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ABSTRACT 

INFLUENCE OF FLUORIDE AND STRESS ON THE ELECTROCHEMICAL 

PROPERTIES OF NICKEL-TITANIUM  

COILS 

 

 

Ashley Barnes 

 

Marquette University, 2015 

 

 

 

The aim of this study was to examine the effects of fluoride and stress on the 

electrochemical properties of nickel-titanium coils. Forty Dentsply GAC NiTi coils were 

divided into four groups of ten and individually tested. Twenty coils were placed in a 

solution of artificial saliva, where ten of the twenty were compressed and the other ten 

were not stressed. The other twenty coils were placed in a 1500 ppm NaF solution, where 

ten were compressed and ten were not. The coils were connected to a computer driven 

potentiostat and three tests were conducted: open circuit potential monitoring for 2 hours, 

a linear polarization scan, and a cyclic polarization test. The results showed the coils to 

possess a more noble OCP when in artificial saliva compared to fluoride. The non-

compressed, artificial saliva group possessed the greatest polarization resistance (p<0.05), 

while that group and the compressed, artificial saliva group displayed a significantly 

(p<0.05) lower corrosion current density. Overall, it appeared fluoride had a greater 

detrimental effect than did stress when considering electrochemical properties 
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CHAPTER 1 

INTRODUCTION 

 

 

Orthodontics is a specialty in dentistry that involves the correction of 

malocclusion. Due to the relationship of the jaws to each other or just the dental arches 

themselves, any discrepancy can create malocclusion. Orthodontics uses force to move 

the teeth into proper occlusion (Proffit et al., 2007). To move teeth into their proper 

position, force has to be placed on the tooth to allow for physiological bone resorption on 

the pressure side and bone fill on the tension side (Proffit et al., 2007). This physiological 

bone remodeling is the basis for orthodontic tooth movement. Research has shown that 

light continuous force produces the most physiologic tooth movement (Proffit et al., 

2007). It is a balancing act between forces being too heavy that can cause undermining 

resorption of the bone and forces being too light that would not produce any tooth 

movement. Orthodontic tooth movement is often accomplished by bonding a bracket to 

each tooth. A wire is ligated to the bracket. By ligating the wire to the bracket it produces 

a force that facilitates tooth movement (Proffit et al., 2007). Orthodontic tooth movement 

is not limited to brackets and wires but this method is widely used. The materials used for 

brackets and wires can vary, but historically brackets and wires were composed of 

stainless steel. Although stainless steel brackets were widely used, wires being made of 

titanium alloys became available in the 1970s (Proffit et al., 2007). One of these wires 

was a Nickel-Titanium (NiTi) alloy developed for the space program and the second wire 

was Titanium Molybdenum alloy (TMA), which was developed for orthodontics. 

Nickel-Titanium is a very popular alloy used in orthodontics. It can be used as an 

archwire to help align teeth. It can also be used in a coil spring form to open and close 
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spaces in the dental arch to help to align teeth. Its use in orthodontics is extensive and 

much research has focused on understanding the properties of this material. NiTi’s 

unique properties include demonstrating shape memory and superelasticity. The basis for 

nickel-titanium’s unique properties lies in its ability to exist in two different crystal 

phases. These phases are known as martensite and austenite. At low temperatures and 

high stress the martensitic crystal structure is most stable. At high temperatures and low 

stress the austenitic crystal is the most stable (Proffit et al., 2007). Although other alloys 

can exist in different crystal structures, NiTi is unique because this alloy can reversibly 

transition between the two structures at low temperatures. NiTi’s ability to phase 

transition, or transition between crystal structures, gives this alloy the ability to exhibit 

shape memory and superelasticity. Shape memory is the ability of NiTi to undergo 

deformation at one temperature, then recover its original shape upon heating above its 

transformation temperature. The shape memory property gives NiTi the ability to return 

to its original form after being plastically deformed. NiTi is formed into a shape at a 

temperature well above the transition temperature in the austenitic phase. The alloy can 

then be plastically deformed in its martensitic phase but will return to its original form 

when heated back to the austenitic phase (Barwart et al., 1999).  For instance, a certain 

shape (arch form) can be set while the alloy is maintained at an elevated temperature, 

when it is cooled and placed into the mouth engaging the mal-aligned teeth it is 

plastically deformed. As the oral temperature raises the temperature of the alloy above 

the transition point it returns back to its original arch form over time. The force the wire 

places on the brackets that are bonded to the teeth as the wire returns to its original form 

produces orthodontic tooth movement. Superelasticity refers to NiTi’s ability to have 
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very high reversible strain. This is also due to the martensite-austenite phase transition. In 

temperatures very close to but below the transition phase, stress can be placed in the 

austenitic phase causing transition into the martensitic phase. Over a wide range of strain, 

this alloy produces an almost flat section on the load-deflection curve and a steady 

amount of stress (Barwart et al., 1999). Clinically NiTi can be deformed at high levels 

and still produce a consistent amount of force. 

