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ABSTRACT OF DISSERTATION 

 

CHARACTERIZATION OF METHANE-AIR DIFFUSION FLAMES FOR FLAME 
SYNTHESIS APPLICATION THROUGH OPTICAL DIAGNOSTICS 

Flame synthesis is a growing field of research aiming at forming new materials and 
coatings through injection of seed materials into a flame.  Accurate prediction of the 
thermal structure of these flames requires detailed information on the radiative 
properties and a thorough understanding of the governing combustion processes.  
The objective of this work is to establish a basic optical diagnostic characterization 
of different methane-air diffusion flames of different complexity.  The basic 
principles are developed and demonstrated at a rotational symmetric co-flow burner 
and finally applied to a burner consisting of six clustered microflames which is 
designed for future flame synthesis work.  This work focuses on the demonstration 
of the optical techniques for characterizing the optical emissions from diffusion 
flames and of the proposed method for the determination of radiating species 
properties from these optical measurements. 

In the co-flow diffusion flame setup, the fuel of methane diluted with nitrogen is 
provided through an inner tube while the air is applied through an outer duct 
surrounding the fuel nozzle.  Filtered imaging and spectrally resolved 
measurements of the chemiluminescence of CH* and C2

* and of water emission were 
conducted.  A procedure for using the HITRAN database to support the 
spectroscopic analysis of the water emission was developed. 

In the six clustered microflames burner setup, the burner consisted of six micro-
nozzles arranged in a circle surrounding a central nozzle through which air and TaN 

seed particles with sizes between 0.3 and 3 m were injected.  Spectrally resolved 
measurements of the chemiluminescence of CH* and C2

* were conducted for 
temperature measurements.  Imaging results obtained from a spectral integration 
of the molecular emission were compared to results from Japanese collaborators 
who applied a tomographic analysis method to filtered emission measurements of 
CH* emission which can yield spatially resolved three dimensional mapping of the 
flame front.  The analysis of the spatial distribution of the integrated band emission 



 

of CH* and C2
* showed that the emission of both species is generated at the same 

locations in the flame which are the thin flame sheets shown in the tomography 
results of CH*.  The ratio of the C2

* and the CH* emission from the emission 
spectroscopy measurements was used to determine a local equivalence ratio 
through empirically derived correlations for premixed flames reported in literature.  
Rotational and vibrational temperature distributions of CH* and C2

* radicals 
throughout the entire flame were determined from the spectrally resolved emission 
from CH* and C2

*.  The temperatures of TaN seed particles were characterized using 
VIS-NIR emission spectra while varying fuel-air flow rates.  The temperature profiles 
of the particles at various heights above the base of the central nozzle, obtained by 
their VIS-NIR continuum emission, showed a well-defined constant temperature 
region that extended well beyond the actual flame front and changed as fuel and 
oxidizer flow rates were varied.  The results demonstrate the ability to control the 
duration to which seed particles are subjected to high temperature reactions by 
adjusting fuel and oxidizer flow rates in the clustered microflames burner. 

 

KEYWORDS: flame synthesis, optical diagnostics, molecular spectroscopy, 
microflames, temperature measurement 
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1 

 INTRODUCTION 

1.1 Background and Motivation 

1.1.1 Flame synthesis 

Flame synthesis is a growing field of research aiming at forming functional materials, 

catalysts, and coatings by seeding reactants into the high temperature reactive field 

of flames [1-9].  For catalysis, it is important not only to synthesize molecular 

structures, but also to achieve specific aggregate sizes and structures, requiring 

precise control of synthesis conditions and sampling processes.  Various techniques 

like electrically assisted synthesis [3] and thermophoresis sampling [4] have been 

applied, and the governing processes of flame synthesis have been investigated [5, 

6].  Flame synthesis has been shown to effectively synthesize nano-particles and 

nano-tubes [10-13]  Hydrogen, methane and ethylene are the major fuels used in 

flame synthesis with air or oxygen being oxidants.  Swihart et al. used titania, fumed 

silica and carbon blacks to synthesize nanoparticles [14].  Li et al. synthesized carbon 

nanotubes on Ni-alloy and Si-substrates using counter-flow methane-air diffusion 

flames [15].  As illustrated in Figure 1.1, a typical flame synthesis system has a 

precursor unit, a burner unit and a particle collection unit.  A comprehensive review 

on flame synthesis can be found in [16]. 

Flame synthesis techniques requires high temperatures in a short time period as 

compared to other methods like furnace heating and chemical vapor deposition 

(CVD) [17, 18].  However, the attainable range of temperatures during flame 

synthesis is small compared to the range available with furnaces and CVD, and 

temperatures are not independently controlled from the reactions that occur in the 

flame [16, 19-21]. 

Two different types of flames, premixed and diffusion flames, have been used to 

synthesize materials [16, 19-22].  For both flames, synthesis temperature and species 

concentrations are the two major parameters to control the synthesis process.  For 
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premixed flames, dilution of fuel is typically the main temperature control 

parameter which, however, can also change oxidizer concentrations and reaction 

process especially for oxidizing metals.  For industrial applications, however, where 

safety is a major concern, diffusion flames are preferred over premixed flames.  

While a single co-flow diffusion flame is the simplest type of diffusion flame, its 

capability to control temperature may not be the most ideal without significantly 

changing species concentrations and flow profiles, which are not easily attained due 

to complex chemical reactions taking place in the flame.  Therefore, it is deemed 

necessary to explore what kind of flames and burners can achieve the range of flame 

temperatures needed for advanced flame synthesis. 

 

 

Figure 1.1 Typical flame synthesis system adopted from [23]. 
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1.1.2 Why co-flow flame 

The Co-flow laminar diffusion flame has been well investigated by researchers due 

to its essentially two dimensional axisymmetric configuration and relatively simple 

burner system [24-28]. This flame is typical of most practical combustion devices, 

and provides an easily accessible setup for experimental and numerical studies in a 

multi-dimensional structure to understand combustion processes.  Walsh et al. 

generated profiles of the temperature, and major and minor species, and discussed 

issues related to the computation and measurement of CH, CH*, and OH* in an 

unconfined laminar flame [26].  Giassi et al. analyzed CH* concentration and flame 

heat release rate in laminar co-flow diffusion flames under microgravity and normal 

gravity based on the use of DSLR camera [28].  In this study, the optical diagnostics 

technique was developed and first applied to the standard co-flow burner designed 

and developed by Yale University (called the Yale co-flow burner). 

1.1.3 Why microflames 

Small laminar diffusion flames having lateral dimensions on the order of a few 

millimeters behave differently from candle-like flames because buoyancy effects are 

negligible as a result of their small size [29].  Since the pioneer work on micro burner 

flames by Ban et al. [29] indicating that micro flames are momentum-diffusion (Re 

number) controlled, where gravity and adiabatic compression forces are secondary 

compared to the inertial and diffusion forces, further studies have been conducted 

on single micro flame [29-31], interaction between two identical microflames [32], 

six diffusion microflames [33-35], and 54 micro burner flames [36].  These studies 

revealed unique features of microflames which are different from normal 

centimeter-size diffusion flames where buoyancy effects are dominant. 

Three pi-numbers (Re, Fr, and Ma number) for scale modeling analysis are 

considered in relation to these micro scale flames.  Emori, Saito and Sekimoto 

provide comprehensive scale modeling theory and applications in their textbook 
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[37].  The Reynolds number Re is the ratio of inertial forces to viscous forces, the 

Froude number Fr is the ratio of inertial forces to gravity forces, and the Mach 

number Ma is the ratio of flow velocity to local speed of sound [38].  Microflames 

are controlled by the inertial force of incoming fuel flow which interacts with viscous 

forces of air when the fuel jets interact with air.  Buoyancy force and compression 

force are minor with Frounde numbers [Fr: (inertia force)/(buoyancy force)] on the 

order of 103 and low Mach numbers [Ma: (compression force)/(inertial force)] on the 

order of 10-2 [29].  However, for certain pitch sizes and fuel/air flow rates, the 

buoyancy effect is not negligible due to the interactions between microflames.  

Hirasawa et al. [32] have reported that two different scales need to be considered on 

the transport process in the microflames; one being the fuel-jet scale and the other 

one the buoyance scale. 

Although good progress has been made on studies on micro flames, it was pointed 

out by Hirasawa et al. [32, 33] that the behavior of clustered microflames is still 

required to be investigated in further detail such as obtaining thermodynamic states 

data on the clustered microflames, which will give us the gas phase temperature 

structure of the microflames.  The interactions among these microflames were 

found to extend the extinction limit due to a significant change in species 

concentration [39].  The change of total heat release rate created by merging two 

identical micro-slot flames [40] suggested the shape of microflames can significantly 

influence the overall heat generation.  The above findings associated with 

microflames’ wide range in heat transfer and chemical reaction capability may help 

designing an environmentally friendly high energy efficient combustion system.  

The flame-merging effect is unique to micro scale flames and differs significantly 

from normal centimeter-size-flames, where the Fr number dominates.  The 

suggested Re number for micro flames can be tested under micro gravity condition 

(space experiment) using centimeter-scale normal flames. 

In the present study, flame temperatures and reaction-zone densities were 

controlled by creating selective flame structures using clustered microflames 
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burners [29, 32, 39].  That is because the clustered microflames provide very stable 

and steady flame condition with a relatively long residence time compared to 

counter-flow diffusion flames [20] and have a relatively small quenching region at 

the flame base compared to regular centimeter size co-flow diffusion flames [19].  

The clustered microflames were also found to be capable of changing the reaction-

zone distributions and densities by merging and bundling the individual 

microflames [32, 39].  Therefore, the clustered microflames can suit well to achieve 

the objectives for flame synthesis due to their wide range of controllable 

temperatures and the extended heating duration range.  In addition, an air-jet 

seeding nozzle was added at the center of the microflames to better control 

reaction-zone structure.  Its unique 3-D non-sooting flame structure is expected to 

enhance the performance of flame synthesis and micro heat exchangers [41]. 

1.1.4 Gas temperature 

The emission spectra of the laminar non-sooting methane-air diffusion microflames 

were dominated by molecular spectra of OH, C2, CH, CO2, and water [34].  The 

emission from the primary reaction zone in the visible wavelength range is often 

much stronger than that from the burnt gases above because radicals like CH and 

C2 are only present in the reaction zone [42].  The C2 Swan band emissions, for 

example, are present in many flames [43-45] and also in plasma research of carbon 

composite thermal protection systems [46, 47].  The diatomic spectra originating 

from electronically excited states (CH*, C2
* and OH*, where * denotes the excited 

state), however, have excitation energies which are too high to be populated through 

thermal excitation of ground state molecules in the flames under investigation.  

Therefore, the population of the electronic states likely occurs as a by-product of 

the chemical reactions during combustion, whose resulting emission process is 

called chemiluminescence [44, 48].  An interesting and important point here is that, 

since the population of these excited states is produced through the chemical 

reactions in combustion, the emitted radiation signals inherently contain 
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information about the combustion process itself, as can be seen in a pioneer study 

by Nori et al. [43] on modeling reaction kinetics of the chemiluminescence effects.  

In plasma applications, collisional radiative modeling has been proven useful for 

interpreting measured emission spectra, providing a way to validate numerical 

simulation, even under non-equilibrium conditions [49].  Similarly, the emission 

spectroscopy measurement data of chemiluminescence products may be used to 

validate numerical modeling of combustion processes.  Indeed, several studies [50-

52] provide empirical relations to interpret the ratio of the emission from 

electronically excited states of different molecules in terms of equivalence ratio, 

therefore providing a new database for interpreting basic combustion processes. 

For the gas temperature of the flame, the chemiluminescence was used to determine 

molecular spectra obtained from electronically excited CH radicals within the 

methane-air flames.  The CH* chemiluminescence is frequently used in flame 

diagnostics to predict heat release rates [43, 53] and identify the location of reaction 

zones [44, 48].  Three systems of CH are observed in flames, the 431.5 nm system 

due to the CH A2-X2 transition [44] being the strongest one.  Here, the spectral 

shape of these molecular bands in high spectral resolution was used to determine 

rotational and vibrational temperatures of this molecule, the former one 

representing the flame temperature. 

1.1.5 Temperature measurement methods 

Accurate measurement of temperature, one of the most important parameters in 

the flame synthesis and also in combustion research, requires a minimum 

disturbance of the sensitive area where an active synthesis takes place [19-21].  To 

achieve that goal, non-intrusive measurements are preferred over intrusive 

measurements. 

It is important to provide the current status of the most typical baseline intrusive 

temperature measurement, thermocouples.  It uses thermo-electrical effect to 

generate potential or electric current between the well regulated referenced point 



 
7 

temperature and the measurement temperature.  However, the thermocouple 

temperature measurement technique contains errors associated with radiation loss 

from the heated thermocouple bead, and heat conduction loss through the 

thermocouple wire when it experiences temperature variation along the wire.  It 

may be possible to estimate these errors to obtain absolute temperature [54].  

However, and most importantly, the thermocouple technique is not suitable for 

measuring non-equilibrium gas temperature, unsteady and unstable flames such as 

pulsating flames and rapidly expanding flames, and flames which has steep 

temperature gradient, due to the limitations of thermocouple’s time constant, 

spatial resolution, and radiation and conduction errors mentioned in the above.  

However, due to the recent progress in combustion and energy research, the above 

type of data and information are more than ever required to improve the efficiency 

of power generation systems. 

To meet these challenges, researchers have made efforts to develop reliable and 

accurate non-intrusive temperature measurement techniques, for example, Raman 

spectroscopy, CARS, [4, 55-57] and FTIR [4, 5], but as of today none has satisfied a 

highly accurate, reliable and easy to use standard requirement.  Therefore, there is 

the strong need to develop such a non-intrusive temperature measurement 

technique that can satisfy the above criteria. 

1.1.6 CT methods 

In combustion, computed tomography (CT) has been widely used in thermometry 

[58, 59].  Ishino et al [35] have applied CT to chemiluminescence for 3D observation 

of high speed turbulent flames, by using a multi-directional quantitative schlieren 

system with flash light source.  The line-of-sight character of emission spectroscopy, 

which normally prevents achieving spatial resolution along the line-of-sight, was 

compensated through upfront knowledge of the flame structure from the filtered 

imaging experiments [35, 60].  Spectrally integrated intensities similar to filtered 

imaging data from the emission spectroscopy measurement data were extracted to 
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show the similarity of the flame structure observed from the CH* and C2
* emission.  

The combination of emission spectroscopy and tomography techniques applied to 

filtered imaging measurements is a potentially powerful tool to access both 

structure and thermodynamic properties of flames with rather basic diagnostic 

techniques [60]. 

1.1.7 Three major assumptions for determining particle temperature 

In this work, the surface temperature of small particles seeded into the flame 

surrounded by hot combustion gas is of the primary interest.  In the infrared region, 

researches on soot [61] and carbon particles [62] through FTIR techniques were 

reported.  In this work, however, attention was paid to a spectroscopic approach in 

the visible to near infrared wavelength region.  Saito et al. showed that soot particles 

in the yellow zone of small laminar diffusion flames are hotter than the surrounding 

gas temperature [20].  Therefore, it is necessary to independently measure the 

surface temperature of the particles and gas temperature.  To satisfy the need for 

particle surface temperature determination, a passive spectroscopic temperature 

measurement technique was successfully explored, which was based on spectral 

shape of the emission between 600 and 1,000 nm from the TaN particles along the 

centerline of the clustered microflames. 

