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ABSTRACT OF DISSERTATION

INTERMITTENCY EFFECTS ON THE UNIVERSALITY OF LOCAL
DISSIPATION SCALES IN TURBULENT BOUNDARY LAYER FLOWS WITH

AND WITHOUT FREE-STREAM TURBULENCE

Measurements of the small-scale dissipation statistics of turbulent boundary layer
flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈
2000). The scaling of the dissipation scale distribution is examined in these two
boundary conditions of external wall-bounded flow.

Results demonstrated that the local large-scale Reynolds number based on the
measured longitudinal integral length-scale fails to properly normalize the dissipa-
tion scale distribution near the wall in these two free-stream conditions, due to the
imperfect characterization of the upper bound of the inertial cascade by the integral
length-scale. When a length-scale based on Townsend’s attached-eddy hypothesis is
utilized to describe the local large-scale Reynolds number near the wall, the descrip-
tion of the Reynolds number scaling was determined to be significantly improved and
agreed with that found in homogeneous, isotropic turbulence. However, the scaling
based on Townsend’s attached-eddy hypothesis agreed best for the lowest 40% of the
boundary layer thickness and then it degraded due to the loss of the validity of the
attached eddy-hypothesis and the onset of external intermittency.

A surrogate large-scale found from turbulent kinetic energy and mean dissipation
rate improved the scaling of the dissipation scales, relative to the measured integral
length-scale. The probability density functions of the local dissipation scales were
calculated. When the three local large-scale Reynolds numbers are used for normal-
ization, the one based on the longitudinal integral length-scale and the one based on
the length-scale of attached-eddy hypothesis provide support for the existence of a
universal distribution of the local dissipation scales up to the edge of the outer region
of the turbulent boundary layer, which scales differently for inner and outer regions.
However, the probability density functions of the local dissipation scales normalized
by these two large-scale Reynolds numbers are deviated in interface locations for the
flow without free-stream turbulence due to external intermittency.



The surrogate large-scale provided the best agreement throughout the entire depth
of the boundary layer. However, in the outer part of the boundary layer, a signif-
icantly reduced collapse in the scaled probability density functions was shown due
to bias in the calculation introduced by the intermittent presence of laminar flow in
the time series. To support that intermittency argument, injection of the free-stream
turbulence was determined to improve the distribution of these normalized proba-
bility density functions in the intermittency locations for the flow regime without
free-stream turbulence.

In addition, unlike in channel flow, in the outer part of the turbulent boundary
layer, the normalized distributions of the local dissipation scales were observed to be
dependent on wall-normal position. This was found to be attributable to the presence
of external intermittency in this outer part as the presence of free-stream turbulence
was found to restore the scaling behavior by replacing the intermittent laminar flow
with turbulent flow.

Thus, the influence of external intermittency on the scaling of the dissipation
scale distribution was examined in greater detail for the laminar free-stream condi-
tion. Probability density functions of the dissipative scales were compared with, and
without, accounting for the external intermittency using an intermittency detection
function. Results showed that accounting for the external intermittency produces
restores universality in the shapes of the probability density functions at the same
wall-normal location at different instances in time. In addition, properly scaling the
dissipation-scale-distribution collapses the probability density functions calculated at
different wall-normal locations. This improvement in the scaling of the dissipation-
scale-distribution supports prior observations of universality of the small-scale de-
scription of the turbulence for wall-bounded flow.

KEYWORDS: Turbulence, Turbulent Boundary Layer, Dissipation Scales, External
Intermittency, Free-Stream Turbulence, Turbulent/Non-Turbulent Interfaces
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Nomenclature

An universal constants
B constant in log-law equation
cf skin friction coefficient
D dissipation spectrum
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E11 wavenumber spectra of the streamwise velocity
Fii frequency spectrum of velocity components in rectangular

co-ordinate, Ui
F11 frequency spectrum of the streamwise velocity
f frequency
fs sample frequency
H shape factor
h fractal dimension
h1 channel half-width
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i direction index
j direction index
K turbulent kinetic energy
k1 wavenumber in the streamwise direction
kc cutoff wavenumber
L integral length-scale
L∗ mixing length-scale, length-scale based on Townsend’s at-

tached eddy hypothesis
M grid mesh size
n nth-order of the structure function
P pressure
p fluctuating component of the pressure
Pw wall pressure
Q probability density function
q intermittency exponent
R pipe radius
ReL local large-scale Reynolds number
Reλ Taylor-scale Reynolds number
Re∗λ revised Taylor micro-scale Reynolds number based on the

mixing length-scale, L∗

ReLλ revised Taylor micro-scale Reynolds number based on the
alternative large scale, L

x



Reθ Reynolds number based on momentum loss thickness
Reτ friction Reynolds number
Re∗L Reynolds number based on length-scale of Townsend’s at-

tached eddy hypothesis, L∗

r spacial separation between two points in space
ri spacial vector
rj spacial vector
r1 spacial vector in streamwise direction
Sn longitudinal structure function of the streamwise velocity
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proposed by Yakhot and Sreenivasan [1, 2]
Ts sampling time
t time
Ucomposite composite streamwise to describe the defect layer
Ui velocity component in rectangular co-ordinate
Uj velocity component in rectangular co-ordinate
U∞ free-stream velocity
U1 velocity in streamwise direction
U2 velocity in wall-normal direction
U3 velocity in spanwise direction
u′ root-mean-square of the turbulence velocity fluctuation in

the streamwise direction
u1 fluctuation velocity in streamwise direction
u2 fluctuation velocity in wall-normal direction
ui fluctuating components of the velocity vector in rectangular

co-ordinate
uj fluctuating components of the velocity vector in rectangular

co-ordinate
uK Kolmogorov velocity-scale
uτ friction velocity
u1rms streamwise turbulence intensity
x distance in streamwise direction
xi direction vector
xj direction vector
x1 distance in streamwise direction
x2 distance in wall-normal direction
x3 distance in spanwise direction
Y mean interface position
y distance in wall-normal direction

xi



Greek Symbols

γ average intermittency function
∆t time increment
δ boundary layer thickness
δ∗ displacement thickness
δ+ Kaŕmań number
δLu velocity increment across the local large-scale
δLu

∗ longitudinal velocity increment across the mixing length-
scale, L∗

δru longitudinal velocity increment in the streamwise direction
δηu velocity increment across the local dissipation scale
δLu longitudinal velocity increment across an alternative large

scale, L
ε turbulence kinetic energy dissipation rate
ζn nth-order structure function exponent
η local dissipative scale
η∗ scaling parameter derived from the mixing length-scale, L∗

and its corresponding Reynolds number, Re∗L
ηmax maximum value of local dissipative scale
ηK Kolmogorov dissipation length-scale
ηL scaling parameter derived from the alternative length-scale,

L, proposed in this work
η0 scaling parameter derived from the integral length-scale, L,

and its corresponding Reynolds number, ReL
η2n local dissipative scale proposed by Yakhot and Sreenivasan

[1, 2]
θ momentum loss thickness
κ von Kaŕmań constant
λ Taylor micro-scale
λ∗ revised Taylor micro-scale based on the mixing length-scale,

L∗

λL revised Taylor micro-scale based on the alternative large
scale, L

µ dynamic viscosity
ν kinematic viscosity
Π wake parameter
ρ density of the fluid
σY standard deviation of the instantaneous interface position,

y, relative to the mean interface location, Y
σ standard deviation of the streamwise velocity
τ mean total shear stress
τK Kolmogorov time-scale
τij components of the mean total shear stress in rectangular

co-ordinate
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τw wall shear stress

Other Symbols

D detection function to identify instances where the transition
from turbulence to non-turbulence occurs

Dt threshold value of the detection function, D
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Chapter 1 Introduction

1.1 Turbulence

In physics and fluid dynamics, flowing fluids can be classified as being laminar, turbu-

lent, or transitional flows. These three classifications of flow can typically be observed

in cigarette smoke, as shown in Figure (1.1). In laminar flow, the flow streamlines

follow smooth, regular, paths that are approximately parallel with one another. How-

ever, these streamlines form complex patterns and interweave with each other in tur-

bulence, which is characterized by the formation of eddying motion. Transitional flow

is a mixture of these two states, containing features of both laminar and turbulent

flow.

One result of laminar flow is that for steady boundary conditions the velocity of

the fluid is also steady, constant in both time and space; conversely, turbulent flow for

the same boundary conditions is highly unsteady. The unsteady nature of turbulent

flow lends itself to a statistical approach to analysis and evaluation, and prediction of

these flows often relies on being able to model the impact of the small-scale turbulent

motions on the large-scale dynamics.

Most flowing fluids are turbulent, and thus turbulence represents the dominant

physics in many types of engineering applications. Therefore, the understanding

of turbulent behavior in flowing fluids is one of the most intriguing and significant

problems in all classical physics. Although strict definition eludes us, turbulence

is commonly defined as being a highly chaotic fluid motion that is described by

random velocity fluctuation in both time and space. In both internal (e.g. pipe

and channel flow) and external (e.g. boundary layer) wall-bounded flows, turbulence

is characterized by an increase in the frictional forces applied by the fluid on sold
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Figure 1.1: Illustration of the laminar, transition and turbulence from cigarette
smoke.

surfaces.

A critical parameter for predicting turbulent behavior is the ratio of the inertial

forces to viscous forces within the fluid. This ratio is called Reynolds number and is

an important dimensionless quantity in fluid mechanics that describes, for example,

the stability conditions of the flow. If the Reynolds number increases sufficiently

then cascading instabilities cause laminar flow to transition to turbulent flow. The

disorganized motion of turbulence leads to a significant increase in the rate of mixing
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and diffusion of mass, momentum and energy through a cascade of turbulent interac-

tions. These interactions occur over a range of temporal and spatial scales, with the

separation between the largest scales of turbulence, to the smallest ones, described

by the Reynolds number.

Once turbulent, a turbulent flow can be classified as statistically homogeneous or

inhomogeneous, with further classification provided by its degree of isotropy. Homo-

geneous turbulence is such that its statistically averaged properties are independent

of location. However, it is also possible for flows to be partially homogeneous if it is

statistically homogeneous in one or two Cartesian directions. Turbulence is classified

as been isotropic if its statistics are independent of rotation and reflections. If this is

not the case, it is classified as being anisotropic.

Finally, a turbulent flow of sufficiently high Reynolds number can be homogeneous

in the statistics of the small-scale turbulence, even though it is inhomogeneous in

the statistics of the larger scales. This homogoeneity is achieved through a cascade

process, by which kinetic energy is transferred from larger scales to smaller scales,

through breakup of larger scale eddies into smaller scale ones. Through this cascade

of interactions, the inhomogeneity of the larger scale eddies is lost, resulting in small

scale homogeneity and isotropy.

1.2 Turbulence Features

Although a formal definition of turbulence is elusive, turbulence exhibits some com-

mon features that can be used to distinguish turbulence from other phenomena in

fluids mechanics. In particular, a turbulent flow can be characterized to exhibit all

of the following features:

• Turbulent flows are highly disorganized, chaotic and seemingly random behav-

ior.
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• Non-repeatability (i.e., sensitivity to initial conditions 1) is one of the physical

features that can be observed in turbulent flows. This sensitivity in chaos theory

refers to the behavior of the dynamical system that can change drastically due

to small changes in the initial conditions [3].

• Turbulent flows exhibits extremely large range of length and time-scales, al-

though the smallest scales are still large enough to satisfy the continuum hy-

pothesis.

• Turbulence enhances mixing (diffusion) and dissipation of mass, momentum and

energy. Both diffusion and dissipation are mediated by viscosity at molecular

scales. Through viscous shear stresses, turbulent flows convert kinetic energy

of the velocity fluctuation into internal energy without a form of production.

Thus, turbulence would eventually decay back to laminar state, unless provided

with a source of kinetic energy.

• Turbulent flows are three-dimensional, time-dependent and rotational. The

irrationality of a potential flow is due to its definition (the curl of the gradient

of a property equal to zero); therefore, potential flow cannot be turbulent.

Turbulent flows are described by high levels of vorticity and the mechanism of

vortex stretching.

• Turbulent flows are intermittent in both space and time 2.

1Turbulence exhibits this sensitivity to initial conditions because of successive instabilities, which
are experienced during the transition process. The sensitivity generally increases with the order of
statistical moment. Thus, replicating the experiment in turbulence, data may not match. Therefore,
replications must match statistically.

2It should be distinguished between intermittency from the transition to turbulence and reversion
of turbulent to laminar flow (relaminarization). The transition to turbulence is the process of
instability of a laminar flow that leads to turbulent flow, while the transition from turbulent flow to
laminar one is called relaminarization [4].
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1.3 Turbulence in Engineering

Turbulence has many characteristics that make its prediction and control an impor-

tant and challenging task in engineering. Turbulent flows are generally characterized

by an increase in shear forces (skin friction) exerted by the fluid on sold surfaces in

both internal and external flows (e.g. flow through pipes, flow between two axial

compressor blades [5], and flow around an airplane). Turbulence can effect the vibra-

tion and noise experienced by objects, where pressure fluctuations in turbulence lead

to an increase in noise level. Turbulence also results in undesirable effects, such as a

decrease of efficiency and the need for high power and thrust in a turbomachine due

to the loss of energy to the turbulence.

However, turbulence can also be beneficial to thermal systems. Heat exchangers,

combustion chambers, nuclear reactors and chemical reactors are more efficient due

to turbulence, as it induces mixing of mass, momentum and heat in these systems.

An aerodynamic application of turbulence is the tripping of a laminar boundary layer

on a wing to force transition to turbulence in order to delay or prevent flow separation

at large angles of attack.

1.4 External Intermittency in Turbulent Wall-Bounded Flows

External intermittency in turbulent flows describes the process by which a fixed

location in space might experience intermittent switching between turbulent and non-

turbulent states as a function of time. Alternately, it can also describe a condition

whereby at a fixed time, both laminar and turbulent conditions can be intermittently

distributed in space. Of particular interest in this work, is the external intermittency

that can be observed in the outer region of wall-bounded flows. In this region, the

turbulent boundary layer forms bulges of turbulent fluid that has been transported

away from the surface. The result is that, at a fixed point a fixed distance from the
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wall, as these bulges advect with the mean flow the fixed point will experience periods

of laminar flow, interspaced with periods of turbulent flow when a bulge advects past

the point of interest. External intermittency can be observed in Figure (6.2), which

shows smoke-wire flow visualization of a turbulent boundary layer. It can be observed

that there are instances where the free-stream flow extends very close to the wall.

