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ABSTRACT OF DISSERTATION

ATTITUDE CONTROL ON SO(3) WITH PIECEWISE SINUSOIDS

This dissertation addresses rigid body attitude control with piecewise sinusoidal
signals. We consider rigid-body attitude kinematics on SO(3) with a class of sinusoidal
inputs. We present a new closed-form solution of the rotation matrix kinematics. The
solution is analyzed and used to prove controllability. We then present kinematic-level
orientation-feedback controllers for setpoint tracking and command following.

Next, we extend the sinusoidal kinematic-level control to the dynamic level. As
a representative dynamic system, we consider a CubeSat with vibrating momentum
actuators that are driven by small ε-amplitude piecewise sinusoidal internal torques.
The CubeSat kinetics are derived using Newton-Euler’s equations of motion. We
assume there is no external forcing and the system conserves zero angular momentum.
A second-order approximation of the CubeSat rotational motion on SO(3) is derived
and used to derive a setpoint tracking controller that yields order O(ε2) closed-loop
error. Numerical simulations are presented to demonstrate the performance of the
controls. We also examine the effect of the external damping on the CubeSat kinetics.

In addition, we investigate the feasibility of the piecewise sinusoidal control tech-
niques using an experimental CubeSat system. We present the design of the CubeSat
mechanical system, the control system hardware, and the attitude control software.
Then, we present and discuss the experiment results of yaw motion control. Further-
more, we experimentally validate the analysis of the external damping effect on the
CubeSat kinetics.

KEYWORDS: attitude control, SO(3), sinusoidal control, CubeSat, vibrating mo-
mentum wheels
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Chapter 1 Introduction

Rigid-body attitude control problem has a long and rich history, and it remains an

active research topic due to important applications in aircraft, spacecraft, and under-

water vehicles [1–11]. The problem of interest in this dissertation is attitude control

of a free rigid body with applications to spacecraft systems. In this introduction, we

first review the attitude control problem and conventional attitude control techniques.

Next, we introduce an attitude control approach that uses piecewise sinusoid controls.

This nonconventional approach takes advantage of the noncommutative property of

rigid-body rotation and has some advantages for small-scale systems such as small

satellites. Finally, we provide an overview of this dissertation.

1.1 The attitude control problem

The attitude of a rigid body can be uniquely quantified by a 3×3 rotation matrix

R, which relates a body-fixed coordinate frame to an inertial coordinate frame. The

attitude kinematics of a rigid body are

Ṙ(t) = R(t)Ω̂(t), (1.1)

where Ω is the rigid body’s angular velocity and Ω̂ is the skew-symmetric representa-

tion of Ω. The attitude kinetics of a rigid body can be derived from Newton-Euler’s

laws of motion, and are typically of the form

Ω̇(t) = f(Ω, u), (1.2)

where f is a function of Ω and the control u. The attitude control problem is to

design u for the system (1.1) and (1.2), potentially using feedback of R and/or Ω,
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such that the attitude R achieves a desired behavior.

In this dissertation, we distinguish between kinematic-level control and dynamic-

level control. Kinematic-level control considers only the attitude kinematics (1.1) and

treats Ω as the control input. Kinematic controllers can be used as inner-loop steering

controls and are also applicable for dynamic systems with high-bandwidth actuation

and negligible transient response. Conversely, dynamic-level control considers both

(1.1) and (1.2). We refer to the system (1.1) and (1.2) as the rigid-body system.

Rotation matrices form the special orthogonal group SO(3), which is a three-

dimensional manifold. Since SO(3) is not a Euclidean space, attitude control is

frequently approached using various parameterizations of SO(3), such as Euler angles,

rotation vectors, unit quaternions, Rodrigues parameters, and modified Rodrigues

parameters. Since the dimension of SO(3) is three, at least three parameters are

needed to quantify attitude. A parameterization that uses three parameters is called

a minimum parameterization. Examples of minimum parameterization include Euler

angles, rotation vectors, and Rodrigues parameters.

In addition to the simpler treatment in a Euclidean space, attitude control using

parameterizations of SO(3) can have other advantages. For example, global asymp-

totically stabilization can be achieved with unit quaternions using continuous time-

invariant feedback control laws [4]. On the contrary, the best possible result for

attitude stabilization of the SO(3) kinematics using continuous time-invariant feed-

back is almost global stabilization [10, 12, 13]. This limitation occurs because such

control laws necessarily yield more than one equilibrium [10], regardless of the form

of the attitude kinetics (1.2).

However, it is well known that no parameterization of SO(3) is both unique and

global [10, 14]. Control laws based on a non-unique parameterization, such as unit

quaternions, can yield undesired behavior such as unwinding [6, 10]. In addition,

control laws based on a local parameterization cannot have global properties, such as

2



global asymptotic stability of the closed loop.

The rigid-body attitude kinematic equation (1.1) is a drift-free system on SO(3),

which is also a matrix Lie group. The controllability of (1.1) can be analyzed with

the Lie algebra rank condition [15]. The attitude kinetic equation (1.2) includes

drift in general. The controllability of the rigid-body system can be analyzed using

the geometric control theory. In particular, [3] establishes sufficient and necessary

conditions for controllability of the rigid-body system in case of one, two and three

independent control torques.

Since the early 1970s, numerous attitude stabilization and tracking control laws

for fully actuated systems have been reported [4,10,16–19]. In particular, [4] presents

a range of control laws including model independent, model dependent, and adaptive

control laws to address the attitude tracking problem. Attitude control for rigid

spacecraft with model uncertainty (e.g., unknown inertia, unknown momentum wheel

alignment) and external disturbance has also been addressed [20–22].

Attitude control for underactuated systems, that is, systems with fewer indepen-

dent controls than the dimensions of the system’s configuration space, has also been

studied extensively [3,5,23–28]. As indicated by [3], under some conditions, the rigid-

body system is controllable with only one control torque. However, this case yields

substantial theoretical and practical difficulties. As such, most of the underactuated

systems considered in the literature have two independent torque inputs. It is proved

in [23] that a rigid body with only two controls cannot be locally asymptotically

stabilized with smooth time-invariant feedback controls since Brockett’s necessary

condition [29] for smooth feedback stabilization is not satisfied. Moreover, for under-

actuated systems, the time-invariant feedback controls that asymptotically stabilize

the rigid-body system to any equilibrium cannot even be continuous [24]. Piecewise

continuous time-invariant feedback control laws and time-varying control laws are pro-

posed in [5,26,27,30]. In particular, [27] presents nonsmooth bounded kinematic-level

3



stabilizing and tracking control laws for an axisymmetric spacecraft. A time-varying

feedback control law is constructed in [5] that locally asymptotically stabilizes an

equilibrium of the rigid spacecraft with two control torques.

More recent attitude-control research is focused on the distributed cooperative

attitude synchronization and tracking problem for multiple rigid bodies, which form

a communication network [9, 11, 31]. Distributed cooperative attitude control finds

its applications in cooperative sensing and actuation for multi-agent systems, such as

satellite swarms and multiple robotic manipulators.

1.2 Conventional attitude control approaches

Attitude control is a nonlinear control problem, which has been addressed using

various nonlinear control approaches, for example, linearization and feedback lin-

earization [4, 10, 32–34], backstepping [8, 35], adaptive control [20–22], sliding mode

control [34, 36, 37], and optimal control [38, 39]. In this section, we review some of

these control approaches.

Linearization and feedback linearization are often used to design and analyze

control laws for attitude stabilization [4, 10, 32–34]. These approaches consider the

rigid-body attitude kinetics together with the attitude kinematics based on a min-

imum parameterization of SO(3). Linearization near an equilibrium point is then

applied to obtain a linear system in R6. Linearization can also be carried out with

rotation matrices using the Lie-group properties of SO(3) [10]. For example, in [10],

a proportional-derivative (PD) feedback control law is designed for attitude stabi-

lization, and then the closed-loop system is linearized near the equilibria. The local

structure of the closed-loop system is then analyzed by calculating the eigenvalues

of the linearized system. In [33], two non-standard projective plane coordinates are

chosen as outputs. Then input-out linearization is carried out yielding a second-order

linear system, which gives rise to a control law that spin-stabilizes a satellite. Note

4



that for underactuated systems, linearization fails because the linearized system is not

controllable [3, 10]; center manifold theory [40] is often used together with feedback

linearization to analyze the zero dynamics [33].

Another common control approach uses PD state feedback [4, 17, 20, 41]. For

example, [4] addresses the attitude tracking problem. By using the vector part of the

error quaternion and the relative angular velocity as feedback, the control law globally

asymptotically stabilizes the error attitude. A control Lyapunov function motivated

by the consideration of the total energy of the system is used to prove global stability.

In addition, by exploiting the geometric structure of SO(3), [17] presents a PD control

law for almost global attitude stabilization.

Attitude control laws can also be designed using passivity based approach. The

rigid-body rotational kinematics, in unit quaternion coordinates, are passive with an-

gular velocity as input and with the vector part of the unit quaternion as output [18].

Moreover, the attitude kinetics are passive with torque as input and angular velocity

as output [18]. By exploiting the passivity of the rigid-body system, [18] presents

control laws that address the setpoint tracking problem without the requirement of

angular velocity measurement.

It is also common to view the rigid-body system as a multi-loop structure, treating

the attitude dynamics as the outer-loop system and the attitude kinematics as the

inner-loop system. The kinematic-level control law is first designed by assuming the

angular velocity as the control input, and then the dynamic-level control law is derived

using backstepping or singular perturbation theory [8,35,42]. In particular, [42] first

addresses the kinematic-level attitude control problem for an underactuated axisym-

metric spacecraft. By using a nonstandard attitude parameterization, [42] provides

small and bounded angular velocity controls for stabilization and tracking of the

spacecraft. Then, a dynamic-level control law is derived using singular perturbation

theory such that the actual angular velocity trace the desired angular velocity profile.
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Another important control design approach is based on the exact or approximate

solution of the rigid-body system. Analytic solutions provide a detailed picture of the

transient and asymptotic behavior of a system. In particular, an exact (or approxi-

mate) solution of a closed-loop system can be used to establish asymptotic stability

of an equilibrium point and to determine the rate of convergence. In addition, if a so-

lution for an open-loop control is available, then a priori knowledge of the system can

be exploited to yield improved performance with reduced control effort. Intermittent

feedback corrections can also be implemented to reduce sensitivity to disturbance.

No general closed-form solutions exist for the rigid-body system (see [43–45] and

the reference therein). However, some specific solutions do exist and have proved to

be useful.

Closed-loop solutions can be obtained in the control design process, for exam-

ple, using exact linearization [46]. Some special feedback control laws also yield

exact solution of the rigid body system. For example, [19] presents some classes of

kinematic-level feedback control laws that admit a closed-loop solution. One inter-

esting example is the following. Consider the attitude kinematics (1.1) with control

Ω̂(t) = R(t)TP − PR(t), where P ∈ Rn×n is a positive semidefinite matrix with rank

n− 1 or n. Then, the solution of the system is

R(t) = (sinh(Pt) + cosh(Pt)R(0)) (cosh(Pt) + sinh(Pt)R(0))−1 ,

which can be used to determine the region of convergence as well as the convergence

rate of R(t). As another example, if for all t > 0,

Ω̂(t) exp

(∫ t

0

Ω̂(τ)dτ

)
= exp

(∫ t

0

Ω̂(τ)dτ

)
Ω̂(t),
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then the solution of the attitude kinematics (1.1) is

R(t) = R(0) exp

(∫ t

0

Ω̂(τ)dτ

)
.

The solution of the rigid-body system is also available if the control torque is

piecewise constant such that at any time only one components of Ω(t) is nonzero.

The solutions of the rigid-body system with piecewise constant control have been

used to specify attitude maneuver strategies for underactuated spacecraft in [24,33].

Recall that for underactuated systems, time-invariant feedback control laws that yield

a global asymptotically stable equilibrium are necessarily discontinuous.

An approximate solution of the rigid-body system with time-varying controls can

be obtained using averaging. For example, [47] studies the motion control (including

attitude control) for underactuated systems evolving on matrix Lie groups using

periodic forcing. By exploiting the Lie group structure, [47] derives an averaging

formula for the system response. A pth-order averaging formula is then used to

explicitly specify piecewise sinusoidal open-loop control to solve the motion planning

problem with O(εp) accuracy.

1.3 Attitude control with piecewise sinusoids

Rigid-body rotations are noncommutative. That is, the final orientation of a rigid

body that undergoes a sequence of angular displacements depends on the order of

that sequence. In contrast, rigid-body translation is commutative, since a rigid body’s

final position is independent of the order of the sequence of translations.

The noncommutative property of rigid-body rotation has interesting consequences

for attitude control. For example, Fig. 1.1 shows a book and a reference frame that

is attached to the book. The book first rotates about its body xb axis by 90 degrees,

then rotates about its body yb axis by 90 degrees, and finally rotates about its body
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xb axis by −90 degrees. After this sequence of three rotations, the book is rotated

90 degrees about its body zb axis. Note that no rotations in this sequence are about

the body zb axis.

90-degree
rotation
about xb

90-degree
rotation
about yb

-90-degree
rotation
about xb

xb
yb

zb
(a)

xb

zb

yb

(b)

yb

xb

zb

(c)

zb

xb

yb

(d)

Figure 1.1: Rigid-body rotations are noncommutative.

Attitude control using piecewise sinusoidal signal can be viewed as attitude actua-

tion with a sequence of infinitesimal rotations. Attitude control using sinusoids finds

one application in the shape-change actuation system, which can be used to control

the orientation of a system by altering the internal mass distribution (shape). Ex-

amples of shape-change actuation systems include moving masses, vibrating beams,

and oscillating flywheels [48–55]. For example, [48] uses a pair of internal vibrating

masses to change the orientation of an air spindle testbed; [49] uses electro-thermal

actuators to control the attitude of a micro-satellite.

This approach of attitude control with sinusoids is closely related to the control

strategies used for nonholonomic system motion planning. A nonholonomic system

is a system that has nonholonomic constraints, that is, constraint equations that

cannot be written as time derivatives of some function of the generalized coordinates.
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Time-varying feedback controls, including the form of piecewise constant [56, 57],

polynomial [56], and sinusoids [31, 33, 47, 58, 59], have been studied extensively in

the context of underactuated spacecraft attitude control and nonholonomic motion

planning, see [58, 60] and the references therein. In particular, sinusoidal controls

are commonly used in applications including wheeled vehicles [58], underactuated

satellites [33, 47], and underwater vehicles [47, 61]. Optimality of sinusoidal controls

for a class of nonholonomic systems is addressed in [62].

Vibrational actuation systems that rely on this control approach may be applicable

for many small systems for which conventional actuation techniques are infeasible. For

example, a vibrational actuation system may be ideally suitable for small satellites.

1.4 Dissertation overview

In this dissertation, we address the attitude control problem using piecewise sinu-

soids. We consider a CubeSat system, which consists of a rigid body and oscillatory

momentum wheels, as a representative example of the attitude kinetics. We first de-

sign the kinematic-level piecewise sinusoidal control by following the solution-based

approach, and then we extend the control to the dynamic level. Note that the piece-

wise sinusoidal control laws proposed in this dissertation are not restricted to the

CubeSat system. Our control strategies may also apply to the attitude control for

other applications, such as underwater vehicles and micro-robots.

Here we note that attitude control is typically studied in the dynamic level, that

is, the control variable is a force, torque, or voltage, etc. However, we emphasize

that kinematic-level attitude control is of great value in its own right. Kinematic

controllers are used as inner-loop steering controls in various applications, such as

spacecraft, underwater vehicles, and wheeled robots [19, 27,47,63].

Kinematic controls are applicable to dynamic systems with high-bandwidth ac-

tuation and negligible transient response [42, 64]. For example, for a spacecraft with

9



“fast-enough” actuators, i.e., actuators with large bandwidth, a singular perturba-

tion approach can be used to implement the kinematic-level angular velocity com-

mand [42]. For underwater vehicle at low Reynolds number, the velocity of the vehicle

is able to track the force inputs without time delay [64].

Kinematic control can also be used for cases that dynamic effects are not negligible.

For example, kinematic controllers are used as subsystem controllers in nonlinear

control techniques such as backstepping, sliding mode control, and passivity-based

control [8,18,34,36,46,65]. Dynamic-level control can also be designed in a backward

manner. For example, [64] extends the kinematic-level control in [47] to the dynamic

level by deriving an approximate solution of the system response with sinusoidal

forcing. In addition, there is a large volume of literature on kinematic level control,

especially in the area of motion planning of nonholonomic systems.

The remaining of this dissertation is organized as follows. In Chapter 2, we first

present the definition and properties of the rotation matrices. Then we derive the

attitude kinematics on SO(3). Various parameterizations of SO(3) are briefly reviewed

and compared. The fact that there is no unique and global parameterization of the

SO(3) manifold motivates our consideration of attitude kinematics on SO(3). Then,

we derive the equations of motion of the CubeSat system. Finally, we formulate the

problems that are addressed in this dissertation.

In Chapter 3, we derive the exact closed-form solution of the attitude kinematics

Ṙ = RΩ̂ with a class of sinusoidal angular velocity inputs. By comparing this solution

with two pure rotations, we show that this class of sinusoidal inputs yield an average

net rotation like a spin. Then, we analyze the solution through averaging and through

motion decomposition. The controllability of the attitude kinematics is also discussed

in this chapter. Finally, we present kinematic-level attitude feedback controllers for

setpoint tracking and command following. In particular, we propose algorithms with

constant and nonconstant actuation frequency, constant and nonconstant update rate.
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Simulations are also performed to demonstrate the effectiveness of the controls.

In Chapter 4, we focus on the CubeSat system that is not subject to external

damping or gravity. Thus, the system conserves total angular momentum. First we

motivate the use of sinusoidal kinematic control on the dynamic level through an ex-

ample. Then, by exploring the properties of the CubeSat angular velocity induced by

the internal torques, we develop a second order approximation of the rotation matrix

trajectory. Based on this approximation, small (ε) amplitude piecewise sinusoidal

internal torques are designed to steer R on SO(3) with O(ε2) error. Additionally, we

numerically investigate the effect of the external damping on the CubeSat kinetics,

and propose a heuristic setpoint tracking control algorithm for the case where the

CubeSat is subject to external damping.

In Chapter 5, we investigate the feasibility of the piecewise sinusoidal control

techniques using an experimental CubeSat system. We first present the design of the

CubeSat mechanical system, the control system hardware, and the attitude control

software. Then, we describe the experiment setup, present and discuss the experiment

results. Additionally, we experimentally validate the analysis of the external damping

effect on the CubeSat kinetics.

In Chapter 6, we summarize the contributions of this dissertation and discuss the

future work.
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Chapter 2 Problem Description

In this chapter, we define the attitude control problem that is addressed in this

dissertation. The configuration space of rigid-body attitude is the special orthogonal

group SO(3). We first review some important properties of SO(3). We also provide a

brief discussion of other attitude representations. Next, we present a dynamic model

for a CubeSat system, which consists of a rigid body and three pairs of oscillatory mo-

mentum wheels. This CubeSat system serves as a representative example of attitude

kinetics. Finally, we formulate the problems that are addressed in this dissertation.