Nickel-Titanium can be used as an archwire to align teeth but also in coil spring 

form to close or open space. NiTi coils have become popular because of the low and 

constant force it places on the teeth. The properties of shape memory and superelasticity 

allow the coil to be stretched over a varying distance but produce the same force 

regardless of change of distance. NiTi coils can be used in a variety of ways clinically. 

Orthodontic space closure is not limited to NiTi coils and may be accomplished 

with stainless steel coils or elastomeric chains. When comparing elastomeric chain and 

stainless steel coils to NiTi coils, it has been shown that NiTi closes space more 

efficiently with light continuous force. 

Since NiTi coils are a commonly used material in orthodontic treatment, it is 

important to understand how this material is affected by the oral environment. Often 

when metal or alloy reacts with the environment some form of corrosion occurs. 

Corrosion can be described as an electrochemical process where a metal is transformed 

into an oxide through the loss of ions (Akid, 2004). To simulate the oral environment in 

this study, compressed and non-compressed NiTi coils were tested in artificial saliva and 

fluoride to compare their corrosion characteristics. The results of this data will allow for 
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better understanding of the corrosion properties of NiTi coils when in the oral 

environment and exposed to fluoride.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 

Orthodontics is a specialty in dentistry that concentrates on the treatment of 

malocclusions. These malocclusions can be caused by irregular skeletal relationships or 

an irregular relationship of the dental arches to each other. To help correct these 

malocclusions, teeth can be moved orthodontically to allow for teeth to be placed into 

proper occlusion. To initiate orthodontic tooth movement forces must be placed on the 

teeth desired to move. This force creates a physiological change in the bone surrounding 

the tooth and allows the tooth to move. Orthodontic fixed appliances are often used to 

allow for a controlled medium to place force on the teeth. These appliances are often but 

not limited to stainless steel brackets bonded to the enamel surface and an archwire 

ligated to the brackets. The amount and direction of force influences the type of tooth 

movement, which can have adverse or beneficiary affects. The force on the teeth can 

range from heavy or light force. Some believe the use of heavy force increases the rate 

and the amount of tooth retraction and can produce orthopedic affects, but this also 

includes the adverse effects of loss of rotation control and greater anchorage loss when 

orthopedic affects are not desired. On the other hand, the amount of anchorage loss is 

proportionally less in the use of light force (Yee et al., 2009).  

To correct some malocclusions, extractions of permanent teeth are necessary to 

create a proper balance and occlusion. This type of treatment is typically used to 

minimize crowding and gain appropriate occlusal relationships (Proffit et al., 2007). Once 

space has been created from extractions, these spaces need to be appropriately closed 

using orthodontic mechanics. Closure of space can be achieved multiple ways. One way 
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involves closing loops in a continuous archwire. This wire is ligated to each bracket and 

is activated by pulling the distal ends of the wire enough to open the loops and cinching 

the wire behind the most distal bracket to inhibit the wire from sliding anteriorly. The 

force from the activated loops closes the extraction space up to the point where the loop 

is no longer open or active. Another method of closing space is termed sliding mechanics, 

which involves pushing or pulling a tooth along a continuous archwire with a force 

delivery system adequate to produce and sustain movement. Generally, either a coil 

spring or a form of elastomeric material is used to accomplish tooth movement (Barlow 

and Kula, 2008). 

The alloy NiTi was first introduced for use in orthodontic treatment as a result of 

the discovery of its unique characteristic of shape memory. The shape memory 

characteristic of NiTi alloys is due to the occurrence of two crystal modifications, called 

austenite (high temperature phase) and martensite (low temperature phase), which can be 

changed back and forth through variations in temperature (Barwart et al., 1996). The 

transition between different phases (crystal structures) for NiTi occurs during the 

transition temperature range (TTR) (Nattrass et al., 1997). During this temperature range 

the two crystal forms exist in equilibrium. The two phases are characterized by different 

physical properties. Martensitic wires are highly ductile and may be plastically deformed. 

When heated to its TTR, such a deformed wire returns to its original shape (shape 

memory) (Barwart et al., 1999; Miura et al., 1988). The advantage of shape memory lies 

in the ability of ligating a NiTi archwire with an ideal form, in an arch with an 

undesirable arch form. The force from the wire returning to its original form is placed on 

the teeth and allows for the movement of those teeth to the desired arch form. Another 
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unique characteristic NiTi can also express is called superelasticity. Superelasticity refers 

to the characteristics of the wire that influence stress and strain. Strain refers to the 

amount of deformation at distinct intervals of tensile or compressive loading (stress). In 

regards to superelastic NiTi, in spite of the increase of strain placed on the material, only 

a relatively small increase of stress occurs. This superelastic phenomenon is caused by 

the bending elastic energy, which is a stress-induced martensite transformation (Miura et 

al., 1988; Manhartsberger and Seidenbusch, 1996). This phenomenon is reversed when 

strain is reduced and can only occur at temperatures above the TTR. When examining the 

stress strain curve of a superelastic wire, one can see a plateau phase along the deflection 

of the wire, which reflects the constant force delivery. Brauchli et al. (2011) make the 

point that when plotting the stress vs strain curve for stainless steel (SS) springs, it 

displays a linear plot of force deflection unlike the force plateau of NiTi. Brauchli et al. 

