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ABSTRACT OF DISSERTATION 

 

NUMERICAL AND EXPERIMENTAL TECHNIQUES FOR ASSESSING THE 
ACOUSTIC PERFORMANCE OF DUCT SYSTEMS ABOVE THE PLANE WAVE 

CUTOFF FREQUENCY 

This research deals with determining the acoustic attenuation of heating, 
ventilation, and air conditioning (HVAC) ductwork.  A finite element approach was 
developed for calculating insertion loss and breakout transmission loss.  
Procedures for simulating the source and receiving rooms were developed and the 
effect of structureborne flanking was included.  Simulation results have been 
compared with measurements from the literature and the agreement is very good.  
With a good model in place, the work was extended in three ways.   1) Since 
measurements on full-scale equipment are difficult, scale modeling rules were 
developed and validated. 2) Two different numerical approaches were developed 
for evaluating the transmission loss of silencers taking into account the effect of 
higher order modes.  3) A power transfer matrix approach was developed to 
assess the acoustic performance of several duct components connected in series. 

KEYWORDS: Large Silencer, HVAC Duct, Scale Modeling, High-order Modes, 
Power Transfer Matrix 
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 INTRODUCTION 

1.1 Introduction 

Large duct systems are universal in the heating, ventilation, and air conditioning 

(HVAC) systems that provide thermal comfort and maintain indoor air quality in 

buildings.  Air handlers use large fans to move the cooled or heated air through 

the building.  Not surprisingly, considerable noise is generated at the air handler 

and is transmitted through the HVAC ductwork to the occupants.  This noise is 

tonal at low frequencies and is broadband at higher frequencies and must be dealt 

with.  This may be accomplished by adding sound absorptive linings to ductwork 

or by inserting plenums into the duct systems. 

There are three main paths for the flow of vibrational and acoustical energy through 

the HVAC ductwork.  These paths are illustrated in Figure 1.1.  One path (indicated 

by the red line) is a direct airborne path through the ductwork into the room.  This 

path is most effectively treated by adding a sound absorptive fiber lining on the 

inside periphery of a duct.  Sound absorptive treatments are especially effective at 

elbows or bends.  At low frequencies, adding area changes into the ductwork 

reflects sound towards the source and produces a cancellation effect. 

A second path is an airborne indirect or breakout path shown in green in Figure 

1.1.  Sound impinges on the inner surface of the ductwork which then vibrates and 

radiates sound into the environment.  This path is especially important if 

rectangular ductwork is used.  Breakout noise is most easily mitigated by using 

spiral wound ductwork which is much stiffer than rectangular.  Additionally, lining 

ductwork on the inside or adding lagging on the outside can be very effective.  

The third primary path is a structureborne path shown in blue in Figure 1.1. 

Vibrational energy travels, usually from the source, through the ductwork.  Since 

structureborne vibrations can travel large distances, structureborne vibration can 

travel from the source, through the ductwork which may be extensive, where it is 

then radiated as sound near the termination.  This path, though normally less 
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important, can be treated by adding discontinuities to the HVAC ductwork via 

plenums.  

 

Figure 1.1 Illustration of HVAC noise transmission paths 

Much of the past work looking at noise attenuation through HVAC duct systems 

has been performed experimentally in studies sponsored by the American Society 

of Heating, Refrigerating, and Air Conditioning Engineering (ASHRAE).  These 

measurements require a source room and a receiving room connected by 

ductwork (ASTM E477, 2006).  Loudspeakers are positioned in the source room 

with an aim to insure that a diffuse sound field is present at the duct entrance.  The 

receiving room is most commonly a reverberation room (a room with hard 

surfaces).  In theory, the sound pressure level should be the same at any position 

in the room.  Normally, a microphone is traversed on a carousel in order to obtain 

an accurate average sound pressure level.  The ductwork connecting the source 

and receiving rooms normally consists of two relatively rigid sections which should 

attenuate very little noise.  A test duct or plenum section is placed between the 
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rigid sections.  The attenuation or insertion loss is defined as the difference without 

and with the test section in place. 

A few observations can be made.  First, the method described is a well-defined 

standard but requires special facilities (i.e., a source and reverberation room) and 

expensive measurement equipment (i.e., microphones, loudspeakers, microphone 

traverse, and data acquisition).  Secondly, the procedure deals primarily with the 

direct airborne path.  The indirect airborne or breakout path can only be measured 

if the space between source and receiving rooms has low background noise.  

Moreover, the procedure has no way to differentiate in between airborne direct and 

structureborne flanking paths.  Thirdly, the testing procedure takes a great deal of 

time to properly install ducts and perform measurements. 

Though it is recognized that numerical simulation can supplement and reduce the 

number of tests, measurement studies are still essential.  With that in mind, a 

simple scale modeling approach is recommended, tested, and validated.  The 

suggested procedure can be used to determine insertion loss (i.e., airborne direct 

path) and breakout transmission loss (i.e., airborne indirect path).  The procedure 

can partially include structureborne effects but scaling laws are not rigorous.  

Nevertheless, the testing procedure should be sufficient for confirming simulation 

and should reduce the necessity of more expensive full-scale testing. 

To supplement the above research, first principle work is performed to determine 

the transmission loss of large ducts.  Transmission loss is defined as the difference 

between incident and transmitted power in dB assuming an anechoic or non-

reflecting termination.  Transmission loss is a function of the attenuating element 

alone whereas insertion loss is a function of the element and system it is inserted 

in.  Hence, insertion loss depends on the source, termination, and the lengths 

upstream and downstream of the test element.  Transmission loss is trivial to 

determine if plane waves (i.e., the sound pressure is constant across the duct 

cross-section) can be assumed.  However, the plane wave cutoff frequency is 

exceeded at relatively low frequencies in HVAC ducts since the cross-sectional 
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dimensions of the ducts are large.  In that case, transmission loss calculation is 

complicated due to cross modes.  Two numerical methods are proposed and 

compared to one another to assess the transmission loss of large duct elements. 

The last section of the dissertation introduces a simplified procedure for 

determining the insertion loss of built-up duct systems consisting of a number of 

elements.  A 2X2 power transfer matrix is developed which relates the incident and 

reflected energies on both sides of an attenuating element.  After a power transfer 

matrix is determined for an attenuating element, matrices can be multiplied 

together in order to determine the attenuation of a series of elements.  If power 

transfer matrices can be calculated and cataloged for a number of standard 

elements, calculation times can be reduced by orders of magnitude. 

1.2 Organization 

This dissertation is organized as. 

Chapter 1 introduces the need for developing procedures for HVAC ductwork 

simulation and simplified measurement approaches. 

Chapter 2 reviews prior measurement campaigns on determining insertion loss 

and breakout transmission loss of HVAC ductwork.  Prior work on plenums is also 

reviewed.  In addition, past work on simulation is also summarized. 

Chapter 3 suggests and validates a finite element approach which can be used to 

determine the attenuation of ducts of any length and dimension.  The approach 

detailed simulates the standard measurement approaches for assessing duct 

attenuation.  The duct air space, including the source and termination, is modeled 

using acoustic finite elements.  Poroelastic finite elements are used to simulate the 

fiber lining, and the metal ductwork is modeled using structural finite elements.  

The model is used to determine the insertion and transmission loss of unlined and 

lined ducts.  Predicted results are compared to measurement with good agreement. 
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In Chapter 4, finite element analysis is used to predict the attenuation of elbows 

and side branches.  Results for elbows and branches are compared to the 

ASHRAE Handbook with good agreement.  In addition, an important secondary 

noise transmission path is through duct walls into rooms.  This path, which is often 

termed breakout noise, is also investigated using the finite element approach and 

results are correlated with an analytical solution and the ASHRAE Handbook with 

good agreement.  Of note, it is demonstrated that the breakout transmission loss 

is much less than the insertion loss through lined rectangular ducts at some 

frequencies.  This suggests that breakout noise is the dominant noise path at these 

frequencies. 

In Chapter 5, a scale modeling method is applied to assess the attenuation of 

heating, ventilation, and air conditioning ducts. Scaling rules for sound absorption 

and breakout noise transmission are reviewed.  The scaling approach is first tested 

virtually via finite element analysis to validate the concept.  This is followed by 

validation where a small expansion chamber, similar to a plenum, and its 

corresponding scale model are measured.  Scale model results agree with full 

scale measurements of transmission loss, insertion loss, and breakout 

transmission loss. 

Chapter 6 details two different numerical methods to compute the transmission 

loss of large silencers.  The first method is a reciprocal work identity method when 

used in conjunction with the direct mixed-body boundary element method (BEM).  

The second is a finite element method (FEM) with a special non-reflecting 

boundary condition called a perfectly matched layer at the termination to determine 

the transmission loss.  Results from both methods are compared to each other on 

multiple test cases including circular and rectangular cross-section ducts. 

Chapter 7 proposes a power method to evaluate the acoustic performance for 

HVAC systems. The power transfer matrices can be multiplied together and then 

the insertion loss of a system consisting of several components can be predicted.  

The developed approach greatly reduces the computational cost. Results from the 
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power transfer matrix method are compared to the scattering matrix method with 

good agreement. 

Chapter 8 summarizes the research and gives suggestions for future work. 
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 BACKGROUND 

(Note: Most of the research in this chapter has been previously documented in 

Ruan and Herrin (2017a) and Herrin and Ruan (2018).) 

Over the last several decades, ASHRAE sponsored several research efforts in an 

effort to better understand noise propagation in heating, ventilation, and air 

conditioning (HVAC) ductwork.  Much of this work is the basis for the duct insertion 

loss and breakout noise information in the ASHRAE Handbook.  Though this 

information is widely used in the building industry, the handbook provides little 

information about the basis for the equations and potential limitations.  This chapter 

reviews the past work supported by ASHRAE, provides some context for the 

information in the ASHRAE Handbook, and looks at shortcomings that designers 

should be aware of. 

2.1 Introduction 

HVAC equipment noise is the primary noise concern in buildings and has an 

important effect on the acoustic acceptability of an architectural space.  Indeed, 

noise control engineers routinely make noise measurements in rooms with the 

HVAC system running and compare measurements to established noise criterion 

(NC) and room criterion (RC) rating curves to assess acoustic acceptability (Long, 

2014; ASHRAE Handbook, 2015).  Appropriate criteria have been established for 

different categories of building spaces based on experience.  As an example, 

criteria are stricter for conference rooms than office building lobbies.   

Building noise arises primarily as a result of the air handling system.  Though noise 

levels at the source are unacceptably high, noise is reduced via the path from the 

air handler to the room.  Noise reductions are minimal in unlined ductwork, but the 

attenuation can be supplemented by adding sound absorption typically in the form 

of glass fiber linings to ducts and plenums.  Moreover, plenums cancel out or reflect 

sound back towards the source as a result of an abrupt change in acoustic 

impedance at the inlet and outlet.  ASHRAE has sponsored a great deal of 



8 

 

research to establish the amount of noise reduction along the duct stream.  While 

noise should be reduced in the air handling equipment as much as possible, 

building designers rely on attenuating elements in the duct paths themselves to 

reduce the noise to acceptable levels.  The ASHRAE Handbook incorporates a 

number of tables that are trusted by acoustical consultants and engineers for 

assessing this noise attenuation.  That information is a consolidation of over 5 

decades of accumulated research and consulting experience.  

Acoustical engineers in the HVAC industry regularly use the tables in the handbook 

for design calculations, but are also aware that the tabulated information is by no 

means exhaustive.  For example, many common duct cross-sections are not 

included, elbows and bends are limited to 90 degree angles, and the variety of 

sound absorptive lining materials and thicknesses is barely considered.  In addition, 

handbook data is presented in octave instead of one-third octave bands.  While 

perhaps sufficient for straight ducts, acoustical engineers recognize that octave 

band resolution is insufficient for plenums and lined ducts where attenuation may 

be quite high in narrower frequency bands.  Furthermore, the uncertainty of the 

handbook predictions is not indicated.  As a result, acoustical consultants err on 

the side of caution and overdesign for noise.   

Acoustical engineers are less likely to be aware that the empirical equations for 

plenums are based on a very limited number of cases measured as part of RP-

1026 (Mouratidis and Becker, 2003); attenuation predictions that are particularly 

suspect at low frequencies where acoustic modes dominate the response.  

Moreover, lined duct (with rectangular cross-section) results are based on 

measurement studies that were limited to duct lengths of 3.05 m (10 ft.) in length.  

Suitability for longer ducts is suspect.   

These weaknesses are in no way due to lack of attentiveness on the part of the 

Sound and Vibration Technical Committee (TC 2.6).  While additional 

measurement studies are desirable, it should be understood that such studies are 

difficult, expensive, and require specialized facilities.  Only a few laboratories in 
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the USA are suitably equipped to make these measurements.  In the author’s 

opinion, TC 2.6 has rightly recognized that numerical simulation should be the 

preferred approach going forward.  Consequently, ASHRAE has sponsored two 

projects (Herrin et al., 2007; Herrin and Seybert, 2006; Ruan and Herrin, 2016a; 

Ruan and Herrin, 2016b; Herrin, Ruan and Wu, 2016) to validate numerical 

simulation of HVAC components. 

This chapter reviews prior ASHRAE project work and summarizes how it dovetails 

with the handbook.  In the process, several equations that are not included in the 

handbook will be reviewed and the assumptions in the equations will be examined.  

The limitations of the handbook information will be discussed as well. 

2.2 Measurement of HVAC Duct Insertion Loss 

The terms insertion loss, transmission loss, noise reduction, and attenuation are 

often used interchangeably for HVAC duct systems.  Though there are important 

differences between these metrics for smaller mufflers, the metrics are nearly the 

same for HVAC ducts at higher frequencies due to the large size of the systems.  

Insertion loss is the difference between the sound power at the termination without 

and with the attenuating element in place.  Though it depends mostly on the 

attenuating element itself, there will be some effect due to the sound source, 

lengths of straight ductwork on each side of the attenuating element, and the outlet 

or termination.  Transmission loss is the difference between the incident and 

transmitted power assuming an anechoic termination (i.e. infinitely long duct).  It is 

solely a function of the attenuating component, but is very difficult to measure.  

Noise reduction is simply the difference between sound pressure levels on each 

side of the attenuating element but measurements must be made in duct.  
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Figure 2.1 Schematic showing test setup for measurement of insertion loss. 

Insertion loss has been preferred since all measurements are made at the outlet 

of the duct.  The measurement procedure is described for HVAC applications in 

ASTM E477 (2006), and is shown in Figure 2.1.  The attenuating element is 

positioned with straight ductwork on either side.  A source room consisting of 

several loudspeakers is situated at the start of the duct.  The source room should 

produce a diffuse field which implies that sound waves having all angles of 

incidence impinge at the inlet.  The ductwork outlets into a reverberation room that 

is normally a much larger room than the source room.  Most reverberation rooms 

have smooth concrete walls with rotating diffusers to break up low frequency 

acoustic modes. The average sound pressure is measured in the room using 

multiple microphones or with a single microphone on a rotating boom. In theory, 

the sound pressure should be relatively constant inside a reverberation room.  

Measurements are made in the reverberation room first without the attenuating 

element and then with the attenuating element inserted into the duct.  Insertion 

loss is the difference between the two measurements. 

For practical reasons, duct transitions must be constructed between the test duct 

and ductwork on both sides. These transitions will reflect some sound and have 

some effect on insertion loss especially at low frequencies.  Furthermore, the 
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ductwork on each side of the test duct should be relatively rigid.  Tests are normally 

restricted to ductwork with inlet and outlet in line with one another. 

It should be appreciated that these experiments require specialized equipment 

including powerful loudspeakers, measurement grade microphones, and 

expensive data acquisition systems.  Moreover, specialized facilities are required.  

Reverberation rooms are expensive and are not trivial to qualify.  Measurements 

can also be compromised because background noise bleeds into the ducts.  Hence, 

sound sources should be minimal outside the ductwork.  

Subsequent sections examine the prior work and equations for ducts and plenums.  

Concerns examined include insertion loss and breakout noise.  The basis for the 

ASHRAE Handbook tables and associated limitations are discussed. 

2.3 Insertion Loss of Unlined Ducts 

Unlined rectangular cross-section ducts provide several dB of noise attenuation at 

low frequencies, but are ineffective at higher frequencies.  As part of ASHRAE RP-

196 (Vér, 1978, 1977), Vér reviewed several prior measurement campaigns from 

the late 1950’s and early 1960’s which looked at unlined duct attenuation.  

Interestingly, Vér concluded that the peak attenuation at low frequency did not 

correspond to the fundamental vibrational resonances of the duct panels.  Rather, 

it occurs at the resonance where the limp panel mass interacts with the stiffness 

of the air cavity. Vér suggested an approximate formula to identify the resonance 

frequency (𝑓 ) for a straight unlined duct  

 
𝑓

𝑐
2𝜋

𝜌
𝜌

𝑃
𝐴

 (2.1)

where 𝑐 is the speed of sound in air (m/s), 𝜌 is the density of air in the duct (kg/m3), 

𝜌  is the surface density of the duct wall (kg/m2), 𝑃 is cross-sectional perimeter (m) 

and 𝐴 is cross-sectional area (m2).  The equation is based on the assumption that 

the wavelength of the sound in air is much larger than the cross-sectional 
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dimensions of the duct and that the response of the duct walls to the interior sound 

field is mass controlled. 

As part of ASHRAE RP-556, Reynolds and Bledsoe (1989a, 1989b, 1990) helpfully 

tabulated the sound attenuation results for unlined ducts from the prior 

measurement campaigns. Reynolds and Bledsoe then performed a regression 

analysis for 6 commonly used duct cross-sections based on the legacy data.  Air 

flow was not considered in the prior research, but should be unimportant.  The 

insertion loss (𝐼𝐿) for octave band center frequencies spanning from 63 Hz to 250 

Hz can be expressed as 

 𝐼𝐿 1.7 𝑃 𝐴⁄ . 𝑓 . 𝐿 for  𝑃 𝐴⁄ 3 (2.2)

and 

 𝐼𝐿 1.64 𝑃 𝐴⁄ . 𝑓 . 𝐿 for  𝑃 𝐴⁄ 3 (2.3)

where 𝑃 𝐴⁄  is the ratio of the perimeter (𝑃) to the cross-sectional area (𝐴) of the 

duct (in 1/ft or 1/0.3 m), 𝑓 is the frequency (Hz) and 𝐿 is the length of unlined duct 

(in ft or multiples of 0.3 m).  Above 250 Hz, the insertion loss can be expressed as 

 𝐼𝐿 0.02 𝑃 𝐴⁄ . 𝐿 (2.4)

and it is observed that the insertion loss increases linearly with length.  These 

regression equations are the basis for the tables that are currently in the ASHRAE 

Handbook.  TC 2.6 has elected to included tables in the handbook since equations 

are sometimes miscoded. 

Compared to unlined rectangular ducts, circular ducts are stiffer and provide 

minimal attenuation even at low frequencies. Circular ducts only provide about 

one-tenth the sound attenuation at low frequencies as rectangular ducts. Kuntz 

and Hoover (1987) and Woods Fan Division (1973) performed measurements on 

unlined circular ducts. Their research appears to form the basis for the unlined 
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circular duct insertion loss data in the ASHRAE Handbook – HVAC Applications 

(2011). 

2.4 Insertion Loss of Lined Ducts 

Ducts lined with sound absorbing material provide far greater noise reduction than 

unlined ducts of similar length.  Perforated plating is often used to encase the fiber 

lining but the perforation rate of the metal is large enough to have negligible 

acoustic effect.  Sound absorptive lining is more effective at higher frequencies for 

a few reasons.  Liners attenuate sound primarily due to viscous friction between 

the air and fiber.  Friction and the accompanying dissipation is higher due to 

increasing particle velocity at higher frequencies.  Effectiveness at higher 

frequencies is also related to the acoustic wavelength (𝜆) expressed as 

 𝜆 𝑐/𝑓 (2.5)

where 𝑐 is the speed of sound (in m/s or ft/s) and 𝑓 is the frequency in Hz.  Liners 

are more effective if their thickness is ample compared to an acoustic wavelength. 