We use the following notations. Let R be the set of real numbers, Z the set of

integers. Let R(ij) be the element in the ith row and jth column of matrix R. Let tr

denote the trace of a square matrix. Let ‖ ·‖2 be the 2 norm. If x ∈ R3 and ‖x‖2 = 1,

then we call x a unit vector in R3.

2.1 Rotation matrix and rotation vector

The attitude of a rigid body is quantified by the orientation of a body-fixed coor-

dinate frame relative to an inertial coordinate frame. Let ib, jb, and kb be mutually

orthogonal unit vectors of the body-fixed frame, and ii, ji, and ki be mutually or-

thogonal unit vectors of the inertial frame, see Fig. 2.1. All coordinate frames in

this dissertation are right-handed. Let x = [x1 x2 x3]T ∈ R3, y = [y1 y2 y3]T ∈ R3,

z = [z1 z2 z3]T ∈ R3 be such that

ib = x1ii + x2ji + x3ki, (2.1)

jb = y1ii + y2ji + y3ki, (2.2)

kb = z1ii + z2ji + z3ki. (2.3)
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ii

ji

ki

ib

jb

kb

rigid body

Figure 2.1: Inertial coordinate frame and body-fixed coordinate frame.

Informally, (2.1)–(2.3) can be written as

[
ib jb kb

]
=

[
ii ji ki

]
x1 y1 z1

x2 y2 z2

x3 y3 z3

 . (2.4)

We define the rotation matrix

R ,


x1 y1 z1

x2 y2 z2

x3 y3 z3

 ∈ R3×3.

Since the coordinate frame unit vectors are mutually orthogonal, it follows that

RTR =


xT

yT

zT


[
x y z

]
= I, (2.5)

where I is the 3 × 3 identity matrix. It follows from (2.5) that R is nonsingular,

and R−1 = RT. Furthermore, since the coordinate frames are right-handed, detR =

xT(y×z) = xTx = 1, where × denotes the vector cross product. Therefore, R belongs
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to the set

SO(3) , {R ∈ R3×3 : RRT = RTR = I, detR = +1}.

Conversely, it can be shown that every element of SO(3) is a rotation matrix. Thus,

rotation matrices form the set SO(3).

It can be verified that SO(3) forms a group, called the three-dimensional special

orthogonal group, with the matrix multiplication as the group operation [66]. Note

that rotation matrices are not commutative, that is, for R1, R2 ∈ SO(3), R1R2 6=

R2R1.

The geodesic distance between R1 ∈ SO(3) and R2 ∈ SO(3) is

d(R1, R2) , arccos
tr RT

1R2 − 1

2
∈ [0, π]. (2.6)

We later show that d(·, ·) is a metric on SO(3).

The set of skew-symmetric matrices in R3×3 is so(3) , {S ∈ R3×3 : S = −ST}.

For x = [x1 x2 x3]T ∈ R3, define the map ·̂ : R3 → so(3) by

x̂ =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 .

Note that the map ·̂ is one-to-one and onto, and x̂y = x × y for all x, y ∈ R3. We

also use the notation (x)∧ as a replacement for x̂. Define the map (·)∨ : so(3) → R3

to be the inverse of (·)∧. An important property of (·)∧ is given in the following

proposition.
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Proposition 2.1 ( [67] Lemma 2.1). If R ∈ SO(3) and x ∈ R3, then

(Rx)∧ = Rx̂RT. (2.7)

The set so(3) forms a vector space. A basis of so(3) is ê1, ê2, and ê3, where

e1 , [1 0 0]T, e2 , [0 1 0]T, and e3 , [0 0 1]T. Define E1 , ê1, E2 , ê2, and E3 , ê3.

The Lie bracket [·, ·] : so(3)× so(3)→ so(3) on so(3) is defined by [A,B] = AB−BA.

The matrix exponential of B ∈ so(3) is

eB =
∞∑
k=0

1

k!
Bk. (2.8)

For all B ∈ so(3) the sequence (2.8) converges (absolutely) and thus the matrix

exponential is well defined. Let A ∈ SO(3), then B ∈ so(3) is a logarithm of A if

eB = A. Note that the logarithm of A ∈ SO(3) exists ( [68, Proposition 11.4.2]) but

it is not unique.

Let A ∈ SO(3), and assume that A has no real eigenvalues in (−∞, 0]. Then,

there exists a unique B ∈ so(3) such that its eigenvalues are elements of {z ∈ C :

−π < Im z < π} and eB = A. We call logA = B the principal logarithm of A.

The following result is known as Rodrigues’ formula, which provides an efficient

way to compute the matrix exponential of matrices in so(3).

Proposition 2.2. Let w be a unit vector in R3, and let η ∈ R. Then

eηŵ = I + (sin η)ŵ + (1− cos η)ŵ2. (2.9)

Exponentials of skew symmetric matrices are orthogonal ( [67, Proposition 2.4]),

and the exponential map exp : so(3)→ SO(3) is surjective ( [67, Proposition 2.5]).

Let R = exp(ηŵ), where η ∈ R, and w is a unit vector in R3. Then ηw ∈ R3 is

the rotation vector of R, where w is the axis of rotation and η is the rotation angle.
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This method of representing a rotation using a rotation vector is called the equivalent

axis representation. The rotation vector for a rotation matrix can be found using the

following proposition.

Proposition 2.3. Let R ∈ SO(3) and A , {A ∈ so(3) : eA = R}.

(i) If d(R, I) = 0, then

A = {2kπŵ : k ∈ Z, w ∈ R3 and ‖w‖2 = 1}.

(ii) If 0 < d(R, I) < π, then

A ={(2kπ + η)ŵ, (2kπ − η)ŵT : k ∈ Z,

η = arccos
trR− 1

2
, w =

1

2 sin η


R(32) −R(23)

R(13) −R(31)

R(21) −R(12)


}
. (2.10)

(iii) If d(R, I) = π, then

A =

{
(2k + 1)πŵ, (2k + 1)πŵT : k ∈ Z, w =


√

R(11)+1

2

R(12)√
2(R(11)+1)

R(13)√
2(R(11)+1)


}
.

The proof of Proposition 2.3 follows from [67, Proposition 2.5]. Let R ∈ SO(3)

and d(R, I) < π. Proposition 2.3 implies that

logR =


0, if d(R, I) = 0,

ηŵ, if 0 < d(R, I) < π,

(2.11)
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where η and w are given by (2.10). Note that logR is not defined if d(R, I) = π,

because if d(R, I) = π, then −1 is an eigenvalue of R.

Next we show that d(·, ·) is a metric on SO(3).

Definition 2.4. A metric on a set X is a function

d : X ×X → R

having the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X; equality holds if and only if x = y.

(ii) d(x, y) = d(y, x) for all x, y ∈ X.

(iii) d(x, y) + d(y, z) ≥ d(x, z), for all x, y, z ∈ X.

Lemma 2.5. Let R = eηŵ, where η ∈ [0, π] and w ∈ R3 is a unit vector. Then,

d(R, I) = η. (2.12)

Proof. First, note that tr I = 3, tr ŵ = 0, and tr ŵ2 = −2. It follows from Proposi-

tion 2.2 that

tr eηŵ = tr
(
I + sin ηŵ + (1− cos η)ŵ2

)
= 3− 2(1− cos η) = 1 + 2 cos η. (2.13)

It follows from (2.13) that

d(R, I) = d(eηŵ, I) = arccos
tr (eηŵ)T − 1

2
= arccos

tr eηŵ − 1

2
= η,

which confirms (2.12).

Proposition 2.6. The geodesic distance d(·, ·) defined by (2.6) is a metric on

SO(3).

17



Proof. We show d(·, ·) satisfies (i)-(iii) of Definition 2.4. Let R1, R2, R3 ∈ SO(3).

First, the range of arccos implies that d(R1, R2) ≥ 0. Also, d(R1, R2) = 0 if and only

if tr RT
1R2 = 3, which holds if and only if RT

1R2 = I, that is, R1 = R2. Thus, (i) is

confirmed.

Next, it follows from (2.6) that

d(R1, R2) = arccos
trRT

1R2 − 1

2
= arccos

trRT
2R1 − 1

2
= d(R2, R1),

which confirms (ii).

We now show that d satisfies (iii). Assume A,B ∈ SO(3). It follows from the

surjectivity of the exp map, we can write

A = eθ1ξ̂1 , B = eθ2ξ̂2 , (2.14)

where θ1, θ2 ∈ [0, π] and ξ1, ξ2 are unit vectors in R3. We first need to show that

θ1 + θ2 ≥ arccos
treθ1ξ̂1eθ2ξ̂2 − 1

2
. (2.15)

It follows from Lemma 2.5 that (2.15) holds in the case that θ1 = 0, or θ2 = 0. Also

note that (2.15) holds trivially in the case that θ1 + θ2 ≥ π.

We now assume θ1 > 0, θ2 > 0, and θ1 + θ2 < π. By applying Rodrigues’ formula,

eθ1ξ̂1 = I + sin θ1ξ̂1 + (1− cos θ1)ξ̂2
1 ,

eθ2ξ̂2 = I + sin θ2ξ̂2 + (1− cos θ2)ξ̂2
2 .
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By direct calculation it follows that

tr eθ1ξ̂1eθ2ξ̂2 = (1− cos θ1)(1− cos θ2)(ξT
1 ξ2)2 − 2 sin θ1 sin θ2(ξT

1 ξ2)

+ (cos θ1 + cos θ2 + cos θ1 cos θ2).

Note that the quadratic function f : [−1, 1]→ R

f(x) =(1− cos θ1)(1− cos θ2)x2 − 2 sin θ1 sin θ2x+ cos θ1 + cos θ2 + cos θ1 cos θ2,

is minimized at x = 1. For the parabola opens upwards and the x-coordinate of the

vertex

sin θ1 sin θ2

(1− cos θ1)(1− cos θ2)
=

cos θ1+θ2
2

sin θ1
2

sin θ2
2

+ 1 ≥ 1.

Therefore,

tr eθ1ξ̂1eθ2ξ̂2 ≥ (1− cos θ1)(1− cos θ2)− 2 sin θ1 sin θ2 + cos θ1 + cos θ2 + cos θ1 cos θ2

= 2 cos(θ1 + θ2) + 1,

which implies (2.15) since 0 < θ1 + θ2 < π.

Next, it follows from (2.15) and Lemma 2.5 that for all A,B ∈ SO(3),

d(A, I) + d(B, I) ≥ d(I, AB),

which implies that

d(A, I) + d(B, I) ≥ d(AB, I), (2.16)
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since d(I, AB) = d(AB, I). Therefore, for all R1, R2, R3 ∈ SO(3),

d(R1, R2) + d(R2, R3) = d(R1R
T
2 , I) + d(R2R

T
3 , I)

= d(R1R
T
2R2R

T
3 , I)

= d(R1R
T
3 , I)

= d(R1, R3),

which confirms (iii). Note that the first equality and the fourth equality follow from

d(A,B) = d(ABT, I) for all A,B ∈ SO(3), and the second equality follows from

(2.16).

2.2 Rigid body attitude kinematics on SO(3)

Let re be a unit vector attached to the rigid body. The time derivative of re with

respect to the inertial frame is [69, Eq. (3.3.16)]

ṙe = ω × re, (2.17)

where ω is the angular velocity of the rigid body. Vector derivatives in this disser-

tation are always taken with respect to an inertial frame, unless noted otherwise. It

follows from (2.17) that

i̇b = ω × ib, j̇b = ω × jb, k̇b = ω × kb. (2.18)

The time derivatives of the inertial frame unit vectors are zero, that is,

i̇i = 0, j̇i = 0, k̇i = 0. (2.19)
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Differentiating (2.4) yields

[
i̇b j̇b k̇b

]
=
[
i̇i j̇i k̇i

]
R + [ii ji ki] Ṙ. (2.20)

Combining (2.18), (2.19), and (2.20) yields

ω × [ib jb kb] = [ii ji ki] Ṙ. (2.21)

Let the coordinates of ω in the body frame be the components of Ω, that is,

ω = [ib jb kb] Ω. (2.22)

Substituting (2.22) and [ii ji ki] = [ib jb kb]RT into (2.21) yields

Ω̂ = RTṘ. (2.23)

Left multiplying both sides of (2.23) by R yields

Ṙ = RΩ̂. (2.24)

The kinematic system (2.24) is a left-invariant system on SO(3). See [15, Chapter

8] for the definition of left-invariant systems. One important feature of left-invariance

is that the relative motion is invariant with respect to the initial condition. Suppose

that Ri(t) is the solution to (2.24) with initial condition R(0) = I. Then for arbitrary

initial condition R(0) ∈ SO(3), the solution R(t) satisfies R(0)TR(t) = Ri(t), that is,

the motion relative to R(0) is Ri(t).
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2.3 Other attitude representations

The set of all possible attitudes of a rigid body is SO(3), which is not a Euclidean

space. Attitude control problems are commonly studied using parameterizations of

the SO(3) manifold. These parameterizations can be embedded in the standard Rn

vector space, thus enabling the use of conventional analysis tools in linear systems

theory. Commonly used parameterizations, in addition to rotation vectors, include

Euler angles, unit quaternions, Rodrigues parameters (Gibbs vector), and modified

Rodrigues parameters (MRP). We briefly review some of the parameterizations.

Euler angles. The attitude of the rigid body with respect to an inertial frame

can be described using a sequence of three rotations about the coordinate axes of the

body-fixed frame. Specifically, if R ∈ SO(3), then there exist ψ, θ, φ ∈ [−π, π] such

that

R = eψE3eθE2eφE1 . (2.25)

The angles (ψ, θ, φ) are called the 3-2-1 Euler angles, and they are commonly referred

to as yaw, pitch, and roll. There are other Euler angles representations, such as 1-2-3,

3-2-3, 2-1-3 Euler angles, which use different body-fixed rotation sequences [1].

Unit quaternions. Consider R ∈ SO(3), which can be expressed as R =

exp(ηŵ), where w ∈ R3 is a unit vector along the axis of rotation and η ∈ R is

the rotation angle. The associated unit quaternion is defined as

q = q0 + q1i + q2j + q3k,

or in vector form

q = [q0 q1 q2 q3]T ,
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where q0 = cos(η/2), and [q1 q2 q3]T = w sin(η/2). Unit quaternions form the set

S3 , {x ∈ R4 : ‖x‖2 = 1}.

Rodrigues parameters. Consider again R = exp(ηŵ), where ω ∈ R3 is a unit

vector and η ∈ R. The Rodrigues parameters are the components of the vector (Gibbs

vector)

g = w tan
η

2
∈ R3.

The modified Rodrigues parameters are the components of

p = w tan
η

4
∈ R3.

A rigid body has three rotational degrees of freedom, thus requiring at minimum

three parameters to represent the orientation. Rotation vectors, Euler angles, Ro-

drigues parameters, and MRP use three parameters; therefore, they are referred to

as minimal representations. On the contrary, rotation matrices and unit quaternions

use nine and four parameters, respectively; therefore, they are not minimal represen-

tations.

It is a topological fact that singularities exist in any three-dimensional parameter-

ization of SO(3) [67]. The singularities refer to the points where the parameterization

that maps SO(3) to R3 is undefined or not smooth. For example, for the rotation

vector representation, R = I is a singularity. For the 3-2-1 Euler angle representation,

any R corresponding to θ = ±π/2 is a singularity.

No attitude parameterization is unique. For example, any R ∈ SO(3) is repre-

sented by a pair of antipodal unit quaternions, that is, for R = exp(ηŵ) both of the

unit quaternions q = ±
[
cos(η/2) wT sin(η/2)

]T
are valid representations. Neverthe-

less, the range of parameterization can be restricted to get a unique parameterization.

For example, it is possible to restrain the amplitude of the rotation vector to be no
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greater than π to get a unique parameterization provided that d(R, I) < π. As an-

other example, for MRP, ‖p‖2 ≤ 1 can be enforced to get a unique parameterization

provided that d(R, I) < π.

Not all parameterizations are global, and thus any kinematic level feedback con-

trol that uses local representation does not have a globally asymptotically stable

equilibrium. A global representation is one in which the associated rigid body kine-

matic (differential) equation is defined at all possible attitude points. For example,

unit quaternions provide a global parameterization. The unit quaternion kinematic

equation is

q̇ =
1

2
Mq, (2.26)

where

M =



0 −Ω1 −Ω2 −Ω3

Ω1 0 Ω3 −Ω2

Ω2 −Ω3 0 Ω1

Ω3 Ω2 −Ω1 0


,

and Ω = [Ω1 Ω2 Ω3]T ∈ R3 is the angular velocity of the rigid body. As another

example, the kinematic equation using 3-2-1 Euler angles (ψ, θ, φ) is


ψ̇

θ̇

φ̇

 =


0 sinφ sec θ cosφ sec θ

0 cosφ − sinφ

1 sinφ tan θ cosφ tan θ

Ω. (2.27)

The kinematic equation (2.27) is not defined at θ = ±π/2, rendering the 3-2-1 Euler

angles a local representation. Rotation vectors are a global representation, although
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there is a singularity at R = I. In fact, the rotation vector kinematic equation is

ξ̇ =

(
I +

1

2
ξ̂ +

1− α(‖ξ‖2)

‖ξ‖2
2

ξ̂2

)
Ω, (2.28)

where ξ is the rotation vector, and α(x) , (x/2) cot(x/2). It can be shown that at

ξ = 0 (the corresponding rotation matrix R = I), (2.28) is well-defined.

Table 2.1 summarizes the key properties of the attitude representations covered

in this section. It shows that none of the attitude parameterizations are global,

unique, and singularity free. Therefore, in this dissertation, we mainly use rotation

matrices to represent the attitude of a rigid body. Since unit quaternions are more

compact than rotation matrices, and calculating unit quaternions is computationally

efficient (due to the absence of trigonometric functions), we use quaternions primarily

in simulations.

Table 2.1: Properties of attitude representations

Attitude representation No. of params. Singularities Unique Global
Euler angles 3 Exist No No

Rodrigues parameters 3 Exist No No
MRP 3 Exist No No

Unit quaternions 4 None No Yes
Rotation vector 3 Exist No Yes
Rotation matrix 9 None Yes Yes

2.4 The CubeSat system

The attitude dynamics of a mechanical system consist of kinematic and kinetic

equations of motion. The attitude kinetics vary with the system’s inertial properties,

the actuation system, and external forcing. In this dissertation, we use a representa-

tive dynamic system to study the attitude control problem using piecewise-sinusoidal

controls. This representative system is a CubeSat, which is cube-shaped miniatur-

ized satellite with edge length 10 cm, that is equipped with a vibrational actuation
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system. As discussed in Chapter 1, vibrational actuation systems have advantages

over conventional flywheel actuation systems.

