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Abstract

This thesis aims to improve knowledge of long-term inflow and streamflow forecasts. A special focusis on the
devel opment of anew long-term forecast model and on the evaluation of long-term inflow forecasts.

In the first part of the work, a new categorical long-term forecast mode is devel oped and its performance is
investigated in four case studies. The forecasts are based only on the current hydrological state of the basin and
thus, weather forecasts are not utilised. By using the k-Nearest Neighbour Rule (k-NRR) or the minimum
distance classifier (MDC), the forthcoming period is classified into a wetness class based on the hydrological
state of the basin on the forecast date. Inflow forecast is finally based on this classification. The results show
that for a lake with a large basin (Lake Péijanne case study), this forecast model could be used in real-time
inflow forecasting and the results are comparable with the forecast accuracy of the multiple linear regression
forecasting gave satisfactory results on April 1. On October 1, long-term forecasting turned out to be difficult
irrespective of the forecast mode.

In the second part of the work, long-term inflow forecasts are evaluated based on their length and accuracy. The
river system, River Kymijoki. The evaluation method is based on artificially generated inflow forecasts and on
the optimisation of the release sequences based on these forecasts. The results are in line with the outcome of
similar international studies: if the live capacity of the lake-river system compared with the annua inflow is
small, short and accurate forecasts should be aimed at. For large systems, along forecast period should be used
without focusing as much on forecast accuracy. The main finding, however, is related to approximation of the
potential hydropower production increase in Finland by supposing that forecast accuracy could be improved and
the optimal forecast periods used. In the two case studies it was possible to increase hydropower production up
to 0.7-9% compared with the status quo during the study period, if perfect inflow forecasts had been available.
However, the redlidic possibilities to increase hydropower production in Finland by improving forecast
accuracy were approximated to be 0.5-2% at the maximum. At the same time problems related to floods and
droughts would decrease.

Simulated anneding is used as the optimisation algorithm in the operation of the systems, and the evaluation of
the performance of this algorithm was one of the special objectives of this study. The agorithm was flexible
andreliable.

Keywords. Water resources management, hydropower, long-term inflow forecasting, pattern recognition,
forecast accuracy, smulated annealing, lake-river system

ISBN (printed): 978-951-22-9932-4 ISSN (printed): 1795-2239
ISBN (pdf): 978-951-22-9933-1 ISSN (pdf): 1795-4584
Language: English Number of pages: 165

Publisher: Helsinki University of Technology, TKK

Print distribution: TKK Water Resources Research Unit

The dissertation can be read at http:/lib.tkk.fi/Diss/2009/isbn9789512299331/



http://www.tkk.fi
http://lib.tkk.fi/Diss/2009/isbn9789512299331/




TEKNILLINEN KORKEAKOULU

VAITOKIRJAN TIIVISTELMA PL 1000, 02015 TKK, http://www.tkK fi

Tekija: Jarkko Koskela

Vaitdskirjan nimi: Virtaamien pitkan ajanjakson ennustaminen

Késikirjoituksen péivamadra 9.2.2009 ‘ Korjatun kasikirjoituksen paivamaéré 15.5.2009
V&itostilai suuden gjankohta: 26.6.2009

Monografia | [ ] Yhdistelmavéitéskirja (yhteenveto + erillisartikkelit)

Tiedekunta: Insinddritieteiden ja arkkitehtuurin tiedekunta
Laitos: Yhdyskunta- ja ympéristétekniikan laitos
Tutkimusala: Vesitalous

Vagtavéittga(t): Dosentti, FT, Bertel Vehvildinen

Tyon valvoja: Prof. Pertti VVakkilainen

Ty6n ohjagja: Prof. Pertti Vakkilainen

Tiiviselm&

Tyon tavoitteena on lisdta tietoa virtaamien pitkdn gjanjakson ennustamisesta. Tarkemmin tyossa keskityttiin
uuden ennustemallin kehittémi seen ja testaami seen seka ennustei sta saatavan hyddyn arvioi miseen.

Tydn ensmmaisessa osassa kehitetéddn luokitteluun perustuva virtaamien ennustemalli, jonka ennustetarkkuutta
Padijanne. Malli perusuu hahmontunnistukseen ja valuma-alueen hydrologiseen tilaan ennustehetkella.
Sadennusteita e hyoddynnetd. Kéyttamala k:n 1&himmén naapurin séantda tai minimietéisyyduokittelijaa
ennustejakso maadrdtéan luokkaan, joka kuvaa tulevan jakson kosteutta. Lopullinen (tulo)virtaamaennuste
perustuu téhan luokitteluun. Tulokset osoittavat, ettd menetelméa voitaisiin kéyttaa reaaliaikaisessa virtaamien
ennustamisessa  Pédijanteen kaltaisilla kohtellla, joilla on suuri valumaalue ja pitké viipeet. Mallin
uudella mallilla huhtikuun 1. pdivana tehdyt ennusteet ovat kohtuullisia, mutta lokakuun 1. pédivana pitkén
gjanjakson ennustaminen osoittautui vaikeaks kéytetystéd mallistariippumatta.

Tyon toisessa osassa tutkitaan ennustetarkkuuden ja ennustepituuden merkitysta ennustel sta saatavaan hyétyyn.
Tutkimus perustuu kahteen tapaustutkimukseen: Sékyldn Pyhgdrveen ja Kymijokeen. Ensimméinen on
yksittéinen jarvi, kun taas Kymijoki on monimutkainen jarvi-joki — systeemi. Tutkimusmenetelméa perustuu
ndiden kohteiden simulointiin kayttden keinotekoisesti luotuja, halutun mittaisia ennusteita, joilla on lisdks
haluttu tarkkuus. Tulokset ovat linjassa vastaavien kansainvélisen tutkimusten kanssa. Altailla, joiden
sddnnodstel ytilavuus on suuri vuotuiseen tulovirtaamaan nahden, tulisi kayttéa pitkia ennusteita, eiké ennusteiden
tarkkuuteen tarvitse kiinnittda erityista huomiota. Vastaavasti pienemmilla dtailla pitéis kayttda lyhyempia ja
tarkempia ennusteita. Tarkeimmét saaduista tuloksista liittyvét kuitenkin vesivoiman tuotantoon Suomessa.
Toteutuneisiin juoksutuksiin verrattuna, taydellisilla ennusteilla olis vesivoiman tuotantoa voitu kasvattaa
tutkimuskohteissa 0.7-9 %. Vesivoiman lisédmismahdollisuudet Suomessa ainoastaan tulovirtaamaennusteita
parantamalla arvioitiin olevan kuitenkin maksimissaan 0.5-2 %. Tarkkuuden lis@&ntyminen véhentés
luonnollisesti myds tulviin jakuiviin kausiin liittyvid ongemia

Juoksutusten optimointiin  kaytettiin  tydssd smuloitua jadhdytystd, jonka sovetuvuutta sddnnosteltyjen
vesistdjen juoksutusten optimointiin samallatarkasteltiin. Algoritmi osoittautui joustavaks jaluotettavaks.

Asiasanat: Vesitalous, vesivoima, pitkan gjanjakson ennustaminen, tulovirtaama, ennustetarkkuus, simuloitu
jédhdytys, hahmontunnistus

ISBN (painettu): 978-951-22-9932-4 ISSN (painettu): 1795-2239
ISBN (pdf): 978-951-22-9933-1 ISSN (pdf): 1795-4584
Kidi: Englanti Sivumaarad: 165

Julkaisja: Teknillinen korkeakoulu, TKK

Painetun véitdskirjan jakelu: TKK, Vesitalouden javesirakennuksen tutkimusryhma

L uettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/2009/isbn9789512299331/



http://www.tkk.fi
http://lib.tkk.fi/Diss/2009/isbn9789512299331/




Preface

The doctoral thesis was completed at the Helsinki University of Technology (TKK) in
the Water Resources Research Unit between 2003-2009 whilst working as an
assistant. The research was mainly funded by the Department of Civil and
Environmental Engineering but | would also like to thank Maa- ja vesitekniikan tuki
ry., Tekniikan edistémissaatio, RIL-s8dtio and Sven Hallinin tutkimussaétio for
financial support.

It's been a long road to finishing this thesis. The beginning could be dated back to
November 1999 when | was hired as a graduate student by the Finnish Environment
Ingtitute to maintain and develop watershed models used for hydrologic forecasting.
Then, after graduating in 2002, | came to TKK to carry out post-graduate studies and
it was all about forecasting. | am especially grateful for my instructor and supervisor
Professor Pertti Vakkilainen, for the ideas and belief in my thesis and for those many
conversations relating to the thesis, teaching and many other subjects as well. It has
been a privilege to work with you. | aso wish to thank docent Risto Lemmel& and
professor Ibrahim Gurer for pre-examining my manuscript.

I’m also grateful for the research associates and co-workers in the laboratory for an
inspiring work environment and many laughs. I'm especially thankful for Hanne
Laine-Kaulio for commenting parts of the manuscript and Teemu Kokkonen, Antti
Louhio and Juha Jarvela for those countless lunch breaks and conversations related to
this thesis and teaching as well. MA Paula Nieminen is acknowledged for linguistic
revision and my friend, Nuutti Hyvonen, for commenting on the manuscript.

Several persons, especially in SYKE, were most helpful, when | was gathering up the
data. Also FMI and NCAR are acknowledged for the data received. Without the
supercomputers of the Finnish IT-center of Science (CSC), the simulations would
probably still be going on. | must not forget those individuals who walk through the
snow survey lines all around the country year after year and gather up the invaluable
hydrologic data. Without that work this thesis would never have been completed.
Thank you.

My parents have always encouraged me to study, but still have not asked too often
about the date of the defence. Thank you. | would also like to thank my godparents,
Aira and Matti for that peaceful and welcoming home outside the hustle and bustle of
the world. Y our home has been a good place to collect one’s thoughts. Finally, thank
you Hanna. You have been most supportive and understanding about the time
consumed in work and in my enthusiasms: bird-watching and football. After all, you
are the one who makes me happy.

Espoo 15.5.2009

Jarkko Koskela

“It’ s tough making predictions, especially about the future”
- (quoted for many, including Y ogi Berra)
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1 Introduction

1.1 Hydropower, regulation and inflow forecasting

General concern about climate change and its consequences has led to an attempt to
decrease the use of fossil energy sources. The beginning of the trade of CO.-
emissions in Europe in 2005 and the continuously rising world market price of oil
have also guided the development into this direction. In addition to the increasing
number of solar and wind energy plants, biofuel production and the use of geothermal
heat, this trend has given grounds to find more efficient ways to utilise the already
existing power plants using renewable energy sources. From these, hydroelectric
power plants are the most significant.

In 2006, 16.4 percent of the world’s electricity was produced by hydropower (1EA,
2009). In developed countries like Finland, the construction of new hydropower plants
has virtually stopped because the most easily exploitable and economically most
profitable sites have already been constructed. In addition, negative environmental
aspects caused by man-made reservoirs impede the implementation of the unutilised
capacity. This seems to be the case in developed countries all over the world
(Labadie, 2004). Along with increased electricity consumption it has meant that the
percentage of hydropower of the world’s electricity production has decreased slowly.
In Finland about 10-20% of the annual electricity production is based on hydropower.
In 2004, hydropower production was 14.7 TWh (17%), whereas in 2003, it was only
9.5 TWh (11%) (Finnish Energy Industries, 2007). These differences are caused by
varying hydrologic conditions.

The first hydropower plant in Finland was launched in 1891 in the town of Tampere.
The largest hydropower plant (170 MW) is located in southeast Finland in the outlet
of Lake Saimaa, and it was launched in the end of the 1930s. Most of the hydropower
plants in Finland were constructed in the 1950s and 1960s. Today, the number of
Finnish hydroelectric power plants is over 200. The combined capacity of the plantsis
about 3000 MW. Compared with the capacities of the Nordic neighbours, Sweden
16200 MW (Svensk Energi, 2007) and Norway 28000 MW (IHA, 2007), Finland is a
rather small player in the hydropower market.

Some unutilised hydropower capacity still exists in Finland. In 2008, it was
approximated that the techno-economically significant power potential is 934 MW
and 2976 GWha (Oy Vesrakentgja, 2008). Most of this potential (569 MW) is,
however, located in protected basins. By increasing the capacity of the existing power
plants it is possible to increase the power potential by 261 MW. Thus, instead of
building new power plants, the realistic, potential increase in hydroelectric power
capacity has been seen to be based rather on modernisation of existing machinery and
more effective regulation of the already existing reservoirs.

A total of 220 lake water level regulation projects have been carried out in Finland.
These projects have affected some 300 lakes, which account for about one-third of the
total lake area across the country (SYKE, 2007). In the early 1900s, various regulation
plans were prepared in separate regulation committees. In 1934 the Waterways
Regulation Office was set up by the Government (Seppanen, 1972) and the planning
work was centralised. However, it was not until the end of the 1940s when regulation
plans were put into action more generally. Normally, the main reasons for regulation
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include the increase in hydroelectric power capacity and flood protection, but the goal
of release control can also be, for example, to enable waterborne traffic, log driving,
recreational use of the waterways, or agriculture in nearshore fields. In any case,
natural discharges are controlled by weirs and reservoirs to increase the efficiency of
the utilisation of water resources for human needs and to decrease flood and drought
problems. Some of the regulated lakes in Finland are man-made reservoirs, but most
of them are, however, natural-born lakes. The total number of man-made reservoirsis
less than 30 and they are mainly located in the west-coast basins that are sensitive to
floods because of the low, natural lake percentage. Most of the lakes are rather small.
The area of the lakes is normally less than 10 km?. The largest man-made reservoirs
are located in Lapland in the River Kemijoki basin. The areas of Lake Lokka and
Lake Porttipahta are 417 km?® and 214 km? and the live capacities are 1400 Mm® and
1100 Mm?®, respectively.

In recent studies (e.g. Jarvinen and Marttunen, 2000; Marttunen, Hellsten et al., 2004),
the economic value of the regulation for hydropower in some Finnish lake-river
systems has been approximated. By regulation, it is possible to smooth seasonal
variations of discharges and hence increase the efficiency of the hydropower plants.
For example, the regulation of Lake Kemijarvi in the River Kemijoki basin gives an
additional benefit of about 10 million Euros per year (Marttunen, Hellsten et al.,
2004). The benefit results from decreased spillage in downstream power plants and
the ability to shift releases to seasons where the price of electricity is higher. The
value of the regulation for hydropower production in the River Kymijoki basin is
approximated to be dightly under 1 M€ per year (Jarvinen and Marttunen, 2000).
Lately, the rising electricity prices have inevitably increased the economic value of
regulation.

During the last decade, several projects have improved and updated the operation
licenses of regulated lakes in Finland (Marttunen and Jarvinen, 1999; Marttunen,
Hellsten et a., 2004; Marttunen, Nieminen et al., 2004). Environmental aspects and
effects of regulation on the recreational value of basins have been highlighted more
than in the past, when flood protection and hydroelectric power production were in
the focus of regulation planning. Often, as a conclusion of regulation license
improvement projects, the development work and the improvement of inflow forecast
systems are seen as an important part of successful regulation.

Inflow forecasts are a fundamental requirement for successful operation of lake-river
systems. Reliable short-term forecasts are useful in flood protection. On the other
hand, long-term forecasts can be used to optimise releases for hydropower production
and to lower risks of violating both the objective and fixed maximum and minimum
water level limits of the regulated lakes. Several factors affect runoff and floods and
these factors differ from basin to basin around the world. Depending on the hydro-
meteorological and geological properties of the basin, floods are caused by e.g.
snowmelt, precipitation and dam breaks, or by a combination of several factors. In
Finland, most floods are caused by snowmelt. Generally, the hydrological complexity
makes inflow forecasting a challenging task. In addition, meteorological forecasts —
on which inflow forecast are usually based - normally extend only a few days ahead.

Today, inflow forecasts are produced by real-time forecast systems. Increased
computer capacity has led to increased use of hydrological models in forecasting. In
Finland, management of the lake-river systems is often based on the hydrological
forecasts produced by the Watershed Simulation and Forecasting System (WSFS) of
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the Finnish Environment Ingtitute (SYKE) (Vehvilanen, 1994). The system is based
on HBV-type models originally developed by Bergstrom (1976, 1995), and it covers
the whole country. In addition, linear regression models are used in long-term
forecasting to produce optional forecasts as compared with the forecasts of the WSFS.

Long-term discharge forecast models are based on long time-series of hydrologic
observations on discharge and the runoff related variables. Today, most of the
important, Finnish time-series are at least 40 years long. Thus, models can be
calibrated and validated much more reliably than in the 1970s and 1980s when the
basic ideas underlying long-term forecasting were adopted. Along with sophisticated
models and longer time-series, also the systems that are used to collect the real time
hydrologic data have improved and made it possible to use up to date information
from the basins in real time forecasting.

This study discusses long-term inflow forecasting in Finland. The focus is on inflow
volume forecasts. Other variables such as minimum or maximum discharge of the
forecast period are not included in the study. The thesis covers two main topics.
Firstly, a new long-term forecast model is build. The model and its performance are
examined in four case studies: in forecasting the inflows to Lake Péijénne, the largest
lake in the River Kymijoki basin, in forecasting the streamflow volumes in two small
in southwestern Finland. The new long-term forecast model is based on the current
hydrologic state of the basin and on the concepts of pattern recognition. Secondly, the
study concentrates on evaluating long-term inflow forecasts. The dependence between
the accuracy of the forecasts and the success of the regulation is studied by using two
case studies. At the same time, possibilities to increase hydroelectric power
production by improving the accuracy of long-term inflow forecasts are studied.

1.2 Long-term inflow forecasting

Hydrologic forecasts can be categorised in at least three ways. Firstly, forecasts can be
classified based on the forecast method. Many types of mathematical models and
methods can be used to forecast hydrologic variables such as streamflow, runoff,
water level and soil moisture. Secondly, the classification of the forecasts can be
based on their goal. The goal can be a design value, a once in a 100 years occurring
flood peak, for example, to be used in the planning and construction of a dam or dike.
On the other hand, the goal can be a real-time streamflow forecast to be used for
information purposes during flood and drought periods or in operation of the lake-
river systems. Thirdly, forecasts can be grouped using the forecast length. If the
length of the forecast period is shorter than the available weather forecad, it isusually
classified as a short-term forecast. Longer forecasts can be further divided into three
categories (mid-term, long-term and seasonal), but in this study, forecasts that are
longer than the available weather forecasts, are classified as long-term.

Three main sources of uncertainty exist in hydrologic forecasting. Firstly, the
complexity of the hydrologic phenomena and their areal variability have not been
understood and modelled correctly: the forecast method may not be appropriate for
the problem in question, the parameters of the model may be miscalibrated, the
absence of some relevant variable may cause poor forecasts, and oversimplification of
the physical model may cause significant errors. It is also possible that the method and
the model used are valid but, for example, the areal precipitation used in the model is
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miscalculated. This can be a consequence of a sparse rain gauge or snow course
network or of computational methods used to approximate the areal values.

Secondly, when using a hydrologic model for forecasting, the initial state of the model
can be estimated inaccurately, which may shift into forecasts. Thirdly, a significant
source of errors is inaccurate meteorological forecasts, used as input by most of the
current discharge forecast models. In long-term forecasting, nonetheless, the overall
need for weather forecasts depends on two things. i) How significant is the
contribution of the forthcoming weather on hydrological processes and ii), how long
is the lag? If the main contributors to forthcoming inflow are baseflow and/or
snowmelt, weather forecasts might not be needed at all.