Data is provided for 1 in (2.5 cm) and 2 in (5 cm) fiber lining in the ASHRAE 

Handbook.  The handbook is merely adequate since thicker lining is sometimes 

used in practice and the type of liner is not considered though it can greatly 

influence the degree of sound absorption. 

Early work on lined ducts was performed by Morse (1939) and Scott (1946) who 

developed models for lined ducts which were suitable below the cutoff frequency.  

Following that, Vér (1978, 1977) developed a semi-empirical estimation procedure 

based on measurements provided by Owens-Corning Fiberglass Corporation.  

From the experimental data, Vér noted the insertion loss increases linearly with 

the length of the lined duct section at low frequencies, while it starts to level off 

when the length of the lined section exceeds 10 ft. Consequently, Vér capped the 

attenuation at 40 dB even if the predicted attenuation exceeded 40 dB. Vér 

correctly suggested that the reason for the plateauing in insertion loss was likely 
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due to flanking through the structure.  This has been confirmed by finite element 

simulation in this dissertation.  The experimental data for sound absorption was 

limited to four fiber duct liners, and the maximum thickness considered was 2 

inches.  

About a decade later, Kuntz and Hoover (1987) performed a measurement 

campaign on lined ducts as part of ASHRAE RP-478 (Kuntz, 1987).  Fifteen 10 ft 

long ducts were measured having a variety of different cross-sectional areas and 

densities of sound absorbing lining.  Kuntz and Hoover (1987) compared 

measurement results to the attenuation prediction method developed by Vér, and 

concluded that the procedure overestimates attenuation at low and high 

frequencies while underestimating the attenuation at the middle frequencies. 

Consequently, Kuntz and Hoover proposed modifications to the previous 

prediction method for lined HVAC ducts. 

In ASHRAE RP-556 summarized in the ASHRAE publication Algorithms for HVAC 

Acoustics, Reynolds and Bledsoe (1990) analyzed the measured insertion loss 

data for lined rectangular ducts procured in measurement campaigns by Kuntz 

(1987), Kuntz and Hoover (1987), and Machen and Haines (1983) and developed 

a regression equation for each octave band center frequency from 63 Hz to 8000 

Hz.  The insertion loss (dB) can be expressed as 

 𝐼𝐿 𝐵 ∙ 𝑃 𝐴⁄ ∙ 𝑡 ∙ 𝐿 (2.6)

where 𝑃 𝐴⁄  is the perimeter divided by the cross-sectional area of the free area 

inside the duct (1/ft or 1/0.3 m), 𝑡 is the lining thickness (in inch or 2.5 cm), 𝐿 is the 

duct length (in ft or 0.3 m), and 𝐵 , 𝐶  and 𝐷  are regression constants that are 

dependent on frequency. The values for 𝐵, 𝐶 and 𝐷 are reproduced in Table 2.1. 

The aforementioned measurement campaigns and the regression equations 

developed by Reynolds and Bledsoe appear to form the basis for the rectangular 

duct insertion loss data in the ASHRAE Handbook – HVAC Applications (2011). 
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Table 2.1 Regression Constants for Use in Equation (2.6) 

Octave Band Center Frequency (Hz) B C D 

63 0.013 1.959 0.917 

125 0.057 1.410 0.941 

250 0.271 0.824 1.079 

500 1.015 0.500 1.087 

1000 1.770 0.695 0.0 

2000 1.392 0.802 0.0 

4000 1.518 0.451 0.0 

8000 1.581 0.219 0.0 

 

Likewise, Bodely (1988) performed insertion loss measurements for lined circular 

ducts with 6 different diameters from 6 to 48 inch (15.2 to 122 cm), and with lining 

thicknesses of 1, 2, and 3 inch (2.5, 5.1, and 7.6 cm).  Spiral dual-wall duct was 

used.  The lining used was a 0.75 lb/ft3 (12 kg/m3) density fiber blanket covered 

with an internal liner of perforated galvanized steel which will have little acoustical 

effect.  The length of the measured lined ducts was unclear though Reynolds and 

Bledsoe (1989b) conjectured that 20 ft (6.1 m) ducts were likely used for the 

measurement.  Using the Bodely data, Reynolds and Bledsoe developed the 

regression equation 

 𝐼𝐿 𝐴 𝐵 ∙ 𝑡 𝐶 ∙ 𝑡 𝐷 ∙ 𝑑 𝐸 ∙ 𝑑 𝐹 ∙ 𝑑 ∙ 𝐿 (2.7)

where 𝑡 is the lining thickness (in inches or multiples of 2.5 cm), 𝑑 is the duct 

diameter (in inches or multiples of 2.5 cm), and 𝐿  is the duct length (in ft or 

multiples of 0.3 m). The coefficients for Equation (2.7) are provided in Table 2.2.  

Reynolds and Bledsoe noted that sound attenuation of lined circular ducts usually 

does not exceed 40 dB. The ASHRAE Handbook (2011) provides 2 data tables for 

the insertion loss of lined circular ducts with 1 inch (2.5 cm) and 2 inch (5.1 cm) 

thick sound absorptive linings. Those tables arise from Equation (2.7). 
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Table 2.2 Regression Constants for Use in Equation (2.7) 

Octave Band 
Center 

Frequency (Hz) 
A B C D E F 

63 0.283 0.345 -5.25E-2 -3.84E-2 9.13E-4 -8.29E-6

125 0.524 0.223 -4.94E-3 -2.72E-2 3.38E-4 -2.47E-6

250 0.365 0.790 -0.116 -1.83E-2 -1.21E-4 2.68E-6 

500 0.133 1.845 -0.374 -1.29E-2 8.62E-5 -4.99E-6

1000 1.933 0 0 6.14E-2 -3.89E-3 3.93E-5 

2000 2.730 0 0 -7.34E-2 4.43E-4 1.01E-6 

4000 2.800 0 0 -0.15E-2 3.40E-3 -2.85E-5

8000 1.545 0 0 -5.45E-2 1.29E-3 -1.32E-5

 

The recent RP-1408 (Reynolds, 2015) is the most extensive experimental study to 

date on duct attenuation.  A wide range of rectangular and circular ducts (unlined 

and lined) were measured and results are in 1/3-octave bands instead of octave 

bands.  That higher resolution should prove quite useful at lower frequencies.  

Revised empirical equations have been generated and will be documented in an 

upcoming publication. 

2.5 Insertion Loss of Unlined and Lined Plenums 

The most effective means to attenuate noise between the source and room is to 

add a plenum.  Plenums introduce abrupt area changes at their inlet and outlet.  

Sound reflects back towards the source and a cancellation effect is produced at 

the plenum entrance.  When lined, sound is effectively absorbed in the plenum.  

Hence, plenums reduce sound at both low and high frequencies. 

Wells (1958) measured single and double plenum chambers of two different sizes 

and varied the opening sizes.  Wells developed equations, used in the handbook 

for decades, based on room acoustics theory which is appropriate at higher 

frequencies where the plenum cross-sectional dimension is several acoustic 
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wavelengths.  Unfortunately, the equations developed were not suitable for low 

frequencies.  The insertion loss for a plenum was expressed as 

 𝐼𝐿 10 log 𝑆
cos 𝜃
2𝜋𝑑

1
𝑅

 (2.8)

where 𝑑 is the slant distance from the entrance to the exit (i.e., 𝑑 𝐿 𝑙 𝐻 ), 

𝑅  is the plenum room constant (i.e., 𝑅 𝑆𝛼 1 𝛼⁄ ), and cos 𝜃 𝐻/𝑑 .  The 

geometric parameters are illustrated in Figure 2.2.  𝑆  is the area of the slit (i.e., 

𝑆 𝑙𝐷). 

 

Figure 2.2 Schematic showing plenum geometric parameters (Wells, 1958). 

In ASHRAE RP-1026, Mouratidis and Becker (2003) measured the insertion loss 

of 8 different sized plenums using ASTM E477 (2006).  To our knowledge, this 

remains the most extensive measurement study on plenums.  Inlet and outlet 

locations, wall construction, and lining was varied as well.  Empirical equations 

were developed that are currently in the handbook.  For frequencies below the 

cutoff frequency,  

 𝐼𝐿 𝐴 𝑆 𝑊 𝐸  (2.9)
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where 𝐴 , 𝑆, 𝑊 , and 𝐸  are an empirically defined surface area coefficient (dB/ft2 

or dB/0.09 m2), total inside surface area of plenum less the inlet and outlet areas 

(ft2 or multiples of 0.09 m2), wall effect (dB) and offset angle effect (dB) respectively 

that are tabulated in Mouratidis and Becker (2003).  At frequencies above the cutoff, 

insertion loss can be expressed, using a variant of Wells equation, as  

 
𝐼𝐿 𝑏

𝑆 𝑄
4𝜋𝑟

𝑆 1 𝛼
𝑆𝛼

𝐸  (2.10)

where 𝑆  and 𝑆 are the respective outlet cross-sectional and surface areas of the 

plenum, 𝑟 is the distance between the centers of the inlet and outlet sections, 𝑄 is 

a directivity factor, and 𝛼  is the average absorption coefficient in the plenum.  The 

constants 𝑏  and 𝑛  are empirically determined and are 3.505 and -0.359 

respectively. 

Though 8 different plenum sizes were considered, the dataset is nonetheless small 

compared to the range of cases encountered in the building industry.  The 

empirically based equations have not been validated on sizes other than the limited 

number in the measurement study, and the plenum empirical equations are 

particularly suspect at low frequencies.  For a system consisting of ducts and 

plenums, predictions made using the handbook are likely to be several dB in error. 

2.6 Breakout Noise 

Though the air path from source to room is the most important, there is a secondary 

noise path commonly referred to as breakout noise.  Breakout noise occurs when 

sound inside the duct vibrates the peripheral walls which in turn radiate noise to 

their surroundings.  It is normally a greater concern at low frequencies for 

rectangular ductwork and is most effectively reduced by using the now ubiquitous 

spiral wound circular ductwork which is much stiffer.   

Vér (1983b) and Cummings (1985) researched breakout noise in ASHRAE 

supported efforts and the work by Cummings is particularly exemplary.  At low 
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frequencies, Cummings (1985) measured the breakout transmission loss in the 

following way.  A test duct originating from a source room was capped with a sound 

absorptive wedge and a large mass so that sound transmission through the end of 

the duct is minimal.  The test duct passed into a reverberation room and the sound 

power radiating from the periphery of the test duct was measured inside the 

reverberation room.  A microphone was traversed inside the duct to determine the 

sound power incident on the duct sides.  Breakout transmission loss was defined 

as the difference between the radiated and incident sound powers.  This approach 

is illustrated in Figure 2.3. 

 

Figure 2.3 Schematic showing Cummings (1985) measurement setup for 
measurement of breakout transmission loss. 

At higher frequencies, Cummings (1985) measured the breakout transmission loss 

using a two-step process.  In the first step, the radiated sound power was 

measured as before.  Then the cap was removed and replaced with a horn at the 

end of the duct so that the termination was approximately reflection free (Figure 

2.4).  Cummings measured the sound power using the reverberation room and 

determined the breakout transmission loss from the difference in measured sound 

powers.   



20 

 

 

Figure 2.4 Schematic showing alternate approach for determining incident sound 
power. 

Cummings (2001) summarized the two decades of work in a recommended 

comprehensive review paper.  The ASHRAE Handbook relies mostly on the work 

by Cummings (1985) with some additional information provided by Lilly (1987). 

The normalized breakout transmission loss for unlined ducts is defined in the 

ASHRAE Handbook – HVAC Applications (2015) as  

 𝑇𝐿 𝐿 𝐿 10 log 𝑆 /𝑆  (2.11)

where 𝐿  is the incident sound power, 𝐿  is the radiated sound power from 

the duct work, 𝑆  is the surface area of the outside radiating duct, and 𝑆 is the 

cross-sectional area inside the duct.  Though other definitions could be considered, 

Cummings (1985) pointed out that both incident (𝐿 ) and radiated (𝐿 ) 

sound power are directly measurable and useful in engineering calculations. 

Equation (2.11) is valid for short lengths of duct where noise attenuation inside the 

duct versus distance is minimal. The equation is modified for lined ducts and takes 

into account the attenuation of the sound as it travels along the duct.  In that case, 

 𝑇𝐿 𝐿 𝐿 10 log 𝑆∗ /𝑆  (2.12)
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with 

 𝑆∗ 𝑃𝐿∗ (2.13)

where 𝑃  is the duct perimeter and 𝐿∗  is the effective length of the duct.  The 

effective length is expressed as 

 𝐿∗ 𝛾 1
ln 𝛾

 (2.14)

with 

 𝛾 10  (2.15)

where 𝛼 is the duct attenuation rate in dB/ft (dB/0.3m). 

Cummings (1983, 1985) developed expressions for the breakout transmission loss 

of unlined rectangular and circular ducts.  For rectangular ducts, the breakout 

transmission loss (𝑇𝐿 ) can be expressed as 

 𝑇𝐿 10 log
4𝜔𝜌

𝜌 𝑐 𝑎 𝑏
 (2.16)

and 

 𝑇𝐿 10 log
4𝜔 𝜌
7.5𝜌 𝑐

 (2.17)

for frequencies below and above 24,134/√𝑎𝑏 Hz (613/√𝑎𝑏 in meters) where 𝑎 

and 𝑏  are the cross-sectional dimensions in inches.  𝜌  and 𝜔  are the panel 

surface density (units of mass per unit area) and angular frequency (in rad/s) 

respectively.  Equation (2.16) gives good results up to the frequency of the 10th 

acoustic cross mode in the duct and predicts a 3 dB increase per doubling of 

frequency while Equation (2.17) predicts 6 dB per doubling. One would anticipate 
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6 dB per doubling based on mass law but Equation (2.16) also accounts for the 

increasing radiation efficiency of the duct walls at low frequencies. 

Below the cutoff frequency the breakout transmission loss for a circular duct can 

be predicted as 

 𝑇𝐿 10 log
4ℎ 𝐸

𝜌 𝑐𝜋𝑅 𝜔
 (2.18)

where 𝐸  is the elastic modulus, ℎ is the thickness, and 𝑅  is the radius of the 

ducting. This formula suggests that the breakout transmission loss should 

decrease by 9 dB per doubling of frequency.  The high transmission loss predicted 

by Equation (2.18) is not realized in practice.  Cummings (1983) noted a couple 

possible explanations that had been suggested earlier in the literature.  The first is 

that there are non-axisymmetric pressure distributions near the source and 

termination and also due to bends in the duct.  These non-axisymmetric pressure 

distributions possibly excite the bending modes in the duct.  The second 

explanation is that long seam and spiral wound ducts are not truly circular and any 

distortion leads to higher order structural modes being excited by the plane 

acoustic mode.  This effect has been termed a mode coupling effect.  This is 

supported by the fact that the breakout transmission loss is much higher for a spiral 

wound duct than for the more distorted circular duct of the long seam variety.  

However, perhaps the most likely explanation is that flanking noise paths prevent 

accurate measurement of high transmission loss at low frequencies. 

There will be two minima in the breakout transmission loss at the ring and critical 

frequencies.  The ring frequency, which is usually lower than the critical frequency, 

occurs when the restoring force due to the tangential stresses and the mass of the 

walls interact in a resonant motion similar to the kind observed in metal rings 

(Cummings, 1983).  The ring frequency (𝑓 ) can be expressed as 
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 𝑓
𝐸
𝜌

1
2𝜋𝑅

 (2.19)

where 𝜌  is the mass density of the ductwork. The critical frequency (𝑓 ) occurs 

when the structural and acoustic wavelengths are equal to one another and is 

expressed as 

 𝑓
𝑐
2𝜋

12𝜌 1 𝜈
𝐸 ℎ

 (2.20)

where 𝜈 is the Poisson’s ratio. 

2.7 Concluding Comments 

Prior ASHRAE research on characterizing the insertion loss and breakout 

transmission loss of HVAC ducts has been reviewed and important assumptions 

have been noted.  This review has primarily focused on measurement work.  It was 

demonstrated that the ASHRAE Handbook includes a great deal of useful 

information.  However, some important limitations are noted.  These include: 

a) Insufficient resolution due to results being reported in octave bands instead of 

1/3 octave bands. 

b) Empirical equations for plenums are lacking in both resolution and accuracy at 

low frequencies. 

c) Only a sampling of the wide range of duct cross-sections and especially plenum 

sizes is included. 

d) Typical glass fiber is the only sound absorbing liner included and is in no way 

representative of the wide range of sound absorbing materials used. 
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The research in this thesis details finite element simulation and scale modeling 

measurement approaches which may be used to determine the important acoustic 

metrics for ducts and plenums. 
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 A SIMULATION APPROACH TO DETERMINE THE INSERTION 

AND TRANSMISSION LOSS OF UNLINED AND LINED DUCTS 

(Note: Most of the research in this chapter has been previously documented in 

Ruan and Herrin (2016a).) 

One of the primary noise transmission paths in buildings is from HVAC equipment 

through ventilation ducts.  The ASHRAE Handbook provides tables for estimating 

the attenuation of lined and unlined ducts up to 10 ft (3.05 m) in length. The aim of 

this research is to suggest and validate a finite element approach which can be 

used to determine the attenuation of ducts of any length and dimension.  The 

approach detailed simulates the standard measurement approaches for assessing 

duct attenuation.  The duct air space, including the source and termination, is 

modeled using acoustic finite elements.  Poroelastic finite elements are used to 

simulate the fiber lining, and the metal ductwork is modeled using structural finite 

elements.  The model is used to determine the insertion and transmission loss of 

unlined and lined ducts.  Predicted results are compared to measurement with 

good agreement. 

3.1 Introduction 

Noise is one of many design concerns that must be attended to in building.  If 

unaddressed, mitigation measures are costly after the building is in place and the 

effectiveness of measures taken is reduced.   Likely, the most important sources 

of noise are from HVAC equipment, and the dominant path is airborne 

transmission through ducts.  Often, the most effective treatment is to add fiber 

lining which adds thermal insulation and has little effect on the pressure drop. 

Not surprisingly, ASHRAE had devoted a number of research projects to better 

understanding noise attenuation in ducts and lined ducts in particular.  Vér (1978) 

reviewed a number of prior experimental studies on duct attenuation and 

compared results to the 1973 and 1976 ASHRAE Handbooks.  At the time, Vér 

(1978) pointed out 1) the need for more careful experimentation, 2) that sound 
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absorption properties for common linings were not well known, and 3) that effects 

of flanking and transmission through duct walls were not well understood. 

In the next decade, Machen and Haines (1983) and Kuntz and Hoover (1987) 

performed extensive measurement studies.  The results of Machen and Haines, 

though now hard to find, appear to form the basis for the rectangular duct insertion 

loss data in the ASHRAE Handbook – HVAC Applications (2015).  Kuntz and 

Hoover measured the insertion loss and in-duct attenuation for 18 unlined and 

lined ducts of varying rectangular cross-section.  Each of the tested ducts was 10 

ft (3.05 m) in length.  Their results are consistent with though not identical to the 

tables in the Handbook. 

In follow on work, Reynolds and Bledsoe (1989a, 1989b) used regression analysis 

to determine equations for the sound attenuation of lined and unlined rectangular 

and circular ducts.  The latter paper provided results for the insertion loss of 20 ft 

(6.10 m) circular ducts and may be the basis for the circular duct information in the 

ASHRAE Handbook – HVAC Applications (2015). To the author’s knowledge, the 

regression equations have not been widely used by the ASHRAE community.   

At this juncture, the ASHRAE Handbook – HVAC Applications (2015) provides 

tables for the attenuation of lined and unlined ducts having a variety of cross-

section sizes.  However, Kuntz and Hoover limited their studies to ducts that are 

10 ft (3.05 m) in length, and their suitability for longer ducts is suspect.  Recently, 

Reynolds (2015) in RP-1408 has performed a far more extensive measurement 

campaign than had previously been undertaken considering different duct lengths, 

and circular and rectangular cross-sections.  This data will likely form the basis for 

future ASHRAE Handbook editions. 