As shown in Fig. 2.2, the CubeSat system consists of a cubic rigid body and three

pairs of vibrating momentum wheels. Each of the three momentum-wheel pairs is a

rigid body and their rotational axes coincide with the principal axes of the cube. We

use a pair of momentum wheels instead of a single momentum wheel for two reasons:

first, a momentum-wheel pair provides larger interactive torque between the wheels

and the cube when the wheels are actuated; second, the momentum-wheel pair is

mass balanced about the center of mass of the cube, thus simplifying the dynamics.

We label these three pairs of momentum wheels as momentum-wheel pair 1, 2, and 3,

as shown in Fig. 2.2. Note that this actuation system is not meant to be a practical

design with regards to the size, quantity, and location of the momentum wheels.

O

P

xb

yb

zb

12 2

3

3

Figure 2.2: The CubeSat system consists of a cubic rigid body and three pairs of
vibrating momentum wheels.

Let O be the center of mass of the cube, whose mass denoted mc is uniformly

distributed. The coordinate axes ib, jb, and kb of the body-fixed frame coincide with

the principal axes of the cube. The moment of inertia tensor of the cube about O is

26



Io = I1ibib + I2jbjb + I3kbkb, and the angular velocity of the cube is

ω = Ω1ib + Ω2jb + Ω3kb. (2.29)

Let ψ, θ, and φ be the 3-2-1 Euler angles of the cube. Note that a rigid body has

three rotational degrees of freedom and three translational degree of freedom, and

the rotational motion is decoupled with the translational motion. Therefore, in the

attitude control problem, we can ignore the translational degrees of freedom and

assume the CubeSat rotates about its center of mass O. However, in this section, we

derive the equations of motion for a more general case and assume the CubeSat rotates

about a fixed point P , which is located by the vector rP/O = hkb. This generalization

is motivated by the experimental CubeSat system described in Chapter 5. Note that if

h = 0, then point P coincides with point O. We discuss more about this generalization

later in this section.

The total mass of each and every pair of wheels is mw, and the centers of mass of

the wheel-pairs are all at point O. The moment of inertia of any wheel-pair is Ia about

the rotational axis and It about the other two perpendicular axes that go through

O. Let the relative rotation angles of the moment wheels with respect to the cube be

β1, β2, and β3. Each of the momentum-wheel pairs is connected with the cube by a

torsional spring and dashpot. The spring constant is K and the damping coefficient

is C. Note that the interaction forces between a satellite and the momentum-wheel

actuators do not typically include the stiffness term Kβ. However, the stiffness term

is an important component of the vibrating momentum wheel actuator dynamics.

The CubeSat system is in a gravity field with gravity constant g. The momen-

tum wheels are actuated by internal time-varying torques −u1(t)ib, −u2(t)jb, and

−u3(t)kb. Equal and opposite colocated torques u1(t)ib, u2(t)jb, and u3(t)kb are
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O

P

−mcgki

Fw

To

Fp

Td

Figure 2.3: Free body diagram of the cube.

applied to the cube. We assume the external damping torque applied to the cube is

Td = −µΩ1ib − µΩ2jb − µΩ3kb, (2.30)

where µ is the damping coefficient.

The constraint force and torque acting on the momentum-wheel pair 1 are denoted

−Fw,1 and−T1,yjb−T1,zkb. The constraint force and torque acting on the momentum-

wheel pair 2 are denoted −Fw,2 and −T2,xib − T2,zkb. The constraint force and

torque acting on the momentum-wheel pair 3 are denoted −Fw,3 and −T3,xib−T3,yjb.

Therefore, the constraint force and torque acting on the cube are Fw = Fw,1 + Fw,2 +

Fw,3 and Tw = (T2,x + T3,x)ib + (T1,y + T3,y)jb + (T1,z + T2,z)kb. The constraint force

acting on the cube from point P is Fp. Therefore, the total torque acting on the

cube, excluding Td, is

To =(u1 +Kβ1 + Cβ̇1 + T2,x + T3,x)ib + (u2 +Kβ2 + Cβ̇2 + T1,y + T3,y)jb

+ (u3 +Kβ3 + Cβ̇3 + T1,z + T2,z)kb. (2.31)

We draw the free body diagram of the cube in Fig. 2.3. Note that ki is the unit
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vector pointing upwards in the inertial frame, and it can be shown that

ki = (− sin θ)ib + (sinφ cos θ)jb + (cosφ cos θ)kb. (2.32)

It follows from Newton-Euler’s equations of motion that

Mp + To + Td = Ipω̇ + ω × (Ipω), (2.33)

where

Mp = (−hkb)× (Fw −mcgki) (2.34)

is the total moment acting on the cube about P ,

Ip = (I1 +mch
2)ibib + (I2 +mch

2)jbjb + I3kbkb (2.35)

is the moment of inertia of the cube about P , and

ω̇ = Ω̇1ib + Ω̇2jb + Ω̇3kb. (2.36)

Substituting (2.29)–(2.31) and (2.34)–(2.36) into (2.33) yields

(u1 +Kβ1 + Cβ̇1 + T2,x + T3,x − µΩ1)ib + (u2 +Kβ2 + Cβ̇2 + T1,y + T3,y − µΩ2)jb

+ (u3 +Kβ3 + Cβ̇3 + T1,z + T2,z − µΩ3)kb − hkb × (Fw,1 + Fw,2 + Fw,3 −mcgki)

=
(

(I1 +mch
2)Ω̇1 + (I3 − I2 −mch

2)Ω2Ω3

)
ib

+
(

(I2 +mch
2)Ω̇2 + (I1 − I3 +mch

2)Ω1Ω3

)
jb +

(
I3Ω̇3 + (I2 − I1)Ω1Ω2

)
kb.

(2.37)

Next, we examine the momentum-wheel pair 1. The free body diagram is shown
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−mwgki

−Fw,1 T1

Figure 2.4: Free body diagram of momentum wheels about the xb axis.

in Fig. 2.4, where the resultant torque

T1 = −(u1 +Kβ1 + Cβ̇1)ib − T1,yjb − T1,zkb. (2.38)

Note that the center of mass of the momentum-wheel pair 1 is O, which is a fixed

point on the cube. The velocity of point O is

v =
d

dt
(−hkb) = −hω × kb,

and the acceleration of point O is

a = v̇ = −h[ω̇ × kb + ω × (ω × kb)]. (2.39)

Substituting (2.29) and (2.36) into (2.39) yields

a = (−hΩ1Ω3 − hΩ̇2)ib + (−hΩ2Ω3 + hΩ̇1)jb + (hΩ2
1 + hΩ2

2)kb. (2.40)

The angular velocity of momentum-wheel pair 1 is

ω1 = ω + β̇1ib, (2.41)
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and its angular acceleration is

α1 = ω̇ + β̈1ib + β̇1ω × ib. (2.42)

Let I1 , Iaibib + Itjbjb + Itkbkb be the momentum of inertia tensor of momentum-

wheel pair 1. It follows from Newton-Euler equations of motion that

− Fw,1 −mwgki = mwa, (2.43)

T1 = I1α1 + ω1 × (I1ω1). (2.44)

Following the same procedure for the momentum-wheel pairs about the yb and zb

axes, we have

− Fw,2 −mwgki = mwa, (2.45)

T2 = I2α2 + ω2 × (I2ω2), (2.46)

− Fw,3 −mwgki = mwa, (2.47)

T3 = I3α3 + ω3 × (I3ω3), (2.48)

where I2 , Itibib + Iajbjb + Itkbkb, I3 , Itibib + Itjbjb + Iakbkb, and

ω2 = ω + β̇2jb, (2.49)

ω3 = ω + β̇3kb, (2.50)

α2 = ω̇ + β̈2jb + β̇2ω × jb, (2.51)

α3 = ω̇ + β̈3kb + β̇3ω × kb, (2.52)

T2 = −T2,xib − (u2 +Kβ2 + Cβ̇2)jb − T2,zkb, (2.53)

T3 = −T3,xib − T3,yjb − (u3 +Kβ3 + Cβ̇3)kb. (2.54)
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It follows from (2.40), (2.43), (2.45), and (2.47) that

− Fw,1 − Fw,2 − Fw,3 − 3mwgki

= 3mw

(
(−hΩ1Ω3 − hΩ̇2)ib + (−hΩ2Ω3 + hΩ̇1)jb + (hΩ2

1 + hΩ2
2)kb

)
. (2.55)

Combining (2.29), (2.36), (2.41), (2.42), (2.44), (2.46), (2.48)–(2.54) yields

− (u1 +Kβ1 + Cβ̇1)ib − T1,yjb − T1,zkb = (IaΩ̇1 + Iaβ̈1)ib

+
(

(Ia − It)Ω1Ω3 + Iaβ̇1Ω3 + ItΩ̇2

)
jb +

(
(It − Ia)Ω1Ω2 − Iaβ̇1Ω2 + ItΩ̇3

)
kb,

(2.56)

− T2,xib − (u2 +Kβ2 + Cβ̇2)jb − T2,zkb =
(

(It − Ia)Ω2Ω3 − Iaβ̇2Ω3 + ItΩ̇1

)
ib

+ (IaΩ̇2 + Iaβ̈2)jb +
(

(Ia − It)Ω1Ω2 + Iaβ̇2Ω1 + ItΩ̇3

)
kb, (2.57)

− T3,xib − T3,yyb − (u3 +Kβ3 + Cβ̇3)kb =
(

(Ia − It)Ω2Ω3 + Iaβ̇3Ω2 + ItΩ̇1

)
ib

+
(

(It − Ia)Ω1Ω3 − Iaβ̇3Ω1 + ItΩ̇2

)
jb + (IaΩ̇3 + Iaβ̈3)kb. (2.58)

Now, it follows from (2.32), (2.37), (2.55)–(2.58) that the equations of motion of the

CubeSat system are

(I1 + Ia + 2It +mh2)Ω̇1 + Iaβ̈1 − IaΩ3β̇2 + IaΩ2β̇3 = (I2 − I3 +mh2)Ω2Ω3

− µΩ1 −mgh sinφ cos θ, (2.59)

(I2 + Ia + 2It +mh2)Ω̇2 + Iaβ̈2 + IaΩ3β̇1 − IaΩ1β̇3 = (I3 − I1 −mh2)Ω1Ω3

− µΩ2 −mgh sin θ, (2.60)

(I3 + Ia + 2It)Ω̇3 + Iaβ̈3 − IaΩ2β̇1 + IaΩ1β̇2 = (I1 − I2)Ω1Ω2 − µΩ3, (2.61)

IaΩ̇1 + Iaβ̈1 + Cβ̇1 = −u1 −Kβ1, (2.62)

IaΩ̇2 + Iaβ̈2 + Cβ̇2 = −u2 −Kβ2, (2.63)

IaΩ̇3 + Iaβ̈3 + Cβ̇3 = −u3 −Kβ3, (2.64)
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where m = mc + 3mw. Define

Ω ,


Ω1

Ω2

Ω3

 , β ,


β1

β2

β3

 , u ,


u1

u2

u3

 ,

J ,


I1 + Ia + 2It +mh2 0 0

0 I2 + Ia + 2It +mh2 0

0 0 I3 + Ia + 2It

 . (2.65)

Then, the equations of motion of the CubeSat system can be written into the matrix

form,

JΩ̇ + Iaβ̈ − JΩ× Ω + IaΩ× β̇ = −µΩ +mghb, (2.66)

Ia(Ω̇ + β̈) + Cβ̇ +Kβ = −u, (2.67)

where b = [− sinφ cos θ − sin θ 0]T. Note that equations (2.66)(2.67) combined

with the rigid body rotation kinematics (2.27) form the complete set of system equa-

tions.

The dynamics (2.66) and (2.67) are rather general in that they cover various cases

of CubeSat systems:

(i) g > 0 corresponds to the case that the CubeSat is in a gravity field. We let

g = 0 if the CubeSat is in the deep space.

(ii) µ > 0 corresponds to the case that the CubeSat is subject to external viscous

damping. If we let µ = 0 and g = 0, then there is no external damping and no

gravitational force, and the angular momentum of the system is conserved.

(iii) h > 0 corresponds to the case that the rotational center doesn’t coincide with

the center of mass of the CubeSat system. This case accommodates experimen-
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tal testing that is described in Chapter 5.

We now let g = µ = h = 0, and consider a special case. In this case, there are

no external torques and no gravitational forces, and the total angular momentum is

conserved. Additionally, we assume the total angular momentum is zero, that is,

Ioω + I1ω1 + I2ω2 + I3ω3 = 0. (2.68)

Substituting (2.29), (2.41), (2.49), and (2.50) into (2.68) yields that

JΩ + Iaβ̇ = 0, (2.69)

where h = 0 in the definition of J .

To simplify the kinetics further, we consider (2.69), and assume all the diagonal

components of the momentum of inertia matrix (2.65) are equal to Jd. Define Js ,

Ia(1− Ia/Jd), where Ia > 0 is mass moment of inertia of a pair of momentum wheels

about the rotational axis.

Next, we use the characteristic time and characteristic frequency [70] that (2.67)

and (2.69) demonstrate to derive equations of motion in dimensionless form. It follows

from (2.24) (2.67) and (2.69) that the complete set of equations of motion of the

CubeSat system is

Ṙ(t∗) = R(t∗)Ω̂∗(t∗), (2.70)

JdΩ∗ + Iaβ̇
∗ = 0, (2.71)

Jsβ̈
∗ + Cβ̇∗ +Kβ∗ = −u∗, (2.72)

where we have intentionally used variables with star to denote that the variables

are with dimensions. To express (2.70)–(2.72) in dimensionless form, we define the

characteristic frequency Ω0 ,
√
K/Js, the characteristic angle β0 , 1 rad, and the
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characteristic torque u0 , JdKβ0/Ia. Let

t , Ω0t
∗, Ω ,

Ω∗

Ω0

, β ,
β∗

β0

, u ,
u∗

u0

. (2.73)

Then, it follows that (2.70)–(2.72) can be expressed as

Ṙ(t) = R(t)Ω̂(t), (2.74)

κΩ(t) + β̇(t) = 0, (2.75)

β̈(t) + 2ζβ̇(t) + β(t) = −κu(t), (2.76)

where ζ = C/(2
√
JsK), and κ = Jd/(Iaβ0). Note that in (2.70)–(2.72) the derivatives

are taken with respect to t∗, and in (2.74)–(2.76) the derivatives are taken with respect

to the dimensionless time t. This is the attitude dynamics model we focus on in this

dissertation.

2.5 Problem statement

In this dissertation, we consider the attitude control problem using piecewise

sinusoids. Specifically, we consider the CubeSat kinetics (2.75) and (2.76), and study

the setpoint tracking and command following problems. In addition, we consider the

CubeSat kinetics (2.66) and (2.66), and study the external damping effect on the

CubeSat kinetics through numerical simulation.

This dissertation considers controls in the form of piecewise sinusoids. To facili-

tate the presentation, we use the following notations. Let all references to k in this

dissertation be for all k ∈ N , {0, 1, 2, · · · }, unless otherwise stated. Let ∆tk > 0

be a time increment, and define the time tk+1 , tk + ∆tk, where t0 , 0. We also

define the interval Ik , [tk, tk+1). Finally, if f is a function of time t ≥ 0, then we let

fk , f(tk).
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Furthermore, let ωmax > 0. We call Ω an admissible kinematic control if for all

t ∈ Ik,

Ω(t) = Sk [ck(cosωkt)e1 + ck(sinωkt)e2 + ωdke3] , (2.77)

where Sk ∈ SO(3), ωk ∈ (0, ωmax], and ck, ωdk ∈ R. The control parameters in (2.77)

are Sk, ωk, ck, ωdk and ∆tk. For all t ∈ Ik, Ω can be expressed as

Ω(t) = Ω1(t)e1 + Ω2(t)e2 + Ω3(t)e3,

where Ω1,Ω2,Ω3 : [0,∞)→ R are piecewise sinusoids.

We call u an admissible dynamic control if for all t ∈ Ik,

u(t) =
3∑
i=1

Aik sin(ωt+ ϕk)ei, (2.78)

where Aik ∈ R, ω ∈ (0, ωmax], and ϕk ∈ R. We note that the angular frequency

ω of u(t) is constant. This is motivated by the actuator dynamics of the CubeSat

system. In particular, if the oscillatory moment wheels are driven at a frequency close

to the system’s natural frequency, then the cube would get bigger angular velocities,

yielding a higher control authority.

Next, consider the reference model

Ṙd(t) = Rd(t)Ω̂d(t), (2.79)

where t ≥ 0, Rd(t) ∈ SO(3) is the command, Rd(0) = Rd0 ∈ SO(3) is the initial

condition, and Ωd : [0,∞)→ R3 is the reference-model input. Define the command-
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following error

Z(t) , RT
d (t)R(t), (2.80)

and the scalar performance

z(t) , d(R(t), Rd(t)) = d(Z(t), I). (2.81)

Next, we formulate the kinematic-level and dynamic-level attitude control problems.

Kinematic-level attitude control. Consider (2.79) and (2.74), where t ≥ 0,

R(t) ∈ SO(3), R(0) = R0 ∈ SO(3) is the initial condition, and Ω(t) ∈ R3 is the

kinematic control. The objective is to design an admissible kinematic control Ω that

uses Z feedback and makes the performance z small in some sense.

Chapter 3 considers kinematic-level attitude control. We first analyze the solution

of (2.74) and (2.77), and note that in the case of ωd 6= 0, the control design is

trivial. This is because we can always let ck = 0 and choose Sk and ωdk properly

to achieve the control objective. We focus on the case that ωd = 0. In particular,

section 3.3 considers the setpoint tracking problem where Ωd(t) ≡ 0. In this case, the

objective is to make z converge to zero. For the general command-following problem,

the restriction (2.77) prohibits perfect command following, and thus our objective is

approximate command following. This problem is considered in Section 3.4.

Note that the dimensionless attitude kinematic equation (2.74) is identical with

(2.24). Therefore, in Chapter 3 we don’t differentiate dimensionless t from t with

dimension.

Dynamic-level attitude control. Consider (2.74)–(2.76), where t ≥ 0, R(t) ∈

SO(3), κ > 0, ζ ∈ (0, 1), R(0) = R0 ∈ SO(3), β(0) = β0 ∈ R3 , and β̇(0) = p ∈ R3 are

the initial conditions, and u(t) ∈ R3 is the dynamic control. The objective is to design

an admissible dynamic control u that uses Z feedback and yields limt→∞R(t) = Rd,
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where Rd ∈ SO(3) is the desired attitude.

The dynamic-level attitude control problem is covered in Chapter 4. Additionally,

we study the external damping effect on the CubeSat kinetics through numerical

simulations.
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Chapter 3 Kinematic-Level Attitude Control

In this chapter, we derive the exact analytic solution of the attitude kinematic

system Ṙ = RΩ̂ with a class of sinusoidal angular velocity inputs. We show that this

class of sinusoidal inputs yield an average net rotation like a spin. We then comment

on the controllability of the system. Finally, we present kinematic-level orientation

feedback controllers for setpoint tracking and command following.

In this chapter, and especially the next chapter, we make use of the big O notation,

which is defined as the following.