1.2.1 Long-term inflow forecasting methods

According to Lettenmaier and Wood (1993), long-term inflow forecasting methods
can be divided into three general classes. index-variable, storage accounting and
conceptual simulation. In addition, Lettenmaier and Wood (1993) categorise time-
series models individually. Conceptual models describe all the important parts of the
hydrological cycle but they use heavy simplifications in simulation
(conceptualisation). The first computer aided conceptual model was the Sanford
Watershed Model and its different versions (Crawford and Lingley, 1962, 1966) and
ever since, hundreds of conceptual rainfall-runoff models have been developed. These
models consist of several storages that are interconnected, recharged and depleted.
The models can be lumped or highly distributed, and depending on the purpose, they
can simulate different parts of the hydrological cycle by a varying accuracy. The more
complicated the model, the more parameters must be calibrated and the more detailed
data from the studied basin are needed. These types of models (rainfall-runoff models,
snowmelt models etc.) are commonly used nowadays in real-time forecasting and the
development of these models is the focus of many studies. Normally these models
depend on the weather forecasts as input variables. Therefore, the performance of
these models improves with improved weather forecasts. Conceptual models are also
used for long-term forecasting. Because long-term weather forecasts are rarely
available and often inaccurate, the so-called extended inflow forecasting procedure
can be used (see e.g. Day, 1985). In this procedure, the model is set to run through the
forecast period by using the actual hydrological state of the basin on the forecast day
and by using observed weather data of the forecast period from the past years. If
weather data are available, for example, for the last 30 years, 30 different inflow
forecasts are generated. The advantage of these extended inflow forecasts is that in
addition to a mean forecast, confidence limits of the forecasts are easily calculated. In
Finland, real time, long-term forecasts generated by the WSFS of the Finnish
Environment Institute are based on this approach.

The second class of models is based on the concept of storage accounting according to
which the forthcoming discharges are determined by the amount of water in different
storages of the basin on the forecast date. The discharge forecast for the period is then
alinear or nonlinear function of the storages. This approach is quite similar to index-
variable methods; see below. The original idea of the storage accounting models was
published by Tangborn and Rasmussen (1976).

The third class of models is the index-variable models where the runoff forecasts are
based on variables that are related to the forecast period runoff (snow water
equivalent, soil moisture etc.) and measured prior to the forecast date. This class is
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composed of many types of models. Best known are the linear regression models with
single or multiple independent variables. The forecast model is developed by finding a
linkage between the dependent and a group of independent variables. Regression
methods are mostly used for snow-fed basins, where indices for snow cover and/or
winter precipitation are of primary importance (Dyhr-Nielsen, 1982). In areas where
snowmelt or groundwater dominate instead of future meteorological events, methods
based on the current state and water storages of the basins yield satisfactory results
(Dyhr-Nielsen, 1982). Artificial neural networks are another basic example of an
index-variable model used for forecasting (e.g. Salas et al., 2000). A more recently
developed, long-term probabilistic forecasting model, based on a geostatistical
approach (Araghinegjad et al., 2006), is also an example of an index-variable method.
Lately, index-variable methods have been actively updated and developed. This is a
consequence of finding long-term relationships between streamflows and indices
describing climate phenomena such as El Nino Southern Oscillation (ENSO) and
Pacific Decadal Oscillation (PDO). Also time-series models have been used for
inflow forecasting, but for real-time and especially long-term forecasting the use of
different types of ARMAX models is rare. Some examples are available, however
(e.g. Mohan and Vedula, 1995).

Each of the aforementioned methods has its strengths and weaknesses in long-term
streamflow forecasting. The strength of the conceptual simulation and extended
streamflow forecasting approach is its versatility. The same model and simulation can
be used to approximate different variables. Daily values for forecast periods are
available if needed. In addition, there is a straightforward approach to approximate
uncertainties and confidence limits of the forecasts. However, the more complicated
the model, the more parameters must be calibrated and the more difficult the model is
to implement. Calibration requires plenty of data. In addition, over-parameterization
can be a problem if complex models are used (see e.g. Jakeman and Hornberger,
1993). Furthermore, Lettenmaier (1984) has shown that the ssimulation error of the
conceptual models may impose an upper limit to accuracy of long-term forecasts if
update routines are not used and this limit may be less than accuracy attainable
through less complex models (see also Day et al., 1985 and L ettenmaier, 1986).

The strength of the index-variable and storage accounting methods lies in their
simplicity compared with conceptual simulation. Multiple regression models are
easily implemented by using the most common statistical tool packages. The effective
use of multiple regression methods in hydrological forecasting is discussed by Garen
(1992) and some undesirable properties of the linear regression are discussed by
Stedinger et al. (1988). Especialy for regresson models, confidence limits for the
forecast can be theoretically calculated. A weakness of the linear regression method is
that only one variable can be forecast by a single model and thus daily inflows, for
example, are not available for reservoir management. This problem can, however, be
avoided by using storage accounting models.

The World Meteorological Organisation (WMO) has co-ordinated research in order to
study the performance of different rainfall-runoff and snowmelt models used for
hydrological forecasting in different kinds of basins (WMO, 1975, WMO, 1986;
WMO, 1992). These studies concentrated on short-term flood forecasting and on
overall accuracy of the models. Observation data from different kinds of basins were
used and the performance of the models was studied and compared. All models
seemed to work well at least in applications most suitable for them. There has been a
continuous discussion about whether to use smple models or more complicated
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conceptual or hydrological models in rainfall-runoff modelling and short-term
forecasting (e.g. Loague and Freeze, 1985; Wilcox et al., 1990; Michaud and
Sorooshian, 1994; Refsgaard and Knudsen, 1996; Reed et al., 2004). Studies related to
intercomparison between different real-time long-term forecast models seem to be
rare, however. WMO has been interested in long-term forecasts but different methods
were discussed only in a general manner in the study published in 1982 (Dyhr-
Nielsen, 1982). Druce (2001) compared the forecast accuracy of a linear regression
model and a conceptual model that utilised extended streamflow procedure in long-
term forecasting. The recorded real-time forecasts of the Mica project were utilised.
The forecasts of the conceptual model were dightly better (Druce, 2001). Generally,
there seems to be a common belief that in long-term forecasting, forecast accuracy is
more affected by the available explanatory variables than the forecast method.
Whichever type of model is used for long-term forecasting, it should be remembered
that models should be calibrated to minimise the error in long-term flow, even if this
implies large errors in ssimulated floods in short-term periods (Dyhr-Nielsen, 1982).
When using index-variable methods this is not a problem, but conceptual models may
be calibrated for flood forecasting and thus, the use of these models for long-term
forecasting might be problematic.

1.2.2 Long-term inflow forecasting in Finland

The longest, still continuous water level time-series in Finland is available from
Lauritsala, Lake Saimaa, since 1847. The hydrological office in Finland was set up in
1908 and since then the measurement activity extended to cover several new sites and
variables. In Finland, the need for regulation and inflow forecasts was understood
after the large flood in 1898-1899. In 1917 Theodor Homén (Homén, 1917) published
a study on water resources management in Finland. He presented the basic principles,
for example, for the regulation of Lake Paijanne and addressed the requirement for
snow and precipitation observations to enable inflow forecasting and the good
operation of the lake. He showed that by regulating Lake Paijanne and the lakes
upstream on the basis of rainfall observations, water levels in the lakes during the
1899 flood would have been much lower. In 1923 Edvard Blomqvist published a
study on forecasting high (HW) and low water levels (NW) of large lakes caused by
spring floods using HW and NW of lakes upstream in several basins (Blomgvist,
1923). He also studied the forecasts on the maximum and minimum streamflows of
the forecast period (NQ and HQ) based on observations of snow water equivalent and
precipitation. Some of the forecasts during 1923-1931 based on these methods were
published real-time and their accuracy was studied afterwards in the publication series
“Tekniska Foreningens i Finland Forhandlingar” (Blomqvist, 1923-1931). However, it
was not until 1936 when the first extensive study on inflow forecasting of the whole
basin utilising meteorological observations was published (Siren, 1936 according to
Castren, 1938). In 1938 a study on long-term forecasting in the Lake Saimaa basin by
using regression analysis was published (Castren, 1938). Snow water equivalent and
effective rainfall were used as independent variables when forecasting inflow volumes
of a period from April to June. Also a one-month forecast period in autumn was
examined. In 1945, Siren published an article (Siren, 1945) where he summarised the
forecast methods and studies in long-term forecasting in Finland. Regression analysis
was the only method used.

In the 1960s and 1970s, the development of computers first introduced the use of
multiple regression analysis in inflow forecasting. The first study about the use of
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multiple regression analysis in forecasting the spring flood volumes in Finland was
published in 1965 (Méalkki, 1965). A number of independent variables were tested but
mainly snow water equivalent and precipitation were used. In 1969 Virta published a
study (Virta, 1969) concentrating on inflow forecasts to Lake Péijanne by using
multiple regression analysis. Extensive studies by Gurer (Gurer, 1975) give a good
overview of the possibilities of multiple regression methods in Finnish conditions
although the lack of data at that time made the author cautious in his conclusions.
Since then it seems that only Kuusisto (1975) and Kaila (1977) have published results
of the studies related to the use of multiple regression analysis in inflow forecasting in
Finland.

After multiple regression methods, the use of conceptual models started to emerge.
Today, the conceptual HBV model maintained by the Finnish Environment Institute is
used for flood forecasting and for forecasting long-term inflows into the most
important lakes in Finland (Vehvildinen, 1994). The first studies on the use of
conceptual rainfall-runoff models in Finland were published by Virta (1977, 1978),
Kuusisto (1977, 1978) and Vakkilainen and Karvonen (1980), although only the
second paper by Kuusisto (1978) concentrated on inflow forecasting, while the others
examined the overall use of these type of models in Finland. Conceptual models have
been studied in several studies since then (Karvonen, 1980, 1983; Malve, 1986;
Vehvildinen, 1992), but there has not been any major development in using these
models in real-time inflow forecasting, since adaptive models and extended forecasts
were taken into use.

Although conceptual models are currently in real-time use, multiple regression models
based mainly on snow water equivalent observations are still utilised. Regression
analysis is an optional method for forecasting and a source of additional information
in operating regulated lake-river systems especially during spring time. Along the
way, there have also been studies on different methods available for inflow
forecasting. Karkkainen (1997) used neural networks to forecast inflow volume of
Lake Péijanne for a time period of five forthcoming days. Koskela has studied the
possibilities to use pattern recognition in long-term inflow forecasting (Koskela, 2002,
2004).

1.2.3 Release optimisation based on long-ter m inflow forecasts

Availability of long-term inflow forecasts does not ensure optimal operation of lake-
river systems. Apart from several regulation related objectives, the operator must
consider the uncertainties related to the available forecasts. Normally, the multi-
objective nature of release policies forces the operator to use optimisation algorithms
alongside with forecast models to find the release sequence that is most suitable for
the forthcoming period.

Several optimisation algorithms have been used for optimal control of reservoir
systems. Active research on these methods started already in the late 1950s and has
continued ever since. Several thorough studies have been published about these
methods (see e.g. Yeh, 1982; Labadie, 2004). Generally, two approaches are
available. It is possible to use deterministic algorithms to optimise the system using
historical or generated inflow time-series and then develop seasonal operating rules
for the system based on the results (implicit stochastic optimisation). On the other
hand, it is possible to solve a stochastic problem directly in real-time operation
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(explicit stochastic optimisation). In these, algorithms take directly into account the
stochastic nature of the inflow forecasts.

Optimisation problems related to operating multi-reservoir systems are normally
stochastic and nonlinear with continuous variables. In addition, there are usually a
high number of decision variables. These characteristics often restrict the use of
traditional reservoir operation algorithms such as linear programming and dynamic
programming or lead to smplifications and approximations. Therefore, heuristic
optimisation has emerged in the discipline. The significant advantage of the heuristic
methods is that they can be directly linked with hydrologic and simulation models,
without requiring simplifying assumptions in the model or calculations of derivatives
(Labadie, 2004). These algorithms can not, however, guarantee an optimal solution.
One example of these heuristic approaches isthe simulated annealing (SA) algorithm.

The SA is an iterative stochastic optimisation algorithm introduced in 1983
(Kirkpatrick et al., 1983). As all heuristic optimisation algorithms, it searches the
optimum from the state space by a sequence of random choices. The algorithm is
motivated by an analogy to physical annealing in liquids. In an annealing process,
substance is melted at a high temperature T with energy E. The liquid is then cooled
down by decreasing the temperature of the system. Asthe cooling proceeds, the liquid
becomes more ordered and approaches a steady frozen ground state. If the cooling is
executed slowly enough, the liquid will obtain a crystal structure and the minimum
energy at the frozen ground state. The analogy of the minimum energy state to the
optimisation is the global minimum. If the cooling is executed too fast, a local
minimum will be found and an imperfect crystal structure will be achieved.

The SA iswiddy used in different disciplines. However, very few studies have been
published concerning the optimal operation of reservoir systems. Teegaravapu and
Simonovic (2002) presented the context and applied the algorithm to two systems,
each containing four reservoirs. The study suggested that simulated annealing could
be used to obtain at least near-optimal solutions for multi-period reservoir operation
problems. Mantawy et al. (2003) used a sophisticated algorithm and solved a long-
term hydropower scheduling problem in a system of four reservoirs that were
connected in series with improved results. Tospornsampan et a. (2005) used
simulated annealing with promising results for optimisation of multiple reservoirsin a
case study of the Mae Klong system in Thailand.

1.3 Valueof inflow forecasts

Streamflow forecasts can be used to reduce flood damages in areas vulnerable to
flooding. In addition, the biggest problems concerning droughts could possibly be
avoided if forthcoming drought periods were known in advance. In addition, it seems
obvious that inflow forecasts are essential for managing water resources systems
efficiently. Although benefits seem evident, engineers and other officials should keep
in mind that construction and maintenance of an efficient forecast system can be
expensive. In addition, inevitable uncertainties related to forecasts tend to increase as
the forecast period lengthens. Even if taken into account, these uncertainties affect
reservoir management and make the optimal reservoir control impossible. Thus, from
an engineering point of view, it is important to be able to approximate the value of a
forecast system in order to avoid maintenance of a system that has no economical
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value, although it might be of hydrologic interest. Costs and benefits should be
analysed already before the forecast system is built.

In practice, none of the regulated lake-river systems is managed without inflow
forecasts. It is therefore impossible to approximate the quantitative value of the
forecasts by comparing real world cases where the same system has been operated
with and without inflow forecasts. Hence, the value of the forecasts and its
dependence on the accuracy of the forecasts has to be approximated by using
simulation models describing real-world reservoirs and basins. A general approach to
evaluate inflow forecasts isto compare the operation of a reservoir or reservoirs in the
case of “no forecast” and in the case of “perfect forecasts’. In addition, the
dependence between the value and the accuracy of the forecasts is studied by
generating an artificial random error in the forecasts and by evaluating how this error
affects reservoir operation.

Several scientific articles have been published about the quantitative value of the
long-term inflow forecasts (e.g. Yeh et a., 1982; Mislahani and Palmer, 1988;
Takeuchi and Sivaarthitkul, 1995; Maurer and Lettenmaier, 2004). The first papers
addressed the benefits from water supply forecasts for farm management (Andersen et
al., 1971; Moore and Armstrong, 1976). Also the impact of forecast accuracy and
operation time horizon on the success of the regulation of the irrigation reservoirs
have been studied (Sivapragasam et al., 2007). A basic reference in each of the
following studies and in every way notable in the research of the subject is the paper
by Yeh et a. (1982). Yeh et a. studied benefits that could be gained by using long-
term inflow forecasts in the Oroville-Thermalito reservoir system in California, U.S.
Since then, studies have concentrated on reservoir systems in the United States but
there is also a case study concerning the Mae Klong River system in Thailand
(Takeuchi and Sivaarthitkul, 1995) and a case study related to the operation of the
Panama Canal (Graham et al., 2006). Both single reservoir systems (Mislahani and
Palmer, 1988; Kim and Palmer, 1997; Georgakakos et al., 1998) and multi-reservoir
systems (Hooper e al., 1991; Takeuchi and Sivaarthitkul, 1995, Yao and
Georgakakos, 2001; Hamlet et al., 2002) have been studied. Storage live capacities of
the systems have varied from 0.2 times to 3.0 times the average annual inflow.
Because of large live capacities, the time step of the studies has normally been a
month, although there are examples of shorter time steps (Yao and Georgakakos,
2001). Inflow patterns of the studied systems have been similar compared with the
Finnish conditions with a typical seasonal pattern caused by a single flood season
during a year.

The approach used for comparing the cases of “perfect forecasts’ and “no forecasts’
is straightforward. Operation of the system is simulated either by using perfect
knowledge of the forthcoming inflows or without any information and by using
average net inflows as forecasts. The quantitative value of a perfect forecast can be
approximated based on these simulations. On the other hand, two general approaches
are available for evaluating the dependence between forecast accuracy and the
guantitative value of the forecasts. The operation of the system is evaluated either by
using several inflow forecast models of different accuracy (e.g. Georgakakos, 1989)
or by using a synthetic inflow forecast model that can produce forecasts of varying
accuracy (e.g. Yehet a., 1982). Again, the system is operated by using these forecasts
and the consequent release and water level sequences are used for evaluating the
forecasts.
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Based on the published studies it is obvious that the value of the forecasts depends
both on the size of the reservoir and on the length and accuracy of the forecasts.
However, the synthesis and comparison of the results of different studies is difficult.
In addition to the dependence of the results on basin characteristics and goals of the
operation, forecast accuracy can be and has been measured differently. In addition to
the different basin characteristics in each study, the forms of loss or cogt functionsin
the release optimisation of the studies have differed. Some studies concentrate only on
possihilities to increase hydroelectric power production whereas others also consider
the benefits of long-term forecasts for water supply, flood control etc. Sometimes
these have been studied separately, however. Also the units that are considered often
differ. Most of the studies have tried to approximate the economic value of the
forecast, whereas some have confined themselves to some suitable variable that has
no direct meaning by itself.

The update frequency of the forecast during the forecast period affects the results. It is
not realistic to assume that the engineer responsible for the operation of the reservoir
would use the forecast blindly until the end of the forecast period. This is true
especidly if the forecast and observed inflows differ substantially already at the
beginning of the period. In some studies, this has been taken into account and it is
assumed that the observed inflows are available immediately after they have been
measured. In some studies, this effect has been considered insignificant because of the
large capacity of the studied reservoir.

To conclude, the value of the long-term inflow forecasts is clearly system specific
(Georgakakos, 1989; Takeuchi and Sivaarthitkul, 1995). With small reservoirs
compared with annual inflow, high accuracy of short-term forecasts should be aimed
at and with large reservoirs, long-term forecasts should be used without putting too
much effort on accuracy (Takeuchi and Sivaarthitkul, 1995; Kim and Palmer, 1997).
In large systems, better and earlier seasonal forecasts can increase benefits even by
$153 million per year compared with the status quo (Hamlet et al., 2002). It seems
that depending on the system characteristics, perfect forecasts could increase
hydropower production by about 1-15% compared with the case of “no forecasts’
(e.g. Maurer and Lettenmaier, 2004).

One of the main reasons for building up a forecast system is the possibility of
providing flood warnings and reducing the economical and human losses and social
suffering caused by floods. There have been studies on the benefits and costs of these
flood warning systems that often concentrate on short-term forecasting (e.g. National
Hydrologic Warning Council, 2002). Floods constitute a major part of the economical
losses related to natural catastrophes in the world. About 500 million people are
affected by floods every year.

