit the shorter duration of use as TADs. It has been observed that 

titanium ions released as part of corrosion may trigger peri-implantitis which further 

compromises stability (Mouhyi et al., 2009). Inflammation further enhances corrosion by 

a positive feedback loop (Messer et al 2010) setting up a vicious cycle similar to that seen 

in the orthopedic aseptic loosening phenomena (Cadosch et al., 2009, 2010). As the 

osteoclast precursors differentiate and directly corrode titanium surfaces, this in turn 

affects bone remodeling and hence affects stability. Pits formed around implant surface 

from corrosion may intensify the corrosive environment, adversely affect its mechanical 

properties and may hasten fracture of small diameter mini-screws (Gittens et al., 2011). 

There is some evidence to show that the presence of acidic solutions and fluoride weaken 

the stable passive protective dioxide layer on Titanium surfaces making it vulnerable to 

corrosion (Kononen et al., 1995). A recent in-vitro potentiodynamic corrosion study 

compared the corrosion properties of three miniscrew implants in artificial saliva with 

and without fluoride. They measured corrosion currents of 2.7-6.0nA which is relatively 

low and suggested limited ion release in the oral cavity. They reported that exposure to 

fluoride increased the corrosion current by impacting the passive oxide layer (Knutson 

and Berzins, 2012). de Morais et al. evaluated the systemic levels of metallic ions, 

specifically the concentrations of titanium, vanadium and aluminum in rabbits with mini-

screw implants at  1-week, 4-weeks, and 12-weeks  and confirmed that release of these 



14 

 

metals from the mini-implants occurs with diffusion and accumulation in remote organs 

such as kidneys, liver and lungs. However, despite the tendency of ion release when using 

the Ti alloy as TADs, the amounts of metals detected were significantly below the 

average intake of these elements through food and drink and did not reach toxic 

concentrations (de Morais et al., 2009). Thus there is uncertainty about the role of 

corrosion and though it may not reach toxic concentrations locally or systemically, it may 

be a factor in aseptic loosening, in fractures of small diameter mini-screws and may 

influence the host- mini-screw interactions with pathways unknown as yet. 

The success rate of temporary skeletal anchorage devices has been reported to be 

relatively low compared with dental implants, with failure rates from 9% to 16.4% 

(Tseng et al., 2006; Lim et al., 2009). To understand failure, we must first gain a better 

understanding of stability. 

Stability  

 

 

Primary stability is essentially created by mechanical retention of the miniscrew 

in the bone. It is maximal immediately after insertion but declines concomitantly with 

bone remodeling that occurs around the screw (Proffit WR, Contemporary Orthodontics 

5
th

 ed). This has been linked to the tension-compression state generated at the bone-

temporary anchorage device interface (Huja, 2005). Secondary stability on the other hand 

is determined by biologic union of screw to surrounding bone and increases over time 

with the ensuing remodeling. The net sum of primary and secondary stability is Clinical 

stability /Overall stability. This decline to minimum at 2 weeks post insertion and 

eventually stabilizes somewhat greater than initial primary stability at about 6 weeks 

(Proffit WR, Contemporary Orthodontics 5
th

 ed). 
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Factors related to primary stability include insertion site characteristics such as 

cortical density and bone quality. TADs inserted in the maxilla have higher success rates 

than the mandible with the most favorable position relative to the root being the coronal 

third.  With respect to soft tissues, the attached gingiva is favored followed by 

mucogingival line.  The geometric design of the screw which includes the pitch of screw 

threads, length, diameter, shape, tip form of the miniscrew are all considerations 

(Holmgren et al., 1998; Motoyoshi et al., 2007; Baek et al., 2008; Kim et al., 2008; Mesa 

et al., 2008; Cha, 2010; Wang et al., 2010; Zhang et al., 2010; Manni et al., 2011). In 

regards to the pitch of the screw threads, tighter thread pitch gives greater contact with 

cortical bone and increases primary stability.  The length is variable between 6-10 mm 

and diameters range from 1.3- 2.0mm. Given that the amount of contact with cortical 

bone rather than medullary bone is important, screws less than 1.2 mm diameter are 

avoided and less than 8 mm in length may contribute to decrease in stability as per 

Crismani et al. Larger diameter will show better primary stability under the application of 

heavy loads but not otherwise (Crismani et al., 2010).Tapered screws have higher 

placement torques and primary stability, but no difference in removal torque. This may 

indicate decrease in strain generated during bone remodeling which in turn may affect 

secondary stability (Chapman, 1996; Migliorati et al., 2011).Thread forming screw 

compresses the bone around the thread as it advances and provides better bone to screw 

contact, especially adapted for alveolar bone. Thread cutting screws have a cutting flute 

on the tip which improves penetration into denser bone, thus performing better in 

mandibular ramus and buccal shelf, zygomatic buttress and palate (Yerby et al., 2001). 