(2011) also state that the plateau is due to a structural lattice shift from austenite to 

martensite in the activation curve and vice versa in the deactivation curve. The 

deactivation portion of the curve is the most important to orthodontics because it is the 

force delivered clinically. The energy that was stored in the lattice by transforming 

austenite to stress induced martensite is continuously released during deactivation and 

leads to the maintenance of the force level even though the spring is being deactivated 

(Brauchli et al., 2011). The advantage of a superelastic NiTi spring is its ability to 

provide consistent force delivery.  

NiTi coils are often viewed as an efficient way to close spaces but can also be 

used in other ways for orthodontic tooth movement in correction of malocclusion. Aksoy 

and Aras presented a case report of correcting partially impacted second molars. During 



8 

 

the first phase of orthodontic treatment a lingual arch was constructed and a NiTi coil 

spring was attached to the arch and to the partially impacted second molar (Aksoy and 

Aras, 1998). The force placed on the tooth from the NiTi allowed for eruption of the 

second molar and continued orthodontic treatment allowed for the correction of the 

patient’s malocclusion. NiTi coil springs can be used to close space (closed coil springs), 

as well as open space between teeth (open coil springs). Binder’s case report states that 

open coil springs are often placed over archwires to open space for blocked out teeth or 

for other purposes. Binder used a method of compressing an open coil spring between 

two brackets that are a distance apart that is smaller than the original size of the coil. 

Once the coil is placed, the “opening” force of the coil leads to force placed on each tooth 

and the opening space for a blocked out tooth (Binder, 2002). Ozturk et al. (2005) used 

open coil NiTi springs to distalize molars. If a patient presents with a Class II 

malocclusion, one way to correct it is to distalize the maxillary posterior segment and 

allow the molar to occlude in a Class I occlusion. Although this method seems simple, 

anchorage loss can occur when opening space at the area of the anterior teeth. Anchorage 

loss occurs when the force that is needed to move the posterior teeth is greater than the 

force needed to move the anterior teeth, which is an undesired movement. Ozturk et al. 

(2005) found that distalization occurred from distal tipping of the molar and anterior 

positioning of the premolars. Their results showed that by using the NiTi open coil 

springs for molar correction, that for every mm of distal molar movement, the premolars 

(right and left) moved anterior .56 mm and .68 mm (Ozturk et al., 2005). Carillo et al. 

(2008) presented a case report using closed coil NiTi springs to intrude teeth. Intrusion of 

teeth may be desired if a tooth is over erupted and causes a disturbance in the vertical 
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dimension of the occlusion. In Carillo et al.’s study, a miniscrew was placed in the 

alveolar bone and a closed coil spring was attached to the screw and the desired molar for 

intrusion. The force of the closed coil spring on the tooth and the absolute anchorage of 

the miniscrew allowed for intrusion of the molar (Carillo et al., 2008). There are more 

examples of NiTi coil springs versatility being used to retract teeth into space, open 

spaces in the arch (Steinbech et al., 2006), and distalize molars (Schneevoigt et al., 1999). 

Although NiTi has ideal characteristic for orthodontic tooth movement, it is 

important to understand the force placed on the teeth. In Ryan’s review of NiTi coils he 

states that light continuous forces have been considered optimal for tooth movement. He 

goes on to say that light forces produce a continuous tooth movement that takes less time 

(Ryan, 1995). Suzuki et al. (2006) studied tooth movement created by various titanium 

coils.  In regards to light forces in orthodontic tooth movement he states that the degree 

of periodontal tissue compression influences the pattern of bone resorption, leading to the 

pattern of tooth movement. Moderate compression leads to direct bone resorption in 

periodontal tissue, and excessive compression leads to undermining bone resorption. 