Definition 3.1. Big O notation. Let V be a set. Let ε ∈ R, and δ1, δ2 be

functions mapping R to V . Let ‖ · ‖V, ‖ · ‖R be norms on V and R respectively. If

there exist positive constant k1 and k2 such that

‖δ1(ε)‖V ≤ k1‖δ2(ε)‖V, ∀‖ε‖R < k2,

then, we write δ1(ε) = O(δ2(ε)).

3.1 Exact solutions of the attitude kinematic system

Consider the three-dimensional rotation system

Ṙ(t) = R(t)Ω̂(t), (3.1)

and the admissible control

Ω(t) = S[c(cosωt)e1 + c(sinωt)e2 + ωde3], (3.2)
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where t ≥ 0, c ≥ 0, ω > 0, ωd ∈ R, and R(0) = R0 ∈ SO(3) is the initial condition.

We now provide a solution to (3.1) and (3.2).

Let R′ , STRS, and it follows from (3.1) that

Ṙ′(t) = R′(t)STΩ̂(t)S = R′(t)(STΩ(t))∧. (3.3)

Substituting (3.2) into (3.3) yields for i ∈ {1, 2, 3},

Ṙ′(i1) = ωdR
′
(i2) − c(sinωt)R′(i3), (3.4)

Ṙ′(i2) = −ωdR
′
(i1) + c(cosωt)R′(i3), (3.5)

Ṙ′(i3) = c(sinωt)R′(i1) − c(cosωt)R′(i2). (3.6)

Differentiating (3.6) twice and using (3.4) and (3.5) yields

...
R
′
(i3) = −

(
c2 + (ω + ωd)2

)
Ṙ′(i3). (3.7)

Solving (3.7) for Ṙ′(i3) and using (3.4)–(3.6) yields the solution to (3.1) and (3.2),

which is

R(t) = R0SΦ(t)ST, (3.8)

where

Φ(11)(t) =
(ω + ωd)2

ω2
n

(cosωnt)(cosωt) +
ω + ωd

ωn

(sinωnt)(sinωt) +
c2

ω2
n

cosωt,

Φ(12)(t) =
(ω + ωd)2

ω2
n

(cosωnt)(sinωt)−
ω + ωd

ωn

(sinωnt)(cosωt) +
c2

ω2
n

sinωt,

Φ(13)(t) =
c(ω + ωd)

ω2
n

− c(ω + ωd)

ω2
n

cosωnt,
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Φ(21)(t) =
ω + ωd

ωn

(sinωnt)(cosωt)− (cosωnt)(sinωt),

Φ(22)(t) = (cosωnt)(cosωt) +
ω + ωd

ωn

(sinωnt)(sinωt),

Φ(23)(t) = − c

ωn

sinωnt,

Φ(31)(t) = −c(ω + ωd)

ω2
n

(cosωnt)(cosωt)− c

ωn

(sinωnt)(sinωt) +
c(ω + ωd)

ω2
n

cosωt,

Φ(32)(t) =
c

ωn

(sinωnt)(cosωt)− c(ω + ωd)

ω2
n

(cosωnt)(sinωt) +
c(ω + ωd)

ω2
n

sinωt,

Φ(33)(t) =
(ω + ωd)2

ω2
n

+
c2

ω2
n

cosωnt,

where

ωn ,
√

(ω + ωd)2 + c2. (3.9)

Next, define the pure rotation R̃ : [0,∞)→ SO(3) by

R̃(t) , R0S exp
((√

(ω + ωd)2 + c2 − ω
)
tE3

)
ST. (3.10)

Note that (3.10) is the solution of (3.1) with Ω(t) =
(√

(ω + ωd)2 + c2 − ω
)
Se3,

which is an constant control. The following result compares (3.8) and (3.10).

Proposition 3.2. Consider (3.8) and (3.10). Let ∆tk = 2π/
√

(ω + ωd)2 + c2,

and let ω + ωd > 0. Then,

Rk+1 = R̃k+1 = RkS exp
((√

(ω + ωd)2 + c2 − ω
)

∆tkE3

)
ST, (3.11)

and

sup
t∈Ik

d(R(t), R̃(t)) = arccos
(ω + ωd)2 − c2

(ω + ωd)2 + c2
. (3.12)
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Proof. It follows from (3.8) and (3.10) that

tr RT(t)R̃(t) = tr ΦT(t) exp
((√

(ω + ωd)2 + c2 − ω
)
tE3

)
=

(ωn − (ω + ωd))2

ω2
n

cos2 ωnt

+
2c2

ω2
n

cosωnt+
2(ω + ωd)ωn + (ω + ωd)2

ω2
n

. (3.13)

Since ∆tk = 2π/ωn, it follows that tk = 2πk/ωn. Therefore, (3.13) implies that

tr RT(tk)R̃(tk) = 3, which implies that d(Rk, R̃k) = arccos 1 = 0, thus confirming

(3.11).

Next, note that

sup
t∈Ik

d(R(t), R̃(t)) = arccos
ηk − 1

2
, (3.14)

where ηk , inft∈Ik trRT(t)R̃(t). It follows from (3.13) that trRT(t)R̃(t) = f(cosωnt)/ω
2
n,

where f(x) , (ωn − (ω + ωd))2 x2 + 2c2x+ 2(ω + ωd)ωn + (ω + ωd)2 is minimized on

the interval [−1, 1] by x = −1. Thus, tr RT(t)R̃(t) is minimized by cosωnt = −1,

which implies that

ηk =
(ωn − (ω + ωd))2 − 2c2 + 2(ω + ωd)ωn + (ω + ωd)2

ω2
n

=
3(ω + ωd)2 − c2

(ω + ωd)2 + c2
. (3.15)

Substituting (3.15) into (3.14) yields (3.12).

Now define another pure rotation R̄ : [0,∞)→ SO(3) by

R̄(t) , R0S exp
((√

(ω + ωd)2 + c2 − ω
)
tEw

)
ST, (3.16)

where Ew , (cE1 + (ω + ωd)E3)/
√

(ω + ωd)2 + c2. Note that (3.16) is the solution

of (3.1) with Ω(t) =
(√

(ω + ωd)2 + c2 − ω
)
SE∨w, which is a constant control. The
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following result compares (3.8) and (3.16). The proof is similar to that of Proposition

3.4 and is omitted.

Proposition 3.3. Consider (3.8) and (3.16). Let ∆tk = 2π/ω, and let ω+ωd > 0.

Then,

Rk+1 = R̄k+1 = RkS exp
((√

(ω + ωd)2 + c2 − ω
)

∆tkEw

)
ST,

and

sup
t∈Ik

d(R(t), R̄(t)) = arccos
(ω + ωd)2 − c2

(ω + ωd)2 + c2
.

Note that the differences between Proposition 3.2 and 3.3 are that

(i) The pure rotations with which (3.8) is compared have different axes of rotation.

The axis of rotation for (3.16) depends on c, ω, and ωd; while the axis of rotation

for (3.10) doesn’t depend on c, ω, or ωd.

(ii) The time instances when the solutions coincide are different. In Proposition 3.2,

∆tk depends on c and ωd; while in Proposition 3.3, ∆tk doesn’t depend on c or

ωd.

The following propositions are immediate results from Proposition 3.2 and 3.3,

for sinusoidal controls where ωd = 0.

Proposition 3.4. Consider (3.8) and (3.10) where ωd = 0. Let ∆tk = 2π/
√
ω2 + c2.

Then,

Rk+1 = R̃k+1 = RkS exp
((√

ω2 + c2 − ω
)

∆tkE3

)
ST, (3.17)
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and

sup
t∈Ik

d(R(t), R̃(t)) = arccos
ω2 − c2

ω2 + c2
. (3.18)

Proposition 3.5. Consider (3.8) and (3.16) where ωd = 0. Let ∆tk = 2π/ω.

Then,

Rk+1 = R̄k+1 = RkS exp
((√

ω2 + c2 − ω
)

∆tkEw

)
ST,

and

sup
t∈Ik

d(R(t), R̄(t)) = arccos
ω2 − c2

ω2 + c2
.

Example 3.6. Consider (3.8) and (3.10), where ωd = 0, ω = 10
√

2π rad/s and

c = 10
√

2π rad/s, and let ∆tk = 2π/
√
ω2 + c2 = 1/10 s. In this case, ∆tk = 1/10 s,

and Proposition 3.4 implies that R(k/10) = R̃(k/10) and supt∈Ik d(R(t), R̃(t)) =

π/2 rad, where Ik = [k/10, (k + 1)/10).

Proposition 3.4 also implies that if c/ω is smaller while ∆tk = 1/10 s is the

same, then supt∈Ik d(R(t), R̃(t)) is smaller. Thus, we consider ω = 10
√

3π rad/s and

c = 10π rad/s, which implies that c/ω = 1/
√

3 and ∆tk = 1/10 s. Proposition 3.4

implies that R(k/10) = R̃(k/10) and supt∈Ik d(R(t), R̃(t)) = π/3 rad, which is less

than the previous case. Figure 3.1 shows the trajectory d(R(t), R̃(t)) for both cases of

c/ω. 4

Now, we analyze the structure of the solution (3.8) by approximation and by

motion decomposition.
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Figure 3.1: The solutions R coincide with the pure rotation R̃ at tk = k/10 s. The
maximum distance between R and R̃ is smaller if c/ω is smaller while ∆tk is the
same.

To this end, first we consider (3.1) and small control (3.2) with ck = O(ε) and

ωd = O(ε), where ε > 0 is a small scalar. Note that ω = O(1). Since Ω(t) is periodic

with period T = 2π/ω, we define

Ωav ,
1

T

∫ T

0

Ω(τ)dτ = S

[
0 0 ωd

]T

. (3.19)

By applying the classic averaging theory [40], we have the following proposition.

Proposition 3.7 (Leonard [71]). Consider (3.1) and (3.2), where ε > 0 is a small

scalar, c = O(ε), and ωd = O(ε). Let R(t) is the solution to (3.1) and (3.2), with

R(0) = R0 ∈ SO(3). Let G , {R ∈ SO(3) : d(R,R0) < π}. Let R(1)(t) be the

solution to

Ṙ(t) = R(t)Ω̂av, (3.20)

with R(1)(0) = R
(1)
0 , where Ωav is defined in (3.19). If there exists b > 0, such that
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for all t ∈ [0, b/ε], R(1)(t) ∈ G, and if d(R
(1)
0 , R0) = O(ε), then for all t ∈ [0, b/ε],

d(R(t), R(1)(t)) = O(ε).

Proposition 3.7 indicates that the solution (3.8) can be approximated with the

solution of the average dynamics (3.20) with O(ε) error. That is, if c = O(ωd), the

dc component of Ω dominates the system response.

To be more precise, we decompose the motion (3.8) into two parts, an oscillatory

motion and a spin. In particular, let Rr(t) = R(t) exp(−ωdtSE3S
T). By taking

derivative of Rr(t), It follows that

Ṙr(t) = Ṙr(t)Ω̂r(t), Ωr(t) , S

[
c cos ((ω + ωd)t) c sin ((ω + ωd)t) 0

]T

. (3.21)

Therefore, we have the following proposition.

Proposition 3.8. The solution of (3.1) and (3.2) is

R(t) = Rr(t) exp(ωdtSE3S
T), (3.22)

where Rr(t) is the solution of (3.21) with Rr(0) = R(0) = R0.

Now, assume c = O(ε) and ωd = O(ε). Then, it follows from Proposition 3.4 that

Rr(t) is approximated by a spin along Se3 axis with rotation rate

√
(ω + ωd)2 + c2 − (ω + ωd) =

c2√
(ω + ωd)2 + c2 + (ω + ωd)

= O(ε2). (3.23)

On the contrary, exp(ωdtSE3S
T) is a spin along Se3 axis with rotation rate ωd =

O(ε), which is much bigger than Rr(t). Therefore, R(t) can be approximated by

exp(ωdtSE3S
T).
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Remark. We now assume ω > c and ω+ωd > 0. It follows from Proposition 3.2

and Proposition 3.8 that the average rotation is along the positive body z direction

if ωd >
√
ω2 − c2 − ω, and that the average rotation is along the negative body z

direction if ωd <
√
ω2 − c2 − ω.

We note that the kinematic system (3.1) (3.2), in which S, c, ωd are control

variables, is trivially controllable. This is because we can set c = 0, and choose S

and ωd properly to drive R(t) to arbitrary state in arbitrary time. Therefore, in

the remaining sections of this chapter, we let ωd = 0, and consider controllability,

setpoint tracking, and command following problems for (3.1) and sinusoidal control

Ω(t) = cS[(cosωt)e1 + (sinωt)e2], (3.24)

or piecewise sinusoidal control

Ω(t) = Sk [ck(cosωkt)e1 + ck(sinωkt)e2] , t ∈ Ik. (3.25)

3.2 Controllability of the attitude kinematic system

The following result provides a relationship between two elements of SO(3) that

have equal geodesic distance from I. This preliminary result is used in the controlla-

bility analysis of this section and is required for the controller constructions provided

later.

Lemma 3.9. Let A,B ∈ SO(3), and assume that d(A, I) = d(B, I). Then there

exists S ∈ SO(3) such that A = SBST.

Proof. Since the exponential map from so(3) to SO(3) is surjective and d(A, I) =

d(B, I), there exist unit vectors a, b ∈ R3, such that

A = exp(φâ), B = exp(φb̂), (3.26)
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where φ , d(R1, I) = d(R2, I). See [67, Proposition 2.5] for a construction of a and b.

Define α , arccos aTb. For the case that sinα 6= 0, define w , b̂a/sinα. For the case

that sinα = 0, let w be a unit vector in R3 such that wTa = 0. Define S , exp(αŵ).

It can be shown that a = Sb, which implies that

φâ = (φSb)∧ = φSb̂ST. (3.27)

It follows from (3.26) and (3.27) that A = exp(φâ) = exp(Sφb̂ST) = S exp(φb̂)ST =

SBST.

Remark. Note that S satisfying A = SBST is not unique. Specifically, let γ ∈ R,

let a ∈ R3 be the unit vector that satisfies (3.26), and assume S ∈ SO(3) satisfies

A = SBST. Define S1 , exp(γâ)S. Then, A = S1BS
T
1 .

The following result implies that (3.1) and (3.24) is completely controllable in

time tf > 0. See [72, Definition 3.1.6] for the definition of controllability.

Theorem 3.10. Let tf > 0, R0 ∈ SO(3) and Rf ∈ SO(3), and define φ ,

d(Rf , R0). Assume that ωmax > (2π − φ)/tf , and let ` < (ωmaxtf + φ)/(2π) be a

positive integer. Consider (3.1) and (3.24), where S ∈ SO(3) satisfies

RT
f R0 = S exp(−φE3)ST, (3.28)

and

ω =
2π`− φ

tf
, c =

√
4π`φ− φ2

tf
. (3.29)

Then, R(tf) = Rf .
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Proof. It follows from (3.9) and (3.29) that

tf =
2π`

ωn

, φ =
2π`(ωn − ω)

ωn

. (3.30)

Since (3.8) is the solution of (3.1) and (3.24), it follows from (3.17) of Proposition 3.4

and (3.28)–(3.30) that

R(tf) = R̃

(
2π`

ωn

)
= R0S exp

(
2π`(ωn − ω)

ωn

E3

)
ST

= R0S exp(φE3)ST

= Rf .

This completes the proof.

Note that Lemma 3.9 with A = RT
f R0 and B = exp(−φE3) confirms the existence

of S ∈ SO(3) that satisfies (3.28).

Example 3.11. Consider (3.1), where R0 = exp(E2). Let Rf = I and tf =

1 s, and note that d(R0, Rf) = 1 rad. We use Theorem 3.10 to choose the control

parameters of (3.24) such that the solution of (3.1) and (3.24) satisfies R(tf) =

Rf . Let Ω be given by (3.24), where S = exp
(
π
2
E1

)
, ω = 10π − 1 rad/s, and c =

√
20π − 1 rad/s. Since S, ω, and c satisfy (3.28) and (3.29) with ` = 5, Theorem

3.10 implies that the solution of (3.1) and (3.24) satisfies R(tf) = Rf . Figure 3.2

shows the trajectory d(R(t), Rf). 4

Next, we consider (3.1) and (3.24) for the case that the frequency ω is not a

control parameter. The motivation for this case is an actuation system that gener-

ates constant-frequency piecewise sinusoids. The following result shows that if ω is

constant, then (3.1) and (3.24) is completely controllable, but not completely control-
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Figure 3.2: Open-loop sinusoidal control (3.24) yields R(1) = Rf .

lable in time tf > 0. Completely controllable is a weaker condition than completely

controllable in time tf > 0. See [72, Definition 3.1.6] for controllability definitions.

The proof of Theorems 3.12 is similar to that of Theorem 3.10 and is thus omitted.

Theorem 3.12. Let ω ∈ (0, ωmax], R0 ∈ SO(3), and Rf ∈ SO(3), and define

φ , d(Rf , R0). Let ` be a positive integer, and define tf , (2π` − φ)/ω. Consider

(3.1) and (3.24), where S ∈ SO(3) satisfies

RT
f R0 = S exp(−φE3)ST, (3.31)

and

c =

√
4π`φ− φ2

tf
. (3.32)

Then, R(tf) = Rf .

Example 3.13. Consider (3.1), where R0 = exp (E2). Let Rf = I and ω =

(50π − 5)/4 rad/s. We use Theorem 3.12 to choose the control parameters of (3.24)
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such that the solution of (3.1) and (3.24) satisfies R(tf) = Rf . Let Ω be given by

(3.24), where S = exp
(
π
2
E1

)
and c = 5

√
20π − 1/4 rad/s. Since S and c satisfy (3.31)

and (3.32) with ` = 5, Theorem 3.12 implies that the solution of (3.1) and (3.24)

satisfies R(tf) = Rf , where tf = 0.8 s. Figure 3.3 shows the trajectory d(R(t), Rf).

4
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Figure 3.3: Open-loop sinusoidal control (3.24) yields R(0.8) = Rf .

3.3 Setpoint tracking

In this section, we consider setpoint tracking, where Ωd(t) ≡ 0, that is, Rd is

constant. In this case, Z satisfies

Ż(t) = Z(t)Ω̂(t), (3.33)

where Z(0) = RT
d0R0. The objective is to design a Z-feedback admissible control such

that for all Z0 ∈ SO(3), limt→∞ z(t) = 0. We present three control algorithms that

achieve this objective. The first algorithm uses nonconstant update rate, while the

other two use constant update rate. The motivation for using constant update rate

is that it may simplify the digital implementation of the control algorithms.
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Algorithm 3.14. Let n be a positive integer, and consider the control (3.25),

where Sk, ωk, ck, and ∆tk satisfy

Sk exp(−zkE3)ST
k = Zk, (3.34)

ck
ωk

=

√(
2πn

2πn− zk

)2

− 1, (3.35)

∆tk =
2π√
ω2
k + c2

k

. (3.36)

Note that Lemma 3.9 confirms the existence of Sk ∈ SO(3) that satisfies (3.34).