The Commission for Hydrology of the World Meteorological Organisation has twice
assigned a group to study methods available for cost/benefit analysis concerning
hydrological data and forecasts (Day, 1973; WMO, 1990). The latter (Day, 1973)
concentrated fully on hydrological forecasts. The state-of-the-art is fragmented
judging from the final reports of these studies mainly because the cost-benefit studies
executed so far have not used deep-seated approaches. However, it is obvious that
flood warning systems and short-term flood forecasts have given larger benefits
compared with the costs accruing from maintenance of the flood forecasting models
and observation networks. Short-term forecasts fall, however, outside the scope of this
thesis.
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1.4 Objectivesof the research

This research aims to improve knowledge of long-term inflow forecasting in Finland.
The success of lake-river regulation is based on inflow forecasts and their accuracy,
but also on the practices of utilising these forecasts. Although many practical reasons
speak for the necessity of inflow forecasts, no studies addressing their economic value
in Finland have been published. Although these kinds of studies have already been
carried out under hydrological conditions similar to those in Finland and although the
main results of all of these studies have been congruent, the literature review
indicates, however, that the value of forecasts is very much system specific. The need
for assessing the value of inflow forecasts in Finland is therefore evident. In addition,
because of the alarming predictions about the consequences of climate change and
rising prices of fossil energy sources, renewable energy is favoured in the developing
world. Thus, an analysis is needed of possibilities for increasing hydropower
production by more efficient regulation policies and by improving the forecast
accuracy.

In Finland, hydrological years resemble one another. The timing of low and high
runoffs rarely differs. Low flows in winter turn into floods caused by snowmelt in
spring. Precipitation in summer and autumn may cause high floods but in particular
summer floods are rare. The Finnish hydrological year is conservative by nature.
Quite often inaccurate weather forecasts are the main cause for forecast errors in
discharge forecasting. Furthermore, the growing number of scientific publications
easily leads to more and more complicated forecast models and the gap between the
operators and the scientists becomes wider. Thus, it is important to study whether it is
possible to produce streamflow forecasts accurate enough for system operation by
using simplified forecast models and the current hydrological state of the basin
without weather forecasts. In addition, climate indices have been used with promising
results in long-term hydrologic forecasting in different parts of the world. Thus, the
possibilities of using indices describing the climate phenomena in streamflow
forecasting should be studied in Finland, too.

The objectives of the study fall under two specific topics. Firstly, this study examines
the performance of the developed long-term discharge forecast model that is partly
based on pattern recognition. Secondly, the focus is aimed at the value of long-term
inflow forecasts and its dependence on forecast accuracy. At the same time, the
usability of ssmulated annealing in the optimal operation of the lake-river systems is
assessed.

The specific objectives of the study are to:

1. Develop along-term discharge forecast model that uses pattern recognition
as an aid in forecasting and does not use weather forecasts as an input, and
assess the performance of this model.

2. Assess how far ahead it is possible and reasonable to forecast inflows and
discharges in Finnish conditions and identify characteristics affecting this
forecast length.

3. Assess the economic value of the long-term inflow forecasts and how the
value is dependent on forecast length, accuracy and update frequency. At
the same time, determine at which point the increasing errors of the
forecasts overtake the additional value of the longer forecast period.
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4. Approximate the realistic possibilities to increase hydropower production
in Finland by improving the accuracy of long-term inflow forecasts.

5. Assess the possibilities of simulated annealing in optimisation of the
operation of the lake-river system.

The study consists of two main parts. In the first part, a long-term inflow forecast
model is built. The main goal is to forecast inflows into Lake Péijanne, located in the
upper part of the River Kymijoki basin and into Lake Pyhdarvi in southwestern
Finland. In addition, streamflow forecasts for two small catchments located just
upstream of Lake Pajanne are studied. In the second part, inflow forecasts are
Kymijoki basin. The former is a case study of a single multi-purpose reservoir and the
latter is a complex multi-purpose reservoir system. Finally, the results of the two parts
of the study are combined. The value of the new model in real-time long-term
forecasting is assessed based on the results of the latter part of the study.
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2 Research basnsand hydrologic observations

2.1 River Kymijoki and L ake Paijanne

River Kymijoki is one of the biggest and economically one of the most important
rivers in Finland. It flows in south and southeast Finland from the outlet of Lake
Paijanne through the lakes Ruotsalainen and Konnivesi to Lake Pyhgjarvi ¢ and ahead
until it reaches the Baltic Sea. The river is utilized many ways with hydroelectric
power production being one of the most important. Nowadays, twelve hydroelectric
power plants are located in River Kymijoki. The combined maximum capacity of the
plants is about 215 MW and the average annual electricity production about 1.3 TWh.
Thisis about 9% of Finland’s annual hydroelectric power production.

River Kymijoki isimportant also because of its ecological values and recreational use.
About 350000 people are living in the towns around the lake-river system and about
9000 summer cottages and other buildings are located near the shores (Marttunen and
Jarvinen, 1999). Fishing and canoeing are very popular throughout the watercourse, as
well. In addition, the basin is important for water supply. Water from Lake Paijanneis
transported through an underground tunnel to be used in Helsinki city area and water
isalso used in the forest industry plants.

Because of the interesting nature and importance of River Kymijoki and Lake
Paijanne, several studies have focused on the basin. Already in 1917, Homén (Homén,
1917) planned the basic principles for the regulation of Lake Paijanne. An integrated
water resources development plan for the basin was published during 1972-1981
(National Board of Waters, 1972a, 1972b, 1977, 1981). More recently Jolma applied a
support system for the real-time operation of Lake Paijanne and River KymijoKi
(Jolma, 1999) and the regulation licenses of the lake-river system have been updated
(Marttunen and Jarvinen, 1999; Jarvinen and Marttunen, 2000). These are only a few
examples of the studies related to Lake Péijanne and River Kymijoki.

The area of the river basin is 37159 km?, which is about 11% of the area of the whole
country. The lake percentage of the River Kymijoki basin is 18.3 (Eskola, 1999).
Water flows from north to south but the length of the river is difficult to assess
because it empties into the Baltic Seain five different streams near the towns of Kotka
and Pyhtda. However, the length of the river from the outlet of Lake Paijanne in
Kalkkinen to Ahvenkoski, the most western outlet of the river, is 203 km. The head
between Lake Péijanne and the Baltic Sea is about 78 m. During 1961-1990 the
average annual precipitation varied in the basin from 674 mm in the northern parts to
727 mm in the southern parts (Hyvérinen et al., 1995). At the same time the annual
actual evapotranspiration varied between 359 mm and 455 mm. The maximum annual
snow water equivalent in the areas near Lake Péijanne has varied during 1958-2006
between 36 mm and 210 mm, the average being about 114 mm. The regulation of the
Kymijoki lake-river system began in 1959 when the Vuolenkoski power plant in the
outlet of Lake Konnives was completed. Today, the Ministry of Agriculture and
Forestry or the Southeast Finland Regional Environment Centre are the holders of the
operation licenses of the most important lakes. The latter is authorised by the Ministry
of Agriculture and Forestry to be responsible for the regulation. A map of the basin is
presented in Figure 1 and a detailed map of the northern sub-basins in Appendix A.

1) Lake Pyhgjérvi isa very common name for a lake in Finland. In thisthesis two such lakes are discussed. Lake Pyh&jarvi
inlitti inthe River Kymijoki basin and Lake Pyh&arvi in Sékylain the River Euragjoki basin.



w
[y

. Lake Paijanne

- Lake Ruatsalainen
Lake Konnivesi

Lake Pyh&jany

Lake Fielavesi

Lake Konnevesi

Lake Kivijarvi

Lake Keitele

Lake Saarijary

10. Lake Kiimasjari

11. Lake Leppéavesi

12 Lake Wesijarvi

13 Kalkkinen control weir
14 Vuolenkoski power plant
15, Voikkaa power plant
16. Heinajoki basin

17. Ruunapuro basin

18, Aljala

19, Pieksamaki

20 Maakkima

21, Mutkala %J
22 Padasjoki

23 Vehkoo L ¢

W00 D I ok —

] 200 km
|

B ETEE
@ Maanmittauslaitos hipa nro 7WVMMLAOS
Oiva-palvebs f Suomen ympiristikeskas § 14.05.2009

Figure 1. The River Kymijoki basin

Lake Péijanne, located in the River Kymijoki basin, is the second largest lake of the
country. The drainage area of the lake is about 26480 km?® and the area of the lake
about 1100 km? with more than 1800 islets. The lake percentage of the Lake P&ijanne
basin is 19.5. Compared with other Finnish lakes, Lake Paijanne is also exceptionally
deep with an average depth of 16.2 m. Since 1964, L ake Péijanne has been regulated
by using a control weir in Kalkkinen for the purpose of flood prevention and to
increase the hydropower potential downstream and make conditions more suitable for
waterborne traffic. Also the canal of Kalkkinen can be used for regulation. However,
about 70% of the outflow of the lake runs through the natural cascade in Kalkkinen
and this outflow cannot be controlled. The live capacity of the lake is about ® 1600
Mm?3, which is about 22% of the annual inflow. The average annual net inflow to
Lake Paijanne is presented in Figure 2. About 62 percent of the inflow comes from
Lake Leppavesi, about 12% from the Jamsa and Sysméa watercourses, and about 17%
flows from the areas near the lake. The rest of the inflow comes directly as
precipitation into the lake (National Board of Waters, 1981). Some of the lakes
upstream of Lake Péijanne are regulated, but their live capacities are modest.

2) Approximated by using NN+77.35 — NN+78.80. Water levels in this thess are given either in the national height system NN
or N43.
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Figure 2. Mean net inflow to L ake Péijanne.

The water level of Lake Paijanne has been measured in Kalkkinen located near the
outlet in the southern part of the lake daily since 1880. In 1910, another water level
station was opened in Haapaniemi in the northern part of the lake. Because of the
large area, water levels in different parts of the lake are not equal. Therefore, the
average of the readings in these two stations was used as a daily water level in
simulations of this work assuming that both observations were available. The outflow
has been observed since 1911 in the outlet in Kalkkinen gauging station. River
Kymijoki emerges from this outlet from which it first flows to Lake Ruotsalainen.

The area of Lake Ruotsalainen is about 80.7 km? and its average depth is about 11 m.
The lake is connected with Lake Konnives viathe Jyrangonvirta stream. The area of
Lake Konnives is about 50.4 km? and its average depth is 14 m. The volume
available for the regulation is 110 Mm?® in Lake Ruotsalainen and 60 Mm?® in Lake
Konnivesi, respectively. The water level of Lake Ruotsalainen has been measured
daily since 1900 and that of Lake Konnives since 1908. Discharge observations from
Vuolenkoski in the outlet of Lake Konnives are available since 1908 but discharges
in Jyrangonvirta stream are not observed systematically.

Lake Ruotsalainen and Lake Konnives are relatively small lakes compared with their
annual inflow and hence they could be described as run-through lakes. The residence
time of the lakes is only 40 days. In addition to outflow from Lake Péijanne, only a
small lateral stream flows into Lake Ruotsalainen. However, the runoff from Réaveli
watercourse flows into Lake Konnives with the average discharge of 7 m*/s. The
water levels and release of these lakes are controlled by using the dam of the
hydroelectric power plant in Vuolenkoski. The plant was built at the end of the 1950s
and the regulation of the lakes began a the same time. Downstream of the
Vuolenkoski plant, only a single power plant in Mankala is located in the river before

Lake Pyhgarvi in litti isasmall, regulated lake. A weir initsoutlet in Voikkaais used
to control the releases to River Kymijoki and thus to control the inflows to the chain
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of the biggest power plants in the river course. The water level of the lake has been
measured daily since 1901 and discharges in Voikkaa since 1964. In addition to the
inflow from the main stream, the runoff from Mantyharju watercourse with the
important lakes of the Kymijoki lake-river system are collected into Table 1. The total
live capacity of the lake-river system is only about 25% of the inflow to Lake
Paijanne and it is mainly concentrated in Lake Paijanne. However, the storage
capacity of the lakes downstream can be used to small-scale flood prevention and
their state should be taken into account in the operation of Lake Paijéanne.

Table 1. Statistics about the reservoirsin the River Kymijoki basin.

Lake Areaof | Average | Max. Live Regulated | Average
the depth depth | storage since water
lake [m] [m] capacity level
[kn] [Mm?] (1965-
2004)
NN+ m]
Lo 1100 | 162 | 953 | 16002 | 1964 | 7816
aijanne
Lake 3)
Ruotsalainen 80.7 11 55 110 1959 77.40
Lake 4)
Konnives 50.4 14 36 60 1959 77.28
Lake
Pyhajarvi, 80 4 22 25° 1977 65.28
litti

2) Approximated by usng NN+77.35 - NN+78.80
3) Approximated by using NN+76.20 - NN+77.65
4) Approximated by using NN+76.20 - NN+77.40
5) Approximated by using NN+65.10 - NN+65.40

2.2 Small experimental basins

Two small experimental basins are located just upstream of Lake Paijanne. The
Ruunapuro basin is located north of Lake P&ijanne and its area is 5.39 km?. The area
of the second basin, Heingjoki, is 9.4 km? and it is located on the west-side of Lake
Paijanne. Both of the basins are part of a large hydrologic study started at the end of
the 1950s. The study renewed Finland’ s runoff observations network and started the
measurement activity in about 30 new small drainage basins. During the first years
Mustonen (1965a) and Mustonen and Seuna (1969) analysed and published the data
for all these basins. Several hydrologic variables have been measured in both of the
basins since 1958.

Runoffs are measured by using overflow weirs where water levels are observed by
using limnigraphs. Because the operation of a limnigraph is occasionally uncertain,
especialy during winters, some of the runoffs are interpolated based on the weekly
water level observations taken by the officials, on the rain and temperature data and
on the runoff observations in the comparison catchments. Daily runoff values are
available from the Ruunapuro basin since January 1 1958 until the end of September
2006. From the Heindjoki basin, runoff measurements are available since January 1
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1958 until September 9 2000. Some basin characteristics of the small catchments are
givenin Table 2. The lake percentage of the basins is close to zero.

Table 2. Characteristics of the small research basins (M ustonen, 1965b).

Research | Drainage Mean Percentage | Percentage | Percentage

basin area[km?] | land of of peat of coarse
slope cultivated | land [%] s0ils [%0]
[%0] area [%]

Ruunapuro 5.39 6.4 22 10 53

Heingjoki 9.40 7.6 8 10 62

Based on the comparison of the maps from 1965 (Mustonen, 1965a) and today, no big
changes were observed in the area of cultivated land during the last 40 years. Judging
from the notes in the snow course measurement prints, there have been some spotty
felling activities in the basins during the years. However, these are not considered
large enough to cause significant changes in the runoff. The mean discharges of the
streams are presented in Figure 3. In addition to the discharge measurements, frost
and snow depth, snow water equivalent and some meteorological data have been

measured in the basins since 1958.
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Figure 3. M ean discharge in Ruunapur o (1958-2005) and Heingjoki (1958-2000).
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2.3 LakePyhgarviin the River Eurajoki basin

Lake Pyhgjarvi in S&kyla is located in the River Eurgjoki basin and it is the largest
and most important reservoir in southwestern Finland. River Eurajoki emerges from
Lake Pyhgaérvi, flows through three towns, Eura, Kiukainen and Eurgoki, and
empties into the Gulf of Botnia 53 km from the lake. The area of the lake basin is 614
km? and the area of the lake about 154 km?. Two main rivers empty into Lake
Pyhgéarvi, namely River Ylaneenjoki and River Pyhgoki. The area of the River
Y laneenjoki basin is 215 km? and the area of the River Pyhgjoki basin is 81 km® A
map of the River Eurgjoki basin is presented in Figure 4. A large part of the Lake
Pyhgérvi basin is covered by forests and about 20% of the basin (lake itself not
included) is cultivated. The annual average areal maximum snow water equivalent in
the region near the lake has been about 74 mm since 1965. During 1961-1990 the
average precipitation was about 703 mm/year and the average actual
evapotranspiration based on the water balance studies 463 mm/year in the River

Eurgoki basin (Hyvéarinen et al., 1995).
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Figure 4. The Lake Eurajoki basn (© Finland’s Environmental Administration, printed with
per mission).

The lake has been regulated since 1975 by using a control weir in the outlet of the
lake (Figure 5) mainly for three purposes. flood prevention, efficient hydroelectric
power production and to assure water supply downstream. However, since 2000 the
Kauttuankoski power plant has not been in use, but the lake is still regulated. The
volume of the lake is about 850 Mm® and the live storage capacity is 89 Mm®. The
lake is large if it is compared with the average inflow (4.9 m/s). The live storage
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capacity is about 57% of the annual inflow. The flood season is caused by snowmelt
in spring, and during summers high evaporation rates often overtake the river inflows
causing negative net inflows. A subsurface flow from Lake Pyh&jérvi to Lake
Koylionjarvi may also decrease the net inflows. The net inflows normally increase
again towards autumn because of decreasing evaporation. The water level of the lake
has been measured since 1914 and the discharge in the outlet since 1965. Therefore, it
is possible to approximate the inflows into the lake properly since 1965 by using the
water balance equation. The average net inflow is presented in Figure 6.

Figure 5. A view to Lake Pyh&jarvi and theregulation weir in Kauttuankoski.
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Figure 6. Mean net inflow to Lake Pyh&jarvi of a period between 1966 and 2004.
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2.4 Inflow

To evauate the inflow forecasts and to assess the accuracy of the forecast model,
inflow observations are needed. Unfortunately, the inflow into a lake cannot be
measured directly because of scattered runoff, but fortunately based on the other
hydrological observations the net inflow can be approximated. By using the water
level and outflow observations with the known connection between the volume, the
area and the water level of the lake (WAV curve), the inflows can be calculated by
using the water balance equation,
|- 0= E, (2-1)

dt
where | isthe net inflow, O is the outflow, dSis the change of the volume of the water
storage in atime step dt. The average daily values are used. A shorter time step cannot
be used because most of the data of this study have been registered into the databases
as daily averages on adaily basis. In addition, the time horizon of the study is months
and thereby it is not reasonable to use shorter time steps.

When the water balance equation is used to approximate a net inflow, the variability
of the calculated daily inflow series may be large. In other words, the net inflows
between two consecutive days can be very different. In addition to precipitation and
evaporation, the variability is based on the water level changes caused by wind and air
pressure. Small errorsin the observations, especially in the water level measurements,
could also cause the phenomenon. To avoid problems in the simulations, the inflow
time series were smoothed by using the Lowess smoothing algorithm (Cleveland,
1979). A locally weighted regression with “tricube” weight function and a free
software package (W.S. Cleveland (1985) Bell Laboratories Murray Hill NJ 07974)
were used. The daily averages of the calculated smoothed inflows to Lake Paijanne
and Lake Pyhdjarvi are presented in Figure 2 (page 32) and in Figure 6 (page 36).

2.5 Dataavailablefor long-term forecasting

In addition to weather forecasts, some variables describing the current hydrologic
state of a basin can be used to estimate the volume of the inflow or streamflow of a
following period. Snow water equivalent, frost depth, the state of groundwater and
soil moisture storages could be used. In addition, accumulated discharges and
precipitation of the periods preceding the forecast date and water levels of upstream
water storages may be useful when forecasting inflows and discharges of the
following period.