Lighter forces are advantageous for tooth movement without inducing tissue damage 

(Suzuki et al., 2006)). Nattrass et al. (1997) studied force systems and quoted previous 

literature stating that 100-200 g is optimal for canine retraction. They also comment on 

other theories, that the duration of applied force is more influential than the actual 

magnitude of the force. They go on to say that light continuous forces seem to have a 

more advantageous physiological result, while heavy momentary forces are not effective 

in bone remodeling (Nattrass et al., 1997). In a study by Bokas and Woods, they used a 

split mouth design study to compare closing rates of NiTi coils versus elastomeric chains 
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for premolar extraction sites. They state that forces in the range of 100-300 g specifically 

for canine retraction are typically found to be ideal. They then go on to say that this range 

could change due to the morphology of the teeth (Bokas and Woods, 2006). In regards to 

orthodontic tooth movement, light continuous forces are advantageous for a physiological 

response, but when closing extraction spaces the ideal force range can increase depending 

on the size, shape and amount of teeth being moved at the time (Espinar-Escalona et al., 

2013). 

There are a number of variables that affect the force coil springs deliver to teeth. 

These include the type of alloy, wire size, lumen size, pitch of the coils, temperature and 

the length of the spring (Boshart et al., 1990).  Boshart et al. (1990) studied the forces of 

Co-Cr-Ni and stainless steel open and closed coil springs. The coils varied in 

composition, type, length, wire size, and lumen size. Their results showed that an 

increase in wire size increases the load deflection rate. As the angle between the coils that 

are perpendicular to the long axis of the spring, also known as pitch angle, increases, the 

load deflection rate increases due to the decrease in coil length. The results also showed 

Co-Cr-Ni being less stiff than stainless steel. Bourke et al. (2010) found that as the pitch 

of a wire decreases the amount of the wire incorporated into the wire is increased. 

Chaconas et al. (1984) tested force characteristics of various open coil wire types with 

various wire and lumen sizes. They found that an increase in wire size and a decrease in 

lumen size would increase the maximum force production and the force produced by a 

given activation. Angolkar et al. (1992) tested Co-Cr-Ni, stainless steel, and NiTi closed 

coils springs for force degradation. The coils were extended to a force level of 150-160 g. 

The coil forces were tested at eight time intervals within 28 days. The study revealed that 
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over time all three coil types showed force loss.  The least amount of force decay was 

found in one of the groups of NiTi coils but overall force loss was in the range of 8 to 

20% (Angolkar et al., 1992). von Fraunhofer et al. (1993) compared the unloading force 

of open and closed NiTi and stainless steel coils. The results showed that open coil NiTi 

springs showed a force of 61 g over a range of 7 mm in activation. The stainless steel 

open coil spring showed a force of 257 g to 191 g over a change of 0.3 mm in activation. 

Overall, the NiTi coils showed light continuous (75-100 g) force over a range of 

activation, while the stainless steel coils delivered heavy forces with rapid decay over 

small activations (von Fraunhofer et al., 1993). Espinar-Escalona et al. (2013) studied the 

effects of temperature on the force application of NiTi closed coiled springs. Coils were 

tested under tension in room temperature artificial saliva. As the coils were unloaded the 

solution temperature was either increased or decreased. The results showed that changes 

of temperature did not modify the superelastic behavior of the NiTi coils and that an 

increase in temperature of the solution decreased the corrosion potential (Espinar-

Escalona et al., 2013). 

Although NiTi coil springs appear to be a sufficient mode for closing space it is 

important for clinicians to understand other products on the market. Coils are not the only 

method available for closing space as stated above. One main comparison occurs between 

NiTi coil springs and elastomeric chains. When comparing these products it is important 

to understand their force delivery. When these materials are stretched, their stress 

increases proportionally to the applied strain. This reaction is also described as the 

material’s elastic modulus (Nightingale and Jones, 2003). When the stretching is released 

(unloaded) the decrease in strain is identical to its previous increase, this is known as a 
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perfectly elastic material. Nightingale and Jones found that elastomeric chains do not 

show this exact characteristic. When an elastomeric chain is stressed, it loses energy and 

its unloading curve displays less stress for a given stretch compared to the loading curve 

of NiTi. Nightingale and Jones also performed a randomized clinical trial with twenty-

two orthodontic patients using a split mouth design. They closed space on one quadrant 

with a sliding elastomeric chain and sliding mechanics. On the opposing quadrant, they 

used a nickel-titanium coil spring and sliding mechanics. Initial forces were recorded as 

well as at the subsequent visit. It was found that 59% of the elastomeric chains 

maintained at least 50% of their initial force over a period of 1-15 weeks. NiTi coil 

springs lost force rapidly over the initial 6 weeks with a force level plateau for the 

remainder of the time. Comparatively, 46% of the NiTi coils maintained at least 50% of 

their initial force. The monthly rate of space closure for elastomeric chains was 0.21mm 

and 0.26 mm for NiTi coils. Nightingale and Jones concluded that elastomeric chains and 

NiTi coil springs close space similarly (Nightingale and Jones, 2003). Bokas and Woods 

performed a clinical comparison of elastic chains and NiTi springs through a split mouth 

design. Initial forces of the chain and springs were equal and anchorage loss was 

measured. One of the major findings was that elastic chains have been shown to lose 

approximately 50-70 percent of their initial force over the first 24 hours. Bokas and 

Woods state that the force decay then becomes more gradual, resulting in approximately 

30-40 percent of the original force remaining after four weeks. To many practitioners this 

is a significant amount of force loss if trying to retract teeth over time. If an appropriate 

amount is placed on a tooth during placement of the elastic chain for orthodontic tooth 

movement, it is unknown how effective the decaying force is during this 4 week time 
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period. Their results showed no statistical difference in anchorage loss (forward 

movement of the molar) or space closure (Bokas and Woods, 2006). Samuels et al. 