The surface roughness of the threaded part of screw- machined vs. roughened is not a 
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major influence. Preexisting soft tissue inflammation or lack of immaculate hygiene 

predisposing to inflammation can compromise the stability. Though root proximity is not 

a key factor in long term stability, it is advisable to avoid contact. The operator technique 

and inadvertent micromotion have also been implicated in failure of miniscrews. 

However, immediate or early loading of mini-screws has not shown to be a cause of 

failure. In addition, longer healing periods have not shown to provide greater stability at 

forces of up to 200 cN. Maximum insertion torque has emerged as key factor to primary 

stability of screws (Motoyoshi et al., 2006; Motoyoshi et al., 2007; Lim et al., 2008; Cha, 

2010; Suzuki et al., 2011). Despite considering factors of insertion site, meticulous 

placement and hygiene, geometric design of screws and loading considerations, 

miniscrews still are prone to loss of stability which makes it essential to analyze host-

miniscrew interactions. 
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Measuring biological responses – In Vitro testing  

 

 

 

 

 

  Figure 10.The Classic Paradigm: Biocompatibility assessment of new materials 

(Adapted from Autian, 1970)  

 

 

This stepwise  testing was proposed by Autian and entailed testing a new material 

first with in vitro tests .This was a screening tool and materials that ‘passed’ the in vitro 

tests were subsequently tested in animals and clinical trials.  Of critical value is the fact 

that each level of test eliminated unsuitable materials from further testing (Autian, 1970).  

By definition, in vitro tests occur outside an organism, in a vessel of some sort, 

using cultures of cells or cell constituents. It is one of the most fundamental ways of 

testing for biological responses. They are to be differentiated from ex vivo tests which use 

an intact tissue or organ that is maintained for a short time (usually < 24 h) in a culture 

vessel. In their most sophisticated form, in vitro tests use multiple cells, barriers, or 

special culture conditions to attempt to replicate conditions in vivo. 

Clinical 

Animal 

In Vitro 

Clinical Use 

New material 

            Number of materials  
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The primary strengths of in vitro tests are the ability to control the environment of 

the cells and their interface with materials and the ability to measure cell response in 

detail and with precision. Thus they lend themselves well to identify detailed mechanisms 

of cellular response. In addition, they are faster, less expensive, more reproducible, and 

more feasible than other types of tests. However, in vitro tests may suffer from a lack of 

relevance to the clinical use of materials and this is an important consideration (Wataha, 

2012).  

However, adaptation of in vitro tests has provided some successes in correlating 

with the clinical performance of materials. As an example, early in vitro tests of ZOE 

cements predicted acute, severe pulpal toxicity but this was not in echoed in the clinical 

setting, where it was being used successfully under cavity preparations and in vivo pulpal 

studies verified a relatively low toxicity.  The use of a dentin barrier in in vitro models 

reduced the apparent toxicity of ZOE. This created doubts about the reliability of 

interpreting in vitro test results to the clinical situation and a belief that in vitro tests 

might be more useful if they could be constructed with more appropriate clinical 

relevance (Wennenburg, 1978; Langleand, 1983). 

Principles of In Vitro Cytotoxicity testing: ISO 10993-5:2009(E) 

 

 

a. Sample and controls 

- Test sample- Material / device or extract there of that is subjected to biological 

/chemical testing or evaluation. 

- Positive control – produces reproducible cytotoxic response when tested in 

accordance with ISO 10993.  

- Negative control – Does not produce cytotoxic response and helps in 
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demonstrating the background response of cells to a stimulus. 