This external intermittency can be quantified by the ratio of the length of the

turbulent segments to the length of the total segment at any point. Thus, it measures

the probability of having turbulent flow at any instant at the considered point. This

intermittency increases with the wall-normal location in wall-bounded flows until the

free-stream is reached, whereby the flow is typically laminar.

1.5 Motivation and Objective

In most of the fluid systems of engineering interest, the flow is turbulent and bounded

by one or more solid surfaces [6]. Within these systems, turbulence greatly enhances

mixing (diffusion) and dissipation of mass, momentum and energy. As a result, it is

of great fundamental and practical importance.

Modeling the smallest eddies in wall-bounded flows is important to improve sim-

ulations, which can, for example, predict and improve the performance of devices

in industrial applications, or controlling the turbulence in others. Thus, to aid in

the modeling of these smallest scales of turbulence, the objective of this disserta-

tion is to measure the distribution of the smallest, dissipative scales of turbulence

within turbulent boundary layer and to provide some predictive capability of their

behavior by understanding their scaling behavior. Specifically, the objective is to in-

vestigate the scaling of the probability density functions (PDFs) of the spatial scales

at which dissipation occurs within wall-bounded flows. To achieve this goal, experi-

ments were conducted in a turbulent boundary layer developing within both laminar

and turbulent free-streams. These results are used to calculate the PDFs of local
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dissipative scale, η, at various distances from the wall and investigate the validity of

a wall-distance dependent length-scale, and also to evaluate a proposed alternative

description for the large-scale L. Furthermore, a procedure was developed to account

for the external intermittency in the outer layer in order to improve the overall scaling

of the local dissipation scales in the turbulent boundary layer flow.
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Chapter 2 Background

2.1 Reynolds-Averaged Equations

The following section will introduce Reynolds decomposition to derive of the Reynolds-

Average Navier Stokes (RANS) equation from the governing equations of flow motion.

The equations of the flow motion are the continuity and the Navier-Stokes equations.

The incompressible form of the continuity equation is

∂Ui
∂xi

= 0, (2.1)

and the simplified form of the Navier-Stokes equations, by assuming incompressible

fluid flow, negligible body forces and constant viscosity, are

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+ ν

∂2Ui
∂xj∂xj

, i = 1, 2, 3. (2.2)

In these equations, Ui denotes the components of the instantaneous local velocity

vector, t denotes time, xj indicates spatial location, P is pressure, ν is the kinematic

viscosity, and ρ is the density of the fluid. This system of four equations consists

of the four unknowns U1, U2, U3 and P . The convective term, Uj
∂Ui

∂xj
, is non-linear;

therefore, it is very difficult to practically find analytical solution for this system of

equations.

Using Reynolds decomposition, we can say that

Ui = 〈Ui〉+ ui and P = 〈P 〉+ p, (2.3)

in which ui and p refer to the fluctuating components of the velocity vector and

the pressure, respectively. Here, 〈 〉 denotes an ensemble-averaged quantity. The

expressions in Equation (2.3) can be substituted into Equations (2.1) and (2.2), and

averaging over all terms of these equations to get the Reynolds-Averaged equations.
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The continuity equation for incompressible fluid becomes

∂(〈Ui〉+ ui)

∂xi
= 0. (2.4)

Averaging this equation leads to

∂〈Ui〉
∂xi

+
∂ui
∂xi

= 0. (2.5)

Eliminating the vanishing term, ∂〈ui〉
∂xi

=0, we deduce the continuity equation for the

mean

∂〈Ui〉
∂xi

= 0. (2.6)

Subtracting this equation from Equation (2.5), the continuity equation for the fluc-

tuation can be obtained

∂ui
∂xi

= 0. (2.7)

The previous two equations are decoupled from each other because of the linearity of

the continuity equation.

Introducing the Reynolds decomposition into the Navier-Stokes equations, Equa-

tion (2.2) can be expressed as

∂(〈Ui〉+ ui)

∂t
+ (〈Uj〉+ uj)

∂(〈Ui〉+ ui)

∂xj
= −1

ρ

∂(〈P 〉+ p)

∂xi
+ ν

∂2(〈Ui〉+ ui)

∂xj∂xj
. (2.8)

Averaging the entire equation with canceling the vanishing terms as what we did with

the continuity equation, the Navier-Stokes equations for the mean can be written as

∂〈Ui〉
∂t

+ 〈Uj〉
∂〈Ui〉
∂xj

+
∂〈uiuj〉
∂xj

= −1

ρ

∂〈P 〉
∂xi

+ ν
∂2〈Ui〉
∂xj∂xj

. (2.9)

The last term on the left-hand side can be expanded by applying the derivative of

the product of two functions with using the continuity equation for the fluctuations,

Equation (2.7). Then it easily follows

∂〈uiuj〉
∂xj

= 〈uj
∂ui
∂xj
〉. (2.10)
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These terms have no equivalent in the original form of the Navier-Stokes equations and

it comes from the non-linear advective term. These terms describe the transport of

momentum fluctuation by the fluctuation velocity. Therefore, additional unknowns

are introduced to the Navier-Stokes equations for the mean velocity and pressure

field. These terms are usually called the Reynolds stress tensor although a check

of dimensions illustrates that they are not stresses; they must be multiplied by the

density, ρ. To have more appropriate dimensions of stresses, the components of the

tensor, −ρ〈uiuj〉, are called Reynolds stresses with the Reynolds normal stresses if i =

j and the Reynolds shear Stresses if i 6= j as well as this tensor is symmetric. These

terms demonstrate that the velocity fluctuations have an impact on the mean flow by

exchanging momentum with the mean flow through the Reynolds stress. Unlike the

system of incompressible form of continuity equation and the Navier-Stokes equations

that is closed, introduction of the six unknowns from the Reynolds stress tensor

results in the requirement of additional equations to solve for the new unknowns.

Manipulating the equations of motions to find additional transport equations for

〈uiuj〉 introduces even more unknowns. This leads to the so-called “turbulent closure

problem”[7]. The RANS equation can be written as

∂〈Ui〉
∂t

+ 〈Uj〉
∂〈Ui〉
∂xj

= −1

ρ

∂〈P 〉
∂xi

+ ν
∂2〈Ui〉
∂xj∂xj

− ∂〈uiuj〉
∂xj

. (2.11)

2.2 Turbulent Wall-Bounded Flows

The following section will introduce some of the common terminology used in the

study of turbulent wall-bounded flows, with focus on turbulent boundary layer flow,

the type of flow used for this study. Turbulent boundary layer flow as an external

wall-bounded flow shares common physical characteristics with internal wall-bounded

flows (e.g. channel and pipe flows) within a region close to the boundary surface.

Therefore, most of the concepts introduced here will also be valid in both internal and

external wall-bounded flows. For more information and details, the interested reader
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Figure 2.1: Illustration of the laminar, transition and turbulence with the inner and
outer regions for turbulent boundary layer developing along flat plate.

may be referred to the classical and modern turbulence textbooks [8, 9, 10, 11, 12, 13,

and others].

We assume turbulent flow on a flat plate with zero pressure gradient (ZPG) con-

ditions, ∂P/∂x1 = 0, that coexists with a constant free-stream velocity, U∞, in the

downstream directions. Here, x1, x2 and x3 are the streamwise, wall-normal and

spanwise directions, respectively, with U1, U2, U3 and P the corresponding velocity

components and pressure. The distance across the boundary layer from the surface

to the free-stream is the the boundary layer thickness, δ(x1), which is function of the

streamwise direction. The growth of the boundary layer on a flat plate illustrates in

Figuree (2.1), which show the transition from laminar to turbulent boundary layer

with the inner and outer regions of this external wall-bounded flow. In this figure,

the wall-normal direction is y = x2 and the streamwise direction is x = x1.

The RANS under steady flow assumption can be written as

〈Uj〉
∂〈Ui〉
∂xj

= −1

ρ

∂〈P 〉
∂xi

+
1

ρ

∂τij
∂xj

, (2.12)

where the components of the mean total shear stress in rectangular co-ordinate are

τij = µ

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)
− ρ〈uiuj〉, (2.13)
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in which µ

(
∂〈Ui〉
∂xj

+
∂〈Uj〉
∂xi

)
is the laminar stress tensor with µ is the dynamic viscosity

of the fluid, and −ρ〈uiuj〉 is the turbulent stress tensor.

The two-dimensional, incompressible, steady flow, negligible gravity effects, stream-

wise mean momentum equations with the boundary layer approximation and employ-

ing Reynolds decomposition [7], and the incompressible continuity equation are

∂〈U1〉
∂x1

+
∂〈U2〉
∂x2

= 0, (2.14)

〈U1〉
∂〈U1〉
∂x1

+ 〈U2〉
∂〈U1〉
∂x2

= −1

ρ

∂〈P 〉
∂x1

+
1

ρ

∂τ

∂x2
. (2.15)

The means of Bernoulli’s equation can be used to substitute the pressure gradient

terms. In that way, this term can be written in terms of the free-stream velocity and

its gradient in streamwise direction, as follows

〈P 〉+
1

2
ρU2
∞ = const (2.16)

d〈P 〉
dx1

+ ρU∞
dU∞
dx1

= 0 (2.17)

d〈P 〉
dx1

= −ρU∞
dU∞
dx1

. (2.18)

For turbulence, we have adopted the short notation for the mean total shear stress,

τ ,

τ = µ
∂〈U1〉
∂x2

− ρ〈u1u2〉, (2.19)

here, −ρ〈u1u2〉 refers to streamwise-wall-normal Reynolds stress. For ZPG condition

(no pressure source), the pressure gradient term vanishes. For fully developed flows,

such that channel, pipe and boundary layer flows, the streamwise derivatives of the

Reynolds normal stresses and the convective terms can be canceled. Equation (2.15)
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can be integrated from the wall to the free-stream to yield the so called von Kaŕmań

integral momentum equation.

τw
ρ

=
d

dx1

[
U2
∞

∫ ∞
0

〈U1(x1, x2)〉
U∞

(
1−〈U1(x1, x2)〉

U∞

)
dx2
]
+U∞

dU∞
dx1

∫ ∞
0

(
1−〈U1(x1, x2)〉

U∞

)
dx2,

(2.20)

here, since the order of magnitude of the Reynolds normal stresses contribution is

less than the order of the leading term, this contribution can be neglected1. τw is

the wall shear stress and depends on the distance from the wall in the streamwise

direction, x1. For a non ZPG flow, U∞ depends also on x1 distance. Thus, the two

well known integral properties of the boundary layer, the displacement thickness, δ∗

and the momentum thickness, θ, can be expressed as

δ∗(x1) =

∫ ∞
0

[
1− 〈U1(x1, x2)〉

U∞

]
dx2 (2.21)

and

θ(x1) =

∫ ∞
0

〈U1(x1, x2)〉
U∞

[
1− 〈U1(x1, x2)〉

U∞

]
dx2. (2.22)

These two integral properties depend on δ; however, this dependence can be elimi-

nated by divided the first parameter on the second parameter to get the shape factor,

H, which is often utilized as an indicator of the fullness of the velocity profile. Sub-

stituting these two thicknesses into Equation (2.15), This equation simplifies to

τw
ρU2
∞

=
dθ

dx1
+

1

U∞

dU∞
dx1

[
2θ + δ∗

]
. (2.23)

Introducing the definition of the skin friction coefficient, cf , simplifies this equation

to

cf =
τw

1
2
ρU2
∞

= 2
dθ

dx1
+

2

U∞

dU∞
dx1

(δ∗ + 2θ). (2.24)

Therefore, the measurements of the velocity profile at some different downstream

positions can lead to determine the skin friction coefficient. Note that when using

Equation (2.24), well resolved mean velocity profile is needed to be ensured.

1For example, Schlatter et al. [14] demonstrates that the contribution of this neglected term is
about 50 times less than the leading order term for Reθ = 2500
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Furthermore, for a flat plate, the previous two equation can be reduce to

τw
ρU2
∞

=
dθ

dx1
(2.25)

and

cf = 2
dθ

dx1
, , (2.26)

These two equations show that the rate of change of momentum lost is controlled by

the wall shear stress.

In internal flows, such that flows in pipes and channels, the streamwise momentum

equation (Equation (2.15) or its equivalent in cylindrical coordinates) can be utilized

to illustrate the dependence of the wall shear stress on the pressure drop such that

τw = −δd〈Pw〉
dx1

(2.27)

and

τw = −δ
2

d〈Pw〉
dx1

, (2.28)

in which 〈Pw〉 refers to the wall-mean pressure, and δ corresponds to the pipe radius,

R, in pipe flows and the channel half-width, h1, in channel flows. The static pressure

can be estimated using the Pitot Static tube and pressure taps hence the wall shear

stress can be found experimentally. Usually, the wall shear stress is calculated from

indirect ways. However, one reason of using other methods than the pressure drop

to find the wall shear stress is to avoid not satisfying the implicit assumptions. For

example, in internal flows, the convective terms in momentum equation can be ne-

glected only under fully developed conditions that need large channel heights or pipe

diameters to meet the required hydrodynamic entrance length depending on Reynolds

number. Another example, to meet the two-dimensional flow assumption in channels,

a large aspect ratio (width-to-length ratio) is required.

The momentum equation in the wall-normal direction shows that the summa-

tion of the Reynolds stress in wall-normal direction, 〈u22〉, and the pressure, 〈P 〉, is
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solely related to the streamwise coordinate. This relationship and Equation (2.27)

substituted in the integration of Equation (2.15) to obtain

τ = τw(1− x2
δ

). (2.29)

This equation shows that, in the near-wall region when x2/δ << 1, the total shear

stress is approximately constant and equals to the wall shear stress. Thus, there

exists a layer in the turbulent wall-bounded flows (i.e. turbulent channel, pipe and

boundary layer flows) does not depend on the geometry and dimensions of the flow

but depend on the wall shear stress. Therefore, in this near-wall region, a velocity

and length-scale can be obtained from Equation (2.19) and Equation (2.29) as follows

uτ =

√
τw
ρ

(2.30)

and

`ν =
ν

uτ
, (2.31)

which are the well-known friction velocity, uτ and viscous length-scale, `ν , that used to

scale the inner region in wall-bounded flow. These three parameters and the distance

from the wall describe the condition of the near wall region.

