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ABSTRACT 

THE DIRECT EFFECT OF LOW-MAGNITUDE HIGH-FREQUENCY 

MECHANICAL VIBRATION ON OSTEOCLAST FORMATION  

FROM RAW264.7 MONOCYTES 

 

 

Maxwell Antonio Abraham, DDS 

 

Marquette University, 2015 

 

 

    Low-magnitude high-frequency (LMHF) mechanical vibration has been demonstrated 

to enhance bone formation possibly through inhibition of osteoclastogenesis of bone. 

Earlier research has demonstrated that osteoclast formation from RAW264.7 monocytes 

was inhibited by a chewing cycle mimicking vibration through inhibition of dendritic 

cell-specific transmembrane protein (DC-STAMP). We hypothesize that application of 

LMHF mechanical vibration directly inhibits osteoclast formation from RAW264.7 

monocytes possibly in a frequency specific manner. 

 

    RAW264.7 monocytes (ATCC) were cultured in alpha minimal essential medium 

(MEM) with 10% fetal bovine serum (FBS) and 1% Pen/Strep at 37°C and 5% CO2. The 

cells were seeded at a density of 2000 cells/well in 96-well cell culture plates. After 

growth overnight, the cells were treated with 20 ng/ml recombinant receptor activator 

nuclear factor kappa-B ligand (RANKL) and refreshed every 2 days to induce osteoclast 

formation. In the meantime, the cells were subjected to a low-magnitude (0.3 g 

acceleration) mechanical vibration at various frequencies (0, 30, 60 and 90 Hz) 

respectively. For each frequency group, the vibration was applied for 1 hour per day for 5 

consecutive days. By the end of the 5th day, the cells were rinsed with 1X PBS and fixed 

in 4% formaldehyde for 5 minutes. Tartrate-resistant Acidic Phosphatase (TRAP, a 

marker enzyme of osteoclast) staining was performed. The TRAP+ multi nuclei (> = 3) 

cells were counted and calculated. For statistical analysis, one-way ANOVA was used to 

test the differences among different frequency groups with Tukey post hoc comparison to 

compare between the groups, with p value being set at 0.05. 

 

    Three days after RANKL stimulation, osteoclasts started to form from RAW264.7 

monocytes, with a peak observed on the 5th day. After 5 days, the cells underwent 

apoptosis and death. Compared to the control group (0 Hz), the 30 Hz but not 60 Hz and 

90 Hz frequencies of vibration group showed statistically significant reduction of 

osteoclast formation by approximately 21% (p < 0.05, n = 6). No significant difference 

was found among the three frequency groups. 

 

    Low-magnitude high-frequency mechanical vibration directly inhibits osteoclast 

formation from RAW264.7 monocytes, which is frequency specific. 
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CHAPTER I 

 

 

INTRODUCTION 
 

 

    Throughout the human body, bone homeostasis is based on a balance of bone 

formation and bone resorption. Osteocytes, the main regulator of bone homeostasis, are 

responsible for maintaining bone mass through perception and response to mechanical 

cues including vibration. Several studies have demonstrated the beneficial effects of 

mechanical vibration in enhancing bone maintenance, formation, and healing in animals 

and humans. (Rubin et al., 2002; Judex et al., 2007; Garman et al., 2007; Oxlund et al., 

2003; Xie et al., 2006; Rubin et al., 2004; Verschueren et al., 2004) 

Mechanical vibration is thought to have a positive effect on osteocytes, 

osteoblasts, and their bone marrow stromal precursor cells (BMSCs). The evidence 

includes: up-regulation of osteoblastic genes involved in bone formation and remodeling, 

direction of BMSCs lineage commitment to bias osteogenesis (You et al., 2008; Tan et 

al., 2007) and osteocytic signaling inhibition of osteoclastogenesis (Lau et al., 2010) all 

in the presence of mechanical vibration. It was recently demonstrated that mechanical 

vibration at a higher frequency of 60 Hz and 0.3 g acceleration loaded on the molars 

induced increased bone volumes, trabecular thickness, bone forming proteins, and a 

decrease in trabecular space in alveolar bone of rats (Alikhani et al., 2012), which is 

supported by a new study with a frequency at 30 Hz loaded on mouse molars that have 

been orthodontically moved. (Yadav et al. 2015). 