(1993) also did a study comparing the rate of space closure using a NiTi spring and 

elastomeric chain. They also used a split mouth design study comparing elastic chain and 

NiTi coils and found that there was a significantly greater rate of space closure by the 

NiTi closed coil spring. Samuels et al. found that the NiTi springs offered a more ideal 

elastic modulus and displayed a low constant force that was more biologically acceptable. 

The elastic chain delivered high intermittent forces with rapid force decay (Samuels et 

al., 1993). Santos et al. (2007) compared the force decay between NiTi springs and 

elastomeric chains. Santos et al. stated the elastomeric chains exhibited a high percentage 

of force loss during the first 24 hours, but after that the force decay continued 

progressively, while the NiTi coil springs displayed progressive force decay over 28 

days. These findings are important because it is essential for practitioners to understand 

the amount of force being used even while the patient is out of the office setting. Sonis 

also compared the rate of canine retraction between elastomeric chains and NiTi springs 

and found NiTi springs to be more favorable in regards to the rate of space closure 

(Sonis, 1994).  

Additional comparisons have been made between NiTi coils and repelling 

magnets. For correction of malocclusions, molars can be distalized to achieve the 

appropriate molar classification. Erverdi et al. (1997) compared repelling magnets and 

open coil springs to distalize molars. One significant finding from this study was the 

force decay found with the magnets. As the magnets moved farther away, the force 

decreased. Erverdi et al. stated that at 0 mm, the force generated was 225 grams, but at a 
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distance of 1 mm apart, the force value was 75 grams. The force decay was 50-70 percent 

for every 0.5-1 mm of tooth movement. This type of force decay was not observed in the 

coil, which displayed more distal tooth movement and was found to be a more effective 

means of molar distalization (Erverdi et al., 1997).  

Although the characteristics of NiTi springs have been widely studied, Maganzini 

et al. (2010) found that not all NiTi coil springs manufactured were created equal. The 

commercial coils they tested showed inconsistent unloading forces and failed to exhibit 

characteristics like peak forces and constant deactivation force. Melsen et al. (1994) also 

tested 19 different coil springs and found only the GAC spring exhibited the desired 

superelastic characteristic in the deactivation curve.  

Much of the literature points to NiTi springs having a possible clinical advantage 

over other conventional alternatives. If a clinician decides to choose NiTi springs, it is 

important to understand any possible variation that may occur in the oral environment. 

Han and Quick performed a study where they compared the force generation of stainless 

steel springs, NiTi springs and elastic chains after being exposed to a simulated oral 

environment. They found that NiTi springs were highly resistant to degradation in the 

simulated oral environment. Stainless steel springs had some degradation and elastic 

chains lost the largest fraction of force compared to the other 2 groups (Han and Quick 

1993). Although NiTi springs do show a lack of degradation in the oral environment, it is 

important to understand any changes that may occur while the spring is active in the 

mouth. Tripolt et al. (1999) tested superelastic coil springs in various temperatures in the 

mouth. At extreme temperatures, superelastic coils are very sensitive and can display 

varying force ranges. Tripolt et al. stated that although in varying extreme temperatures 
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the force magnitude of the coils greatly varied, they found that in the range of 30-40oC, 

the force magnitude variation was very small. Vidoni et al. (2010) examined the 

superelastic characteristics of coils Nitinol, NiTi, and RMO coils after exposing them to 

strain and thermal treatments. These coils were kept in artificial saliva and thermocycling 

was performed twice on days 22 and 45. Only the Nitinol group showed minimal changes 

in the superelastic phase or load deflection. None of the groups had changes in their 

mechanical properties. Nattrass et al. (1998) compared elastomeric chains and NiTi 

springs in varying oral environments including Coke, turmeric and increased 

temperatures. The results showed elastomeric chains were affected by both environment 

and temperature. Temperature caused the greatest amount of force loss of the two (Vidoni 

et al., 2010). On the other hand, NiTi springs were not affected by their environment and 

demonstrated a slight increase in force as temperatures increased. To counter these 

results, Walker et al. (2005) tested the effects of fluoride prophylactic agents on the 

mechanical properties of NiTi archwires. These fluoride agents can often be found in the 

oral environment. The results showed a decrease in the unloading properties of NiTi 

wires. 