Substituting Equation (2.19) into Equation (2.29) with τw = ρu2τ from from Equa-

tion (2.30), one gets

ν
d〈U1〉
dx2

− 〈u1u2〉 = u2τ (1−
x2
δ

). (2.32)

This equation can be rewritten as

d(〈U1〉/uτ )
d(x2uτ/ν)

− 〈u1u2〉
u2τ

= (1− x2
δ

), (2.33)

and rearranged by introducing to

dU+
1

dy+
− 〈u1u2〉+ +

y+

δ+
= 1, (2.34)

in which the + indicates the scaling with viscous units, uτ and `ν , and δ+ is well-

known Kaŕmań number that is the ratio between the outer and inner length-scale,
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δuτ/ν, which is equivalent to the the friction Reynolds number, Reτ . In the near-wall

region when y+ << δ+ the more the scales are separated, Equation (2.34) becomes

dU+
1

dy+
− 〈u1u2〉+ = 1, (2.35)

which allowed self-similar solutions f(y+) = u+ and g(y+) = −〈u1u2〉+. The first

solution is the well-known as the law of the wall.

2.3 The Development of Turbulent Wall-Bounded Flows

Unlike the laminar boundary layer, there are two regimes governed by different sets

of flow scales can be observed in turbulent boundary layer flow as a turbulent wall-

bounded flow. These two sets of scales are the inner and outer scaling. The inner

scaling is the normalization of the statistics of turbulence using the inner parameter,

friction velocity and viscous length-scale, in the so-called inner region. However; the

statistics of turbulence in the outer region are scaled using the outer scaling param-

eters that are the turbulent boundary layer thickness and the free-stream velocity in

turbulent boundary layer flow. The inner and outer regions of turbulent wall-bounded

flows with their specific layers as shown in Figure (2.2) will be discussed farther in

the next two subsections. Figure (2.2) represents mean streamwise velocity profiles

for a Reynolds number, Reτ = 1000, together with illustration of the inner and outer

regions of typical turbulent boundary layer. The inner region consists the viscous

sublayer, buffer and overlap layers, and the outer or wake region comprises of the

overlap, defect (core) and potential layers.

2.3.1 The Inner Region

For sufficiently enough Reynolds number, there are three layers can be observed in the

inner region of turbulent wall-bounded flows. These layers are the viscous sublayer,

the buffer layer and the logarithmic layer that an overlap layer between the inner and
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Figure 2.2: Streamwise mean velocity profile for ZPG turbulent boundary layer devel-
oping along flat plate calculated through the composite profile description of Chuahan
et al. [15] for Reτ = 1000 with illustration of the inner and outer regions of typical
turbulent boundary layer.

outer regions of the turbulent wall-bounded flows. These layers will be discussed in

the following three subsections.

2.3.1.1 The Viscous Sublayer

The viscous sublayer is extremely close to the wall layer that is near a no-slip bound-

ary. Turbulent motions are dampened severely by friction in this layer; therefore, the

turbulent shear stress, −ρ〈u1u2〉, is relatively small comparing to the viscous (lami-

nar) shear stress, µd〈U1〉
dy

, in this sublayer. Hence, the simplified form of momentum

equation, Equation (2.35), becomes:

dU+
1

dy+
= 1, (2.36)
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in which U1
+ is the inner-scaled streamwise mean velocity defined such that

U1
+ =

〈U1〉
uτ

, (2.37)

and y+ refers to the inner-scaled position normal to the wall expressed as

y+ =
yuτ
ν
. (2.38)

The simple linear solution of Equation (2.36) that describes this sublayer is

U+
1 = y+. (2.39)

The range of this layer is found satisfactorily with experimental data for smooth

surface to be roughly 0 ≤ y+ ≤ 5 as highlighted in green in Figure (2.2).

2.3.1.2 The Log(arithmic) Layer

The logarithmic sublayer is also known as the log layer. It is a logarithmic semi-

empirical result that accurately describes the variation of velocity with the wall-

normal distance in that region of turbulent wall-bounded flows. It corresponds to

scaled distances relatively far from the wall depending on Reynolds number. This

layer is also called the inertial subrange where it has some analogy with the inertial

subrange of the spectrum of a locally isotropic turbulence. Since the viscous dissipa-

tion is negligible in the inertial subrange, the viscous shear stresses are negligible in

this layer. This layer describes by the well-known law of the wall (log-law):

U1
+ =

1

κ
ln y+ + B. (2.40)

The variation of the velocity across the wall-normal distance depends on the choice

of von Kaŕmań constant, κ, and the constant B. The lower limit of the log layer is

roughly when y+ = 30, with the upper limit depending on the Reynolds number in

wall-bounded flows.
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2.3.1.3 The Buffer Layer

The layer between the viscous sublayer and the log layer in turbulent wall-bounded

flows is called the buffer layer. It really comes from experiments where there is not

analytical solution to determine the velocity variation in this layer. It is expected

that this layer is matched the overlap region between the viscous sublayer and the

log layer in order to obtain a well-defined global treatment for the velocity profile as

demonstrated in Figure (2.2).

2.3.2 The Outer Region

Although the log-law is generally accepted to be universal in the outer region, bound-

ary conditions (e.g., pressure gradient and Reynolds number) play a large rule in

describing the variation of the mean velocity and statistics in the outer region of

turbulent wall-bounded flows. The mean streamwise velocity distribution with the

wall-normal distance in this region depends also on the flow type in turbulent wall-

bounded flow. This region consists of part of the log layer as well as the defect layer

and the potential layer that will be explained in the next two subsections.

2.3.2.1 The Defect Layer

The defect layer, sometimes called the “wake layer”or “outer layer”, is the layer of a

turbulent wall-bounded flow beyond the log layer as shown in Figure (2.2). It begins

approximately one-tenth the boundary layer thickness from the wall in turbulent

boundary layer flow.

In addition to the log-law function that describes the log layer, Equation (2.40), a

number of composite functions for the mean streamwise velocity has been introduced

in the literature as a valid description for the entire flow region. Sometimes, the

composite velocity profile is given by the superposition of the description for the log-

law plus a functional form to describe the wake function. Based on one of the first
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formal descriptions for the defect layer that proposed by Coles [16]. A functional

form for this layer can thus be given as

U+
composite =

1

κ
ln y+ + B +

2Π

κ
W y+

δ+
, 0 ≤ y+ ≤ δ+, (2.41)

in which Π is the wake parameter and W is the wake function. After that, a number

of wake functions have been proposed. For a summary of more prominent complete

functional forms of the defect layer, the reader can be referred to Appendix E of Örlü

[17].

2.3.2.2 The Potential Layer

The potential layer is the layer beyond the defect layer that reaches the centerline

in pipe flow and it is the free-stream in turbulent boundary layer. In this region the

velocity remains at the initial entrance velocity in internal wall-bounded turbulence

and the free-stream velocity in turbulent boundary layer.
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Chapter 3 Literature Review

3.1 Kolmogorov Hypothesis

One of the most significant theories in the study of turbulence is the universal equi-

librium hypothesis of Kolmogorov [18], which postulates that the small scales of

turbulence are homogeneous and statistically isotropic, and that, due to a cascade

of kinetic energy from the largest scales of turbulence to the smallest scales, the

smallest scales become disconnected from the boundary conditions and thus become

uniquely and universally dependent only on the mean rate of dissipation of turbulent

kinetic energy, 〈ε〉, and the kinematic viscosity, ν. The rate of dissipation, ε, can be

estimated through

ε =
ν

2

(
∂ui
∂xj

+
∂uj
∂xi

)2

, (3.1)

Through dimensional analysis of 〈ε〉 and ν, length, velocity and time-scales corre-

sponding to the dissipation of kinetic energy can be formed. These scales are the

Kolmogorov dissipation length-scale (ηK), the Kolmogorov velocity-scale (uK), and

the Kolmogorov time-scale (τK), which is expressed by Pope [8] as

ηK ∼ (ν3/〈ε〉)1/4, (3.2)

uK = (ν〈ε〉)1/4, (3.3)

and

τK = (ν/〈ε〉)1/2. (3.4)

The existence of a universal equilibrium region was heavily tested in the succeeding

decades and, as a result, there is a great amount of evidence to support Kolmogorov’s
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concept of small-scale universality, most notably through the collapse of the energy

spectra scaled by ν, 〈ε〉 and ηK in the dissipation region [19, 20, and others].

Key to these theories is the energy cascade process by which energy is transferred

from large energy-producing eddies, described by the integral length-scale L, down to

the smallest eddies, characterized by ηK . Given sufficient separation of these scales,

within the universal equilibrium range, there will be an inertial subrange where the

turbulent dynamics depend only on 〈ε〉 and not ν.

3.2 The Structure Function

When the spatial separation between two points in space, represented by a vector

with components rj, lies in this inertial subrange such that L >> |r| >> ηK , the

longitudinal structure function of the streamwise velocity, Sn, should follow power-law

behavior such that

Sn ≡ 〈(δru)n〉 = An

(
|r|
L

)ζn
, (3.5)

where An are universal constants and δru represents the longitudinal velocity incre-

ment defined as

δru ≡ (ui(xj + rj)− ui(xj))
(
ri
|r|

)
. (3.6)

Kolmogorov’s theory indicated that ζn = n/3. However, experimental investigations,

e.g., the work of Anselmet et al. [21], have shown that ζn differs from this linear

scaling and has nonlinear dependence on n. This deviation from the expected be-

havior has long been attributed to spatial intermittency in the fine structure of the

turbulent flow, as reviewed by Frisch [22], for example. Note that the spatial in-

termittency describes the distribution of dissipation in localized regions of intense

dissipation, separated by relatively large regions where little dissipation occurs. In

other words, the dissipation does not occur homogeneously in space, but is instead

occurs in compact regions in space, separated by regions of little-to-no dissipation.
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In response, Kolmogorov produced the refined similarity hypothesis [23, 24], which

predicted that

ζn =
n

3
[1− 1

6
q(n− 3)], (3.7)

with the intermittency exponent, q = 0.25± 0.05 [25].

This intermittency persists throughout the universal equilibrium range and, as a

result, the use of a singular mean dissipation length-scale to describe the turbulent

dynamics does not appear to be sufficient [26]. In this context, an alternative descrip-

tion of the dissipation scale that incorporates the existence of an entire continuum of

local dissipation scales becomes attractive.

The longitudinal velocity structure function exponent, ζn, as a function of n from

Kolmogorov [18] prediction, the prediction of the refined similarity hypothesis, and

experiment measurements from the literature presented in Figure (3.1). This figure

illustrates that ζn is not evenly distributed in space as Kolmogorov [18] assume.

However, it is distributed nonlinearly in the space as the compiled measurements by

Anselmet et al. [21] show that, which motivate looking for the spacial intermittency.

3.3 Probability Density Functions (PDFs) of Dissipative Scales

As indicated in the earlier section, the use of a singular mean dissipation length scale

is not enough to define the turbulent dynamics. Therefore, a surrogate description

of the dissipation scale is needed to combine the existence of an entire continuum of

local dissipation scales. Yakhot [27] proposed an approach that connects and defines

a local scale η using the velocity increment across that scale, δηu, whereby

η|δηu| ∼ ν, (3.8)

and δηu is calculated from Equation (3.6) with |r| = η. This is analogous to the

definition of a local Reynolds number based on the local scale η and the velocity

increment δηu, defining a dissipative scale as the one for which this Reynolds number
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Figure 3.1: Variation of the longitudinal velocity structure function exponent, ζn, as
a function of n. Solid line refers to the Kolmogorov [18] indication, ζn = n/3. Dish
line indicates the prediction of the refined similarity hypothesis, Equation (3.7) with
q = 0.25. Symbols are measurements compiled by Anselmet et al. [21].

is O(1) [28]. Yakhot [27] suggested that this Reynolds number is connected to the

crossover scales between the inertial subrange and the viscous dissipation range.

This is similar to what has been observed within the fashionable of multifractial

formalism [28, 29, 30], where it has been shown that the crossover scale, a viscous

dissipation scale, is related to Reynolds number through

η(h) ∼ LRe
−1/(1+h)
L , (3.9)

with h being the fractal dimension, having a spectrum of values. ReL refers to the

local large-scale Reynolds number that defines the large energy-producing eddies and
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can be computed from

ReL =
〈|δLu|〉L

ν
, (3.10)

in which δLu computed from Equation (3.6) at |r| = L. However, there are local

scales smaller than ηK , which exist as an outcome of intermittency, leading to h <

1/3. Based on these foundations, an analytical expression for the probability density

function of the dissipation scales was introduced by Biferale [31].

Yakhot and Sreenivasan [1, 2] introduced a surrogate approach to address the

existence of a continuum of dissipation scales. They set η2n to be an order depen-

dent scale, which matches the separation distance between the inertial subrange and

dissipative structure of S2n(|r|), this scale η2n can be expressed as:

η2n ∼ (
〈
[∂xu]2n

〉
)1/(ζ2n−2n)[(2n− 1)!! ε2n/3L(2n/3)−ζn ]1/(2n−ζ2n), (3.11)

in which case the value of dissipating scale η depends on the order of the structure

function being predicted. Utilizing the exact expressions for the nth-order longitudi-

nal structure functions, Yakhot and Sreenivasan [1] showed that

η2n ∼ LRe
−1/(ζ2n−ζ2n+1−1)
L , (3.12)

which leads to Kolmogorov’s prediction when substituting ζn = n/3.

To evaluate these concepts, as η is a random field, there is particular interest

in characterizing this field through its PDF. To address this, Yakhot [27] presented

an analytical description of the PDF of η. When normalized by η0, this expression

provided a good agreement with the PDFs estimated from the high-resolution direct

numerical simulation (DNS) data of three-dimensional homogenous isotropic box tur-

bulence of Schumacher [32]. The scale η0 is analogous to ηK and is estimated from

η0 ≈ LRe−0.73L . This can be compared to the results of scaling arguments, which

suggest that ηK ≈ LRe−0.75L , and thus the ratio η0/ηK is close to unity, incrementing

only gradually as Re0.02L , as detailed in the work of Hamlington et al. [33].
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3.4 Scaling the Dissipative Scales

The analytical PDF of η/η0, determined by Yakhot [27], was compared by Bailey et

al. [34] to PDFs measured in low-Reynolds-number turbulent pipe flows at the pipe

centerline and within the upper logarithmic layer and those calculated from homoge-

neous and isotropic DNS of Schumacher [32]. The comparison found good qualitative

agreement between the experimental results and the analytical description and re-

sulted in the collapse of the measured and simulated PDFs, fortifying the hypothesis

that there is universality of the form of the PDFs and hence the distribution of η.