There has been recent evidence supporting direct inhibition of osteoclasts by 

mechanical vibration. Osteoclasts, multinucleated hematopoietic cells of the 

monocyte/macrophage lineage (Lerner, 2004; de Vries et al., 2009) are formed in several 
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steps, in which the receptor activator NF-κB ligand (RANKL)-mediated signaling 

pathway and downstream transcription factors play essential roles (Teitelbaum, 2007). 

Mechanical vibration (0.20 μm, 4 Hz for 1 h/day for 5 consecutive days) at a level that 

mimics mouse chewing cycles, directly inhibited osteoclastogenesis of RAW264.7 

monocytes in the presence of RANKL (Kulkarni et al., 2013). This is consistent with 

previous findings with low-magnitude high-frequency vibration (0.3 g, 45 Hz, 15 

min/day) (Wu et al., 2012). 

The aim of our study is to explore the direct effect of low-magnitude high-

frequency vibration, at various frequencies, on osteoclastogenesis in RANKL-induced 

RAW264.7 monocytes. 
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CHAPTER II  

 

 

LITERATURE REVIEW 

 

Osteoclasts and Osteoclastogenesis 

 

 

 Osteoclasts are multinucleated cells of monocyte lineage, arising from myeloid 

cells and well equipped to differentiate in a short period of time. The process of 

osteoclastogenesis is dependent on two cytokines. First, macrophage colony-stimulating 

factor (M-CSF) is critical for proliferating osteoclast progenitors. Second, NF-κB ligand 

(RANKL)-mediated signaling pathway and downstream transcription factors play 

essential roles in getting osteoclast formation from myeloid lineage and allows auto-

regulation of osteoclastogenesis (Lerner, 2004; de Vries et al. 2009; Teitelbaum, 2007). 

As summarized in Figure 2-1 and Figure 2-2, RANKL originates mainly from 

osteoblastic cells and binds to RANK receptors on pre-osteoclasts, inducing the RANKL 

pathway and activates nuclear factor of activated T-cells-2 (NFAT2 or NFATc1) through 

a pathway involving a multitude of other factors (Figure 2-1). Another key factor in 

regulating osteoclastogenesis is osteoprotegerin (OPG), a decoy factor produced in 

osteoblasts and secreted to bind to RANKL, which determines the final effective amount 

of RANKL in action (Datta et al., 2008) (Figure 2-2).  
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Figure 2-1: Osteoclastogenesis from myeloid cell lineage and the possible mechanism of 

directly regulating OC formation by mechanical vibration. (Kulkarni et al., 2013).  

 

 

 

 

Figure 2-2: Current understanding of preosteoblastic/stromal cell regulation of 

osteoclastogenesis, and possible mechanism of indirectly regulating OC formation 

through osteocytes and osteoblasts. (Khosla S., 2001).  

 

 

 RAW264.7 cells are a murine osteoclastic-like cell line which can be induced to 

undergo transformation to macrophagic or osteoclastic cells. It is the RANKL-mediated 

pathway that irreversibly commits the cells to that pathway.  These cells have been used 

as a model for osteoclastogenesis in most in vitro laboratory studies regarding LMHF 

vibration.  
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History of Mechanical Vibration on Bone Homeostasis 

 

 

The basic multicellular unit of bone mainly consists of osteocytes, osteoblasts and 

multinucleated osteoclasts which are regulated by parathyroid hormone (PTH), growth 

hormone (GH), cytokines, biochemical stimuli and mechanical stressors.  

Early work from Rubin’s group provided promising results in improving the 

quality and maintenance of bone using low-magnitude high-frequency (LMHF) 

mechanical vibration. The LMHF vibration is defined as mechanical vibration at 

frequencies ranging from 10-100 Hz and at magnitudes typically of 0.3 g acceleration or 

less than 10 microstrain (με).  Female sheep that underwent LMHF vibration for 20 

minutes per day for 1 year showed significant increase in bone trabecular quantity and 

quality (Rubin et al., 2002). Site-specific LMHV of 45 Hz and 0.3 g in female mice 

demonstrated inhibition of trabecular bone resorption and maintenance of a high level of 

bone matrix quantity and quality (Xie et al., 2006), increase in trabecular bone formation 