- Blank – Extraction vehicle not containing the test sample but retained in the 

vessel identical to that containing test sample. Aids in assessing possible confounding 

effects due to extraction vessel, vehicle and extraction process. 

b. Extraction vehicles for mammalian cell assays – Culture medium with serum is 

preferred since it supports cellular growth and is able to extract both ionic and non- ionic 

compounds. 

c. Choice of serum depends on cell type. Serum/ proteins may bind to some 

extractable and this needs to be considered 

d. Extractions should be done in sterile, chemically inert containers using aseptic 

techniques. For culture medium with serum the temperature should be (37±1)
0
 Celsius to 

ensure stability of medium and serum.  

e. Any processing of extract by means of filtration, centrifuging should be 

documented in final reporting. Avoid changing the pH of the extract. 

f. Cell lines – Established cell lines from recognizable repositories. 

 Culture medium- Should meet growth requirements of the cells. Antibiotics may be 

added as long as they do not influence the assays. pH- 7.2-7.4 maintained. 
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In Vitro Cytotoxicity test procedures 

 

 

Figure12. Schematic representation of in vitro cytotoxicity procedures. (Adapted from 

ISO 10993-5:2009(E) 

 

 

 

Tests on extracts  

• Extract added to 
cell suspensions 

• Allows qualitative 
and quantitative 
assessment 

• Can be performed 
on original extract 
or dilution series of 
the same 

Tests by direct contact  

• Cell suspension 
directly exposed to 
test sample 

• Allows qualitative 
and quantitative 
assessment of 
cytotoxicity  

• Undue movement of 
specimens can 
cause physical 
trauma to the cells  

Tests by indirect 
contact  

• Agar diffusion 

• Filter diffusion 

• Qualitative 
assessment of 
cytotoxicity  

• Use of appropriate 
staining procedures 
to determine 
cytotoxicity  

Direct Contact 

 

Extracted 

Medium 

Figure 11. In Vitro cytotoxicity test procedures(Adapted from ISO 10993-5:2009(E). 
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Determination of Cytotoxicity ISO 10993-5:2009(E) 

 

 

A. Qualitative evaluation  

-  Useful for screening purposes 

-  Cytochemical staining may be used and cells examined microscopically. 

-  Assess changes in general morphology, vacuolization, cell lysis, membrane  

             integrity or lack thereof. These may be recorded descriptively or numerically and  

            compared with reference tables provided. 

B. Quantitative evaluation  

- Preferred means of determination 

- Measure cell death, inhibition of cell growth / proliferation or colony formation.      

            These test, utilize number of cells, release of vital dyes, proteins, enzymes or any  

            measurable parameters to quantify the results.  

- Reduction of cell viability by more than 30% is considered to be a cytotoxic effect  

- Protocols  

 Neutral red uptake ( NRU ) uptake cytotoxicity test 

 Colony formation cytotoxicity test  

 MTT cytotoxicity test 

 XTT cytotoxicity test  
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Figure 14. The Principle of MTT colorimetric assay 

 

Time  

( hours)  

• Procedure 

00:00 

• Seed 96 well plates : 1X104 cells/100µl MEM culture medium 
/well 

• Incubate (370C / 5% CO2 / 22 h to 26 h)  

24:00 

• Remove culture medium 

• Treat with > or = 4 concentrations of test sample extract in 
treatment medium (100µl)  

• Incubate (370C / 5% CO2 / 24 h)  

48:00 

 

• Microscopic evaluation of morphological alterations 

• Remove culture medium 

• Add 50µl MTT solution 

• Incubate (370C / 5% CO2 / 2 h)  

51:00 

• Remove MTT solution 

• Add 100ml isopropanol to each well- sway plate  

• Detect absorption at 570 nm (reference 650nm) after 30 
minutes 

Figure13. MTT cytotoxicity test work flow 

 

http://en.wikipedia.org/wiki/File:Mttscheme.png
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Cytotoxicity tests of different orthodontic materials from stainless steel wires; 

latex and non-latex elastics; archwires; esthetic , metallic and nickel free brackets have 

been undertaken with variable methodologies but in keeping with the basic principles of 

cytotoxicity testing (David A 2004; Hanson M 2004; Retamoso LB et al 2012; Oh KT 

2005).  

Cytotoxicity studies relevant to orthodontic mini-screws have used titanium alloy 

discs (Ti-6Al-4V) subjected to different surface treatments such as nitric oxide 

passivation and sand blasting and have reported no cytotoxicity to the mouse or human 

fibroblasts (Velasco- Ortega E et al., 2010). Interestingly, another study using discs 

observed a transient decrease in cell viability of MC3T3-E1 osteoblasts with the titanium 

alloy discs at day 4, followed by a partial restoration around 8 days and total restoration 

after 15 days in the culture. This pattern was noted in the discs irrespective f any specific 

surface treatment. They concluded that this was a temporary alteration of cell viability to 

the chemical composition (Citeau et al., 2005). Given that different manufacturers have 

trace elements added to the generic Ti -6Al-4V alloys along with colored coatings and 

surface treatments for color coding and passivation treatments, it is clinically relevant to 

use commercially available mini-screws. 