However, PDFs of η were also determined experimentally by Zhou and Xia [35],

this time in buoyancy-driven turbulence. Instead of finding a good agreement be-

tween PDFs computed at different positions within the flow and at different Rayleigh

numbers, the results exhibited a higher probability of there being scales smaller than

η0 than found by Schumacher [32] and Bailey et al. [34]. Zhou and Xia [35] at-

tributed this discrepancy to a much higher level of small-scale intermittency caused

by the presence of thermal plumes, which have a characteristic dimension in a thermal

boundary layer that is smaller than ηK .

Hamlington et al. [33] also computed the PDFs of η/η0 from very high-resolution

DNS of turbulent channel flow and determined that universality of the PDF exists for

much of the channel, except in the near-wall region. A similar position dependence

of the PDF was identified experimentally in free-shear flow by Morshed et al. [36]

who showed that this location dependency is related to large-scale shear through a

mean shear-dissipation Reynolds number. In both studies, the comparison of PDFs

calculated within regions of reduced shear to those observed in homogenous and

nearly homogeneous turbulence by Schumacher [32] and Bailey et al. [34] showed a

good agreement. Hence the presence of mean velocity shear appears to negatively

influence the scaling of the PDFs.

Recently, Bailey and Witte [37] experimentally determined the PDFs of η in a
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turbulent channel flow. They found that when η0 is used as a normalization pa-

rameter, the distributions of PDFs are in a good agreement with those previously

reported experimentally, numerically and analytically. However, using η0 as a scaling

parameter in the near-wall region lead to a non-universality of small scales in this

region, coinciding with the presence of increased mean shear. Bailey and Witte found

that the lack of universality could be attributed to the imperfect description of large

scales, L, when using the measured integral length-scale. This influences the scaling

parameter η0 and results in the small scales being poorly described by η0. Thus, they

defined an alternate scaling parameter, η∗, which depends on a mixing length-scale

and its corresponding Reynolds number, with the mixing length-scale related to the

distance from the wall. Using η∗ instead of η0, Bailey and Witte found there to be

an improved collapse of the PDFs near the wall. However, this collapse degraded for

y/δ > 0.5, which suggested there exists scaling behavior analogous to the inner- and

outer-scaling that describes the mean flow.

In summary, these recent results imply that the mean shear impacts the descrip-

tion of the local dissipation scales. However, this impact appears to be through the

scaling parameter chosen, rather than through the distribution of the PDF itself.

In regions of small mean shear such as in homogenous isotropic turbulence, in the

centerline of channel and pipe flows and the center of the Rayleigh-Beŕnard convec-

tion cells, the appropriate scaling parameter appears to be η0, which is analogous

to the Kolmogorov scale. In the high-shear regions of turbulent channel flow, this

scale appears to be proportional to the distance from the wall. Thus, it is not yet

clear whether the scaling of the PDFs within wall-bounded flows suggested by Bailey

and Witte [37] can extend to external wall-bounded flows with both laminar and tur-

bulent free-stream. it is also not yet clear whether introducing a scaling parameter

depending on an alternative length-scale in external wall-bounded flows will support

the universal distribution of the PDFs.
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Table 3.1: Turbulence detection functions.

Reference Detector function
Townsend [41] |u1|, |∂u1/∂t|

Corrsin and Kistler [38] |u1|, |∂u1/∂t|
Heskestad [42] u21
Gartshore [43] |∂u1/∂t|

Fiedler and Head [44] |∂u1/∂t|
Kaplan and Laufer [45] (∂u1/∂t− 〈∂u1/∂t〉)2

Wygnanski and Fiedler [46] (∂u1/∂t)
2 − (∂2u1/∂t

2)2

Kovasznay et al. [47] |∂2u1/∂y ∂t|
Antonia and Bradshaw [48] (∂u1/∂t)

2

Sunyach [49] (∂u1/∂t)
2 filtered

Antonia [50] (∂u1u2/∂t)
2

Thomas [51] |∂u1/∂t| filtered
Chauhan et al. [40] (1− 〈U1〉/U∞)2

Alhamdi and Bailey [52] 100× (1− 〈U1〉/U∞)2

3.5 Detection of External Intermittency

The existence of the leading and trailing edges of turbulent bulges in the outer part of

the turbulent boundary layer was first identified and studied by Corrsin and Kistler

[38] using hot-wire signals. They observed that sharp changes occur during the tran-

sition from turbulent to non-turbulent motions and referred to them as ‘backs,’ while

their counterpart ‘fronts’ separate non-turbulent fluids from contiguous-turbulent flu-

ids.

Detection of intermittency from a velocity time-series, as done by Corrsin and

Kistler [38], requires the application of a kinematic criterion. To identify periods

of interfaces in a velocity signal, the time derivative of the velocity component [39],

the derivative of the instantaneous shear stress, and the magnitude of the velocity

have all been utilized to construct different detection functions (see Table 3.1 for

a list of different turbulence detector functions). In this study, we used a kinetic

energy criterion suggested by Chauhan et al. [40] to detect turbulent/non-turbulent

interfaces.
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Chapter 4 Experiment Description

Figure 4.1: Experiment setup.

4.1 Overview

All measurements in this study were conducted in a wind tunnel flow facility located

in the Experimental Fluid Dynamics Laboratory at the University of Kentucky. The

experimental setup, consisting of a flat plate equipped at the leading edge by sand-

paper trip, hot-wire probe, traverse, Pitot tube and resistance temperature detection

(RTD) thermometer, is presented in Figure (4.1). The coordinate system used here

is arranged with x = x1 aligned in the flow direction, and y = x2 aligned in the wall-

normal direction. The hot-wire probe was used to measure the streamwise velocity,

U1(t), over a range of wall-normal locations. A custom-built lead-screw system was
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used to traverse the hot-wire probe normal to the plate surface. The Pitot tube and

RTD were used to calibrate the hot-wire probe by measuring the reference velocity

and temperature. During the measurement, the free-stream temperature was also

monitored using a separate type K thermocouple operated in a handheld multimeter.

The sandpaper trip was used to trigger transition to turbulence at the leading edge

of the plate and ensure that turbulent conditions existed at the measurement loca-

tion. More details of these elements of the experiment are presented in the following

sections.

4.2 Flow Generation

4.2.1 Wind Tunnel

The wind tunnel used is an open circuit wind tunnel manufactured by Engineer-

ing Laboratory Design as the model 406(B). This facility has a test section with a

0.61 m × 0.61 m cross-sectional area and length of 1.2 m, and is driven by a 40 Hp

(29.83 kW ) motor that can achieve free-stream velocity, U∞, up to 45.7 m/s. For

these experiments the free-stream velocity was approximately 4 m/s.

4.2.2 Flate Plate

To generate a turbulent boundary layer, a smooth-flat plate with dimensions of

886 mm × 608 mm was placed in the test section. To trip the boundary layer

forming on the plate, it was equipped at the leading edge by 50.8 mm of a 60 grit

sandpaper trip. A trailing edge flap was also located on the plate to prevent leading

edge flow separation. To produce the free-stream turbulence, a grid with a solidity

of 0.32 and square perforations having mesh sizes of M = 25.4 mm could be inserted

in the inlet of the test section. The resulting free-stream turbulence intensity at the

measurement location was approximately 2.5%. To measure the properties of the

boundary layer developing along the smooth plate when mounted in the wind tunnel,
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measurements of streamwise velocity, U1, were performed over a range of wall-normal

distances, using a hot-wire probe. More details of the hot-wire probe are given in

Section (4.3.1)

4.3 Measurement Instrumentation

4.3.1 Hot-wire Probe

The hot-wire probe was made from platinum-core Wollaston wire etched to a sensing

length of ` = 0.50 mm and diameter of 2.5 µ m. This leads to `+ = `uτ/ν ≈ 6. The

maximum of the ratio `/ηK was approximately 3 and occurred in the measurement

locations closest to the wall. The probe was operated in a constant temperature

anemometer (IFA 300) system at an overheat ratio of 1.6. Frequency response of the

probe was measured via square wave test to be 75 kHz. The constant temperature

anemometer signal was low-pass filtered at half the sample frequency, fs, which was

100 kHz for the case without free-stream turbulence and 200 kHz for the case with

free-stream turbulence.

The probe was located 760 mm from the leading edge of the smooth plate and

traversed in the wall-normal direction, i.e. in the y-direction, from its initial position

approximately 100± 5 µm from the wall to its final position 120 mm from the wall.

Streamwise velocity was measured at 40 points logarithmically spaced between these

two locations. At each measurement location for the baseline case the data were sam-

pled for 60 s. For the case with free-stream turbulence, the sample time was increased

to 120 s. The free-stream temperature was measured by a type K thermocouple and

found to remain approximately constant for each measurement, changing by less than

0.4◦C over the course of a profile measurement.
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4.3.2 Traverse

To traverse the hot-wire probe normal to the plate surface in the wind tunnel a

nano-stepping traverse equipped with a high-accuracy linear encoder and controlled

by stepper motor was employed ( 0.5 µm resolution and ±3 µm accuracy). An

electrical contact switch was used to set the initial position of the hot-wire probe

from the wall. At the initial measurement location, the distance from the wall to the

probe was found using a distance measuring microscope (Titan Tool Supply 2DM-1

with ±15 µm accuracy). Probe positioning and data acquisition was controlled by a

custom LabVIEW program.

4.4 Calibration

Hot-wire probe calibrations were performed in the free-stream directly prior to, and

following, each measurement run using a Pitot-static tube located in the free stream at

the measurement location. The pre-measurement and post-measurement calibrations

were used to verify that there was no voltage drift during a profile measurement. To

maximize the sensitivity over the range of calibration velocities, two transducers with

accuracy of 0.25%, having sensitivities of 125 and 1245 Pa, were used to measure the

pressure difference between total and static pressure. The calibration data were fitted

with a fourth-order polynomial to convert the measured time dependent voltage into

time series of streamwise velocity, U1(t). Figures (4.2 & 4.3) show sample calibration

data from two cases and compares the hot-wire reading to the velocity measured by

the Pitot tube pre- and post- experiment, as well as the resulting curve fit, respec-

tively. These figures show a good agreement between pre- and post-measurement

calibrations. Calibrations measured for replicated cases are provided in Appendix

(8.2).
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4.5 Measurement Uncertainty

This section is a concise of explanations and estimation methods of measurement

uncertainty that is raised from measurement errors. The measured value of a property

is an estimate of the true value gave by the instrument. In general, this value is

unsimilar to the true value as no measuring system is perfect. The difference between

these two values is represented by the absolute measurement error. The relative

measurement error defines as the percentage ratio of the absolute measurement error

and the true value. Both the true value and the measurement error cannot be found

exactly.

Accuracy and inaccuracy of a measurement is an indication of how perfect or im-

perfect the measurement is, respectively. This means they refer to how the measure

value close to the true value, when they are compared. Inaccuracy in a measure-

ment could be raised from errors in calibration, data reduction and data acquisition.

Furthermore, these errors are caused by the imperfections of the instruments and

procedures. In addition to these errors, human errors are other possible errors in

measurements. These errors raise from the inconsistent and imprecise readings of

analogue measuring systems or imprecise eye averaging of the fluctuating digital me-

ters [53]. In the next two subsection, more details on the two kinds of the measurement

errors, bias (fixed or systematic) errors and precision (random) errors, that caused

measurement uncertainty will be provided.

4.5.1 Bias Errors

The bias errors are not changing during the experiment and could rise positive or

negative effects on the measurements. The bias errors are unknown and attributed

to the overall uncertainty of the measurements in most cases. However, if these

errors can be determined by comparison to a more accurate instrument or a standard

and estimated to be affecting the measurements, they should be removed from the
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measured value.

In the experiments of this study, the hot-wire probe calibrated by reference to

a Pitot tube. In the near-wall region, the hot-wire measurements can be effected

by free convection, heat conduction to the walls, atmosphere temperature changes,

the difficulty of finding the critical distances from the wall, and calibration drift [54].

Thus, these errors could lead to drift in the measurements. For example, the difficulty

of find the initial probe position from the wall caused by two classifications of errors:

human error that cased by eye averaging, and the errors raised from imperfection

of the distance measuring microscope. Another example of the bias error in these

experiments is the drift calibration that caused by referencing the hot-wire probe to

the Pitot tube. These small errors can be shown in Figures (4.2 & 4.3).

4.5.2 Precision Errors

Precision errors are, presumably, changeable throughout the experiment in several

undesirable inputs. Each of these inputs can be assumed to cause a relatively small

influence on the output; therefore, the total effect is unpredictable. The occurrence

of this leads the experiment to be under statistical control, where the central limit

theorem indictates that repeat measurements should have a Gaussian (normal) dis-

tribution. Thus, a normality test may be performed to prove randomness. Then,

identifying possible outliers and removing them from the sample are recommended

[53]. A statistical measured of the possible value of the precision error is the standard

deviation that shows the spread of the distribution of repeat values about the mean.

The magnitudes of both the bias and precision errors specify the accuracy of a

measurement. If both these errors are small, the reading is consider to be accurate

otherwise it is termed inaccurate. There are three types of inaccurate measurements:

biased and precise, unbiased and imprecise, and biased and imprecise.

Repeatability of a measurement is the replicate of the readings of the same prop-
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erty with the same instrument and during a relatively short period of time under

the same conditions. It is not necessary that the good repeatability means negligible

random errors even though good replication is a good indication of the closeness of

the readings. In addition, good repeatability does not refer necessarily to overall ac-

curacy as it may not subtracted the bias. Replication of a measurement is to develop

statistics and ensure repeatability for this measurement as shown in the most Figures

in Chapter (5).

To compare data in different laboratories and measured with different instru-

ments, the closeness of the repeated readings is an indication of which is called Re-

producibility. Good reproducibility of a measurement indicates that both the random

and systematic errors are small.