Though the empirical data and ASHRAE Handbook tables are useful for design 

purposes, a numerical simulation approach to predict HVAC duct attenuation is 

desirable and is the subject of this chapter.  Simulation models may be used to 

evaluate duct systems of arbitrary length or cross-section, and may also 
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incorporate sound absorptive lining of any type and thickness.  Moreover, the 

vibration of the ductwork may also be considered. 

Astley has published widely (Astley and Cummings, 1984; Astley et al., 1991; 

Cummings and Astley, 1995) on the use of FEA to assess duct attenuation without 

and with sound absorbing lining.  The current effort utilizes Astley’s work as a 

foundation.  The commercial software Siemens Virtual.Lab (2015) was used for all 

analyses though other commercial packages could be used with minor 

modifications.  The duct airspace and ductwork were modeled using acoustic and 

structural finite elements respectively.  A diffuse acoustic field was simulated at the 

source side and the end was modeled as a baffled termination.  The transmission 

loss, insertion loss, and noise reduction were determined and compared to 

experimental data from RP-1408 and the ASHRAE Handbook.  The procedure 

developed is general and can be applied to a wide variety or HVAC duct 

configurations 

3.2 Finite Element Analysis Approach 

The approach used follows the experimental approach laid out in ASTM E477 

(2006).  The source room is modeled using 20 monopole sources having equal 

strength located on a hemisphere as shown in Figure 3.1.  Different numbers of 

monopoles were tested and insertion loss results converged to less than 1 dB if 

over 15 sources were used. 

The surface of the hemisphere is modeled to be reflection free.  Accordingly, there 

are no acoustic modes in the hemispherical space on the source side while the 

impedance condition at the entrance is correctly modeled.  The reflection free 

boundary is modeled using a perfectly matched layer boundary condition 

(Berenger, 1994; Tam et al., 1998; Bermudez et al., 2007; Casalino and Genito, 

2008).  This approach permits the sound absorption of waves having high angles 

of incidence.  The approach is advantageous because the mesh can be conformal 

and relatively close to the surface.  Other methods can be used but at higher 
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computational cost.  For example, infinite elements are often used to simulate an 

unbounded domain (Astley and Coyette, 2000; Burnett and Holford, 1998).  

Additional schemes for dealing with the unbounded domain are detailed in Astley 

et al. (2000) and Givoli and Harari (1998). 

 

Figure 3.1 Schematic showing finite element modeling strategy. 

The particular implementation in Siemens Virtual.Lab (2015) is such that the 

perfectly matched layer is not meshed.  The software internally creates the 

perfectly matched layer mesh which differs in thickness and resolution at each 

frequency.  This particular implementation has been referred to as an automatically 

matched layer.  However, it is notionally identical to a perfectly matched layer. 

The end of the duct is modeled as a baffled termination with radiation into a free 

space.  The perfectly matched layer was utilized to simulate an unbounded domain 

on the hemisphere.  A simple absorptive boundary condition of 𝜌𝑐 where 𝜌 is the 

mass density and 𝑐 is the speed of sound was also tested and insertion loss results 

were found to be nearly those for a perfectly matched layer.  Accordingly, several 

different approaches can be used to deal with the unbounded domain. 

The test ductwork was modeled using shell elements for both circular and 

rectangular ducts.  The elastic modulus and mass density were chosen for steel 

and were 30E6 lbf/in2 (210 GPa) and 0.281 lbf/in3 (7800 kg/m3) respectively.  The 

rectangular ducts were stiffened around the perimeter of the duct every 5 ft (1.52 
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m) of duct length using beam elements.  The damping properties of similar 

ductwork were measured and average values were incorporated into the models.  

Damping ratios of 0.003 and 0.02 respectively were used for unlined and lined 

ducts.  More details about the measurements and values used are included in 

Chapter 4. 

An acoustic finite element mesh surrounded the test duct and was coupled to the 

structural elements representing the ductwork.  The unbounded domain around 

the duct was also dealt with using the perfectly matched layer capability.  The finite 

element mesh is shown in Figure 3.2 along with the structural mesh. 

The sound absorbing lining was modeled using poroelastic finite elements which 

are also indicated in Figure 3.2.  These elements include sound pressure degrees 

of freedom plus additional degrees of freedom for the displacement of the elastic 

frame (Atalla et al., 1998).  Sound absorbing materials can also be modeled using 

a bulk reacting model where dissipative effects are integrated into the speed of 

sound and density by making them complex (Craggs, 1978; Craggs, 1986).  

Simulation results were found to agree well with measurement whether the 

poroelastic or bulk reacting model was used. 
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Figure 3.2 Finite element meshes for the airspace, sound absorbing lining, and 
ductwork for a rectangular cross-section duct. 

Direct frequency response was used for the analyses since the method easily 

accommodates the unbounded domain and the poroelastic elements (Astley, 

2007).  Modal superposition analyses require solving for the modes up to 2 to 3 

times the maximum frequency of interest and are not recommended due to the 

high mode counts for both the ductwork and the air space for solutions above 500 

Hz.   The vibration and forces on the structure are coupled to the respective particle 

velocity and sound pressure in the airspaces on both sides of the duct.  For 

additional information, Astley (2007) well summarizes finite element theory for 

vibro-acoustic problems and includes an extensive list of references. 

3.3 Metrics for Duct Attenuation 

The ASHRAE Handbook – Fundamentals (2013) describes the three metrics that 

have been commonly used for assessing the attenuation of ducts.  These are 1) 

insertion loss, 2) noise reduction, and 3) transmission loss.  Most of the attenuation 
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data reported in The ASHRAE Handbook – Applications (2015) is based on either 

insertion loss or noise reduction measurements.  At higher frequencies, the 

insertion loss and noise reduction of an element are nearly equivalent for 

dissipative silencer elements. 

Insertion loss is defined as the decrease in sound pressure or sound intensity in 

dB when an attenuating element is inserted into the path between the source and 

receiver.  Insertion loss depends on the attenuating element, source, termination, 

and length of duct on both sides of the attenuating element.  Accordingly, it partly 

depends on the system that the attenuating element is placed into.  Noise 

reduction is the difference in sound pressure level in dB measured upstream and 

downstream of an attenuating element.  Though it does not depend on the source, 

it does depend on the length of duct following the attenuating element and the 

termination.  Both insertion loss and noise reduction are attractive from a 

measurement standpoint.  However, insertion loss is normally preferred since 

measurements need only be made at the end of the duct whereas noise reduction 

requires in duct measurements. 

Insertion loss measurements have been standardized for HVAC applications in 

ASTM E477 (2006).  A source room consisting of several loudspeakers is situated 

at the start of the duct so that the source is both diffuse and broadband.  The duct 

terminates in a reverberation room where measurements are made without and 

with the attenuating element.  For practical reasons, duct transitions must be 

constructed between the test duct and ductwork on both sides of the test duct. 

These transitions will reflect some sound and have some effect at low frequencies.  

The ductwork on each side of the test duct should be relatively rigid.  Tests of this 

nature are convenient as long as the ducts entering and leaving the attenuating 

element are straight and in line with one another. 

Transmission loss is defined as 
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 𝑇𝐿 10 log
𝑊

𝑊
 (3.1)

where 𝑊  and 𝑊  are the incident and transmitted power respectively 

assuming an anechoic termination.  In practice, an anechoic termination is not 

easily achieved and measurement is instead accomplished using the two-load 

method (ASTM E2611, 2010).  Though this approach is widely used for small 

mufflers, measurement is difficult on HVAC ducts.  The primary advantage of 

transmission loss is that it is a function of the attenuating element alone and does 

not depend upon the source or termination below the cutoff frequency. Above the 

plane wave cutoff, the nature of the acoustic source (monopole, dipole, plane wave, 

etc.) will affect the transmission loss and there is less advantage. 

It seems that noise reduction has been the preferred metric for unlined ducts and 

results are normally presented in dB/ft (or dB/m).  For lined ducts, insertion loss is 

normally used and is defined as the difference in sound power at the termination 

without and with lining.  The total attenuation of a lined duct can be calculated as 

the sum of the attenuation (or noise reduction) for an unlined duct of the same 

length and the insertion loss due to the treatment. 

Noise reduction is easily determined using analysis by comparing the sound 

pressure at beginning and end of the test duct.  5 ft (1.52 m) of rigid duct is included 

on both sides of the test duct.  It was found that that the lengths of rigid duct on 

both sides of the test duct affected the results less than 1 dB above 150 Hz.  Above 

the plane wave cutoff frequency of the duct, results were averaged across the 

cross-section on both sides of the duct. 

Insertion loss was determined for lined ducts by solving separate models for the 

unlined and lined cases.  Insertion loss was defined as the difference between 

sound power in dB radiated from the duct termination for unlined and lined test 

ducts of the same length. 
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Transmission loss is most easily determined using transfer matrix theory (Munjal, 

2014).  The method is predicated on plane wave behavior in the duct.  The plane 

wave cutoff frequencies for rectangular and circular ducts are 𝑐/2𝑑 and 𝑐/1.71𝑑 

respectively where 𝑐 is the speed of sound and 𝑑 is the respective longest cross-

sectional dimension or diameter.  The transfer matrix or four-pole parameters can 

be determined in the following manner (Herrin et al., 2007, Wu et al., 1998).  Figure 

3.3 shows a schematic of a straight lined duct.  The four-pole parameters 

(𝑇 , 𝑇 , 𝑇 , 𝑇 ) are defined according to the matrix equation 

 
𝑝
𝑣

𝑇 𝑇
𝑇 𝑇

𝑝
𝑣  (3.2)

where the respective sound pressures (𝑝  and 𝑝 ) and particle velocities (𝑣  and 

𝑣 ) are identified in Figure 3.3.  To determine the transfer matrix terms, two 

successive finite element analyses need to be completed. In the first, a unit velocity 

is applied on the inlet side (𝑣 1) with  𝑣 0 on the exit.  In the second, a unit 

velocity is applied on the exit (𝑣 1) with 𝑣 0 on the entrance.  The transfer 

matrix terms can be expressed as 
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where 

 

𝑎 𝑝 | ,  

𝑎 𝑝 | ,  

𝑎 𝑝 | ,  

𝑎 𝑝 | ,  

(3.4)

with the appropriate boundary conditions identified in the subscripts in Equation 

(3.4).  This procedure is only valid below the plane wave cutoff frequency. 

 

Figure 3.3 Schematic showing straight lined duct with transfer matrix variables. 

The transmission loss of the silencer can be expressed in terms of the four pole 

parameters using (Munjal, 2014) 

 𝑇𝐿 20 ∙ 𝑙𝑜𝑔
1
2

𝑇
𝑇
𝜌𝑐

𝜌𝑐𝑇 𝑇 10 ∙ 𝑙𝑜𝑔
𝑆
𝑆

 (3.5)

where 𝜌 is the density of air, 𝑐 is the speed of sound, and 𝑆  and 𝑆  represent the 

cross-sectional area of the inlet and outlet. 

Some research has been performed for predict acoustic performance above cutoff 

frequency in the past several decades. Munjal (1987) developed analytical 

solutions for dissipative ducts and included the first transverse mode. In 1990, 

Mechel (1990a; 1990b) derived analytical expressions for evaluating acoustic 
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attenuation of baffle type silencers using modal expansion. Different types of 

incident sound fields were investigated. Ingard (1994) developed a series of first-

mode analytical solutions for prediction sound attenuation of lined ducts. Selamet 

(2004) included cross-modes for several types of silencers with simple 

configurations by assuming the acoustic pressure and velocity is continuous at the 

interfaces of the expansion and contraction.  

Besides the above analytical solutions, numerical simulation approaches like the 

finite element method (FEM) and boundary element method (BEM), have been 

utilized to predict the sound attenuation of silencers. Cummings and Astley (1996) 

used the finite element method (FEM) to study the acoustical behavior of square 

bar silencers.  Kirby et al. (2012) compared the performance of a square bar 

silencer to a splitter silencer. Kirby (2005) also proposed a hybrid FEM with a mode 

matching scheme for dissipative silencers with mean flow. Zhou et al. (2016) 

proposed a so-called “reciprocal identity method” that couples two different sound 

fields on the same muffler geometry by a simple boundary integral equation over 

the inlet and outlet. Wang and Wu (2016) proposed a so-called “impedance-to-

scattering matrix method as an alternative method to compute the TL for large 

silencers at high frequencies. 

3.4 Determination of Poroelastic Properties 

Samples of the sound absorptive lining used in RP-1408 were procured and 

measured according to ASTM E1050 (2012).  The two-microphone method is 

illustrated in Figures 3.4a and 3.4b.  Figure 3.4a shows a photograph of the 

impedance tube with samples and 3.4b shows a schematic of the test setup.  The 

microphone closest to the source is used as a reference and the transfer function 

between the two microphones (𝐻 ) is measured.  The determined transfer function 

is then used to find the reflection coefficient, which is complex, via 
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 𝑅
𝐻 𝑒
𝑒 𝐻

 (3.6)

where 𝑘 is the acoustic wavenumber and 𝑠 is the microphone spacing.  Once the 

reflection coefficient is determined, the normal incidence sound absorption 

coefficient (𝛼) and specific boundary impedance (𝑧 ) can be found using 

 𝛼 1 |𝑅|  (3.7)

and 

 𝑧 𝜌𝑐
1 𝑅
1 𝑅

 (3.8)

where 𝜌 is the mass density and 𝑐 is the speed of sound. 

Sound absorptive lining can be modeled using 1) the poroelastic properties, 2) bulk 

properties, or 3) the specific boundary impedance from Equation (3.8). If the 

poroelastic or bulk properties are used, the fiber itself is modeled.   If the specific 

boundary impedance is used, the boundary of the absorber is modeled and wave 

propagation through the fiber is not considered.  It was found that the insertion loss 

found by simulation compared well with measurement when either the poroelastic 

or bulk properties were used.  For the results that follow, the fiber is modeled using 

poroelastic properties. 

The properties for the poroelastic model, also termed the Johnson-Champoux-

Allard model (Allard and Atalla, 2009), are difficult to measure directly and were 

instead determined from the measured sound absorption coefficient using the ESI 

Foam-X software (ESI, 2014).  The algorithm used breaks the sound absorption 

into different frequency regimes and uses a curve fit to identify the poroelastic 

properties from the measured absorption.  Using this procedure, the flow resistivity, 

characteristic viscous length, characteristic thermal length, and mass density for 

the fiber were determined to be 0.001652 lbf-s/in4 (17,700 N-s/m4), 0.0099 in  (0.25 
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mm), 0.020 in (0.504 mm), and 0.00072 lbf/in3 (20 kg/m3) respectively.  The 

porosity was determined to be 0.93. 

 

 

Figure 3.4a) Photograph of impedance tube showing samples and 3.4b) 
schematic showing microphone positions and sample in impedance tube. 

10 samples each of 2 inch (5.1 cm) fiber were measured in a 1.375 inch (3.5 cm) 

diameter impedance tube (Spectronics impedance tube) according to ASTM 

E1050 (2012) and averaged.  Figure 3.5 compares the sound absorption 

coefficient using the poroelastic model to the measured sound absorption with 

good agreement. 
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Figure 3.5 Measured and curve fitted sound absorption for 2 inch (5.1 cm) fiber. 

3.5 Simulation and Measurement Comparisons 

Several studies were conducted in which simulation was compared to data from 

the RP-1408 measurement campaign or the ASHRAE Handbook – Applications 

(2015).  For unlined ducts, results were compared to the Handbook.  Figure 3.6 

shows the noise reduction for 2 ft x 2 ft (0.61 m x 0.61 m) cross-section, 10 ft (3.05 

m) length unlined duct.  Finite element results in 1/3-octave bands are compared 

to octave band results from the ASHRAE Handbook – Applications (2015).  Results 

agree within 2 dB at frequencies above 200 Hz.  Figure 3.6 also includes a similar 

curve for an unlined 20 ft (3.05 m) length, 24 inch (60.1 cm) diameter circular duct.  

Results agree well with the Handbook and are lower than the rectangular duct even 

for a circular duct that is twice the length.  The results agree with Vér’s (1978) 

assertion that breakout noise from the duct leads to higher attenuation at low 

frequencies.  Below 100 Hz, results are questionable since the total length of duct 

is on the same order as the acoustic wavelength (i.e., the duct functions similar to 
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an organ pipe).  Results should be more reliable when the total length of duct 

includes several acoustic wavelengths. 

For lined ducts, simulation is compared to the RP-1408 (Reynolds, 2015) 

measurement campaign performed at the University of Nevada Las Vegas and E. 

H. Price facilities.  Figure 3.7 compares the insertion loss for a 2 ft x 2 ft (0.61 m x 

0.61 m) cross-section, 10 ft (3.05 m) length duct with 2 inch (5.1 cm) fiber lining 

enveloping the airspace.  The insertion loss results agree with measurement over 

the entire frequency range.  For comparison, the ASHRAE Handbook results are 

also included and agree reasonably well.  It should be noted that the resolution for 

the ASHRAE Handbook results is in octave bands and not 1/3-octave bands. 

 

Figure 3.6 Simulated and ASHRAE Handbook comparisons of noise reduction of 
24 in x 24 in (0.61 m x 0.61 m), 10 ft (3.05 m) length unlined rectangular duct and 

24 in (0.61 m) diameter, 20 ft (6.10 m) length unlined circular duct. 
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Figure 3.7 Simulated and measured (RP-1408) insertion loss of 24 in x 24 in 
(0.61 m x 0.61 m), 10 ft (3.05 m) length, 2 in (5.1 cm) thick fiber lined rectangular 

duct.  ASHRAE Handbook – HVAC Applications (2015) are included for 
comparison. 

Notice that the insertion loss is bell shaped with a maximum between 500 and 

1000 Hz.  Ingard (1994) explains this phenomenon well.  Insertion loss is low at 

both low and high frequencies.  At low frequencies, sound propagates as a plane 

wave and the sound absorption is ineffective because the thickness of the 

absorber is only a fraction of an acoustic wavelength.  The acoustic wavelength is 

equal to 𝑐/𝑓 where 𝑐 is the speed of sound and 𝑓 is the frequency.  In addition, 

sound is grazing on the sound absorber and the absorber is less effective. 

At high frequencies, sound propagates longitudinally as before but also transverse 

to the duct since the duct cross-sectional dimension is much greater than an 

acoustic wavelength.  The sound absorption is effective at the periphery of the duct 

but has a diminished effect at the center of the duct since the absorption is several 

wavelengths removed from the center of the duct.  Accordingly, sound propagating 

down the center of the duct is relatively unaffected. 
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Insertion loss is highest in a mid-frequency range beginning at the cutoff frequency.  

Air pumping in the center of the duct travels to the periphery where it is absorbed.  

The frequency of maximum attenuation roughly corresponds to when the cross-

sectional dimension of the duct is equal to an acoustic wavelength.  At that 

frequency, sound pressure is high at both the periphery and center of the duct.  

Accordingly, sound absorption at the periphery will also attenuate the sound at the 

center of the duct since the pressure highs are part of the same transverse acoustic 

wave. 

 

Figure 3.8 Simulated and measured (RP-1408) insertion loss of 24 in x 24 in 
(0.61 m x 0.61 m), 30 ft (9.14 m) length, 2 in (5.1 cm) thick fiber lined rectangular 

duct.  ASHRAE Handbook – HVAC Applications (2015) are included for 
comparison. 

Figure 3.8 compares a similar case for a 30 ft (9.15 m) length lined duct having the 

same cross-section.  Insertion loss results compare well with measurement except 

between 400 and 1600 Hz.  In this region, there appears to be flanking noise, which 

prevents measurement of attenuation that exceeds 50 or 60 dB.  Flanking noise 

can arise due to structural excitation of the test duct from the ductwork attached 

on both sides, or is more likely due to external sources of noise impinging on the 
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exterior of the test duct or adjoining ductwork.  Handbook predictions are overly 

high for long ducts so the Handbook should only be used for ducts up to 10 ft (3.05 

m) in length. 

Figure 3.9 compares the insertion loss for a 20 ft (6.10 m) length, 2 ft (0.61 m) 

diameter circular duct with 2 inch (5.1 cm) fiber lining.  Simulation agrees well with 

measurement over most the frequency range though there are some differences 

between 500 and 1000 Hz due to flanking paths.  Handbook results are 

comparable. 