of the epiphysis (Garman et al., 2007) and prevention of the ovariectomy-induced 

decrease in strength of the femur and tibia (Oxlund et al., 2004).  Similar results were 

demonstrated in high risk (under 65 kg) postmenopausal women who underwent whole 

body mechanical vibration of 20-90 Hz over a 1 year period and demonstrated a 

significant increase in bone mineral density, whereas controls showed a decrease in bone 

mineral density over the same time frame (Rubin et al. 2004). Increases in bone mineral 

density (BMD) of the hips and muscle strength were also demonstrated in 

postmenopausal women undergoing low-magnitude 35-40 Hz of vibration over a 6-

month period (Verschueren et al., 2004). 
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 Judex et al. (2007) provided further evidence of the LMHF vibration induced 

anabolic effects being frequency specific and independent of the magnitude of vibration. 

It was believed that the effects on bone cells was either dependent on increasing the 

number of loading cycles or an inherent preference of cells to specific frequencies. 

These results have led to studies focusing on localized LMHF vibrations on the 

alveolar bone in dentistry. Alikhani et al. (2012) demonstrated that daily vibration of 60 

Hz, 0.3 g for 5 minutes resulted in an increase in bone volume, density, trabecular 

thickness, collagen crosslinking, osteogenic proteins and gene expression (Figure 2-3). 

 

 

 

Figure 2-3: Localized LMHF on alveolar bone on the molars of mice (60 Hz, 0.3 g, 5 

min). (From Alikhani et al. 2012) 
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Most recently, LMHF mechanical vibration of 30 Hz, 1 cN for 15 minutes for 7 

days during relapse after orthodontically moved mice molars demonstrated similar results 

with increase in tissue volume, increase in PDL healing, decrease in osteoclast surface 

and numbers, and an overall anabolic effect on the bone (Yadav et al. 2015). 

Mechanoreception of Osteocytes and Osteoblasts  

 
 

The transformation of mechanical stress to biomechanical signals occurs mainly 

in osteocytes and osteoblasts and involves membrane proteins (including integrins, 

connexions and stretch-activated ion channels). Detection of stressors such as fluid shear 

stress leads to intracellular activation of signals, including integrin induced focal 

adhesion kinase (FAK) – mitogen-activated protein kinase (MAPK) signals (especially in 

osteocytes) in addition to upregulation of connexions that form channels allowing  

communication of cells with the extracellular matrix with other cells. (Datta et al., 2008). 

Bone marrow precursors of osteocytes and osteoblasts have been demonstrated to 

transduce LMHF vibration signals to enhance bone formation. Pulsating fluid flow on 

osteocytes and osteoblasts resulted in a conditioned culture medium that prevented 

osteoclastogenesis (Tan et al., 2007) when co-cultured with pre-osteoclast cells. Lau et 

al. (2010) directly applied LMHF vibration on osteocytes (MLO-Y4, a mouse osteocyte 

cell line) and found a significant reduction in secretion of soluble factors, sRANKL and 

PGE2 which produced an increase in number and size of osteoclasts formed. You et al. 

(2008) further showed both fluid flow and mechanical vibration led to less 

osteoclastogenisis from RAW264.7 monocytes regulated by osteocytes as there was a 

decrease in RANKL, increase in OPG, and possible other soluble factors that inhibited 

osteoclastic formation (Figure 2-2).  
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However, it has been demonstrated that unlike osteoclasts, the osteoblasts and 

osteocytes are not responding directly to the frequency, or the number of loading cycles 

but rather the resulting mechanical strain (Rubin et al., 2002, Simmons et al., 2003) and 

fluid shear stress (Kreke et al., 2008; Sharp et al., 2009; Kavlock and Goldstein, 2011) 

induced as a by-product of mechanical vibration. In summary, mechanoreception of 

osteoblasts and osteocytes to mechanical vibration alter osteoclastic activity. 

Mechanoreception of Osteoclasts 

 

It has long been hypothesized that transduction of mechanical signals by 

osteoblasts and osteoclasts is necessary to induce change in osteoclastic activity. 

Recently, the ability of osteoclasts to directly transduce mechanical signals without the 

presence of osteoblasts and osteocytes has been studied, specifically from LMHF 

mechanical vibration. Using similar LMHF vibration protocols (45 Hz, 0.3 g, 15 

min/day) within the same range as previous studies, Wu et al. (2012) demonstrated a 

decrease in the number of RANKL-induced osteoclasts formed from RAW264.7 cells. 