 A recent study using commercially available mini-implants, incubated the TADs 

in Dulbecco’s modified eagle’s culture medium for 72 hours according to the 2009 

version of ISO 10993-5 standards and used a real time cell analyzer to assess cytotoxicity 

of released bioactive components from TADs on human gingival fibroblasts and mouse 

osteoblast cells over a period of 190 hours. They observed that the stainless steel 

containing TADs caused a significant decrease in mouse osteoblast viability. The 
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remaining TADs were titanium alloys of similar composition – yet two of them showed 

no adverse effects on MC3T3-E1 cells at 190 hours while the remaining two caused a 

significant decrease. None of the above tested TADs showed adverse effects on human 

fibroblasts (Malkoc et al., 2012).  

Generally, TADs are likely to be in the oral cavity for 6-8 months and hence if 

they would release any bioactive components, it may accumulate over time to increase 

the dosage of bioactive component exposed to adjacent cells.    

Objectives of Study  

 

 

The objective of our study was to test the cytotoxicity of four brands of 

commercially available TADs. Our null hypothesis was that TADs and their extracts do 

not cause cytotoxic effects on human periodontal ligament fibroblasts (hPDLF) according 

to ISO standards. Since TADs remain in the oral cavity for an extended time period, we 

subjected the hPDLF cells to the conditioned medium collected from the TADs incubated 

in complete cell culture medium for 30 days. As endpoints, we observed the 

morphological changes of the cells, and measured the cell viability (via MTT assay) and 

cell damage (via LDH assay). 
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MATERIALS AND METHODS 

 

 

Six of each of the four commercially available brands of TADs (Aarhus, 

American Orthodontics; Dual Top, RMO; Vector TAS, ORMCO; Unitek TAD, 3M 

UNITEK) were used in this study. In an effort to standardize the test products, all the 

chosen TADs had relatively similar length and diameter (Fig 14). All the TADs were used 

for the cytotoxicity tests directly from their sterile surgical packages, except for the 

product from American Orthodontics which was autoclaved prior to use due to its 

unspecified sterile condition. According to the ISO 10993-5 standards, cytotoxicity can 

be tested by contact (direct) or extraction (indirect) means. Due to the complicated 

surface topography of TADs, we chose to use the extraction method, that is, to incubate 

the TADs in cell culture medium for certain time and use the conditioned medium for 

cytotoxicity testing. 

 

Figure15. Representative TADs from the four brands used for the experiment 
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            In this study, twenty-four TADs of the four kinds (n=6 for each brand) were 

individually submerged in 8 mL alpha-minimal essential medium (α-MEM) with 10% 

fetal bovine serum (FBS) and 1% penicillin and streptomycin (10,000 units of penicillin 

and 10 mg of Streptomycin in 0.9% NaCl), and sealed in 15mL volume test tubes. To 

mimic the clinical scenario where the TADs are placed intra-orally and exposed to the 

flow of saliva, the test tubes were constantly shaken at a speed of 1.5 round per minute 

(rpm) to simulate physiological salivary flow (Zhou 2010) at 37ºC in incubator for 30 

days. The speed of shaking was determined based on our previous study (Zhou 2010). By 

the end of shaking for 30 days, the conditioned media (CM) were collected for 

cytotoxicity tests. In addition to the experimental groups, a control group (n=6) was set 

under the same experimental condition without TADs.  

                             

 

 

 

 

 

 

 

Figure 16. The TADs incubated in cell culture medium on shaker 

 



27 

 

 

Figure 17. A 24 well plate with seeded cells during the MTT assay 

 

 

The cell source, hPDLF cells #2630 (Science Cell Research Laboratories, Inc. 

Carlsbad, CA) were grown in the same type  of cell culture medium as used for 

incubating TADs in a humidified atmosphere of 5% CO2, 95% air at 37ºC. To test 

cytotoxicity, the cells (5X10
4 

cells/ml/well) were seeded in 24-well plates for 24 hours 

and then treated by the CM for 24 hours. As positive control, 0.1%Triton-100 (Sigma, St. 