Theorem 3.15. Consider (3.25) and (3.33), where Sk, ωk, ck, and ∆tk are given

by Algorithm 3.14. Then, for all Z0 ∈ SO(3), limt→∞ z(t) = 0.

Proof. The right-hand side of the differential equation obtained by substituting (3.25)

into (3.33) contains discontinuities at tk. However, the solution to (3.25) and (3.33)

is continuous on [0,∞). Thus, it follows from (3.17) of Proposition 3.4 that

Zk+1 = ZkSk exp

((√
ω2
k + c2

k − ωk
)

∆tkE3

)
ST
k ,

and using (3.36) yields

Zk+1 = ZkSk exp(−ωk∆tkE3)ST
k . (3.37)

Substituting (3.34)–(3.36) into (3.37) yields

Zk+1 = Sk exp

(
1− n
n

zkE3

)
ST
k ,
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which implies that

zk+1 = d(Zk+1, I) = arccos
tr exp(1−n

n
zkE3)− 1

2
. (3.38)

Since

exp

(
1− n
n

zkE3

)
=


cos 1−n

n
zk − sin 1−n

n
zk 0

sin 1−n
n
zk cos 1−n

n
zk 0

0 0 1

 ,

it follows from (3.38) that

zk+1 = arccos

(
cos

1− n
n

zk

)
=
n− 1

n
zk, (3.39)

which implies that limk→∞ zk = 0.

Next, (3.39) implies that zk ≤ z0. Since, in addition, ωk ≤ ωmax, it follows from

(3.35) that

ck = ωk

√(
2πn

2πn− zk

)2

− 1 ≤ ωmax

√(
2πn

2πn− z0

)2

− 1.

Thus, (3.36) implies that

∆tk ≥
2πn− z0

nωmax

> 0. (3.40)

Next, for all t ∈ Ik, define

Z̃(t) , ZkSk exp

((√
ω2
k + c2

k − ωk
)

(t− tk)E3

)
ST
k , (3.41)
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and note that for all t ∈ Ik,

d(Z̃(t), I) ≤ d(Z̃k, I) = d(Zk, I) = zk. (3.42)

In addition, it follows from (3.18) of Proposition 3.4 that

sup
t∈Ik

d(Z(t), Z̃(t)) = arccos
ω2
k − c2

k

ω2
k + c2

k

= arccos
1− c2k

ω2
k

1 +
c2k
ω2
k

. (3.43)

Thus, using (3.42) and (3.43) implies that for all t ∈ Ik,

z(t) = d(Z(t), I)

≤ d(Z(t), Z̃(t)) + d(Z̃(t), I)

≤ arccos
1− c2k

ω2
k

1 +
c2k
ω2
k

+ zk. (3.44)

Since limk→∞ zk = 0, it follows from (3.35) that limk→∞ ck/ωk = 0. Thus, (3.40) and

(3.44) imply that limt→∞ z(t) = 0.

It can be shown that (3.34) is satisfied by Sk = S0, where S0 ∈ SO(3) satisfies

S0 exp(−z0E3)ST
0 = Z0. In this case, Sk does not depend on feedback except the

initial condition Z0. However, if Zk is corrupted by sensor noise, then Sk = S0 does

not generally satisfy (3.34).

Algorithm 3.14 can be implemented by fixing one of the three control parameters

ωk, ck, and ∆tk. In this case, (3.35) and (3.36) provide a unique solution for the

two remaining control parameters. In the following example, Algorithm 3.14 is im-

plemented with constant frequency ωk but nonconstant amplitude ck and time step

∆tk.
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Example 3.16. Consider (3.25) and (3.33), where

Z0 = exp

3
√

14

35


0 −3 2

3 0 −1

−2 1 0


 .

The control parameters Sk, ck, and ∆tk satisfy Algorithm 3.14 with n = 5 and ωk =

10
√

2π rad/s. Figure 3.4 shows the performance z. 4
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Figure 3.4: Setpoint tracking using Algorithm 3.14 with constant ωk.

In the next example, Algorithm 3.14 is implemented with constant time step ∆tk

but nonconstant frequency ωk and amplitude ck.

Example 3.17. Consider (3.25) and (3.33), where Z0 is the same as in Example

3.16. The control parameters Sk, ωk, and ck satisfy Algorithm 3.14 with n = 5 and

∆tk = 0.1 s. Figure 3.5 shows the performance z. 4

Algorithm 3.14 cannot generally be implemented with more than one of the con-

trol parameters ωk, ck, and ∆tk constant. Next, we present two setpoint tracking

controllers that can be implemented with constant frequency ωk and constant time

step ∆tk.
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Figure 3.5: Setpoint tracking using Algorithm 3.14 with constant ∆tk.

Algorithm 3.18. Let n be a positive integer and let ω ∈ (0, ωmax]. Consider the

control (3.25), where

ωk = ω, ck = ω

√(
zk + 2πn

2πn

)2

− 1, ∆tk =
2π

ω
, (3.45)

and Sk satisfies

Sk exp

(
−zk(ckE1 + ωE3)√

ω2 + c2
k

)
ST
k = Zk. (3.46)

Theorem 3.19. Consider (3.25) and (3.33), where Sk, ωk, ck, and ∆tk are given

by Algorithm 3.18. Then, for all Z0 ∈ SO(3), limt→∞ z(t) = 0.

Proof of Theorem 3.19 relies on Proposition 3.5, and is similar with the proof of

Theorem 3.15. Thus, it is omitted for brevity.

Algorithm 3.20. Let ω ∈ (0, ωmax]. Consider the control (3.25), where Sk satis-

fies (3.34) and

ωk = ω, ck = ω

√
zk
π
, ∆tk =

2π

ω
. (3.47)

56



Theorem 3.21. Consider (3.25) and (3.33), where Sk, ωk, ck, and ∆tk are given

by Algorithm 3.20. Then, for all Z0 ∈ SO(3), limt→∞ z(t) = 0.

Proof. Let V (t) , tr(I − Z(t)), and thus

Vk = tr(I − Zk). (3.48)

It follows from (3.34) that

tr Zk = tr exp (−zkE3)

= tr


cos zk sin zk 0

− sin zk cos zk 0

0 0 1


= 1 + 2 cos zk. (3.49)

Combining (3.48) and (3.49) yields

Vk = 3− tr Zk = 2− 2 cos zk,

which implies that Vk is nonnegative.

Next, for all t ∈ Ik, the solution to (3.25) and (3.33) is given by (3.8), with R,

S, ω, c, R0, and t replaced with Z, Sk, ωk, ck, Z(tk), and t− tk. Thus, (3.8), (3.34),

(3.47), and (3.48) imply that

Vk+1 − Vk = Ψ(zk), (3.50)
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where

Ψ(zk) , cos zk

(
2 + zk

π

1 + zk
π

−
2 + zk

π

1 + zk
π

cos 2π

√
1 +

zk
π

)
−

(
sin zk

2√
1 + zk

π

)
sin 2π

√
1 +

zk
π

− zk
π

cos 2π
√

1 + zk
π
− 1

1 + zk
π

. (3.51)

It can be shown that Ψ(0) = 0, and for all ξ ∈ (0, π], Ψ(ξ) < 0. Thus, (3.50) and

(3.51) imply that Vk+1 ≤ Vk. Since Vk is nonnegative and nonincreasing, it follows

that limk→∞ Vk exists, and thus (3.50) implies that

lim
k→∞

Ψ(zk) = lim
k→∞

Vk+1 − lim
k→∞

Vk = 0.

Since Ψ is nonpositive on [0, π], limk→∞Ψ(zk) = 0, and zk ∈ [0, π], it follows that

limk→∞ zk = 0. Thus, (3.47) implies that limk→∞ ck = 0. Using the same arguments

as those used from (3.41) to the end of the proof of Theorem 3.15, it can be shown

that limt→∞ z(t) = 0.

Example 3.22. Consider (3.25) and (3.33), where Z0 is the same as in Exam-

ple 3.16. The control parameters Sk, ωk, ck, and ∆tk are given by Algorithm 3.20

with ω = 10
√

2π rad/s. Figure 3.6 shows the performance z. 4

3.4 Command following

In this section, we consider the general command following problem, where Ωd 6≡ 0.

It follows from (3.1), (2.79), and (2.80) that Z satisfies

Ż(t) = Ω̂T
d (t)Z(t) + Z(t)Ω̂(t), (3.52)
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Figure 3.6: Setpoint tracking using Algorithm 3.20 with constant ωk and ∆tk.

where Z(0) = RT
d0R0.

Let Ω∗ : SO(3) → R3 be an ideal Z-feedback control such that letting Ω = Ω∗

in (3.52) yields a desired closed-loop response. Possible choices of Ω∗ are given in

[4, 10, 19], which present Z-feedback controls such that the identity equilibrium is

almost globally asymptotically stable. We provide an example of Ω∗ later in this

section. Note that Ω∗ need not be an admissible control. In fact, the controllers

in [4, 10,19] are not admissible controls.

For all t ∈ Ik, the ideal command-following error Z∗ : [0,∞) → SO(3) is defined

to be the solution of

Ż∗(t) = Ω̂T
d (t)Z∗(t) + Z∗(t)Ω̂∗(Z∗k), (3.53)

where Z∗(0) = Z0. Define the ideal performance z∗(t) , d(Z∗(t), I). Our objective is

to design an admissible control (3.25) such that the closed-loop response of (3.25) and

(3.52) approximates the ideal command-following error Z∗. We present two control

algorithms that achieve this objective. Similar to last section, the first algorithm uses

nonconstant update rate, while the second uses constant update rate. The motivation

for using constant update rate is that it may simplify the digital implementation of

59



the control algorithms.

Algorithm 3.23. Define

Γk ,


√

2

‖Ω̂∗(Zk)‖F
Ω̂∗(Zk), if ‖Ω̂∗(Zk)‖F 6= 0,

E3, if ‖Ω̂∗(Zk)‖F = 0,

(3.54)

and consider the control (3.25), where Sk, ωk, ck, and ∆tk satisfy

Sk exp(E3)ST
k = exp(Γk), (3.55)

ck =

√√√√(‖Ω̂∗(Zk)‖F√
2

+ ωk

)2

− ω2
k, (3.56)

∆tk =
2π√
ω2
k + c2

k

. (3.57)

Note that Lemma 3.9 confirms the existence of Sk ∈ SO(3) that satisfies (3.55).

Theorem 3.24. Consider (3.25) and (3.52), where Sk, ωk, ck, and ∆tk are given

by Algorithm 3.23. Then,

Zk = Z∗k, (3.58)

and

sup
t∈Ik

d(Z(t), Z∗(t)) = arccos

 2ω2
k(

‖Ω̂∗(Zk)‖F√
2

+ ωk

)2 − 1

 . (3.59)
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Furthermore, let ε ∈ (0, π), and assume that ωk ∈ [ωmin, ωmax], where

ωmin ,
supk∈N ‖Ω̂∗(Zk)‖F

2
√

1
1+cos ε

−
√

2
. (3.60)

Then, supt∈Ik d(Z(t), Z∗(t)) ≤ ε.

Proof. For all t ∈ Ik, let R∗(t) , Rd(t)Z∗(t), and note that

d(Z(t), Z∗(t)) = d(Rd(t)Z(t), Rd(t)Z∗(t)) = d(R(t), R∗(t)). (3.61)

To show (3.58), we use induction on k ∈ N. First, note that Z0 = Z∗(0) = Z∗0,

which implies that (3.58) holds for k = 0.

Next, assume that (3.58) holds for k = ` ∈ N, and it follows from (3.61) that

R` = R∗`. We then show that (3.58) holds for k = `+ 1.

It follows from (2.79) and (3.53) that for all t ∈ I`,

Ṙ∗(t) = R∗(t)Ω̂∗(Z∗`),

which has the solution

R∗(t) = R∗` exp
(

(t− t`)Ω̂∗(Z∗`)
)
. (3.62)

Since Z` = Z∗`, substituting (3.54) into (3.62) yields that for all t ∈ I`,

R∗(t) = R∗` exp

(
‖Ω̂∗(Z`)‖F√

2
(t− t`)Γ`

)
. (3.63)

It follows from (3.56) that

‖Ω̂∗(Z`)‖F√
2

=
√
ω2
` + c2

` − ω`. (3.64)
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Substituting (3.64) into (3.63) yields for all t ∈ I`,

R∗(t) = R∗` exp

(√
ω2
` + c2

` − ω`
)

(t− t`)Γ`. (3.65)

Since exp
(
S`E3S

T
`

)
= S` exp (E3)ST

` , it follows from (3.55) that

exp
(
S`E3S

T
`

)
= exp (Γ`) .

The eigenvalues of S`E3S
T
` and Γ` are 0 and ±. Therefore, [68, Fact 11.14.5] implies

that

S`E3S
T
` = Γ`. (3.66)

Substituting (3.66) into (3.65) yields for all t ∈ I`,

R∗(t) = R∗`S` exp

((√
ω2
` + c2

` − ω`
)

(t− t`)E3

)
ST
` .

Next, it follows from (3.1) and (3.25) that for all t ∈ I`,

Ṙ(t) = R(t)c`S` [(cosω`t)E1 + (sinω`t)E2]ST
` . (3.67)

Note that the solution R to (3.67) is continuous on [0,∞). Since R` = R∗`,

it follows from (3.17) of Proposition 3.4 with S, ω, c, R0,∆tk, and R̃ replaced by

S`, ω`, c`, R`,∆t`, and R∗ that R`+1 = R∗(`+1). Thus, (3.61) implies that Z`+1 =

Z∗(`+1), which confirms (3.58).

To show (3.59), it follows from (3.61) and (3.18) of Proposition 3.4 with S, ω, c,
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R0, t, and R̃ replaced by Sk, ωk, ck, Rk, t− tk, and R∗ that

sup
t∈Ik

d(Z(t), Z∗(t)) = sup
t∈Ik

d(R(t), R∗(t)) = arccos
ω2
k − c2

k

ω2
k + c2

k

, (3.68)

and substituting (3.56) into (3.68) yields (3.59).

To show the last statement of the theorem, let ε ∈ (0, π), and assume that ωk ∈

[ωmin, ωmax]. Therefore, (3.60) implies that

ωk ≥
‖Ω̂∗(Zk)‖F

2
√

1
1+cos ε

−
√

2
,

which implies that

cos ε ≤ 2ω2
k(

‖Ω̂∗(Zk)‖F√
2

+ ωk

)2 − 1. (3.69)

Since ε ∈ (0, π), substituting (3.69) into (3.59) yields supt∈Ik d(Z(t), Z∗(t)) ≤ ε.

The final statement of Theorem 3.24 implies that d(Z(t), Z∗(t)) is arbitrarily small

if ωk is sufficiently large. Note that (3.56) implies that ck is large if ωk is large.

One possible choice for Ω̂∗ is given in [17,19], specifically,

Ω̂∗(Z) = −kc log(Z)− ZTΩ̂T
dZ, (3.70)

where kc > 0. It follows from [19, Theorem 2.A] that the identity is an almost globally

asymptotically stable equilibrium of (3.52) and (3.70), where Ω = Ω∗.

Example 3.25. Consider (3.25) and (3.52), and the ideal command-following

error (3.53), where Ω∗ is given by (3.70), where kc = 1. Let

Ωd(t) =

[
t2+20t−20

100
sin 2t

5
1
10

]T

.
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The control parameters of (3.25) are given by Algorithm 3.23 with ωk = 1000 rad/s.

Figure 3.7 shows the performance z and the ideal performance z∗. Note that for all

t ≥ 0, d(Z(t), Z∗(t)) < 0.12 rad. 4
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Figure 3.7: Closed-loop command following example using Algorithm 3.23 with con-
stant ωk but nonconstant ∆tk.

Algorithm 3.23 can be used for setpoint tracking, provided that the ideal control

Ω∗ is such that limt→∞ Z∗(t) = I. The following result shows that Algorithm 3.23

and (3.70) with Ωd = 0 achieve setpoint tracking.

Proposition 3.26. Consider (3.52) and the ideal control (3.70), where Ωd(t) = 0

and kc ∈ (0, ωmax/(2π)). Consider the control (3.25), where Sk, ωk, ck, and ∆tk are

given by Algorithm 3.23, and let ωk > 2πkc. Then, limt→∞ Z(t) = I.

The proof of Proposition 3.26 relies on [19, Proposition 4] and uses arguments

similar to those in the proof of Theorem 3.15. This proof is omitted for brevity.

Algorithm 3.23 cannot generally be implemented with constant ωk and ∆tk. Next,

we present a command-following controller that is implemented with constant fre-

quency ωk and constant time step ∆tk but nonconstant amplitude ck.
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Algorithm 3.27. Define

Λk ,


√

2

‖Ω̂∗(Zk)‖F
Ω̂∗(Zk), if ‖Ω̂∗(Zk)‖F 6= 0,

E3, if ‖Ω̂∗(Zk)‖F = 0,

and let ω ∈ (0, ωmax]. Consider the control (3.25), where Sk satisfies

Sk exp

(
ckE1 + ωE3√

ω2 + c2
k

)
ST
k = exp(Λk), (3.71)

and

ωk = ω,

ck =

√√√√(‖Ω̂∗(Zk)‖F√
2

+ ω

)2

− ω2,

∆tk =
2π

ω
.

The following result compares the closed-loop response of (3.25) and (3.52), where

Sk, ωk, ck, and ∆tk are given by Algorithm 3.27, with the ideal command-following

error Z∗. The proof, which uses Proposition 3.5, is similar to that of Theorem 3.24.

Theorem 3.28. Consider (3.25) and (3.52), where Sk, ωk, ck, and ∆tk are given

by Algorithm 3.27. Then,

Zk = Z∗k,
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and

sup
t∈Ik

d(Z(t), Z∗(t)) = arccos

 2ω2(
‖Ω̂∗(Zk)‖F√

2
+ ω

)2 − 1

 .

Example 3.29. Consider (3.25) and (3.52), and the ideal command-following

error (3.53), where Ω∗ and Ωd are the same as in Example 3.25. The control param-

eters of (3.25) are given by Algorithm 3.27 with ω = 1000 rad/s. Figure 3.29 shows

the performance z and the ideal performance z∗.

We note that Figure 3.29 is similar to Figure 3.7 because the control parameters ω

is the same as ωk in Example 3.25, and ck � ω. In this case, ∆tk of Algorithm 3.23

is approximately equal to ∆tk of Algorithm 3.27, and Ew of Algorithm 3.27 is ap-

proximately equal to E3. Thus, Algorithm 3.23 and Algorithm 3.27 generate similar

controls. 4
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Figure 3.8: Closed-loop command following example using Algorithm 3.27 with con-
stant ωk and ∆tk.

Algorithm 3.27 can be used for setpoint tracking, provided that the ideal control

Ω∗ is such that limt→∞ Z∗(t) = I. The following result shows that Algorithm 3.23
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and (3.70) with Ωd = 0 achieve setpoint tracking.