4.6 Flow Conditions

The turbulent boundary layer at the measurement location has Reynolds number,

Reτ = δuτ/ν ≈ 1000 (Reθ = θU∞/ν ≈ 2000). Here, the boundary layer thickness, δ,

is calculated at the streamwise mean velocity, 〈U1〉 = 0.99U∞. The friction velocity,

uτ , was calculated using two approaches (the Clauser-plot [55] approach and the

approach of fitting near-wall data to DNS data) that will be presented in details in

the next chapter. The values of uτ determined from both approaches were found to

be in agreement. Thus, the approach of finding the value of uτ , which best scaled

the measured velocity profiles in the near wall region to the DNS data of Schlatter

and Örlü [56], was considered for further calculations. The experimental conditions

for each case are presented in Table (4.1).
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Table 4.1: Experimental conditions and symbols used to represent each case in fol-
lowing figures.

Free Stream Laminar Turbulent

Reτ 1000 1000
Reθ 1800 2100

uτ (m/s) 0.19 0.18
ν/uτ (µm) 79 83
δ (mm) 82 85
Symbol 4 �

36



Figure 4.2: Calibration of the hot-wire reading for the case with a laminar free-stream
condition using a Pitot tube (a) before; and (b) after curve fitting.
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Figure 4.3: Calibration of the hot-wire reading for the case with a turbulent free-
stream condition using a Pitot tube (a) before; and (b) after curve fitting.
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Chapter 5 Mean Flow Analysis

This chapter will first describe the two approaches that were used to estimate the

friction velocity, uτ , in the two flow conditions and their replications. Then, the

profiles of the mean steamwise velocity and variance profiles for both conditions will

be presented. Finally, the distributions of the Reynolds stresses will be discussed.

5.1 Determination of Friction Velocity

Friction velocity, uτ , is used to characterize shear-related motion in moving fluids and

is used in turbulent flows as a characteristic scaling parameter for velocity. One way

to define the friction velocity is through the non-dimensionalization of the turbulent

equations of motion. For instance, in a fully developed turbulent boundary flow, the

streamwise momentum equation in the very near wall layer reduces to uτ =
√

τw
ρ

, as

introduced in Equation (2.30).

Despite the importance of uτ for scaling the boundary layer, determination of τw

is a non-trivial process. In this study we used two related indirect approaches to

determine uτ : the so-called Clauser-plot [55] approach and fitting near-wall data

to DNS data. Both approaches require that the turbulent boundary layer scaling

discussed in Section (2.3) is valid for this experiment.

In the Clauser-plot approach, the inner scaled velocity profile is assumed to match

the log-law. This approach is based on the assumption that the velocity profile follows

a universal logarithmic form in the overlap layer between the inner and outer regions

of the turbulent boundary layer. In this method, the data was fitted to the log-law

The Clauser-plot approach is simply to adjust uτ to find the best fit of the mea-

sured data to Equation (2.40). This approach is highly dependent on the choice of the
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Figure 5.1: Profiles of mean streamwise velocity normalized by uτ across the boundary
layer for the laminar free-stream condition with three replicates.

von Kaŕmań constant, κ, and the constant B. Here we used κ = 0.384 and B = 4.173

[57]. In other words, the mean streamwise velocity profile of our data is fitted to the

log-law in the region between the inner and outer layer in the boundary layer. Then,

we find uτ that best matches log-law to our data in the overlap region.

The mean streamwise velocity profiles, normalized by uτ across the boundary

layer, for the laminar free-stream condition with three replicates of the measurement,

and compared to the log-law are shown in Figure (5.1). Ensuring repeatability of our

data, the four mean streamwise velocity profiles show a qualitative agreement in the

overlap layer between the inner and outer regions of the boundary layer.

This approach also is used to estimate uτ for the normalized mean streamwise
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Figure 5.2: Profiles of mean streamwise velocity normalized by uτ across the boundary
layer for the turbulent free-stream condition with two replicates.

velocity data for the turbulent free-stream condition, with the experiment replicated

twice. Comparison to the log-law for these measurements is presented in Figure (5.2).

As in the laminar free-stream condition, the velocity scaled with the estimated uτ fits

the log-law in the log layer of the boundary layer. Again, in this condition, the mean

streamwise velocity profile and the log-law are in a agreement in the overlap layer.

Thus, using this approach, uτ was found to be 0.19 m/s for the condition of lam-

inar free-stream and 0.18 m/s for the condition of turbulent free-stream as presented

in Table (4.1). This approach provides us a coarse estimate of the friction velocity.

Therefore, we will match our data to DNS data to calculate uτ that best matches

our data with these DNS data in order to validate the first approach that we used to
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determine uτ .

In the second approach used to find friction velocity, we find uτ by finding the value

that best matches the measured profile of the normalized mean streamwise velocity

profile to DNS data in the near-wall region. In this method, the mean streamwise

velocity profile in the wall-normal distance will match the DNS data at approximately

the same Reynolds number.

The mean-flow data are presented in the wall-normal distance form in Figures (5.3

& 5.4) for both laminar and turbulent free-stream conditions, respectively, with DNS

results from simulations that were performed at the Royal Institute of Technology

(KTH), Stockholm at Reθ = 2000 [56]. The friction velocity, uτ , was calculated

in both conditions by finding the value of uτ , which best scaled the measured mean

streamwise velocity profile to this DNS data of Schlatter and Örlü [56]. A good

agreement between our data and the DNS data is observed. uτ estimated using

this way matches the values of uτ found from the Clauser-plot approach for both

free-stream conditions.

Both methods, Clauser-plot and matching scaled profile to DNS data, were used

to estimate uτ , and both were determined to be in agreement. For the remainder of

this work, the values calculated using matching scaled profile to DNS data are the

ones considered.

5.2 Streamwise Velocity and Variance Profiles

Figures (5.3 & 5.4) show the wall-normal dependence of the inner-scaled profiles of

the mean streamwise velocities for both laminar and turbulent free-stream conditions.

In these figures, a comparison between our data and DNS of Schlatter and Örlü [56]

displays small discrepancies between our data and the DNS data, particularly in the

near-wall region and the free-stream region (potential layer). These discrepancies

are consistent with the existent of non-zero pressure gradient free-stream conditions
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Figure 5.3: Profiles of mean streamwise velocity normalized by uτ across the boundary
layer for the laminar free-stream condition with three replicates.

in the experiment, possibly introduced by the flap at the back of the plate used to

prevent flow separation at its leading edge. The enhancement of the wake layer for

the case with free-stream turbulence is expected, and consistent with prior studies

comparing laminar to free-stream conditions. Furthermore, in the near-wall region,

the discrepancy between the experiments and DNS can be attributed to the bias in the

measurements that can be created by heat conduction to the wall and the formation

free convection as the hot-wire probe enters into the low velocity environment near

the surface.

The mean-flow data is presented in the wall-normal distance form in Figure (5.5)

for both flow conditions with the DNS data at Reθ = 2000 [56]. The inner-scaled

profiles of the mean streamwise velocity and the streamwise turbulence intensity with
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Figure 5.4: Profiles of mean streamwise velocity normalized by uτ across the boundary
layer for the turbulent free-stream condition with three replicates.

the inner-scaled distance from the wall are shown in Figures (5.5 (a & b)), respectively.

These two figures show a good agreement between our data for the case without free-

stream turbulence condition and the DNS data. As indicated earlier, this comparison

demonstrates small differences in the free-stream due to the difference in the values

of Reynolds numbers among these cases. For the case with free-stream turbulence, as

expected, the inner-scaled turbulence intensity distribution is higher than that of the

case without free-stream turbulence as shown in Figure (5.5 (b)). This is attributed

to the higher level of turbulence in this case, where the turbulence intensity is 2.5%

at the measurement location. Note that in Figures (5.5 (a & b)) data when y+ ≤ 5

[58] was removed due to the near-wall bias in the data that attributed to the known

hot-wire issues when measuring near a solid surface.
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Figure 5.5: (a) Inner-scaled mean streamwise velocity profile. (b) Inner-scaled stream-
wise turbulence intensity profile. Symbols are as in Table (4.1), with line indicates
DNS data of Schlatter and Örlü [56].

Turbulence intensity refers to the turbulence level. The inner-scaled streamwise

turbulence intensity, u1rms
+, can be determined from

u1rms
+ =

u′

uτ
, (5.1)

in which u′ is the root-mean-square of the turbulence velocity fluctuation in the

streamwise direction, which can be computed from u′ =
√
〈u21〉. The wall-normal

dependence of the inner-scaled streamwise turbulence intensity profile for both con-

ditions is presented in Figure (5.5 (b)). This figure demonstrates the higher level

of the turbulence intensity for the turbulence free-stream condition compared to the

laminar free-stream condition throughout the wall-normal locations. Furthermore,

the peaks of the turbulence intensity for both conditions agrees with the previously

reported experimental and numerical data [59, 56]. The difference in the turbulence
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Figure 5.6: Profiles of variances of the streamwise velocity normalized by uτ across
the boundary layer for the laminar free-stream condition with three replicates.

intensity between the two free-stream conditions can be observed in the edge of the

boundary layer, near y+ ≈ 1000.

To demonstrate the repeatability of the fluctuation measurements, the wall-normal

dependence of the inner scaled distribution of variance, (σ2)
+

, is shown in Figures (5.6

& 5.7) for all repeated measurements made in the laminar and turbulent free-stream,

respectively. In both conditions, these figures show clearly the repeatability of the

data. In both free-stream conditions, the peaks of the variance is near to y+ = 15.
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Figure 5.7: Profiles of variances of the streamwise velocity normalized by uτ across
the boundary layer for the turbulent free-stream condition with two replicates.
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Chapter 6 Universality of Local Dissipation Scales

6.1 Longitudinal Energy and Dissipation Spectra

To describe the turbulence, examples of the estimated energy and dissipation spectra

as well as the measured statistics are first presented. The wavenumber spectra of the

streamwise velocity E11(k1) was estimated through

E11(k1) =
〈U1〉
2π

F11

(
2π

〈U1〉
f

)
, (6.1)

in which F11(f) is the frequency, f , spectrum of the streamwise velocity calculated

from the magnitude of the Fourier transformation of the streamwise velocity fluc-

tuations u1 = U1(t) − 〈U1〉. In order to interpret temporal information into spatial

information in the calculation, Taylor’s frozen flow hypothesis [60] was used, where

the streamwise wavenumber, k1, was found from frequency through 2πf/〈U1〉. There

is much literature on the validity of Taylor’s hypothesis [61, 62, 63], which suggest

possible additional corrections are required when translating the temporal domain

into the spatial domain. Such corrections are not attempted here since the focus of

the study is the smallest turbulent scales, where Taylor’s hypothesis provides a rea-

sonable approximation of the spatial separation. Note also that these corrections are

not without problems, especially for the low Reynolds numbers of the present study,

where they could lead to bias of the data prior to the analysis [64, 65, 66].

In order to estimate ηK , an estimate of 〈ε〉 must first be found. One approach to

calculate 〈ε〉 is from the integration of the approximated one-dimensional dissipation

spectrum D(k1) after assuming local isotropy [67] following

〈ε〉 ≈ 15ν

∫ kc

0

D(k1)dk1 ≈ 15ν

∫ kc

0

k21E11(k1)dk1, (6.2)
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whereD(k1) was approximated from the longitudinal energy spectrum throughD(k1) =

15νk21E11(k1). To minimize the effect of the f 2 noise of the thermal anemometer and

prevent contamination of the 〈ε〉 estimate by the oversampling of the velocity signals

in the present measurements, an appropriate cutoff wavenumber, kc was applied as

an upper bound of the integration. This cutoff was set at the wavenumber when an

inflection started to appear in the frequency spectrum, i.e. the frequency at which

the noise started to overcome the useful signal.

In this work, the streamwise component of the velocity was resolved utilizing

a single-sensor thermal anemometry probe, which was not capable of conducting

measurements of the all components of the time-series of the local rate-of-deformation

tensor. Hence, an alternate estimate of the dissipation rate could be obtained using

the one-dimensional approximation [68]

ε(t) ≈ 15ν

(
∂u1
∂x1

)2

, (6.3)

which assumes local homogeneity. However, as reported in Pope [8], for example,

such alternatives are only estimated to be qualitatively similar to the instantaneous

dissipation. To evaluate Equation (6.3), Taylor’s hypothesis and a first-order finite

difference were used as follows

ε(t) ≈ 15ν
1

〈U1〉2

[
u1(t+ ∆t)− u1(t)

∆t

]2
, (6.4)

here ∆t = 1/fs. In the present measurements, to minimize contamination from

instrumentation noise, the data were filtered using an additional zero-phase, eight

order digital Butter-worth filter. The cutoff frequency was chosen to be kc〈U1〉/2π.

Both Equation (6.2) and the mean of Equation (6.4) were used to estimate 〈ε〉, and

both were determined to be in agreement. For the remainder of this work, the values

calculated using Equation (6.4) are the ones presented. Note that the assumptions of

local homogeneity and isotropy used to extract surrogates for the three-dimensional

dissipation from one-dimensional measurements break down near the wall. Hence,
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Figure 6.1: (a) Normalized longitudinal one-dimensional energy spectra measured at
y+ ≈ 30 (hollow symbols) and 800 (filled symbols). (b) Corresponding estimate of
the dissipation spectra. Symbols are as in Table (4.1).

only measurement points for which y+ = yuτ/ν > 25, where such scaling is observed,

are included in the present study.

The measured longitudinal one-dimensional energy spectra and the corresponding

approximated one-dimensional dissipation spectra for both cases with laminar and

turbulent free-stream conditions are presented in Figures (6.1(a & b)), respectively.

Two different y positions are presented, y+ ≈ 30 and 800, as they represent the

points closest to the wall and at the edge of the outer part of the boundary layer

where the flow is subjected to an interface between the boundary layer and free-

stream conditions, and therefore intermittently displays the properties of each.

The energy and dissipation spectra have been normalized by (〈ε〉ν5)1/4 and (〈ε〉η5K),

respectively, and thus scaled using Kolmogorov scaling. As expected, for the cases

where the flow is fully turbulent (near the wall, and at the edge of the boundary

layer for the case with a turbulent free stream and thus the external intermittency

is between boundary layer and free-stream turbulence), the scaled energy spectra

follow Kolmogorov scaling at high wavenumber. For the measurement in the outer
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Figure 6.2: Smoke wire flow visualization of a turbulent boundary layer. Adapted
from Dyke [69]

part of the boundary layer when the free stream is laminar and the external intermit-

tency is between boundary layer turbulence and laminar flow this scaling does not

hold and the corresponding spectra does not monotonically decay and deviates from

Kolmogorov scaling at high wave-numbers.