 

Figure 3.9 Simulated and measured (RP-1408) insertion loss of 24 in (0.61 m) 
diameter, 20 ft (6.10 m) length, 2 in (5.1 cm) thick fiber lined circular duct. 

ASHRAE Handbook – HVAC Applications (2015) are included for comparison. 

Figure 3.10 compares insertion loss results for a 4  6  5 ft (1.2  1.8  1.5 m) 

(Mouratidis and Becker, 2003) unlined plenum with inlet and outlet ducts centered.  

It can be observed that measurement and FEM simulation results compare well.  

ASHRAE Handbook and Wells equation predictions are included for comparison.  

The Wells equation under predicts the attenuation at middle frequencies whereas 
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handbook results do not agree well at the lower frequencies but are acceptable at 

the middle and high frequencies. 

 

Figure 3.10 Insertion loss comparisons for a 4 ft  6 ft  5 ft (1.2 m  1.8 m  1.5 
m) unlined plenum.  Inlet and outlet ducts are in line.  Comparison is shown 
between measurement, FEM simulation, Mouratidis and Becker (2004), and 

Wells (1958). 

Similar results are shown in Figure 3.11 for a 4  6  5 ft (1.2  1.8  1.5 m) 

(Mouratidis and Becker, 2003) lined (2 inch or 5.1 cm fiber) plenum.  Measurement 

and FEM simulation agree reasonably well whereas ASHRAE Handbook results 

are low and do not properly account for modal behavior at low frequencies. 

Figure 3.12 shows similar results for a 4  6  5 ft (1.2  1.8  1.5 m) (Mouratidis 

and Becker, 2003) lined (8 inch or 10.2 cm fiber) plenum with a right-angle outlet.  

It can be seen that FEM simulation and ASHRAE Handbook results compare 

favorably to measurement.  For this particular case, handbook results likely 

compare better at low frequencies because the sound absorptive lining is 8 inch 

(10.2 cm) thick.   
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Figure 3.11 Insertion loss comparisons for a 4 ft  6 ft  5 ft (1.2 m  1.8 m  1.5 
m) plenum with 2 inch (5.1 cm) glass fiber.  Inlet and outlet ducts are in line.  

Comparison is shown between measurement, FEM simulation, Mouratidis and 
Becker (2004), and Wells (1958). 

 

Figure 3.12 Insertion loss comparisons for a 4 ft  6 ft  5 ft (1.2 m  1.8 m  1.5 
m) plenum with 2 inch (5.1 cm) glass fiber.  Inlet and outlet ducts are at right 
angles to one another.  Comparison is shown between measurement, FEM 

simulation, and ASHRAE Handbook (2015). 
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3.6 Notes Regarding Modeling and Metrics 

The transmission loss below the cutoff frequency, insertion loss, and noise 

reduction are compared in Figure 3.13 for a 2 ft x 2 ft (0.61 m x 0.61 m) cross-

section, 10 ft (3.05 m) length, 2 in (5.1 cm) thick fiber lined duct.  Notice that all 

three metrics are similar.  This is the case for most resistive silencers and suggests 

that the results will be similar regardless of the metric utilized. 

 

Figure 3.13 Comparison of simulated transmission loss, insertion loss, and noise 
reduction for a 24 in x 24 in (0.61 m x 0.61 m), 10 ft (3.05 m) length, 2 in (5.1 cm) 

thick fiber lined rectangular duct. 

In addition, the model can be simplified significantly if the breakout noise path is 

ignored.  In that case, the structural mesh of the ductwork and the acoustic mesh 

surrounding the test duct need not be included in the model.  The noise reduction 

for the lined duct not including the breakout noise path is compared to the insertion 

loss for the full model in Figure 3.14.  Notice that there are some differences but 

the noise reduction is within 5 dB of the insertion loss at most frequencies.  

Accuracy should be sufficient for most engineering purposes. 
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Figure 3.14 Comparison of insertion loss and noise reduction (neglecting 
breakout transmission path) for a 24 in x 24 in (0.61 m x 0.61 m), 10 ft (3.05 m) 

length, 2 in (5.1 cm) thick fiber lined rectangular duct. 

Figure 3.15 shows attenuation in the duct versus the number of acoustic 

wavelengths from the start of the treatment at different frequencies.  It can be 

observed that the attenuation is relatively linear for the first 5 acoustic wavelengths.  

Additionally, results are roughly linear above 10 wavelengths.  Results are similar 

for both a 10 ft (3.05 m) and 30 ft (9.15 m) duct up to the number of total 

wavelengths for the treated portion. These results suggest that simple 

relationships for duct attenuation can be developed for the standard duct sizes that 

are summarized in the ASHRAE Handbook – HVAC Applications (2015).  

Accordingly, the Handbook can be enhanced using the developed FEM models. 

It is also notable that the results in the ASHRAE Handbook – HVAC Applications 

(2015) were determined based on measurements of 10 ft (3.05 m) ducts.  The 

Handbook tables assume that the duct attenuation is linear.  This seems like an 

appropriate approximation if the total length of duct is below 5 acoustic 

wavelengths.  In that case, it can be seen that the attenuation as a function of 
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length in wavelengths is relatively linear (Figure 3.15).  However, the attenuation 

curves are nonlinear if the lined duct length exceeds 5 acoustic wavelengths 

especially for the 630 and 800 Hz 1/3-octave band curves.  Hence, the results in 

the Handbook are suspect and can greatly over predict the attenuation for duct 

lengths exceeding 10 ft (3.05 m). 

 

Figure 3.15 Attenuation as a function of wavelength at different frequencies for a 
24 in x 24 in (0.61 m x 0.61 m), 2 in (5.1 cm) thick fiber lined rectangular duct.  

Results are shown for 10 ft (3.05 m) and 30 ft (9.15 m) lengths. 

Flanking transmission path would be dominant at middle frequency range for a 

lined duct longer than 10 ft (3 m). As the results shown in Figure 3.8, Both HVAC 

and FEM predictions are higher than measurement. Some cases have been 

studied via FEM simulation to investigate the structural flanking path. Figure 3.16 

compares FEM results with and without flanking to measurement results. It can be 

seen that including flanking drastically reduces the insertion loss in the mid-

frequency range. 
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Figure 3.16 Insertion loss results for a 2 ft × 2 ft cross-section, 30 ft length lined 
(2 inch fiber) duct noting effect of including and excluding the flanking path. 

3.7 Conclusions 

A FEM approach was developed for the modeling of unlined and lined HVAC ducts. 

The analysis approach replicates ASTM E477 (2006).  The source is modeled as 

a diffuse acoustic field and terminates in a rigid baffle.  The structural response of 

the ductwork and the associated breakout noise transmission path were included. 

Boundaries at the source and termination were simulated using a reflection free 

boundary called a perfectly matched layer.  Results were compared to 

experimental results with good agreement. 

It was also shown that the model could be simplified and the breakout path could 

be neglected as an approximation.  Results were shown to be similar but the 

predicted attenuation was a few dB too high at most frequencies.  Since the 

attenuation of a lined duct is very high, an error of a few dB is not that critical. 

The developed model can be used for ducts of any cross-section or length.  Since 

the approach is now validated, future efforts can utilize the model to revise and 
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supplement the information that is currently in the ASHRAE Handbook – HVAC 

Applications (2015). 
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 SIMULATION OF ATTENUATION DUE TO ELBOWS AND SIDE 

BRANCHES AND BREAKOUT TRANSMISSION LOSS 

(Note: Most of the research in this chapter has been previously documented in 

Ruan and Herrin (2016b).) 

The primary path of noise propagation in buildings is airborne transmission from 

building equipment through ducts.  Attenuation is increased if elbows or side 

branches are introduced into a duct.  In Chapter 3, finite element analysis was 

used to predict the insertion loss of straight lined and unlined ducts and results 

were validated with measurement.  In this work, finite element analysis is used to 

predict the attenuation of elbows and side branches.  Results for elbows and 

branches are compared to the ASHRAE Handbook with good agreement.  In 

addition, an important secondary noise transmission path is through duct walls into 

rooms.  This path, which is often termed breakout noise, is also investigated using 

the finite element approach and results are correlated with an analytical solution 

and the ASHRAE Handbook with good agreement.  Of note, it is demonstrated 

that the breakout transmission loss is much less than the insertion loss through 

lined rectangular ducts at some frequencies.  This suggests that breakout noise is 

the dominant noise path at these frequencies. 

4.1 Introduction 

Noise from equipment propagates through a building via the HVAC duct network.  

The primary noise pathway, termed the airborne path, is directly through the ducts 

into the rooms.  The most effective way to reduce the airborne noise is to use 

sound absorptive lining in the ducts.  However, there is also modest attenuation at 

elbows or when other ducts branch off the main duct.  Sound is reflected back 

towards the source at a bend due to the slight changing cross-sectional area, and 

there will be less attenuation if turning vanes are present due to regenerated noise 

from the turning vanes.  On the other hand, the attenuation can be greatly 

increased if lining is added to the elbow.  
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Cabelli (1980) developed analytical models for unlined mitered and curved 90° 

bends, and Ko and Ho (1977) looked at curved bends.  Vér (1983a) summarized 

results presented by Mechel (1975) and from a VDI Technical Report (2001) for 

different bends in a form appropriate for HVAC engineers.  Vér’s (1983a) work 

forms the basis for what is currently in the ASHRAE Handbook (2011).  Almost all 

of the prior measurement studies have assumed a 90° bend. 

In a companion paper (Ruan and Herrin, 2016), the attenuation of straight lined 

and unlined ducts with varying cross-sections was predicted using finite element 

analysis (FEA) and compared with measured results with good agreement.  In this 

paper, an identical approach is used to determine the attenuation of 90° unlined 

and lined elbows, and of branching.  Results are compared to the ASHRAE 

Handbook – HVAC Applications (2015) in order to validate the approach.  The FEA 

approach suggested should be applicable to other bend angles and can account 

for cross-sectional area changes in the bend. 

Though the direct airborne path is dominant some distance away from the fan, 

breakout noise is an important secondary path near the fan or if the ductwork is 

exposed. Breakout noise occurs when internal duct noise causes the duct walls to 

vibrate and in turn radiate noise to their surroundings and is normally a greater 

concern at low frequencies (Cummings, 1985). Turbulence (non-coherent noise) 

may also cause ducts to rumble but this is not breakout (coherent) noise in the 

strict sense. Breakout noise is most commonly reduced by using spiral wound 

circular ducts instead of rectangular ducts or increasing the duct stiffness. 

Both Vér (1983b) and Cummings (1983; 1985) investigated breakout noise in 

ASHRAE supported efforts.  Cummings continued working in the area for the next 

two decades and his work and others is summarized in his comprehensive review 

paper (Cummings, 2001).  That paper nicely synopsizes the current state-of-the-

art and is written at the level of a noise control engineer working in industry.  The 

ASHRAE Handbook relies mostly on the work by Cummings (1985) with some 

additional information from Lilly (1987).   
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In addition, ducts sometimes provide a flanking path for sound transmission 

between rooms.  In that case, noise can break in from a source into the duct and 

passages through the ducting to other locations.  This has been termed breakin 

noise in the literature.  Vér (1983b) and Cummings (1985) helpfully showed that 

the breakout and breakin transmission loss could be related to one another via a 

reciprocity relationship. 

Astley and Cummings (Astley and Cummings, 1984; Astley et al., 1991; Cummings 

and Astley, 1995) have published extensively on the use of FEA to assess 

breakout and flanking noise.  Their work laid the foundation for current commercial 

codes. 

In the current effort, a commercial software package, Siemens Virtual.Lab (2015), 

is used for all analyses and results are compared to the ASHRAE Handbook – 

HVAC Applications (2015) and an analytical model.  The objective is to document 

and validate a simulation approach that can be used to assess the attenuation of 

straight ducts, elbows, and terminations as well as breakout transmission loss.  

The FEA approach can then be used in future efforts to make the Handbook more 

comprehensive and to better evaluate the wide variety of HVAC ducting schemes 

seen in industry. 

4.2 Metrics for Elbow and Branch Attenuation 

Insertion loss is defined as the decrease in sound pressure or sound power in dB 

when an attenuating element is inserted into the path between a source and 

receiver.  In the case of an unlined elbow, insertion loss is normally defined as the 

difference between the sound pressure or power at the termination of a straight 

duct without the bend and that of a duct including the bend having the same total 

length.  The bend should be located at or near the mid-length of the ducting.  For 

lined ducts, insertion loss is defined as the difference in sound pressure at the 

termination between a straight duct and a lined elbow. 
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Figure 4.1 Schematic showing branch coming of main duct with respective cross-
sectional areas indicated. 

It is also common for several ducts to branch off of a main duct.  Figure 4.1 shows 

a schematic of a duct branching from a main duct including the respective cross-

sectional areas.  Insertion loss is defined as the difference in sound pressure 

without and with the branch.  The insertion loss for a single branching can be 

estimated using 

 𝐼𝐿 10 log
𝑆 𝑆

𝑆
𝐼𝐿  (4.1)

where 𝑆  and 𝑆  are the cross-sectional areas of the branch and main duct 

respectively.  It seems that it is customary to add a term for the elbow insertion 

loss (𝐼𝐿  if the attenuation is desired for the side branch and not the main duct. 

4.3 Simulation Model for Determination of Elbow or Branching 

Attenuation 

The objective of the simulation approach selected is to replicate ASTM E477 

(2006).  In ASTM E477, a source room is connected to a receiving room through 

a long duct that can be assumed to be rigid.  The test component is inserted into 
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the long duct, and insertion loss is computed as the difference in sound power in 

the receiving room with and without the attenuating component in place.  ASTM 

E477 is difficult to apply to elbows and other components where the inlet and outlet 

ducts are at some angle because source and receiving rooms are normally in line 

with one another.  For this reason, a simulation approach is desirable. 

The source room was modeled using 20 monopole sources having equal strength 

and random phase positioned on a hemisphere as shown in Figure 4.2.  The 

surface of the hemisphere is reflection free and is simulated using a perfectly 

matched layer boundary condition (Berenger, 1994; Tam et al., 1998; Bermudez 

et al., 2007; Casalino and Genito, 2008).  A perfectly matched layer absorbs sound 

waves that have high angles of incidence.  The mesh should be conformal to the 

surface and will not require as many degrees of freedom as alternative methods 

such as infinite elements (Astley and Coyette, 2001; Burnett and Holford, 1998).  

The exit of the duct is modeled as a baffled termination.  In a similar manner, a 

perfectly matched layer was utilized to simulate the unbounded domain on the 

hemisphere.  The test duct panels were modeled using shell elements.  The air 

around the test elbow was also modeled to allow for sound radiation off the 

ductwork.  A perfectly matched layer was again used to model the unbounded 

domain around the elbow. 
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Figure 4.2 Schematic showing finite element modeling strategy. 

The Siemens Virtual.Lab (2015) software was used.  Their particular 

implementation of the perfectly matched layer is termed an automatically matched 

layer.  Normally, a perfectly matched layer must be meshed and consists of several 

layers of elements.  In the Siemens Virtual.Lab implementation, the perfectly 

matched layers are generated internally.  The resolution and thickness of the layer 

is frequency dependent. 

Figure 4.3 illustrates the manner in which sound absorbing lining was included in 

the model.  The lining was simulated using poroelastic finite elements which 

include sound pressure degrees of freedom plus additional degrees of freedom for 

the motion of the elastic frame of the fiber (Atalla et al., 1998).   Chapter 3 includes 

information regarding the measurement of the sound absorption and the 

determination of the poroelastic properties.  Table 4.1 lists the poroelastic 

properties in both English and metric units. 
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Figure 4.3 Schematic showing finite element model, structural FEM, and 
poroelastic FEM. 

Table 4.1 Poroelastic Properties of Fiber 

Poroelastic Properties Value 

Flow Resistivity 17,700 N-s/m4 (0.001652 lbf-s/in4) 

Porosity 0.93 

Tortuosity 1 

Characteristic Viscous Length 0.252 mm (0.0099 in) 

Characteristic Thermal Length 0.504 mm (0.020 in) 

Mass Density 20 kg/m3 “(0.00072 lbf/in3) 

A direct frequency response was used because it readily accounts for the 

unbounded domain and the poroelastic elements (Astley, 2007).  Modal 

superposition analyses is not recommended due to the high mode counts for both 

the structure and the air space.   Structural acoustic coupling effects are included 

between the ductwork and the air space around the elbow 
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4.4 Elbow and Branching Insertion Loss Results 

Insertion loss is the difference in dB at the termination between a straight duct and 

a duct with unlined or lined elbow.  Simulation is compared to the ASHRAE 

Handbook – HVAC Applications (2015) in Figure 4.4 for an unlined elbow.  The 

cross-sectional area of the ductwork is 2 ft x 2 ft (0.61 m x 0.61 m).  Figure 4.5 

compares a similar case for an elbow with 1 inch (2.5 cm) fiber lining.  There is 

good agreement with the Handbook for both the unlined and lined cases. 

The insertion loss results for a branch are shown in Figure 4.6 and are compared 

to the ASHRAE Handbook – HVAC Applications (2015).  At low frequencies, the 

model is suspect because the ducts are shorter or on the same order as an 

acoustic wavelength and reflections from the source and termination will affect the 

results.  ASHRAE Handbook results are calculated not including the elbow 

insertion loss term in Equation (4.1).  If attenuation is found for the duct which is in 

line with the inlet duct, it appears that elbow insertion loss term should not be 

included. 

 

Figure 4.4 Comparison of FEM and ASHRAE Handbook insertion loss for an 
unlined elbow.  The rectangular duct is 24 in x 24 in (0.61 m x 0.61 m). 
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Results in Figures 4.4 through 4.6 validate that the finite element approach can be 

used to determine the insertion loss of elbows and branches.  Moreover, the model 

can be used to evaluate additional branches and to assess the best positions for 

sound absorbing lining in a duct system. 

 

Figure 4.5 Comparison of FEM and ASHRAE Handbook insertion loss for a 2 in 
(5.1 cm) thick fiber lined elbow.  The rectangular duct is 24 in x 24 in (0.61 m x 

0.61 m). 
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Figure 4.6 Comparison of FEM and ASHRAE Handbook insertion loss for a 24 in 
x 24 in (0.61 m x 0.61 m) rectangular duct with side branch of the same size. 

4.5 Determination of Damping Loss Factors 

The damping loss factor is defined as the ratio of energy dissipated per cycle of 

oscillation to the total dynamic energy in a subsystem and can be related to other 

commonly used damping parameters like the critical damping ratio (Lyon and 

DeJong, 1998).   Ducts of various sizes were measured at a school that was under 

construction.  Though the duct sizes may not exactly match those measured for 

the ASHRAE Handbook, the sizes were similar and lined and unlined ducts were 

considered.  The damping loss factor was determined using the decay rate method.  

Figure 4.7a shows the measurement setup for the approach. The impulse 

response of a panel was measured in the time domain and then band pass filtered 

in octave bands.  The initial slope of the transient response is called the decay rate 

(𝛾) and is the slope of the line in dB/sec shown in Figure 4.7b.  The loss factor (𝜂) 

can be determined via 
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 𝜂
𝛾

27.3𝑓
 (4.2)

where 𝑓 is the center frequency. 

 

 

Figure 4.7a) Schematic showing procedure to determine the damping loss factor 
of HVAC duct panel.  Impact hammer and accelerometers are shown.  Data 
acquisition (DAQ) is not shown. b) Typical measured transient response with 

decay rate illustrated. 
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Data was acquired at 5 positions on each panel and averaged for 5 hits.  The 

impact hammer used was a PCB 086C03 and the accelerometers used were PCB 

333B32.  Data was acquired using a LMS SCADAS SCM01 data acquisition.  The 

results for the damping loss factor are tabulated in Table 4.2.  Notice that the 

damping is higher by an order of magnitude if the duct is lined.  Damping loss factor 

values were found to be similar for both rectangular and circular ducts.  In the 

simulation models, the average damping ratios for the unlined and lined ducts were 

determined and values of 0.003 and 0.02 respectively were selected for unlined 

and lined ducts. 