Daily inflows to Lake Paijanne can be approximated since 1911 and inflows to Lake
Pyhgarvi in S&kyla since 1965. Runoffs in the small catchments have been measured
since 1958. Unfortunately, all the hydrological time series are not as long and
extensive. The following observations were available, however, and were studied as
possible variables to explain the forthcoming inflow volume of Lake Paijanne and
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2.5.1 Snow water equivalent

Several snow survey lines are observed in the Lake Péijanne basin. Observations from
these lines are recorded about twice a month and the observations are used to
approximate the areal snow water equivalent in the different sub-basins. The Lake
Paijanne basin is divided into several sub-basins of which three sub-basins in the
north (Rautalampi, Viitasaari and Saarijarvi), are especialy large (see map in
Appendix A). One of the values is an approximation of the snow water equivalent in
these three sub-basins. This value has been calculated since 1958. Another describes
the snow water equivalent in the areas near Lake Paijanne and it has been calculated
since 1951.

In the Ruunapuro and Heindjoki basins, the areal snow water equivalents have been
calculated by using the snow survey line measurements since 1958. The location of
the snow course of the Ruunapuro basin was changed in the early 2000s. It is assumed
in this work, however, that this relocation has not significantly affected the areal
approximation describing the areas near the lake is available from 1958 until 2006. As
above, thisareal value is based on the snow survey line measurements.

2.5.2 Water levels of thelakesin the upper course

Severa lakes are located in each of the large watercourses located upstream of Lake
Paijanne and the runoffs from these basins are sources for the inflow of Lake
Paijanne. Thus, the water levels of the largest lakes in the upper course could be used
to forecast the inflows of Lake Paijdnne. These were also used for forecasting by
Blomgvist already in 1923 (Blomqvist, 1923). The water level observations are
available as follows. Lake Leppaves (1911-2006) and Lake Vesijarvi (1910-2006)
just upstream of Lake Paijanne, Lake Kivijérvi (1911-2006) and Lake Keitele (1911-
2006) in the Viitasaari watercourse, Lake Saarijarvi (1911-2006) and Lake
Kiimagarvi (1967-2006) in the Saarijarvi watercourse, Lake Pielaves (1934-2006)
and Lake Konneves (1911-2006) in the Rautalampi watercourse. The areas of the
lakes are respectively: Leppavesi 65 km? Vesijarvi 108 kn?, Kivijarvi 156 km?,
Keitele 502 km? Kiimasiarvi 4 km? Saarijarvi 14 km?, Konnevesi 187 km? and
Pielavesi 111 k. All the locations are presented on the map in Figure 1 (page 31).

Lake Pielaves and Lake Konnevesi are unregulated and therefore the water levels of
the lakes are fit for discharge forecasting downstream. The regulation of Lake Keitele
is amost unnoticeable. Instead, Vesijarvi, Kivijarvi, Kiimagérvi, Saarijarvi and
Leppéves are regulated. The operation licence of Lake Leppavesi has not been
significantly changed since the beginning of the regulation in 1961. The regulation
rule for Lake Kivijérvi was updated in 1957. The operation licences of the two
regulated small lakes in the Saarijérvi watercourse have also been changed. The
licence of Lake Saarijarvi changed in 1975 and the licence of Lake Kiimasjarvi in
1982. Lake Vesijarvi located in the southern side of Lake Péijanne has been regulated
since 1975.

The lake percentage of the small experimental basins is very small. Thisis due to the
fact that the selection of test basins into the hydrological network in Finland in the
1950s was partly based on small lake percentage. Therefore, water levels of the
upstream lakes can not be used to explain the forthcoming streamflow in Ruunapuro
and Heingjoki. Thisisthe case also in Lake Pyhgarvi.
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2.5.3 Groundwater and soil moisture

Groundwater levels give valuable information about the water balance of soil.
Unfortunately, they have not been observed systematically in Finland until the 1960s
when the officials in the different road districts began to carry out measurements. In
the 1970s, also the Regional Environment Centres began to co-ordinate activities to
measure water level changes in soil. Several groundwater level gauging stations are
located in the Lake Paijanne basin and nearby. The road district maintained stations
from autumn 1961 until 1994 in Padagoki and in Pieksdmaki: a single standpipe was
used to measure the groundwater level. Since 1975 until now, groundwater levels
have been observed in Mutkala, Aijala and Naakkima by the Regional Environment
Centres. Aijalais located right next to the Ruunapuro basin and the other two stations
are located east of the lake. In addition, groundwater levels in Vehkoo, west of the
Lake Paijanne basin, are available since 1975. Also other groundwater gauging
stations are located in the Lake Péijanne basin but the ones presented are considered
to give a typical and adequate sample of the groundwater levels in the area. A single
gauging station upkept by the Environment Centres is composed of about 10
standpipes and the average of the readings in these pipes is used as a daily
groundwater level observation. Again, locations of the groundwater stations can be
station is located in Oripéd, west-southwest of the lake. The observations are available
from 1970 until 1999.

In the Aijala groundwater station near the Ruunapuro basin, measurements of soil
moisture have also been recorded by using neutron probe tubes during 1980-1992.
Readings from eight different tubes down to 400 cm below the soil surface every 10
cm are available. Unfortunately, time-series are scattered. The readings are from
different dates each year and some of the values are missing. However, it is possible
to get an idea about the usefulness of soil moisture data in long-term forecasting in
small basins by comparing this data with the streamflow volumes of Ruunapuro.

2.5.4 Discharge and frost

In the studies of Mustonen (1965b) concerning the effects of the meteorological and
basin characteristics on runoff, frost depth on March 31 was a statistically significant
independent variable in the linear regresson models. The models were used to
forecast firstly spring runoff and secondly summer and autumn runoff. The signs of
the regression coefficients were negative in both cases. On the other hand, Gurer
(1975) stated that the inclusion of the frost thickness into the regression models for
the annual flow for several small basins did not improve the models that were set up
by the annual corrected precipitation. When considering the rainfall-runoff processes,
frost depth isadifficult variable. A low frost depth can be expected, if the snow layer
is thick. This would cause a negative sign in the regression coefficient when
forecasting spring runoffs. On the other hand, athick frost can increase the infiltration
excess overflow during the snow melt season and the effect in the regression model
may be the opposite.

In the Ruunapuro and Heingjoki basins, the frost depth has been measured since 1958.
The measurements are made on the same days as the snow measurements and at the
same snow course lines. For the early years, however, only a few observations are
available each winter. During the first years, the observations were made by using a
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rod of steel that was hit into the ground and flipped. Later the frost observations have
been based on the readings of the methylene blue tubes. The latest observation
preceding the forecast date is used for forecasting in thiswork.

The accumulated inflow and streamflow of the period preceding the forecast date is
also considered as a possible variable to explain the forthcoming discharge. A time
period of two or four weeks preceding the forecast date is used. This variable could
describe the hydrological state of the basins in at least two ways. If early spring
occurred, snow melt would have already begun on the forecast day and discharges
during April might be larger compared with a year with an average timing of
snowmelt. On the other hand, the discharge sum could provide information about the
soil water balance in the area because a great part of the winter runoff is based on
baseflow.

2.5.5 Precipitation

The available values of areal precipitation in different basins are based on the
2005). The areal values are available for 10x10 km? grids. For the small basins,
Ruunapuro and Heingjoki, areal values are available since 1961. In the Lake Paijanne
basin, the daily areal precipitation is available for the period between 1971 and 2000.
Similar data are also available for the Lake Pyhdjarvi basin for the period between
1971 and 1999. The idea is not to use forthcoming precipitation in inflow forecasting.
Instead, the accumulated precipitation of the period preceding the forecast date is
used. The decision about which variable to use and the length and timing of the period
is based on correlation analysis.

2.5.6 North Atlantic Oscillation (NAO)

Nowadays, also the indices describing the global climate phenomena such as El Nifio
Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are used in long-
term discharge forecasting. In addition, indices of North Atlantic Oscillation have
been used as an independent variable in studies of streamflow variability (Cullen et
al., 2002; Rimbu et al., 2002; Danilovich et al., 2007). The concept of relating the
climate data to the forthcoming floods is not new, however. Already in 1927-1928
Bliss published a study considering the Nile floods and world weather (Bliss, 1927-
1928). In recent studies, the results have been promising both in using the indices as
independent variables in multiple regresson models (Hsieh et al., 2003) and in
classifying and specifying extended streamflow forecasts (Hamlet and Lettenmaier,
1999). The climate indices have been used for streamflow forecasting all over the
world: for example, in Australia (e.g. Piechota et al., 2001), in the United States (e.g.
Hamlet and Lettenmaier, 1999; Piechota et al., 1999; Hsieh et al., 2003) and in both
Iran (Araghingjad et al., 2006) and Turkey (Sen et al., 2004). However, further studies
are needed about the possibilities of the global climate indices in the long-term
streamflow forecasting in Finland.

The North Atlantic Oscillation (NAO) is a climatic phenomenon in the North Atlantic
Ocean. The NAO refers to swings in the aamospheric sea level pressure difference
between the Arctic and the sub-tropical Atlantic. As NAO affects the mean wind
speed direction, it also alters the seasonal mean heat and moisture transport between
the Atlantic and the neighbouring continents (Hurrell et al., 2003b). Lately it has been
related to various hydrologic phenomena and also to hydrologic forecasting. Uvo and
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Berndtsson (2002) showed the linkage between NAO and hydropower availability in
Norway, Sweden and Finland and furthermore, Cherry et al. (2005) focused on
revealing the impacts of NAO on Scandinavian hydropower production and energy
markets. Nilsson et al. (2008) studied the usability of the forecasts of the Global
Circulation Models for long-term streamflow forecasting in Norway and Sweden.
This work set out to study whether the temporal variations of the NAO phenomenon
could be used to forecast long-term inflows into Lake Péijanne and Lake Pyhgarvi
and streamflow in the two small catchments. The seasonal index of the NAO based on
the difference of the normalized sea level pressures between Ponta Delgada, Azores
and Stykkisholmur/Reykjavik, Iceland since 1865, is available from NCAR (NCAR,
1995). In this study, the seasonal (three months) station based NAO indices are used.
Positive values of the index indicate stronger-than-average westerlies over the middie
latitudes and warm and moist conditions in Scandinavia
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3 Long-term inflow forecast model

In Finland, low winter discharges typicaly turn into floods caused by snowmelt in
April-May. The mean precipitation sum is highest during the summer months, but
summer floods are rare. Discharges increase towards autumn because of decreasing
evapotranspiration, but floods in autumn are not as common and normally not as
strong as the spring floods caused by snowmelt. During 1961-1990, the mean annual
precipitation was about 660 mm and the annual evapotranspiration about 341 mm
(Hyvérinen et al., 1995). The variability between different years is moderate. This
typical pattern of the Finnish hydrological year is utilised in a new long-term inflow
forecast model of this work. Forecasts are based on the current hydrological state of
the basin; weather forecasts are not used. One of the main goals of the study was to
construct a forecast model that can be used to forecast streamflow and especially
inflows up to six months ahead.

To assess the model, its accuracy is studied on two forecast dates in four case studies.
To study the possibilities to forecast spring and summer runoffs, April 1 isused as a
forecasting day and the forecasts extend up to a six-month period, i.e. until the end of
September. On average, inflows start to increase in southern Finland around the turn
of Marchto April. For the effective operation of a large lake-river system, forecast for
the spring flood season should be available earlier. For long-term forecasting that
concerns the spring and summer inflows, however, the data available at the end of
March probably contain the best information available. To evaluate the possibilities of
forecasting runoff and inflow in autumn and winter, October 1 is used as a forecasting
day. Normally, runoffs start to decrease in late autumn and winter runoffs are stable
until the snowmelt starts to increase runoffs in late March or early April. Again,
forecasts of the length of 1-6 months are generated and their accuracy is studied.

the success of the model is also studied by forecasting the accumulated streamflow of
two small streams located in the Lake Péijanne basin. The accuracy of the model is
first studied in Lake Pdijdnne meaning that a basin with a large lake percentage and
long delays in the basin is investigated. The net inflow to Lake Paijanne is partly
regulated. The live capacities of the regulated lakes upstream are relatively small,
however, and thus the human impact on the accumulated inflow of the forthcoming
period is small, if studied in a monthly time step.

Secondly, the success of the model is studied in the two small basins, Ruunapuro and
Heingjoki, both of which are located upstream of Lake Péijanne. According to Kaitera
(1939), the delay in the runoff in these kinds of small basins is very short because of
the small basin area and the lack of lakes. Thus, long-term forecasting might turn out
to be difficult. On the other hand, if the model can produce reliable forecasts for the
small basins, the observations and the forecasts in these basins can be utilised in
forecasting inflow to Lake Paijanne. The relation between similar small research
basins and the large Seitakorva basin in Lapland has been examined by correlating
their spring flow totals between May 1 and June 30 (Gurer, 1975). The results were
not found to be satisfactory (maximum r=0.581). This was due to the differences in
physical and hydrological characteristics of the basins.

large compared with its basin and thus, lags are short. In addition, evaporation from
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the lake surface isa major factor in the water balance of the lake, especially during the
summer months.

In the new approach, categorical long-term inflow and streamflow forecasts are
generated. The approach is highly motivated by the current real-time operation policy
of Lake Paijanne defined in the grant for the regulation license by the Eastern Finland
Environmental Permit Authority (2002). The objective water levels of the
forthcoming period are set based on the forecasts about the wetness of the forecast
period. Five categories for the wetness are used. Earlier categorical long-term
forecasts have been studied and applied by Simpson et al. (1993), Piechota et al.
(1998) and Piechota and Dracup (1999). They approximated the occurrence
probabilities of the different wetness categories (below normal, normal, above
normal) of the forthcoming streamflow volumes in Australia and the United States by
using climate indices.

The new forecast model is based on pattern recognition. Previously pattern
recognition has been used both for the synthesis of streamflow data (e.g. Unny et al.,
1981; Lall and Sharma, 1996; Prairie et. a., 2006) and for streamflow forecasting
(e.g. Karlsson and Yakowitz, 1987; Yakowitz and Karlsson, 1987; Galeati, 1990;
Shamseldin and O’ Connor, 1996). Y akowitz and Karlsson used a NN rule to forecast
one-day-ahead runoffs using the rainfall readings and runoff measurements of the past
few days as features (Karlsson and Y akowitz, 1987; Y akowitz and Karlsson, 1987).
The forecast was a weighted average of the runoffs of the nearest neighbours. The
results were not sgnificantly worse than the results of an ARMAX model that they
used for comparison. A similar approach was used when Galeati (1990) forecast one-
day-ahead discharges in atypical Alpine basin in the northeastern Alps by using the k-
NNR. The results were as good as the ones of an ARX precipitation-runoff model but
with a much simpler simulation structure. Shamseldin and O’ Connor (1996) advanced
the k-NNR for one-day ahead forecasting by adding a linear perturbation component
to the model.

Smith (1991) used similar ideas in long-term forecasting. He presented the concept of
using, for example, snowpack data as a feature in long-term forecasting but used only
observed streamflow data in the implementation. Araghingad et al. (2006) have used
the k-NNR for long-term streamflow forecasting and the studies of Piechota et al.
(1998) and Piechota and Dracup (1999) in long-term forecasting are based on the
concepts of pattern recognition. The idea of trying to typify a forthcoming period
based on meteorological or hydrological observations is not new in long-term
forecasting. Already in 1938, Bydin stated that certain winter temperature patterns are
connected with certain types of spring floods in River Svir (Bydin, 1938). A complete
description of the new method follows in the next chapter. For an extensive review of
the applications of pattern recognition on water resources management in general see
Koskela (2004) and for the basic theories of pattern recognition, see, for example,
Theodoridis and Koutroumbas (1999) or Schalkoff (1992).



3.1 Method
3.1.1 General methodology

The forecast model is based on supervised pattern recognition. Supervised pattern
recognition is founded on a priori knowledge about the classes into one of which an
unknown pattern should be classified. Normally this information is given in a form of
a training set X that consists of patterns whose correct classes are known. In
supervised learning, this information is used to build a classifier to categorise an
unknown pattern into one of the classes. For streamflow forecasting the following
method is used:

1. Thetraining set is generated. All the years in the data set are classified into
the different wetness categories based on the discharge sum distribution of the
forecast period.

2. Feature vectors describing the hydrological state of the basin on a forecasting
day are constructed for each year. A feature vector consists of a combination
of the measurements on ground water levels, soil moisture, snow water
equivalents, frost, discharges, precipitation, NAO indices and water levels.
Weather forecasts are not used.

3. A supervised learning algorithm is used to classify a forthcoming period into
one of the congtructed wetness classes based on its feature vector.

4. The discharge forecast is calculated. The forecast is based on the discharge
series of the years that belong to the class into which the new pattern was
classified.

In principle, the approach chosen and the one used by Piechota et a. (1998) and
Piechota and Dracup (1999) in categorical streamflow forecasting differ in two ways.
Firstly, in step 3, Piechota et a. give the occurrence of streamflow in one of the
categories in the form of probability. In the present study, it is only important whether
the classification is correct or not. Secondly, Piechota et al. used features individually
while approximating the occurrence probabilities of the forthcoming class and
combined the results afterwards by using a linear combination of the probabilities. In
this study, the feature vector consists of several variables simultaneously and features
are equally weighted in classification.

Several algorithms are available in supervised pattern recognition. In this study, two
algorithms are applied to classify new patterns into the constructed classes: the k-
nearest neighbour rule and the minimum distance classifier. These classifiers were
chosen because of their simplicity. Multi-parameter classifiers were not considered
because of the restricted amount of data available. The Euclidean distance was used as
a similarity measure in each of the case studies and all the data were standardized
before the classification to avoid problems related to the different scales of the
features.

The k-nearest neighbour rule (k-NNR) is popular and probably the best known of the
nonlinear classification algorithms. This algorithm is strongly dependent on the
training set X and thus the training set should be large and represent all the classes.
When the k-NNR is used, an unknown pattern is classified into the class that has most
of the k nearest neighbours of the new pattern. A simplified example is of course the
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nearest neighbour rule, in which an unknown pattern is classified into the class that
contains the pattern that is most similar to the new object. Usually, an odd number is
selected as k to avoid ties between the classes.

The algorithm can be presented as follows:
1) Choose the parameter k and the similarity measure.

2) Calculatethe similarity between the new pattern and each of the patternsin the
training set X.

3) Find the k patterns in the training set that were most similar to the new pattern
and identify their classes.

4) Classify the new pattern into a class from which most of the k nearest training
set patterns derived.

The limited amount of data sets an upper limit to the parameter value k. Three
different values are tested: 1, 3 and 5. In a case of atie, the new pattern is classified
based on the nearest neighbour. It can be theoretically proven (e.g. Schalkoff, 1992)
that the classification error probability of the NN classifier is at most twice as large as
that of an optimal classifier for an infinite training set. Thus, the NN classifier is not
optimal but often used, because it is practical and simple to execute.

The other classifier applied is based on statistical pattern recognition. By using the
Bayesrule

plxw )P(w)
p(x)

the object x is classified into a class whose (pogterior) probability P(wi|x) is largest.
By assuming (a priori) equiprobable classes, with the same covariance matrices, the
new pattern is classified into a class whose mean vector it resembles the most. Thisis
a linear classifier called minimum distance classifier (MDC). Instead of comparing
the new pattern with every object in the training set, the comparisons are made only
between the mean of each class and the new pattern. The Euclidean distance is used as
asimilarity measure.