Louis, MO) was used to generate cell damage and death, while the cells treated with the 

CM without TADs were used as negative control. By the end of 24 hours of treatment, 

morphological changes as well as cell damage and viability were examined. 

The cell shape and size were observed under the microscope (Nikon Eclipse Ti-S, 

Nikon Instruments Inc, America), and digital images were taken from all the groups in 

this experiment under the magnification of 20.  

LDH Assay 

Lactate dehydrogenase (LDH) is an enzyme located in the cytoplasm and is 

released into surrounding culture medium upon cell damage or lysis. LDH activity in the 

culture medium can be used as an indicator of cell membrane integrity and hence of 

cytotoxicity (Haslam, 2000, Wolterbeek, 2005, David, 2004). Quantity of LDH in CM at 

24 hours was determined following the assay protocol of Cayman LDH Cytotoxicity 
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Assay Kit (Life Technologies Corporation, Grand Island, NY). The absorbance was read 

at 490nm with a plate reader (Bio-Tek power wave XS2, Winooski, VT). Blank LDH 

levels were subtracted from insult LDH value.  

 

Figure 18. Schematic representation of the principles of LDH assay 

 

 

 

 

MTT assay 

The MTT assay is based on the measurement of cell viability via metabolic 

• Oxidation of 
Lactate to 
Pyruvate  

Reduction of NAD + to 
NADH and H+ 

• Used by 
Diaphorase  

Reduction of terazolium 
salt ( INT)  

• Highly colored 
formazan  

• Absorbs strongly 
at 490-520 nm  

Amount of formazan is 
proportional to amount of 

LDH relleased  

  Figure19. Micro-plate reader. Bio-Tek power wave XS2, Winooski, VT 
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activity. Yellow water soluble MTT (3-(4,5-dimethylthiazol-2-yl)-2,5–

diphenylytetrazoliumbromid) is metabolically reduced in viable cells to a blue – violet 

insoluble formazan. The number of viable cells correlates with the color intensity 

determined by photometric measurements (Scudiero, 1988; Sjögren, 2000). The reduction 

of MTT is thought to occur mainly in the mitochondria through the action of succinate 

dehydrogenase, therefore providing a measurement of mitochondrial function. The 

hPDLF cells damage was thus quantified by measurement of the reduction of MTT to 

produce dark blue formazan crystals in accordance with the test protocol in MTT kit 

(Sigma Aldrich, St. Louis, MO). To make the measurement, 75 µl solution MTT was 

added at 24 hours and after 3 hours of incubation, the medium was removed and the 

resulting MTT formazan crystals were dissolved by the addition of MTT solvent. The 

assay of the formation of formazan was performed by measuring the amount of reaction 

product by absorbance change using the micro-plate reader at a wavelength of 570nm. 

Each plate included three blank wells containing complete culture medium without cells 

(ISO 10993-5:2009).  

Statistical analysis  

All the MTT and LDH assay data (optical densities) were exported in excel file. 

All the data were expressed as means ± standard deviation (n=6). Statistically, one-way 

ANOVA was used to determine the difference between all the experimental groups and 

the control, while Bonferroni adjustment was applied to find out the difference between 

any two of the four TAD groups. A  P value less than 0.05 was considered significant 

(SPSS, version 11.10, Chicago).     
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                                                          RESULTS   

 

                                                                                                          

Changes in cell morphology (shape, size and polarity) correspond to the metabolic 

status of the cells. When cells are injured or undergoing cell death, it can be found that 

the integrity of the cell membrane is partially or totally lost, and cells usually shrink in 

size and lose their polarity, ultimately disintegrating. Therefore, these morphological 

changes can be used to indicate cell damage or death. In our study, the fibroblasts in the 

negative control and TAD groups appeared to be spindle shaped cells with no distinct 

abnormal changes while the fibroblasts exposed to 0.1% Triton -100 lost their normal 

spindle shape and became rounded. 

 

Figure 20. Morphological changes in hPDLF cells subjected to the conditioned media 

from TADs for 24 hours 
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             Six of each of the commercially available TADs were submerged and shaken 

with the MEM at a rate of 1.5 rpm for 30 days. We expected the TADs to release metal 

ions/cytotoxic products over time and then used the extracted conditioned medium to 

expose the hPDLF and perform tests for cytotoxicity. 