The application of measuring the temperature of a particle stream through fitting a 

Planck spectrum requires the careful assessment of several assumptions.  In 

particular, spectral surface emissivity as a function of surface temperature, the 

quantification of the influence of scattering, and potential changes of the surface 

properties when the particles pass through the flame such as oxidation of the 

original surface material. 

Initially experiments with Al2O3 were conducted but it was found that, due to the 

low emissivity of Al2O3 in the targeted wavelength range, the thermal emission was 

too weak for detection with a sufficient signal to noise ratio.  TiO2 also suffers from 

a low emissivity problem.  To overcome these problems, finally TaN particles were 
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found to be able to withstand high temperatures while showing high and known 

spectral emissivities which are available from literature and are crucial information 

for the subsequent analysis.  Therefore, TaN particles were chosen for these 

experiments.  Although these particles were not intended as a target for flame 

synthesis, they were used for characterization of achievable particle temperatures. 

The influence of scattering was assessed through theoretical considerations based 

on the measured particle size distribution, and confirmed through transmission 

measurements.  The spectral shape of the thermal emission was used to determine 

the particle temperature instead of the absolute intensities since the results become 

widely independent from particle size and density.  Temperature dependent spectral 

emissivities of TaN based on literature data were taken into account during the 

fitting process. 

Potential influences of surface oxidation were taken into account by adapting 

reported oxide transmission values to thin oxidation layers and including their 

influence on the spectral shape into the spectral fitting procedure as well.  The 

average oxide layer thickness was obtained for all investigated locations in the 

particle stream by this unique process of estimating an oxidation layer thickness 

from the spectral shape of the emitted thermal radiation. 

1.2 Objectives of Research 

For the design of suitable flame synthesis and micro heat exchanger processes, a 

thorough characterization of the microflames in terms of flame geometry, type of 

flame (either diffusion or premixed), temperature, and species concentration is 

needed.  Researchers [34, 50, 51, 53, 63] showed that molecular emission spectra, 

gathered with non-intrusive optical emission spectroscopy (OES) techniques, can 

be used to diagnose structures of combustion and plasma systems. 

In this work, several hypotheses were made: First, it is hypothesized the optical 

emission spectroscopy is an applicable optical diagnostics tool for flame and seeding 
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particle temperature measurements.  The rotational symmetric co-flow diffusion 

flame provides an essentially accessible setup for assessing the developed optical 

diagnostics for radiation measurements and application of the simulation of 

molecular emission.  Fundamental physics, e.g. blackbody radiation and molecular 

emission, lays the basics for determining radiation intensity and temperature.  Also, 

it is hypothesized that the clustered microflames burner is a good candidate for 

flame synthesis applications.  These clustered microflames show a significant 

change of the flame structure due to the flames merging, which then yields a wide 

range of heating capacity. 

Therefore, the objectives of this work were: to develop a reliable optical diagnostic 

method to measure the temperatures of micron-size particles with known emissivity 

in flames, to determine the flame temperature by measuring the spectral and spatial 

distribution of the chemiluminescence of CH* and C2
* radicals, by determining the 

rotational/vibrational temperatures of these two radicals through emission 

spectroscopy techniques, and to investigate the thermal structure and temperature 

range of clustered microflames for future application to flame synthesis.  The latter 

point involved to further characterize the current 3-D flame structure generated by 

the six clustered microflames under variation of burner pitch (i.e. the distance 

between the individual nozzles) at different airflow conditions by analyzing the ratio 

of CH* and C2
* emission to give information about the flame type through the local 

equivalence ratio. 

In parallel to this study, independent investigation of the six clustered microflames 

through computed tomography and particle image velocimetry (PIV) methods was 

also carried out in Japan.  Kato et al [60] measured the axial velocity distribution of 

the particle stream with PIV techniques.  To investigate the complex three 

dimensional flame shape, a computed tomography (CT) method developed by 

Ishino based on filtered imaging of the CH* emission was also applied [60]. 

The following chapters describe the experimental methods which are followed by 

experimental results and discussions to achieve these objectives. 



 
11 

1.3 Outline of Dissertation 

The structure of this dissertation is in the following manner. 

Chapter 2 reviews the background theory used in this study including brief 

discussion of combustion, thermal radiation and molecular spectroscopy, and 

application of HITRAN simulation. 

Chapter 3 reviews the experimental methods including optical techniques and data 

process procedures. 

Chapter 4 reviews the characterization of a Yale co-flow methane-air diffusion non-

sooting flame through reconstructed local spectrally resolved CH* and C2
* 

chemiluminescence emission intensity. 

Chapter 5 reviews the characterization of six clustered methane-air diffusion non-

sooting microflames through spectrally resolved CH* and C2
* chemiluminescence. 

Chapter 6 reviews the characterization of six clustered methane-air diffusion non-

sooting microflames through TaN seed particle. 

Chapter 7 summarizes the results from current work and suggestions for future 

directions. 
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 BACKGROUND THEORY 

2.1 Combustion Mechanism 

Combustion is exothermic chemical reactions in flow with heat and mass transfer 

[64, 65].  Combustion processes are often categorized as premixed or non-premixed 

(diffusion).  A premixed flame is flame that the fuel and oxidizer are well mixed 

initially before they reach the flame front.  Premixed flame has ability to propagate 

perpendicular to itself with a burning velocity that depends on the thermal and 

chemical conditions of the unburned premixed gas for instance convection-

diffusion-reaction balance.  Bunsen burner is a classical device to generate laminar 

and stationary premixed flame [66].  A diffusion flame is a flame that the fuel and 

oxidizer are supplied from different origins [67].  In diffusion flame, combustion 

occurs at the flame surface only where the fuel meets oxidizer in an appropriate 

concentration.  The flame speed is limited by the rate of diffusion since the fuel and 

oxidizer are mixed by diffusion.  Also, diffusion flame tends to produce more soot 

than premixed flame due to the fact that there may not be sufficient oxidizer for the 

complete combustion. 

Stoichiometric combustion is the ideal combustion process such that fuel is 

combusted completely, i.e, species react in exact proportions.  To determine the 

excess air or excess fuel for a combustion gas mixture, the fuel-air equivalence ratio 

is introduced as: 

 
 

 
 

fuel air actual

fuel air stoi

/

/

n n

n n
 (2.1) 

where n is the number of moles, and stoi is the stoichiometry with  < 1 being fuel-

lean (or lean) combustion,  = 1 being stoichiometric combustion, and  > 1 being 

fuel-rich combustion. 
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2.2 Thermal Radiation 

Thermal radiation is often called blackbody radiation where a blackbody is an 

idealized physical body that absorbs all the incident light.  The spectrum and 

intensity of the blackbody radiation depends solely on the blackbody temperature 

[68].  The spectral radiance of a blackbody at a given temperature T as a function of 

wavelength , wavenumber , and frequency  are described by Planck's law [68]: 
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where h, c, k are Planck’s constant 6.626 x 10-34 [J.s], the speed of light 2.998 x 108 

[m/s] and the Boltzmann constant 1.3807 x 10-23 [J/K], respectively. 

By multiplying the total solid angle of a sphere of 4 [Steradian], the spectral 

irradiance is written as: 
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Regardless of different spectral irradiance expressions, the total emissive power shall 

be the same.  Therefore, the total blackbody emissive power can be determined by 

integrating one of above spectral irradiance formula over corresponding spectral 

variables from zero to infinity: 
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The total blackbody emissive power is proportional to the fourth power of the 

temperature.  This integral constant is known as the Stefan-Boltzmann constant: 
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To find the maximum spectral irradiance, the first derivative of equation (2.5) is 

built to be zero as: 
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Numerical analysis leads to 
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    max 2898 μm.KT  (2.12) 

which is known as Wien's displacement law that dictates the shift of the peaks of 

the blackbody radiation spectra. 

Figure 2.1 shows a typical blackbody emissive power spectrum.  The peak of solar 

emission spectrum is observed at about 0.5 m.  The spectra at different 

temperatures never overlap.  The red dashed line represents the Wien’s 

displacement law. 

 

 

Figure 2.1 Blackbody emissive power spectrum. 
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energy reflected

Reflectance,  
incoming energy

 (2.13) 

  
energy absorbed

Absorptance,  
incoming energy

 (2.14) 

  
energy transmitted

Transmittance,  
incoming energy

 (2.15) 

where the ratio values are from 0 to 1. 

Another important non-dimensional number is emissivity which measures how 

efficient the surface of a material is able to emit radiation energy compare to energy 

emitted from a blackbody surface at the same temperature: 

  
energy emitted from a surface

energy emitted from a blackbody surface
 (2.16) 

In thermal equilibrium, blackbody is an ideal emitter that defines the upper limit of 

energy emitted from a surface.  Therefore, the ratio value is from 0 to 1.  And the 

spectral hemispherical emissivity is defined as [68]: 
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where I and B are the radiative intensity of a real surface and a blackbody surface, 

respectively. 

For a gaseous/opaque medium, the incident radiation is attenuated by absorption is 

described by Beer-Lambert law: 
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  xe  (2.18) 

where x is the thickness of the layer and  is the spectral absorption coefficient. 

Therefore, the spectral intensity along the path x attenuated by absorption and 

augmented by emission is written as [69]: 
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When electromagnetic wave travels in a medium with small particles, the radiation 

intensity may be altered by scattering due to three separate phenomena: (1) 

diffraction, (2) reflection and (3) refraction as shown in Figure 2.2 [70]. 

 

 

Figure 2.2 Interaction between electromagnetic wave and spherical particles 

adopted from [70]. 

 

The nature of the scattering is controlled by the relative size of the particles 

compared to the wavelength of the radiation, which can be characterized by the 

incident light
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particle size parameter  defined by the effective projected area of the particle and 

the wavelength of light potentially to be scattered [68, 71-73].  Following the 

definition in [74],  can be calculated as: 

 
2 a




  (2.20) 

where a is the effective particle radius and  is the wavelength of the light.  For very 

small particles ( << 1), Rayleigh scattering is dominant [75], e.g., blue skies, res 

sunsets and rainbow are attributed the sun light scattered by the atmosphere.  With 

soot particles,  is often on the order of 1 and the major scattering mechanism is 

given by Mie scattering [76].  For large particles ( >> 1), the major influence on 

transmitted radiation is absorption as the light encounters the particles. 

2.3 Spectroscopy 

Electrons rotate on certain orbits around a nucleus according to defined energy 

levels.  The radiation is emitted or absorbed when they transit from one level to 

another.  The energy emitted or absorbed by a photon is: 

   [J]E h  (2.21) 

where h and  are Planck’s constant 6.626 x 10-34 [J.s] and photon’s frequency [s-1]. 

The emission coefficient is calculated as: 
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where 4 is the solid angle into full space of the unity sphere [sr], Aki is the Einstein 

probability for spontaneous emission from upper state k to lower state i [s-1] and nk 
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is the particles density at state k [m-3].  By multiplying emission coefficient with its 

depth (length of the line of sight), the radiative intensity is obtained. 

The total particles density nk at state k is related to total density of species under 

consideration n0 by the Boltzmann distribution: 
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(2.23) 

where gk and gi are the degeneracy of the state k and i, Ek and Ei are the excitation 

energy of the state k and i, Tex is the electronic excitation temperature, k is the 

Boltzmann constant.  For molecular radiation, the energy change is caused by the 

electronic level, the vibrational level, and the rotational level of excitation 

simultaneously. 

Chemiluminescence is the emission of light from a chemical reaction which 

produces the electronic excited state products.  Chemiluminescence is a powerful 

tool for combustion diagnostics [43].  For instance, in a methane-air diffusion flame, 

CH* is produced form the chemical reaction of the ethynyl radical with monoatomic 

and diatomic oxygen [26]: 

  *
2 2 2C H +  O CH + CO  (2.24) 

  *
2C H +  O CH + CO  (2.25) 

Then the emission of light is from destruction reaction: 

  *CH CH + lighth  (2.26) 
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Most of the studies have shown that the formation of the C2
* is from the following 

reactions [77]: 

   *
2 2 2CH C H + C  (2.27) 

   *
2CH C H + C  (2.28) 

Emission and absorption lines can be broadened through different processes with 

the following being three major processes [78]: natural line broadening, collision 

broadening, and Doppler broadening.  Natural line broadening is attributed to 

Heisenberg uncertainty principle such that the energy of emitted photons from 

spontaneous emission varies slightly causing the spectral lines broadened since the 

transition energy cannot be the same.  Collision broadening is also referred as 

pressure broadening due to the frequency of collisions among gas molecules.  Both 

natural line broadening and collision broadening line shapes can be described by 

Lorentzian line profile.  Doppler broadening is also referred as thermal broadening 

due to varied thermal motions of emitters causing Doppler effect in the direction of 

observer.  Doppler broadening line shapes can be described by Gaussian line profile.  

When these broadening effects happen simultaneously, a Voigt profile needs to be 

introduced which is a combination of Gaussian line profile and Lorentzian line 

profile. 

However, due to the dominance of instrument broadening in the measurement, a 

simplified line broadening was adopted in this work.  The instrument line 

broadening factor is calculated in a way to match measured narrow Hg and Ar lines 

emitted by the wavelength calibration lamp as shown in Figure 2.3 and Figure 2.4.  

Three lines were picked from measurement of wavelength calibration and pixel 

values were examined.  The average of ratios from three selected lines is the 

calculated instrument line broadening factor. 
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Figure 2.3 Line selection for determining instrument line broadening. 

 

 

Figure 2.4 Calculated instrument line broadening factor. 
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2.4 HITRAN Simulation 

2.4.1 Introduction 

HITRAN which is the abbreviation for high-resolution transmission molecular 

absorption database is a compilation of spectroscopic parameters that can predict 

and simulate the emission and transmission of light [79].  The database compilation 

is available on the HITRAN web site [79].  It has been widely used by many 

researchers in different applications [80] such as terrestrial and planetary 

atmospheric remote sensing, and fundamental laboratory spectroscopic studies. 

In this dissertation, HITRAN database is used to predict the water emission and 

absorption from non-sooting methane-air diffusion flames.  The calculation and 

application of the HITRAN database towards are described in the following. 

2.4.2 Calculation of HITRAN database 

The workflow chart for the calculation of HITRAN Database is illustrated in Figure 

2.5.  With user’s choice of selected wavenumber range and isotopologues, the format 

of database downloaded from HITRAN online web site needs first to be converted 

in JavaHAWKS software package to have the output file as comma-separated values 

file which can be opened with a program that delimits the file based on comma 

separators, e.g. Microsoft Excel [79].  The partition functions at different 

temperatures for selected molecules are also available from HITRAN online web site 

[79]. 
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Figure 2.5 HITRAN simulation workflow. 

 

The spectral line intensity in database defined for a single molecule, per unit volume 

with the transition between two ro-vibronic states is given as: 
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where Ia is the isotopic abundance, Aij is the Einstein coefficient for spontaneous 

emission [s-1], the speed of light 2.998 x 108 [m/s], g’ is the upper state statistical 

weight, T is the gas temperature [K], Q(T) is the total internal function at 

temperature T which is tabulated on HITRAN website, c2 is the second radiation 

constant [cm.K], E” is the lower state energy [cm-1], and vij is the transition 

wavenumber [cm-1]. 