This was measured using TRAP staining which stains the nuclei of osteoclasts with three 

or more nuclei indicative of successful osteoclastogenesis. They also noted a decrease in 

actin ring formation, mRNA expression on cathespin-K, MMP-9 as well as c-Fos protein, 

all of which are parts of the RANKL-induced cascade of osteoclastogenesis. Similar 

results were demonstrated by Kulkarni et al. (2013) with low magnitude vibration at a 

frequency that mimics mice chewing (4 Hz) for 1 h per day for 5 days after being treated 

with RANKL (20 ng/ml). In addition to the reduction in osteoclast formation, DC-

STAMP gene and protein expression were reduced under mechanical vibration. This gene 

is necessary for fusion of the osteoclast cells (Figure 2-1). These two studies, together 
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with the in vivo studies previously referenced are able to provide some clues on the 

precise mechanism in which mechanical vibration has its effects within the RANKL 

cascade.  

The way osteoclasts respond to mechanical vibration is different than that in 

osteoblasts and osteocytes. It is believed to be dependent on the frequency of oscillations, 

or the number of loading cycles and in vivo may be sensitive to specific frequencies that 

can be affected by the corresponding environment factors including hormones, age, and 

disease (Judex et al., 2007). Again, in contrast to osteoblasts and osteocytes, mechanical 

strain
 
(Sen et al., 2011), fluid shear stress

 
(Lau et al., 2010; Uzer et al., 2012), and 

hydrostatic pressure, do not contribute to the mechanotransduction of vibration in 

osteoclasts. The precise mechanism is presently unknown and has been difficult to study 

because of the dynamic complexity of RANKL cascade and multiple factors involved in 

the process (Figure 2-1). Although various studies have found significant relationships 

between LMHF vibration and inhibition of osteoclastogenesis from RAW264.7 

monocytes at various frequencies, none of them compared different frequencies to 

determine frequency specificity of the response. This in turn would lead to further 

investigation of the mechanisms involved that will help determine why this relationship 

exists whilst providing more insight into the general mechanisms involved in interference 

of the RANKL cascade.  

Clinical Implications 

 

Implications of the potential inhibition of RANKL signaling cascade by LMHF 

vibration has led to questions about its applicability in models in which RANKL signal is 

pathologically amplified. All existing in vitro studies evaluating mechanisms of the 
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LMHF vibration induced responses in bone have been limited to models of healthy bone. 

Porphyromonas gingivalis (Pg), a gram-negative anaerobic bacterium, is one of the most 

responsible pathogens for chronic periodontitis. Mechanistically the lipopolysaccharide 

(LPS) from the cell wall of Pg bacteria is responsible for the inflammatory response via a 

multifaceted acceleration in RANKL signaling cascade. This has been demonstrated ex 

vivo in a model of rat mandibular slices in which LPS reduced bone sialoprotein and 

subsequently increased RANKL signaling and osteoclastogenisis (Sloan et al., 2013). 

Kukita et al. (2013) studied sub-clones of RAW264.7 cells (RAW-D) and showed LPS 

did not act directly on RANKL, but increases its activity two ways. First, it activates toll-

like receptors (TLR), especially TLR-2, which will then amplify RANKL expression 

from other cells including cementoblasts and other PDL cells, in addition to producing 

shingolipids that promote RANKL expression from osteoblasts. Secondly, within 

osteoclasts, the TLRs induce an increase in factors within the cascade, especially 

NFATc1 (responsible for the auto amplification loop and abolishment of the necessity of 

this initial RANKL signal) which increases the RANKL cascade activity (Figure 2-1). 

Ultimately, this overall amplification of RANKL activity not only increases 

osteoclastogenesis, but promotes the inflammatory response seen in periodontitis.  