 The MTT cytotoxicity test (ISO 10993-5:2009) quantitatively measures the cell 

viability. In accordance with this, our positive control group exposed to 0.1% Triton-100, 

had the lowest MTT value while the negative control i.e. control conditioned medium 

without any TAD had the highest MTT levels. There was a significant difference amongst 

all TADs group along with the negative control as one group in comparison with the 

positive control (P = 0.000). Interestingly, among the four TAD groups, the 3M UNITEK 

product showed a marginal increase in cytotoxicity (less cell viability) than the negative 

control (P = 0.047) 

Table2. Cell viability (MTT) measurements of hPDLF cells subjected to extracts 

from TADs 

Samples Negative 

control 

Positive 

control 

RMO ORMCO AO 3M 

1 0.494 0.198 0.326 0.309 0.324 0.332 

2 0.449 0.159 0.332 0.315 0.372 0.390 

3 0.470 0.121 0.372 0.449 0.360 0.368 

4   0.383 0.304 0.285 0.316 

5   0.415 0.377 0.476 0.254 

6   0.320 0.421 0.532 0.333 

Mean  

±  

SD 

0.47  

±  

0.023 

0.16  

±  

0.039 

0.36  

±  

0.038 

0.36  

±  

0.063 

0.39  

±  

0.094 

0.33  

±  

0.050 
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Table 4 – ANOVA  

 

          Table 3. Descriptive statistics for MTT assay results 

     Table 4. ANOVA analysis of MTT assay results 
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Table 5. Bonferroni adjustment for MTT assay results 

 

 

Note: 0 – positive control, 1 – negative control, 2 – RMO, 3 – ORMCO, 4 – AO, 5 – 3M 
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Figure 21.Cell viability (MTT) measurement of the hPDLF cells subjected to the 

conditioned media from TADs for 24 hours (*P = 0.047 between 3M and negative 

control). 

 

 

As one can see, the conditioned media were harvested after 30 days of merging all 

the 4 brands of TADs in cell culture media. Afterwards, the hPDLF cells were treated 

with conditioned media from TADs for 24 hours. The cell viabilities were tested using 

MTT method. The positive control group was treated by Triton-100 (according to the 

assay kit manufacturer’s instructions), showing the lowest MTT value of 0.16 ± 0.039 

(n=3) (the lower the MTT value, the less viable cells). Negative control was the control 

conditioned medium without any TAD, showing the highest value of 0.47 ± 0.023 (n=3). 

All four brands of TADs together with the negative control showed significant different 

MTT results in comparison to the positive control (P = 0.000). 3M UNITEK product 
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showed a marginal increase in cytotoxicity (less cell viability) than the negative control 

(P = 0.047).  

Lactate dehydrogenase (LDH) is a cytoplasmic enzyme naturally present in all 

cells and releases into cell culture supernatant when the cellular plasma membrane is 

damaged or upon cell lysis (David, 2004; Han, 2011). LDH activity in the culture 

medium can be used as an indicator of cell membrane integrity and a measurement of 

cytotoxicity. In our study, the positive control group cells treated by 0.1% Triton-100, 

showed the highest released LDH concentration (0.4 ± 0.024) and thus high cytotoxicity 

while the negative control resulted in the lowest LDH level (0.17 ± 0.012) as expected. 

All four TAD groups together with the negative control showed significantly lower LDH 

levels than the positive control (P = 0.000). There was no significant difference amongst 

the different brands of TADs (P > 0.05).  

Table 6. Cell damage (LDH) measurements of hPDLF cells subjected extracts from 

TADs for 24 hours 

Samples Negative 

control 

Positive 

control 

RMO ORMCO AO 3M 

1 0.169 0.379 0.228 0.162 0.165 0.167 

2 0.164 0.405 0.228 0.154 0.171 0.156 

3 0.186 0.427 0.177 0.162 0.184 0.208 

4   0.167 0.155 0.165 0.168 

5   0.157 0.153 0.154 0.162 

6   0.180 0.167 0.161 0.174 

Mean  

±  

SD 

0.17 

± 

0.012 

0.40 

± 

0.024 

0.19 

± 

0.031 

0.16 

± 

0.006 

0.17 

± 

0.010 

0.17 

± 

0.018 
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Table7. Descriptive statistics of LDH assay results 

 

 

 

 

 

Table 8. ANOVA analysis of LDH assay results 
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Table 9. Bonferroni adjustment of LDH assay results 

 

Note: 0 – positive control, 1 – negative control, 2 – RMO, 3 – ORMCO, 4 – AO, 5 – 3M 
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Figure 22: Cell damage (LDH) measurement of the hPDLF cells subjected to the 

conditioned media from TADs for 24 hours. 