The spectral line intensity at different temperature T can be calculated from the one 

at reference temperature which is given as Tref of 296 K in HITRAN database by the 

following equation [79]: 
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where Sij(Tref) is the spectral line intensity [cm-1/(molecule.cm-2)] at reference 

temperature Tref of 296 K, Q(Tref) is the total internal function at reference 

temperature, Q(T) is the total internal function at temperature T which is tabulated 

on HITRAN website, c2 is the second radiation constant [cm.K], Tref is the reference 

temperature 296 K, T is the gas temperature [K], E” is the lower state energy [cm-1], 

and vij is the transition wavenumber [cm-1]. 

The Loschmidts number NL at a given temperature T can be calculated by: 

      
   

ref
L L ref 3

molecule

m .atm

T
N T N T

T
 (2.31) 

where NL(Tref) is the Loschmidts number, 2.479 x 1025 [molecule.m-3.atm-1] at the 

reference temperature 296 K. 

Since transition wavenumber instead of wavelength is given in HITRAN database, 

equation (2.3) is used to calculate the blackbody emissive intensity Bv [W/(m2.sr.m-

1)].  Finally, the simulated volumetric line intensity [W/(m3.sr)] is calculated as: 

      

 
     

L 3

W

m .sr
ij ije B T S T N T  (2.32) 

The Lorentzian half width at half maximum (HWHM), (p,T) for a gas at pressure 

p [atm], temperature T [k] and partial pressure pself [atm]: 
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where air is the air-broadened HWHM [cm-1/atm] at Tref = 296 K and pref =1 atm, self 

is the air-broadened HWHM [cm-1/atm] at Tref = 296 K and pref =1 atm, and the nair is 

the coefficient of the temperature dependence of the air-broadened half width.  

These values are tabulated in HITRAN base.  In this study which is under normal 

atmosphere pressure, pressure broadening of spectral lines dominates and the 

Lorentz profile is calculate as: 
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2.5 Uncertainty Analysis 

Uncertainty analysis (error analysis) is a method to assess the uncertainty of a result 

because all measurements have some degree of uncertainty [81].  The errors are 

normally divided into precision errors (how accurately a result can be determined) 

and accuracy errors (how close a measured can be situating to a “true” value).  

Systematic errors in experimental observations typically result from the instruments 

used, whereas random errors result from unknown and unpredictable changes in 

the experiment.  Errors in a measurement can not be avoided and they should be 

evaluated and estimated.  The propagation of errors of the derived quantity needs 

to be addressed by the experimental uncertainty analysis and can be described by 

linearized approximation with total differentials [82]: 

 1 2
11 2

n

i
i i

z z z
dz dx dx dx

x x x

  
   
  

  (2.35) 
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where z is the function of several (n) variables. In general, the result of any 

measurement of a quantity z is reported as  

 bestmeasured  value  of    =    z z dz  (2.36) 

where zbest is the best quantity estimate, and dz is the uncentainty.  Conventionally, 

dz is defined to be a positive value, thus zbest + dz is the largest possible value of the 

measured quantity and zbest - dz is the smallest [82]. 

However, in this work, the uncertainty errors can not be derived from this 

mathematical point of view since the temperature determininaton is mainly based 

on spectra fitting.  In addition, errors may also result from various sources.  The 

instrument used in the tests could cause a random uncertainty which can be 

reduced through a number of repeated measurements.  For instance, multiple 

spectra could be taken for the same test case to minimize the possible flickering of 

the flame to account for the errors of spatial information resulting from the long 

exposure time.  The accuracy of the simulated spectral data base could be improved 

by selecting finer temperature steps.  Systematic errors in form of background 

emission are consistently observed in the same manner and may be corrected in the 

post-data analysis.  Calibration errors are another type of the systematic uncertainty 

since factory calibration values may deviate from the actual values due to the lamp 

aging, in this work examined by comparison to blackbody source. 
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 EXPERIMENTAL METHODS 

3.1 Optical Technique 

3.1.1 Spectrometer setup 

The Andor Shamrock 500i spectrometer used in this study has a focal length of 

500 mm as shown in Figure 3.1.  Three interchangeable diffraction gratings, 80 l/mm, 

300 l/mm and 1,200 l/mm offer wavelength resolutions of 0.5 nm, 0.13 nm and 

0.02 nm respectively.  The direct output is coupled with a Princeton Instruments 

eXcelon charged coupled device (CCD) camera (Pixis: 400), whereas the side output 

is coupled with an alignment laser which is necessary for the alignment of the 

imaging system consisting of a series of optical mirrors.  The selection of the output 

port is achieved by turning a re-directing mirror inside the spectrometer.  With a 

height of 8 mm and widths ranging from 10 m to 2.5 mm, the side input slit is 

imaged on the CCD camera. 

 

 

Figure 3.1 Configuration of Andor Shamrock 500i spectrometer system. 
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The diffraction grating is a dispersive optical component consisting of equally 

spaced parallel grooves with reflective coatings which can separate polychromatic 

light beam into light at different wavelength to form a spectrum [83].  The dispersion 

of the grating is based on grating equation: 

     sin sini rm d  (3.1) 

where m is the order of diffraction (m = ±0, 1, 2,…,k),  is the diffracted wavelength, 

d is the grating constant (i.e.  blaze spacing), and θi and θd are the angles of incident 

light and diffracted light measured from the normal. 

The size of measurement object imaged on the side input slit is determined by the 

external optical imaging system according to the lens equations [84]: 

  
1 1 1

focal length object distance image distance
 (3.2) 

 
image size image distance

object size object distance
 (3.3) 

The Princeton Instruments CCD camera has a 1,340 x 400-pixel detector with a pixel 

size of 20 m x 20 m yielding a sensitive area of 26.8 mm x 8 mm and is used to 

acquire the VIS-NIR light to convert it to electrical signals.  Figure 3.2 shows a typical 

image of extracted spectra and the axes of CCD.  The vertical and horizontal pixels 

represent the spatial and wavelength domain respectively.  The orange bar (enlarged 

for illustration purpose) represents the measurement region of the flame.  It should 

be noted that the image was rotated by 90o through a periscope to measure the 

horizontal profile of flame.  The wavelength resolution is determined by pixel width 

and also the given grating. 
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Figure 3.2 (a) Detailed view of the observed region above the nozzles, and (b) a 

typical image of extracted spectra. 

For alignment purposes, the side input slit was opened to its maximum of 2.5 mm 

while the spectrometer was operated in 0th diffraction order to produce a mere 

image of the observed region as shown in Figure 3.3.  An image of scale was used to 

check the magnification based on optical imaging system and then to determine the 

actual size of measurement region. 

 

Figure 3.3 (a) Detailed view of the observed region, and (b) (c) views through 

the spectrometer in imaging mode to show the alignment procedure. 
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3.1.2 Wavelength calibration 

As aforementioned, horizontal pixels of CCD camera represent the wavelength 

domain, however, the measured intensity information is stored in each pixel and the 

pixel number needs to be converted into wavelength for further spectra analysis.  

Also, since the pixel/wavelength correction of the spectrometer will drift slightly 

with working conditions and grating settings, the wavelength calibration needs to 

be conducted for every center wavelength and grating used.  The following equation 

shows the relation between pixel number and wavelength [85]. 

 
2

1 2 3=n C n C n C      (3.4) 

where is n is the pixel number, n is the wavelength of pixel n, C1, C2 and C3 are the 

constants of the binomial equation.  For a CCD camera, typically at least three lines 

need to be identified to solve for the constants for binomial equations.  A SL2 

Mercury Argon Light Source from StellarNet Inc. is used to produce narrow 

emission lines at known wavelengths ranging from 253.65 to 1013.98 nm.  In addition 

to three selected know lines, other known lines can be used to double-check the 

calibration. 

The higher order spectra can overlap with zero order spectrum and cause confusion 

when the light is dispersed on a grating.  The sorting filters should be used to block 

second and higher order spectra.  This fact can be used to identify higher order 

mercury emission line for wavelength calibration.  As shown in Figure 3.4, the 

grating and spectrometer settings for this calibration were with 80 l/mm grating and 

750 nm center wavelength which should cover wavelength range approximately 

between 400 and 1050 nm.  Thus, there were two sorting filters used: a common 

transparent plastic served to cut off lines under 300 nm, and a OG-550 filter had a 

cut-off position at 550 nm.  The emission lines, 507.304 nm, 760.956 nm and 

1014.608 nm only appeared when no filter was applied so that these line are the 
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second, third and fourth order lines of the strong mercury emission line at 253.65 nm 

respectively.  After converting pixel number to wavelength, the calibrated spectrum 

may be checked with mercury/argon emission lines from NIST database [86]. 

 

 

Figure 3.4 Example of a spectrum for wavelength calibration. 

 

3.1.3 Intensity calibration 

The measured intensity signals on each pixel are stored as 16-bit binary values 

(counts) which needs to be calibrated to spectral radiance in units of 

mW/(m2.sr.nm).  An integrating sphere light source (ISS-5P) from Gigahertz-Optik 

was used as the spectral radiance calibration standard which is capable of providing 

calibrated emission in the measurement range from 380 to 1,100 nm.  It should be 

noted that the calibration lamp has to be placed at the location of measured flame 

and the lamp area must be larger than the measurement spot.  If the lamp area is 

0

20000

40000

60000

0 200 400 600 800 1000 1200

co
un

ts
 [

a.
u.

]

pixel

no filter

plastic (300 nm long pass filter)

OG-550

1
0
1
4
.6

0
8
4

n
m

5
0
7
.3

0
4

n
m

7
6
0
.9

5
6
3

n
m



 
32 

small than the measurement spot, then the lamp needs to be moved and measured 

at different locations to cover the entire measurement area. 

 

 

Figure 3.5 Example of intensity calibration. 

 

Figure 3.5 shows example spectra used for intensity calibration.  The orange dots are 

the factory calibration values of lamp which are then interpolated to values over 

measurement wavelength displayed as blue curve.  The correction factor (black 

curve) is defined as the ratio of factory calibration value (blue curve) to measured 

values of the calibration lamp (red curve): 
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The correction factor is inversely sensitive to the measured spectrometer response. 

0.0

0.5

1.0

1.5

0

1000

2000

550 600 650 700 750 800 850 900 950 1000

co
rr

ec
ti

o
n 

fa
ct

o
r 

[m
W

/(
m

2
.s

r.
nm

)/
(c

o
u

nt
s/

s)
]

fa
ct

o
ry

 s
p

ec
tr

al
 r

ad
ia

nc
e 

[m
W

/(
m

2
.s

r.
nm

)]

m
ea

su
re

d
 l

am
p
 i

nt
en

si
ty

 [
co

un
ts

/s
]

wavelength [nm]

lamp, factory cali.

lamp, factory cali., interpolated

lamp, measured (*0.005)

correction factor (*1000)



 
33 

Before applying the correction factor, the measured flame emission data needs to be 

corrected for background and acquisition time: 

 
 



,flame,measured ,BG,measured
,flame,BG Time calibrated

acquisition

=
I I

I
t

 (3.6) 

where I,flame,measured is the measured flame intensity in counts, I,BG,measured is the 

measured background intensity in counts with the same acquisition time as 

I,flame,measured, and tacquisition is the measurement acquisition time in second.  

Subsequently, the calibrated measurement spectral radiance is calculated with 

following equation [85]: 

   ,flame,calibrated ,flame,BG Time calibrated= corrI I  (3.7) 

The vertical pixel rows may need to be binned which is a summation process during 

the Analog-Digital conversion in the electronics (hardware binning) to increase 

sensitivity (signal-to-noise ratio) if the measured emission is too weak.  For instance, 

by binning a successive 10 rows, a total of 40 strips (400 pixels/10 pixels/strip) will 

be saved by CCD control software, and the measured intensities will be higher by a 

factor of 10 for the same integration time.  However, this binning process will 

decrease the spatial resolution by a factor of 10.  The compromise between signal-

to-noise ratio and spatial resolution is determined by the measurement spot size, 

for instance, the desired flame sheet thickness to be resolved. 

In case that factory calibration values deviate from actual values due to the possible 

aging of calibration lamp, the factory calibration values were further examined by 

an ambient air joule heating blackbody source setup as shown in Figure 3.6 which 

was similar to the one used in [87].  The Magna-Power XR16-250/208 power supply 

is capable of generating 4000 W power with a maximum current of 250 A.  Three 

type K Inconel sheath mineral insulated thermocouples connected to a NI-cDAQ -
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9178 unit with an NI 9213 16 channel thermocouple module were used for 

temperature measurement which were controlled by LabView 2011.  Two cavities 

served as blackbodies.  Through interpolation of the temperatures obtained from 

adjacent thermal couples, the temperature of each blackbody can be determined.  

Figure 3.7 shows the calibrated lamp intensity values in comparison to the factory 

calibration values.  The large difference in lower wavelength region is due to OG550 

filter used and the large difference in upper wavelength region is due to fact that the 

CCD sensor becomes not sensitive in that region.  However, these two curves 

overlap well from 600 to 900 nm wavelength region, indicating that the lamp factory 

calibration values are still reliable. 

 

 

Figure 3.6 Ambient air joule heating blackbody source setup. 
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Figure 3.7 Calibrated lamp intensity values using a blackbody light source in 

comparison to the factory calibration values. 

 

3.2 Data Processing 

3.2.1 Angle tilting correction procedure 
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measured spectra were titled as shown in Figure 3.8.  For measurement at location 

of row y0, in Figure 3.8(top figure), two ends of one spectrum shifted to different 

spatial rows in Figure 3.8(middle figure).  The mis-placed spectral signals need to be 

corrected for accurate spectroscopy analysis in Figure 3.8(bottom figure). 
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Figure 3.8 Illustration of spectral deformation and tilting correction procedure. 

 

An angle tilting correction algorithm was developed to correct the spectra.  The 40 
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in Figure 3.9(b) and (c), by lifting one side on the image while maintaining the other 

side, 18 more strips were added the spectra image with the white regions being 
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same dimension of the measured data to maintain the actual spatial resolution as 

shown in Figure 3.9(d). 
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Figure 3.9 Example spectra of angle correction procedure. 
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3.2.2 Reconstruction of local intensity 

Emission spectroscopy integrates signals along the line of sight so that only 

integrated values are obtained without spatial information in the direction along the 

line of sight.  To reconstruct local intensity, an Abel inversion needs to be applied 

to the measured integrated values [88].  The relation between the measured 

integrated intensity along the line of sight I(z) and the local intensity (r) is 

described by Abel’s equation [89]: 

    





 2 2
2

R

r z

r
I z r dr

r z
 (3.8) 

  
 







 


 2 2

/1
z r

dI dz
r dz

r z
 (3.9) 

where R is the outer radius of the calculating regime, z is the off-set distance, and r 

is the local profile radius as shown in Figure 3.10.  Since the view angle of the 

spectrometer is very small, the simplified geometry is used in this dissertation.  This 

method is also referred to as Onion-Peeling [90]. 