Complexities of this relationship are evident in the body of literature as it has 

recently been demonstrated that LPS can have opposing effects depending on its timing 

of stimulation on the osteoclast precursor monocyte. The mentioned effects only occur if 

the cell is firstly induced by RANKL alone and then monocyte is committed to the 

osteoclastic pathway. If not, this leads to multinucleated cells with phagocytic properties, 

but with no osteoclastic activity. (Zhang et al., 2011; Kajiya et al. 2010).  
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Orthodontic clinical implications have recently been studied in regards to relapse 

in orthodontics. Yadav et al., (2015) applied mechanical vibration on mouse molars 

moved orthodontically to see whether mechanical vibration causes a difference in post-

orthodontic movement. As a result, they found that mechanical vibration applied at 30 Hz 

and 1cN, 15 minutes per day for 7 days after removal of mesial force on mouse molars 

demonstrated a tendency to decrease relapse. There was a statistically significant increase 

in tissue density, sclerostin (which negatively regulates bone mass), decrease in 

osteoclast formation, with an overall anabolic effect on the bone. There was also 

maintenance in the thickness and integrity of the periodontal ligament compared to the 

control which showed sustained disruption of collagen fibers, post-orthodontic tooth 

movement. However, there was no difference in the movement of the molar compared to 

controls which may be influenced by other factors.  

Hypothesis 

 

 

Based on the findings of current studies, we hypothesize that LMHF directly 

inhibits osteoclastogenesis from RAW264.7 cells possibly in a frequency specific 

manner.  To test our hypothesis, we examined osteoclastogenesis from RAW264.7 cells 

in response to different frequencies of LMHF mechanical vibration.    
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          CHAPTER III 

 

 

MATERIALS AND METHODS 

 

 

Cell culture 

 

 

RAW264.7 (ATCC, Manassas, VA) cells between 10 to 14 passages were used 

for the osteoclast formation assay. RAW264.7 cells were cultured up to near-confluence 

in 75 cm
2
 culture flasks using α-MEM supplemented with 10% fetal bovine serum (FBS) 

(ATCC, Manassas, VA), 100 IU/ml penicillin and 100 μg/ml streptomycin (Cellgro, 

Manassas, VA) at 37 °C and 5% CO2 in cell culture incubator. 

Mechanical vibration setup  

 

 

Figure 3-1: Mechanical vibration system composed of 1) vibration generator, 2) 

modulator, and 3) accelerometer. 

 

 

A complete mechatronic test system in the experimental setup is outlined in 

Figure 3-1, containing mechanical and electrical components. A function generator 
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(Instek: Model FG 8015G) was used to generate a sinusoidal wave with a frequency of 

30, 60, 90 Hz (Figure 3-2). This was connected to a current amplifier (Advanced Motion 

controls, Camarillo CA, Model Brush Type PWM Servo Amplifier) to deliver 0.3 g 

acceleration to the vibration plate (Figure 3-3). The signal generated was then measured 

by an accelerometer (Endevco) (Figure 3-3) on the z-axis on an oscilloscope (Hewlett 

Packard 150MHz Model 54602B) (Figure 3-2), to verify the frequency (in Hz) and the 

amplitude of 0.3 g. The whole system was powered by a 24 V, 4 Amp regulated power 

supply (CSi/Speco Model: PSR-4/24). 

 

 

 

Figure 3-2: Left: Function generator controlling magnitude and frequency of mechanical 

vibration. Right: Oscilloscope to verify the output of the LMHF vibration.  
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Figure 3-3: Left: Vibration delivery plate. Right: Accelerometer measuring the delivery 

of LMHF mechanical vibration on the 96-well plate in the 60 Hz group.  

 

Mechanical vibration application 

 

RAW264.7 monocytes were harvested using a cell scraper and seeded at 2.0 × 10
3
 

cells/well in 96-well tissue culture plates in α-MEM with 10% FBS and antibiotics. To 

induce osteoclast formation, RAW264.7 cells were incubated with 20 ng/ml mouse 

recombinant RANKL (R&D systems, Minneapolis, MN) overnight to prime the cells to 

commit to osteoclast formation, and refreshed every 2 days for 5 days. Concurrently, 

each group was subjected to a frequency of 30, 60, 90Hz, with 0.3 g acceleration of 

vibration for 1 h per day for 5 consecutive days. The cells in the control group were 

treated under the same condition as the cells in the vibration group but without turning on 

the vibration. The plates were sealed with parafilm “M” (American Can Company, 

Greenwich, CT) immediately prior to vibration to stabilize the pH value of the medium 

during vibration and removed subsequently prior to return back to the incubator.  