 

 

As we can see, the conditioned media were harvested after 30 days of merging all 

the 4 brands of TADs in cell culture media. Afterwards, the hPDLF cells were treated 

with conditioned media from TADs for 24 hours. The cytotoxicity was tested by 

measuring LDH release. The positive control group was treated by Triton-100, showing 

the highest LDH concentration. Negative control was the control conditioned medium 

without any TAD, showing the lowest LDH level. All four brands of TADs together with 

the negative control showed significantly different LDH levels from the positive control 

(P = 0.000). There was no significant difference amongst the TADs in relation to LDH 

assay results (P > 0.05).  
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                                            DISCUSSION 

 

 

In vitro cytotoxicity tests are advised by the International Standard Organization 

(ISO) to evaluate acute cytotoxicity of a material (ISO 10993-5:2009) but they can also 

aid in better understanding of the pathogenicity of sub-acute effects of cytotoxicity. 

Compared to animal studies and clinical approaches, these tests are generally simple, 

inexpensive, and can be performed under controlled conditions (Mockers et al., 2002; 

Samara et al., 2011). Ideally, cytotoxicity tests should be done on the same type of tissue 

that the tested compounds will be exposed to and efforts should be made to simulate in 

vivo conditions as much as possible. 

Cell cultures used for dental material toxicity testing are also advantageous since 

they are relatively easy to perform, cost effective and easier to control in contrast to 

animal experiments (Malkoc et al.,2012). Since TADs are inserted into alveolar bone in 

close proximity to periodontal ligament and gingiva, it was decided to use the major 

cellular component of the human periodontal ligament - the spindle shaped fibroblasts 

(Fundamentals of Periodontics 2
nd

 ed.) to test the cytotoxicity. According to the ISO 

standards, cell lines have advantages over primary cells in testing cytotoxicity because 

they are morphologically and physiologically more homogenous than primary cultures 

and  thus can be utilized reliably and reproducibly (Hernandez –Sierra et al.,2011). 

Therefore, in this study, we chose an established cell line hPDLF #2630 to test the 

cytotoxicity.    

We used commercially available mini-implants rather than using Ti-6Al-4V discs 

(Watanabe et al., 2004), because it is more clinically relevant to use the product which is 

used intra-orally. In addition, we submerged the TADs in the conditioned medium for 720 
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hours (30 days) in a water bath shaker (1.5 rpm) to further simulate normal salivary flow 

rate and mimic in vivo conditions favoring bio-corrosion and release of metal ions over a 

period of time.  

Apart from the MTT assay analysis, no significant differences were seen among 

the tested TADs for observed cell morphology changes and LDH assay analysis. This is 

not surprising since all these TADs have similar composition (Ti-6Al-4V), although the 

exact atomic percentages of the tested TADs were not provided by the manufacturers. An 

interesting finding in our study was that among the four TAD groups, only the 3M 

UNITEK TAD showed a slight less cell viability than the negative control (P = 0.047) 

based on the MTT assay analysis. The explanation to this may lie in further evaluating 

biocorrosion. A recent corrosion study examined mini-screws from 3M Unitek, Ormco 

and American Orthodontics in artificial saliva and noted a subtle but not significant 

difference in the passivity of the 3M Unitek mini-screws at potentials above 0.3 V. It was 

noted that the 3 M Unitek had a comparatively less stable passive layer at potentials 

above 0.3V (Knutson 2012) and a less stable passive oxide layer typically is associated 

with greater corrosion rate (Bohni 2005). The authors observed that the silver/grey 

colored Unitek TADs may suggest a thinner oxide layer in contrast to the American 

Orthodontics and Ormco mini-screws which were blue and pink colored. TADs may be 

subjected to different surface treatments accounting for the variability in oxide layer. It is 

of value to consider however that some manufacturers provide color-coded options to 

differentiate sizes and locations for use and so not all mini-screws from a particular 

manufacturer may perform the same (Knutson K, Berzins D 2012). In our study, both 3M 

and RMO had a similar color but 3M still had a slightly less cell viability based on MTT 
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analysis. American Orthodontics with the blue color in the study by Knutson et al., had a 

significantly more noble open circuit potential (P < 0.05) compared with the others. Also, 

acidic solutions and fluorine tends to decrease corrosion resistance by decreasing the 

stability of the passive layer (Kononen, 1995). Although our TADs were submerged in 

culture medium instead of artificial saliva, the same medium was used for all test 

products and hence this additive variable was eliminated in our study design. 