Table 4.2 Measured Damping Loss Factors 

 Circular Rectangular 

Frequency 
(Hz) 

10 in 
Diameter 

(25.4 cm) 

10 in x 10 in 

(25.4 cm x 
25.4 cm) 

16 in x 16 in 

(40.6 cm x 40.6 cm) 

32 in x 32 in 

(81 cm x 81 cm)

Unlined Unlined Unlined Lined Unlined Lined 

63 0.016 0.011 0.012 0.014 0.012 0.021 

125 0.010 0.006 0.009 0.038 0.007 0.011 

250 0.007 0.004 0.006 0.036 0.004 0.030 

500 0.016 0.003 0.010 0.026 0.003 0.026 

1000 0.008 0.003 0.007 0.022 0.003 0.022 

2000 0.004 0.003 0.004 0.012 0.002 0.014 

4000 0.002 0.004 0.004 0.007 0.002 0.009 

8000 0.001 0.002 0.002 0.005 0.002 0.006 

4.6 Determination of Breakout Transmission Loss 

The simulation modeling approach is identical to that described earlier for 

determining insertion loss of elbows and is shown in Figure 4.8.  The air space is 

modeled using acoustic finite elements and any sound absorbing lining is 

simulated using poroelastic elements. A diffuse field at the source is approximated 

by 20 acoustic monopole sources having the same amplitude and random phase.  
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An automatically matched layer was placed on the hemispherical surface on both 

the source and termination sides of the duct.   This boundary condition assumes 

that the domain is unbounded so there are no reflections even for high angles of 

incidence.    

 

Figure 4.8 Schematic showing FEM modeling strategy for breakout noise. 

The ductwork was modeled using shell elements for both rectangular and circular 

cross-sections.  The elastic modulus and mass density were chosen for steel and 

were 210 GPa (30E6 lbf/in2) and 7800 kg/m3 (0.281 lbf/in3) respectively.  The 

rectangular ducts were stiffened around the perimeter of the duct every 5 ft (1.52 

m) using beam elements.  Circular ducts were assumed to be of the spiral wound 

variety with neighboring spiral lines separated by 8 inches (20 cm).  Beam 

elements were used to model the reinforcement for rectangular ducts and the spiral 

winding for circular ducts.  Figure 4.9 shows the finite element models for both a 

rectangular and circular duct. 

There is an acoustic mesh surrounding the ductwork with an automatically 

matched layer that envelops the acoustic mesh as shown in Figure 4.9.  The sound 

power radiating from the automatically matched layer to the acoustic domain can 

be assessed.   
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Figure 4.9 Structural FEM models for rectangular and circular ducts. 

For unlined ducts, the breakout transmission loss was determined using Equation 

(2.11).  The radiated sound power from the ductwork corresponds with 𝐿 .  

The incident sound power in the inlet duct was determined via 

 𝐿 10 log
𝑝
4𝜌𝑐

𝑆 𝑊  (4.3)

where 𝑆 is the cross-sectional area of the duct and 𝑊  is the reference sound 

power (1.0E-12 W or 7.38E-13 lbf-ft/s).  Equation (4.3) assumes a diffuse field at 

the duct entrance.  𝑝  is the spatially averaged sound pressure determined by 

taking the squared average for 20 sound pressures at different positions in the inlet 

duct. 
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For lined ducts, Equation (2.12) was used.  The duct attenuation rate (𝛼) was 

determined from the insertion loss.  Insertion loss, which is the subject of Chapter 

3 was determined by taking the sound power level difference in dB for the unlined 

and lined duct of the same length. 

4.7 Breakout Transmission Loss Results 

Figure 4.10 shows the breakout transmission loss for a 16 in x 48 in (41 cm x 122 

cm), 0.034 in (0.85 mm) thick, 10 ft (3.05 m) length rectangular duct.  Simulation 

results compare well with both Cummings (1983) and the ASHRAE Handbook – 

HVAC Applications (2015).  Results for a 2 inch (5.1 cm) fiber lining having a 

density of 1.25 lbf/ft3 (20 kg/m3) are also included for comparison.  It can be seen 

that the lining enhances the attenuation above 400 Hz. 

Figure 4.11 shows similar results for a 24 in (61.0 cm), 20 ft (6.1 m) length circular 

duct.  The thickness of the duct is 0.028 in (0.71 mm) and the material was 

galvanized steel. The ring and critical frequencies are at 2710 Hz and 16,800 Hz 

respectively.  Notice that the breakout transmission loss is much higher for a 

circular duct than for a rectangular duct.   

For rectangular ducts, there is good agreement over the entire frequency range.  

For circular ducts, there is good agreement with the analytical results at low 

frequencies where Equation (2.18) is valid.  However, the ASHRAE Handbook – 

HVAC Applications (2015) results are from measurement and are much lower than 

those predicted.  Cummings (1985) conjectured that the discrepancy between 

Equation (2.18) and measurement is due to the mode coupling effect discussed 

earlier.  As noted earlier, this is most likely because high breakout transmission 

loss is difficult to measure accurately. 

Figure 4.12 compares the insertion loss to the breakout transmission loss for a 24 

in x 24 in (0.61 m x 0.61 m), 10 ft (3.05 m) length lined duct.  In general, the 

breakout transmission loss will be much higher than the insertion loss or noise 

reduction for a lined or unlined duct.  However, the insertion loss is substantially 
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higher than the breakout transmission loss at frequencies between roughly 600 

and 1000 Hz.  This suggests that breakout noise will be a dominant noise path in 

this frequency regime. 

 

Figure 4.10 Breakout transmission loss comparing FEM unlined and lined 
models, Cummings (1983) equation, and ASHRAE Handbook.  The rectangular 

duct is 16 in x 48 in (0.41 m x 1.22 m) and 10 ft (3.05 m) in length. 
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Figure 4.11 Breakout transmission loss comparing FEM unlined and lined 
models, Cummings (1983) equation, and ASHRAE Handbook.  The circular duct 

is 24 in (0.61 m) and 20 ft (6.10 m) in length. 

 

Figure 4.12 Comparison of insertion loss, and breakout transmission loss of lined 
and unlined 24 in x 24 in (0.61 m x 0.61 m), 10 ft (3.05 m) length, 2 in (5.1 cm) 

thick lined duct. 
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4.8 Conclusions 

A FEM procedure for determining the insertion loss of elbows and branches has 

been detailed.  The process described replicates the measurement procedure.  

Insertion loss is defined as the sound power difference in dB at the termination 

between an unlined straight duct and duct with lined or unlined elbow having the 

same total length.  Side branch insertion loss was determined in a similar way.   

Simulated results compared well with the ASHRAE Handbook – HVAC 

Applications (2015). 

With the procedure validated, future work can concentrate on looking at other bend 

configurations.  For instance, published results assume a 90° bend whereas bends 

are not restricted to 90° in practice.  Different elbow lining strategies can also be 

examined. 

A similar FEM procedure was also developed to identify the breakout transmission 

loss.  The ductwork was modeled using shell elements, and beam elements were 

used to model reinforcements or spiral winding.  The airspace both inside and 

outside the test duct was modeled, and a reflection free boundary was modeled 

on the envelope FEM mesh using an automatically matched layer. 

Simulation results compared well with measurement for rectangular ductwork over 

the entire frequency range and circular ductwork at frequencies above the plane 

wave cutoff frequency.  Below the cutoff frequency, simulation compared well with 

an analytical model for circular ducts.  However, lower breakout transmission loss 

is found in the field at low frequencies for circular ducts.  This is likely due to 

flanking paths. 
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 USING SCALE MODELING TO ASSESS HEATING AND AIR 

CONDITIONING DUCT ATTENUATION 

(Note: Most of the research in this chapter has been previously documented in 

Ruan and Herrin (2017b).) 

In this chapter, scale modeling rules are summarized for assessing the attenuation 

of heating, ventilation, and air conditioning ducts. A standard scaling approach is 

applied where the frequency ratio is inversely proportional to the size ratio. Scaling 

rules for sound absorption and breakout noise transmission are also developed. 

The scaling approach is first tested virtually via finite element analysis to validate 

the concept. This is followed by some experimental cases where a small expansion 

chamber, similar to a plenum, and its corresponding scale model are measured. 

Scale model results agree with full scale measurements for insertion loss, 

transmission loss and breakout transmission loss. 

5.1 Introduction 

Scale modeling is commonly used in many engineering fields to investigate large 

problems that would require prohibitively expensive testing facilities.  This is 

certainly the case in the field of noise and vibration research.  In early scale 

modeling work for acoustics, Jordan (1970; 1975) determined the reverberation 

time for concert halls and auditoria.  Emori and Schuring (1977) summarized the 

work on architectural acoustics in their text and detailed scaling rules for acoustic 

spaces and porous sound absorbing materials.  More recently, Brown (2016) has 

used 3D-printing to develop scale models for architectural acoustics applications.  

Ivey and Russell (1977), Wadsworth and Chambers (2000), and Busch et al. (2003) 

used scale models to investigate the barrier attenuation.  

Nonetheless, noise and vibration practitioners have rarely used scale models for 

other applications outside of the building and highway industries.  This is likely 

because many other problems can be simulated via finite or boundary element 

analysis, and statistical energy analysis is sufficiently accurate at higher 
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frequencies.  Nevertheless, it would seem that using scale models to investigate 

the attenuation of heating, ventilation, and air conditioning (HVAC) ductwork would 

be another natural application.  Measurement studies require a source room, a 

receiving room, and space to run long ducts (Vér, 1977; Mouratidis, E. and Becker, 

2003; Cummings, 1983).  The source room is often a reverberation room whereas 

the receiving room may be either a reverberation or anechoic chamber.  Moreover, 

setting up each duct is time consuming and testing requires low background noise.  

If breakout noise is of interest, ducts should be run through an anechoic or 

reverberant space (Cummings, 1983).  Currently, only a handful of laboratories in 

the world are sufficiently equipped for insertion loss and breakout noise 

measurements. 

In earlier chapters, finite element method (FEM) were used to accurately determine 

the insertion loss and breakout transmission loss of standard sized HVAC 

ductwork.  Even so, software users need to be advanced and commercial acoustic 

FEM software is not widespread in the HVAC industry.  Moreover, simulation 

should be validated via measurement.  Hence, there is a great need for additional 

measurement studies.  Given the expense and facility requirements, scale models 

are an attractive option.  

The current work is an introductory research effort aimed at selecting appropriate 

scaling laws to determine the insertion loss and breakout transmission loss of 

HVAC ductwork and plenums.  The scaling laws are first developed and validated 

using FEM simulation.  The approach is then experimentally validated on a small 

silencer which has many characteristics in common with commercial HVAC 

plenums. 
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5.2 Scaling Rules Development 

5.2.1 Sound Propagation in Air 

The wave equation which is used to describe the propagation of sound can be 

developed from the linearized continuity equation, the linearized motion equation 

and the equation of state. 

One-dimensional equations are utilized for demonstration of developing scaling 

rules. The linearized one-dimensional continuity equation can be expressed as 

 𝜕𝜌
𝜕𝑡

𝜌
𝜕𝑢
𝜕𝑥

 (5.1)

where 𝜌 and 𝜌  are ambient fluid density at different locations, 𝑢  is the speed of 

fluid in 𝑥 direction and 𝑡 is the time. A scaling rule can be developed via continuity 

equation as 

 𝛾 𝛾 𝛾 𝛾 𝛾 𝛾  (5.2)

The linearized one-dimensional motion equation can be expressed as 

 𝛾 𝛾 𝛾 𝛾 𝛾 𝛾  (5.3)

A scaling rule can be developed then as 

 𝛾 𝛾 𝛾 𝛾 𝛾 𝛾  (5.4)

Assume density of fluid is unchanged for both unscaled and scaled models, the 

scaling rule can be further simplified as  

 𝛾 𝛾 1 (5.5)

The equation of gas state can be expressed as 
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𝑐

𝛾∗𝑝
𝜌

 (5.6)

where 𝑐 is the speed of sound, 𝑝  is pressure of atmosphere, 𝜌  is fluid density 

and 𝛾∗ is the adiabatic index. These four parameter are not scaled, so the equation 

of gas state is always true for both unscaled and scaled models. 

5.2.2 Sound Propagation in Sound Absorbent Material 

Sound absorbing materials are commonly characterized by their bulk properties: 

the complex wavenumber and characteristic impedance.  Several similar empirical 

equations have been used to define the bulk properties as a function of the flow 

resistivity (𝜎) of a material (Bies and Hansen, 2009).  The form of these equations 

is identical.  The complex wavenumber (𝑘 ) and characteristic impedance (𝑧 ) are 

expressed as  

 𝑘 𝑘⁄ 1 𝐶 𝑋 𝑗𝐶 𝑋  (5.7)

and 

 𝑧 𝑧⁄ 1 𝐶 𝑋 𝑗𝐶 𝑋  (5.8)

where 𝑋 𝜌 𝑓 𝜎⁄ . 𝜌  is the mass density, 𝑘  is the wave number, and 𝑧  is the 

characteristic impedance of the fluid medium.  Accordingly, scaling of the complex 

wavenumber, and characteristic impedance is valid as long as 𝑋 is scaled correctly.  

Hence, one scaling rule for sound absorption can be expressed as 

 𝛾 𝛾 1 (5.9)

assuming that the mass density of air is the same in both models. 

Sound pressure and particle velocity at both sides of sound absorptive material 

can be related via the transfer matrix in terms of complex wave number and 

complex characteristic as 
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𝑝
𝑣

𝑐𝑜𝑠 𝑘𝑐
′ 𝑑 𝑗𝑧𝑐

′ 𝑠𝑖𝑛 𝑘𝑐
′ 𝑑

𝑗
𝑧𝑐

′
𝑠𝑖𝑛 𝑘𝑐

′ 𝑑 𝑐𝑜𝑠 𝑘𝑐
′ 𝑑

𝑝
𝑣  (5.10)

where 𝑑 is the thickness of sound absorptive material. 

Another scaling rule for sound absorptive material can be developed to keep the 

sound absorption and the transfer matrix unchanged for both unscaled and scaled 

models. 

 𝛾 𝛾 1 (5.11)

Substituting Equations (5.9) and (5.11) into (5.7), this scaling rule can be simplified 

as  

 𝛾 𝛾 1 (5.12)

5.2.3 Sound Transmission through a Panel 

Cummings did extensive research to assess sound transmission through walls of 

rectangular ducts (Cummings, 1983; Cummings, 1985). Figure 5.1 shows the 

typical shape of breakout transmission loss of a rectangular duct. It can be noted 

there are four different frequency ranges. At very low frequencies, duct wall motion 

is controlled by stiffness of the wall (usually below 20 Hz). The second region is a 

resonance controlled region which depends on the first several modes of the duct 

wall. The third region, which is the most important, is the mass controlled region 

and begins at below 200 Hz for rectangular ducts. It affects all audible frequencies 

in heavy panels. It extends up the coincidence frequency where the bending 

wavelength of the duct is equal to the acoustic wavelength. This occurs at very 

high frequencies in rectangular duct systems and is usually not of concern 

(Cummings, 1983; Cummings, 1985). 
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Figure 5.1 Schematic showing the typical shape of breakout transmission loss of 
a rectangular duct. 

The normalized breakout transmission loss for unlined ducts is defined in the 

ASHRAE Handbook as 

 𝑇𝐿 10 log
𝑊 /𝑆
𝑊 /𝑆

 (5.13)

where 𝑊  is the incident sound power, 𝑊  is the radiated sound power from the 

duct work, 𝑆  is the surface area of the outside radiating duct, and 𝑆  is the cross-

sectional area inside the duct.   

Two closed-form expression were developed to predict breakout transmission 

through the ductwork of a rectangular duct by Cummings (1983, 1985). The duct 

wall impedance 𝑍  (the ratio between internal sound pressure and wall vibration) 

is given by 

 𝑍 𝑗𝜔𝜌  (5.14)

where 𝜔 is the angular frequency and 𝜌  is the surface density of the duct wall 

which assumes the wall is mass controlled. 
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There are three different models for assessing the sound power radiated from the 

duct wall. On the basis of the line source model, the total radiated sound power 𝑊  

is given by 

 𝑊 𝐶 𝜌 𝐿𝜔𝑉 /8 (5.15)

where 𝐶  is the radiation efficiency factor which is about 0.5 in most cases of 

interest, 𝜌  is the density of air, 𝐿 is the length of the radiating section of duct and 

𝑉  is the volume velocity (wall vibrational velocity x duct surface area) per unit 

length of the duct wall. 

From Equation (5.14), the volume velocity of duct wall can be identified in terms of 

the internal sound pressure and the impedance of wall and is expressed as 

 𝑉
4 𝑎 𝑏 𝑝

𝜔 𝜌
 (5.16)

Equations (5.15) and (5.16) yield 

 
𝑊 𝑆⁄

𝜌 𝑎 𝑏 𝑝
8𝜔𝜌

 (5.17)

where 𝑆  is the radiating area of the duct wall. 

The normalized input sound power inside of the duct is 

 
𝑊 𝑆⁄

𝑝
2𝜌 𝑐

 (5.18)

where 𝑊  is the sound power entering the duct, 𝑆  is the internal cross-sectional 

area of the duct, and 𝑐  is the speed of sound in air. 

Then, the breakout transmission loss can be expressed as 

 𝑇𝐿 10 log
4𝜔𝜌

𝜌 𝑐 𝑎 𝑏
 (5.19)
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Equation (5.19) indicates a 6 dB increase in transmission loss per doubling of 

surface density and a 3 dB increase per doubling of frequency. Note this formula 

is not valid at very low frequencies, where the breakout transmission loss will be 

dominated by transverse structural resonances of the duct work. However, even 

at low frequencies, Equation (5.19) still provides an accurate prediction. 

 If the air properties are unchanged, the scaling law can be expressed as 

 𝛾 𝛾 𝛾 𝛾 1 (5.20)

where 𝜌 is mass density of the duct wall, ℎ is duct wall thickness, 𝑓 is frequency 

and 𝐿 is the dimension of the duct wall. 

Equation (5.19) is invalid at higher frequencies, where more than about 10 acoustic 

modes propagate in the duct. Cummings (1983) has developed expressions for 

the mass law breakout transmission loss of higher order duct modes by summing 

the contributions from all propagating modes at any frequency. Two fundamental 

assumptions are made to develop equations for high-frequency breakout 

transmission loss. First, many modes propagate in the duct, so that "statistical" 

statements about their combined effect are valid, and, secondly, that all duct 

modes are excited with equal sound pressure amplitude. 

The incident sound power is given by 

 𝑊
𝑘 , 𝑝 𝑎𝑏
2𝜔𝜌 𝜀 𝜀

 (5.21)

where 𝑝  is the pressure amplitude for mode 𝑚, 𝑛 , 𝑘 ,  is the propagating 

wavenumber, 𝜀  and 𝜀  are integral values of eigenfunctions. 𝜀 𝜀  equals 1, 

𝜀 𝜀 , … 𝜀 𝜀  equal 2, and the remainder equal 4. 

The radiated sound power is identified as 
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 𝑊
0.3125𝜌 𝐿𝑘 𝑝 𝑎 𝑏 𝑎𝑏

𝜋𝜔𝜌
 (5.22)

From Equations (5.21) and (5.22), the breakout transmission loss can be 

expressed as 

 𝑇𝐿 10 log

⎝

⎜
⎛

𝜔 𝜌 1 9𝜋
4𝑘

1
𝑎

1
𝑏

7.5𝜌 𝑐

⎠

⎟
⎞

 (5.23)

At high frequencies,  is close to zero. Hence the TL expression can be 

further simplified as 

 𝑇𝐿 10 log
𝜔 𝜌

7.5𝜌 𝑐
 (5.24)

Based on equation (5.24), the scaling law can be expressed as 

 𝛾 𝛾 𝛾 1 (5.25)

assuming the same fluid medium in both scale models.  The scaling rules for low 

and high frequencies can be combined and the scaling rules can be expressed as 

 𝛾 𝛾 1 (5.26)

and 

 𝛾 𝛾 1 (5.27)

The sound propagation (Equation (5.5)), acoustic material (Equation (5.9) and 

(5.12)), and sound transmission through panel (Equations (5.26-5.27)) scaling 

rules are used together in the examples which follow. 