The real-time decisions about the operation of Lake Paijanne are based on the
forecasts about the wetness category of the forthcoming inflow. However, to ease the
release planning and to compare the accuracy of the model with other models, daily
inflow forecasts and mean forecast of the accumulated inflow are needed. The mean
forecast of the accumulated inflow is based on the inflow time-series of the training
set. When a pattern is classified into a class wi, the daily inflow forecast f; is
calculated by using the average

P(Wi|X) = (3-1)

1o
f,==a q;, (3-2)
N iy
wheret stands for the date and j for the patterns (years) in the training set. In Equation
3-2, nisthe number of the patternsin the class w; and q;; is the observed daily inflow.
As in the current study, for example Grantz et al. (2005) used the k-nearest neighbour
rule for finding out the years from the historical records that remind the characteristics
of the forecast year the most. Their final long-term forecasts were based, however, on
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the locally weighted polynomials of the streamflows of the nearest neighbours and
thus the simplicity of the model was lost. Asthe final forecast is now based on each of
the observations in the chosen class and weighting is not used, parameter calibration
is not needed and the model remains simple.

As a consequence, however, the new method has two obvious weaknesses. Firstly, the
forecasts of the accumulated streamflow given by the model never exceed the largest
observation and are never lower than the driest observation. Therefore, the forecast
errors concerning very wet and very dry years may be relatively large even if the
forecast period has been classified correctly. Secondly, the theoretical confidence
limits of the method are not estimated. The classification error probabilities are
estimated, but their conversion into the confidence limits of the accumulated
discharge is not sraightforward. Empirical confidence limits based on the validation
can be estimated, however.

3.1.2 Supervised classes

The accumulated inflow of Lake Péijanne for different periods beginning on April 1is
approximately normally distributed. An example of this attribute is given by showing
the histogram of the accumulated inflow of the period between April 1 and September
30 in Figure 7. All observations of the period 1911-2006 (n=96) were used to
constitute the histogram.
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Figure 7. The histogram of the accumulated inflow of L ake Péijénne for the period between April
1 and September 30(1911-2006).

The estimated mean and the estimated standard deviation of the distribution for a time
period of six months are 3944 Mm?® and 1095 Mm?®. The normality of the sample was
tested using the Jarque-Bera statistic:
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that follows ay? distribution with two degrees of freedom. Sis the skewness and K the
kurtosis of the distribution. N is the number of observations. The Jarque-Bera statistic
of the distribution was 0.63. It is less than the critical value 5.99 for the 95% test.
Thus, the variable is, indeed, normally distributed. It is interesting and important to
notice that the inflow sum distribution has not changed considerably during the
century. Although not presented here, also the distributions of the accumulated
inflows of the shorter periods beginning on April 1 for Lake Paijanne were estimated.
The variables proved to be normally distributed, with different parameters, of course.

The accumulated inflows of the periods beginning on October 1 were not normally
distributed, however. The density functions were right skewed and the kurtosis of the
distributions were slightly over 0. In the Lake Pyhgjarvi study, the inflow sums of the
periods beginning on April 1 were normally distributed except for the two longest
periods. On October 1, the longest periods were normally distributed but the shortest
were not. In Ruunapuro and Heindjoki, the distributions of the streamflow sums were
not normally distributed. The most suitable distributions for non-normally distributed
variables were gamma distributions with different parameters.

Fitted distributions were used to form the supervised classes. The most obvious choice
for separating different classes was used: the quantiles of the distributions of the
accumulated inflow were selected as the thresholds. A study of the distributions
corresponding to the periods with the non-normal behaviour showed only occasional
differences in the classification of the periods if fitted normal distributions were used
instead of the gamma distributions. Because the classification is based on the
subjectively chosen quantiles in any case, fitted normal distributions were used for all
case studies. The sengitivity of model accuracy for these choices is studied later.
Three different combinations of the thresholds were tested. The data were divided
either into three, four or five classes. When divided into three, a single year can be
part of a“dry”, “normal” or “wet” class; when divided into four, part of a“very dry”,
“dry”, “wet” or “very wet” class and when divided into five, part of a “very dry”,

“dry”, “normal”, “wet” or “very wet” class. The classification of the periods into these
classes was based on the quantiles of the fitted distributions.

In the case study of three classes, the 20% and 80% percentiles, in the case of 4
classes, the 15%, 50% and 85% percentiles and in the case of 5 classes, the 10%,
30%, 70% and 90% percentiles were used as thresholds. Thus the a priori probabilities
in the classification of a new object are not equal. When using the minimum distance
classifier, (a priori) equiprobable classes with the same covariance matrix are
expected. The covariance matrices are unknown, but are assumed to be equal. By
using the above thresholds, more observations are now categorised as “normal” than
as“dry” and “wet” periodsin the training set. By this decision, however, the accuracy
of the inflow forecasts increases for the correctly classified wet and dry periods. On
the other hand, for the correctly classified normal periods this causes alarger variance
in the errors. Figure 8 gives some examples of the observed inflow sums of the period
of six months in Lake Paijanne. The thresholds that divide the data into 5 classes are
also shown.
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Figure 8. Some examples of the observed, accumulated inflow of Lake P&éijanne and the
per centiles that divide the observations into five classes ([1). Also the forecasts for the different
classes are presented.

Figure 8 presents also the inflow sum forecasts for each of the five classes for the
forecast period of six months. As can be seen, the forecast of the accumulated inflow
at the end of the forecast period varied between 1978 Mm?® and 6278 Mm?® depending
on the class used. The chosen thresholds (percentiles) between the different classes
and the forecasts of the accumulated inflow of each class (Equation 3-2) were not
optimised in the sense of any goodness-of-fit test. It might be possible to decrease the
theoretical error corresponding to a perfect classification by optimising these choices
after the selection of a suitable goodness-of-fit test.

3.1.3 Representation of the classification results

The so-called confusion matrices are used in this thesis to present the results of the
supervised pattern recognition application. The idea is ssmple and presented in Table
3. In an example, four classes into one of which an unknown pattern should be
classified are used. Twenty-three patterns have been classified. Each cell describes the
number of patterns n; classified into the class j (column) when it actually originates
fromthe classi (row). Thus, the classification has been successful if a high percentage
of the observations are on the diagonal of the confusion matrix. In the given example,
15 out of 23 patterns were classified correctly indicating a classification error
probability (CEP) of 35% for the algorithm.
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Table 3. An example of a confuson matrix.

Observed class\ Predicted class 1 2 3 4
1 4 2 1 0
2 0 4 2 1
3 0 2 4 2
4 0 0 0 3

3.1.4 Feature and model selection

When the number of the features used in the classification increases, so does the size
of the problem in terms of the computational complexity. There is also no reason to
use features that contain the same internal information about the differences between
the classes. Generally, the greater the number of training set patterns compared with
free classifier parameters, the better the generalization properties of the resulting
classifier (Theodoridis and Koutroumbas, 1999). Thus, it is valuable to keep the
number of features as small as possible. For the feature selection in a supervised
pattern recognition problem, two main approaches can be used. It is possible to use
statistical tests to approximate the difference between the average values of a chosen
feature in different classes. If a clear difference is found, a feature is accepted. It is
also possible to test the similarity between the feature vectors in different classes. If
differences are not found, the test is repeated with another feature combination. The
latter approach is used sequentially by a backward or forward feature selection
algorithmto find the optimal features for the problem at hand.

It is also possible to decrease the dimension of the feature vectors to avoid problems
related to similar features and high dimensions. Principal component analysis is one
of the best known algorithms to achieve this goa (see eg. Sharma, 1996). The
dimension of the feature vector is decreased without losing any relevant information
about the variability of the original features. The new variables are then used in the
classification. One of the assumptions of the method is that each of the new variables
describes some group of the original features.

In this work, some of the possible features were discarded based on a preliminary
analysis for different reasons. a too short time-series, non-existent between class
distances and a non-existent correlation with the accumulated inflows. After that,
several models are calibrated, each with a different feature combination. Finaly, the
best models according to the chosen criterion in validation are discussed. This kind of
method cannot be used if the selection has to be made between thousands or hundreds
of possible features and models. For a small pool, however, the computational burden
of calculating all the possible combinations with an unknown optimal number of
features is not regtrictive.

The criterion for selecting the best model is the estimated classification error
probability. Thus, penalties are not calculated for the rank differences of the
misclassified years. The criterion gives an equal value regardless of whether a wet
period is misclassified into to the “normal” or “dry” class. Furthermore, the criterion
does not take into account the number of observations used in validation. However, if
several models give similar CEPs, the models with more observations used for
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validation and models with the lowest ¢ and the highest R? (see Chapter 3.1.5) are
favoured. In addition, the cases of 3, 4 and 5 classes are studied separately.

3.1.5 Validation and comparison of theresults

The evaluation of the models should rely strongly on the validation. The validation
data should be chosen as large as possible, but at the same time the training set should
be comprehensive and representative. Because of the restricted amount of data, the
leave-one-out method (cross-validation) is used for the validation. The training set
consists of N-1 observations and the validation is based on the excluded sample. By
repeating this N times and excluding each time a different sample, the model is
validated by using N samples. At the same time, al the problems related to the
independence between the training and validation sets are avoided. In addition, the
possible drawback of the holdout method, the representativeness of the small data
sets, is avoided as well as possible.

Three performance factors are used to describe the success of the long-term inflow
forecast model. Firstly, the estimated classification error probability (CEP) is
calculated to study the performance of the pattern recognition algorithms. Secondly,
the R-squared R? is used to study the performance of the inflow volume forecasts.

é (Fi - Qi )2
a@Q-or
where F; is the forecast for the accumulated inflow and Q; the observation. Q is the

average of the observations. R? is sensitive to large absolute errors. Thirdly, the
relative errors of the forecasts are calcul ated.

RE, ="
Q

By studying the distribution of the relative forecast errors (mean x and standard
deviation o) results can be later assessed in the light of the dependence between the
accuracy of the model and the success of the regulation. As a goodness-of-fit measure,
relative errors weight more the absolute accuracy of the dry periods (small values).

R? =1- (3-4)

(3-5)

To compare the accuracy of the new method, also multiple linear regression models
are used for forecasting. The regression models are estimated for each forecast site
and forecast day. The leave-one-out method is used to evaluate the forecast accuracy
of the linear models. Thus it is possible to compare the forecast accuracies of the
methods by using the same data set.
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3.2 Resultsfor Lake Péijanne
3.2.1 The preliminary selection of the features

Nineteen possible features for describing the wetness of the forthcoming period on
April 1 in Lake Péijanne and 17 features on October 1 were available. By using a
preliminary study of all the possible features, a set of features was chosen. All the
possible models, each with a different combination of features from this set, were
tested and the results of the models with the best forecast power are finally shown.
One of the goals of the preliminary study was to find as long time-series as possible to
be able to validate the models properly. In Appendices B and C, the correlation
matrices of the hydrological measurements and the accumulated inflow of the
forthcoming period of a different length are presented. All the statistically significant
correlations at 95% level are highlighted (bold). The number of pair-wise
observationsis not equal for all the pairs due to missing observations.

The water level of a regulated lake normally varies between fixed limits. The
variations are partly independent of the hydrological state of the basin due to the
unnatural release sequences. Thus, the use of the water levels of the regulated lakes as
independent variables or as features should be carefully justified. Lake Pielaves and
Lake Konneves in the Rautalampi watercourse are unregulated and hence, the water
levels of the lakes are fit for discharge forecasting downstream. The water levels of
these lakes on the forecast dates are highly correlated with the forthcoming inflow
volume of Lake Paijanne (r=0.45-0.89). Thus, they could be used as possible features
on both dates. However, the lakes are located in the same sub-basin and their water
levels are highly correlated with each other (r = 0.94 on April 1 and r = 0.90 on
October 1). Thus only one of them should be used as a feature in the same application.
The within class variances and the between class distances of these variables are
similar. The class averages differ, but the within class variances are relatively large.
The values of the neighbouring classes are overlapping. In April, the differences are
dlightly more explicit for Lake Pielavesi. The time-series of Lake Konnivesi is longer
than the series of Lake Pielavesi, but both of the variables were chosen for the final
set of features on both forecast dates. They are not used at the same time, however.

The regulation of Lake Keitele is conservative and follows the natural water level of
the lake. On both forecast dates, the water level is highly correlated with the
forthcoming inflow of Lake Paijanne. Correlation coefficients vary from r=0.30
between Qapr-sep aNd Wheitee ON April 1 up to r=0.84 between Qoc and Wkeitele ON
October 1. Although located in a different sub-basin, the water level is also highly
correlated with the water levels of Lake Konneves and Lake Pielaves (r=0.80-0.87).
Especially for the longest forecast periods, there are clear differences in the average
values of the water levels between different classes (“dry”, “normal”, “wet”),
although the variances are large. Thus, the water level of Lake Keitele was chosen for
the final set of features on both forecast dates.

Lake Kivijarvi, Lake Kiimagarvi, Lake Saarijarvi, Lake Leppavesi and Lake
Vesijarvi are regulated. The regulation rule for Lake Leppévesi has not been
significantly changed since the beginning of the regulation in 1961 and therefore, the
water level of the lake could be used as a feature, assuming that the regulation has
been systematic from year to year. The state of the lake is, however, correlated with
the water levels of the lakes upstream (Konnevesi and Keitele). In addition, the
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correlation of the water level on April 1 with the forthcoming inflows of Lake
Paijanne is not as strong (r < 0.59). This is probably due to the small volume of the
lake. In addition, the water level of the lake is highly correlated with another possible
feature, the accumulated inflow of Lake Péijanne during a period preceding the
forecast date. This is expected because the lake empties straight into Lake Péijanne.
Especially in autumn, the class averages of this feature differ from each others, but the
within class variances are also considerably large. The water level of Lake Leppévesi
was not selected for the final set of the features.

The regulation rule for Lake Kivijarvi changed in 1957. The lake is located in the
same sub-basin with Lake Keitele and on the chosen forecast dates, the water levels of
the lakes are highly correlated (r=0.54 on April 1, r=0.82 on October 1). The water
level of Lake Kivijarvi was not chosen for the final set of the features on April 1 but
was tested in the final set on October 1. The reason was the high correlation (r=0.82)
with the forthcoming inflow volumes of Lake Paijanne in late autumn. The class
averages corresponding to the water level observations also differ more clearly on
October 1 than on April 1.

The regulation rules of the two regulated small lakes in the Saarijérvi watercourse
have been changed significantly during the years. The operation licence of Lake
Saarijarvi changed in 1975 and the licence of Lake Kiimasjarvi in 1982. Because long
stationary time-series were required in the application, the water levels of Saarijarvi
and Kiimagarvi were not utilised in forecasting. In addition, by studying the class
averages and the within class variances of these variables, no reasons were found to
use them as features. Taking into account the relative small volumes of these lakes,
the loss of information due to this decision is not regarded significant. The water level
of Lake Vesijérvi was not used as a feature either. The available time-series from the
beginning of the regulation in 1975 is relatively short. In addition, the correlations
between the water level of the lake and the inflow sums of the forthcoming periodsin
Lake Paijanne are not especially large (r=0.15-0.65).

Observations from six different groundwater level gauging stations were available. To
validate the model properly, long time-series are needed. The groundwater time-series
are only about 30 years long. In order to extend one of the groundwater time-series, a
linear regression model was built. The goal was to achieve an extensive time-series
for the period 1962-2003 to reliably test the usability of groundwater data in
forecasting. Although only one of the time-series was extended, the suitability of the
observations of each of the groundwater stations for long-term inflow forecasting was
tested in the preliminary feature selection procedure. However, the use of these in the
model would cause problems in the validation, because of the missing observations at
the both ends of the time-series.

A natural candidate to be extended was the groundwater time-series (1976-2003) of
the Aijaa station because of its location just upstream of Lake P4ijanne (see Chapter
2.5.3 and Figure 1). To extend the time-series by using a linear regression model,
either Pieksaméki or Padasoki observations (1962-1994) should be used as an
independent variable. Unfortunately, the linear regresson model using the
observations from the Aijala station on April 1 as a dependent and the observations
from these two gations on April 1 as independent variables was not gatistically
significant. Although the Pieksdméki station is not located in the Lake Paijanne basin,
its observations (1962-1994) have a significant correlation with the forthcoming
inflow volumes of a different length of Lake Paijanne on April 1. Thus, the next
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attempt was to extend the Pieksdméki time-series. The groundwater level in Mutkala
on April 1 was used as an independent variable because these two gations are located
on the same side of Lake Péijanne and in a similar soil area (moraine). The decision
on which would be the independent variable was made based on the need for using the
model for prediction. With the choice made, only 9 years (1995-2003) had to be
predicted, instead of 14 years (1962-1975) with the other decision. The model was
calibrated using the observations from 1976 to 1994, resulting in the formula

GW(L.4.) nyeres =17110,8- 1,69780>GW(1.4.), s (3-6)

The dope in the model has a negative sign, because the Pieksaméki groundwater
levels are given as a distance from the surface level, whereas Mutkala values are
groundwater levels measured from the sea level. The constant term describes the
difference between the base points.

Both model coefficients were clearly statistically significant with p-values of 0.000. In
addition, the model itself was significant with F-test value 49.58 and p-value 0.000.
The assumptions made on the model residuals were also tested. The residuals were
summed up to zero indicating an unbiased model and the normality assumptions were
accepted with the Wilk-Shapiro test value 0.9498. The autocorrelations of the
residuals were insignificant and no severe heteroscedasticity in the residuals was
found. Therefore, the model was accepted and used to extend the Pieksaméaki
groundwater time-series. The linear model, the calibration points and the predicted
values that were used to extend the Pieksdmaki groundwater time-series are presented
in Figure 9.
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Groundwater level in Pieksamaki on April 1
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Groundwater level in Mutkala on April 1

Figure 9. The linear regression model used to predict the groundwater level in Pieksdmaki on
April 1for theyears1995-2003.

Also the correlations between the forthcoming inflow of Lake Paijanne and the states
of the groundwater tables were calculated. The correlations decrease as the forecast
period gets longer. These correlations are statistically significant only for the shortest
periods. When the correlation matrix is analysed, it should be remembered that some
of the Pieksaméaki groundwater values are calculated by using the regression model.
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This relation explains the highly significant correlation factor between the Pieksamaki
and Mutkala observations. Consequently, only one of these observations should be
used as a feature in the application. In any case, high multicollinearity restricts the use
of the groundwater values. Significant correlations were also found between the water
levels of the examined lakes and the groundwater levels. The observed and estimated
groundwater levels in Pieksaméaki were selected into the final set of possible features
on April 1, because of the length of the time-series. For comparison, also the
groundwater level observations from the Naakkima station were selected into the final
set of possible features.

On October 1, the correlations between the groundwater levels and the inflow
volumes of the forthcoming periods in Lake Péijanne are higher. They are significant
also for the periods of 4-6 months. Despite the mutual correlation, both the
groundwater level in Naakkima and Mutkala were selected for the final set of
features. Also the groundwater observations in Vehkoo are tested in the final set by
using it instead of the Naakkima observations. The correlations between the
groundwater levels and the forthcoming inflow sums vary between 0.63 and 0.79 for
Mutkala and Naakkima.