Proposition 3.30. Consider (3.52) and the ideal control (3.70), where Ωd = 0

and kc ∈ (0, ωmax/(2π)). Consider the control (3.25), where Sk, ωk, ck, and ∆tk are

given by Algorithm 3.27, and let ω > 2πkc. Then, limt→∞ Z(t) = I.
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Chapter 4 Dynamic-Level Attitude Control

In this chapter, we extend the kinematic-level attitude control analysis of the

previous chapter to account for dynamic effects. The previous chapter considers

kinematic-level attitude control in which angular velocity is treated as a control input

to the attitude kinematics. Piecewise sinusoidal kinematic-level controls are given

that address setpoint tracking and command following. In practice, angular velocity

cannot be controlled directly, but rather the angular velocity is driven by the kinetic

equations of motion. Moreover, piecewise sinusoidal controls at the dynamic level do

not in general induce purely piecewise sinusoidal angular velocity.

This chapter considers piecewise sinusoidal controls at the dynamic level. We

consider a representative dynamic system model, which is the CubeSat system dis-

cussed in Chapter 2. The CubeSat system consists of a rigid body with vibrational

momentum-wheel actuators. Small amplitude piecewise sinusoidal internal torques

are designed to achieve setpoint tracking. Numerical examples are also provided to

illustrate the control technique. In addition, we study the external damping effect on

the CubeSat kinetics through numerical simulation.

4.1 Dynamic-level attitude control using steady-state approximation

As derived in Section 2.4, in the absence of external damping and gravitational

force, the kinetic equations of motion for the CubeSat system are

κΩ(t) + β̇(t) = 0, (2.75)

β̈(t) + 2ζβ̇(t) + β(t) = −κu(t). (2.76)

Since u(t) is piecewise smooth, its right derivative exists. Taking the right derivative
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of (2.76) and using (2.75) yields

Ω̈(t) + 2ζΩ̇(t) + Ω(t) = u̇(t). (4.1)

This is a second order linear system, and thus Ω(t) can be solved analytically. Note

that Ω̇(t) is only piecewise continuous, and the initial conditions for (4.1) need to be

solved using β.

Consider the case of sinusoidal controls. Specifically, if all of the components

of u(t) are sinusoids of frequency ω > 0, then each component of the response Ω(t)

consists of a transient response, which decays exponentially to zero, and a steady-state

response, which is a sinusoid of frequency ω. If the transient response is regarded as

negligible, then the approximate response to sinusoidal controls is purely sinusoidal.

In this section, we consider a steady-state control approach, which treats the

transient response as negligible. In this case, it is possible to apply the kinematic-

level control approaches from the previous chapter. The following algorithm is a

steady-state implementation of Algorithm 3.14.

Algorithm 4.1. Let n be a positive integer, and consider the control

u(t) = αSk [ck(cosωt)e1 + ck(sinωt)e2] , t ∈ Ik,

where α > 0 is a scaling factor, and Sk, ck, and ∆tk satisfy

Sk exp(−zkE3)ST
k = Zk,

ck
ω

=

√(
2πn

2πn− zk

)2

− 1,

∆tk =
2π√
ω2 + c2

k

.
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Example 4.2. Consider (3.33), (2.75), and (2.76), where ζ = 0.05, κ = 6, and

Z0 = exp

3
√

14

35


0 −3 2

3 0 −1

−2 1 0


 .

The control parameters α = 0.15, ω = 1.2, and Sk, ck, and ∆tk satisfy Algorithm 4.1

with n = 5. Figure 4.1 shows the performance z and the control u. 4
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Figure 4.1: Setpoint tracking using Algorithm 4.1.

In Fig. 4.1, the setpoint tracking performance only converges to a neighborhood

of zero. Recall that the equivalent kinematic-level controller in Algorithm 3.14 yields

z → 0. Thus, the transient response has a negative impact on the performance, at

least when the performance is close to zero.

To minimize the adverse effect caused by the transient response of Ω(t), we apply

small amplitude torques, which yield small angular velocity Ω = O(ε) ∈ R3, where

ε > 0 is a small quantity. It follows from (3.23) that if Ω = O(ε), then the net

rotation rate of the CubeSat, ignoring the transient response of Ω, will be in the

order of O(ε2). This is smaller than the transient response of Ω, which is in the

order of O(ε). Although the transient response of Ω decays exponentially, it is not
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clear how R(t) will evolve since the effect of the small transient part of Ω may grow

dramatically over a long period of time for the average rotation to be significant.

Concretely, consider the quaternion kinematics (2.26) together with (2.75) and

(2.76). Note that the unit quaternions can be embedded in R4, and thus many

classical nonlinear analysis techniques are applicable to analyze the motion of the

system. Let u(t) = [ε cosωt ε sinωt 0]T, β(0) = 0, and β̇(0) = 0. It follows from

(4.1) that

Ω1(t) = εK11 cos(ωt+ φ11) + εK12e
−ζt cos(ωdt+ φ12),

Ω2(t) = εK11 sin(ωt+ φ11) + εK22e
−ζt sin(ωdt+ φ22),

Ω3(t) = 0,

where ωd ,
√

1− ζ2 = O(1) and K11, K12, K22 = O(1). Define

Ω11(t) , εK11 cos(ωt+ φ11),

Ω12(t) , εK12e
−ζt cos(ωdt+ φ12),

Ω21(t) , εK11 sin(ωt+ φ11),

Ω22(t) , εK22e
−ζt sin(ωdt+ φ22),

M1(t) ,



0 −Ω11(t) −Ω12(t) −Ω13(t)

Ω11(t) 0 Ω13(t) −Ω12(t)

Ω12(t) −Ω13(t) 0 Ω11(t)

Ω13(t) Ω12(t) −Ω11(t) 0


,

M2(t) ,



0 −Ω21(t) −Ω22(t) −Ω23(t)

Ω21(t) 0 Ω23(t) −Ω22(t)

Ω22(t) −Ω23(t) 0 Ω21(t)

Ω23(t) Ω22(t) −Ω21(t) 0


,
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f(t, q) ,
1

2
M1(t)q,

g(t, q) ,
1

2
M2(t)q.

Then the quaternion kinematics can be written as

q̇(t) = f(t, q) + g(t, q).

Let q̄(t) be the solution of

˙̄q(t) = f(t, q̄), q̄(0) = q(0). (4.2)

We compare the trajectories of q(t) and q̄(t) using [40, Theorem 3.4], where q(t) cor-

responds to the original system response and q̄(t) corresponds to the system response

with the steady state sinusoidal angular velocity input.

Note that f(t, q) is piecewise continuous in t and is Lipschitz in q on S3, with

Lipschitz constant L = εK11/2. Specifically, for all t ≥ 0 and q1, q2 ∈ S3,

‖f(t, q1)− f(t, q2)‖2 = ‖1

2
M1(t)(q1 − q2)‖2

≤ 1

2
‖M1(t)‖2‖q1 − q2‖2

=
1

2

√
λmax(M1(t)TM1(t))‖q1 − q2‖2

=
1

2
εK11‖q1 − q2‖2,

where λmax(M1(t)TM1(t)) denotes the largest eigenvalue of M1(t)TM1(t), which is a

diagonal matrix with all the diagonal elements being Ω2
11 + Ω2

21. In addition, for all

(t, q) ∈ [0,∞)× S3, ‖g(t, q)‖2 is bounded, since

‖g(t, q)‖2 ≤
1

2
‖M2(t)‖2‖q‖2 =

1

2
‖M2(t)‖2,
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and

‖M2(t)‖2 =
√
λ(M2(t)TM2(t) =

√
Ω2

12 + Ω2
22 ≤ ε

√
K2

12 +K2
22 , µ.

Now it follows from [40, Theorem 3.4] that

‖q(t)− q̄(t)‖2 ≤
µ

L
(eLt − 1) =

2
√
K2

12 +K2
22

K11

(e
K11
2
εt − 1). (4.3)

Therefore, if t = O(1), then ‖q(t)− q̄(t)‖2 = O(ε). However, it follows from Proposi-

tion 3.4 that the average rotation rate for (4.2) is

√
ω2 + ε2K2

11 − ω =
ε2K2

11√
ω2 + ε2K2

11 + ω
= O(ε2).

Thus, even though small amplitude internal torques are applied, the exponential term

in (4.3) makes the difference between q(t) and q̄(t) too large to yield a meaningful

comparison.

4.2 Related work

In this section, we review some related results on the rotation kinematics with

small angular velocity controls. For i ∈ {1, 2, 3}, let vi : [0,∞) → R be piecewise-

continuous and define

ṽi(t) ,
∫ t

0

vi(τ)dτ.

Furthermore, define

v(t) , [v1(t) v2(t) v3(t)]T, V (t) , v̂(t), (4.4)

ṽ(t) , [ṽ1(t) ṽ2(t) ṽ3(t)]T, Ṽ (t) , ˆ̃v(t), (4.5)
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and

aij(t)
4
=

1

2

∫ t

0

(
ṽi(τ) ˙̃vj(τ)− ṽj(τ) ˙̃vi(τ)

)
dτ. (4.6)

Lemma 4.3 (Leonard [47]). Consider system

Ṙ = εRv̂(t), v(t) =
m∑
i=1

vi(t)ei, (4.7)

where 0 < ε < 1 and m ∈ {2, 3}. Assume that v(t) is periodic with period T and has

continuous derivatives up to the third order for t ∈ [0,∞). Assume ṽ(T ) = 0. Let

D , {ξ ∈ R3 : ‖ξ‖2 < π}. Let R(t) be the solution to (4.7) with R(0) = exp(ξ̂0) and

ξ0 =

[
ξ10 ξ20 ξ30

]T

∈ D = O(ε). Let ξ
(2)
0 =

[
ξ

(2)
10 ξ

(2)
20 ξ

(2)
30

]T

∈ R3 and define

ξ
(2)
k (t) , εṽk(t) + ε2

t

T

m∑
i,j=1;i<j

aij(T )Γkij + ξ
(2)
k0 , k=1, 2, 3,

R(2)(t) , exp(ξ̂(2)(t)), ξ(2)(t) , [ξ
(2)
1 (t) ξ

(2)
2 (t) ξ

(2)
3 (t)]T,

where for i, j, k ∈ {1, 2, 3}, aij is defined by (4.6) and Γkij is defined such that [Ei, Ej] =∑3
k=1 ΓkijEk. If ‖ξ0− ξ(2)

0 ‖ = O(ε2) and there exists b > 0 such that for all t ∈ [0, b/ε],

ξ(2)(t) ∈ D, then

d(R(t), R(2)(t)) = O(ε2), ∀t ∈ [0, b/ε].

If the inputs vi(t) to system (4.7) are sinusoids, we have the following proposition,

which follows directly from Lemma 4.3.
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Proposition 4.4. Consider system

Ṙ = εRv̂(t), v =


a1 sin(ωt)

a2 sin(ωt+ θ2)

a3 sin(ωt+ θ3)

 ,

with R(0) = I, where a1, a2, a3 > 0 and θ2, θ3 ∈ R. Define

ξ(2)(t) ,
ε

ω


a1(1− cos(ωt))

a2(cos θ2 − cos(ωt+ θ2))

a3(cos θ3 − cos(ωt+ θ3)

+
ε2

2ω
t


a2a3 sin(θ2 − θ3)

a1a3 sin θ3

a1a2 sin(−θ2)

 , (4.8)

R(2)(t) , exp(ξ̂(2)(t)).

Let D , {ξ ∈ R3 : ‖ξ‖2 < π}. If there exists b > 0 such that for all t ∈ [0, b/ε],

ξ(2)(t) ∈ D, then

d(R(t), R(2)(t)) = O(ε2), ∀t ∈ [0, b/ε]. (4.9)

Proof. It follows from (4.5) and (4.6) that

ṽ(t) =
ε

ω


a1(1− cos(ωt))

a2(cos θ2 − cos(ωt+ θ2))

a3(cos θ3 − cos(ωt+ θ3))


and

a23(T ) =
1

2

∫ 2π
ω

0

(ṽ2(t)v3(t)− ṽ3(t)v2(t)) dt =

∫ 2π
ω

0

ṽ2v3dt

=

∫ 2π
ω

0

a2

ω
(cos θ2 − cos(ωt+ θ2))a3 sin(ωt+ θ3)dt =

πa2a3

ω2
sin(θ2 − θ3).
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It can also be shown that

a12(T ) =
πa1a2

ω2
sin(−θ2),

a13(T ) =
πa1a3

ω2
sin(−θ3),

By noticing the nonzero structural constants are Γ3
12 = Γ1

23 = Γ2
31 = 1 and aij(T ) =

−aji(T ), it follows from Lemma 4.3 that (4.9) holds.

Note that the first term of (4.8) is periodic, and for t = 2kπ/ω, k = 0, 1, 2, · · · , the

first term vanishes. The second term is a secular term, which causes a net rotation,

and the average velocity of the rotation vector is

r =
ε2

2ω


a2a3 sin(θ2 − θ3)

a1a3 sin θ3

a1a2 sin(−θ2)

 . (4.10)

This agrees with the Conjecture (C) in [59]. Note that if the dynamics considered in

the conjecture is negligible, then the equations in the conjecture hold approximately.

In addition, if a3 = 0, then the average velocity r of the rotation vector equals

[0, 0, ε2a1a2/(2ω) sin(θ2 − θ3)]T, i.e., sinusoidal angular velocities of a rigid body on

its body x- and y-axis will induce a net rotation about its body z-axis. In this case,

‖r‖2 is sinusoidal function of θ2.

Note that the approximation in Lemma 4.3 and Proposition 4.4 only hold locally,

i.e., for t ∈ [0, b/ε], b > 0; whereas in the previous chapter, generality of the periodic

signal is sacrificed for a global exact closed form solution of the rotation kinematics.
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4.3 Small angular velocity controls

In this section, we consider (2.74) with small angular velocity input, that is,

Ω(t) = εv(t), where ε > 0 is a small number. The following lemma provides a

solution to (2.74) in the form of infinite series.

Lemma 4.5. [Magnus [73], Karasev [74], Leonard [47]] Consider system

Ṙ(t) = εR(t)v̂(t), R(0) = I. (4.11)

If v(t) satisfies

∫ t

0

‖εv̂(τ)‖2dτ < ln 2, (4.12)

then the solution to (4.11) is

R(t) = exp
(
ξ̂(t)

)
, (4.13)

where

ξ̂(t) = ε

∫ t

0

V (τ)dτ +
ε2

2

∫ t

0

[Ṽ (τ), V (τ)]dτ

+
ε3

4

∫ t

0

[

∫ τ

0

[Ṽ (σ), V (σ)]dσ, V (τ)]dτ

+
ε3

12

∫ t

0

[Ṽ (τ), [Ṽ (τ), V (τ)]]dτ + · · · , (4.14)

where V (t) and Ṽ (t) are defined in (4.4) and (4.5).
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Next, we let ta > 0 and consider (4.14) for the case that

v(t)=




cos(ωt+θ0)+m11e

−ζt sin(ωdt+θ11)

sin(ωt+θ0)+m21e
−ζt sin(ωdt+θ21)

m31e
−ζt sin(ωdt+ θ31)

 , t∈[0, ta],


m12e

−ζt sin(ωdt+ θ12)

m22e
−ζt sin(ωdt+ θ22)

m32e
−ζt sin(ωdt+ θ32)

 , t∈(ta,∞),

(4.15)

where ω > 0, θ0 ∈ R, ωd ,
√

1− ζ2, and for all i = 1, 2, 3, j = 1, 2, mij > 0 and

θij ∈ R.

Lemma 4.6. Consider (4.14), where v is given by (4.15). Then, there exists

ta = O(1/ε) such that (4.14) converges for all t > 0.

Proof. Define m , max

{
mij : i ∈ {1, 2, 3}, j ∈ {1, 2}

}
. For all t > 0,

∫ t

0

‖εv̂(τ)‖2dτ ≤
∫ ∞

0

‖εv̂(τ)‖2dτ

≤
∫ ta

0

ε

∥∥∥∥∥∥∥∥∥∥


cos(ωτ + θ0)

sin(ωτ + θ0)

0


∥∥∥∥∥∥∥∥∥∥

2

dτ +

∫ ta

0

εm

∥∥∥∥∥∥∥∥∥∥


e−ζτ sin(ωdτ + θ11)

e−ζτ sin(ωdτ + θ21)

e−ζτ sin(ωdτ + θ31)


∥∥∥∥∥∥∥∥∥∥

2

dτ

+

∫ ∞
ta

εm

∥∥∥∥∥∥∥∥∥∥


e−ζτ sin(ωdτ + θ12)

e−ζτ sin(ωdτ + θ22)

e−ζτ sin(ωdτ + θ32)


∥∥∥∥∥∥∥∥∥∥

2

dτ

≤ εta +
√

3εm

∫ ∞
0

e−ζτdτ = ε

(
ta +

√
3m

ζ

)
. (4.16)
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Therefore, if

ta <
1

ε
ln 2−

√
3m

ζ
, (4.17)

then condition (4.12) is met for all t. Thus, by Lemma 4.5, there exists ta = O(1/ε)

such that (4.14) converges for all t > 0.

The following result gives a second order approximation of (4.14) if v(t) is in the

form of (4.15) and further satisfies an integral condition.

Theorem 4.7. Consider (4.11) and (4.13). Assume v(t) is in the form of (4.15). In

(4.15), let ta = O(1/ε) be such that (4.14) converges for all t > 0. Let tb = O(1/ε) > ta

and ts ∈ {tb,∞}. Further, assume
∫ ts

0
v(t)dt = O(ε). Then,

ξ(ts)− ξf = O(ε2), (4.18)

where ξf ,

[
0 0 ε2 ta

2ω

]T

= O(ε).

Proof. It follows from (4.14) and (4.15) that

ξ̂(ts) = ε

∫ ts

0

v̂(τ)dτ +
ε2

2

∫ ts

0

[ˆ̃v(τ), v̂(τ)]dτ +O(ε2).

Since
∫ ts

0
v(t)dt = O(ε), it follows that

ξ(ts) = ε

∫ ts

0

v(τ)dτ +
ε2

2

∫ ts

0

ṽ(τ)× v(τ)dτ +O(ε2)

=
ε2

2

∫ ts

0

ṽ(τ)× v(τ)dτ +O(ε2)

=
ε2

2

∫ ts

0


ṽ2(τ)v3(τ)− ṽ3(τ)v2(τ)

ṽ3(τ)v1(τ)− ṽ1(τ)v3(τ)

ṽ1(τ)v2(τ)− ṽ2(τ)v1(τ)

 dτ +O(ε2). (4.19)
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Since ṽ(ts) = O(ε), and ṽ(0) = 0, integrating (4.19) by parts yields

ξ(ts) = ε2


∫ ts

0
ṽ2(τ)v3(τ)dτ∫ ts

0
ṽ3(τ)v1(τ)dτ∫ ts

0
ṽ1(τ)v2(τ)dτ

+O(ε2). (4.20)

Note that for any α ∈ R,

∫
e−ζt sin(ωdt+ α)dt = − e−ζt

ω2
d + ζ2

(ωd cos(ωdt+ α) +ζ sin(ωdt+ α)) ,

and
∫∞

0
e−ζtf(t)dt = O(1) for any bounded function f : R → [−fm, fm], where

fm > 0. It follows that

∫ ts

0

ṽ2(τ)v3(τ)dτ = O(1), (4.21)∫ ts

0

ṽ3(τ)v1(τ)dτ = O(1), (4.22)∫ ts

0

ṽ1(τ)v2(τ)dτ =

∫ ta

0

1

ω
sin2 ωτdτ +O(1) =

ta
2ω

+O(1). (4.23)

Thus, it follows from (4.20)–(4.23) that

ξ(ts) =

[
O(ε2) O(ε2) ε2 ta

2ω
+O(ε2)

]T

,

which confirms (4.18).