Like any metal, an alloy can experience corrosion from its surrounding 

environment. Corrosion can be referred to as environmental degradation or even rusting. 

This process can be defined as “chemical wasting” for when a metal or alloy reacts 

within its environment (Akid, 2004). Alloys like NiTi can exhibit pitting corrosion where 

localized metal is lost due to ionic migration due to the potential gradient between the pit 

and the environment. When alloys are placed in certain environments, degradation 

(corrosion) can occur which could lead to fracture of the alloy. Akid refers to a 
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phenomenon known corrosion fatigue or stress corrosion cracking where a metal exhibits 

cracking under the combination of corrosion and tensile stress, when fatigue would not 

have occurred if stress or the environment were applied in isolation (Akid, 2004). When 

NiTi exhibits this type of corrosion, it can be concerning during active orthodontic 

treatment. Yokomaya et al. (2002) studied the fracture mechanisms of titanium screws for 

dental implants. They examined the factors that caused the acceleration of corrosion and 

fatigue. It was concluded that titanium may experience hydrogen embrittlement. This 

phenomenon can be associated with the formation of a brittle hydride phase when an 

alloy absorbs hydrogen from its surrounding environment. The study found that plastic 

deformation of the screw (metal) can accelerate absorption of hydrogen. When hydrogen 

is absorbed it is trapped between the interstitial site of the lattice atoms. This leads to the 

induction of grain refinements and/or hydride formation and causes marked reductions in 

ductility (i.e. the metal become brittle) (Yokomaya et al., 2001 and 2002). Yokomaya et 

al. also did an additional study to examine the degradation and fracture of NiTi alloys in 

fluoride solutions. In this study a tensile test was performed on the NiTi wires after being 

immersed in the fluoride environment. Additionally, the amount of hydrogen absorbed 

was determined. Yokomaya et al. found that one reason Ti alloys can fracture in the oral 

environment was due to the absorption of hydrogen in a fluoride solution (i.e. 

prophylactic agents) (Yokomaya et al., 2003). This information is vital in understanding 

what happens when NiTi is placed in the oral environment and the possibility of the 

material failing while being actively used in fluoride containing solutions. 

The objective of this study was to examine the effect of fluoride and stress on the 

electrochemical properties of NiTi coils. By collecting this information, a better 
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understanding of how these coils hold up in the oral environment will be found and if 

changes need to be made with treatment protocol. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

Nickel-Titanium open coil springs (Sentalloy 200 gram; Dentsply GAC, Islandia, 

NY) were evaluated for their electrochemical properties. Ten coils were used for each test 

group (4 groups). These groups were divided into non-compression and compression. 

Within these two groups, 10 coils were tested in artificial saliva or NaF solutions. The 

artificial saliva solution is known as Fusayama-Meyer solution and was made up of 0.4 

g/L KCl, 0.4 g/L of NaCl, 0.6g/L of CaCl2, 0.69 g/L of NaH2PO4, 0.005 g/L Na2S
.9H2O, 

and 1 g/L of urea. The NaF solution was 1500 ppm fluoride (Fisher Scientific, Pittsburgh, 

PA). Both of the solutions were kept at 37oC at all times. The non-compression testing 

consisted of a 0.020” gauge stainless steel (SS) wire weaved through the first coil of the 

spring. The interface of coil and stainless steel wire as well as 8 mm of the coil was 

painted with nail polish to avoid galvanic effects. A sheet of plastic (2 in. x 2 in. x 5 mm) 

was used for holding the electrodes and consisted of a hole to allow the SS wire to be 

feed through the plastic and allow the coil spring to be exposed to the solution. The SS 

wire attached to the coil was attached to an electrical connection for testing. Additional 

holes were placed in the plastic to allow for a graphite rod that served as a counter 

electrode and a saturated calomel electrode (SCE; Gamry Instruments, Warminster, PA) 

was used as the reference electrode. All three of the electrodes were attached to a 

computer-driven potentiostat (PC3; Gamry Instruments) to allow for the electrochemical 

testing. The non-compressed coils were tested in this set up with 10 exposed to artificial 

saliva solution and 10 exposed to NaF solution.  

The compressed coil set up consisted of a 0.020” gauge stainless steel wire 

weaved through the first coil of the spring. Nail polish was painted on the interface of the 
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SS wire and the coil up to 8 mm from the interface down the spring. The stainless steel 

wire was placed through the plastic sheet to allow for exposure of the coil to solutions 

and for an electrical connection to be made to the coil. An acrylic cylinder was fabricated 

to allow the coil to be placed in the cylinder and compressed when tied to the plastic 

sheet by an additional plastic tie. Holes were placed in the cylinder to allow for the 

solution to be exposed to the compressed coil. Additional holes were placed for the 

reference electrode and counter electrode identical to the non-compression set up. The 

three electrodes were connected to a computer-driven potentiostat to allow for 

electrochemical testing. The compressed coils were tested with this set up with 10 being 

exposed in artificial saliva and 10 being exposed to NaF. Figures 1-4 display the coils and 

associated hardware for testing with and without stress. 