Despite similar composition, TADs have shown to cause variable cellular 

reactions on different cell types in previous studies. In another in vitro study, Malkoc et 

al. observed that the same Ti-6Al-4V alloy in MTN and Vector TAS (Ormco) 

significantly decreased the MC3T3- E1 (mouse osteoblasts) cell viability at 190 hours in 

contrast to AbsoAnchor (Dentos, South Korea) and IMTEC Ortho (3M Unitek, Europe). 

The Leone mini-screw (Leone, Italy) which contains stainless steel had the most 

significant decrease in MC3T3-E1 cell index at 190 hours. None of the TADs had 

significant adverse effects on human gingival fibroblasts (Malkoc et al., 2012). Velasco-

Ortega et al found that Ti-6Al-4V discs pretreated by a nitric acid passivation process 

were non-toxic to human or mouse fibroblasts. They noted that passivation will lead to a 

more dense stable oxide layer over the alloy surface and hence increase corrosion 

resistance (Velasco-Ortega et al., 2010). Interestingly another study done on MC3T3-E1 

cells in contact with Titanium alloy discs (Ti-6Al-4V) reported a transient reduction in 

their cell viability at day 4. This decrease was restored by day 8 and completely 

eliminated after 15 days (360 hours) in culture .The authors attributed this transient 

alteration of cell viability to the chemical composition (Citeau et al., 2005). Okazaki et 

al. observed decreased growth ratio of MC3T3- E1 cells around Ti-6Al-4V alloys than in 
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the presence of pure titanium and suggested that It was because of toxic effects of 

released Vanadium ions (Okazaki et al., 1998). 

To our knowledge, no other published study on mini-screws has studied potential 

cytotoxicity after submerging TADs in a dynamic cell culture medium for as long. 

Despite being an in vitro study, we have tried to mimic the in vivo conditions by 

simulating saliva flow and by submerging TADs for 720hrs (30 days) in an attempt to 

extract the highest possible level of toxic substances from the TADs, which is more 

stringent than the ISO standards in which 72 hours is the suggested longest period to test 

the acute effect of toxicity.  

Like any experiment, there are areas which could be improved in the study design 

– namely greater sample size, longer incubation time in medium (3 months of incubation 

in MEM vs. 30 days), increased duration of cytotoxicity testing (48hrs, 72hrs, up to 

190hrs).  

To explore the possible relationship between the released metal ions from TADs 

and the cytotoxicity of the extracts of medium, quantitative evaluation of ion release at 

each time point should be performed. Due to the time limit and the focus of our study, we 

did not include a quantitative ion release study as part of this project, which obviously is 

a deficiency.      

As we know, the mechanism of cytotoxicity can be cell necrosis (acute and 

usually by strong toxins) and apoptosis (a relatively longer time process and can be 

induced by mild toxins). In this study, we only tested the generic cytotoxicity of the TAD 

extract on the PDL cells without delineating its mechanism. This is beyond the scope of 

our study but can be further approached in future studies.    
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Considering the variables in methodology (discs vs. TADs, end point testing vs. 

real time cell analysis, incubation and testing duration), different cell origins, it is 

expected to see variable outcomes. Further standardized cytotoxicity testing using 

commercially available mini-screws in contact with different cell types (MC3T-E1, 

hPDLF, gingival fibroblasts) for longer durations may resolve some of the conflicting 

observations in the reported studies. The release of metal ions from orthodontic TADs 

might directly affect their biocompatibility. There are no exhaustive data correlating 

metal ion release from TADs, their biocompatibility and association with failure of 

orthodontic mini-implants or temporary anchorage devices. 

Considering the rising clinical use of TADs in orthodontics, further investigations 

should be performed to facilitate better understanding of the biological effects of the 

TADs on oral tissues. 
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CONCLUSION 

 

 

Under the conditions of this in vitro study, our results show that TADs from the four 

manufacturers generally exhibited similar insignificant cytotoxicity to human PDL 

fibroblasts, allowing us to accept the null hypothesis, that is, the TADs are not cytotoxic 

to hPDLF. 
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