This external intermittency is illustrated in Figure (6.2), which shows smoke-wire

flow visualization of a turbulent boundary layer. It can be observed that there are

instances where the free-stream flow extends very close to the wall. For a probe

fixed at a y position, with the flow advecting past it, this will appear as intermittent

laminar and turbulent behavior.

The corresponding estimated one-dimensional dissipation spectra, shown in Fig-

ure (6.1(b)), provide confidence that the entire dissipation range has been captured

by the measurements. Whereas for the case where the flow is consistently turbulent

the dissipation spectra appear log-normal, when laminar-turbulent external intermit-
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tency is present the approximated one-dimensional dissipation spectra has a different

appearance, being skewed towards larger scales and showing more content at wave-

numbers above ηK .

6.2 Wall-Normal Dependence of the Turbulent Statistics

Comparison of the wall-normal dependence of the turbulent statistics measured for

laminar and turbulent free-stream boundary layers is presented in Figure (6.3) with

the inner-scaled dissipation, 〈ε〉+ = 〈ε〉0.4/u3τ , and the Kolmogorov scale, η+K =

ηKuτ/ν, presented in Figures (6.3(a & b)), respectively. In Figure (6.3(a)), the inner-

scaled profiles of dissipation for both cases increase with wall-normal distance at the

same rate up to y+ ≈ 350. At locations further from the wall, the mean dissipation

rate of the case without free-stream turbulence decreases rapidly with increasing

distance from the wall until reaching zero at the edge of the boundary layer to match

the dissipation rate of the laminar free-stream. Conversely, for the boundary layer

in the turbulent free-stream, there is always turbulence present, so the dissipation

rate maximizes at y+ ≈ 500, above which the dissipation rate decreases down to

the free-stream levels. Comparison of the mean dissipation rate indicates that the

differences in the free-stream conditions largely influences the fine scale behavior

only in the outer part. In this region we can consider there to be two different types

of external intermittency depending on free-stream conditions. For the case with

a laminar free-stream, the external intermittency is between the laminar free-stream

flow and the turbulent boundary layer flow. For the case with a turbulent free-stream,

the external intermittency is between the free-stream turbulence and the boundary

layer turbulence.

The values of η+K = ηKuτ/ν corresponding to the mean dissipation rate presented

are provided in Figure (6.3(b)). As expected, η+K increases with distance from the

wall and, again, the difference between the two flow regimes occurs when y+ & 350.
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Figure 6.3: Wall-normal dependence of: (a) the inner scaled mean dissipation rate;
(b) the inner scaled Kolmogorov scale; (c) the inner scaled Taylor micro-scale; (d)
Taylor Reynolds number; (e) the inner scaled integral length-scale; (f) large-scale
Reynolds number; (g) the inner scaled alternative large scale; and (h) alternative
large-scale Reynolds number. Symbols are as in Table (4.1).

The Taylor micro-scale, providing intermediate length-scale between the large and

small-scale statistics, was determined from

λ ≈
(

30ν〈u21〉
〈ε〉

)0.5

. (6.5)

Figure (6.3(c)) shows the profiles of wall-normal dependence of the inner-scaled Taylor

micro-scale, λ+ = λuτ/ν, for the two free-stream conditions. Unlike the Kolmogorov

scale, the Taylor microscale changes very little across the boundary layer, and no

difference is observed between the laminar and turbulent free-stream conditions. The
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corresponding Taylor-scale Reynolds number was estimated from

Reλ =
λ〈u21〉0.5√

2ν
. (6.6)

There is little variation in Reλ, remaining between 100 and 120, for y+ < 350, with

its maximum value occurring near the wall. Closer to the edge of the boundary layer,

however, there is a rapid drop in Reλ, slightly delayed for the turbulent free-stream

for which Reλ ≈ 40.

A key scaling parameter for the large turbulent eddies is the scale L and it is

common practice to use the integral length-scale to determine L. To find the integral

length-scale we applied Taylor’s hypothesis to the autocorrelation and integrated such

that

L =
〈U1〉
〈u21〉

∫ Tc
0

〈u1(t+ T )u1(t)〉dT . (6.7)

To minimize the impact of experimental bias and precision errors, which can result

in a slow convergence in the integral, the integration was conducted up to Tc, which

was either the first zero-crossing of the autocorrelation, or the first inflection point,

whichever value was lower. The inner-scaled profiles of integral length-scale L+ =

Luτ/ν are shown in Figure (6.3(e)). In both laminar and turbulent free-streams,

the integral length-scale remains largely constant at L+ ≈ 0.4δ+. Note that for

the turbulent free-stream case, L+ ≈ M+ and we should not expect to see much

difference in the size of the large-scales between the turbulent boundary layer and

free-stream turbulence. Note also that for the measurement points approaching and

in the laminar free-stream, the value of L was beyond the scale of Figure (6.3(e)) and

is not shown, as the integral scale calculated only reflects long wavelength oscillation

in the free-stream conditions, as opposed to turbulent eddies.

To find the corresponding large-scale Reynolds number, ReL = 〈|δLu|〉L/ν, the

average velocity increment was estimated through time averaging |δLu| ≈ |u1(t +

L/〈U1〉)−u1(t)| for all t. The resulting values of ReL are presented in Figure (6.3(f))
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and are found to be O(Reτ ) near the wall, decreasing towards the edge of the bound-

ary layer. Interestingly, for most of the boundary layer, the velocity and length-scales

describing the large-scales of turbulence, |δuL| and L, appear to be less affected by

the free-stream turbulence conditions than the Kolmogorov scales.

In summary, the boundary layers with and without free stream turbulence demon-

strate identical wall-normal dependence of large- and small-scale statistics near the

wall, diverging towards the edge of the boundary layer where external intermittency

becomes increasingly important.

As noted by Bailey and Witte [37] the integral length-scale, L, is a poor indicator

of the low-wavenumber boundary of the inertial cascade, as the calculation of L

is biased by the presence of non-local, potentially ‘inactive’ [70], long-wavelength

motions, for example the very-large-scale- and large-scale-motions e.g., [71, 72, 73].

As a result, the scaling parameter η0 is biased as well, and becomes ineffective near

the wall. Therefore we seek alternative descriptions for the large scales, which may be

unbiased by the presence of these long-wavelength motions. In this respect, we note

that it is possible to use dimensional arguments to define an alternative description

of the large scales [8] using turbulent kinetic energy K and 〈ε〉 such that

L =
K3/2

〈ε〉
. (6.8)

Note that it is possible to modify this quantity to account for inhomogeneities through

the introduction of an additional coefficient [74], however that is not done here as

these coefficients typically bring L closer to L, whereas we require a quantity that

will describe the more isotropic large scales. In the present experiments we use

the isotropic approximation K ≈ 3/2〈u21〉 to calculate L in order to investigate the

possibility of using it as a surrogate to L for describing the largest scales at the start

of the energy cascade. A bias is likely to be introduced in our K estimate by the

anisotropy in the large scales, which will bias high in the turbulent boundary layer

due to the streamwise normal Reynolds stress being higher than the other two normal
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components of the Reynolds stress. Hence L is likely to be slightly longer than would

be found if the full three components of velocity were measured.

We also note that the estimate of L presented here assumes that the small scales

are isotropic through the approach used for the calculation of 〈ε〉, necessitated by the

measurements’ inability to resolve the instantaneous velocity gradient tensor. How-

ever, the small scales may not be isotropic, as observed by Agostini and Leschziner

[75] and also it is not expected that the small degree of anisotropy observed at small

scales will have an appreciable impact on the calculation of L.

Due to its dependence on K, which is a Reynolds number dependent quantity,

there is some Reynolds number dependence in L, which could impact the scaling

of the dissipation scales. However, as can be observed in the study of Nedić et al.

[74] most of this Reynolds number dependence is confined to Reθ ≤ 200; above this

value of Reθ, there is very little Reynolds number dependence due to 〈ε〉 increasing

proportionately with K3/2.

In an analogy to ReL we also introduce

ReL =
〈|δLu|〉L

ν
, (6.9)

where δLu is the longitudinal velocity increment, defined in Equation (3.6), with

|r| = L. The wall-normal distribution of the inner-scaled L and ReL for the two

flow regimes are presented in Figures (6.3(g & h)), respectively. This scale is slightly

larger than the integral length-scales, being closer to δ+ and displays more wall-normal

dependence. Due to its dependence on 〈u21〉 it drops significantly in the outer part

of the boundary layer. In addition, there is effectively no dependence on free-stream

conditions.
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6.3 Dependence of Large Eddies length-scales and Taylor Reynolds Num-

bers on Large Scale Reynolds Numbers

The classical scaling prediction of L/ηK ∼ Re0.75L and Rλ ∼ Re0.5L (e.g., see Frisch

[22]) is not well supported in a channel flow [37], most notably through the existence

of different L/ηK values at the same ReL, but different wall-normal positions. In the

present case, the Reτ is much lower and this effect is less readily apparent, as shown

in Figures (6.4(a & b)). For example, in the near-wall region L and ReL remains

relatively constant, whereas ηK increases monotonically in the same region as can

be observed in comparison of Figures (6.3(b,e & f)). The result is that L/η varies

at constant ReL as shown in Figure (6.4(a)). A similar comparison reveals that the

variation in Reλ does not have a commensurate variation in ReL, resulting in the

expected scaling not being observed in Figure (6.4(b)).

As noted previously, in the theory of turbulence, L is intended to represent scales

at the start of the energy cascade region and have approximately Gaussian statistics.

However, in turbulent boundary layer flows, the integral scale is much longer than δ

and describes large-scale, anisotropic eddies, which are elongated in the streamwise

direction. This leads to the integral scale being a poor metric to describe the start of

the energy cascade, which is at the boundary of the universal equilibrium range; and

therefore, should be approximately isotropic. Thus, defining ReL using L in turbulent

boundary layer flows is ineffective at capturing the same Reynolds number scaling

observed in simpler flows.

Instead, Bailey and Witte [37] introduced a length-scale L∗ to characterize the

largest nearly isotropic energy-producing eddies in a channel flow. They assumed a

validity of Townsend’s attached eddy hypothesis, which states that in wall-bounded

flows the scale of Reynolds-stress-contributing eddies depends on the distance from

the wall, y, and cannot be larger than y since these eddies are confined by the wall.

They therefore suggested that L∗ = 0.8y as an appropriate length-scale to describe
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Figure 6.4: Dependence of (a) L/ηK and (b) Rλ on ReL, dependence of (c) L∗/ηK
and (d) Re∗λ on Re∗L, and dependence of (e) L/ηK and (f) ReLλ on ReL. Symbols are
as in Table (4.1). Solid symbols indicate measurement locations where y ≤ 0.5δ.

the local, active contributions to the Reynolds stress, and upper bound of the inertial

subrange. There is no theoretical foundation for choosing the constant of proportion-

ality 0.8; however, it was determined to be the most effective value when normalizing

the dissipative motions for y . 0.5δ, the region where Townsend’s attached eddy

hypothesis has validity [37]. Correspondingly, they defined

Re∗L =
〈|δLu∗|〉L∗

ν
, (6.10)

λ∗ =

(
30ν〈|δLu∗|2〉
〈ε〉

)0.5

, (6.11)

and

Re∗λ =
λ∗〈|δLu∗|〉√

2ν
, (6.12)
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Figure 6.5: Sketch showing non-local influences of statistics by eddies centered at
locations further away from wall than y position.

where λ∗ is the revised Taylor micro-scale and Re∗λ is its corresponding Reynolds

number. It is therefore anticipated that L∗ is a better descriptor for the energetic

eddies at the upper limits of the universal equilibrium range, and thus leads to a value

of the local-large-scale Reynolds number representing local contributions to Reynolds

stress, particularly in the near-wall region of the boundary layer. An illustration

of how anisotropic, ‘non local’ large scales centered at locations further away from

the wall than a specific y location can influence the statistics at y is presented in

Figure (6.5). This sketch also illustrates how the largest isotropic eddies at y, would

have a scale proportional to y.

Figures (6.4 (c & d)) show the dependence of L∗/ηK and Re∗λ on Re∗L for the

two conditions of the free-stream, respectively. These two figures demonstrate the

same improvement of scaling behavior observed in Bailey and Witte [37] through the

agreement with the classical theory when y/δ ≤ 0.5. Thus, it is hypothesized that

the scaling parameter L∗ is a much better descriptor of the large-scale eddies at the

start of the inertial subrange, at least for y/δ ≤ 0.5.

However, due to this limited range of applicability, we seek a better descriptor

for the local large scales. Being based on the isotropic theory, L should be a better

estimate for the top of the inertial subrange cascade, compared to L, and should work

everywhere in the boundary layer. Therefore, we proposed the Reynolds number
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scaling through the use of L. Correspondingly we can introduce

λL =

(
30ν〈|δLu|2〉
〈ε〉

)0.5

, (6.13)

and

ReLλ =
λL〈|δLu|〉√

2ν
. (6.14)

The dependence of L/ηK and ReLλ on ReL in the boundary layer for the two cases

of the free-stream conditions is provided in Figures (6.4(e & f)), respectively. In both

cases, there is monotonic behavior, with no indication of the non-uniqueness, which

plagues the other two estimates for the scaling of the large eddies. Note that this is as

expected, given that the scaling of Equation (6.8) is intrinsic to the scaling analysis

used to produce the L/ηK ∼ Re0.75L and Rλ ∼ Re0.5L scaling relationships.

6.4 Probability Density Function (PDF) of the Local Dissipation Scales

The probability density function (PDF), also termed “probability distribution func-

tion”, describes the frequency of occurrence of the values of the local-dissipative scale

over a range of this scale.