Both available areal snow observations correlate with the inflow sum (except for one
month’s period) in spring. A highly significant correlation (0.86) between the two
variables was found, however. Therefore, only one of these values should be used as a
feature. If one of the values is already in use in the algorithm, the other will not
provide any new information. The areal snow water equivalent describing the areas
near Lake Paijanne was used because of the higher correlation with the inflow and the
longer time-series. Also the between class differences are clearer for this variable.
Significant correlation coefficients were not found between the snow water equivalent
and the other possible features.

The areal accumulated precipitation was calculated for different periods. The
accumulated precipitation of the period between August to October (1.8.-31.10) was
selected as a possible feature in forecasting of the inflow volumes during the next
spring. This variable has a small correlation with the inflow volumes, but it also
correlates with the groundwater observations and water levels of the upstream lakes
on April 1. The within class variances are large but the averages are, however,
unequal. The precipitation sum is one of the features in the final set in spring flood
forecasting. For the forecast periods beginning on October 1, several possible
precipitation sums were tested. The one with the highest correlation, the areal
precipitation sum from May 1 until the end of September, was chosen as one of the
features in the final set. The correlation between this sum and the Paijanne inflow
volume from October 1 onwards varies between 0.75 and 0.86 for the different time
periods. High correlation coefficients between the precipitation sum and the other
features used (water level, groundwater level) were also found. Thus it is expected
that it is not worthwhile to use al of the featuresin the final set at the same time.

The index describing the North Atlantic Oscillation during the December-February
season correlates with the inflow sum of Lake Pajanne for April (r=0.38). For the
forecast periods exceeding one month, the correlations are less significant (r<0.3). For
the forecast periods starting on October 1, no linear connection between the inflow
sum and the preceding NAO indices were found. The NAO indices were tested for
forecasting on April 1 but not on October 1.
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The inflow volume of the period preceding the forecast date was one of the featuresin
the final set. On both forecast dates, the past and forthcoming inflow volumes
correlate significantly. A two-week period was used, but an equally significant
correlation coefficient for a period of four weeks was found. On both dates,
differences in the class averages between the classes were found, although the tails of
the distributions overlapped.

To sum up, all the models each containing a different combination of the following
seven (eight) features are calibrated and validated to find the best model for inflow
forecasting on April 1: the areal snow water equivalent in the areas near Lake
Paijanne (ASWEpsijsnne), the state of the groundwater table in Pieksdmaki
(CWhieksamaki), the water level of Lake Konnevesi (Wkonneves) OF Lake Pielavesi
(Whielaves), the water level of Lake Keitele (Wkeitele), the inflow sum of the period of a
length of two weeks preceding the forecast date (Y QZ2psijanne) and the index of the
North Atlantic oscillation during the December-February season (NAOpec-ren). Both
the Naakkima groundwater level (GWhaakkima) @nd the areal precipitation sum during
the preceding autumn (3_Paug-oct) Were tested as the seventh variable.

In the case of forecasting the forthcoming inflow volume on October 1, the models
using combinations of the following features are tested: the inflow volume of the
period of a length of two weeks preceding the forecast date (3 QZ2psijanne), the areal
precipitation sum during May 1-September 30 in the Péijanne basin (3 Pwuay-sep), the
water level of Lake Konnevesi (Wkonneves) Or Lake Pielavesi (Wrigaves), the water
levels of Lake Keitele (Wkeitele) and Lake Kivijarvi (Wkivijarni), and the states of the
groundwater levels in Naakkima (GWnaakkima) @and Mutkala (GWutkala) -

3.2.2 Forecastson April 1

The leave-one-out algorithm was used to validate the success of the method for each
of the feature combinations and classification algorithms. New objects were classified
either by using the minimum distance classifier or the k-NNR with different values of
the parameter k. In addition to the estimated classification error probabilities, the
relative errors and the R? of the inflow volume forecasts were calculated. For details
about the algorithms and validation, see Chapter 3.1. The results of the best models
are collected into Table 7 (page 64). A more thorough analysis of the forecasts
follows.

Forecast lead time: 1 month

For the forecasts of atime period of one month (Apr 1-Apr 30), several models gave
practically equal results. None of the feature combinations outran the others. For three
supervised classes, the model using MDC and a combination of the ASWEpsijsnne, the
GWhrieksamakis the Wionnevesi, the Y Q2psijanne and the NAOpec.ren 8s features gives a low
estimated CEP (24%). The standard deviation of the relative forecast error (o) was
19%, the mean of the relative errors (1) +6% and the R-squared R’=0.61. The
confusion matrix is shown in Table 4. The wet periods are classified very well. Most
of the problems are related to misclassifying the normal periods.
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Table 4. The confusion matrix of the forecastsfor a lead-time of one month in Lake Paijanne on
Apf” 1 by us ng AS\NEPéijénne' GWPiekséméki' WKonneveﬁi' ZQZPéijénne and NAODec—Feb as features, the
minimum distance classifier and three classes (n=41).

1 2 3

1 4 1 0

2 2 14 5

3 0 2 13

In the case of five classes, one of the lowest CEPs was attained by using the model
where the GWeiesamiki, the Wionneves @nd the Y Q2psijanne Were used as features and the
MDC for classification (Table 5). The estimated CEP increased compared with the
case of three classes, and it was 44% (n=41). By using five instead of three classes,
the inflow volume forecasts of the correctly classified periods are more accurate and
therefore, the standard deviation of the relative forecast error does not increase (6=19
%). R was 0.53. Although the CEP is quite large, it is noteworthy that none of the
“dry” and “very dry” years is misclassified into the “wet” and “very wet” classes and
vice versa. Six examples of the final inflow forecasts are presented in Figure 10. In
the upper row, some successful forecasts are shown. The forecast are based on the
correct classification. The forecasts shown in the lower row are based on
misclassification. The errors at the end of the period are large especially in 1993 and
1984. In 1993, the period turned out to be much drier than expected and in 1984,
much wetter than expected.

Table 5. The confusion matrix of the forecastsfor a lead-time of one month in Lake Paijanne on

April 1 by using GWpiesamaki, Wionneves @Nd Y- Q2pzjanne @S featur es, the minimum distance classifier
and five classes (n=41).




57

1200 1200 1200
— 1000 1 1996 — 1000 - — 1000 1 1965
é 800 - é 800 - é 800 -
§ 600 - § 600 - § 600 -
& 400 & 400 & 400
£ . £ £
200 < 200 200
0 T 0 0
01-Apr 30-Apr 01-Apr 30-Apr 01-Apr 30-Apr
1200 1200 1200
— 1000 1 1993 ) — 1000 1 1987 — 1000 +
S S S
S 800 4 S 800 A S 800 4
g 600 - g 600 - g 600 -
1] 1] 1]
3 400 | 2 400 2 400 |
€ € €
— 200 4 — 200 A — 200 4
0 T 0 T 0 T
01-Apr 30-Apr 01-Apr 30-Apr 01-Apr 30-Apr

Figure 10. Six examples of the inflow forecasts for a lead-time of one month in Lake Paijanne on
April 1. Darker lineindicatesthe observation and lighter (dashed line) indicates the for ecast.

By using the k-NNR, the results are similar. The best results are obtained while using
k=5. In the case of three supervised classes, several models with different feature
combinations give CEPs that are close to 20%. In the case of five classes, the CEPs
are normally around 50%. To demonstrate the forecast power of a model using only a
single feature, the confusion matrix of the classification using Wkonnevesi 8S a feature is
shown in Table 6. The 5-NNR was used for classification. The estimated
classification error probability was 40%, the standard deviation of the forecast error
30% and R’=0.39. The mean error 1 was + 6%. Because of the long time-series of
water level of Lake Konnevesi, it was possible to validate the model by using 96
observations.

Table 6. The confusion matrix of the forecastsfor a lead-time of one month in Lake Paijanne on
April 1 by using the 5-NNR and five classes (n=96). A single featur e, Wxonneves Was used.

1 2 3 4 5

112 4 1 0 O

5/0 0 4 2 5

To compare the accuracy of the new model type, the same data set was used to
estimate a multiple regression model for the inflow volume of Lake Péijanne in April.
By using the whole data set and the backward elimination procedure in the variable
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screening, the ASWEpjanne and the 2Q2psiamne Were selected as independent variables.
The estimated model is presented in Equation 3-7.

Qper =17.0917 XASNE e + 2.11252 %] Q2 (3-7)

dijanne dijanne

The model and the regression coefficients are statistically significant a 95%
confidence level. The centered R-squared of the model is RP=0.66 and =17%
(u=+2%, n=56). However, to compare the accuracy of the models fairly, also the
forecast power of the linear regression model must be studied by using the leave-one-
out method. By doing that, the R of the model was 0.62 and 6=18% (u=+3%, N=56).
The results of the estimated multiple linear regression models are collected into Table

8 (page 64).
Forecast lead time: 2 months

The best models for forecasting the inflows of a time period of two months (Apr 1-
May 31) are unbiased and the standard deviations of the relative forecast errors are
glightly less than 20%. To reach this accuracy, it is possible to use both of the
algorithms, different numbers of classes and different combinations of the features.
When using 5 classes, the model using MDC and the ASMVEpsjinne, the GWhieksamiki,
the GWhaakkima @nd the Wkeitee @s features gives the best results. The classification
error probability is 32%, the standard deviation of the relative forecast error 18% and
R?=0.64. The mean relative forecast error is -5%. The confusion matrix, the forecast
and the observed inflow volumes are presented in Figure 11. Also the theoretical
forecasts based on the correct classification of the periods are presented. I1n the case of
perfect classification, the standard deviation of the relative forecast errors (n=28)
would have been 10%, showing the theoretical maximum accuracy of the method in
the light of 0. A few examples of the forecasts for the case of five classes are also
shown in Figure 12. Some forecasts based on the correct classification are presented
in the upper row. In the lower row, forecasts are based on misclassification. In 1981
and 1991, the error at the end of the forecast period is large compared with the whole
live capacity (1600 Mm®) of the lake. Some problems can also be seen in the timing of
the low and high flow periods in the correctly classified years (1984).

The model using three classes, 1-NNR and GWhieksimaki, the Wionnevesi; the Y Q2psijanne
and Y Paug-oct as features gives a CEP as low as 11% (n=28). Although classification
errors decrease compared with the use of four and five classes, the standard deviation
of the errorsis of the same order of magnitude, 18% («=+1%). Variance of the errors
corresponding to the correctly classified periods is larger compared with models using
more classes. The R? of the model using three classes was 0.50.

By using the backward elimination procedure, a multiple regression equation was
estimated. ASWEpsijanne, 2Q2psijanne @A Wionneves Were selected as independent
variables and the model was forced through the origin resulting in an equation

QApr— May = bl ><'A‘S/VEP?Jiijéinne + bz Xé Q2Paijanne + b3 >«NKonnevesi (3'8)

The forecast power of the model (Equation 3-8) was estimated by using the leave-one-
out agorithm. The R? of the forecasts was R°=0.55 and 6=17% (u=+3%, n=55).
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Figure 11. The confusion matrix, the observations and forecasts for a lead-time two months in
Lake Paijanne on April 1 by using the MDC and 5 classes. ASWEpsijannes CWhiaksamakis CWhiaakkima
and Wyeie Were used as features. Also the hypothetical forecasts based on the perfect
classification are shown.
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Figure 12. Six examples of the inflow forecastsfor a lead-time of two monthsin Lake Paijanneon

April 1. Darker lineindicates the observation and lighter (dashed line) indicatesthe forecast.
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Forecast lead time: 3 months

The estimated classification error probabilities of the forecasts for a time period of
three months (Apr 1-Jun 30) were similar to the forecasts for a time period of two
months. The best ¢ were dightly lower, however. Combinations of ASWEpsijanne,
GWhoieksamaki, Wieitee aNd Y Q2pzijanne Were used as features for the models with the best
forecast power.

The lowest ¢ was attained while using four classes, the 5-NNR and the above
mentioned variables as features. With the classification error probability of 26%
(n=26), the standard deviation of the relative forecast error (o) was only 15%. The R?
was 0.61. The results are shown in Figure 13. In addition to the forecast errors due to
the misclassifications, also the large forecast error corresponding to the wettest period
is considerable, although this period was correctly classified. In general, the
classification succeeded quite well.
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Figure 13. The confusion matrix, the observations and forecasts for a lead-time of three months
in Lake Péijanne on April 1 by using the 5-NNR and 4 classes. ASWEpsijanne, CWeieksamaki, Wkeitde
and Y Q2Zpsjsme Were used as features. Also the hypothetical forecasts based on the perfect
classification are shown.

The same data set was used to estimate a multiple regression model for forecasting the
inflow volume of the period between April 1 and June 30. By using the backward
elimination, two variables were selected for the model: ASWEpsjanne and 2Q2psijanne.

(3-9)

By using the Equation 3-9 and the leave-one-out procedure, the R? of the forecasts
was R?=0.56 and 0=17% (u=+2%, n=56).

Forecast lead time: 4 months

For the forecasts of atime period of four months (Apr 1-Jul 31), the areal snow water
equivalent seems to be the most important feature. Otherwise the same features as for
the shorter forecast periods in different combinations can be used to achieve
satisfactory results. The accuracy of the best models is such that along with unbiased
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forecasts, the standard deviation of the relative forecast error is around 20%. By using
three classes and ASWEpsijanne and GWhiasamaki 8S the features, for example, and the 1-
NNR in the classification, the CEP is 24% (n=42) and 6=21%. At the same time,
however, R? is as low as 0.12. The confusion matrix and the inflow sum forecasts
based on this model are presented in Figure 14.
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Figure 14. The confusion matrix, the observations and forecastsfor a lead-time of four monthsin
Lake Péijanne on April 1 by using the 1-NNR and 3 classes. ASWEpsjanne and GWaigmaki Were
used as features. Also the hypothetical forecasts based on the perfect classification ar e shown.

The same data set was used to estimate a multiple regression model for forecasting the
inflow volume of Lake Paijanne of the period between April 1 and July 31. By using
the backward elimination, the same independent variables were selected as in the case
of forecasting the inflows for a time period of three months. Thus, the form of the
equation is similar to Equation 3-9. The R? of the forecasts was R*=0.56 and ¢=16%
(u=+2%, n=56).

Forecast lead time: 5-6 months

For forecasting the inflows of a time period of five months (Apr 1-Aug 31) and six
months (Apr 1-Sep 30), the best models are the ones using combinations of
ASWEpsijannes GWhieksameki, Wridaves and Y Q2p:janne 8S features. For some of the feature
combinations, only a few observations were available for the “very wet” and the “very
dry” classes. These extreme years seemed to concentrate on the periods where, for
example, the groundwater observations were not available. Therefore, it was not
possible to use the 3-NNR and especially the 5-NNR for some of the feature
combinations. Compared with the shorter forecast periods it seemed, however, that
the o of the models was worse and the estimated CEPs grew in general. By using the
four features already mentioned, some examples of the models giving as low ¢ as 20%
was obtained. For example, the lowest estimated CEP for the forecasts of a time
period of five months was achieved by the model using three classes, a single feature,
GWhieksamaki, and the nearest neighbour rule. The CEP of the model was 14% and the
standard deviation of the forecast error was 19% (Figure 15). It is important to notice
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that the lack of wet and dry years in the validation could overestimate the goodness of
the model. The R-squared R was 0.36 for these forecasts.
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Figure 15. The confusion matrix, the observations and the forecastsfor a lead-time of five months
in Lake Paijanne on April 1 by using the 1-NNR and 3 classes. GWhpiesamaxi, as an only feature,
was used. Also the hypothetical forecasts based on the perfect classification ar e shown.

To demonstrate the accuracy of the forecasts of a time period of six months, a
confusion matrix and inflow forecasts are presented for amodel that uses ASVEpijanne
and GWhpiasamaki s features (Figure 16). While the CEP in the case of five supervised
classes is 50% by using the 1-NNR, the standard deviation of the relative forecast
error was 20%. The R? was 0.26. In this case, the classification of the very wet and
very dry years did not succeed. The number of observations of the classes in the
training set was inadequate. Examples of the forecasts are shown in Figure 17. In the
upper row, some of the forecasts that are based on the correct classification are
shown. These forecasts are good, although some errorsin the timing of the inflows are
evident. The forecasts on the lower row are based on misclassification. In 1979 and
1988, the errors at the end of the forecast period are very large. The errors are only
dightly less than the whole live capacity of Lake Paijanne.

The same data set was used to estimate multiple regression models for forecasting the
inflow volume of both periods. The estimated models were similar to Equation 3-9.
The R? of the forecasts was R°=0.54 and 6=16% (u=+2%) for Qapr-aug ad R?=0.49
and 6=17% (u=+2%) for Qapr-sep-

All the discussed results are collected into Table 7 and Table 8. As can be seen, for
the new model type the lowest estimated CEPs were less than 15%, if only three
supervised classes were used. The forecast models for the different lengths were
practically unbiased and the standard deviations of the relative forecast error were
dightly less than 20%, increasing only dlightly or not a all as the forecast period
lengthened. The highest R-squared R? was 0.64 and it decreased to around 0.25 for the
longest forecast periods. For individual years, the forecast accuracy varied even from
clear overestimation to underestimation as longer lead times were used. On the other
hand, there were also examples where inflows are, for example, underestimated
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irrespective of the lead time. Examples of the forecasts for different lead times are
shown for six yearsin Appendix F. Compared with the linear regression models, more
variables and occasionally different variables were used for forecasting. In the light of
R?, the results of the multiple linear regression models were slightly better, especially
for the longest forecast periods. This was true also in the light of o, although the

differences were small.
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Figure 16. The confusion matrix, the observations and forecasts for a lead-time of six monthsin
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Table 7. The forecast accuracy of the new model type on April 1in Lake Paijanne. The features
used are marked with X.
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Table 8. The forecast accuracy of the multiple regression models on April 1 in Lake Péijanne.
Theindependent variables used are marked with X.
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3.2.3 Forecastson October 1

A drawback was present in the validation of the forecast models for the forecast
periods starting from October 1. Most of the driest periods are concentrated on the
first half of the 20" century and most of the hydrological time-series are not available
before the 1960s. Hence, none or only a single pattern was available for describing the
driest classes in the case of four or five classes, if all the possible features were
utilised. The thresholds dividing the supervised classes were not changed, however,
and the validation of the model was based mainly on the success of the classification
of the normal and wet periods. In Table 10 (page 71), the best results concerning the
forecast accuracy of the models for the different forecast periods are presented.

Forecast lead time: 1 month

For the forecasts of a time period of one month (Oct 1-Oct 31), the lowest estimated
classification error probability was achieved by using a model where Y Q2psijanne,
> Pmay-sep, Wionnevesi, Wkivijarvi and GWnaakima Were used as the features and 5 classes
with the 1-NNR were used in classification. The CEP was only 11%, but only 26
years could be used to validate the model. The R? was as high as 0.86. However, very
dry periods were not included in the validation. The standard deviation of the relative
forecast error was 15%. In Figure 18 the confusion matrix and the inflow forecasts
obtained by using this model are shown. As can be seen, observations from the “very
dry” class were not available. The large errors in the inflow sum forecasts of the
correctly classified very wet periods show the weakness of the method in forecasting
extreme periods satisfactorily. The accuracy of the model would not have been much
better, even if al years had been correctly classified. The forecasts of all the
misclassified years are shown in the lower row in Figure 19. In the upper row, some
of the forecasts that are based on the correct classification are presented. In 1981 the
pattern is correctly classified, but inflows are still clearly underestimated. The error at
the end of the forecast period is as large as are the errors corresponding to the
misclassified years.