As illustrated in Figure 3.10, by assuming rotational symmetry profile and optically 

thin medium, an example radiating volume with four profiles can be calculated by 

the following equations: 

 

     

         

             

                 



 

  

   

 

   

     

       

3,int 3 3 3 3

2,int 2 3 2 3 2 2 2

1,int 1 3 1 3 2 1 2 1 1 1

0,int 0 3 0 3 2 0 2 1 0 1 0 0 0

I z r L r

I z r L r r L r

I z r L r r L r r L r

I z r L r r L r r L r r L r

 (3.10) 



 
39 

 

Figure 3.10 Illustration of the geometry for four lines of sight in a rotational 

symmetrical radiation field recreated from [91]. 

 

A constant spatial radial emission creates an elliptic integrated profile.  Therefore, 

the applied Abel inversion can be checked by whether a elliptic profile can be 

obtained as shown in Figure 3.11.  For a large sets of off-set profiles, to avoid 

cumbersome recursive calculation for solving Ln(rn) from the outer ring profile (first 

equation in (3.10)) to the inner ring profile (last equation in (3.10)), a matrix 

inversion is applied to calculate local intensity (rn): 
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Figure 3.11 Check profiles. 

 

3.2.3 Extraction of DSLR RAW images in MATLAB 

A number of consumer Digital single-lens reflex cameras have been shown to be a 

low cost and powerful tool as an optical detector due to the improved resolution, 

sensitivity and dynamic range features [28, 92-95].  Kuhn et al. used an open-source 

imaging process software OMA [96] to capture, store and decode Nikon D70 and 

D90 raw data (“NEF” format).  Giassi et al. spectrally characterized the Nikon D300s 

camera to acquire a nitrogen-diluted laminar diffusion methane-air co-flow flame 

images filtered by the blue channel which is considered representative of the CH* 

emission of the A2-X2 transition centered around 431 nm [28].  Guo et al. used a 

Nikon D700 camera to measure soot temperature and soot volume [93]. 
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The internal built-in image processing algorithm, which is good for “JPEG” format 

(typically an 8-bit image) export, might not truly reflect the light of scene.  The 

“RAW” format data is a format that contains the unprocessed image with pixel 

values and meta-information [97].  It is obtained straight from the sensor without 

any compression or internal image processing/retouching.  A simplified DLSR RAW 

image processing procedure in MATLAB based on Sumner [97] and Eddins [98] is 

shown in Figure 3.12.  A detailed step-by-step code is discussed in [97] to read the 

DNG format image into MATLAB array. 

 

 

Figure 3.12 Workflow for extraction of DSLR RAW images. 

 

The Nikon camera raw “NEF” format is a proprietary format and needs to be 

converted to the open DNG (Digital Negative) format image using Adobe DNG 

Converter [99].  It should be noted that Adobe DNG Converter needs to be 

configured in a way that the “Uncompressed” box is checked and “Linear 

demosaiced” box is unchecked before converting to DNG format.  However, the 

intermediate steps Linearization or White balance correction proposed by Sumner 

[97] should be skipped in this study because we don’t want to include the 

linearization and white balance correction due to the pre-setting of white balance 

values in camera.  After de-mosiacing, the MATLAB array containing 3-layer RGB 

image information can be further analyzed benefitted from 14-bit lossless raw data 

file (Nikon D610). 
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 CHEMILUMINESCENCE MEASUREMENT IN CO-FLOW FLAME 

4.1 Experimental Setup 

4.1.1 Co-flow burner and filtered image measurement setup 

Figure 4.1 shows the schematic of the “Yale” co-flow burner.  The burner had a 

central fuel nozzle (4 mm in diameter) surrounded by a co-flow air (74 mm in 

diameter).  The fuel composed of 30% research grade methane diluted with 70% 

nitrogen by volume was controlled by a mass flow controller.  The gas exit speed 

was set to be 35 cm/s which is a suggested testing parameter from [100].  A Nikon 

full frame DSLR camera D610 coupled with a Nikkor 105 mm f/2.8 macro lens was 

used to capture visible flame images.  With a 35.9 x 24.0 mm CMOS sensor (Nikon 

FX format) of 6014 x 4016 pixels, the Nikon D610 was able to store 14-bit lossless raw 

data file (“NEF” format).  An interference filter (430 nm center wavelength, 10 nm 

FWHM) from the Ealing Corporation was placed right in front of camera lens to 

isolate and collect CH* peak chemiluminescence.  The 430 nm filter was 

characterized with the spectrometer and the calibration lamp.  and the 

transmissivity and FWHM are as shown in Figure 4.2. 

 

 

Figure 4.1 Schematic of the “Yale” co-flow burner. 
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Figure 4.2 The normalized (to its maximum) spectral transmissivity of a narrow 

band 430 nm interference filter. 

 

The ISO, F-stop and metering mode were set to ISO-100, f/8 and Pattern.  Since the 

optimum camera shutter speed was not known, a series of flame and calibration 

lamp images were taken with varying shutter speed.  There are three basic 

components (the mirror box, the bottom door, and the top door) in the DSLR 

camera controlling the shutter release system.  When one looks through a DSLR 

camera optical viewfinder, essentially the object is seen through a series of mirrors 

which direct lights collected from the lens.  When the shutter button is released, 

mirrors flip upwards to allow light to pass, then the bottom door moves to bottom 

to expose the sensor behind it.  After that the top door moves down from top to 

finish exposure by covering the entire sensor.  The time of this process depends on 

shutter speed setting.  As shown in Figure 4.3, for shutter speeds faster than 0.01 s, 

the peak intensities obtained from both flame and lamp seem to be a constant about 

600 counts.  This phenomenon may be attributed to this shutter mechanical system 

such that sometimes a shutter speed can be so fast that the sensor won’t be properly 

exposed. 

As shown in Figure 4.4, For the flame measurement, the measured intensity is linear 

with respect to shutter speed from 0.4 to 2 s.  For the lamp measurement, the 

0

0.2

0.4

0.6

0.8

1

1.2

400 420 440 460 480 500 520 540 560

n
o

rm
al

iz
ed

 t
ra

n
sm

is
si

v
it
y

wavelength [nm]

430 nm filter



 
44 

measured intensity is linear with respect to shutter speed from 0.04 to 0.45 s and 

the lamp intensity is very strong so that the CMOS is saturated at the shutter speed 

of 0.5 s.  Thus, the useful shutter speeds for emission measurement with DSLR 

camera are the result of the combined effect of the emission intensity of object and 

DSLR camera mechanical shutter speed setting.  In this following analysis, the 

shutter speed of 2 s was used for flame measurement analysis. 

 

Figure 4.3 Correlation between the measured peak intensity and DSLR camera 

shutter speed for shutter speed faster than 0.1 s. 

 

Figure 4.4 Correlation between the measured peak intensity of (a) flame, (b) 

lamp and DSLR camera shutter speed. 
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4.1.2 Spectrometer setup 

Through a 445 mm focal length parabolic mirror, the radial profile of co-flow flame 

was imaged onto the spectrometer side input slit, therefore providing a 

simultaneous detection of radial positions across the whole flame.  With the chosen 

optical imaging system, a region of ~17 mm was imaged onto the CCD as shown in 

Figure 4.5.  A periscope was used to rotate the measured region by 90o to image the 

radial profile.  To increase the sensitivity while maintaining the spatial resolution, 

successive clusters of 8 rows in y-direction on the CCD were binned, yielding a total 

of 50 spectra per image, each one representing a spatial average over 0.34 mm 

horizontal width in the flame.  A vertical (z) translation stage was used to move the 

burner platform and enabled measurements at different vertical locations within the 

co-flow flame.  As illustrated in Figure 4.6, an image of the observed region was 

acquired to check alignment while the spectrometer was operated in 0th diffraction 

order with a maximum input slit size of 2.5 mm.  The white line indicates the 

measurement region when the input slit is closed to 50 m for spectrum 

measurement. 

 

 

Figure 4.5 Schematic of the optical setup for spectroscopic measurement of the 

methane-air co-flow diffusion non-sooting flame. 
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Figure 4.6 Example spectrometer view of co-flow methane-air diffusion flame 

with the input slit (measurement) center at z = 17 mm for alignment procedure. 

 

4.2 Results and Discussion 

4.2.1 Two-dimensional chemiluminescence and water emission 

To observe the emission of the CH A2-X2 system for the v = 0 bands, C2 A3-

X3 system (Swan) for the v = +1, 0 and -1 bands and water emission with one of 

the strongest bands at 928 nm, the input slit was opened at 50 m, and the 

spectrometer was set to the 300 lines/mm grating, yielding a useable wavelength 

range of 172.6 nm with a pixel resolution of 0.13 nm.  To obtain sufficient spectral 

signals, for CH* and C2
* chemiluminescence measurements, the center was set to 

480 nm with an acquisition time of 30 sec; for water emission measurements, the 

center was set to 935 nm with an acquisition time of 60 sec.  Figure 4.7 and Figure 

4.8 show examples of the measured spectra. 
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Figure 4.7 Example of emission spectra of CH* and C2
* obtained for co-flow 

methane-air diffusion flame with the slit (measurement) center at z = 17 mm: 

original (top), Abel inverted (bottom). 
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Figure 4.8 Example of emission spectra of H2O obtained for co-flow methane-

air diffusion flame with the slit (measurement) center at z = 17 mm: original (top), 

Abel inverted (bottom). 

 

Due to the axisymmetric flame structure, it was possible to apply the Abel inversion 

to the line-of-sight chemiluminescence to obtain the two-dimensional intensity 

profiles from both filtered images acquired by DSLR camera and spectrally resolved 

spectrometer measurements where the intensity calibration was also performed.  

Figure 4.9 shows an example of the Abel inverted filtered CH* image of a non-

sooting co-flow methane-air diffusion flame compare with the original line of sight 

integrated image from DSLR camera filtered image measurement.  The noise spots 

in center line are due to nature of Abel inversion resulting singularities.  The 
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intensity values in counts were normalized to its own maximum.  The thickness of 

flame sheet (CH* emission region) is estimated to be of 0.25 mm. 

From comparison between Figure 4.9 and Figure 4.10, reasonably good agreement 

is illustrated between flame shape from filtered CH* images and flame shape from 

reconstructed images from light-of-sight measurement of spectrally resolved CH* 

emission.  The C2
* emission shows the same origin of CH* emission as shown in 

Figure 4.11.  The signals of CH* and C2
* emission measurements become too weak at 

about z = 30 mm, while the signals of water emission decrease slower and become 

too weak at about z = 42 mm.  Also, the water emission seems to have a larger 

thickness in the lower part of the flame (5 - 25 mm), and to accumulate as a volume 

at about 25 - 30 mm above the nozzle.  This is due to water as one of the combustion 

product being diffused to inner part of the flame. 

 

Figure 4.9 Filtered CH* image measured by DSLR camera of a co-flow methane-

air diffusion flame with values normalized to its maximum: (a) LOS image, and (b) 

Abel inverted image. 
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Figure 4.10 Reconstructed flame shape from light-of-sight measurement of 

spectrally resolved CH* chemiluminescence: (a) original and (b) Abel inverted. 

 

Figure 4.11 Reconstructed flame shape from light-of-sight measurement of 

spectrally resolved C2
* chemiluminescence: (a) original and (b) Abel inverted. 
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Figure 4.12 Reconstructed flame shape from light-of-sight measurement of 

spectrally resolved water emission: (a) original and (b) Abel inverted. 

 

4.2.2 Determination of water emission from HITRAN simulation 

To effectively compare measured spectra to simulation spectra, the above simulated 

line intensity needs to be broadened and interpolated to the measured wavelength 

range and resolution.  For an emission line with original intensity e0 [W/(m3.sr)], 

centered at 0 [cm-1] with Lorentzian HWHM,  [cm-1] which is calculated from 

equation (2.33), the conversions to center wavelength 0 [nm] and HWHM  [nm] 

are: 
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With a chosen spectral resolution res and wavelength range , each line 

broadening is included for ± (i.e. res wavelength intervals).  The broadened 

wavelength n for one line is calculated as: 
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The broadening is then normalized to the sum of all broadening factors (i.e. the sum 

over all considered broadening factors is 1 because of conservation of the line 

intensity), the broadened intensity is written as: 
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where the broadening profile fL is assumed to be described by Lorentzian profile 

given from equation (2.34).  Attention has to be paid to conversion between 

wavelength [nm] and wavenumber [cm-1] in calculation.  An example of line 

broadening is illustrated in Figure 4.13.  For the  = 1 nm used with a spectral 

resolution of 0.002 nm, each line broadening was included for ± 0.5 nm, and the 

total of 500 wavelength intervals were obtained. 

For methane-air diffusion flames, the stoichiometry combustion is: 

    4 2 2 2 2 2CH +  2 O 3.76 N CO + 2H O 7.52 N  (4.5) 

The maximum possible water content by volume is ~20%, thus, one assumption has 

to be made such that the actual number of water molecules is the Loschmidt’s 

number multiplied by 20% for HITRAN calculation.  However, this does not 
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necessarily represent a measurement of water concentrations since HITRAN 

assumes thermal excitation but water is created through a chemical reaction and 

might be created in already excited states. 

 

 

Figure 4.13 Example of line broadening profile. 

 

The intensities of all broadened lines were summed up on the wavelength grid and 

the absorption coefficients were determined from these broadened intensities by 

dividing by the local Planck emission.  By examining the Abel inverted water 

emission intensity profile as shown in Figure 4.12, the length of line of sight for 

simulation was assumed to be approximately 4 mm.  The examples of spectra for 

1500 K are shown in Figure 4.14.  The effect of possible absorption in room 

temperature air was estimated by calculating absorption coefficients for a 

temperature of 300 K.  The length of the line-of-sight for absorption in room air of 

1.5 m was corrected by multiplying a factor of ~0.004 to make the simulated intensity 

with absorption comparable with the measured intensity.  The results indicate that 
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neither self-absorption nor absorption in room temperature air seem to influence 

the spectral shape in a way which gets the simulation in better agreement with the 

measurement. 

 

 

Figure 4.14 Example spectral radiance spectra for simulated water emission with 

absorption. 

 

Therefore, to reduce HITRAN simulation calculation efforts, self-absorption was 

excluded in the following analysis.  In this study the emission from CO2 was also 

calculated with HITRAN CO2 database and it was found that the CO2 emission 

spectra in the NIR region were negligible compared to those of H2O which was also 

pointed out by study from Nakaya et al [101]. 

Figure 4.15 shows an example spectra of the normalized measured intensity of the 

co-flow flame at z = 15 mm compared to simulated H2O emission at selected 

temperatures to illustrate how the spectra shape (i.e. peak ratio features) is sensitive 

to temperature change.  The intensity values were normalized to its peak at 928 nm.  
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Within this temperature range, spectral peak ratios seem only sensitive to 

temperature for wavelengths of 928 -980 nm.  Also, the normalized measurement 

spectrum always has an offset to the simulation indicating an underlying emission 

was present (potentially continuum emission from soot or background) which is 

already visible around 940 nm and becomes dominant at wavelengths greater than 

980 nm. 

 

 

Figure 4.15 Normalized measured intensity of co-flow flame at z = 15 mm 

compared to simulated H2O emission at selected temperatures. 