To find the distribution of η, we use Equation (3.8) to define η and find the PDF

of these scales Q(η). This PDF is found by evaluating the local Reynolds number

|δru|r1/ν throughout the measured time series and identifying instances where it is

near unity. These instances are counted as an occurrence of a dissipation scale with

η = r1. Specifically, the Q(η) distribution was calculated from each velocity time

series using the following procedure, which was introduced in Bailey et al. [34]. To

do so, the values of |u1(t + ∆t) − u1(t)|U1∆t/ν was calculated for all t, resulting in

a different value for each point in the time series. Then, the instances where this

quantity was between 0.5 and 2, were counted as occurrences of dissipation at a scale

η = U1∆t. ∆t was then incremented by 1/fs and the process was repeated. These

counts were obtained up to U1∆t = 4L resulting in a count, q(η), of the total number
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Figure 6.6: Forms of the PDFs of local dissipation scales from all measured positions
within the boundary layer for the condition of a laminar free-stream.

of occurrences of η in the range 0 < η < 4L. Finally, the PDF of η, Q(η), was

determined by normalizing such that

Q(η) =

∫ 4L

0

q(η)dη = 1. (6.15)

This process was repeated for all y positions within the boundary layer until profiles

of the PDFs from all measured positions were generated.

Figures (6.6 & 6.7) show the PDFs of the local dissipation scales from all measured

positions for a laminar and turbulent free-stream conditions, respectively. These dis-

tributions are skewed and biased toward the small scales, with a broad tail stretching

into the large scales. The peaks of these distributions decrease and shift to the right

with the wall-normal location. In both conditions, close inspection of these figures

characterizes that these distributions do not collapse. To show a more detailed view
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Figure 6.7: Forms of the PDFs of local dissipation scales from all measured positions
within the boundary layer for the condition of a turbulent free-stream.

of the degree of collapse for all all measured positions in both conditions, the PDFs

of the local dissipation scales are provided in Figures (6.8 & 6.9), respectively. These

figures clearly characterized the difference between the PDFs of the two conditions
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Figure 6.8: PDFs of local dissipation scales from all measured positions within the
boundary layer for the condition of a laminar free-stream using linear axes.
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Figure 6.9: PDFs of local dissipation scales from all measured positions within the
boundary layer for the condition of a turbulent free-stream using linear axes.

within the boundary layer. As expected, the PDFs of the laminar free-stream condi-

tion are highly skewed, comparing to the turbulent free-stream condition. The peak

values of the PDFs are higher for the condition of the turbulent free-stream due to

the higher turbulent intensity, especially in the outer part of the boundary layer.

6.5 Scaling of Local Dissipative Scales

We now seek to examine the scaling of the dissipative eddies within a turbulent

boundary layer. As noted earlier, the scaling parameter, η0, introduced by Yakhot

and Sreenivasan [1] scales with the local large scale Reynolds number through η0 ≈

LRe−0.73L , and is analogous to ηK ∼ LRe−0.75L . Hence, how the local large scales, L,

are determined can strongly influence the value of the scaling parameter η0.

As anticipated, L∗ was a better descriptor for the energetic eddies at the upper lim-

its of the universal equilibrium range, and thus leads to a value of the local-large-scale

Reynolds number representing local contributions to Reynolds stress, particularly in

the near-wall region of the boundary layer. Thus, η∗ = L∗Re∗−0.73L would be a more
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appropriate scaling parameter for the small scales, which was found to be the case

for y/δ < 0.5 in channel flow. However, due to this limited region of applicability, we

seek a better descriptor for the local large scales. Being based on isotropic approxi-

mations L is potentially a better estimate for the top of the inertial subrange cascade

than L and should work everywhere in the boundary layer. Therefore, in this section

we investigate the scaling of the distribution of the dissipative scale, η, when using

scaling parameters found by assuming that either L, L∗, or L are the appropriate

descriptors for the large scales.

To investigate the suitability of the different descriptors of the large scales, three

scaling parameters were used to normalize the PDFs of η:

(1) η0 = LRe−0.73L as introduced by Yakhot and Sreenivasan [1] and used by Schu-

macher [32] and Hamlington et al. [33];

(2) η∗ = L∗Re∗−0.73L as suggested by Bailey and Witte [37]; and

(3) ηL = LRe−0.73L as proposed by Alhamdi and Bailey [76].

The PDFs of η determined from all y measurement positions normalized by η0,

η∗, and ηL are presented in Figures (6.10 (a)–(c)), respectively, for the case with a

laminar free-stream.

As expected, the general shape of the distributions of the PDFs are in a good

agreement with the previously reported distributions calculated both experimentally

and numerically. Most notably, this is in the form of a skewed PDF biased towards

the small scales, with a long tail towards the larger scales. For the most part, the

maximum values of the PDFs are near 2.5η0, 3η∗, and 2.2ηL, respectively. However,

it can be observed that each of the scalings display regions of poor collapse, with the

greatest deviations observed when the PDFs are scaled by η0.

To provide a more detailed view of the degree of collapse near the wall under

the different scalings, the PDFs for y/δ < 0.4 are presented on linear axes in Fig-
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Figure 6.10: PDFs of local dissipation scales from all measured positions within the
boundary layer for the case with a laminar free-stream, normalized by: (a) η0 ; (b)
η∗ ; and (c) ηL.

ures (6.11(a)–(c)). Consistent with the observations of Bailey and Witte, scaling by

η∗ improves the collapse of the PDFs near the wall relative to that provided by η0,

indicating that the non-universality of the small scales and dependence on the large-

scale shear observed by Morshed et al. [36] and Hamlington et al. [33] is due to the

imperfect description of the large scales by L. When normalized by ηL, there is a

noticeable improvement relative to the η0 scaled PDFs; however, it does not provide

the same degree of collapse provided by η∗. This is most noticeable in the shift of the

peak of η/ηL.

To examine the dependency of the collapse of the PDFs on the distance from the

wall, the PDFs measured throughout the entire boundary layer are presented in the
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Figure 6.11: Measured PDFs of local dissipation scales for the case with a laminar
free-stream using linear axes, normalized by: (a) η0 ; (b) η∗ ; and (c) ηL for y/δ < 0.4.
The wall-normal dependence of the PDFs are shown normalized by: (d) η0 ; (e) η∗ ;
and (f) ηL.
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form of isocontours of probability in Figures (6.11(d)–(f)) for the PDFs scaled by η0,

η∗ and ηL. It can be observed from these isocontours that the greatest deviations from

universal scaling don’t appear near the wall, as occurs in channel flow, but actually

occur for y+ > 350 (or, alternatively, y/δ > 0.35). In this range, the PDFs normalized

by all three scaling parameters vary non-monotonically, with the highest probabilities

shifting to larger values than those observed near the wall as y increases before shifting

to smaller values near the edge of the boundary layer. We can attribute this non-

universality to the effect of the external intermittency that exists in the wake region

of the boundary layer. In this region, the flow will be intermittently laminar and

turbulent, with the relative fraction of laminar to turbulent flow increasing towards

the edge of the boundary layer. Hence, the PDFs of η will be increasingly impacted

as the instances of laminar flow in the time series increase in frequency and length

towards the edge of the boundary layer and increasingly biases the calculation of

Q(η), which does not discriminate between laminar and turbulent flow.

To support such an intermittency argument, we can look at equivalent scaling of

the PDFs for the case with free-stream turbulence. Although intermittent behavior

is still present this case, even when boundary layer turbulence is not present, there

is still turbulence present in the free-stream fluid entrained into the boundary layer.

Hence, the impact of the external intermittency on the PDFs of η should be reduced.

The PDFs measured for all y positions when free-stream turbulence is present are

shown in Figures (6.12(a)–(c)) scaled by η0, η
∗, and ηL, respectively. In all cases there

is improved agreement between the PDFs relative to that observed in Figure (6.10),

with the best agreement throughout the boundary layer and into the free-stream is

offered by the ηL scaling.

There is still some variation among the PDFs evident in Figure (6.12), and thus

we present the wall-normal dependence of this variation in Figure (6.13), which shows

the PDFs measured for y/δ < 0.4 in Figures (6.13(a)–(c)) on linear axes and the wall-
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Figure 6.12: PDFs of local dissipation scales from all measured positions within the
boundary layer for the case with a turbulent free-stream, normalized by: (a) η0 ; (b)
η∗ ; and (c) ηL.

normal dependence throughout the boundary layer via the corresponding isocontours

of the PDF value in Figures (6.13(d)–(f)). As for the case with a laminar free-stream,

the best scaling near the wall is produced by normalization by η∗.

The results shown in Figures (6.13(b & e)) scaled by η∗ demonstrate the same

improved collapse as in Figures (6.11(b & e)) when compared to the same PDFs

scaled using η0, consistent with the results of Bailey and Witte [37] that indicate η∗

is a suitable parameter when y/δ ≤ 0.5. However, also consistent with the results of

Bailey and Witte [37], η∗ is increasingly unsuitable as a normalization parameter in

the far-wall region (y/δ & 0.5).

Conversely, although the ηL scaling does not work as quite as well in the near-
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Figure 6.13: Measured PDFs of local dissipation scales for the case with a turbulent
free-stream using linear axes, normalized by: (a) η0 ; (b) η∗ ; and (c) ηL for y/δ < 0.4.
The wall-normal dependence of the PDFs are shown normalized by: (d) η0 ; (e) η∗ ;
and (f) ηL.
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wall region as η∗, it does display improved collapse throughout the boundary layer,

as shown in Figure (6.12(c) & 6.13(f)), with the near-wall scaling comparable to that

provided by η0. Near the wall, there is improvement relative to η0 when the PDFs

are scaled by ηL, with the near-wall scaling comparable to η∗.
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Chapter 7 The Influence of External Intermittency

on Local Dissipation Scales

7.1 Analysis of the External Intermittency

The scaling of the PDFs using ReL that was proposed by Alhamdi and Bailey [76]

and introduced in Section (6.5) in turbulent boundary layer flows with and without

free-stream turbulence at Reτ ≈ 1000 provided the best agreement so far throughout

the entire depth of this boundary layer. However, in the outer part of the boundary

layer, Alhamdi and Bailey [76] reported a significantly reduced collapse in the scaled

PDFs. They attributed this lack of collapse to bias in the calculation of η introduced

by the intermittent presence of laminar flow in the time series. To support this

attribution, they found a significant improvement in the scaling of the probability

density functions when the free-stream conditions were turbulent. Thus, it is expected

that accounting for the external intermittency influence will improve the scaling of

the PDFs, particularly for the condition of a laminar free-stream turbulence.

To account for the external intermittency in the calculation of the distribution

of η requires first that we identify instances where the transition from one state to

another occurs. In other words, a turbulence detection function must be employed.

The approach is illustrated in Figure (7.1). An example of the instantaneous

streamwise velocity signal U1(t) is shown in Figure (7.1(a)), which is turbulent for

some time interval and non-turbulent for the rest of the intervals. In the outer region

of the turbulent boundary layer, the convection velocity of the non-turbulent flow,

as it comes from the free-stream, is approximately U∞ (i.e. Corrsin and Kistler [38];

Fiedler and Head [44]; Kovasznay et al. [47]; Jiménez et al. [77]; Chauhan et al. [40]),
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Figure 7.1: (a) Portion of instantaneous streamwise velocity measured at y/δ = 0.66
by the hot-wire probe, with the dashed line indicating the free-stream velocity. (b)
Corresponding detector function D(t) with the dashed line indicating the threshold
used to identify turbulent/not-turbulence zones. (c) Corresponding binary inter-
mittency signal with I(t) = 1 indicating the presence of turbulence and I(t) = 0
indicating a non-turbulent state. (d) Profile of average intermittency function, γ.
Solid line indicates Equation (7.2) and dashed line indicates the wall-normal location
where γ = 0.5, which occurs at y/δ ≈ 2/3.

which is denoted by the dashed line in Figure (7.1(a)). The detector function assumes

that over the non-turbulent intervals of the signal, the fluctuations U1 − U∞ are of

the order of the free-stream intensity or less. Thus, we utilized a criterion to identify

these turbulent/non-turbulent interfaces by applying a threshold value on a detector

function D(t) = 100 × [1 − U1(t)/U∞]2 [40]. When D(t) is less than the threshold

value, it is assumed to be non-turbulent flow, while it is higher than, or is equal to,

this threshold value in the turbulent flow as shown in Figure (7.1(b)). In the present
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case, to isolate the turbulent bulges the velocity time series was low pass filtered at

25 Hz using an eight order digital Butterworth filter (applied both in forward and

backward time, to eliminate any phase lag introduced into the filtered signal) before

calculating D(t). In addition, a threshold value of Dt = 0.05, was used (indicated by

the dashed line in Figure (7.1(b)), which corresponds to the 95% confidence level of

a 1% standard deviation in the free-stream velocity.

Using this threshold value, the binary indicator I(t) is determined where I(t) = 0

when D(t) < Dt and the flow is considered to be non-turbulent, and I(t) = 1, when

D(t) ≥ Dt and the flow is considered to be turbulent. The values of I(t) for the

example time series shown in Figure (7.1(a)) is presented in Figure (7.1(c)).

This calculation was conducted for all wall-normal locations to identify turbulent

and non-turbulent regions at all wall-normal positions in the boundary layer. We

denote the length of the turbulent intervals as `t and non-turbulent `nt, where `t and

`nt are found from the duration in time of each segment multiplied by the average

velocity within it.

At a specific wall-normal location where the streamwise velocity is measured, the

average intermittency function, γ is calculated from

γ =
1

Ts

∫ Ts

0

I(t)dt, (7.1)

in which Ts is the sampling time.

In a turbulent boundary layer, the profile of γ(y), has been found to be indepen-

dent of Reynolds number [44] and can be represented with considerable accuracy by

the error function as follows (see, for example Corrsin and Kistler [38]; Fiedler and

Head [44], Hedley and Keffer [78], Chen and Blackwelder [79]):

γ(y) =
1

σY
√

2π

∫ ∞
y

exp

[
−(y − Y )2

2σ2
Y

]
dy. (7.2)

Here Y is the mean interface position, which is the wall-normal location where γ = 0.5,

and σY is the standard deviation of the instantaneous interface position, y, relative
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Figure 7.2: Profiles of Reynolds stress normalized by uτ across the boundary layer
for the case with a: (a) laminar; and (b) turbulent free-stream. Symbols are as in
Table (4.1), with black symbols referring to the calculation using only instances where
boundary layer turbulence is present and and grey symbols indicating instances where
free-stream conditions are present.

to the mean location Y . Previous studies have found that Y ≈ 2/3δ and σY ≈ δ/9

for the turbulent boundary layer [40]. Figure (7.1(d)) shows the γ profile measured

for the turbulent boundary layer in the present study and Y/δ = 0.66 was found to

correspond γ = 0.52. For comparison, the profile of γ produced by Equation (7.2)

is also shown using Y = 2/3δ and σY = δ/9. A good agreement between these two

profiles of γ was found, supporting the implementation of the D criterion, and the

selected threshold value, to identify turbulent and laminar regions within this flow.