Osteoclast formation assay 
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After the 5 days of culture and treatment, the cells were fixed in 4% formaldehyde 

in 1 x PBS for 5 minutes. Fixed cells were washed with 1 x PBS, and stained for tartrate-

resistant acid phosphatase (TRAP) according to the manufacturer's instructions (Sigma-

Aldrich, St. Louis, MO). The number of TRAP-positive multinucleated (3 or more nuclei 

per cell) cells was counted using a Leica DM IL microscope (Leica, Wetzlar, Germany) 

equipped with a 10× objective. 

Statistical analysis 

 

Each single experiment was repeated for at least 6 times. Data were presented as 

mean ± SD in graphs. Differences between the means were statistically analyzed using 

one-way ANOVA with Tukey's post hoc comparison, and the significance was 

considered when p value was less than 0.05. 
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CHAPTER IV 

 

 

RESULTS 

 

 

 
 

Figure 4-1: Under stimulation of RANKL, RAW264.7 monocytes merge to form 

multinucleated (>=3 nuclei) TRAP positive osteoclasts.  

 

 

Table 4-1: Number of osteoclast formed with 0 ng/ml of RANKL in control group.  

RANKL Trial Total  

0 ng/ml 1 0 

 
2 0 

 
3 0 

 
4 0 

 
5 0 

 
6 0 
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Table 4-2: Number of osteoclasts formed under various frequencies of LMHF 

mechanical vibration. 

 

RANKL TRIAL 0 Hz 30 Hz 60 Hz 90 Hz 

20 ng/ml 1 171 135 204 181 

 

2 180 132 189 155 

 
3 199 157 175 169 

 
4 219 205 155 204 

 
5 201 166 169 221 

 
6 213 159 186 193 

 
Ave 197 159 180 187 

 
SD 19 26 17 24 

 

 

Table 4-3: Descriptive statistics for the number of osteoclasts formed under 0.3 g 

magnitude and frequencies of 0 Hz (Group 1), 30 Hz (Group 2), 60 Hz (Group 3), 90 Hz 

(Group 4). 
 

Descriptives 

OC   

 N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for Mean 

Min Max Lower Bound Upper Bound 

1 6 197.1667 18.57328 7.58251 177.6752 216.6581 171.00 219.00 

2 6 159.0000 26.35906 10.76104 131.3379 186.6621 132.00 205.00 

3 6 179.6667 17.10750 6.98411 161.7134 197.6199 155.00 204.00 

4 6 187.1667 23.93672 9.77213 162.0466 212.2867 155.00 221.00 

Total 24 180.7500 24.87927 5.07846 170.2444 191.2556 132.00 221.00 

 

 

Table 4-4: ANOVA analysis for osteoclast formation under LMHF vibration 

ANOVA 

OC   

 Sum of Squares Df Mean Square F Sig. 

Between Groups 4709.500 3 1569.833 3.296 .042 

Within Groups 9527.000 20 476.350   

Total 14236.500 23    
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Table 4-5: Tukey comparison for osteoclast formation under LMHF vibration. 

Statistically significant reduction of osteoclast formation occurs only at 30Hz compared 

to controls (0 Hz) 

Multiple Comparisons 

Tukey HSD   

VAR00001 VAR00001 Mean Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound 

Upper 

Bound 

1 2 38.16667* 12.60093 .031 2.8975 73.4359 

3 17.50000 12.60093 .520 -17.7692 52.7692 

4 10.00000 12.60093 .856 -25.2692 45.2692 

2 1 -38.16667* 12.60093 .031 -73.4359 -2.8975 

3 -20.66667 12.60093 .380 -55.9359 14.6025 

4 -28.16667 12.60093 .148 -63.4359 7.1025 

3 1 -17.50000 12.60093 .520 -52.7692 17.7692 

2 20.66667 12.60093 .380 -14.6025 55.9359 

4 -7.50000 12.60093 .932 -42.7692 27.7692 

4 1 -10.00000 12.60093 .856 -45.2692 25.2692 

2 28.16667 12.60093 .148 -7.1025 63.4359 

3 7.50000 12.60093 .932 -27.7692 42.7692 

*. The mean difference is significant at the 0.05 level. 
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Figure 4-2: LMHF mechanical vibration significantly inhibits osteoclast formation from 

RAW264.7 monocytes by 21% at 30Hz (n = 6, * p = 0.031).   
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Figure 4-3: Reduction in osteoclast formation as demonstrated in cellular cultures stained 

with TRAP. LMHF mechanical vibration inhibits osteoclast formation from RAW264.7 

monocytes by 21% at 30Hz, which is statistically significant. (n = 6, * p = 0.031)   
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CHAPTER V 

 

 

DISCUSSION 

 

 

In this study it was demonstrated that mechanical vibration directly inhibited 

osteoclast formation from RAW264.7 monocytes in a frequency specific manner. 