77 

 

5.3 Virtual Validation 

Two finite element method (FEM) simulation cases were performed using Siemens 

Virtual.Lab (Siemens, 2017) to validate the scaling rules.  The first is an expansion 

chamber with non-symmetric inlet and outlet pipes.  Figure 5.2 shows a schematic 

of the expansion chamber with associated dimensions.  Simulation models were 

created for both the full-scale and half-scale models.  For the full-scale model, the 

flow resistivity is 10,000 Rayls/m.  The frequency range investigated was from 10 

Hz to 2500 Hz, and the cutoff frequency for the inlet and outlet ducts is 

approximately 950 Hz.  The simulation model was solved above the cutoff 

frequency by using an automatically matched layer (AML) boundary condition at 

the termination (Ruan and Herrin, 2015).  Transmission loss results are compared 

for the full-scale and half-scale model in Figure 5.3.  It can be seen that the results 

are nearly identical with each other. 

 

Figure 5.2  Schematic showing expansion chamber (units in m). 
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Figure 5.3  Transmission loss comparison for expansion chamber. 

 

Figure 5.4 Schematic showing lined duct. 

The second simulation case considered was a square HVAC duct.  Figure 5.4 

shows a schematic of the duct.  The lined length is 3.0 m, and the unlined portions 

of the duct are assumed to be rigid.  The cross-sectional area of the duct is 0.6 m 

 0.6 m.  The sound absorbing lining was 5 cm thick with a flow resistivity of 10,000 

Rayls/m.  Sound absorptive lining is placed around the full perimeter of the duct.  

The duct wall is assumed to be 0.71 mm thick steel, but the structure is only 

considered on the lined portion of the duct.  The frequency range for the analysis 

was from 10 to 2000 Hz.  The FEM procedure for determining the insertion loss 

and breakout noise is detailed and is validated in Chapter 3 and 4.   Insertion loss 

and breakout transmission loss results are shown in Figures 5.5 and 5.6 
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respectively.  The agreement between full-scale and half-scale results is 

acceptable in both cases. 

 

Figure 5.5 Insertion loss comparison for 0.6 m  0.6 m HVAC duct. 

 

Figure 5.6 Breakout transmission loss comparison for 0.6 m  0.6 m HVAC duct. 
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5.4 Experimental Validation 

The scaling rules were first applied to unlined silencers shown in Figure 5.7. The 

0.35  scale silencer is shown next to the full-scale silencer. The full-scale silencer 

is manufactured with 1.27 cm thick polycarbonate plastic and the panel on top of 

the silencer is 0.76 mm thick steel while the 0.35  scale silencer is manufactured 

with 0.48 cm thick polycarbonate plastic and 0.25 mm thick steel panel. 

The transmission loss of both the full-scale and 0.35  scale silencers were 

measured using ASTM E2611 (ASTM E2611-09, 2009).  Though plane wave 

behavior exists in the inlet and outlet ducts, the cutoff frequency is approximately 

380 Hz in the expansion chamber.  The transmission loss measurement is 

compared in Figure 5.8. Simulation results for the full-scale model is also included 

for comparison. It can be seen that the results from the full-scale and 0.35  scale 

models have a good agreement. 

The breakout transmission loss was determined for each case by determining the 

incident power using wave decomposition in the inlet duct and then by measuring 

the radiated sound power of the upper plate using sound intensity scanning inside 

a hemi-anechoic chamber.  The breakout transmission loss is defined as 

 𝑇𝐿 10 log
𝑊
𝑊

 (5.28)

where 𝑊  and 𝑊  are the incident and radiated sound powers respectively.  

Radiated sound power is measured from the thin steel panel only which is 

dominant.  Breakout transmission loss results are compared in Figure 5.9 from the 

full-scale, 0.35  scale, and FEM Simulation models with good agreement. 
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Figure 5.7 Photograph of unlined full-scale and 0.35X scale models. 

 

Figure 5.8 Transmission loss for unlined full-scale and 0.35X scale silencers. 
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Figure 5.9 Breakout transmission loss for unlined full-scale and 0.35X scale 
silencers. 

The second validation test case is for the lined silencers shown in Figure 5.10. 

Sound absorptive material is attached to 3 sides of the expansion chamber.  The 

thin plate remains unlined. A schematic of the full-scale silencer with dimensions 

(in m) is shown in Figure 5.11. Notice that the bottom, left, and right sides are lined. 

It is difficult to precisely scale the flow resistivity in practice.  In this case, flow 

resistivity was roughly scaled by increasing the density of the fiber by a factor of 

1/0.35. 
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Figure 5.10 Photograph of lined full-scale and 0.35X scale models. 

 

Figure 5.11 Schematic showing dimensions for full-scale model (units in mm). 

A photograph of the transmission loss measurement setup for full-scale and 0.35  

scale models is shown in Figure 5.12. The transmission loss measurement results 

comparison between full-scale and 0.35  scale models is shown in Figure 5.13.  It 

can be seen that the results from the full-scale and 0.35  scale models compare 

acceptably over most of the frequency range. Breakout transmission loss results 
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are compared in Figure 5.14 from the full-scale, 0.35  scale, and FEM Simulation 

models with good agreement. 

 

Figure 5.12 Photographs showing full-scale and 0.35X scale silencers measured 
using ASTM E2611. 

 

Figure 5.13 Transmission loss for lined full-scale and 0.35X scale silencers. 
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Figure 5.14 Breakout transmission loss for lined full-scale and 0.35X scale 
silencers. 

Two more complicated silencers with two chambers were tested to validate the 

scaling rules. The photograph for the full-scale and 0.35  scale physical models 

is shown in Figure 5.15. They were developed based on the silencers used for test 

case 1. A baffle with two extended tubes is added to divide the single chamber into 

two chambers. Extended tubes would behave like quarter wavelength tubes and 

tend to be effective in relatively narrow frequency ranges. A schematic of the full-

scale silencer with dimensions (in m) is shown in Figure 5.16. 

Figure 5.17 shows the transmission loss measurement results comparison 

between full-scale and 0.35  scale models. It can be seen that the results 

from the full-scale and 0.35   scale models compare well over the whole 

frequency range. Simulation results are higher than measurement results 

between 400 and 600 Hz. As described in Chapter 3, this is almost certainly 

due to structureborne transmission path which should be the dominant sound 

path when acoustic attenuation is higher than 50 or 60 dB. However, the 

structureborne path was not included in the FEM simulation models. Breakout 
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transmission loss results are compared in Figure 5.18 from the full-scale, 

0.35  scale, and FEM Simulation models with good agreement.  

 

Figure 5.15 Photograph of 2-chamber reactive full-scale silencer. 

 

Figure 5.16 Schematic showing dimensions for 2-chamber reactive full-scale 
silencer (units in mm). 
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Figure 5.17 Transmission loss for 2-chamber reactive full-scale and 0.35× scale 
silencers. 

 

Figure 5.18 Breakout transmission loss for 2-chamber reactive full-scale and 

0.35× scale silencers. 
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The insertion loss of both the full-scale and 0.35X scale silencers shown in Figure 

5.15 were also measured. The sound intensity scanning method was used to 

determine the sound power radiation from the outlet of the straight pipe and 

silencer. The measurement setup is shown in Figure 5.19. The insertion loss 

results are compared in Figure 5.20. It can be seen that the results from the full-

scale and 0.35X scale models are in good agreement. 

 

Figure 5.19 Photographs showing full-scale and 0.35X scale silencers 
measurement setup. 
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Figure 5. 20 Insertion loss comparison for 2-chamber reactive full-scale and 
0.35X scale silencers. 

 

Figure 5.21 Photographs showing 2-chamber dissipative full-scale and 0.35X 
scale silencers. 

Two dissipative, full-scale and 0.35X scale, silencers shown in Figure 5.21 were 

also developed to validate scaling rules for insertion loss. The insertion loss results 
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comparison is shown in Figure 5.22. It can be seen that the 0.35× scale model 

agrees well with the full-scale model. 

 

Figure 5.22 Insertion loss comparison for 2-chamber dissipative full-scale and 
0.35X scale silencers. 

5.5 Conclusions 

Scaling rules have been recommended for HVAC ductwork that permit the 

determination of the insertion loss and breakout transmission loss.  The scaling 

rules have been validated using simulation and also via a simple measurement 

example.  It is notable that HVAC ducts including sound absorption are more 

difficult to scale because it may be difficult to find a suitable sound absorbing 

material of appropriate thickness and flow resistivity.  Nevertheless, acceptable 

agreement was demonstrated for a lined silencer with a thin panel on one side. 
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 VALIDATION OF BEM ANALYSIS OF LARGE SILENCERS 

USING FEM-AML 

(Note: Most of the research in this chapter has been previously documented in 

Ruan, Wu and Herrin (2015) and Ruan, Wu and Herrin (2018).) 

Silencers in use in the power generation industry generally have large ducts 

entering and leaving the silencer.  With large cross-sectional dimensions, the plane 

wave cutoff frequency will be exceeded at a low frequency so that transmission 

loss can no longer be evaluated by assuming constant sound pressure over a 

cross-section.  More sophisticated calculation and processing approaches are 

necessary.  In this research, the boundary element method is used in conjunction 

with a reciprocal identity method to determine the transmission loss for rectangular 

and circular cross-sections: the two configurations that cover most real-world 

designs. The boundary element method is compared to a finite element method 

strategy where the transmission loss is determined using a perfectly matched layer 

boundary condition at the inlet and outlet.  This approach can be used in most 

commercial software.  Though these two approaches have little in common, 

transmission loss results compare closely with one other.  Validation by 

comparison is helpful because analytical solutions are only available for simple 

axisymmetric cases.  Methods are compared for practical configurations like 

parallel-baffle silencers and reactive silencers. 

6.1 Introduction 

Large-scale silencers are commonly employed to reduce the noise from air moving 

and handling systems and power generation equipment.   In commercial buildings, 

unlined and lined plenums are inserted into ductwork or sections of ductwork are 

lined with sound absorption on the periphery.  Parallel-baffle silencers or splitters 

are placed inside air handlers to reduce noise at the source.  Similar, but much 

larger sized, configurations are placed into the air flow after gas turbines in heat 

recovery steam generators for example.  Sound absorptive material is arranged in 
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parallel baffles, bars, or other inventive configurations.  In each of the 

aforementioned applications, resonators are often being integrated into the 

silencers in an effort to reduce low frequency tonal noise while not disrupting the 

air flow. 

Noise control engineers routinely use the ASHRAE Handbook (ASHRAE, 2015) to 

estimate noise attenuation from plenums and baffles.  As noted in Chapter 2, only 

select sizes are included in the Handbook tables, tabulated results for plenums are 

suspect, and lined duct equations are only for ducts under 3 m in length.  For 

parallel-baffle silencers, the design curves of Vér et al. (1978) have been 

reproduced in several texts and are routinely used to estimate attenuation.  Though 

very useful, results do not consider the full range of configurations seen in industry.  

As noted earlier, resonators are being integrated into sound absorber packages in 

pine tree, bar, and baffle configurations. 

As stakeholders and customers become more insistent about sound quality and 

reduced noise levels, industry is looking to design for noise earlier in the design 

process.  Higher fidelity models are needed and commercial finite element 

software is routinely being used.  The most seminal work is arguably by Cummings 

and Astley (1996) and Kirby (2005).  Cummings and Astley (1996) determined the 

attenuation of square bar silencers.  Kirby et al. (2012) also compared the 

performance of bar to parallel baffle silencers.  Kirby and Lawrie (2005) and Lawrie 

and Kirby (2006) used a hybrid finite element method (FEM) with either a point 

collocation approach or a mode matching scheme that used a two-dimensional 

FEM on a typical cross section to extract the modes and then used modal 

expansion for wave propagation along the axial direction: an important contribution 

since it permitted a computationally efficient and accurate calculation of 

transmission loss which did not depend on plane wave propagation in the inlet or 

outlet ducts leading to the silencer.   

In roughly parallel work, Lou et al. (2003) developed a direct mixed body boundary 

element method (BEM) formulation which is especially convenient for silencer 
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analysis.  Boundaries are meshed instead of the air itself making model 

preparation simple.  However, it is well known that BEM methods are more 

computationally intensive than FEM.  To reduce the computational time, Lou et al. 

introduced a substructure approach (Lou et al., 2003) which has the added 

advantage of having many standard template elements which can be assembled 

in series further reducing the model preparation time.  For example, a very long 

lined duct can be broken up into a number of shorter duct elements.  As 

demonstrated in Figure 6.1 on a bar silencer, only three short sections of a bar 

silencer are simulated.  All the substructure impedance matrices are then 

combined into a resultant impedance matrix (Lou et al., 2003).  Whereas, 

computational effort would be prohibitive for a long duct or large cross-sectional 

dimension, the template and consequently the entire duct can be solved in several 

orders of magnitude less time. 

 

Figure 6.1 Schematic showing a bar silencer model with three substructures 

Complex characteristics such as perforates, thin baffles, and sound absorbing 

material models (Jiang et al, 2010) can be incorporated into the model.  For 

silencers where plane wave propagation is assured in the inlet and outlet, the 

resultant boundary element impedance matrix is lumped into a 2 2  transfer 
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matrix for transmission loss computation (Lou et al., 2003).  At frequencies below 

the plane-wave cutoff of the inlet/outlet, the answer is exact.  However, above the 

plane-wave cutoff, sound pressure is no longer constant across the cross-section. 

To deal with this issue, Zhou et al. (2016) proposed a reciprocal identity method 

that couples two independent sound fields by the reciprocal identity integral.  The 

first sound field is an analytical solution with a non-reflective condition at the outlet 

and a unit incident plane wave at the inlet.  This is the exact sound field under 

which the transmission loss is defined.  The second sound field can be generated 

from any random boundary condition set applied to the inlet and outlet.  The 

impedance matrix computed by the boundary element solution can provide a large 

number of solutions based on a number of boundary condition sets.  A least-

squares solver is then used on the overdetermined system of equations.  Zhou et 

al. (2016) derived the reciprocal identity formulation for axisymmetric silencers only, 

and validated the formulation by comparing to an analytical solution of a simple 

axisymmetric round bar silencer.   While giving some confidence, the axisymmetric 

analytical solution used for comparison in Zhou et al. (2016) did not converge 

above 4100 Hz.  Correlation is promising but hardly conclusive for a wide range of 

cases. 

As an alternative to the reciprocal identity method, Wang and Wu (2016) proposed 

a so-called “impedance-to-scattering matrix method”.  In contrast to the integral-

based reciprocal identity method, the impedance-to-scattering method is a 

collocation-based method.  The method directly converts the BEM impedance 

matrix into a so-called “scattering matrix” that relates the modal amplitudes at the 

inlet and outlet.  The transmission loss computation will then follow after 

prescribing a unit incident plane wave at the inlet and making the outlet non-

reflective.  Though collocation based, the impedance-to-scattering matrix method 

does produce an almost identical transmission loss as the reciprocal identity 

method for the simple axisymmetric bar silencer reported in Refs. (Zhou et al., 

2016; Wang and Wu, 2016).                
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In the paper, the axisymmetric reciprocal identity method in Zhou et al. (2016) is 

first re-derived for more general non-axisymmetric circular and rectangular 

inlet/outlet configurations which encompasses most industry applications.  For 

validation purposes, there is little measurement data to compare to and analytical 

solutions are limited to simple axisymmetric silencers (Zhou et al., 2016; Wang and 

Wu, 2016).   Although the reciprocal identity method can be compared to the 

impedance-to-scattering matrix method, both methods are based on the identical 

BEM impedance matrix (Lou et al., 2003).  The comparison is useful but not as 

conclusive as desired.  It is preferable to compare to a method that has nothing in 

common with the BEM. 

Hence, BEM transmission loss solutions are compared to FEM in this work.  The 

FEM approach selected is a general-purpose method and not as efficient as the 

hybrid method (Kirby, 2005; Kirby et al., 2012; Kirby and Lawrie, 2005; Lawrie and 

Kirby, 2006) but can be used in most commercial software packages including 

Siemens Virtual.Lab, ANSYS Acoustics, MSC ACTRAN, and other packages.  It is 

well known that the insertion and transmission loss are equivalent if both ends of 

the silencer are non-reflective or anechoic.  A non-reflective boundary condition 

can be applied using a perfectly matched layer (PML) boundary condition 

(Berenger, 1994; Tam et al., 1998; Vansant and Hallez, 2014).  The PML requires 

a relatively thin mesh of the absorbing layer that should be adjusted depending on 

the acoustic wavelength.  Siemens Virtual.Lab (2017) uses a special 

implementation termed an automatically matched layer (AML) (Vansant et al., 

2014) that makes the mesh adjustments transparent to the user.   
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Figure 6.2 Schematic showing the equivalent TL (from IL) using FEM-AML 

As shown in Figure 6.2, two configurations are needed to determine the insertion 

loss: one is a straight duct and the other with the silencer.  By definition, the 

radiated sound power difference between these two configurations is the insertion 

loss.  To determine the transmission loss, an incident plane wave is prescribed at 

the inlet of both configurations in Figure 6.2.  While the sound power radiated from 

the straight duct can be easily calculated using a closed form solution, the sound 

power radiated from the silencer is calculated via the FEM with PML or AML 

boundary conditions applied.  The sound source used in LMS Virtual.Lab to 

simulate an incident plane wave is a circular/rectangular specific duct mode 

boundary condition. 

The primary contribution of this paper is to validate both the direct mixed body BEM 

and FEM using PML.  A number of common large silencer configurations are 

considered including three different bar silencers, a lined duct, and a parallel baffle 

silencer.  The degree of correlation is such that both computational approaches 
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are validated.  It is noteworthy that the direct mixed body BEM is a specialized 

approach that is not commercially available and is customized to this application.  

However, the FEM insertion loss approach can be utilized in most commercial FEM 

packages and is expected to be of interest to a wider audience.       

One example included has one inlet and two outlets.  In the BEM approach with 

either the reciprocal identity (Zhou et al., 2016) or the impedance-to-scattering 

matrix (Wang and Wu, 2016), two independent modal expansions are applied to 

the two outlets and the total transmitted sound power is simply the sum of the two 

individual transmitted sound powers at the duct.   Aside from that, the approach is 

identical to the single-inlet single-outlet case. 

6.2 BEM Impedance Matrix 

Equation (6.1) shows the definition of the BEM impedance matrix 𝑍  that relates 

the sound pressures 𝑝  at the inlet (denoted 𝑖 ) and outlet (denoted 𝑗 ) to the 

corresponding particle velocities 𝑣 (Lou et al., 2003):  

 

⎩
⎪
⎨
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⎧

𝑝
⋮

𝑝
𝑝

⋮
𝑝 ⎭

⎪
⎬

⎪
⎫ 𝑍 ⋯ 𝑍  

⋮ ⋱ ⋮
𝑍 ⋯ 𝑍  

⎩
⎪
⎨

⎪
⎧

𝑣
⋮

𝑣
𝑣

⋮
𝑣 ⎭

⎪
⎬

⎪
⎫

 (6.1)

where 𝑔  and ℎ  are the number of boundary elements at the inlet and outlet 

respectively.  The impedance matrix can be obtained by application of a 𝑣 1 

boundary condition on each element at the inlet and outlet successively. 

In Lou et al. (2003), the impedance matrix of each substructure is first obtained by 

the BEM, and all the substructure impedance matrices are then combined to form 

the resultant impedance matrix for the silencer.  For the resultant impedance matrix, 

each column represents a unique sound field that can be used for reciprocal 

identity coupling (Zhou et al., 2016).  In the case of the impedance-scattering 
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matrix method (Wang and Wu, 2016), modal expansions are directly applied at the 

center of each constant boundary element at the inlet and outlet. 