 

An attempt to determining H2O temperature for the co-flow flame at a height of 

15 mm, radial location of 3 mm from axis was made.  As illustrated in Figure 4.16, the 

background emission (orange line), which was essentially a polynomial curve, was 

subtracted from the original normalized measured water emission.  The three 

coefficients to determine the polynomial curve were based upon the minimum 

intensity values in different wavelength regions (lower, middle and upper 
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wavelength region).  The resulting emission spectrum was the modified 

measurement spectrum as shown in blue color. 

 

 

Figure 4.16 Example of underlying background emission subtraction. 

 

Figure 4.17 shows the modified measured spectrum in comparison to best fitting 

simulation.  Since the spectral peaks seems only sensitive to temperature for 

wavelengths of 928 - 980 nm within the temperature range of interest, only the 920 -

980 nm wavelength region was displayed.  The temperature was estimated to be 

approximately 1,620 K at a flame height of 15 mm.  The uncertainty of the 

determined temperature was influenced by the background emission subtraction 

and the accuracy was estimated to be no better than ±200 K. In future studies, the 

origin of this background emission should be investigated in more detail. 
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Figure 4.17 Modified measured spectrum of the water emission in comparison to 

the best fitting simulation. 

 

Figure 4.18 summarized the radial distribution of integrated water emission 

intensity over measured wavelength region and water temperatures at different 

flame heights.  A reconstructed flame shape from Abel inverted water emission was 

also illustrated here indicating the location.  The flame heights of 5 mm, 15 mm, 

25 mm, and 35 mm were selected for analysis due to their distinct flame shape 

characteristics.  The blue curve represented the integrated line-of-sight water 

emission intensity over measured wavelength and the black dashed curve 

represented the Abel inverted intensity.  The temperatures of water were 

determined from HITRAN simulation were displayed as orange dots.  Generally, the 

temperature distribution follows the trend of the Abel inverted intensity 

distribution. 
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decreased quickly as the emission intensity went down with radial location.  The 

emission intensity was barely detected in the inner part of the flame indicating not 

much water located in this region.  Similar phenomenon was found at flame height 

of 15 mm except that the peak temperature was, slightly higher, 1,640 K, and that the 

width of water emission became larger due to the diffusion of combustion reactants 

and products.  At flame height of 25 mm, in the inner part of flame, significant water 

emission was detected and the temperatures were almost a constant of 1,640 K 

within 3 mm radius region.  At flame height of 35 mm, the peak water emission and 

temperature were found in the center of flame. 
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Figure 4.18 Radial distribution of integrated water emission intensity over 

measured wavelength region and water temperatures at different flame heights. 
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 CHEMILUMINESCENCE MEASUREMENT IN MICROFLAMES 

5.1 Experimental Setup 

5.1.1 Microflames burner setup 

Figure 5.1 shows a schematic of the clustered microflames burner setup which was 

designed by Hirasawa from Chubu University, Japan [60, 102].  The burner had one 

central air nozzle with a diameter of 0.7 mm and six 0.23 mm diameter fuel nozzles 

around the air nozzle spaced evenly.  Three pitch sizes were studied in which the six 

fuel nozzles were placed at 2.0 mm, 2.5 mm, and 3.0 mm distance to the air nozzle 

in the x-y plane.  Six fuel nozzles extended 3 mm above the base of the burner with 

the upper edge of the fuel nozzles 1.5 mm above the upper edge of the air nozzle.  

Research grade methane was used as fuel, with the flow rates of methane and air 

being controlled by two different mass flow controllers.  Visual images of the flames 

were recorded through a Nikon DSLR camera. 

 

 

Figure 5.1 Schematic of the six clustered microflames burner with Nikon 

camera. 
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5.1.2 Spectrometer setup 

Figure 5.2 shows a schematic of the optical setup for emission spectroscopy.  

Molecular emission from 400 to 450 nm is of main interest for the analysis of CH* 

emission.  A horizontal motion (y) translation stage was used to move the burner 

platform and enabled measurements of vertical lines of species emission at different 

horizontal locations within the microflames.  Through a 445 mm focal length 

parabolic mirror, with the chosen de-magnification of ~2, a region of about 12 mm 

above the nozzles was imaged by the CCD camera.  Successive clusters of 10 rows on 

the CCD were binned, which then provided a total of 40 spectra per image, each one 

representing a spatial average over a 0.375 mm vertical distance. 

 

 

Figure 5.2 Schematic of the optical setup for CH* and C2
* chemiluminescence 

measurements. 

 

5.2 Results and Discussion 

5.2.1 Photographically measured microflames structures 

The clustered microflames shapes for different pitch size burners at selected fuel 

and air exit flow rates are shown in Figure 5.3.  The flame structure changes with the 

pitch size of the burner and the fuel and air flowrates. 
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In general, the microflames heights were larger when using a 2.0 mm pitch burner 

in comparison to when using a 3.0 mm pitch burner with equal fuel and air flowrates.  

The largest flame height was 2.4 mm for the 2.0 mm pitch burner when CH4/air 

flowrates are 50/40 cm3/min, whereas the flame height remained constant at 1.8 mm 

with the 3.0 mm pitch burner at all flowrates.  A flame sheet was always established 

above the air nozzle on the center of 2.0 mm pitch burner because of the rather 

short distance between air and fuel nozzles. 

 

 

Figure 5.3 Comparison of photographically measured visible flame sheets of 

different pitch size burners at selected CH4/Air flowrates. 

 

Figure 5.4 Comparison of photographically measured visible flame sheets of 

2.0 mm and 3.0 mm pitch size burners at 50 cm3/min CH4 and varied air flowrate. 
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A comparison of the flame sheets for a constant methane flowrate of 50 cm3/min 

and varied air flowrate is shown in Figure 5.4 for the 2.0 mm and 3.0 mm pitch 

burners.  For the 2.0 mm pitch, the structure of the microflames changed 

significantly as the air flowrate was varied.  When the air flowrate was low, the six 

microflames appeared as one single microflame.  As the air flowrate was increased, 

a flame sheet appeared on the top of the flame structure, the top of which garnered 

a ‘hat-like’ structure when the air flowrate was greater than 40 cm3/min.  In contrast, 

no change in the structure of microflames was found when the 3.0 mm pitch burner 

was used with the same fuel flowrate.  This behavior is explained by the larger 

distance between the air and fuel nozzles for the 3.0 mm pitch burner, which 

prevents the center nozzle airflow from influencing the methane flow from the fuel 

nozzles.  Consequently, each fuel nozzle tended to establish its own individual 

microflame. 

5.2.2 Extraction of the flame shape from the molecular spectra 

To understand the effect of burner pitch size and the airflow rate on the shape of 

the merged flame, the experimental conditions were set as shown in Table 5-1 with 

the methane flow rate kept constant. 

The spectrometer was set to the 300 lines/mm grating, yielding a useable 

wavelength range of 172.6 nm with a pixel resolution of 0.13 nm.  This configuration 

enabled a simultaneous detection of different vertical positions (z, defined as the 

height above the fuel nozzle) across the whole flame with a region of about 15 mm 

was imaged onto the CCD.  Successive clusters of 10 rows on the CCD were binned, 

yielding a total of 40 spectra per image, each one representing a spatial average over 

0.375 mm vertical distance in the flame. 

A translation stage was used to move the burner platform horizontally in steps of 

0.635 mm to enable scans of vertical lines at different horizontal locations within 

the microflames, thus mapping the whole flame.  Each individual measurement took 

an exposure time of 60 seconds to obtain sufficient spectral signals. 
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Table 5-1 Test matrix for Optical Emission Spectroscopy (OES). 

No. burner 
pitch 

(mm) 

Methane 
flow rate 

(cm3/min) 

Airflow 
rate 

(cm3/min) 

Applied 
diagnostics 

1 2.0 50 0 OES 

2 2.0 50 40 OES 

3 2.5 50 0 OES 

4 2.5 50 40 OES 

 

Measurements with a spectral resolution of 0.13 nm and a spectral range of 172.6 nm 

were conducted to observe the emission of the CH A2-X2 system for the v = 0 

bands and C2 A3-X3 system (Swan) for the v = +1, 0 and -1 bands.  Each scan 

measured a vertical line of ~15 mm as illustrated in Figure 5.5.  At heights above 

about z = 6 mm, the CH* signals vanished quickly and no useful information could 

be extracted.  A typical emission spectrum observed is shown in Figure 5.6 in which 

v = -1, 0, and 1 band systems of C2 Swan system around 470 nm, 510 nm, and 560 nm, 

respectively, are simultaneously observed in each spectrum.  All band systems are 

used for temperature determination but only the strong v = 0 bands, located in the 

wavelength region between 501 and 517 nm with the (0,0) band being the strongest 

at 516.5 nm, are used for the investigation of the integrated emission. 
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Figure 5.5 Example of observed emission spectra at y = 0. 

 

 

Figure 5.6 Example of measured emission spectrum containing molecular 

emission of the CH v = 0 and the C2
* v = -1, 0, and 1 molecular bands. 
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The parallel investigation of the complex three dimensional flame shape was done 

by our collaborators Hirasawa and Ishino.  A spatially resolved three dimensional 

mapping of the active flame zone was achieved by analyzing the filtered imaging 

measurements of CH* with computed tomography methods developed by Ishino 

[60].  Their results confirmed thin flame sheets as anticipated for the combination 

of inverted and regular diffusion flames but also showed the merging of the 

individual microflames for the smaller pitch geometry.  Thus, tomographically 

analyzed filtered imaging of the CH* emission allowed for assigning the measured 

temperatures to the thin flame sheets. 

To obtain flame shape information, images, similar to filtered imaging applications, 

were reconstructed by integrating the emission of the v = 0 molecular bands of CH* 

and C2
* over the individual band widths.  Starting from centerline of the air nozzle 

as y = 0 mm, a total of 15 scans of vertical lines measurements were conducted with 

a step distance of 0.635 mm in each (±) y direction, to cover the entire flame. 

Direct DSLR photographs and flame structures reconstructed from the spectrally 

resolved measurements of CH* and C2
* as shown in Figure 5.7 were used to obtain 

an overall flame shape.  When no air was supplied to the center nozzle, as shown in 

Figure 5.7(a) and (c), there were little interactions among the microflames.  When a 

40 cm3/min airflow was applied to the center nozzle of the 2.0 mm pitch burner, 

operated with methane flow rates of 50 cm3/min, an additional ‘hat-like’ flame sheet 

appeared on the top of the flame structure at a distance of about 3 mm to the fuel 

nozzle exit, as shown in Figure 5.7(b). 

 



 
67 

 

 

Figure 5.7 Photographs of the flame, measured CH* and C2
* v = 0 band 

intensities. 

For premixed methane-air flames, Kojima et al. derived empirical correlations 

between the C2
*/CH* emission ratio and the equivalence ratio [50] as shown in 

Figure 5.8.  A fit to this correlation data was used to determine the local equivalence 

ratios in Figure 5.9 from the C2
*/CH* ratios measured in the microflames structure. 
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Figure 5.8 Fitted correlation between C2
*/CH* emission ratios and local 

equivalence ratio derived from Kojima et al. data measured in premixed methane-

air flames [50]. 

 

Figure 5.9 shows the C2
*/CH* intensity ratios in a color coded scale.  As can be seen, 

the C2
*/CH* intensity ratio is almost the same throughout the flame except for a 

burner pitch size of 2.0 mm and a center airflow of 40 cm3/min, shown in Figure 

5.9(b) where the C2
*/CH* intensity ratios are closer to the value at ‘hat-like’ region. 

Despite the fact that these correlations were measured for premixed flames, the 

resulting equivalence ratios of one did indeed confirm the expected diffusion flame 

structure for test conditions 1, 3, and 4.  The unique result, however, was obtained 

in test 2 shown in Figure 5.9(b), which showed equivalence ratios clearly larger than 

one in the upper part of flame structure.  This result suggests that a fuel rich 

premixed flame zone was established in the “hat-like” concave flame structure seen 

in Figure 5.9(b) where the individual microflames merge to a new single flame 

structure. 
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Figure 5.9 Ratios for the test cases 1 through 4 (Table 5-1). 

 

5.2.3 Temperature determination from CH* chemiluminescence 

Measurements at high spectral resolution with  = 0.02 nm were performed 

between 415 and 445 nm to monitor the emission of the A2-X2 transition of 

electronically excited CH to determine rotational and vibrational temperatures of 

this species.  Electronically excited CH is a by-product of the combustion chemistry 

and, therefore, the chemiluminescent intensity from the CH* excited radicals can be 

used to identify the location of the combustion reaction zone [48, 103, 104].  In the 

present measurements, the spatial distribution of the CH* emission agreed well with 

the observed blue methane flame. 
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The spectra are caused by transitions due to electronic, rotational, and vibrational 

excitations [105] with a superposition of spectra from vibrational upper states 0 to 3 

of the CH A2 electronically excited state.  The rotational excitation is known to take 

only a few collisions to equilibrate with the translational or gas dynamic 

temperature, vibrational levels on the other hand take longer to equilibrate [105].  In 

addition, excitation through chemical processes will most likely create a non-

thermal distribution of excited states, both in electronic and vibrational excitation 

[105]. 

To determine rotational and vibrational temperatures, the measured spectra were 

compared with theoretical CH* spectral simulations using LIFBASE [106].  Simulated 

spectra are displayed in Figure 5.10 where emission from the higher vibrational 

quantum numbers was arbitrarily scaled up to show their spectral structure.  In the 

present measurements, the emission from v = 3 was already too weak to have 

significant influence on the spectra. 

 

Figure 5.10 Theoretical spectra of the CH A2-X2 electronic system for 

individual upper vibrational levels (arbitrarily scaled), simulated with Lifbase [106]. 
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A typical best fit between measured spectra and simulated ones is shown in Figure 

5.11 for a distance of 0.75 mm to the fuel nozzle exit.  Due to a different spatial 

smearing left (blue) and right (red) to the band head at 431 nm, different 

temperatures were needed to fit the spectra between 418 and 430 nm and between 

430 and 440 nm.  The resulting rotational temperatures were considered upper and 

lower bounds for the reported temperature which is the average of these two 

extremes. 

 

 

Figure 5.11 The measured spectrum of the  = 0 transitions of the CH A2-X2 

electronic system in comparison to the best fitting simulation. 

 

The rotational temperature showed peak values close to and slightly above the 

adiabatic flame temperature for methane air combustion.  Two different equivalent 

vibrational temperatures were found by fitting the ratio between the dominant lines 

from the 0-0 transition and the features from v = 1 on the blue side of the spectrum 

(weak ro-vibrational lines between 425 and 428 nm) and the main feature of the 2-
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2 transition at 432.5 nm on the red side of the spectrum.  These temperatures were 

clearly above the rotational temperatures.  They reflect the population of the 

vibrational levels 1 and 2 relative to the level 0 and indicate a non-thermal 

vibrational population of CH* which is assigned to be populated through chemical 

reactions. 