The computer-driven potentiostat allowed for 3 types of electrochemical testing: 

open circuit potential, linear polarization and cyclic polarization. Open circuit potential 

testing consisted of a 2 hour monitoring of the open circuit potential. The potential at the 

end of the 2 hours was the comparative parameter. The linear polarization test consisted 

of measuring the current while the potential of the coil was scanned at 0.05 mV/s from -

20 to +25 mV vs OCP. The result of the linear polarization gives the polarization 

resistance (Rp) of the coil or how easily the alloy undergoes oxidation during application 

of an external potential. The cyclic polarization test consisted of measurement of the 

current while the potential of the coil was scanned at 1 mV/s from -300 to 700 to -300 

mV vs OCP. The corrosion current may be determined which indicates corrosion rate as 

well as the potential at which a passive layer degrades and the tendency to exhibit pitting 

corrosion. The OCP at 2 hours, polarization resistance, and corrosion current were 
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compared utilizing ANOVA and a post hoc Least Significant Difference (LSD) test using 

a 0.05 significance level. 

 

 

Figure 1. NiTi coil and acrylic cylinder 

 
 

 

Figure 2. NiTi coil compressed in cylinder 
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Figure 3. NiTi coil in non-compressed setup 

 
 

 

Figure 4. NiTi coil in compressed setup 
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CHAPTER 4 

RESULTS 

 

 

Table 1 shows the mean OCP, polarization resistance, and corrosion current for 

the four groups of coils. Figures 5-7 display typical curves for each of the three 

electrochemical tests, OCP, linear polarization, and cyclic polarization, respectively. 

 

Table 1.  Mean ± SD (Standard Deviation) for electrochemical measurements 

Coil Group 
OCP @ 2 hrs 

(mV vs. SCE) 

Rp 

(MΩ) 

Icorr 

(nA) 

Compressed, Fluoride -232±46 C 2.6±1.4 B 17.45±7.18 B 

Compressed, Artificial Saliva -74±15 A 15.5±4.1 B 4.26±1.48 A 

Not Compressed, Fluoride -321±48 D 1.6±1.2 B 40.38±18.65 C 

Not Compressed, Artificial Saliva -160±37 B 89.4±37 A 0.60±.23 A 

Different letters denote significant differences (p<0.05) between coil groups. 

 

 

Significant (p<0.05) differences were observed between all groups with respect to 

OCP. A greater OCP represents electrochemical nobility and it is apparent that the coils 

have a greater OCP in the artificial saliva solution compared to the NaF solution. Further, 

when the coils were compressed, the OCP was greater within the same solution. For 

polarization resistance, the Not Compressed, Artificial Saliva group possessed a 

significantly (p<0.05) greater Rp compared to the other three coil groups, which were 

statistically the same (p>0.05).  A greater polarization resistance is desirable and the 

group without fluoride and without compression showed a superior value. Significant 

(p<0.05) differences were also found in corrosion current, with the coils in artificial 

saliva having a lesser corrosion rate. In the fluoride solution, the compressed coils 

exhibited a significantly (p<0.05) lower corrosion current. In evaluating Figure 3, none of 

the coils showed a pitting corrosion tendency or a distinct breakdown potential. 
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Figure 5. Open Circuit Potential monitored for 2 hours 
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Figure 6. Comparison of typical Linear Polarization tests 
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Figure 7. Cyclic Polarization comparison among groups 
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CHAPTER 5 

DISCUSSION 

 

 

Corrosion is the active breakdown of metal by a chemical or electrochemical 

reaction with its environment. Due to the electrochemical nature of corrosion, 

electrochemical methods are a useful way to study the corrosion of metals. The computer 

driven potentiostat tested the NiTi coils’ corrosive behavior in varying environments 

through three tests. The first test run was the 2 hour open circuit potential. When 

comparing different metals in identical environments, the metal with the lowest open 

circuit potential is more likely to corrode. The second test was linear polarization. The 

linear polarization test gives the polarization resistance of the metal. The polarization 

resistance is the ratio of the applied potential and the resulting current level. If a metal’s 

polarization resistance is higher, that means it is less likely to be polarized. The less 

likely it is to polarize, the less likely it is to corrode. The measured resistance is inversely 

related to the corrosion rate. The third test was cyclic polarization. The cyclic 

polarization measures the pitting tendencies of a specimen in a given metal solution 

system. It also is used to calculate the corrosion rate, which represents the amount of 

electrons being lost. A larger corrosion rate leads to a greater amount of ion loss, and a 

higher amount of corrosion tendency.  