To affirm our argument of applying the D criterion and the selected threshold

values to detect the external intermittency, we also used this detector function ap-

proach to distinguish between the turbulence and free-stream turbulence interfaces
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in the case with free-stream turbulence. However, a threshold value of 0.12 is ap-

plied to detect the interfaces at wall-normal locations of the external intermittency

since the free-stream intensity is higher in this case. The streamwise Reynolds stress

normalized by uτ across the boundary layer is provided in Figure (7.2) for the two

free-stream conditions. As expected, the distribution of the Reynolds stress agrees

with the previously reported experimentally and numerically (i.e. Lee and Sung [80])

for turbulent boundary layer at around the same Reθ. The budgets of Reynolds

stresses for the two free-stream conditions in the outer part of the boundary layer are

compared. It is found that when the streamwise Reynolds stress has been calculated

only using instances where boundary layer turbulence is present, the profiles mea-

sured in the two different free-stream conditions match. These findings also support

the implementation of the D criterion, and the selected threshold value.

7.2 The External Intermittency Effect on the Scaling of the Local-Dissipative

Scales

Experimental determination of η and its PDF from hot-wire data has been conducted

in boundary layer flow with a laminar and turbulent free-stream conditions in Sec-

tion (6.5). The present study essentially follows the same procedure, but had to be

modified to account for the external intermittency.

Using the indicator function I(t), the time series was segmented into discrete

intervals and intervals where I(t) = 0 were discarded. To ensure that the length of

time available was suitable for determining converged PDFs, intervals where `t < 2.5δ

were also discarded. The remaining intervals were then analyzed as independent time

series. Where intermittency was not detected, the calculation proceeded as described

in Sections (6.4). The calculation of the distribution of η requires identification of

instances where Reη = |δru|r1/ν ∼ 1. To do this, |δru| at each time t was estimated

by assuming r1 ≈ 〈U1〉∆t, where 〈U1〉 was the average velocity within the segment of
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the time series being analyzed, and δru ≈ [u1(t + 〈U1〉∆t) − u1(t)]. For a particular

discrete measurement time, t, Reη was calculated over the range of ∆t values up to

the length of the time series. Each instance where Reη was between 0.5 and 2 was

counted as a single occurrence of dissipation at a scale η = r1. This process was

performed for all t to generate q(η), the count of occurrences when 0.5 < Reη < 2 for

each value of η.

A PDF of η could then be found by normalizing such that
∫
q(η)dη = 1 over

the range 0 to 100ηL where ηL = LRe∗−0.73L is also used to scale the PDFs. Note,

however, that the choice in scaling parameter is not expected to impact the efficacy of

the intermittency compensation, as its influence is confined to the outer part. Scaling

by ηL was conducted for simplicity, as it was found to be minimally impacted by the

wall-normal location and is not bounded by ranges of validity, unlike η0 and η∗ and

thus simplifies comparison across the boundary layer [76]. To calculate L = K3/2/〈ε〉

, K was necessarily approximated using an isotropic assumption as 1.5〈u21〉 and 〈ε〉

similarly approximated as 15ν〈U1〉−2〈(∂u1/∂t)2〉. For simplicity, these quantities were

calculated from the full time series, as preliminary analysis indicated that the scaling

remained unchanged when ηL was calculated from only the turbulent portion of the

intermittent signal.

The use of these isotropic assumption to calculate dissipation rate was necessitated

by the one-dimensional nature of hot-wire data. However, in Bailey and Witte [37]

and Alhamdi and Bailey[76] the approach described above was compared to other

methods for finding dissipation rate from hot-wire data and the results were found to

be in agreement for y+ > 25, with Kolmogorov scaling of the also one-dimensional

spectra supported for this range. A greater bias is likely to be introduced by the

K = 1.5〈u21〉 approximation, which will bias L high due to anisotropy at the large

scales. However, we have found the value of LRe−0.73L to change only gradually with

L and therefore we do not expect a significant deviation in the scaling behavior to
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occur if mean dissipation rate and turbulent kinetic energy are calculated from the

full three-component velocity vector and velocity gradient tensor.

Figure (7.3(a)) shows the distribution of the Q(η/ηL) at different values of y/δ

without accounting for the external intermittency (assuming the entire time series

turbulent). For cases where γ is close to unity, the PDFs of η collapse on one another

and are consistent with previously reported distributions determined experimentally

and numerically in internal wall-bounded flows [34, 33, 81], as well as other turbulent

flows [32, 82]. Specifically, these distributions are highly skewed and characterized

by a broad tail stretching into the large scales, a peak near η/ηL ≈ 2.2 and a much

narrower tail at small scales. However, for the cases where γ < 0.9 the PDFs become

dependent on wall-normal position, both broadening and having the maximum shift

to higher values of η/ηL.

However, when only the instances where I(t) = 1 and `t > 2.5δ are examined,

as done in Figure (7.3(b)), the PDFs for γ < 0.9 recover the shape of those where

γ > 0.9. The PDF for each segment is shown in this figure. For wall-normal locations

where γ is high, there are very few instances where the flow was identified as being

laminar, and there are fewer, longer segments, which improves statistical convergence

of the PDFs. As γ decreases, there is an increasing number of shorter segments, which

were analyzed, and there is greater scatter observed. At very low γ, the number of

segments, which were longer than 2.5δ, were fewer. This limited the number of PDFs,

which could be calculated at a particular wall-normal location.

To provide a more rigorous comparison of the PDFs across the different wall-

normal locations, Figures (7.4(a & b)) show the PDF at each location in linear axes

for the range 0 to 10ηL. The case where the entire time series is treated as turbulent

is presented in Figure (7.4(a)), whereas the case where only the turbulent segments

of the time series are examined is presented in Figure (7.4(b)). For Figure (7.4(b)),

the PDFs of each segment at a particular wall-normal distance were averaged to

77



Figure 7.3: Comparison between the measured PDFs of local dissipation scales when
(a) treating the entire time series as turbulent and (b) accounting for the external
intermittency. For cases where γ < 1 (i.e. y/δ > 0.19), each wall-normal position has
been shifted up by a decade for clarity.

produce 〈Q(η/ηL)〉. Comparison between these figures demonstrates the improvement

in scaling across the boundary layer when only the turbulent portions of the time

series are considered.

The corresponding wall-distance dependence of these PDFs is demonstrated in the

isocontours of Q(η/ηL) shown in Figures (7.4(c & d)) as functions of y/δ and η/ηL,

again using linear scaling. Figure (7.4(c)) shows that the greatest deviations from uni-

versal scaling occur for y/δ > 0.35. In this range, the PDFs vary non-monotonically,

with the highest probabilities shifting to values larger than those observed near the

wall as y increases until the most deviating occurs at y/δ ≈ 0.6 and γ ≈ 0.5, before

shifting to smaller values near the edge of the boundary layer. Conversely, when
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Figure 7.4: PDFs of η for cases with γ < 1 when (a) treating the entire time series
as turbulent and (b) accounting for the external intermittency. For (b), the average
values of the PDFs at a specific wall normal position when the flow is intermittent
are presented. Corresponding isocontours of Q(η/ηL) as a function of η/ηL and y/δ
are shown in (c) treating the entire time series as turbulent and (d) accounting for
the external intermittency.

only the turbulent segments of the time series are considered, this wall-dependence is

effectively removed, as shown in Figure (7.4(b)). Here the maximum stays constant

at η/ηL ≈ 2.2 and only a slight broadening of the PDFs is evident at larger η/ηL for

intermediate wall distances.

These results confirm the hypothesis of Alhamdi and Bailey [76] that the wall-

normal dependence of the PDFs in the outer part of the boundary layer can be

attributed to bias introduced by the inclusion of periods of laminar flow in the calcu-

lation of η. More importantly, the results suggest that the boundary layer produces

a universal distribution of the dissipative scales of turbulence, when turbulence is

79



present. Given the agreement of the results from the PDFs with those of other flows,

there is consistent support for the existence of a universal distribution of these scales,

which can be determined from a single scaling parameter.
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Chapter 8 Conclusions and Future Work

8.1 Conclusions

Measurements of turbulent boundary layer with and without free-stream turbulence

were conducted at Reτ ≈ 1000 using a thermal anemometry probe. The data were

utilized to investigate the scaling behavior of the distribution of dissipative scales

within the boundary layer turbulence. Specifically, the collapse of the probability

density functions of the dissipative scales was examined using normalizing parameters

built from three selected measures of the large scale turbulence. These were the

measured integral length-scale, an approximation based on Townsend’s attached eddy

hypothesis introduced by Bailey and Witte [37], and the length-scale built from the

dimensional analysis of turbulent kinetic energy and dissipation rate.

The measured PDFs of η were consistent with those observed in other flows.

Although, unlike turbulent channel flow, in the outer part of the boundary layer there

was significantly reduced collapse in the scaled PDFs, irregardless of the scaling used.

This lack of collapse was attributed to the bias in the calculation of η introduced by

the intermittent presence of laminar flow in the time series. This attribution was

supported by the significant improvement in the scaling of the probability density

functions when the free-stream conditions were turbulent.

Within the near-wall region, the local large-scale defined based on distance from

the wall was found to collapse the probability density functions for the lower half

of the boundary layer. This observation is consistent with the prior observations of

scaling within turbulent channel flow and supports the universality of the small-scale

description of the turbulence for external wall-bounded flow. However, this scaling

does not extend to the outer part of the boundary layer, even for the case of a
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turbulent free stream. Instead, it was found that scaling the PDFs using a parameter

built from the turbulent kinetic energy and mean dissipation rate provided the best

agreement throughout the boundary layer.

Furthermore, contrasting to channel flow, in the outer part of the turbulent bound-

ary layer, the normalized distributions of the local dissipation scales were found to

be dependent on wall-normal position. This was observed to be attributable to the

presence of external intermittency in this outer part.

Then, the effects of the external intermittency on the scaling of the dissipation

scale distribution were investigated. The analysis employed a detection function to

identify the turbulent and non-turbulent regions in the outer part where external

intermittency exists. When only the turbulent portions of the time series are con-

sidered, the probability density functions of the dissipation scales from each portion

of the time series collapse on each other, and result in a significant improvement

in the scaling of the probability density functions across the depth of the turbulent

boundary layer when normalized by ηL.

This observation supports the universality of the small-scale description of the

turbulence for external wall-bounded flow, using the alternative definition of the local

large scale Reynolds number, ReL.

8.2 Future Work

The scaling of the PDFs using the alternative definition of the local large scale

Reynolds number, ReL, after accounting for the external intermittency supports the

universality of the small-scale description of the turbulence for external wall-bounded

flow. This observation does not provide the same degree of collapse in the PDFs as

the wall-dependent scaling, as this quantity converges on the integral length-scale

for homogeneous isotropic turbulence. Thus, it should prove to be a more practical

parameter to use in complex flows where the boundary layer thickness is not known

82



a priori.

It should be noted that the alternative definition of the local large scale Reynolds

number, ReL, presented here has only been examined in the turbulent boundary layer

flow at a low Reynolds number. It is not yet clear whether the scaling parameter,

ηL, will hold for other types of shear flows, or at higher Reynolds numbers. It is also

not clear whether accounting for the external intermittency will generalize for other

turbulent flows, or at higher Reynolds numbers.

Copyright c© Sabah Falih Habeeb Alhamdi, 2018.
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Appendix A: Hot-wire Calibration for the Replicated Cases

Calibration of replicated cases of pre- and post-curve fitting for the laminar and tur-

bulent free-stream conditions is provided below. These figure show a good agreement

between pre- and post-measurement calibrations.

Figure B1: Calibration of the hot-wire reading for the first replication of the case
with a laminar free-stream condition using pitot tube (a) before; and (b) after curve
fitting.
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Figure B2: Calibration of the hot-wire reading for the second replication of the case
with a laminar free-stream condition using pitot tube (a) before; and (b) after curve
fitting.
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Figure B3: Calibration of the hot-wire reading for the third replication of the case
with a laminar free-stream condition using pitot tube (a) before; and (b) after curve
fitting.
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Figure B4: Calibration of the hot-wire reading for the first replication of the case
with a turbulent free-stream condition using pitot tube (a) before; and (b) after
curve fitting.
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Figure B5: Calibration of the hot-wire reading for the second replication of the case
with a turbulent free-stream condition using pitot tube (a) before; and (b) after curve
fitting.
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Appendix B: Universality

Measured PDFs from all Measures Locations:

The measured PDFs of local dissipation scales for both laminar and turbulent free-

stream conditions using linear axes, normalized using η0, η
∗, and ηL, are presented

in the following two figures. In these two figures the PDFs are from all measured

positions of y+ > 25 within the boundary layer when the flow is intermittent. Com-

parison between the two free-stream conditions shows that the normalized PDFs pro-

files collapsed better with the local-dissipative scales when the free-stream turbulence

presents.

Figure B1: Measured PDFs of local dissipation scales for the case with a laminar
free-stream condition using linear axes, normalized by: (a) η0; (b) η∗; and (c) ηL
from all measured positions within the boundary layer when the flow is intermittent.
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Figure B2: Measured PDFs of local dissipation scales for the case with a turbulent
free-stream condition using linear axes, normalized by: (a) η0; (b) η∗; and (c) ηL from
all measured positions within the boundary layer when the flow is intermittent.
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Wall-Normal Dependence of Maximum PDFs:
The wall-normal dependence of all maximum values of PDFs are shown as isocon-

tours normalized by η0, η
∗ and ηL are presented below. This Figure shows the wall

normal dependence of the maximum PDFs for the case with a laminar free-stream
condition. Comparison between the different scaling parameter shows that η∗ and ηL
describe the PDFs better than η0.

ηmax/η0

y+

1 2 3 4 5 6101

102

103

(a)

ηmax/η*

1 2 3 4 5 6

(b)

ηmax/ηL

1 2 3 4 5 6

(c)

Figure B3: Isocontours of maximum values of the PDFs, showing wall normal depen-
dence for the case with a laminar free-stream condition, normalized by: (a) η0; (b) η∗

; and (c) ηL. Symbols are as in Table (4.1) showing location of maximum probability.
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