Figure 5.12 shows the vertical distributions of CH* rotational and vibrational 

temperatures for the 2.5 mm pitch size burner at flowrates of 40 cm3/min CH4 and 

50 cm3/min air.  A maximum of 7 out of the 40 measured vertical positions contained 

data which were suitable for temperature analysis.  The vertical profiles at each x 

position were obtained by moving the burner platform on a translation stage.  At 

heights of about 1.5 mm above the fuel nozzles, the CH* emission was already rather 

weak yielding high uncertainties in the temperatures.  The rotational temperature 

increased as the distance became closer to the flame tip, with values of about 1,500 K 

at about 0.75 mm below the fuel nozzle exit (z = - 0.75 mm) to peak values of about 

2,450 K at the flame tip at z = 1.5 mm.  The vibrational temperatures were clearly 

higher than the rotational ones (and higher than the adiabatic flame temperature 

for methane-air combustion) and showed only slight variation with distance to the 

nozzle.  They are not likely linked to the flame temperature, though, since the 

primary population of the excited states is anticipated through non-thermal 

excitation (i.e. chemiluminescence).  The minimum uncertainty is certainly the 

temperature step in the simulated spectral data base.  The uncertainty of the stated 

temperature values contains uncertainties in fitting the spectra (i.e., if two 

simulated spectra fit the measured one in a very similar way) and in uncertainties of 

the measured signal due to the factors mentioned in chapter 3.2.1).  Also, two 

temperatures were obtained from those two regions of the wavelength, which gave 

the upper and lower limit of determined temperatures and the accuracy was 

estimated to be no better than ±200 K.  One reason is that the left and right of the 

band peak are dominated by transitions coming from different upper vibrational 

levels. Therefore, this indeed characterizes some uncertainty. 
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Figure 5.12 Vertical distributions of CH* rotational and vibrational temperatures 

for the 2.5 mm pitch burner at flowrates of 40 cm3/min CH4 and 50 cm3/min air. 

 

In the present measurements, the spatial distribution of rotational temperature 

across the microflames as shown in Figure 5.13(c) were obtained by mapping the 2-

D distributions of CH* rotational temperature.  The 2-D intensity distribution of CH* 

emission was obtained from the spectra integration over the CH* band system 

(basically the gray area under red curve in Figure 5.11) as shown in Figure 5.13(a).  

The spatial distribution of the CH* emission agreed well will the blue color of the 

methane-air flame seen in photographic images Figure 5.13(b). 
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Figure 5.13 Intensity distribution of CH* emission (a), photographic image (b) 

and rotational temperature distribution of CH* (c) for 2.5 mm pitch size burner at 

flowrates of 40 cm3/min CH4 and 50 cm3/min air. 

 

Again, each measurement is an integration over the line of sight.  However, CH* is 

produced and radiates in the flame front which is relatively thin in diffusion flames.  

Therefore, the observed CH* emission is actually the sum of the flame fronts at the 

measured vertical and horizontal position.  The temperature does not correlate 

directly with the intensity but rather is a function of distance to the fuel nozzles exit 

(z) as shown in Figure 5.13(a) and (c). 

5.2.4 Temperature determination from C2 Swan system 

The advantage of spectrally resolved measurements of the molecular emission from 

the flame sheets over filtered emission of the same chemiluminescence is that the 

spectral shape of the molecular bands contains information about the gas 

temperature.  While vibrational excitation is mainly generated through the chemical 

reaction generating the chemiluminescence, the rotational temperature of di-

atomic molecules, however, equilibrates usually rather quickly with the 

translational temperature and is considered a good representation of the gas-

dynamic temperature of the flame. 
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Spatial resolution is assigned to the spectroscopic measurements through a 

comparison with tomographically analyzed images of the CH* chemiluminescence 

from an earlier study [60] showing thin flame sheets as the sole origin of the CH* 

emission.  From the results presented in Figure 5.14, very similar structures are seen 

in the emission of CH* and C2
* which strongly indicates that the emission of the two 

radicals is generated in the same location in the flame structure. 

 

 

Figure 5.14 Comparison of a measured spectrum with a simulated spectrum 

calculated using NEQAIR. 

 

Theoretically simulated C2
* spectra were calculated using the NASA Nonequilibrium 

Air Radiation code NEQAIR [107] under separate variation of the rotational and 

vibrational temperature for rotational temperatures ranging from 1,000 to 3,000 K 

with an increment of 100 K, and for vibrational temperatures between 1,500 to 

4,000 K with an increment of 200 K.  All spectra were normalized to the (0,0) peak 

of C2 Swan band. 
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The rotational and vibrational temperatures of C2
* were determined through 

comparing the spectral shapes of measured and simulated emission of the v = +1, 0 

and -1 bands to find the best fitting simulation as shown in Figure 5.14.  Excellent 

agreement was obtained between measurements and simulations with the 

exception of two peaks around 468 nm which were systematically under predicted 

by the simulation.  It is not clear yet whether these discrepancies resulted from 

inaccurate constants in the simulation or potential inaccuracies in the experimental 

procedure. 

The observed C2
* emission consists of an integration over the line-of-sight (along x) 

at the measured vertical and horizontal position and therefore does not provide any 

spatial information by itself.  However, C2
* and CH* emission are generated at the 

same locations in the flame, as concluded from the very similar flame structures 

seen in Figure 5.7.  They are only generated in the active combustion zone, which in 

these diffusion flames is a thin flame sheet as demonstrated by Kato et al. [60] 

through tomography of filtered imaging of the CH* emission.  Therefore, only these 

narrow regions contribute to the line-of-sight integrated emission, and the 

measured temperatures can be assigned to discrete flame locations through 

comparison with the tomographically analyzed filtered emission measurements. 
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Figure 5.15 Rotational temperature distributions for (a) condition 1, (b) 

condition 2, (c) condition 3, and (d) condition 4. 

 

The rotational temperature distributions for different flow rates and pitch size 

burners are illustrated in Figure 5.15.  The rotational temperatures range from 

1,200 K to 1,800 K. Similar to the analysis of CH*, the accuracy was estimated to be 

no better than ±200 K.  Different from the emission intensities, the temperatures 

do not show significant profiles in the horizontal direction but are mainly a function 

of height above the fuel nozzles, which was also seen in earlier temperature 

measurements from the CH* emission [102].  The only exception is seen in Figure 

5.7(d) where a reduced merging of the flames occurs due to the larger pitch size.  

The vibrational temperatures are found to be 3,100±200 K and show almost no 

variation across the flame This is assigned to the non-thermal nature of vibrational 

excitation which is predominantly governed by the combustion reactions. 
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 PARTICLE EMISSION MEASUREMENT IN MICROFLAMES 

6.1 Experimental Setup 

6.1.1 Microflames burner setup 

Figure 6.1 shows a schematic of the modified clustered microflames burner setups 

[34].  The burner had one central air nozzle with a diameter of 0.7 mm and six 

0.23 mm diameter fuel nozzles around the air nozzle spaced evenly at a distance of 

2.5 mm.  The fuel nozzles were longer than the air nozzle by 1.5 mm.  The seed 

particles were mixed into the air flow by a particle feeder and fed through the central 

air nozzle.  Under current setup, the feeding rate of amount of particles was not 

controlled. 

 

 

Figure 6.1 Schematic of the clustered microflames burner and particle feed 

system. 
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Research grade methane was used, with the flow rates of methane and air being 

controlled by two different mass flow controllers.  The testing demonstrated that 

the fuel and air nozzle arrangement at different air and fuel flow rates influenced 

the flame structure.  At low fuel rates, six distinct diffusion microflames were 

established around the center nozzle.  As a consequence, the seed/air stream from 

the center nozzle flowed in between the microflames that were centered above each 

respective fuel nozzle and did not cross into the flame fronts.  This seed/flame 

structure is referred to as the “separated open” structure shown in Figure 6.2(a).  At 

intermediate fuel flow rates, the seed/air stream also did not cross into the methane 

flame front, similar to case (a), but the microflames were merged into one 

contiguous ring-shaped flame; this structure is referred to as the “merged open” 

structure and is shown in Figure 6.2(b).  Then, with ever increasing fuel flow rates 

and even at low air flow rates, the six independent microflames merged into one 

large flame and the seed/air flow was injected into this merged flame.  This structure, 

where the center flow established an inverted diffusion flame in the merged flame, 

is referred to as the “merged closed” structure and is shown in Figure 6.2(c).  As 

expected, these various flame structures affected the particle seed temperature 

distributions, as discussed in the following section. 
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Figure 6.2 Illustration of the flame structure evolution with increasing fuel rate 

yielding (a) separated open, (b) merged open and (c) merged closed structures. 

 

Table 6-1 displays the methane and air flow rates that were used during these tests.  

At the 20 cm3/min methane and 30 cm3/min air condition, marked with a symbol 

“×” in Table 6-1, soot was generated and obscured the collection of flame 

temperature data due to strong emission from the soot; hence, this flow rate data 

point is not discussed in the following.  With 50 cm3/min of both methane and air 

(case ×× in Table 6-1), the high air flow rate diluted the concentration of methane 

and decreased the flame temperature to an extent that particle emission intensities 

were too low to be detected with the current setup.  TaN particles with a high 

melting temperature and relatively high emissivity in the spectral range between 

600 and 1,000 nm were used to characterize the seed flow.  Table 6-2 summarizes 

properties of the TaN seed particles. 
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Table 6-1 Test matrix on methane and air flow rates. 

Air 

CH4 
30 cm3/min 40 cm3/min 50 cm3/min 

20 cm3/min × √ √ 

30 cm3/min √ √ √ 

40 cm3/min √ √ √ 

50 cm3/min √ √ ×× 

 

Table 6-2 Properties of TaN particles used. 

Property Value 

Density (kg/m3) 1,340 

Melting Point (K) 3,360 

Diameter ( m) ~5 

6.1.2 Spectrometer setup 

Figure 6.3 shows a schematic of the optical setup for emission spectroscopy.  

Through a 445 mm focal length parabolic mirror, the vertical center line of flame 

and seed particle flow was imaged onto the spectrometer side input slit, therefore 

providing a simultaneous detection of vertical positions across the whole particle 

flow.  With the chosen optical imaging system, a region of ~15 mm was imaged onto 

the CCD as shown in Figure 6.4.  To increase the sensitivity, successive clusters of 

20 rows on the CCD were binned, yielding a total of 20 spectra per image, each one 

representing a spatial average over 0.75 mm distance in the flame.  The OG-550 filter 

was used to eliminate higher order lines.  Figure 6.4 shows view of microflames with 

particle beam through the spectrometer in imaging mode to show the alignment 
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procedure.  When the slit was set to 25 m for spectral mode, the center of slit was 

the same with the one at imaging mode. 

 

 

Figure 6.3 Schematic of the optical setup for optical emission spectroscopy 

measurements on microflames burner. 

 

 

Figure 6.4 Spectrometer view of microflames with particle beam injection for 

alignment procedure. 
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6.2 Results and Discussions 

6.2.1 Determination of particle temperatures from continuum emission 

At a spectral resolution with  = 0.49 nm, the broad continuum emission of the 

glowing seed particles and molecular emission from water (H2O) were monitored 

between 600 and 1,000 nm.  The continuum emission was analyzed with respect to 

particle temperatures.  Spectra were acquired from emissions of non-sooting (blue) 

flames with and without seed particles at the same flow rates.  The spectra were 

dominated by H2O emission and an underlying continuum which was assigned to 

thermal radiation from the glowing particles.  Hence, the difference between the 

spectra with and without particle flow was used to provide the particle emission, as 

shown in Figure 6.5.  It should be noted that the strong lines at 766.5 nm and 

769.9 nm are attributed to atomic emission from potassium contamination in air. 

 

 

Figure 6.5 Spectral radiance from flame with and without particles. 
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In the optical thin case, a comparison of the spectral shape is less sensitive to 

measurement uncertainties than comparing absolute intensities, and becomes 

independent of the seed particle size.  As a consequence, all spectra were normalized 

relative to their intensity at 790 nm and then the spectral shapes between 600 and 

1,000 nm were compared to calculated Planck emission, as described in the 

following. 

Since normalized spectra from the TaN seeded flames were used, the comparisons 

between the spectral shape of the measured spectra and the Planck’s law calculation 

were of higher interest than the absolute values.  In combination of Planck’ law and 

definition of spectral, hemispherical emissivity as shown in equation (2.2) and (2.17), 

the theoretical spectral radiance of emission from particles is calculated as: 

 
         





  
 

 
 

2

5

2 1
, ,

exp 1

hc
I T B T

hc

kT

 
(6.1) 

where ελ and Bλ are the surface spectral emissivity of particles and the spectral 

radiance of a blackbody at a given temperature T as a function of wavelength  

according to Planck's law [68].  To provide a valid comparison with the particle 

emission, the Planck emission has to be convoluted with the spectral emissivity of 

the particles.  The bulk of the particles consists of TaN for which temperature 

dependent spectral emissivities were available from published data [108] as 

displayed in Figure 6.6.  By interpolation from these data, spectral emissivities were 

obtained for each temperature used in the Planck calculations. 
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Figure 6.6 Spectral emissivity of TaN at various temperatures recreated from 

[108]. 

 

6.2.2 Particle size parameter 

To obtain temperature information from the particle continuum emission by 

comparison to calculated Planck emission, it is necessary to understand the 

governing influences on the spectral intensity and shape.  Two known major 

influences are scattering through the particles and the spectral emissivity of the seed 

material.  Based on equation (2.20), for the given wavelength range between 600 and 

1,000 nm, particle size parameters of ~6 and 3 are obtained for particle sizes larger 

than 0.5 m.  The TaN particles from Wako Chemical, Ltd were analyzed through 

SEM as shown in Figure 6.7.  Approximately 10% of the particles were found to have 

sizes below 0.5 m which corresponded to a volume fraction of less than 1% shown 

in Figure 6.8, suggesting that neither Rayleigh nor Mie scattering would be 

important. 
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Figure 6.7 TaN particles sampled after passing through flame. 

 

 

Figure 6.8 TaN particles size count. 
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6.2.3 Flame transmissivity measurement 

To further verify this assumption, the transmissivity of the flame with particle seeds 

was determined by placing a calibration lamp emitting continuum radiation behind 

the flame as shown in Figure 6.9.  The spectra measured with and without the lamp 

showed that the flame transmissivity was equal to one within the accuracy of the 

measurement as shown in Figure 6.10.  Therefore, the flame can be considered 

optically thin and both scattering and absorption effects were negligible. 

 

 

Figure 6.9 Optical setup for flame transmissivity measurement. 
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Figure 6.10 Flame transmissivity measurement. 

 

6.2.4 Investigation of post-test particles 
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EDX results indeed showed the existence of oxygen on the sample surface.  For the 

virgin particles, the oxygen signals are more or less randomly distributed over the 

sample.  For the particles sampled when flame was established, oxygen 

concentrations were seen on the particles, strongly indicating oxide layers.  The 

parallel investigation of these particles was also done by Hirasawa’s group in Japan 

0

0.5

1

1.5

0

1000

2000

3000

550 600 650 700 750 800 850 900 950 1000 1050

fl
am

e 
tr

an
m

is
si

v
it

y

in
te

ns
it

y 
[a

.u
.]

wavelength [nm]

particles and flame
particles, flame and lamp
lamp
lamp transmitted
flame tranmissivity

flame transmissivity



 
89 

[110].  They analyzed the particles by X-ray diffractometer (XRD), and found that the 

increase of fuel flow rate increased the extent of oxidation. 

 

 

Figure 6.11 (a) SEM image of TaN particles sampled when no flame was 

established and EDX mapping of Tantalum, Nitrogen and Oxygen, and (b) SEM 

image of TaN particles sampled when a flame was established with a fuel/air 

flowrates of 40/50 cm3/min, and EDX mapping of Tantalum, Nitrogen and Oxygen. 