When using the 1-NNR, three classes and Wikonneves @and Wkeitele as features, the CEP of
the model was 22%. This time, the model could be validated by using 50 years. The
R? was 0.53 and ¢ was 17%. The confusion matrix is shown in Table 9. None of the
wet periodsis classified into the “dry” class and vice versa.

Table 9. Confusion matrix of the forecasts for a lead-time of one month in Lake Paijanne on
October 1 by using threeclasses and 1-NNR. Winneves and Wieitee Wer e used asfeatures.
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Figure 19. Six examples of the inflow forecasts for a lead-time of one month in Lake Paijanne on
October 1. Darker lineidicates the observation and lighter (dashed line) indicatesthe forecast.

For comparison, the same data was used to estimate a multiple linear regression
model. By using the backward elimination, only a single variable was accepted into
the model, Y Q2Zpsijanne, @nd the model was forced through the origin resulting in:

Qox = by Xé szaijanne (3-10)
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The leave-one-out procedure was used to study the forecast power of the model. The
R? of the forecasts was as high as R°=0.88 and 6=21% (u=+2%, n=96). Also the new
model type was validated by using Y Q2psjanne 8S an only feature. Five supervised
classes and MDC were used. The estimated CEP was 45%, 6=27% (u=+0%, n=96)
and R?=0.70. Thus, the new model type does not utilise all the information given by
the feature in the forecasts.

Forecast lead time: 2 months

Next the forecasts of a time period of two months (Oct 1-Nov 30) were studied. For
the model using the combination of > Q2psijanne, Y PMay-sep, Wionneves: and Wkivijarvi @S
features, five supervised classes and the minimum distance classifier, the estimated
classification error probability was 27% (n=30) (Figure 20). The errors in the inflow
forecasts are small (6=19%, R?=0.85), but the validation data do not contain any
observations from the “very dry” class. The largest individual errors are related to the
correctly classified very wet years. The lowest CEP, 17%, was obtained for the model
using three classes and Y Pway-sep ad Wkonneves 8s features (MDC). At the same time
however, ¢ is as large as 30% and R? is only 0.60. Generally, the classification error
probabilities of the models are larger compared with the models forecasting a time
period of one month.
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Figure 20. The confusion matrix, observations and forecasts for a lead-time of two months in
Lake Péaijanne on October 1 by using the MDC and 5 classes. Y Q2psijannes > Pmay-sepy Wiconneves 8Nd
Wkijani Were used as features. Also the hypothetical forecasts based on the perfect classification
ar e shown.

The following model was estimated to compare the accuracy of the new approach
Qoct-nov = Do + by Xé szaijanne + Dy Wpigaves (3-11)

The leave-one-out procedure was used for evaluating the forecast power of the model
(Equation 3-11). The R? of the forecasts was 0.80 and 6=24% (u=+6%, n=72).
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Forecast lead time: 3 months

For the forecasts of a length of three months and longer, the best models use mainly
combinations of ZQZPéijénne, ZPMay-Sep and Wionneves (O Whigaves) as features. The
groundwater levels in the feature vectors do not give additional information on
forecasting. In addition, the use of 4 and 5 classes instead of 3 is preferred because of
the better overall results. In Figure 21 a confusion matrix and the inflow sum forecasts
are given for the forecasts of a time period of three months (Oct 1-Dec 31). The
feature vector of the model is simply a combination of Y Puay-sep and Wikonneves. Five
classes and the 1-NNR were used. The lack of the very dry periods in the validation
weakens the reliability of the result. The estimated CEP was 27% (n=30) and the
standard deviation of the relative forecast error was 20%. The R? was as high as 0.85.
Misclassifications are concentrated on the “normal” class. By using different
combinations of the features and different numbers of the classes, the lowest
estimated CEPs of the models varied normally between 20 and 35%.
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Figure 21. The confusion matrix and the observations and the forecasts for a lead-time of three
monthsin Lake Péijanne on October 1 by using the 1-NNR and 5 classes. Y Pway-sep @Nd Wkonnevesi
wer e used as features. Also the hypothetical forecasts based on perfect classification are shown.

A multiple linear regression model was again estimated for comparison. Same
features were used as independent variables as in Equation 3-11. The leave-one-out
procedure was used for evaluating the forecast power of the model. The R? of the
forecasts was 0.70 and 6=26% (u«=+6%, n=72).

Forecast lead time: 4 months

For the forecast period of four months (Oct 1-Jan 31), the lowest estimated CEPs were
naturally obtained by the models using three classes. The best accuracy of the inflow
forecasts were obtained, however, by the models using five classes. An example of
the results is given in Figure 22, where the confusion matrix and the inflow forecasts
are presented for the best model. The 1-NNR was used in the classification and
> Pmay-sep @nd Wikonneves Were used as features. The estimated CEP was 27% (n=30).
The standard deviation of the forecast error was 19% and the R? was 0.70. Most of the
problems in the classification are concentrated on the class “normal”, although the
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largest errors are related to very wet years. The success of the model in the
classification of the very dry years, however, could not be validated. By using the
alternative classification algorithm, MDC and 5 classes, the results were similar. An
equivalent linear regression model to Equation 3-11 was estimated for forecasting
Qoct-gan- The leave-one-out method was used to estimate the accuracy of the model.
The R of the forecasts was 0.65 and 6=25% (u=+6%, n=72).
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Figure 22. The confusion matrix and observations and the forecasts for a lead-time of four
monthsin Lake Péijanne on October 1 by using the 1-NNR and 5 classes. Y Puay-sep @Nd Wkonneves
wer e used as features. Also the hypothetical forecasts based on perfect classification are shown.

Forecast lead time: 5-6 months

For the forecast periods of five and six months, the results are similar to each other.
Although the CEPs are dightly lower for the models using three classes, it is
preferable to use more classes. Additional classes enable more accurate inflow
forecasts for the correctly classified years. The CEPs do not seem to increase to such
an extent that the additional accuracy would be lost. No single feature combination
outran the others, but groundwater levels did not give additional information for the
classification. For the forecast period of five months (Oct 1-Feb 28), the lowest CEP
in the case of five supervised classes was 20% (0=18%, R?=0.72, n=30). This result
was achieved by the model using Y Puay-sep @nd Wkonnevesi 8S features. Some examples
of the forecast are shown in Figure 23. The forecasts in the upper row are based on
correct classification and the relative forecast errors are less than 10% in these
examples. In the lower row, forecasts are based on misclassification. In 1994 and
1984, the relative forecast errors a the end of the period are 35 and 41%, respectively.
For the forecast period of six months (Oct 1-Mar 31), the CEP of the best model using
five classes was 27% (MDC). Y Q2psjanne; > Pmay-sep and Wikonneves Were used as
;ezatures. The standard deviation of the relative forecast errors was 19% (n=30) and
=0.70.
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Figure 23. Six examples of the inflow forecastsfor alead-time of five monthsin Lake Paijanneon
October 1. Darker lineindicates the observation and lighter indicatesthe forecast.

Multiple linear regresson models were estimated by using the same data set to
compare the accuracy of the models. By using Y Q2psijanne and Whieaves aS independent
variables, the R? of the forecasts of Qoct.rer Was R?=0.61 and 0=25% (u=+5%, n=72).
The leave-one-out method was used for validation. Similarly by using the same
independent variables for forecasting Qoctmar, the R? was 0.58 and 6=25% (u=+4%,
n=72).

All the discussed results are collected into Table 10 and Table 11. For the new model
type, the CEP of the best model in the case of using three classes is as low as 11%.
The R? varies from 0.86 to 0.72 being highest for the forecasts of a time period of one
month. Compared with the linear regression models, R? is of the same order of
magnitude, but more variables are used in forecasting. Thus, shorter time-series and
fewer observations are used to validate the new model compared with the validation
of the linear regression models.
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Table 10. The forecast accuracy of the new model type on October 1 in Lake Péijanne. The
features used are marked with X.
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Table 11. The forecast accuracy of the multiple regression modelson October 1in Lake Péijanne.
Theindependent variables used are marked with X.
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3.3 Resultsfor small basins

Long-term streamflow volumes were forecast for the two small streams, Ruunapuro
and Heingjoki on two dates. On April 1 a period of one to six months until the end of
September and on October 1 until the end of March were forecast. The basis for the
forecasts is the classification of the forthcoming period based on different features. In
the case of the small basins, less than ten possible features were available. Thus, all
the models, each containing a different feature combination, were assessed by
comparing the results given by the leave-one-out method, and the models that have
the best forecast power are discussed.

3.3.1 Ruunapuro basin, forecasts on April 1

In April, seven features describing the current hydrological state of the Ruunapuro
basin are available for the classification: the areal snow water equivalent
(ASWERuunapuro), the frost depth in field (Friaq), and forested sites (Frioes), the
accumulated streamflow of a time period of two weeks preceding the forecast date
(3 Q2ruunapuro), the groundwater (GWijza) and soil moisture data in Aijala (SMajjais)
and the accumulated precipitation (3 Paug-oct) in the basin. Based on the correlation
analysis, the accumulated precipitation of the period between August 1 and October
31 in the preceding autumn is used as a possible feature. The correlations of this
variable with the forthcoming streamflow volumes on April 1 are weak and
insignificant at 95% significance level, however, for all of the forecast lengths. As
expected, a gsignificant correlation was found between winter precipitation and
ASWERuunapuro- From these two, the areal snow water equivalent is used as a feature.
No connection between the NAO indices and the discharges in the small streams was
found. Thus, the NAO indices are not used either.

The correlation matrix between the streamflow volumes of the forthcoming periods
and the hydrological variables on April 1 is given in Appendix D. The correlation
coefficients shown are based on different numbers of observations. The number
varied from 12 to 49. The correlation coefficient describes the linear relationship
between the variables. Thus the correlation analysis gives only an idea about features
maybe usable in the application. Generally, the correlations are weak. The most
significant correlations (r > 0.6) were found between ASWEgruunapuo and the
forthcoming streamflow volumes of a time period of three months and longer. For
groundwater, discharge and precipitation, significant correlations with the
forthcoming streamflow volumes were not found at all at 95% confidence level.

In advance, the success of the classification can also be predicted by calculating the
within class and between class variability of the features. Differences were found
between the average values of the available features in the different classes (“dry”,
“normal”, “wet”), but the within class variances were large. Thus, it is expected that
the classification success might be poor, at least if only asingle feature is used.

The best models were selected based on the lowest estimated CEPs. In Table 12
results for different forecast lengths are shown. The lowest CEPs varied between 30
and 50% depending on the number of classes used in the application. In general the
lowest estimated CEPs were obtained by the models using the combinations of
ASWERuunapuros Frieids Frorest @0 Y Q2ruunapuro 8S features. If the standard deviation of
the relative forecast error is studied, the best models gave ¢ as low as 21%. Except for
the forecasts of atime period of one month, mean error x iscloseto O.
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Table 12. The forecast accuracy of the new model type for Ruunapuro on April 1. The features
used are marked with X.
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30 3 5-NNR X X 47 -0.60 +33 98 43
60 4 MDC X X X 39 0.34 -4 22 36
20 3 MDC X X 33 0.25 0 24 36
120 4 MDC X X X X 39 0.39 -3 21 36
150 3 1-NNR X X 42 0.08 0 24 43
180 3 3-NNR X X 28 -0.05 +2 27 43

The weakest results are obtained for the forecasts of a time period of one month. For
the small basins this is not a surprise. Depending on the forthcoming weather
conditions, the timing of the snowmelt varies from year to year. Thus the successful
classification of the forthcoming period without the weather forecasts turned out to be
difficult. Those hydrological variables that foresee a wet spring do not necessarily
affect the wetness of the first 30 days. This is especially true for ASMVEruunapuro- The
correlation between Qapr and ASWERuunapuro ON April 1 was only r=0.15 (see Appendix
D).

Differences in the forecast accuracy of the models forecasting inflows of periods
exceeding a month are small. For these periods, the lowest estimated CEPs vary
between 28 and 42%. At the same time, o varies between 21 and 27%. The R? is
highest for the forecasts of a time period from two to four months (R*=0.34; R?=0.25;
R?=0.39). In the light of the estimated CEP and &, the errors do not seem to increase
as the forecast period lengthens. However, the R? is worse for the models forecasting
atime period of five and six months. Although the estimated CEPs of the models are
generally quite large, very poor classifications are rare. A period classified into a wet
classrarely turns out to be adry period and vice versa.

Six examples of the streamflow forecasts of a time period of four months are shown in
Figure 24. The minimum distance classifier and four classes were used and
ASWERuunapuro, Frietd, Friores and Y Q2ruunapuro Were used as features. Three examples
in the upper row are examples of the forecasts based on correct classification.
Forecast examples in the lower row are based on misclassification. In 1996, the
hydrological state of the basin on April 1 is typical for a dry year. However, the
avoidance of overestimating the forthcoming discharge sum is based on the wet
period around the beginning of July. It is not really possible to foresee such
phenomena by the model. In 1987, spring runoffs are nicely forecast, but a wet June
causes a misclassification. In 1966, a very wet season was expected, but the period
turned out to be wet. In 1994, the forecast is poor from the beginning. Spring runoffs
are larger than expected. In the data set, deep frost is normally connected to low flows
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during the forecast period. In 1994, the opposite happened and thus the model that
used both of the frost variables as features misclassified the forthcoming period.
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Figure 24. Six examples of streamflow volume forecasts for a lead-time of four months in
Ruunapuro on April 1. Darker line indicates the observation and lighter (dashed line) indicates
the forecast.

The confusion matrix of the same case is shown in Table 13. The very wet years are
mainly misclassified into a “wet” class. Otherwise, the forthcoming periods are
decently classified (CEP=38%). Only a single, very bad classification error is made.
In 1994 a very wet period is classified into a “very dry” class. As a consequence, the
error of the streamflow volume forecast is large, as seen in Figure 24.

Table 13. The confusion matrix of the forecasts for a lead-time of four months in Ruunapuro
basin on April 1 by using 4 classes and the MDC. ASWEgyunapuros Friidd, Fliores @Nd Y Q2ruunapuro
wer e used asfeatures.

4 1 0 4 2

For comparison, the same data set was used to estimate multiple linear regression
eguations for forecasting the forthcoming streamflows. The leave-one-out method was
used to study the accuracy of the method. Table 14 shows the results. A statistically
significant linear regression model was not found for forecasting Qaor. The regression
coefficients of the independent variables were not Satigtically significant. Thus
neither of the model types can be used to forecast streamflow volumes of a time
period of one month effectively without weather forecasts on April 1. For the
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streamflow volumes of the longer periods, significant equations were found, however.
The R-squared criterion (R?) of the forecasts varied between 0.50 and 0.35 depending
of the forecast length. Thus, the results are slightly better than the ones of the new
model type.

Table 14. The forecast accuracy of the multiple linear regression modelsin Ruunapuro on April
1. Theindependent variables used are marked with X.
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3.3.2 Ruunapuro basin, forecasts on October 1

In October, four possible features for the classification of the forecast periods are
available: the accumulated streamflow of the period preceding the forecast date
(3. Qruunapuro), the groundwater and soil moisture data in Aijala (GWijaia, Maijas) and
the precipitation data in the Ruunapuro basin (3 Pi.sp). The accumulated
precipitation of the period between July 1 and end of September was used based on
the analysis of correlations. Because of the limited amount of soil moisture data (n=10
years), it is practically impossible to verify its usefulness in the application. The lack
of data also limits the use of different methods and the number of classes in the
model. To guarantee enough observations for each of the classes, the thresholds are
selected differently compared with the case of forecasting on April 1. The 33% and
the 67% percentiles of the discharge sum distribution are used for the case of three
classes, the 25, 50 and 75% percentiles for the case of four classes and the 20, 40, 60,
80% percentiles for the case of five classes. It is not possible to divide the data into
more than three classes when the soil moisture observations are used in the feature
vector.

In Table 15 the correlation matrix between the available hydrologic variables on
October 1 and the streamflow volumes of the forthcoming periods in Ruunapuro is
presented. The highest correlations are around 0.5-0.6. The forthcoming streamflow
volumes seem to be dlightly linearly dependent on the Y Pju-sep, Y. Qruunapuro and soil
moisture on October 1. The features available also correlate with each others. Thisis
especially true for 2Q2ruunapuro aNd 2Q4ruunapuro- Thus only one of the two is used in
the application. Variances of the possible features within the classes are large. In
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addition, the average values of the features in different classes are relatively close to
each other.

Table 15. Correlation matrix between the hydrological variables and the forthcoming discharge
sum in Ruunapur o on October 1.
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Qou 1.00
Qoct-Nov 0.89 | 1.00
Qoct-Dec 079 | 095 | 1.00
Qoct-gan 075 | 091 | 098 | 100
Qoct-Fen 072 | 087 | 096 | 099 | 1.00
Qoct-Mar 066 | 081 | 090 | 093 | 097 | 100

XQ2Ruunapuro | 0.38 | 036 | 040 | 042 | 041 | 038 | 1.00
2Q4Ruunapuro | 052 | 052 | 053 | 054 | 052 | 048 | 091 | 1.00

GWiijjaia 014 | 011 0.08 | 0.08 0.09 | 013 0.50 0.55 1.00
ZPjul-sep 055 | 059 | 061 | 062 | 061 | 058 0.70 0.73 029 | 1.00
SM 4ijaa 065 | 048 | 051 | 052 | 046 | 0.30 0.62 0.85 039 | 036 | 1.00

For models using three classes, the lowest estimated CEPs are less than 50% for each
of the forecast lengths (Table 16). At the same time, the standard deviations of the
relative forecast error (o) are large (6>60%). However, this figure is strongly affected
by the very dry period in 2002. Even if classifying this year correctly as dry, the
relative forecast error is large. When omitting this year, o is sightly over 40% and the
average error (1) decreases closer to zero. The increase of the number of classes
increased the estimated CEPs of the models and did not improve forecast accuracy in
the light of the relative errors.
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Table 16. The forecast accuracy of the new model in Ruunapur o on October 1. The features used
aremarked with X.

: |4
<
g E ? ;C% % % “: ﬁi 8 o <
= ° 5= & 3 S < 3 w B S, © c
o 5 5 o o = = a O oy
g 2 £ A A O A
g |2
3 MDC X X 40 0.09 +6 66 45
30
4 1-NNR X X 30 0.72 -5 30 10
60 3 MDC X X 38 0.23 +13 64 45
90 3 MDC X X 38 0.14 +9 67 45
120 3 MDC X X 47 0.13 +10 68 45
3 MDC X X 40 0.07 +11 68 45
150
3 MDC X X 30 -0.70 -9 36 10
180 3 1-NNR X 47 -0.29 +19 108 45

In general, the best individual feature is ) Piu-sep. Ten years of available soil moisture
datais such a short time-series that it is impossible to verify the usefulness of the soil
moisture observations in the application. However, the results of using this data are
promising as seen from the results of the two models with low CEPs shown in Table
16. If soil moisture data were not used, the best performance of the model type was
attained for the forecasts of a time period of two and three months. By using
Y Qruunapuro aNd Y Paui-sep as features, MDC and three classes, the CEP was 38%. The
R? was 0.23 for the forecasts of a period of two months and 0.14 for the period of
three months. At the same time, o was over 60% for both of the models. In Table 17
the confusion matrix of the forecasts of a time period of two months is shown. Above
mentioned variables were used as features. Although the overall classification error is
large, it is very likely that a period classified as a dry one will become a dry or a
normal period. Similarly a period classified as wet will very likely become a wet or a
normal period.