6.3 Reciprocity Identity 

Let 𝑝  and 𝑝  represent two different sound pressures corresponding to two 

distinct sound fields, 𝐴 and 𝐵, respectively.  Corresponding particle velocities are 

𝑣  and 𝑣 , respectively.  The two distinct sound fields are related to each other on 

the same muffler by the reciprocal identity (Zhou et al., 2016), 

 𝑝 𝑣 𝑝 𝑣 dS 0 (6.2)

where 𝑆  is the inlet, and 𝑆  is the outlet. 

In Equation (6.2), 𝐴 may be considered as a theoretical sound field with a unit 

incident plane wave applied to the inlet and a non-reflective boundary condition 

(not necessarily the characteristic impedance boundary condition, which is only 

valid below the cutoff) at the outlet.  This is the exact condition under which the 

transmission loss is defined.   Naturally there will be many unknown modal 

amplitudes in the theoretical modal expansion.    On the other hand, 𝐵 in Equation 

(6.2) may represent the BEM solution corresponding to a random boundary 

condition set applied to the inlet and outlet.  The 𝐵 solution is not related to the 

transmission loss definition.  When a random boundary condition set is selected 

for 𝐵, Equation (6.2) produces a constraint equation that relates all the unknown 

amplitudes in 𝐴.  Depending on how many unknown modal amplitudes are used in 

the modal expansion for 𝐴, a minimum number of random boundary condition sets 

must be selected for 𝐵 to couple with 𝐴 in Equation (6.2).  The BEM impedance 

matrix can naturally provide a large number of such “random” BEM solutions 

because each column of the matrix in Equation (6.1) corresponds to a unique 

velocity boundary condition set.   The overdetermined system is then solved by a 

least-squares solver. 
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6.4 Non-axisymmetric Circular Inlet and Outlet 

 

Figure 6.3  Silencer with a non-axisymmetric circular inlet/outlet 

Figure 6.3 shows a generic non-axisymmetric silencer with a circular inlet and a 

circular outlet.  The silencer chamber itself does not need to be circular, though.  

Instead, the chamber cross section can be rectangular, circular, elliptical, or of any 

arbitrary shape: most industrial silencers falling into this category. 

With reference to Figure 6.3, the sound field 𝐴 in the inlet duct can be written in a 

modal expansion in cylindrical coordinates.  Let the incident wave 𝐶 in Figure 6.3 

be a unit plane wave.  The sound pressure and particle velocity at the inlet cross 

section are 

 𝑝 , 𝑟, 𝜃 1 𝐷 𝑒 𝐷 𝑒 𝐽 𝑘 , 𝑟  (6.3)

and 

 
𝑣 , 𝑟, 𝜃

𝑘 ,

𝜌𝜔
𝑘 ,

𝜌𝜔
𝐷 𝑒 𝐷 𝑒 𝐽 𝑘 , 𝑟 (6.4)

respectively, where Jm is the Bessel function of the first kind of order m,  𝐷  and 

𝐷   are the unknown modal amplitudes, 𝑘 ,  is the radial wavenumber, and 
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𝑘 ,  is the axial wave number.  The radial wavenumber 𝑘 ,  must satisfy the 

zero-velocity boundary condition on the rigid wall  

 𝐽 𝑘 , 𝑅 0 (6.5)

where 𝑅  is the radius of the inlet, and the prime means the derivative.   The axial 

wavenumber 𝑘 ,  and the radial wavenumber 𝑘 ,  are related to each other by 

 𝑘 , 𝑘 𝑘 ,  (6.6)

Similarly, the sound pressure and particle velocity at the outlet cross section with 

𝐹 0 due to no reflection are 

 𝑝 , 𝑟, 𝜃 𝐸 𝑒 𝐸 𝑒 𝐽 𝑘 , 𝑟  (6.7)

and 

 𝑣 , 𝑟, 𝜃
𝑘 ,

𝜌𝜔
𝐸 𝑒 𝐸 𝑒 𝐽 𝑘 , 𝑟  (6.8)

respectively. Note that the above z-direction velocity at the outlet needs to be 

flipped when used in the reciprocal identity integral since the normal in Equation 

(6.2) is pointing inward. 

The infinite number of modes can be truncated to a finite number because most 

evanescent modes are nearly undetectable at the inlet and outlet.  A few 

evanescent modes may still be included just in case.  Initially, two large numbers, 

𝑀  and 𝑁 , are selected for the numbers of modes in the 𝜃  and 𝑟  directions, 

respectively. These initial 𝑀 times 𝑁 modes form a large pool and are then ranked 

in the order of their “cut-in frequencies”.  The cut-in frequency of a propagating 

mode is defined by the highest frequency before 𝑘 ,  becomes purely imaginary.  

The first 𝑁𝑇 modes ranked below the highest frequency of interest (for example, 
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8000 Hz) are then automatically selected from the pool according to their cut-in 

frequency rank.  It is recommended that these NT modes should include at least 

one evanescent mode.   As such, there are a total of 4𝑁𝑇 unknowns, 𝐷 , 𝐷 , 

𝐸 , 𝐸 .  We then apply the reciprocal identity at least 4𝑁𝑇 times: each time with 

the BEM solution taken straight from a column of the impedance matrix in Equation 

(6.1).  The number of boundary elements at the inlet and outlet, 𝑔  ℎ , should 

be greater than 4𝑁𝑇 .  This yields a 𝑔 ℎ 4𝑁𝑇  overdetermined system of 

equations  

 𝑨𝒙 𝒃 (6.9)

where 𝑨 𝑎   𝑎   𝑎   𝑎  𝑞 1, 2, … , 𝑔 ℎ;  𝑙 1, 2, … , 𝑁𝑇  is 

the system matrix, x is the unknown vector, and 𝒃 𝑏  is the right-hand side 

vector.  The explicit expressions for 𝑎 , 𝑎 , 𝑎 , 𝑎  and 𝑏  are 

 𝑎 𝑣 , ,
𝑘 ,

𝜌𝜔
𝑝 , , 𝑒 𝐽 𝑘 , 𝑟 𝑑𝑆 (6.10)

 

 𝑎 𝑣 , ,
𝑘 ,

𝜌𝜔
𝑝 , , 𝑒 𝐽 𝑘 , 𝑟 𝑑𝑆 (6.11)

 

 𝑎 𝑣 , ,
𝑘 ,

𝜌𝜔
𝑝 , , 𝑒 𝐽 𝑘 , 𝑟 𝑑𝑆 (6.12)

 

 𝑎 𝑣 , ,
𝑘 ,

𝜌𝜔
𝑝 , , 𝑒 𝐽 𝑘 , 𝑟 𝑑𝑆 (6.13)

 

 𝑏 𝑣 , ,
1

𝜌𝑐
𝑝 , , d𝑆 (6.14)
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where the subscript 𝐵 denotes the sound field 𝐵 from the BEM impedance matrix, 

𝑖 the inlet, 𝑜 the outlet, 𝑞 the q-th boundary condition set, 𝑙 the l-th mode, and each 

l is associated with a specific (m, n) pair when the modes are ranked according to 

their cut-in frequencies.  After the 4𝑁𝑇 unknowns are determined from Equation 

(6.9) by using a standard least-squares solver, the transmitted sound power 𝑊  at 

the outlet can be evaluated, and the 𝑇𝐿 computation will follow. 

6.5 Rectangular Inlet and Outlet 

For silencers with a rectangular inlet and a rectangular outlet, the sound pressure 

can be expressed by a modal expansion in Cartesian coordinates with the origin 

placed at the lower left corner of the rectangular cross section.  After specifying a 

unit incident plane wave, the sound pressure and particle velocity at the inlet cross 

section are 

 
𝑝 , 𝑥, 𝑦 1 𝑝 , , 𝑐𝑜𝑠 𝑘 , 𝑥 𝑐𝑜𝑠 𝑘 , 𝑦  (6.15)

and 

 𝑣 , 𝑥, 𝑦
𝑘 ,

𝜌𝜔
1

𝜌𝜔
𝑘 , 𝑝 , , 𝑐𝑜𝑠 𝑘 , 𝑥 𝑐𝑜𝑠 𝑘 , 𝑦  (6.16)

respectively, where the subscript 𝑖 means the inlet, and – denotes the reflected 

waves, respectively.  The wavenumbers in the 𝑥 and 𝑦 directions are  

 𝑘 ,
𝑚𝜋
𝑑

 (6.17)

and 

 𝑘 ,
𝑛𝜋
𝑑

 (6.18)
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where 0, 1, 2, ⋯  , 𝑛 0, 1, 2, ⋯  , 𝑑  and 𝑑  are the dimensions of the inlet or 

outlet in the 𝑥 and 𝑦 directions, respectively.  The three wavenumbers 𝑘 , , 𝑘 ,  

and k ,   are related by 

 𝑘 , 𝑘 𝑘 , 𝑘 ,  (6.19)

Similarly, the sound pressure and particle velocity at the outlet with a non-reflective 

boundary are 

 𝑝 , 𝑥, 𝑦 𝑝 , , 𝑐𝑜𝑠 𝑘 , 𝑥 𝑐𝑜𝑠 𝑘 , 𝑦  (6.20)

and 

 𝑣 , 𝑥, 𝑦
1

𝜌𝜔
𝑘 , 𝑝 , , 𝑐𝑜𝑠 𝑘 , 𝑥 𝑐𝑜𝑠 𝑘 , 𝑦  (6.21)

respectively, where + denotes the transmitted waves and the subscript 𝑜 denotes 

the outlet.   Note that the above z-direction velocity at the outlet needs to be flipped 

when used in the reciprocal identity integral since the normal in Equation (6.2) is 

pointing inward. 

 As in the non-axisymmetric circular case, a finite number of 𝑁𝑇 modes are 

selected from a large pool according to their cut-in frequency rank.  There are 2𝑁𝑇 

unknown amplitudes.  These 2𝑁𝑇  unknowns can be solved by applying the 

reciprocal work identity at least 2𝑁𝑇 times, each time with the BEM solution taken 

straight from a column of the impedance matrix in Equation (6.1). This yields a 

𝑔 ℎ 2𝑁𝑇 overdetermined system of equations in the same form as Equation 

(6.9), in which 𝐴 𝑎 , 𝑎  is the system matrix with 𝑞 1,2, ⋯ , 𝑔 ℎ  and 

𝑙 1,2, ⋯ , 𝑁𝑇, 𝑥 is the unknown vector, and 𝑏 𝑏  is the right-hand side vector.  

The explicit expressions for 𝑎 , 𝑎  and 𝑏  are 
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𝑎 𝑣 , ,

𝑘 ,

𝜌𝜔
𝑝 , , 𝑐𝑜𝑠 𝑘 , 𝑥 𝑐𝑜𝑠 𝑘 , 𝑦 𝑑𝑆 (6.22)

 

 
𝑎 𝑣 , ,

𝑘 ,

𝜌𝜔
𝑝 , , 𝑐𝑜𝑠 𝑘 , 𝑥 𝑐𝑜𝑠 𝑘 , 𝑦 𝑑𝑆 

So

 (6.23)

 

 𝑏 𝑣 , ,
1

𝜌𝑐
𝑝 , , d𝑆 (6.24)

where 𝐵 denotes sound field 𝐵 taken from the BEM impedance matrix, 𝑖 the inlet, 

𝑜  the outlet, 𝑞  the 𝑞  boundary condition set, 𝑙  the 𝑙  mode, and each 𝑙  is 

associated with a specific 𝑚, 𝑛  pair when the modes are ranked according their 

cut-in frequencies.  After the 2𝑁𝑇  unknown amplitudes are determined from 

Equation (6.9), the transmitted sound power and transmission loss can be 

computed through Equations (6.25) – (6.28). 

 𝑊
𝑅𝑒 𝑘 ,

2𝜌𝜔
𝑝 , , 𝐼  (6.25)

where 

 𝐼 𝑐𝑜𝑠 𝑘 , 𝑥 𝑐𝑜𝑠 𝑘 , 𝑦 𝑐𝑜𝑠 𝑘 , 𝑥 𝑐𝑜𝑠 𝑘 , 𝑦  d𝑆 (6.26)

The above integral can be integrated analytically.  The result is  

 𝐼

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑑 𝑑 𝑚 0, 𝑛 0
𝑑 𝑑

2
        𝑚 0, 𝑛 0

𝑑 𝑑  
2

        𝑚 0, 𝑛 0

𝑑 𝑑  
4

𝑚 0, 𝑛 0

 (6.27)
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The incident sound power at the inlet is simply based on a unit plane wave.  Finally, 

the 𝑇𝐿 is 

 𝑇𝐿 10log
1

2𝜌𝑐𝑊
∙

𝑆
𝑆

 (6.28)

 

6.6 Test Cases and FEM-AML Validation 

A simulation campaign was performed to compare direct mixed body BEM and 

FEM with automatically matched layer (AML) implementation of PML.  The 

commercial software Siemens Virtual.Lab was used for the FEM simulations. 

1．Circular Bar Silencer 

A simple circular bar silencer reported in Zhou et al. (2016) and Wang and Wu 

(2016) is revisited here as the first test case.  It is pointed out in Zhou et al. (2016) 

and Wang and Wu (2016) that the eigenvalue solver in the analytical solution fails 

to converge above 4100 Hz.  A schematic of the silencer is shown in Figure 6.1.  

Key dimensions are 𝑟 0.254 𝑚, 𝑟 0.342 𝑚, 𝐿 6 𝑚, and 𝑑 0.2 𝑚. The bar 

is modeled via the fiber equation of Delaney and Baley (1970) with a flow resistivity 

of 16000 Rayl/m.  A 30% open perforated sheet is assumed to protect the 

absorptive bar and is modeled by the transfer impedance approach by Sullivan 

and Crocker (1978).  Both ends of the bar are assumed rigid (i.e., non-absorptive). 
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Figure 6.4 Comparison of the BEM, FEM, and the analytical solutions for the 
axisymmetric round bar silencer 

Figure 6.4 compares the BEM, FEM, and analytical solutions.  The three solutions 

compare well with one another.  The FEM solution is presented up to 2500 Hz due 

to the size of the problem and the memory constraint on our available computer 

hardware.  A commercial code is used and so it will not have the substructure 

capabilities that a specialized software might have.  The plane-wave cutoff 

frequency of 612 Hz is indicated in Figure 6.4.  The primary purpose of revisiting 

this simple axisymmetric test case is to demonstrate that both computational 

approaches compare well with an analytical solution. 

2．Lined Expansion Chamber with Offset Inlet and Outlet Ducts 

The second example is a lined cylindrical duct with offset inlet and outlet ducts 

shown in Figure 6.5.  To our knowledge, there is not an analytical solution available 

at frequencies above the inlet and outlet duct plane wave cutoff.   The length of the 

expansion chamber is relatively short at 0.5 m and permits solution up to 8000 Hz 

using both approaches.  The thickness of the liner is 5 cm and has a flow resistivity 

of 16000 Rayls/m.  It may be modeled using either a locally-reacting impedance 
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boundary condition or as a bulk-reacting absorber.  In this research, it is modeled 

using a bulk reacting approach in both BEM and FEM. 

 

Figure 6.5 Schematic showing a lined circular expansion chamber with an offset 
circular inlet/outlet configuration (dimensions in m) 

At room temperature, the cutoff frequency of the 0.2-m diameter inlet/outlet is 1005 

Hz.  Under 8000 Hz, there are 34 propagating modes, and we select 𝑁𝑇 35 in 

the reciprocal identity method to include one evanescent mode.  Figure 6.6 

compares the BEM and the FEM solutions up to 8000 Hz.  It is observed that both 

solutions compare very well.  Of particular note, the sound absorption is relatively 

thin and does not completely flatten out the peaks and troughs above 1000 Hz.  

These characteristics of the transmission loss are detected using both BEM and 

FEM. 
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Figure 6.6 Comparison between the BEM and FEM solutions for the circular 
simple expansion chamber with offset inlet/outlet. 

3．Two Cylindrical Bar Silencers Positioned in Duct 

The third example features two circular bars housed in a circular chamber as 

shown in Figure 6.7.  The two bars have a flow resistivity of 16000 Rayls/m and 

are covered by a 30% open perforated protective sheet.  The cutoff frequency of 

the 0.8 m diameter inlet/outlet is 250 Hz. 

Figure 6.8 compares the transmission loss for both BEM and FEM.  There is 

excellent agreement.  For the BEM simulation, three substructures were used: the 

second substructure consisting of a template repeated 28 times.  Under 8000 Hz, 

there are 432 propagating modes, and we select 𝑁𝑇 433  to include one 

evanescent mode.  Due to the size of the problem, FEM results are presented up 

to 5550 Hz due to hardware limitations.  Nonetheless, both solutions compare very 

well with each other up to the reachable frequency.  
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Figure 6.7 Schematic showing a non-axisymmetric bar silencer (dimensions in m) 

 

Figure 6. 8 Comparison between the BEM and FEM solutions for the non-
axisymmetric bar silencer 

4．Two Cylindrical Bar Silencers Positioned in Expansion Chamber 

The next case is a modified design of the dual-bar silencer of the third test case.  

As shown in Figure 6.9, the two bars and the chamber have the same dimensions 

as in the third test case except that the inlet and outlet ducts now have a much 

smaller diameter and are offset by distance of 0.4 m from the inlet and outlet ducts 



110 

 

openings.  This silencer is far more complicated than the prior example since it will 

have both dissipative and reactive features.  At room temperature, the cutoff 

frequency of the 0.2 m diameter inlet/outlet ducts is 1005 Hz. 

 

Figure 6.9 Schematic showing a dual-bar silencer (Unit: m) 

Figure 6.10 compares the BEM and FEM solutions with good agreement.  Under 

8000 Hz, there are 34 propagating modes at the inlet and outlet, and we select 

𝑁𝑇 35 to include one evanescent mode.  As in the third test case, the FEM 

analysis stops at 5500 Hz due to the problem size whereas BEM results are 

presented up to 8000 Hz.  Again, three substructures were used with the second 

substructure repeated 28 times.  It is noteworthy that the impedance matrix of the 

central part can be taken directly from the prior test case without re-modeling in 

the BEM. 

Both solutions compare very well but the transmission loss curve has greater 

variation.  This silencer has reactive characteristics due to the difference in cross-

sectional area between inlet/outlet ducts and the chamber.  With no cross 

comparison between BEM and FEM, one would have much less confidence in 

either solution.  This test case also demonstrates the value of having a second tool 

available to validate the first solution. 
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Figure 6.10 Comparison between the BEM and FEM solutions for the dual-bar 
silencer 

5．Parallel-Baffle Silencer 

Rectangular parallel-baffle silencers are commonly used in gas turbine, air handler, 

and power generation enclosure applications.  A typical rectangular parallel-baffle 

silencer as shown in Figure 6.11 was simulated next.  Key dimensions are 𝐷

0.61 𝑚, 𝑑 0.05 𝑚, ℎ 0.05 𝑚, 𝐿 0.91 𝑚 and 𝐿 0.1 𝑚. The cutoff frequency 

is 641 Hz. 

Figure 6.12 compares BEM and FEM with good agreement.   Under 8000 Hz, there 

are 641 propagating modes, and we select 𝑁𝑇 642 to include one evanescent 

mode.  BEM analysis extends up to 8000 Hz using three substructures with the 

second substructure repeated 8 times whereas FEM was used up to 6000 Hz. 
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Figure 6.11 Schematic showing a rectangular parallel-baffle silencer 

 

 

Figure 6.12 Comparison between the BEM and FEM solutions for the rectangular 
parallel-baffle silencer 
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6．Single-Inlet Two-Outlet Muffler 

 

Figure 6.13 Expansion chamber with one inlet and two outlets (dimensions in m) 

 

Figure 6.14 Comparison between the BEM and FEM solutions for the expansion 
chamber with one inlet and two outlets 

The final case is single-inlet two-outlet muffler as shown in Figure 6.13.  The 

silencer is unlined with a plane-wave cutoff frequency of 2510 Hz in the inlet and 

outlet ducts.  To consider the higher-order modes, we select 𝑀 6 and 𝑁 6.  
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Figure 6.14 compares the BEM solution using the impedance-to-scattering matrix 

method (Wang and Wu, 2016) to the FEM-AML solution.  It is evident that both 

methods compare very well up to 8000 Hz.  This case validates that both the BEM 

and FEM-AML can be used to examine multiple-outlet silencers which are common 

in the HVAC industry. 