 

The broad XPS scan as shown in Figure 6.12 also shows significant oxygen signals 

(e.g. at ~533 eV) which might be caused by oxygen contaminants on the substrate.  

However, the high resolution scan reveals Ta2O5 signals between 26 and 29 eV [109].  

Although the oxidation reaction would contribute to the heating process, a 

quantification of this possible heat flux contribution is not possible with the 

currently available experimental data.  However, such an oxide layer would have an 

effect on the radiation emitted by the particles if it were thick enough. 

 

Ta N O(a) 25 m

(b) 2.5 m Ta N O
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Figure 6.12 XPS Analysis of TaN particles sampled after passing through 

microflames with a fuel/air flowrates of 40/50 cm3/min. 

 

The emissivity of Ta2O5 is very low in the wavelength range of concern [111].  Its 

transmittance, as reported in literature [111] for a Ta2O5 thickness of 370 nm, is 

illustrated in Figure 6.13, showing a maximum of nearly unity in the center of the 

observed wavelength range and an almost symmetrical decrease to values on the 

order of 80% at the lowest and highest observed wavelengths. 



 
91 

 

Figure 6.13 Transmittance of Ta2O5 recreated from [111]. 

 

The effect on the simulated Planck emission is demonstrated in Figure 6.14 for a 

fuel/air flowrates of 40/50 cm3/min at a distance of 5 mm to the fuel nozzles with 

Planck spectra of TaN with and without correction for transmission through a 

370 nm thick layer of Ta2O5 for different particle temperatures matching the 

measured spectra right and left of the normalization wavelength of 790 nm.  The 

normalized Planck emission fits the measured data in limited spectral regions but 

no common temperature can be found which fits the entire spectrum.  This is clearly 

seen in the differences between Planck simulation and measurement for each 

temperature, normalized by the corresponding measured value, in the following 

referred to as percent differences.  Therefore, the average Ta2O5 layer on the surface 

of the emitting particles must have been thinner than 370 nm. 
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Figure 6.14 Normalized measured intensity for a fuel/air ratio of 40/50 cm3/min 

at a distance of 5 mm to the fuel nozzles compared to simulated Planck emission 

under consideration of a 370 nm thick Ta2O5 layer, and percent differences at 

temperatures matching the VIS and NIR regions. 

 

Thinner oxide layer may be considered through the application of Beer’s law [68] as 

shown in equation (2.14) with the layer thickness x and the spectral absorption 

coefficient  of Ta2O5 [74] which is used to calculate the spectral transmittance  

for different layer thicknesses than the ones reported in [111].  By applying these 

spectral transmittance values of Ta2O5 to the theoretical Planck curves within a 

temperature range between 1,200 and 2,400 K, optimum temperature values can be 

found from the best fitting Planck emission for a given Ta2O5 layer thickness.  To 

obtain a quantifiable measure for the best fitting Planck curve, the difference 

between the measured and simulated spectra at each wavelength was built, and 

normalized by the measured value to obtain the disagreement of measured and 

simulated value in percent.  The best fit was found by minimizing the sum of these 

percent differences in two different wavelength regions of 110 nm width left (VIS) 
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and right (NIR) of the normalization wavelength of 790 nm.  Two temperatures can 

be found which minimize the sum of the squared percent differences in each 

wavelength region.  A third temperature results from a minimization of the sum 

over both wavelength regions, yielding the best fitting Planck curve. 

For each measured spectrum, this fitting procedure was conducted under variation 

of the oxide layer thickness from pure TaN surfaces up to oxide layer thicknesses of 

500 nm in intervals of 10 nm, yielding a best fitting Planck curve with an originating 

temperature and oxide layer thickness as an average over all detected particles.  For 

the vast majority of measured curves the originating temperature for the best fitting 

curve in the VIS, NIR, and over the whole detection range coincide in this point as 

shown in Figure 6.15. 

 

 

Figure 6.15 Minimal sums of squared percent differences and corresponding 

temperatures in the wavelength regions VIS, NIR vs. Ta2O5 thickness. 
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In some cases, (in particular when the particle radiation was weak), slightly different 

temperatures provided the best fits in the VIS and NIR wavelength ranges which 

were considered upper and lower temperature bounds.  The matching Planck 

emission and the resulting difference to the measured spectrum for the example 

condition are shown in Figure 6.16. 

 

 

Figure 6.16 Best matching Planck emission for a temperature of 1,870 K and an 

oxide layer thickness of 50 nm. 
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general, the maximum seed particle temperature increased with the fuel flow rate.  

As anticipated, the highest particle temperatures were attained under the closed 

flame structures when particles are immersed directly into the flames.  Regions of 

nearly constant high particle temperatures between 1,800 K and 1,930 K were formed.  

In general, increasing the fuel or air flow rate increased the extent of the high 

temperature plateau.  The largest plateau extended from approximately 2 mm to 

12 mm above the fuel nozzles at a fuel flow rate of 50 cm3/min and air flow rate of 

50 cm3/min.  At the lowest fuel flow rate of 20 cm3/min, particle temperatures never 

exceeded 1,800 K.  Hence, it was possible to create somewhat stable temperature 

regimes within the flames over extended distances with select air and fuel flow rates.  

In the high temperature region of the observed flames, oxide layer thicknesses were 

clearly less than 100 nm for all conditions and positions investigated yielding an 

average temperature difference of less than 5 K to the temperatures determined 

without consideration of an oxide layer.  The uncertainty of the particle temperature 

may come from the background emission subtraction and also the signal-to-noise 

ratios. From the spectra fitting comparison, it was found that the accuracy was 

approximately ±20 K in the high temperature region, whereas the accuracy is no 

better than ±150 K in the low temperature region (due to the small signal-to-noise 

ratio).  Only at positions close to the flame tip where particle temperatures decrease 

again, higher oxide layer thicknesses were obtained.  In these regions, however, the 

detected thermal emission was already weak and higher uncertainties are 

anticipated.  Due to the small thickness of the oxidation layer, the contribution of 

the oxidation reaction to heating the particles would be very small.  The detailed 

comparisons of shape of microflames with particles emission are shown in Figure 

6.18 through Figure 6.23. 

The parallel investigation of particle-seeded flow velocity from this burner was also 

carried out by Hirasawa’s group [60].  They found that the particle-seeded flow 

velocity in the center also depended on the flame structure in a way such that the 

point to begin increasing central flow velocity moved upstream as fuel flow rate 
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increased and as flame structure changed.  The time during which the seed particles 

in future synthesis applications are at high temperature can therefore be controlled 

through a suitable combination of fuel and oxidizer flow rate. 

 

 

Figure 6.17 Vertical temperature distributions of the TaN particles at different 

CH4/Air flowrates for 2.5 mm pitch size burner. 
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Figure 6.18 Spectrometer image of microflames with particle emission for 

2.5 mm pitch size burner at 30 cm3/min air and varied CH4 flowrate. 

 

 

Figure 6.19 Spectrometer image of microflames with particle emission for 

2.5 mm pitch size burner at 40 cm3/min air and varied CH4 flowrate. 
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Figure 6.20 Spectrometer image of microflames with particle emission for 

2.5 mm pitch size burner at 50 cm3/min air and varied CH4 flowrate. 

 

 

Figure 6.21 DSLR image of microflames with particle emission for 2.5 mm pitch 

size burner at 30 cm3/min air and varied CH4 flowrate. 
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Figure 6.22 DSLR image of microflames with particle emission for 2.5 mm pitch 

size burner at 40 cm3/min air and varied CH4 flowrate. 

 

 

Figure 6.23 DSLR image of microflames with particle emission for 2.5 mm pitch 

size burner at 50 cm3/min air and varied CH4 flowrate. 
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flow rates of 50 cm3/min fuel and air, the temperature obtained with a burner pitch 

size of 2.0 mm is higher than the one with a burner pitch size of 3.0 mm.  For flow 

rates of 40 cm3/min fuel and 30 cm3/min air, the temperature obtained with a pitch 

size of 2.0 mm is again slightly higher than with 3.0 mm.  Furthermore, the extent 

of the hot zone is smaller with a burner pitch size of 3.0 mm.  For flow rates of 

40 cm3/min fuel and 50 cm3/min air and 50 cm3/min fuel and 40 cm3/min air, both 

burner pitch sizes yield a similar temperature distribution.  The largest high 

temperature region is obtained with a burner pitch size of 2.5 mm and a fuel rate of 

50 cm3/min.  The detailed comparisons of shape of microflames with particles 

emission are shown in Figure 6.25 through Figure 6.30. 

 

 

Figure 6.24 Vertical temperature distributions of the TaN particles at selected 

CH4/Air flowrates for (a) 2.0 mm, (b) 2.5 mm, and (c) 3.0 mm pitch size burner. 
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Figure 6.25 Spectrometer image of microflames with particle emission for 

2.0 mm pitch size burner at selected CH4 and air flowrate. 

 

 

Figure 6.26 Spectrometer image of microflames with particle emission for 

2.5 mm pitch size burner at selected CH4 and air flowrate. 
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Figure 6.27 Spectrometer image of microflames with particle emission for 

3.0 mm pitch size burner at selected CH4 and air flowrate. 

 

 

Figure 6.28 DSLR image of microflames with particle emission for 2.0 mm pitch 

size burner at selected CH4 and air flowrate. 
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Figure 6.29 DSLR image of microflames with particle emission for 2.5 mm pitch 

size burner at selected CH4 and air flowrate. 

 

 

Figure 6.30 DSLR image of microflames with particle emission for 3.0 mm pitch 

size burner at selected CH4 and air flowrate. 
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 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

An optical diagnostic technique to characterize complex methane-air diffusion 

flame for future synthesis applications was developed.  Filtered imaging techniques 

and spectrally resolved measurements were applied to investigate thermal emission 

of particles and the chemiluminescence of CH*, C2
*, and H2O.  Several available 

spectral simulation codes (LIFBASE, NEQAIR) were used to support the analysis of 

the molecular emission.  The possibility of applying the HITRAN database for 

analyzing the spectrally resolved H2O emission was investigated.  Accurate 

prediction of the thermal structure of flames requires detailed information on the 

radiative properties and a thorough understanding of the governing combustion 

processes.  Three different flame conditions were investigated:  an axisymmetric co-

flow flame, a merged flame structure created with a microflames burner consisting 

of six individual microflames, and the microflames with injection of a particle 

stream into the center of the merged flame structure. 

The following conclusions were summarized for the study of chemiluminescence 

measurement in co-flow flame: 

 Abel inversion was applied to the line-of-sight chemiluminescence.  Local 

two-dimensional intensity profiles from both filtered images acquired by 

DSLR camera and spectrally resolved spectrometer measurement were 

obtained. 

 CH* and C2
* emission were generated in a thin flame sheet which thickness 

was estimated to be 0.25 mm.  H2O emission seemed to come from the same 

flame sheets and was not detected in the center of the flame.  The signals of 

CH* and C2
* emission measurements became too weak at about z = 30 mm, 

while the signals of water emission decreased slower and became too weak 

at about z = 42 mm. 
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 HITRAN simulation results indicated that neither self-absorption nor 

absorption in room temperature air seem to influence the spectral shape so 

that the absorption can be excluded from water emission calculation. 

 An underlying background emission was found in measured water emission 

spectra by comparing to simulated spectra at different temperatures.  An 

attempt to determining water temperature was made by comparing modified 

measured spectra with background emission subtraction to the best fitting 

simulation spectra.  The temperature distribution profiles at selected flame 

heights were obtained. 

The thermal structure of six clustered methane-air microflames surrounding a 

center nozzle, feeding an airflow which can be seeded with a particle stream, was 

characterized by emission spectroscopy measurements of C2
* and CH* emission 

produced by chemiluminescence.  Although the emission spectroscopy results by 

the nature of this technique not directly provide spatial resolution along the 

observed line of sight, a comparison with tomographically analyzed filtered imaging 

of the CH* emission allowed for assigning the measured temperatures to the thin 

flame sheets observed in the filtered imaging work.  The combination of the 

spectroscopic and imaging techniques was found to be a powerful tool for the 

characterization of 3-D flame structures.  The following conclusions were 

summarized for the study of chemiluminescence measurement in microflames: 

 Significant effects of flowrates and burner pitch size on the structure of six 

clustered methane-air diffusion microflames were observed.  The structure 

of the microflames with a constant methane flowrate of 50 cm3/min changed 

significantly as the air flowrate was varied for the 2.0 mm pitch burner, while 

no change in the structure of microflames was found when the 3.0 mm pitch 

burner was used.  This missing change in flame structure for the 3.0 mm pitch 

is explained by the larger distance between the air nozzle and the fuel nozzles, 

which does not allow the center nozzle airflow to influence the methane flow 
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from the fuel nozzles.  Instead, each fuel nozzle tended to establish its own 

individual microflame. 

 Two different pitch sizes, 2.0 and 2.5 mm, the distance between the fuel 

nozzles to the center air nozzle, were investigated at methane flow rate of 

50 cm3/min, with and without a center air stream of 40 cm3/min.  The 

integrated emission of the C2
* and CH* v = 0 molecular bands from emission 

spectroscopy and filtered imaging measurements (performed by our 

collaborators) was used to characterize the active combustion zones in the 

complex flame structure.  The results confirmed thin flame sheets and also 

showed the merging of the individual microflames for the smaller pitch 

geometry.  The integrated CH* and C2
* emission from the spectrally resolved 

measurements showed very similar structures as seen in the filtered imaging 

although with reduced spatial resolution and without the option of CT 

analysis.  The results strongly indicate that CH* and C2
* are generated in the 

same region of the flame.  The ratio of the C2
* emission to the CH* emission 

from the spectrally resolved measurements was related to the corresponding 

equivalence ratio using empirical correlations reported by Kojima et al. [50] 

which were derived from measurements in premixed methane-air flames.  As 

anticipated, the derived equivalence ratios were equal to one in the cases of 

pure diffusion flames.  For a pitch size of 2.0 mm with the center airflow, 

however, a hat-like flame zone established above the center air nozzle inside 

the merged flame.  Within this region, equivalence ratios between 1 and 1.2 

were obtained, suggesting the formation of a fuel-rich flame zone interpreted 

as a premixed flame. 

 CH* emission was used to characterize the flame front by determining 

rotational and vibrational temperatures though comparing measured and 

theoretical spectra simulated with LIFBASE [106].  Rotational temperatures 

of CH* were determined from a comparison of the emission of the  = 0 

transitions of the CH A2-X2 system of electronically excited CH.  Spatial 
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temperature distributions of the microflames were obtained by mapping the 

2-D distribution of CH* rotational and vibrational temperatures, the former 

one representing the flame temperature.  The rotational temperature 

increased toward the flame tip, from values of about 1,500 K at about 0.75 mm 

below the fuel nozzle exit (z = - 0.75 mm) to peak values of about 2,450 K at 

the flame tip at z = 1.5 mm.  The vibrational levels of CH were found to be 

non-thermally distributed since different temperature values were 

determined from the ratio of v = 1 and v = 2 to v = 0.  The vibrational 

excitation of CH* is interpreted to be controlled by chemical processes rather 

than by pure thermal excitation.  The spatial distribution of the CH* emission 

agreed well with the blue color of the methane-air flame seen in 

photographic images.  The line of sight measurement of CH* emission is 

actually the sum of the flame fronts at the measured vertical and horizontal 

position.  The temperature does not correlate directly with the observed 

intensity but rather is a function of distance to the fuel nozzles exit. 