When comparing the coils in fluoride to those in artificial saliva, it appears the 

fluoride did have an effect on the corrosive properties of the coil regardless of 

compression or not. The artificial saliva groups had the lowest corrosion rates, the 

greatest polarization resistance, and greatest OCP. Thus, fluoride exposure may have 

some negative consequences on the coils, at least in terms of ion release. Nakagawa et al. 
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(2001) conducted a similar study where they tested the corrosive behavior of pure 

titanium and titanium alloys in fluoride containing solutions. The results showed that the 

pure titanium and two of the other titanium alloys showed significant corrosion, even in 

lower fluoride concentrations. They did note that one alloy with palladium did show 

resistance due to its ability to coat the surface of Ti and help resist corrosion. Similar 

studies by Reclaru and Meyer as well as Schiff et al. found fluoride to have a corrosive 

effect on titanium alloys (Reclaru and Meyer, 1998; Schiff et al., 2002; Yokoyama et al., 

2003). 

 When comparing the compressed and not compressed coils in solution, the 

results show that the coils that were not compressed generally had greater corrosion 

currents or corrosion rates compared to the compressed coils within the same solution. 

Typically it is considered that stress increases corrosion of materials. Liu et al. (2011) 

studied the effect of loading force on the dissolution behavior of NiTi wires in artificial 

saliva. Their study found that bending of the wire influences the nickel release from the 

material. In this study it appears to be the opposite. It is possible that when the coils were 

compressed, this decreased the exposed surface area of the coil which ultimately 

decreased the amount of corrosion possible.  

The comparison of compression and no compression as well as artificial saliva to 

fluoride did reveal differences in corrosive behavior. Overall, fluoride appeared to have 

more of an effect on increasing corrosion than did stress. This may support the above 

theory that compression decreasing the corrosive behavior was due to a decrease in 

surface area. The literature does support that fluoride can corrode titanium alloys, but it 

does not support stress decreasing corrosion which our results showed. Although fluoride 
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did appear to cause the greater effect on the corrosive behavior of the coils, clinically 

high levels of fluoride are short lived. Although fluoride may be introduced into the oral 

environment through drinking water, toothpaste, or fluoride treatments, the concentration 

quickly declines over time. On the other hand compression or stress on a coil is longer 

acting. If a NiTi coil is compressed between two teeth to create space, this stress is 

constant and can last over a month. If stress does actually affect the corrosive behavior of 

NiTi coils, clinically it would be more relevant than fluoride. 

Keeping in mind that corrosion results in a release of ions from the metal, it is 

important to understand any adverse effects that may occur if these ions are released. 

Many orthodontic materials consist of some component of nickel, which can be released 

as an ion in the oral environment. Stainless steel, cobalt-chromium, and nickel-titanium 

are just a few examples of commonly used orthodontic alloys that contain nickel. Some 

alloys of nickel-titanium can contain up to 50% nickel. It has been found that 4.5 to 

28.5% of the population have hypersensitivity to nickel, with a higher prevalence in 

females (Janson et al., 1998). Janson et al. studied nickel hypersensitivity reactions 

before, during, and after orthodontic treatment. When comparing the results of the three 

groups, they found that there was no significant difference in the prevalence of contact 

dermatitis. Kerosuo et al. (1996) performed a similar study of 700 adolescents and their 

results of a nickel allergy patch-test. The results showed that orthodontic treatment did 

not seem to affect the prevalence of nickel sensitization. Although nickel exposed to the 

oral environment may not illicit an allergic reaction, it has been asked why these 

allergens illicit this reaction extra-orally (Kerosuo et al., 1996). A study by Setcos et al. 

(2006) explained that oral mucosa is less reactive than skin. They go on to say that 
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leachants from these materials may be swallowed before being absorbed in the mouth. 

The ability of a metal or alloy to induce and elicit allergic reactions appears to be related 

to the pattern and mode of corrosion. Mucosal allergies to metal may be rare due to the 

paucity of the stratum corneum on mucous membranes reduces the availability of carrier 

proteins to combine with metallic haptens to form complete antigens (Setcos et al., 2006). 

These reasons given may answer the question of why there is a difference between oral 

hypersensitivity compared to skin.  
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CHAPTER 6 

CONCLUSION 

 

 

The electrochemical properties of nickel-titanium coils in a stressed and 

unstressed state and immersed in artificial saliva and a fluoride solution were examined. 

Of the two factors under consideration, fluoride exhibited a greater effect than stress did, 

resulting in the coils having a lower open circuit potential and polarization resistance and 

a greater corrosion current. Since corrosion rate is proportional to ion release, more ions 

would be expected to be released from NiTi coils when exposed to fluoride.   
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