4.4 Dynamic level control

Now, consider the rotation kinematics (2.74) together with the dynamics (2.75),

(2.76). In this section, we analyze the motion of R(t) with piecewise sinusoidal

internal torque inputs.
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Lemma 4.8. Consider (2.74), (2.75), and (2.76), where u is given by

u(t) =


ε
ωa

[
cosωt sinωt 0

]T

, 0 ≤ t ≤ ta,

0, t > ta,

(4.24)

where ta > 0, and

a ,
1√

(1− ω2)2 + 4ζ2ω2
. (4.25)

Assume for i ∈ {1, 2, 3},

βi(0) = O(ε2), β̇i(0) = O(ε2). (4.26)

Let Ω(t) = εv(t). Then v(t) is in the form of (4.15).

Proof. It follows from (4.24) that the components of u(t) satisfy

u̇i =
ε

a
cos(ωt+ φi), for t ≤ ta, (4.27)

where φi ∈ R, for i = 1, 2, 3. Furthermore, it follows from (4.26), (2.75), and (2.76)

that Ωi(0) = O(ε) and Ω̇i(0) = O(ε). Therefore, it is the direct result of the linear

system theory that v(t) is in the form of (4.15).

Remark. For i ∈ {1, 2}, and for t ≤ ta, vi(t) is in the form of

vi(t)= cos(ωt+θi) +mi1e
−ζt sin(ωdt+θi1),

where θi, θi1 ∈ R. Note that mi1 = O(1) poses some difficulties for analyzing the mo-

tion of R(t) using the standard perturbation techniques, because classic perturbation

techniques usually require that the perturbation term is smaller than the nominal
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input by an order of magnitude.

Lemma 4.9. Consider the same system and the same assumption as in Lemma 4.8.

In (4.24), let ta = O(1/ε) be such that (4.14) converges for all t > 0. Let tb =

O(1/ε) > ta and ts ∈ {tb,∞}. Then,

∫ ts

0

v(t)dt = O(ε). (4.28)

Proof. We prove (4.28) for both cases of ts. First, consider the case where ts = ∞.

Because of the existence of damping in (2.76), (4.24) implies that limt→∞ β(t) =

limt→∞ β̇(t) = 0. Thus, it follows from (2.75) that limt→∞Ω(t) = 0 and

κ

∫ ∞
0

Ω(t)dt+

∫ ∞
0

β̇(t)dt = 0. (4.29)

Since β(0) = O(ε2) by (4.26), it follows that
∫∞

0
β̇(t)dt = β(∞) − β(0) = O(ε2).

Therefore, (4.29) implies that

∫ ∞
0

Ω(t)dt = O(ε2),

Thus,
∫∞

0
v(t)dt = O(ε).

Next, consider the case where ts = tb. Since tb = O(1/ε) > ta, we write tb =

ta + b1/ε, where b1 = O(1). It follows from (2.76) and (4.24) that

β(tb) = O(ε) exp

(
−ζ b1

ε

)
,

and β(ta) = O(ε). Note that exp (−ζb1/ε) = O(ε), for

exp
(
− ζb1

ε

)
ε

≤ 1

ζb1e
, ∀ε > 0.
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Therefore, β(tb) = O(ε2). Thus, it follows from (2.75) that

∫ tb

0

Ω(t)dt = −1

κ

∫ tb

0

β̇(t)dt

= −1

κ
(β(tb)− β(0))

= −1

κ
(O(ε2)−O(ε2))

= O(ε2).

Therefore,
∫ tb

0
v(t)dt = O(ε).

The following theorem is a direct result of Lemma 4.6, 4.8, 4.9 and Theorem 4.7.

Note that the rotation matrix S affects the average rotation direction.

Theorem 4.10. Consider (2.74), (2.75), and (2.76), where u is given by

u(t) =


ε
ωa
S

[
cos(ωt) sin(ωt) 0

]T

, 0 ≤ t ≤ ta,

0, t > ta,

(4.30)

where S ∈ SO(3), ta > 0, and a is defined by (4.25). Assume (4.26) holds. Then,

there exists ta = O(1/ε) such that (4.14) converges for all t > 0. Furthermore, let

tb = O(1/ε) > ta and ts ∈ {tb,∞}. Then,

d(R(ts), Rf) = O(ε2), (4.31)

where

Rf = S exp

(
ε2
ta
2ω
E3

)
ST.

Example 4.11. Consider (2.74), (2.75), and (2.76), where the control is given by

(4.30), where ω = 1.2, ζ = 0.05, κ = 6, ε = 0.01, and S = I. It follows from (4.17)
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that ta < 34.67, where we have used m = 1. Let ta = 30. The simulation results are

shown in Figure 4.2–4.4. Figure 4.2 shows the exponential coordinates ξ = [ξ1 ξ2 ξ3]T

of R which satisfies R = exp
(
ξ̂
)

, and note that ξ(100) = 10−3 × [−0.2 0.1 1.8]T.

Theorem 4.10 implies that the second order approximation of R(∞) is exp(0.0013E3).

Since d(exp(ξ̂(100)), exp(0.0013E3)) = 5.5× 10−4, (4.31) is confirmed.
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Figure 4.2: The rotation vector ξ of R(∞) is 10−3 × [−0.2 0.1 1.8]T, and its second
order approximation is 10−3 × [0 0 1.3]T.

Theorem 4.10 implies sinusoidal control (4.24) steers R from I to Rf with O(ε2)

error. Therefore, for the setpoint tracking problem, we can generate a list of attitude

points, R0, R1, R2, · · · , R`, where R0 = I, R` = Rd, and d(Rk, Rk+1) = O(ε) for

k = 0, 1, · · · , `− 1; then Theorem 4.10 can be used to steer R from Rk to Rk+1 with
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Figure 4.3: The sinusoidal control u (torque) induces a net rotation about body z
axis.
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Figure 4.4: The angular velocity Ω of the rigid body is not periodic because of the
transient response of the actuator dynamics.
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O(ε2) error. Specifically, consider admissible control

u(t) =



ε
ωa
Sk


cos(ω(t− tk))

sin(ω(t− tk))

0

 , tk ≤ t ≤ tk + tak,

0, tk + tak < t < tk+1,

(4.32)

where t0 = 0, and for k = 1, 2, · · · , tk+1 = tk + tsk, tak and tsk are specified in the

same manner as ta and tb are in Theorem 4.10, and Sk satisfies

Sk exp(ηE3)ST
k = R(tk)

TRd, (4.33)

where 0 < η ≤ π. Then, we have the following theorem for setpoint tracking.

Theorem 4.12. Consider (2.74), (2.75), and (2.76), where u(t) is given by (4.32).

Let R(0) = I and Rd ∈ SO(3). Then, for any δ > 0, there exists tf > 0 and admissible

control u(t) such that

d(R(t), Rd) < δ, ∀t ≥ tf . (4.34)

Example 4.13. Consider (2.74), (2.75), and (2.76), where the control is given by

(4.32), where the system and control design parameters ω, ζ, κ, and ε are the same

as in Example 4.11, tak ≡ 30, tk = 50k, for k = 0, 1, 2, · · · . Control parameter Sk is

calculated from (4.33). In this example, the desired attitude is R = exp(ξ̂d), where

ξd = [0.1 0.3 0.2]T. Figure 4.5 shows the distance d(R(t), Rd), and Figure 4.6 shows

Ω(t) for 2000 ≤ t ≤ 2100. Note that d(R(12000), Rd) = 0.0027 rad.
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Figure 4.5: Dynamic level control u(t) is designed to steer R(t) to Rd with O(ε2)
error.

4.5 The effect of external damping

In this section, we investigate the nonlinear CubeSat kinetics (2.66) (2.67) using

numerical simulations. The system parameters used in the simulation is summarized

in Table 4.1. Note that here we use the original equations with dimension.

Table 4.1: System parameters used in numerical simulations

Parameters Value Unit
I1, I2, I3 0.003 kg·m2

Ia 0.001 kg·m2

It 0.0015 kg·m2

m 0.5 kg
C 0.05 N·m·s/rad
K 100 N·m/rad
µ 0.01 N·m·s/rad
g 9.81 m/s2

h 0 m

We set h = 0 to enable the CubeSat to rotate in an arbitrary direction. Let

u = [A1 cos(ωt) A2 sin(ωt) 0]T, where A1 = A2 = 10 N·m, and ω = 40π rad/s. The
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Figure 4.6: Angular velocity Ω(t) of the rigid body induced by the dynamic level
control u(t).

simulation results are shown in Fig. 4.7 – 4.9. As shown in Fig. 4.7, the CubeSat

oscillates about its body x and y axis, but there is a net rotation about the body

z axis. The yaw angle ψ increases first and then starts to decrease. As shown in

Fig. 4.8, Ω1 and Ω2 are sinusoidal signals with the phase of Ω1 leading that of Ω2 by

π/2 (the phase difference is better shown in Fig. 4.9); Ω3 decreases before reaching

a steady state value. Figure 4.9 shows Ω1(t), Ω2(t), β̇1(t), and β̇2(t), which are the

angular velocity components of the cube and the momentum wheels.

Since Ω3 varies slowly with respect to sinusoidal Ω1 and Ω2, we can treat Ω3 as

a constant within a short period of time. In the case where Ω3 = 0, it follows from

Proposition 3.4 that the net rotation is along the positive body z direction, since the

phase of sinusoidal Ω1 leads that of Ω2 by π/2. In the case where Ω3 < 0, as pointed

out in Chapter 3, the net rotation direction depends on the relative magnitude of Ω3

with respect to the amplitude of Ω1 and Ω2. In particular, assume the amplitude of
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Figure 4.7: Euler angles of the CubeSat system with sinusoidal internal torque inputs.

Ω1 and Ω2 are both c and c < ω. As discussed in Section 3.1, if Ω3 <
√
ω2 − c2 − ω,

then the net rotation is in the negative body z direction. This explains the motion

of the yaw angle.

However, it is interesting that the CubeSat generates an angular velocity in the

body z direction in the first place, even though no internal torques are applied in the

body z direction (u3 = 0).

Following the derivation of the equations of motion in Section 2.4, we note that

the sum of the torques and moments acting on the cube about its rotational center

is Mp + To + Td (See Eq. (2.33)). It can be shown that the z-component M3 is

M3 = −2ItΩ̇3 − µΩ3 + Ia(Ω2β̇1 − Ω1β̇2). (4.35)

We note that external damping affects the phases of sinusoidal signals Ω1(t), Ω2(t),

β̇1(t), and β̇2(t). For linear systems, a pole induces 90◦ phase lag while a damped pole
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Figure 4.8: Angular velocity Ω(t) of the rigid body induced by the dynamic level
control u(t).

Figure 4.9: Angular velocities of the CubeSat and the momentum wheels.

induces a phase lag between 0◦ and 90◦. Based on the waveforms shown in Fig. 4.9,

we assume for i = 1, 2, βi(t) and Ωi(t) are single tone sinusoidal signals, and β̇i(t)
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leads Ωi(t) by π − α, where α ∈ (0, π/2). In particular, we assume β̇i(t) and Ωi(t)

are of the following form

Ω1(t) = k1A1 cos(ωt+ β), β̇1(t) = k2A1 cos(ωt+ β + π − α), (4.36)

Ω2(t) = k1A2 sin(ωt+ β), β̇2(t) = k2A2 sin(ωt+ β + π − α), (4.37)

where k1 > 0, k2 > 0, β ∈ R, and α ∈ (0, π). It follows from (4.36) and (4.37) that

Ω2β̇1 − Ω1β̇2 = −k1k2A1A2 sinα < 0.

Therefore, the terms Ω2β̇1−Ω1β̇2 in (4.35) create a nonzero torque M3, which in turn

yields a nonzero Ω3.

Next, we propose a heuristic setpoint tracking control algorithm for the case where

the CubeSat system is subject to external damping. Note that if the external damping

is significant, the direction of the net rotation of the CubeSat is the opposite direction

relative to the case where there is no external damping. This motivates using the

inverse of the error rotation matrix Z as feedback. In particular, consider the following

setpoint tracking algorithm.

Algorithm 4.14. Let n be a positive integer, and consider the dynamic level

control

u(t) = αSk [ck(cosωt)e1 + ck(sinωt)e2] , t ∈ Ik (4.38)
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where α > 0 is a scaling factor, and Sk, ω, ck, and ∆tk satisfy

Sk exp(−zkE3)ST
k = ZT

k , (4.39)

ck
ω

=

√(
2πn

2πn− zk

)2

− 1, (4.40)

∆tk =
2π√
ω2 + c2

k

. (4.41)

Similar to Algorithm 4.1, Algorithm 4.14 is only able to yield a setpoint tracking

error that is bounded in a neighborhood of zero. In order to achieve zero setpoint

tracking error, small amplitude control techniques discussed in Section 4.4 should be

used.

Example 4.15. Consider (2.66), (2.67) with (2.27) and (2.25), where the system

parameters are given in Table 4.1, and the initial orientation

R(0) = exp

 1

10


0 −3 2

3 0 −1

−2 1 0


 .

The desired orientation Rd = I. The scaling factor α = 1, and the control parameters

Sk, ck, and ∆tk satisfy Algorithm 4.14 with n = 5 and ω = 40π rad/s. Figure 4.10

shows the performance z.

4
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Figure 4.10: Setpoint tracking using Algorithm 4.14.
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Chapter 5 CubeSat Experiments

In this chapter, we present experimental results related to the theoretical and

simulation results presented in Chapter 3 and 4. The mechanical system that is used

for these experiments consists of a CubeSat frame that is equipped with a vibrational

attitude-actuation system. The actuation system is composed of piezoelectric beam

actuator arrays that are used to vibrate the CubeSat frame about each body-fixed

axis. The CubeSat is mounted to a spherical air bearing, which allows for three ro-

tational degrees of freedom. We investigate the feasibility of the sinusoidal actuation

approach through open-loop and closed-loop experiments. Additionally, we demon-

strate the effect of the external damping on the CubeSat kinetics with experimental

results.

5.1 CubeSat mechanical system

The experimental CubeSat system, shown in Fig. 5.1(a), is constructed around a

10×10×10 cm cubic frame made of 6061 aluminum alloy. There are three trays inside

the cubic frame to hold the control circuit board, battery, and other electronics. A

3D model of the cubic frame is shown in Fig. 5.1(b).

There is one set of actuators on each face of the cubic frame. Each actuator

consists of a piezoelectric beam and tip masses (square nuts) that are glued at the end

of the beam. The piezoelectric beam is manufactured by STEMiNC (Part number:

SMBA4510T05M) and its dimensions are 40 × 10 × 0.5 mm. Four actuators are

installed in an equally spaced manner on a 3D printed hub. Polylactic acid (PLA) is

used for printing the beam hubs. A pair of piezoelectric beams are shown in Fig. 5.2(a)

and a set of actuators is shown in Fig. 5.2(b).

The piezoelectric beams are capacitive load with 60∼70 nF capacitance. The
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(a)

(b)

Figure 5.1: The experimental CubeSat system is constructed around a cubic frame.

(a)

(b)

Figure 5.2: (a) Piezoelectric bimorph actuators (Image courtesy of
https://www.steminc.com/); (b) Four actuators are installed on a 3D printed
hub.

beams vibrate if sinusoidal voltage is applied.

5.2 CubeSat attitude control system hardware

In this section, we describe the control system hardware in detail. The CubeSat

attitude control system consists of a microcontroller, three piezo drivers to drive the
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piezoelectric beams, an inertia measurement unit (IMU) sensor to measure Euler

angles and angular velocities of the CubeSat, a data logger to log the sensor data,

and a Bluetooth Low Energy (BLE) module to communicate with external devices.

The schematic of the CubeSat attitude control system is shown in Fig. 5.3.

Control Board PCB

 

 

 

 

 

 

 

Micro Controller

ADuC7026

 

 

Piezo Driver 

DRV8662

Razor IMU
OpenLog data 

logger

Bluefruit LE 

SPI Friend
DAC

SPI

UART

UART



Battery

Piezoelectric 

Beams

Figure 5.3: CubeSat attitude control system.

The control system is designed to drive each piezoelectric actuator with a sinu-

soidal voltage signal. The most common approaches to generate sinusoidal control

signals on embedded platforms use digital-to-analog conversion (DAC) or pulse-width

modulation (PWM). The signals generated by DAC or PWM are piecewise constant

signals, which are passed through a low-pass filter to generate the desired sinusoids.

The low-pass filter is not always necessary for a high precision DAC module when

the sampling frequency of the DAC is much larger than the bandwidth of the system

that is driven by the sinusoids. In the CubeSat system, we utilize the DAC modules

to generate sinusoidal signals.

The piezoelectric beams are driven by piezo haptic driver DRV8662, which is

manufactured by Texas Instruments. The single-chip piezo haptic driver DRV8662

is integrated with a 105 V boost switch and a fully-differential amplifier. There are
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four amplification gains available: 28.8 dB, 34.8 dB, 38.4 dB, and 40.7 dB. The gains

are optimized to get approximately 50 Vpp, 100 Vpp, 150 Vpp, or 200 Vpp at the output

without clipping from a 1.8 Vpp single-ended input source. A typical application

circuit of the piezo haptic driver is shown in Fig. 5.4. Note that the single-ended

output signal from the DAC is nonnegative; if the DAC output signal is sinusoidal,

the AC coupling capacitors C4, C5 in Fig. 5.4 shift the average of the sinusoidal signal

to zero.

Figure 5.4: DRV8662 application circuit with DAC input (this design is from the
DRV8662 manual).

The microcontroller used in the control system is ADuC7026 from Analog Devices.

This microcontroller features an ARM7TDMI core, four 12-bit voltage output DAC

channels, four general-purpose timers, and various serial I/O ports, including one

universal asynchronous receiver-transmitter (UART), one serial peripheral interface

(SPI), and two inter-integrated circuit (I2C) ports. We use the DACs to generate

sinusoids as inputs to the piezo haptic driver.
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(a) (b) (c)

Figure 5.5: (a) Nine degree-of-freedom Razor IMU (Image courtesy of
https://www.sparkfun.com/); (b) OpenLog data logger (Image courtesy of
https://www.sparkfun.com/); (c) Adafruit Bluefruit LE SPI Friend (Image courtesy
of https://learn.adafruit.com/).