Overall, mechanical vibration reduced osteoclast formation (p<0.05, n=6). The 21% 

reduction in osteoclastogenesis was only significant in the 30 Hz group (p<0.05, n=6) 

when compared to the control (Table 4-4 and Table 4-5). Although decreases were shown 

at 60 and 90 Hz, these were not significant when compared to the control, as seen in 

Figure 4-2 and Figure 4-3. There was also no difference amongst the three frequency 

groups (Table 4-5). Our results support those of Wu et al. (2012), Kulkarni et al. (2013) 

and most recently Yadav et al. (2015) that show osteoclast precursor cells are directly 

responsive to mechanical vibration. Unique to our study, these results indicate that the 

relationship with LMHF vibration and its effects on osteoclastogenesis may be frequency 

specific as overall there was a decrease at all levels of frequency, but only 30 Hz was 

statistically significant, however this precise value may vary as there was no statistical 

significance amongst the different frequency groups. 

This dose specificity could help potentially explain significant reduction in 

RANKL-induced osteoclastogenesis observed across various different LMHF levels in 

previous studies compared to the range (0-90Hz) in our study. Wu et al. (2012) showed 

vibration at 45 Hz and 0.3 g for 15 minutes reduced osteoclastogenesis and down-

regulated c-Fos, whereas Kulkarni et al. (2013) recently demonstrated this with 4 Hz and 

20 μm displacement for 1 hour, through down-regulation of DC-STAMP protein 
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production.  LMHF vibration of 60 Hz and 0.3 g vibration at the molars in healthy rats 

had a gradient effect and increased alveolar bone volumes, osteogenic genes, collagen 

crosslinking, bone formation particles, and mineral density (Alikhani et al., 2012). A very 

recent study with 30 Hz for 15 min and 1 cN of force on orthodontically moved mouse 

molars in relapse demonstrated a decrease in osteoclast number and surface in addition to 

an increase in tissue volume (Yadav et al, 2015). 

The response at the various frequency levels may be explained by Judex et al. 

(2007) who showed that the effects of mechanical vibration were mainly dependent on 

increases in the frequency of oscillations or the number of loading cycles on bone cells, 

not the magnitude of the vibration. Furthermore, in vivo these cells may have an inherent 

preference to specific frequencies that can be altered by the environment, including 

hormones, disease and age. The variations in the vibration protocol, culture medium and 

environment set up across the different studies may explain the different levels of 

significance amongst the studies. In our study, significance only at 30 Hz compared to the 

control indicates frequency specificity of RAW264.7 monocytes in this particular 

protocol. However, the lack of statistical significance between the three treatment groups 

warrants further study to determine the exact range of specificity for these cells as factors 

such as limited sample size, in addition to the increments in frequency being too large to 

accurately decipher precise changes at various levels of LMHF mechanical vibration. 

Internal studies of frequencies above this range in frequency do not indicate significant 

levels of change compared to 90 Hz and this is supported by previous studies which 

defined LMHF as ranging between 10 and 100 Hz (Judex et. al 2007). Frequencies below 

this range however, i.e. 4 Hz (Kulkarni et al., 2013), warrant inclusion in future 
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comparative studies. Larger sample groups, consistent design and frequency levels of 

treatment groups that are closer in range (i.e. 10 Hz difference between each group) can 

aid in investigating ideal range of frequency specificity for LMHF vibration on 

RAW264.7 monocytes, and eventually determine if this would be clinically significant. 

To the best of our knowledge, this is the first study to compare the frequency dependency 

of the direct effect of LMHF mechanical vibration on osteoclastogenesis, thus further 

study is warranted.  