 Through comparison with a spectral line-by-line simulation of the C2
* 

emission using the NASA code NEQAIR, rotational and vibrational 

temperatures of C2
* were determined throughout the flame structure.  As 

already seen for the chemiluminescence of CH*, the vibrational excitation is 

most likely generated by the chemical reaction and considered to be not 

characteristic for the thermal structure of the flame.  The rotational 

temperature, however, typically equilibrates quickly with the translational 

temperature and is considered a good representation of the gas-dynamic 

flame temperature.  For the investigated flames, rotational temperatures 

between 1,200 and 1,800 K were derived, mainly depending on the height 

above the nozzle and showing only slight variation across the merged flame. 

In the study of particle emission measurement in microflames, the particle 

temperatures of micron-size TaN particles with known emissivity injected into a 

cluster of microflames was investigated.  Vertical temperature profiles of TaN 
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particles along the center axis of the clustered microflames were obtained based on 

optical emission spectroscopic methods.  The temperature dependent spectral 

emittance of TaN and the effect of a potential Ta2O5 layer were taken into account 

in fitting the spectral shape of the particle radiation through Planck emission.  The 

following summarizes the results of this study: 

 Both transmittance measurements and theoretical calculation showed that 

the flame seeded with TaN particles of several micron diameter was optically 

thin and that scattering and absorption effects were negligible. 

 A region of high and almost constant temperature was detected, it extended 

well beyond the actual flame front and its extent increased with fuel and 

oxidizer flow rate. 

 The pitch size of the burner influences the temperature distribution at 

selected flow rates.  The most extended regions of high temperature were 

obtained with a burner pitch size of 2.5 mm.  With increased burner pitch 

size, operation with small fuel/air flow rate ratios becomes less favorable. 

 By XPS analyses of flame seeded TaN, the particles were found to be coated 

with thin Ta2O5 layer after passing through the flame.  The oxide layer 

thickness was estimated by including the Ta2O5 transmission in the spectral 

fitting process.  In the high temperature regions of the flames, the Ta2O5 layer 

thickness was found to be clearly below 100 nm.  In comparison to fitting 

without an oxide layer, the influence on the resulting temperatures was 

within the temperature increment of 5 K. 

7.2 Future Work 

The chemiluminescence of CH* and C2
* characterizes the flame structure in terms 

of flame front and the combustion process.  The rotational temperature of these 

molecules characterizes the flame temperature.  Combined spectral filtered image 

analysis has been proven a useful tool for flame diagnostics.  Injection of particles 
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into the merged microflames structure generates constant plateaus of high 

temperature useful for future flame synthesis, the extent of these plateaus being 

controlled by flow rates and burner pitch.  Oxidation layer formation and particle 

temperatures can be captured through the emission spectroscopic methods 

demonstrated in this work.  The results obtained in this study are intended to be 

used for the definition of working conditions for future flame synthesis processes to 

be investigated with this burner design, and for validation of numerical codes 

currently under development. 

Future work could involve measurements in horizontal planes at different vertical 

positions above the nozzles enabling a spatial reconstruction of these horizontal 

profiles from the line-integrated emission spectroscopy data to more concretely 

interpret beneficial approaches to reaction chemistry within controlled flames.  In 

addition, the temperature profiles of particles and molecules should be paired with 

measured velocity profiles in future studies to obtain the temporal variation of 

particle temperatures which is one of key control factor for flame synthesis of 

possibly unusual particle chemistry.  For future experiments to characterize the 

flame structure, it might, however, be beneficial to use particle materials which do 

not undergo such oxidation reactions, such as TaC or TiC, with a controllable 

feeding rate.  Also, investigation of premixed flames, and sooting flames will be 

beneficial for obtaining more working envelops for flame synthesis. 



 
110 

Appendix 

MATLAB code used to perform angle tilting correction: 

%Process Imported Data 
fclose('all'), clear all, clc, close all 
 
load('H:\Diao_64GB\Matlab_Working_Folder\Matlab_CoFlow_2018-05-
17\Matlab\Spec\wavelength_c_9569\Data_Imported.mat') 
 
%% Substitute variables! 
 
Flame = c_z_5; % flame height of interest 
 
BG = c_BG_60sec; % background 
 
%% Spectra 
%frames averaged 
m_BG = mean(BG, 3); 
m_Flame = mean(Flame, 3); 
 
%BG Corrected 
m_Flame_BG_corr = m_Flame - m_BG; 
 
%no negative 
m_Flame_BG_corr (m_Flame_BG_corr <0.0001)= 0.0001; 
 
%Time Corrected (check TIME) 
ExpTime = double(headc_BG_60sec.exp_sec); 
m_Flame_BG_Time_corr = m_Flame_BG_corr/ExpTime; 
 
%Intensity 
load ('H:\Diao_64GB\Matlab_Working_Folder\Matlab_CoFlow_2018-05-
17\Matlab\Calibraion\Intensity\CorrectionFactor_c.mat') 
 
m_Flame_BG_Time_Int_corr = m_Flame_BG_Time_corr.*CorrectionFactor; 
%transpose 
m_BG = m_BG'; 
m_Flame=m_Flame'; 
m_Flame_BG_Time_Int_corr = m_Flame_BG_Time_Int_corr'; 
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save('Data_Corrected.mat','x','y','wavelength_c','ExpTime','m_BG','m_Flame','m_
Flame_BG_Time_Int_corr') 

 

%Differentiate values to more strips 
fclose('all'), clear all, clc, close all 
 
load('Data_Corrected') 
 
y_new = [1:size(y,2)/408:size(y,2)]; 
 
for i=1:1340 
    m_Flame_BG_Time_Int_corr_400 (i,:) = 
interp1(y,m_Flame_BG_Time_Int_corr(i,:),y_new); 
    i+i+1; 
end 
sum_m_Flame_BG_Time_Int_corr = sum (m_Flame_BG_Time_Int_corr,2); 
sum_m_Flame_BG_Time_Int_corr_400 = 
sum(m_Flame_BG_Time_Int_corr_400,2); 
 
factor = 
sum_m_Flame_BG_Time_Int_corr./sum_m_Flame_BG_Time_Int_corr_400; 
 
for i=1:400 
    m_Flame_BG_Time_Int_corr_400_new(:,i) = 
m_Flame_BG_Time_Int_corr_400(:,i).*factor; 
    i=i+1; 
end 
 
save 
('Data_Corrected_Interpolated.mat','x','y','wavelength_c','y_new','m_Flame_BG_
Time_Int_corr_400_new') 
 
%Angle Correction 
fclose('all'), clear all, clc, close all 
 
load('Data_Corrected_Interpolated') 
 
m_Flame_BG_Time_Int_corr_400_new = 
m_Flame_BG_Time_Int_corr_400_new'; 
 
tform=maketform('affine',[1 .013 0; 0 1 0; 0 0 1]); 
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m_Flame_BG_Time_Int_Ang_corr_400_new 
=imtransform(m_Flame_BG_Time_Int_corr_400_new,tform);m_Flame_BG_Tim
e_Int_corr_400_new(m_Flame_BG_Time_Int_corr_400_new<0.01)=0.01; 
 
%truncation 
m_Flame_BG_Time_Int_Ang_corr_400_new_truncated = 
m_Flame_BG_Time_Int_Ang_corr_400_new ([10:409],:); 
 
%dimension reform 
bins = 8; 
 
for i=1:1340 
    B = reshape 
(m_Flame_BG_Time_Int_Ang_corr_400_new_truncated(:,i),bins,400/bins); 
    m_Flame_BG_Time_Int_Ang_corr (i,:) = sum(B); 
i=i+1; 
end 
 
save 
('Data_Corrected_Angle_Corr.mat','x','y','wavelength_c','m_Flame_BG_Time_Int
_Ang_corr') 
%% write to excel 
filename = 'Hitran_300l_mm_c.xlsx'; 

xlswrite(filename,m_Flame_BG_Time_Int_Ang_corr,'Flame_corr','l8:bi1347') 

MATLAB code used to create Abel matrix by courtesy of Helmut Koch [112] 

%Abel Inversion 
%This script should be used to apply Abel Inversion to a measured spectra 
fclose('all'), clear all, clc, close all 
 
load('Data_Corr_ROI') 
 
NumAbel = 21;    %Number of radial profiles 
 
Offset = 0.34/1000;     %[m] width of on estrip 
 
%Allocate Array for saving the fraction of the line of sight. 
%Definition!! First row contains the line of sight at the center line, 
%last row at outer circle. 
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AbelMatrix = zeros(NumAbel); 
 
EndCol = NumAbel; 
 
for i=1:NumAbel 
    k = i; 
    SumAbel = 0; 
    for j=EndCol:-1:1 
        AbelMatrix(i,j) = sqrt((k*Offset)^2-((i-1)*Offset)^2)*2 - SumAbel; 
        SumAbel = SumAbel + AbelMatrix(i,j); 
        k = k + 1; 
    end 
    EndCol = EndCol - 1; 
end 
 
AbelMatInv = AbelMatrix'; 
 
save ('Abel_Matrix','AbelMatrix','AbelMatInv') 

MATLAB code used to apply Abel matrix to the measured spectra 

fclose('all'), clear all, clc, close all 
 
load('Abel_Matrix') 
 
load('H:\Diao_64GB\Matlab_Working_Folder\Matlab_CoFlow_2018-05-
17\Matlab\Spec\wavelength_c_9569\c_z_5_selected\Data_Corrected_Angle_Cor
r') 
 
LL = AbelMatrix; 
LL_flipped = flip (LL); 
 
% Matrix A X = B;        (A^-1) A X = (A^-1) B;      X = (A^-1) B; 
% epsilon = zeros (n,1)+1;  I_measured_flipped = LL_flipped * epsilon  ; 
 
strip_center =21; 
width = 20; 
 
data    =     m_Flame_BG_Time_Int_Ang_corr (:,[strip_center-
width:strip_center+width]); 
 
for n = 1:size(data,3) 
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    for dim_NOT_Inv = 1:size(data,1) 
 
I_measured_right = data (dim_NOT_Inv,[(size(data,2)+1)/2:size(data,2)],n); % 
replace with new spec matrix  
 
I_measured_left = data (dim_NOT_Inv,[1:(size(data,2)+1)/2],n); 
 
I_measured_right = I_measured_right'; 
 
I_measured_conv_right = double(I_measured_right); 
 
I_measured_flipped_right = flip (I_measured_conv_right); 
 
epsilon_right(:,dim_NOT_Inv,n) = inv(LL_flipped) * I_measured_flipped_right; 
 
I_measured_left = I_measured_left'; 
 
I_measured_conv_left = double(I_measured_left); 
 
epsilon_left(:,dim_NOT_Inv,n) = inv(LL_flipped) * I_measured_conv_left; 
 
dim_NOT_Inv= dim_NOT_Inv+1; 
    end 
 
epsilon_right (:,:,n) = flip (epsilon_right(:,:,n)); 
 
n=n+1 
 
end 
 
epsilon = epsilon_left; 
 
epsilon ([size(epsilon_left,1):((size(epsilon_left,1)*2)-1)],:) = epsilon_right; 
 
epsilon_modi = epsilon_left([1:size(epsilon_left,1)-1],:); 
 
epsilon_modi (size(epsilon_left,1),:) = (epsilon_right(2,:)+ 
epsilon_modi(size(epsilon_left,1)-1,:))/2; 
 
epsilon_modi ([size(epsilon_left,1)+1:size(epsilon,1)],:) = epsilon_right([2:end],:); 
 
epsilon = epsilon'; 
 
epsilon_modi = epsilon_modi'; 
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save ('epsilon.mat','data','epsilon','epsilon_modi','wavelength_c') 

MATLAB code used to extract DSLR RAW file from [97] and by courtesy of Ricky 

Green [113] 

function [r,g,b,ET,r_max,g_max,b_max] = rawRGBgen(startimage, endimage) 
 
n = 1;   %counter  
 
for i = startimage:endimage 
    newi = int2str(i); 
    warning off MATLAB:tifflib:TIFFReadDirectory:libraryWarning 
    t = Tiff((strcat('DSC_',newi,'.DNG')),'r'); 
    offsets = getTag(t,'SubIFD'); 
    setSubDirectory(t,offsets(1)); 
    raw = read(t);                                                  % Create variable 'raw', the Bayer 
CFA data 
    close(t); 
 
    meta_info = imfinfo((strcat('DSC_',newi,'.DNG')));                                  % Crop 
to only valid pixels 
    x_origin = meta_info.SubIFDs{1}.ActiveArea(2)+1;                 % +1 due to 
MATLAB indexing 
    width = meta_info.SubIFDs{1}.DefaultCropSize(1); 
    y_origin = meta_info.SubIFDs{1}.ActiveArea(1)+1; 
    height = meta_info.SubIFDs{1}.DefaultCropSize(2); 
 
    raw = double(raw(y_origin:y_origin+height-1,x_origin:x_origin+width-1)); 
 
%Demosaicing 
    temp = uint16(raw); 

rgb = double(demosaic(temp,'rggb')); 
 

    red_RAW = rgb(:,:,1); 
    green_RAW = rgb(:,:,2); 
    blue_RAW = rgb(:,:,3); 
 
    red_RAW = flip(red_RAW); 
    green_RAW = flip(green_RAW); 
    blue_RAW = flip(blue_RAW); 
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    Exposure_Time (n,:)= meta_info.DigitalCamera.ExposureTime; 
     
    red_max (n) = max(max(red_RAW )); 
    green_max (n) = max(max(green_RAW )); 
    blue_max (n) = max(max(blue_RAW )); 
%     blue_min (n) = min(min(blue_RAW )); 
     
    red_All_RAW (:,:,n)     = red_RAW; 
    green_All_RAW (:,:,n)   = green_RAW; 
    blue_All_RAW (:,:,n)    = blue_RAW; 
     
    i = i + 1 
    n = n+1; 
end 
 
r = red_All_RAW; 
g = green_All_RAW; 
b = blue_All_RAW; 
ET = Exposure_Time; 
r_max = red_max; 
g_max = green_max; 
b_max = blue_max; 
 
end 
 
% Y = [1:4016]; 
% X = [1:6016]; 
save ('epsilon.mat','data','epsilon','epsilon_modi','wavelength_c') 

 

fclose('all'), clear all, clc, close all 
 
i_start = 4883; 
i_end = 4930; 
 
b_all_max_Flame = zeros(i_end-i_start+1,1); 
Eexposure_Time_all_Flame = b_all_max_Flame; 
 
for i = i_start:i_end 
[r,g,b,ET,r_max,g_max,b_max] = rawRGBgen(i,i); %call rawRGBgen function 
 
save(sprintf('%1.5fsec_Flame.mat',ET(1,:)),'r','g','b','ET','r_max','g_max','b_max' ) 
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  j = i - i_start + 1; 
 
b_all_max_Flame           (j,:)   = b_max; 
Eexposure_Time_all_Flame  (j,:)   = ET; 
 
save('Data_Stitched_Flame','b_all_max_Flame','Eexposure_Time_all_Flame') 
 
i=i+1 
 
end 
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