The IMU used in this system is the Razor IMU (SparkFun part number: SEN-

10736). This stand-alone IMU incorporates an ATmega328 microcontroller and three

sensors, i.e., an ITG-3200 (MEMS triple-axis gyro), ADXL345 (triple-axis accelerom-

eter), and HMC5883L (triple-axis magnetometer). The ATmega328 controller fuses

the outputs of these three on-board sensors and provides triple-axis angular velocities

and (3-2-1) Euler angles over a UART port. A picture of the IMU is shown in Fig. 5.5

(a). SparkFun OpenLog is a stand-alone open source data logger that records the

angular velocities and Euler angle data to a microSD card. An image of the data

logger is shown in Fig. 5.5 (b).

Adafruit Bluefruit LE SPI Friend is a stand-alone Bluetooth Low Energy (BLE)

module added to the CubeSat system to enable wireless communication between the

CubeSat system and external devices, e.g., a smartphone. The Bluetooth Low Energy

module communicates with the ADuC7026 microcontroller through Serial Peripheral

Interface (SPI), and acts as a data tube between the user interface on a smartphone

and the ADuC7026 microcontroller. An image of the Adafruit Bluefruit LE module

is shown in Fig. 5.5 (c).

A customized printed circuit board (PCB) is the main control board, housing

the ADuC7026 microcontroller and three DRV8662 drivers, as well as connecting the
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IMU, the data logger, and the Bluetooth Low Energy module as the mother board.

The main control board contains four layers (two routing layers, a ground plane, and

a power plane) and is designed with Altium Designer. The PCB is fabricated and

populated by PCBWay1. The schematics of the PCB is shown in Fig. 5.6 and the

finished PCB is shown in Fig. 5.7.

The CubeSat system is powered by a Lithium-ion polymer battery. Its output

ranges from 4.2 V when fully charged to 3.7V and it has a capacity of 2500 mAh.

5.3 CubeSat attitude control software

Embedded software can be designed using various architectures. Four that are

commonly used are round-robin, round-robin with interrupts, function-queue-scheduling,

and real-time operating system [75]. These architectures vary with increasing com-

plexity, but generally offer increasingly better performance. Response requirements

often drive the choice of software architecture; when response requirements are satis-

fied, a simpler architecture usually provides a simpler but more reliable solution.

The main software routines/processes of the CubeSat system are:

A. System initialization (including DACs, Timers, SPI/UART ports, etc.);

B. Taking user inputs and reporting status to user;

C. Retrieving sensor data from IMU;

D. Computing feedback control (in the case of closed-loop control);

E. Generating sinusoidal signals.

Routines C, D, E have a more stringent response requirement. Because there

are a limited number of routines, we choose the round-robin with interrupts as the

architecture for the embedded control system. The microcontroller ADuC7026 can

1https://www.pcbway.com.
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Figure 5.6: Control board schematics.
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Figure 5.7: The main control board houses the microcontroller and three piezo haptic
drivers, as well as connecting multiple modules as the mother board.

effectively implement this software architecture. In particular, ADuC7026 operates

at the frequency of 41.78 MHz, and supports interrupts at two priority levels.

In the case of closed-loop control, the piecewise sinusoidal control signal is cal-

culated at the beginning of each time interval Ik, and the system operates in an

open-loop manner within each time interval. A timer is set to determine the end of

an interval. At the beginning of a new time interval, the microcontroller first retrieves

the current attitude data from the IMU, then computes the amplitude and phase of

the control signal on this interval. Next, the microcontroller ADuC7026 generates the

sinusoidal signal with a lookup table, since indexing into the sine table and scaling

the values are much more efficient than computing trigonometric functions. A lookup

table with 256 points is used.

The sampling frequency of sinusoids (how often the DAC output voltage is up-

dated) is 6400 Hz (every 156 µs). The time consumption for routine E (indexing into

the sine table, scaling the values, and updating the DAC input) is approximately 36

µs. The time consumption of feedback control calculation is approximately 1700 µs.
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5.4 Experiment setup

The CubeSat is mounted on a spherical air bearing, which allows for three rota-

tional degrees of freedom. The air bearing (model number: A-656C010) is manufac-

tured by Physik Instrumente (PI), and it is shown in Fig. 5.8. An air preparation

kit feeds the compressed air to the air bearing. It filters the air and regulates the air

pressure. The compressed air enters the bearing base though six tiny holes arranged

in a circle and is vented at the edge of the base. The nominal air pressure is 80 psi.

Disturbance torque caused by the compressed air has been observed. In particular, if

the air pressure is above 10 psi, then the air bearing hemisphere would rotate about

the vertical axis. In order to minimize the disturbance torque, the air pressure is

adjusted to 2-3 psi.

Figure 5.8: The spherical air bearing allows for three rotational degrees of freedom.

The mounting fixture can be seen in Fig. 5.9 and Fig. 5.10. Fig. 5.9 shows a 3D

model of the whole mechanical system and Fig. 5.10 shows the actual CubeSat. The

orientation of a body-fixed frame that is used to describe the orientation and the

motion of the CubeSat is also shown in Fig. 5.9.

As shown in Fig. 5.9, a ring is mounted on the air bearing. On top of the ring,
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O
yb

xb

zb

Figure 5.9: 3D model of the CubeSat mechanical system and the body-fixed frame
(xb, yb, and zb axes point in forward, right, and down direction).

there are four moving mass blocks which can move along threaded rods. These masses

are used to adjust the center of gravity (CG) of the whole system in a plane parallel

to the ring. The CubeSat itself can slide vertically along the slots of the connecting

bars to coarsely adjust the CG in the vertical direction. An additional moving mass

above the CubeSat is used to adjust the CG more accurately.

Before experiments are conducted, the height of the CubeSat as well as the posi-

tion of the moving masses are manually adjusted in a recursive manner to move the

center of gravity (CG) of the whole system close to the rotational center. Ideally,

we would like to adjust the CG of the system to coincide with the rotational center,

so that the CubeSat could freely rotate in an arbitrary direction. However, with the

current setup, this is very difficult. Nevertheless, the CubeSat is able to freely rotate

about the vertical axis.
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Figure 5.10: The experimental CubeSat system.

Before each experiment, we use microfiber cloth to clean the air bearing con-

tact surfaces. Cleaning the air bearing contact surfaces greatly affect the experiment

results regarding the open-loop yaw rate, closed-loop overshoot, etc. One possible

reason is that wiping the air bearing contact surfaces removes dust particles that

might otherwise stay on the air bearing contact surface and affect the air flow. At-

tempt to carry out experiments in a clean room has been made, but the ventilation

rate is too high, defeating the purpose of minimizing disturbance.

Next, we estimate the actuation frequency that provides the highest control au-

thority by frequency sweep. If the actuation frequency is close to the system’s natural

frequency, then the cube would get bigger angular velocities, thus yielding a higher
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control authority. By applying sinusoidal voltages from 10 Hz to 30 Hz, we have

found that the best actuation frequency is about 19 Hz. Note that this actuation

frequency depends on a lot of factors, for example, the mass of the tip masses that

are glued to the beams, the length of the beams, the stiffness of the actuator hub,

etc.

We apply the same sinusoidal voltage signals to the four piezoelectric beams on

each hub, and apply voltage signals with opposite polarities to the beams on opposite

sides of the cube. This ensures that the two set of actuators on the opposite sides of

the cube rotate in the same direction.

We note that in the kinetics model of the CubeSat system (2.75) (2.76), the

controls are internal torques. For simplicity, we assume that the internal torques

generated by the oscillatory actuators are proportional to the voltages applied to the

actuators.

5.5 Experiment results and discussion

The CubeSat system, with the current design, could not perform roll and pitch

motion, for two reasons. First, we could not perfectly balance the system, that is,

making the CG of the whole system coincide with the air bearing rotational center.

Second, the piezoelectric actuators are not powerful enough to counter the moment

due to gravity. Therefore, in this section, we focus on the CubeSat yaw motion

control, present and discuss the experimental results. We use V1(t), V2(t), and V3(t)

to denote the sinusoidal voltages applied to the actuators about the body x, y, and

z axes.

Open-loop control. We implement the kinematic-level open loop control on the

dynamic level, and we show two open-loop experimental results. First, let V3(t) = 0
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for t > 0, and let

V1(t) =


54 cos(38π(t− 10)), if 10 ≤ t ≤ 40,

0, otherwise,

(5.1)

V2(t) =


54 sin(38π(t− 10)), if 10 ≤ t ≤ 40,

0, otherwise.

(5.2)

The Euler angles of the CubeSat are shown in the first subfigure of Fig. 5.11. Second,

let V3(t) = 0 for t > 0, and let

V1(t) =


54 sin(38π(t− 10)), if 10 ≤ t ≤ 40,

0, otherwise,

(5.3)

V2(t) =


54 cos(38π(t− 10)), if 10 ≤ t ≤ 40,

0, otherwise.

(5.4)

The Euler angles of the CubeSat are shown in the second subfigure of Fig. 5.11. In

both experiments, the rotation rate is approximately 1◦/sec. The angular velocities

of the CubeSat for the two experiments are shown in Fig. 5.12 and Fig. 5.13. A

zoom-in view of Ω1 and Ω2 is shown in Fig. 5.14 (we have connected the data points

for a better view). We discuss the angular velocities later.

Closed-loop control. We now present two setpoint tracking experimental re-

sults. The two desired attitudes represented with 3-2-1 Euler angles, are ψ = −50◦,

φ = θ = 0, and ψ = −110◦, φ = θ = 0. We apply sinusoidal voltages that are

proportional to the control torques from Algorithm 4.1. The results are shown in

Fig. 5.15.

IMU measurement error. There is a sensor measurement error for the yaw

angle measurement, which can be seen from both Fig. 5.11 and Fig. 5.15. The yaw
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Figure 5.11: Open-loop control yields pure rotations about body-z axis.

angle shifts at the beginning and at the end of the actuation. This is likely caused

by the magnetic field induced by the AC current used by the actuation system. Note

that the IMU makes use of a magnetometer, whose readings may be corrupted by

this magnetic field.

Six sessions of open-loop experiments have been carried out to qualitatively in-

vestigate the the yaw angle measurement error with respect to different actuation

voltage levels. Each session is 30 sec long and the same actuation voltage frequency

of 19Hz is used for all six sessions. The first two sessions use 53 Vrms sinusoidal voltage

to yield a positive and a negative yaw change; the third and the fourth session use

38 Vrms sinusoidal voltage to yield a positive and a negative yaw change; and the last

two sessions use zero actuation voltage.

As shown in Fig. 5.16, the yaw angle measurement error is smaller if smaller volt-

age is applied to the actuation system. This has an important implication, that is, in

closed-loop experiments if the attitude of the CubeSat is close to the desired attitude,

then the actuation voltage is approximately zero, yielding a small measurement error.

CubeSat kinetic model error. In the open-loop experiments, the angular

velocity along the body z axis is nonzero (see Fig. 5.12 and Fig. 5.13). The nonzero
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Figure 5.12: Sinusoidal actuation voltage yields sinusoidal angular velocity along
body x and y axes. A small positive angular velocity along body z axis is induced
(likely by the unmodeled air dynamics of the air bearing).

Ω3 is likely due to the unmodeled air dynamics of the air bearing. It turns out that

the nonzero Ω3 contributes most to the yaw motion. Recall that sinusoidal Ω1 and

Ω2 induce a average yaw motion, and if the phase difference between Ω1 and Ω2 is

90◦, then the average yaw rate is

s =
√
ω2 + c2 − ω, (5.5)

where ω and c are the angular frequency and amplitude of Ω1 and Ω2. We take

ω = 38π rad/s, and c = 0.1 rad. It follows from (5.5) that the average yaw rate is

4.2 × 10−5 rad/s (0.0024 deg/s), which is much smaller than Ω3. Nevertheless, the

dynamic level control presented in the previous chapter yields the correct rotation

direction, and it is able to achieve setpoint tracking.

The effect of external damping. We study the effect of the external damping

by conducting experiment using the CubeSat designed in [76]. This CubeSat is de-
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Figure 5.13: Sinusoidal actuation voltage yields sinusoidal angular velocities along
body x and y axes. A small negative angular velocity along z axis is induced (likely
by the unmodeled air dynamics of the air bearing).
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Figure 5.14: A zoom in view shows that Ω1 leads Ω2 by 90◦.

signed to rotate on top of a pole through a ball joint, and thus it is subject to much

bigger external damping than the CubeSat that is mounted on an air bearing. Two

sessions of open-loop experiments are carried out using the same voltage (5.1)–(5.4),
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Figure 5.15: CubeSat tracks the yaw angle of −50 deg and −110 deg, which are
marked with dashed lines.
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Figure 5.16: The yaw angle measurement error is smaller if smaller actuation voltage
is applied to the actuation system.

with the difference that each session lasts 20 seconds. The angular velocity of the

CubeSat is shown in Fig. 5.17. A zoom-in view of Ω1 and Ω2 is shown in Fig. 5.18

(we have connected the data points for a better view). In the first session, V1(t) leads

V2(t) by 90◦, and thus Ω1(t) leads Ω2(t) by 90◦. Note that in contrast to Fig. 5.12,

the CubeSat generates a negative Ω3. In the second session, V2(t) leads V1(t) by 90◦,

and thus Ω2(t) leads Ω1(t) by 90◦. Note that in contrast to Fig. 5.13, the CubeSat
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generates a positive Ω3. This agrees with the analysis of the external damping effect

presented in the previous chapter.
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Figure 5.17: Sinusoidal actuation voltage yields sinusoidal angular velocities along
body x and y axes. Nonzero Ω3 is induced because of the external damping.
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Figure 5.18: A zoom in view shows that Ω1 leads Ω2 by 90◦.

111



Chapter 6 Conclusion and Future Work

6.1 Conclusion

This dissertation addresses rigid-body attitude control using piecewise sinusoidal

controls. The contributions of this dissertation are summarized as follows.

First, we consider the SO(3) rigid-body attitude kinematics

Ṙ(t) = R(t)Ω̂(t) (6.1)

for the case that the elements of Ω consists of sinusoidal signals of the form

Ω(t) = S [c cosωt c sinωt ωd]T . (6.2)

A new closed-form solution of (6.1) and (6.2) is derived, and we provide a key result

that the solution of (6.1) and (6.2) approximates the trajectory of a pure rotation.

Next, we consider the kinematic-level control problem in which R(t) is available

for feedback, ωd = 0, and c(t), S(t), and ω(t) are treated as piecewise-constant

controls. Kinematic-level controllers can be used as inner-loop steering controls and

are also applicable for dynamic systems with high-bandwidth actuation and negligible

transient response. It is shown that the SO(3) kinematic system with admissible

controls is controllable in the sense that it is possible to steer R to any desired

attitude by an appropriate choice of c, S, and ω. Next, we present kinematic-level

controllers that use piecewise sinusoidal controls for c(t), S(t), and ω(t) to yield

attitude stabilization and command following.

Second, we consider a dynamic-level problem consisting of (6.1) and a kinetic
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system

Ω̇(t) = f(Ω, u), (6.3)

with piecewise-sinusoidal controls of the form

u(t) = S [c cosωt c sinωt 0]T . (6.4)

where S(t) and c(t) are piecewise constant. Setpoint tracking controls are presented

for a representative dynamic system of the form (6.3) and (6.4). Specifically, we

consider a CubeSat that is equipped with a vibrational actuation system driven by

piecewise sinusoidal torques. We assume there is no external forcing and the initial

angular velocity is zero. In this case, the system conserves zero total angular mo-

mentum and the kinetic equations are linear. We use a steady-state approximation,

which disregards the transient response of the attitude kinetics and thus allows for

the application of kinematic-level control techniques. However, numerical simulations

demonstrate that the control performance is significantly influenced by the transient

response of (6.3) and (6.4). By taking advantage of an integral property of the an-

gular velocity response of (6.3) and (6.4), we derive a second order approximation of

the attitude matrix of the system. We then present a feedback control approach that

accounts for the transient response of (6.3) and (6.4) and yields setpoint tracking.

In addition, we consider the case where the CubeSat is subject to external damp-

ing. In this case, the system doesn’t conserve total angular momentum, and the

kinetic equations of the system are nonlinear. This nonlinear CubeSat system ex-

hibits interesting dynamics with internal sinusoidal torque inputs. We showed that if

the system is subject to external damping, then sinusoidal torque inputs about two

orthogonal axes can generate angular velocity about the remaining orthogonal axis

to which there is no applied torque. For example, if sinusoidal torques are applied
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to the body x and y directions, the existence of external damping can cause nonzero

angular velocity in the body z direction. We study the nonlinear CubeSat dynamics

with numerical simulation and design empirical piecewise sinusoidal controls to drive

the attitude of the CubeSat to a small neighborhood of the desired attitude.

Finally, we designed and built an experimental CubeSat system. We present the

design details of the CubeSat mechanical system, the control system hardware, and

the attitude control software, which can be adapted for future use. We have found that

the CubeSat is not able to perform rotations about an arbitrary axis. This is because

with the current design the system cannot be perfectly mass-balanced; furthermore,

the piezoelectric actuators are not powerful enough to counter the moment due to

gravity. Nevertheless, open-loop and closed-loop yaw angle control experiments were

performed. In addition, we have experimentally demonstrated the external damping

effect on the CubeSat kinetics.

6.2 Future work

The controls considered in this dissertation are in piecewise sinusoidal form be-

cause the rotation kinematics are more amenable with this class of the angular velocity

inputs. However, it would be interesting to consider sinusoidal control inputs with

varying amplitude. Angular velocity controls of this form are smooth, which may

lead to smooth dynamic-level control. Additionally, dynamic-level sinusoidal control

with varying amplitude would induce a much smoother response, improving system

performance.

The air dynamics of the air bearing is also left for further investigation. In this

dissertation, we apply piecewise sinusoidal controls to the CubeSat system and achieve

open-loop and closed-loop yaw angle control. However, the CubeSat yaw motion is

mainly attributed to the nonzero angular velocity in the body z axis, which is likely

due to the unmodeled air dynamics of the air bearing. Similarly, the effect of external
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damping on the CubeSat kinetics needs to be studied further. In the future, it is

interesting to design optimal sinusoidal controls by exploiting this external damping

effect.

Regarding the experimental CubeSat system, a stronger oscillatory actuator is

required to perform rotations about an arbitrary axis. A smaller air bearing also helps

by decreasing moment of inertia of the system and external moment due to gravity.

With the current design, the 850g air bearing with its mass distributed around the

CubeSat, is largely responsible for the moment of inertia of the whole system; the

piezoelectric bimorph actuators are not able to induce a significant oscillatory motion

for the CubeSat. Hopefully, a more powerful actuator, e.g., a DC motor, may be able

to generate large internal torques and induce a larger angular velocity for the system.

Concerning the balancing mechanism of the CubeSat system, a more precise auto-

balancing system is in demand if rotation about an arbitrary axis is to be achieved.

We didn’t design such an auto-balancing system since this extra system would further

increase the moment of inertia that the piezoelectric actuators have to deal with.

However, it may be allowable if a more powerful actuator is in place.
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