6.7 Conclusions 

The direct mixed body BEM and the FEM with AML were used to predict the 

transmission loss of several large silencers.  The direct mixed body BEM is a 

specialized approach which has been customized for the simulation of large 

silencers.  It includes the ability to template components of mufflers which 

appreciably reduces the computational time.  Either the reciprocal identity method 

(Zhou, 2016) or the impedance-to-scattering method (Wang and Wu, 2016) can 

be used in BEM to assess the transmission loss above the cutoff frequency.  This 

is compared to a less specialized FEM strategy.  An AML boundary condition is 

applied at both the inlet and outlet so both source and termination are anechoic: 

transmission and insertion loss are equivalent to each other in this case.  Insertion 

loss is determined as the difference in transmitted sound power without and with 

the silencer in place. 

A simulation campaign was performed and excellent agreement was observed in 

each case.  Several reactive mufflers are included which exhibit a good deal of 

variation of transmission loss as a function of frequency.  The degree of correlation 

between methods serves to validate both approaches. 

Though a specialized BEM or FEM approach will be more computationally efficient, 

it is anticipated that noise and vibration simulation specialists in industry will 

gravitate more towards the FEM approach since it can be applied in most 

commercial software packages. 

  



115 

 

 A POWER APPROACH TO PREDICT ACOUSTIC 

PERFORMANCE FOR HVAC DUCT SYSTEM 

(Note: Most of the research in this chapter has been previously documented in 

Ruan, Herrin and Wu (2018).) 

The transfer matrix approach is commonly used to simulate mufflers below the 

plane wave cutoff frequency.  Transfer matrices have been developed for common 

muffler elements and models can be solved in seconds.  In this paper, a similar 

power transfer matrix method is detailed which is applicable to systems above the 

cutoff frequency.  To determine the 2X2 power transfer matrix, a scattering matrix 

calculated using the boundary element method is reduced to the power transfer 

matrix.  The procedure for doing so is outlined.   Although the reduction from the 

full scattering matrix to the 1-D power transfer matrix provides only an 

approximation, it works seamlessly with other 1-D analysis tools and first-mode 

analytical solutions for a cascaded exhaust design.  Several examples are 

provided to validate and demonstrate the proposed method. 

7.1 Introduction 

Large and extensive duct systems are commonly employed in the HVAC and 

power generation industries.  Deterministic models are difficult due to the large 

dimensions.  For example, HVAC systems normally include multiple components 

connected in series including ducts, elbows, and plenums.  At this juncture, most 

predictions are conducted using the tables and equations in the ASHRAE 

Handbook (ASHRAE, 2015).  The virtue of the Handbook is that the equations are 

easily understood and simple to program in a spreadsheet.  On the other hand, 

Chapter 3 reviewed the Handbook for accuracy and noted several limitations for 

longer lined ducts and plenums so accuracy is suspect. 

At low frequencies (i.e., below the plane wave cutoff frequency of the inlet and 

outlet), there are several conventional approaches for evaluating the transmission 

loss (TL) of a silencer. The most notable of these is the transfer matrix method of 
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Munjal (2014).  A complicated duct system is modeled as a series of 2 2 matrices 

that can be multiplied together to form a 2 2 matrix for the entire system.  From 

this system matrix, the transmission loss is easily calculated.  Matrices for most 

standard duct components are readily available in the literature.  However, that is 

not the case above the cutoff frequency. 

For HVAC components and other large silencer elements, numerical methods 

must be used because the cutoff frequency will be relatively low in frequency.  

Cummings and Astley (1996) used the finite element method (FEM) to study the 

acoustical behavior of square bar silencers.  In similar work, Kirby and Lawrie 

(2005, 2006) proposed a hybrid FEM with either a point collocation approach or a 

mode matching scheme. Zhou et al. (2016) proposed a reciprocal identity method 

to be used in conjunction with the boundary element method (BEM) for large 

silencer analysis. In Chapter 3, the finite element method was used to determine 

the attenuation of standard HVAC components including structureborne flanking 

effects. 

Although FEM and BEM simulation can be used to model a HVAC duct system 

without too much trouble in theory, a full 3D analysis of a duct network at high 

frequencies is CPU and time consuming. An approximate 1D analysis tool similar 

to the conventional four-pole transfer matrix approach can be beneficial for 

engineers in industry. In a large exhaust or HVAC network, many components may 

just be simple straight unlined or lined ducts and can be modeled analytically even 

at high frequencies.  On the other hand, more complex components must be 

modeled by the FEM or BEM. A hybrid approach that can bridge the gap between 

the simple analytical solution and the more complex numerical solution will reduce 

the computational cost significantly. 

In very recent work, Nashed et al. (2018) developed a power scattering matrix 

approach for the analysis of ductwork above the plane wave cutoff frequency. 

Scattering matrices for a number of standard components were developed based 

on measurement campaigns documented in the aforementioned ASHRAE 
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Handbook and VDI 2081 (VDI, 2001).  The current effort is directly related to that 

work.    

In this chapter, it is shown that a 2 2 power transfer matrix, which is a simple 

rearrangement of the scattering matrix of Nashed et al. (2018), can be reduced 

from the full scattering matrix obtained from BEM simulation. Although the 

reduction from the full scattering matrix to the 2 2 power transfer matrix provides 

only an approximation, the procedure can be used to develop 2 2  power transfer 

matrices for non-standard components. Several examples are provided to validate 

and demonstrate the proposed method. 

7.2 Scattering Matrix 

Wang and Wu (2016) developed a so-called “impedance-to-scattering matrix 

method” that converts the BEM impedance matrix to the scattering matrix.  The 

scattering matrix of a large silencer relates the transmitted wave amplitudes at the 

outlet and the reflected wave amplitudes at the inlet to the incident wave 

amplitudes at the inlet and the reflected wave amplitudes at the outlet as follows: 
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 (7.1)

where 𝑁 is the total number of modes used in the modal expansion at the inlet and 

outlet. It is noted that all propagating modes along with a few evanescent modes 

are included in the above relationship. 
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7.3 Power Transfer Matrix 

If the large 2𝑁 2𝑁 scattering matrix in Equation (7.1) has to be condensed to a 

small 2 2 transfer matrix, the relationship must be written in terms of sound 

power instead of sound pressure amplitudes.  This is especially true at high 

frequencies.  The sound power transfer matrix is defined by 

 
𝑊
𝑊

𝑇 𝑇
𝑇 𝑇

𝑊
𝑊

 (7.2)

With reference to Figure 7.1, 𝑊  and 𝑊  are the incident and the reflected sound 

power at the inlet, respectively;  𝑊  and 𝑊  are the transmitted and the reflected 

sound power at the outlet, respectively. 

 

Figure 7.1 Schematic showing incident, reflected and transmitted sound power at 
the inlet and outlet. 

To have a well-posed boundary-value problem, Equation (7.2) must be rearranged 

so that the input at the inlet and the termination condition at the outlet are placed 

on the right-hand side.  That is,  

 
𝑊
𝑊

𝑆∗ 𝑆∗

𝑆∗ 𝑆∗
𝑊
𝑊

 (7.3)

To obtain the first column of the matrix in Equation (7.3), we assume that the 

incident wave at the inlet is a unit plane wave and the outlet is non-reflective.  In 

other words, use 𝒑𝟏 1,0,0, … , 0  and 𝒑𝟐 0,0,0, … , 0 in Equation (7.1).  Once 
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the reflected and transmitted sound pressure amplitudes are solved from Equation 

(7.1), the sound power of each 𝑊 in Figure 7.1 can be calculated by 

 𝑊
𝐴

2𝜌𝜔
𝑅𝑒 𝑘 |𝑝 | 𝐽 𝑘 𝑅  (7.4)

where 𝐴 is the cross-sectional area of the inlet or outlet, and 𝑅 is the radius.  The 

first column of the matrix in Equation (7.3) then becomes 

 𝑆∗ 𝑊
𝑊

 (7.5)

 

 𝑆∗ 𝑊
𝑊

 (7.6)

Similarly, assume 𝒑𝟐 1,0,0, … , 0  and 𝒑𝟏 0,0,0, … , 0  in Equation (7.1), and 

the second column of the matrix in Equation (7.3) becomes 

 𝑆∗ 𝑊
𝑊

 (7.7)

 

 𝑆∗ 𝑊
𝑊

 (7.8)

Finally, the power transfer matrix in Equation (7.2) can be obtained from Equation 

(7.3) by a simple conversion: 

 𝑇 1 𝑆∗⁄  (7.9)

 

 𝑇 𝑆∗ 𝑆∗⁄  (7.10)

 

 𝑇 𝑆∗ 𝑆∗⁄  (7.11)
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 𝑇 𝑆∗ 𝑆∗ ∙ 𝑆∗ 𝑆∗⁄  (7.12)

Power transfer matrices, as in Equation (7.2), can be multiplied together to obtain 

a total matrix for a cascaded system.  From the matrix terms, the transmission loss 

(𝑇𝐿) is defined as just 

𝑇𝐿 10 log
𝑊
𝑊

10 ∙ log 𝑇  (7.13)

Though each power transfer matrix is “exact” to obtain the transmission loss of an 

individual component, the total matrix of assembled components is an 

approximation.  This is a result of the assumed boundary condition for obtaining 

Equations (7.5) - (7.8) for the purpose of obtaining the matrices. 

7.4 Analytical Model 

Numerous researchers have developed analytical equations for standard muffler 

elements.  Munjal (2014) summarizes much of the prior work.  Once the solution 

is known, a power matrix can be developed.  Assume that the reflected sound can 

be neglected: an assumption that is appropriate for most dissipative mufflers.  

Assuming that the sound attenuation is known, a sound attenuation factor can be 

defined as  

 
𝜏

1
𝐴 10⁄

 (7.14)

where 𝐴  is sound attenuation. 

The power scattering matrix is expressed as 

 𝑊
𝑊

𝑆∗ 𝑆∗

𝑆∗ 𝑆∗
𝑊
𝑊

 (7.15)
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If the reflected sound at the inlet is neglected and termination is assumed to be 

anechoic, 𝑊  and 𝑊  equal to zero. 𝑆∗  and 𝑆∗  can be determined and 

expressed as 

 
𝑆∗ 𝑊

𝑊
𝜏 (7.16)

and 

 𝑆∗ 0 (7.17)

If the inlet and outlet are swapped, 𝑊 , 𝑊 , 𝑊  and 𝑊  are reflected sound at 

outlet, transmitted sound, reflected sound at inlet, incident sound, respectively. 𝑊  

and 𝑊  equal zero and 

 
𝑆∗ 𝑊

𝑊
𝜏 (7.18)

and 

 𝑆∗ 0 (7.19)

The power scattering matrix is then expressed as 

 𝑆∗ 𝑆∗

𝑆∗ 𝑆∗
𝜏 0
0 𝜏

 (7.20)

By reorganizing the power scattering matrix, a power transfer matrix can be 

expressed as 

 𝑇 𝑇
𝑇 𝑇

1 𝜏⁄ 0
0 𝜏

 (7.21)
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7.5 Determination of Transmission Loss 

From Equation (7.6), the transmitted and incident sound powers can be related to 

one another using 

 𝑊 𝑇 ∙ 𝑊 𝑇 ∙ 𝑊  (7.22)

Assuming the termination is anechoic, the transmission loss can be expressed as 

 𝑇𝐿 10 ∙ log 𝑇  (7.23)

A complicated silencer system can be divided up into a number of components as 

shown in Figure 7.2. The power transfer matrix of the silencer system corresponds 

to the product of the individual power transfer matrices. The power transfer matrix 

for each single subsystem can be determined by either numerical simulation (BEM 

or FEM) or analytical solutions. The power transfer matrix of a complicated silencer 

system like the one shown in Figure 7.2 can be determined via 

 𝑇 𝑇 ∙ 𝑇 ∙ 𝑇  (7.24)

 

Figure 7.2 Schematic showing power transfer matrix for a complicated silencer 
system. 
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7.6 Test Cases 

Several test cases are given in this section to demonstrate the power matrix 

method.  The first test case is a lined duct which can be divided into two parts. The 

dimensions are given in Figure 7.3. The lining thickness is 0.0508 m. At room 

temperature, the plane-wave cutoff frequency is 1394 Hz.  There are 4 propagating 

modes in the inlet and outlet ducts up to 8000 Hz.  Figure 7.4 shows the 

comparison between the BEM solution and power transfer matrix solution in 1/3 

octave bands.  In the BEM solution, we model both lined ducts in one single BEM 

model.  In the power transfer matrix method, we first obtain the 2x2 power transfer 

matrix for each section, and then multiply the two transfer matrices together.  It is 

seen that the power transfer matrix method provides an acceptably accurate 

approximation up to 8000 Hz. 

 

Figure 7.3 Schematic showing a dissipative silencer comprised of two lined ducts 
(unit: meter). 
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Figure 7.4 Transmission loss results comparison of power transfer matrix method 
and pressure scattering matrix method. 

The second test case is a bar silencer as shown in Figure 7.5. Figure 7.6 shows 

the comparison between the BEM and the power transfer matrix solutions up to 

8000 Hz in 1/3 octave bands.  It is seen that and power transfer matrix solution 

agrees well up to 8000 Hz. 

 

Figure 7.5 Schematic showing a dissipative silencer comprised of two bar 
silencers (unit: meter). 
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Figure 7.6 Transmission loss results comparison of power transfer matrix method 
and pressure scattering matrix method. 

The third test case is a reactive muffler which consists of two simple expansion 

chambers as shown in Figure 7.7.  Each expansion chamber is treated as a 

separate element.  At very low frequencies, there will be interactions in between 

both components that are important.  These interactions are more important in the 

reactive case and will not be taken into account by the power transfer matrix 

method.  Figure 7.8 shows the comparison between the full scattering matrix and 

power transfer matrix methods in 1/3 octave bands.  Again, agreement is quite 

good except at the lower frequencies. 
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Figure 7.7 Schematic showing a reactive silencer comprised of two simple 
expansion chambers (unit: meter). 

 

Figure 7.8 Transmission loss results comparison for test case 3 of power transfer 
matrix method and pressure scattering matrix method. 

The last test case is a dissipative silencer which is comprised of a lined duct and 

a bar silencer as shown in Figure 7.9. The lining thickness is 2 inches. The power 
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transfer matrix of substructure 1 can be identified by either analytical model or BEM 

model, while the power transfer matrix of substructure 2 is identified by BEM model. 

The transmission loss results comparison is shown in Figure 7.10. The red line 

represents transmission loss computed by pressure scattering matrix directly.  The 

green line repents transmission loss determined by combining power transfer 

matrix from analytical model and BEM model while the blue line is from two BEM 

models. It is seen that results determined by power transfer matrix from BEM 

models are almost the same with results assessed by the scattering matrix method. 

The results obtained by combining the analytical and BEM models also compare 

very well with the scattering matrix method. 

 

Figure 7.9 Schematic showing a dissipative silencer comprised of a lined duct 
and a bar silencer (unit: meter). 
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Figure 7.10 Transmission loss results comparison for test case 4 of power 
transfer matrix method and pressure scattering matrix method. 

7.7 Conclusions 

Muffler transfer matrix theory is not applicable above the plane wave cutoff 

frequency due to cross-modes.  Yet, cross-modes occur at low frequencies in 

HVAC ducts and large silencers as a result of the large cross-sectional duct 

dimensions.  An alternative power transfer matrix has been utilized in this chapter.  

It has been shown that the power transfer matrix can be determined using BEM 

analysis. 

The validity of the approach has been demonstrated by applying it to several 

examples with muffler elements in series.  The method is especially accurate for 

dissipative silencers that are typical in HVAC systems.  However, it is reasonably 

accurate for large reactive elements.  
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 CONCLUSIONS AND RECOMMENDATIONS 

HVAC ductwork is ubiquitous in commercial buildings.  The ductwork circulates 

cooled or warmed air throughout the building maintaining a comfortable 

environment.  In order to move the air, fans are positioned in large air handlers 

and are the primary source of noise in buildings.  In order to reduce the noise 

annoyance, ducts are treated with sound absorbing materials and plenums are 

inserted into the duct system.  The primary objective of this thesis is to advance 

the state-of-the-art in numerical prediction and scale model testing to predict 

acoustic attenuation through HVAC ductwork. 

The major accomplishments described in this dissertation include: the 

development and validation of a finite element procedure to determine insertion 

loss and breakout transmission loss, the description and validation of a procedure 

for developing scale models, the validation of a finite element procedure to 

determine acoustic transmission loss, and the development of a procedure to 

determine the power transfer matrix for HVAC components. 

8.1 FEM Simulation Approach to Predict Acoustic Performance of HVAC 

Components 

A FEM approach was developed for the modeling of unlined and lined HVAC ducts. 

The analysis approach replicates ASTM E477 (2006).  The source is modeled as 

a diffuse acoustic field and terminates in a rigid baffle.  The structural response of 

the ductwork and the associated breakout noise transmission path were included. 

Boundaries at the source and termination were simulated using a reflection free 

boundary called a perfectly matched layer.  Insertion loss results were compared 

to experimental results with good agreement. 

Additionally, breakout transmission loss results compared well with the ASHRAE 

Handbook – HVAC Applications (2015) for rectangular ductwork over the entire 

frequency range. For circular ductwork, results compared well at frequencies 

above the plane wave cutoff frequency.  Below the cutoff frequency, simulation 
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compared well with an analytical model for circular ducts but not with measurement.  

It is notable that the measured transmission loss exceeds 50 dB so the 

discrepancy is of little practical importance. 

It was also shown that the model could be simplified and the breakout path could 

be neglected as an approximation.  Results were shown to be similar but the 

predicted attenuation was a few dB too high at most frequencies.  An error of a few 

dB will not be critical except at the very low frequencies. 

An identical approach was also used to determine the insertion loss of elbows.  

Insertion loss was defined as the sound power difference in dB at the termination 

between an unlined straight duct and duct with lined or unlined elbow having the 

same total length.  Side branch insertion loss was determined in a similar way.   

Simulated results compared well with the ASHRAE Handbook – HVAC 

Applications (2015). 

The developed model can be used for ducts of any cross-section or length.  Future 

efforts can focus on 1) further model validation for other duct cross-sections and 

lengths and 2) utilization of the model to revise and supplement the information 

that is currently in the ASHRAE Handbook – HVAC Applications (2015). 

8.2 Scale Modeling Approach to Assess Acoustic Performance of HVAC 

Components 

Scale modeling rules for sound propagation in HVAC ductwork were described and 

then validated. This scale modeling approach can be utilized to determine insertion 

loss and breakout transmission of HVAC components with good agreement. This 

scaling approach also can be applied to predict sound transmission loss of larger 

silencer. However, it should be notable that HVAC ducts including sound 

absorption are more difficult to scale because it may be difficult to find a suitable 

sound absorbing material of appropriate thickness and flow resistivity. It is 

anticipated that scale models can be used to validate future numerical simulation 

studies eliminating the need for more expensive full-scale testing. 
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8.3 Numerical Methods to Predict Transmission Loss of Large Silencer 

The reciprocal identity method for predicting transmission loss of large silencers is 

extended to general non-axisymmetric circular and rectangular inlet/outlet 

configurations, which are often used in practical applications.  It is well known that 

the IL is equivalent to the TL if both ends of the silencer are assumed non-reflective. 

Hence, a FEM approach using the “automatically matched layer” (AML) boundary 

condition was developed to validate the reciprocal identity method.  

Future work should extend the method to deal with the multi-inlet case as well as 

measurement validation perhaps via scale modeling. 

8.4 Power Approach to Predict Acoustic Performance of HVAC System 

A power transfer matrix was defined to characterize the acoustic properties of 

HVAC components since standard muffler transfer matrix theory is not applicable 

above the plane wave cutoff frequency.  The sound power transfer matrix can be 

developed by a suitable analytical model or more generally by BEM simulation.  

The transfer matrices of series components can be multiplied together and the 

performance of extended duct systems can be predicted without reliance on large 

simulation models.  Future work should examine included structureborne noise 

into the model. 
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