 The precise biological mechanism is presently unknown and has been difficult to 

study given the dynamic complexity of the RANKL cascade and multitude of factors that 

play a role. It is currently unknown how and why certain levels of frequency alter the 

RANKL cascade, but our study implicates dose specificity. Identifying the precise ideal 

range of frequency would aid in investigating the underlying mechanisms by measuring 

changes in various factors in the RANKL cascade at this determined frequency compared 

to controls and other frequencies. Previous study of osteoclast precursor cells in vitro 

show that mechanical strain
 
(Sen et al., 2011), fluid shear stress

 
(Lau et al., 2010; Uzer et 

al., 2012), in addition to the negligible hydrostatic pressure, do not contribute to the 

mechanotransduction of vibration on these cells. Furthermore, comparisons with vastly 

studied mesenchymal cells, including osteoblast and osteocytes, may yield limited 

results. Although mesenchymal cells and hematopoietic cells both reside in bone marrow 

in vivo, they possibly respond to different types of mechanical load. Mesenchymal cells 

were shown not to respond to 60 Hz and 0.3 g (similar to our study), but do respond to 

mechanical strain (Rubin et al., 2002, Simmons et al., 2003) and fluid shear stress (Kreke 

et al., 2008; Sharp et al., 2009; Kavlock and Goldstein, 2011). Thus, vibration may then 
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only directly affect hematopoietic cells, inhibiting osteoclast formation and ultimately 

resulting in anabolic bone activity.  

The Kulkarni study (2013) with similar protocol as ours but at 4 Hz provided 

promising evidence of a significant reduction in DC-STAMP (responsible for fusion of 

the pre-osteoclastic cells) post-mechanical vibration of RAW264.7 monocytes and 

subsequent inhibition of osteoclastogenesis. Extending our current study to measure 

levels of DC-STAMP can allow us to hypothesize the mechanisms of mechanoreception 

and transduction of the precursor cells and would allow comparisons to determine 

potential relationships with this (or other RANKL cascade factors) and frequency 

specificity.  

There may be potential clinical implications of our findings. Due to its anabolic 

effects, hypothetically the LMHF vibration could result in reduced time for orthodontic 

retention when studied in mice. Yadav et al., (2015) recently showed that 30 Hz at 1 cN 

applied for 15 minutes for 7 days after removal of mesial force on mouse molars - 

demonstrating a biological tendency to decrease relapse. Although the difference in molar 

movement was not significant, compared to the control, there was a statistically 

significant increase in tissue density, sclerostin (which negatively regulates bone mass), 

decrease in osteoclast formation, with overall anabolic effect on the bone. There was also 

maintenance in the thickness and integrity of the periodontal ligament compared to the 

control, which showed sustained disruption of collagen fibers post-orthodontic tooth 

movement. Further study would be required to determine a potential frequency specificity 

of these effects as well as determination if these results are clinically significant.   
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Other implications include managing periodontal pathology specifically that of 

lipopolysaccharide (LPS) from the cell wall of one of the primary pathogens, P. 

gingivalis. The interaction with RANKL and LPS ex vivo in mandibular slices of rats 

(which showed increased in osteoclastogenesis in the PDL) (Sloan et al., 2011) and 

precursor RAW264.7 cells (increase in the RANKL cascade, especially NFATc1) 

(Kukita et al., 2013) has been investigated and can lead to more information on the 

mechanism of vibration inhibiting osteoclastogenesis. Specifically, with this pathological 

amplification of RANKL activity, a study model similar to ours could investigate if 

LMHF vibration can reduce or prevent the increase in RANKL activity and 

osteoclastogenesis from RAW264.7 monocytes. Although difficult to study because of 

the complexity in the cascade, establishing this relationship can warrant further 

investigation on the effects of LMHF vibration on RANKL in vivo and potential clinical 

applications in adjunct therapeutics. 

Conclusion 

 

 

1. Low-magnitude (0.3 g acceleration) high-frequency (10-100 Hz) mechanical 

vibration directly inhibits osteoclast formation in vitro, which is statistically 

significant at 30Hz, but not 60 and 90 Hz. The unknown mechanism of this 

phenomenon needs to be further investigated.  

 

2. Potential clinical implications include biological enhancement of orthodontic 

retention and adjunct therapeutics in bone maintenance in periodontitis. 
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