Table 17. The confusion matrix of the forecasts for a lead-time of two months in Ruunapuro on

October 1 by using 3 classes and the minimum distance classifier. Y Qruunapuro @Nd Y Piu.sep Were
used asfeatures.

1 2 3

112 3 0

2 5 9 6

3 1 2 7

For comparison, multiple linear regression equations for the forthcoming inflows were
estimated. The results are shown in Table 18. For all of the forecast lengths, the
regression model was forced through the origin and ) Pju-sep Was the only independent
variable. This was the result of the backward elimination procedure. The R? of the
models vary between 0.24 and 0.32. Hence, the linear regression equations are better
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in the light of R* compared with the new model, but ¢ is of the same order of
magnitude. Again, ¢ and u are sensitive to large relative errors corresponding to small
streamflows.

Table 18. The forecast accuracy of the multiple linear regresson models in Ruunapuro on
October 1. Theindependent variables used are marked with X.
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30 X 0.24 +44 94 45
60 X 0.28 +29 67 45
90 X 031 +26 69 45
120 X 0.32 +25 68 45
150 X 0.32 +23 67 45
180 X 0.29 +21 62 45

3.3.3 Heingjoki basin, forecasts on April 1

In Heingjoki, six possible features are available for forecasting on April 1: the areal
snow water equivalent (ASWEneinoki), the frost depth in field (Frraq) and forested
(Frorest) Sites in the Heindjoki basin, the discharge sum of the period preceding the
forecast date (3 Qneinsjoui), the state of the groundwater table in Vehkoo (G\Wienkoo) and
the accumulated precipitation of the period preceding the forecast date in the
Heingjoki basin (3_Paug-oct). The precipitation sum of the period between the August 1
and the end of October in the preceding year was used. The correlation matrix of the
forthcoming streamflow volumes and the hydrological variables on April 1 is
presented in Appendix E. The estimated correlation coefficients between ASMEneinsjoki
and the forthcoming streamflow volumes are significant. These correlations for the
periods of two months and longer are as large as 0.61-0.72. For the other variables,
the estimated correlation coefficients with the forthcoming streamflow volumes are
satigtically insignificant at 95% confidence level.

Also the within class variances and the between class distances were studied. For the
forecast period of one month, the variances of the possible features within the classes
are large. In addition, the averages of the features between the classes do not differ
gignificantly. This is true for each of the feature candidates. For longer forecast
periods, the average values of ASWEnensoki between the classes are different.
Variances of the features inside the classes are large, however.

In Table 19 the results of the best models are shown for Heingoki on April 1. The
models shown were selected based on the lowest estimated CEPs. ASMEneingioki 1S the
most important feature. The worst results are again attained for the forecasts of atime
period of one month. Although the estimated CEP was not larger than 35%, the
relative forecast errors were of concern. The streamflow forecasts based on this
classifier were biased (+41%) and ¢ was as large as 147%. These figures are strongly
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affected by the error of the correctly classified but very dry period in 1985. Although
correctly classified, the forecast is over seven times larger than the observed
streamflow volume (0.23 Mm?® vs. 0.03 Mm?®) showing the evident weakness of the
method to forecast satisfactorily extremely dry or extremely wet periods. By omitting
the year 1985 from the results, ¢ is 111% and u=+26%. For the longer periods, the
mean errors are close to zero for the best models and o varies between 20 and 30%
(Table 19). By using three classes, the R? of the models is between 0.27 and 0.51.

Table 19. The forecast accuracy of the new model typein Heindjoki on April 1. The features used
aremarked with X.
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30 3 | 3NNR | X | X X 35 | -047 | +41 | 147 | 40
60 3 MDC | X X X 28 | 051 +3 2 | 25
90 5 MDC | X 49 | -0.08 3 26 | 43
120 | 3 | NNR | X X | X 28 | 027 +2 20 | 40
150 | 3 | 3NNR | X X X 20 | 034 2 21 | 40
180 | 3 | 3NNR | X X X 25 | 0.36 2 21 | 40

In Table 20 a confusion matrix of the forecasts for a time period of six months is
shown. The model was based on three classes and on the use of the 3-NNR.
ASWEHeingoki, Fried and Y Qduengioki Were used as features. As seen, the dry and
normal periods are well classified. The problems are related to the wet periods. In
Figure 25 six examples of the final discharge forecasts are given. In the first row,
examples of the forecasts based on correct classification and in the lower row
forecasts based on misclassification are shown. Some of the forecasts are very good
(1976, 1986), but for some of the correctly classified periods, the timing of the
discharge peaks is biased (1988). The discharge time-series in 1987 was unusual
because of the heavy rainfalls during the summer and thus daily discharge forecasts
were poor especially for August and September. In 1999 and 1984, the periods were
simply misclassified.



80

Table 20. The confusion matrix of the forecasts for a lead-time of six months in Heingjoki on
April 1 by using 3 classes and the 3-NNR. ASWEnensjokis Friiga and Y Qduengoq Were used as
features.
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Figure 25. Six examples of streamflow volume forecasts for a lead-time of six months in
Heindjoki on April 1. Darker lineisthe observation and lighter (dashed lineg) is the forecast.

To compare the accuracy of the models, the same data set was used to estimate
multiple linear regression models and the accuracy of the models was studied by using
the leave-one-out method. The results are shown in Table 21. The R? of the forecasts
varied between 0.02 and 0.54 depending on the forecast length. Thus, the accuracy
was of the same order of magnitude or slightly better than for the new model type.
ASWEHenzoki Was the most important independent variable in the model. As distinct
from the new model type, also Y Paug-oct Was used as an independent variable in most
of the models.
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Table 21. Theforecast accuracy of the multiple linear regression modelsin Heindjoki on April 1.
Theindependent variables used are marked with X.
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30 X X 0.02 +53 | 201 | 42
60 X X X 0.54 +3 20 | 38
% X X 0.50 +2 22 | 38
120 X X 0.45 +2 23 | 38
150 X X 0.38 +3 24 | 38
180 X X 0.35 +4 25 | 38

3.3.4 Heingjoki basin, forecasts on October 1

In October only three features are available for long-term streamflow forecasting: the
streamflow volume of the period preceding the forecast date (3 Qneinsjoui), the state of
the groundwater level in Vehkoo (GWAenkoo) and the accumulated precipitation
between July 1 and the end of September (3 Piu-sep). Similarly to case Ruunapuro on
October 1, the 33% and 67% percentiles of the fitted normal distributions are used for
the case of three classes, the 25, 50 and 75% percentiles for the case of four classes
and the 20, 40, 60, 80% percentiles for the case of five classes to guarantee enough
observations for each of the classes. The correlation matrix between the latest
observations of the hydrological variables on October 1 and the forthcoming
streamflow volumes in the Heingoki stream is given in Table 22. A positive
correlation coefficient between each of the variables was found, although the
correlations between GWAenkoo and forthcoming inflows were not datistically
significant at 95% confidence level.
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Table 22. Correlation matrix between the hydrological variables and the forthcoming discharge
sum in Heindjoki on October 1.
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Qo 1.00
Qoct-Nov 0.86 1.00
Qoct-Dec 0.72 0.94 1.00
Qoct-Jan 075 | o091 0.98 1.00
Qoct-Feb 0.73 0.89 0.96 0.99 1.00
Qoct-Mar 0.69 0.83 0.91 0.94 0.98 1.00
XP)ul-sep 0.33 042 0.45 0.48 047 042 1.00
XQZ4cinsjoki 0.36 0.35 0.32 0.35 0.33 0.29 0.78 1.00
2Q4einsioki 0.54 0.52 0.46 0.48 047 041 0.79 0.90 1.00
GWyehkoo 0.28 0.39 0.38 0.35 0.36 0.36 0.54 041 0.46 1.00

The results for the models giving the lowest CEPs are shown in Table 24. For each of
the forecast periods, a model was found to obtain an estimated CEP that is less than
50%. The relative forecast errors are large, however. The accuracy is slightly better
compared with the case of Ruunapuro on October 1. The lowest ¢ is 38% and the
highest R?=0.45. This is the case for the model selected to forecast the streamflows of
atime period of two months (see confusion matrix in Table 23). For the forecasts of a
time period of three and five months, the chosen models seem to give biased forecasts
(1#0). > Qneingjoki Was the most important feature.

Table 23. The confusion matrix of the forecasts for a lead-time of two months in Heingjoki on
October 1 by using 3 classes and the MDC. Y Q4ueaingoi Was used as an only feature.
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Table 24. The forecast accuracy of the new model in Heingjoki on October 1. The features used
aremarked with X.
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30 3 MDC X 35 0.37 +1 61 43
60 3 MDC X 42 0.45 -2 38 43
90 3 3-NNR X 44 -0.11 +18 78 43
120 4 MDC X X 49 0.13 +2 51 39
150 3 MDC X X 44 -0.08 +13 57 25
180 3 MDC X 43 0.16 +5 48 42

For comparison, linear regression equations for forecasting the streamflow volumes
were estimated and their accuracies were studied by using the same data set. Table 25
shows the results. It seems that the new approach gives better forecasts than linear
regression models for Heingjoki on October 1. Differences are most evident for the
forecast period of two months. However, the elimination of a one very poor forecast
from the pool concerning the linear regression equation increased the value of R? from
-0.03 to 0.34. Thus, the goodness-of-fit criterion is sensitive to individual
observations.

Table 25. The forecast accuracy of the multiple linear regresson modelsin Heingjoki on October
1. The featuresused are marked with X.
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3.4 Resultsfor Lake Pyhgjarvi

Lastly, the accuracy of the forecast method was evaluated in the case study of Lake
Pyhgéarvi. The lake is large compared with its basin and evaporation from the lake
surface is the dominant factor in the water balance of the lake during the summer
months. Because of the low lake percentage and the relatively short lags in the basin,
the nature of the case study is somewhere between the study of Lake Paijanne and the
two small basins, reminding more of the latter. The inflow to Lake Pyhgéarvi was
forecast on two dates, on April 1 and on October 1 up to six months ahead.

3.4.1 Forecastson April 1

Five features were available for inflow forecasting on April 1: the areal snow water
equivalent on the forecast date (ASWEpynsjari), the groundwater observation in Oripaa
station (GWoripss), the inflow and the precipitation sum of the preceding period
(> Q4pyhsjarvi, Y Psep-oct) @nd the seasonal station based NAO indices of the season from
December to February (NAOpec-ren). Table 26 shows the correlation matrix. As can be
seen, only the areal snow water equivalent has a highly significant linear connection
with the forthcoming inflow volumes. It is noteworthy that a high correlation (r=0.37)
was also found between the NAO indices and Y Q4pynsjari, the inflow sum of the lake
in March.

Table 26. Correlation matrix between the hydrological variables and the forthcoming inflow sum
in Lake Pyh&arvi on April 1.

5 5 5 5 5
°ls|s|S|s|s|3|z|3|% 2
A < z
Qapr 1.00
Qapr-May 0.84 | 1.00
Qapr-aun 075 | 094 | 1.00
Qapr-au 069 | 086 | 093 | 100
Qapr-Aug 059 | 075 | 085 | 094 | 1.00
Qapr-sep 055 | 067 | 078 | 087 | 09 | 1.00
ZQ4pyhsjarvi 016 | -026 | -027 | -0.32 | -027 | 026 | 1.00
ASWEpyhgjavi | 063 | 076 | 072 | 071 | 063 | 057 | -040 | 1.00
GWoripaa 0.08 0.09 0.09 | -0.01 | 0.05 0.06 0.12 0.06 1.00
2Psep-oct 002 | 020 | 035 | 035 | 039 | 037 | 011 | 029 | 041 | 1.00
NAOpecFen 018 | -009 | -001 | -0.04 | 004 | -007 | 037 | -014 | 0.20 0.13 1.00

The results for the models giving the lowest estimated CEPs are shown in Table 27.
The areal snow water equivalent is the most important feature. Generally, the lowest
CEPs are around 30%. A single model was found where the estimated CEP is as low
as 14%. The highest values of the R? are around R=0.5. The results corresponding to
the different classification algorithms are similar. In Figure 26 some examples of the
forecasts of a lead time of four months are shown. Classification was based on 1-
NNR, five classes and on a single feature, ASMEpynsjani. |N the upper row, forecasts
based on correct classification are presented and forecasts in the lower row were
based on misclassification. Generally, it is easy to see that evaporation from the lake
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surface significantly affects the net inflow during the summer months. On the other
hand, in 1998, despite the relatively dry spring season, the net inflow sum increases
throughout the summer and as a consequence, the forecast is poor at the end of the
forecast period.
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Figure 26. Six examples of inflow volume forecasts for a lead-time of four months in Lake
Pyhajarvi on April 1. Darker line indicates the observation and lighter (dashed line) indicates
the forecast.

The accuracy of the new model type was also compared with that of multiple linear
regression models estimated by using the same data set and the leave-one-out method.
The results concerning the linear regresson models are shown in Table 28. By
comparing the values of the R-squared criterion, model types seem to give results of
the order of the same accuracy. For both of the models ¢ increases clearly as the
forecast period lengthens. At the same time, however, the R? remains quite the same.
Thisisdue to the characteristic of ¢ to overweight the large relative errors of the small
inflow volumes.
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Table 27. The forecast accuracy of the new model type in Lake Pyhajarvi on April 1. The
features used are marked with X.
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30 3 3NN X 26 | 031 | -2 37 | 38
60 3 NN X 26 | 036 | +11 | 55 | 38
60 4 NN X 2 | 052 | +4 | 50 | 38
9 3 MDC X X 31 | 036 | -2 50 | 29
120 3 3NN X X X 30 | 013 | +25 | 117 | 27
120 5 NN X 45 | 040 | +16 | 67 | 38
150 3 NN X X X 27 | 024 | +28 | 92 | 26
180 3 NN X 14 | 025 | +33 | 124 | 28
180 3 MDC X X X X X 35 | 040 | +13 | 54 | 26

Table 28. The forecast accuracy of the multiple linear regresson models in Lake Pyh&jarvi on
April 1. Theindependent variables used are marked with X.
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30 X X X 036 | +15 | 49 37
60 X X 048 | +16 | 50 34
90 X X 047 | +22 | 69 38
120 X X 043 | +46 | 142 | 38
150 X X 043 | +60 | 154 | 27
180 X X 036 | +55 | 142 | 27

3.4.2 Forecastson October 1

Only four possible features were available for forecasting on October 1 in Lake
Pyhgéarvi: the inflow and the precipitation sum of the period preceding the forecast
date (3 Qpyhsjarvi and Y Paun-sep), the groundwater level observation in Oripaa (GWoripas)
and the seasonal station based NAO index for the season from July to September
(NAOjui-sep). For the case of three classes, the 33% and 67% percentiles were used as
thresholds, for that of four classes the 25%, 50% and 75% percentiles and for that of
five classes the 20%, 40%, 60%, and 80% percentiles. Based on the correlations, the
precipitation sum of the period between June 1 and September 30 and the inflow sum
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of the period of four weeks preceding the forecast date were used (3 Q4pynsjarvi). The
correlation matrix for the chosen features is presented in Table 29. The most
significant correlation coefficients with the forthcoming inflows were found for the
> Qdpynsjani.  Positive  correlations coefficients were also found between the
forthcoming inflows and the other possible features but they are mainly not significant
at 95% confidence level.

Table 29. Correlation matrix between the hydrological variables and the forthcoming inflow sum
in Lake Pyh&jarvi on October 1.
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8 3 % g s 3 s 5 s | 3
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A Pz
Qout 1.00
Qoct-Nov 0.81 1.00
Qoct-Dec 0.75 0.93 1.00
Qoct-Jan 0.71 0.84 0.95 1.00
Qoct-Fen 0.68 0.75 0.84 0.93 1.00
Qoct-Mar 0.64 0.66 073 0.82 0.95 1.00
XQ4pyhsjarvi | 045 0.44 0.42 043 0.43 0.37 1.00
GWoripsa 0.19 0.24 0.14 0.21 0.20 0.15 0.16 1.00
ZPjun-sep 0.37 0.32 0.27 0.28 0.32 0.32 0.64 057 1.00
NAOyi-sep 0.03 0.12 0.15 0.26 0.36 0.35 0.05 0.37 0.14 | 1.00

In the application, no superior feature vector combinations for forecasting were found.
The accuracy of the model was poor in the light of each of the goodness-of-fit criteria.
However, the o and u are affected by single large relative errors in the forecasts of the
small inflow sums. These small errors cause ¢ and x to increase to such an extent that
the interpretation of the results is difficult. On the other hand, also the values of the
R?-criterion were less than O for all of the forecast lengths as seen in Table 30. To
compare the results, multiple linear regression models were estimated by using the
same data set. Table 31 shows the results. They are slightly better in the light of the R-
squared criterion compared with the new model type. The predictability of the
forthcoming inflows is low, however, as seen from the low values of R?. The values of
o and u are weighted, also for the linear regression models, by few large relative
errors concerning the close to zero inflow volumes.
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Table 30. The forecast accuracy of the new model type in Lake Pyhdjarvi on October 1. The
features used are marked with X.
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30 4 NN X 25 -0.54 +186 1098 28
60 5 MDC X X X 59 -0.50 +25 107 29
90 4 NN X 47 -0.91 +29 115 30
120 4 NN X 43 -0.61 +31 89 37
150 5 MDC X X 59 -0.12 +5 48 29
180 3 NN X 37 -0.43 +23 97 30

Table 31. The forecast accuracy of the multiple linear regresson models in Lake Pyh&jéarvi on
October 1. Theindependent variables used are marked with X.
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9 X X 005 | +42 | 129 39
120 X X 007 | +29 85 38
150 X X X 019 | +25 82 33
180 X X X X 014 | +19 65 29
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3.5 Senditivity analysis

The model is based on the classification of the forthcoming period into the supervised
classes. These classes were established based on the estimated distributions of the
streamflow volumes of the forecast periods. In some of the cases, the fitted normal
distributions were used instead of more suitable gamma-distributions. Also the
thresholds were subjectively chosen. No optimisation methods were used to select
these thresholds based on some goodness-of-fit criteria. Now, it was studied how
sensitive the method is to these selections. It is already known that the increase of the
number of the classes would increase the accuracy of the forecasts that are based on a
correct classification. However, at the same time the estimated CEP increases. Thisis
due to the fact that the available features do not divide the datainto clear classes.

By using the case study of Lake Péijanne on April 1, it was studied how sensitive the
model is to the selection of the thresholds. The results by using the original thresholds
were shown in Table 7 (page 64). Thresholds were now varied. The first example of
the sensitivity of the model on thresholds is given in Table 32. Results were obtained
by the model using a single feature, Wkonnevesi, @ l€ad time of one month, five classes
and 5-NNR.

Table 32. The sensitivity of the results on the chosen thresholds (per centiles). The case study of a
lead time of one month and a sngle feature, Wionneves 1N L ake Paijanne on April 1.

Thresholds (%-quantiles) | CEP [%] R? n c n
10,30,70,90 40 0.39 6 30 95
20,40,60,80 42 0.35 4 35 95
5,25,75,95 32 0.44 4 35 95
10,25,75,90 31 0.45 6 35 95
15,30,70,85 46 0.25 6 35 95

As can be seen, the CEP varies between 31 and 46, R? between 0.25 and 0.45 and o
between 30 and 35. Thus, the order of magnitude of the results is smilar but
variations are considerable. In Table 33 another example is given. The model that
gave the lowest CEP in forecasting the forecast period of 5 months is studied (The 1-
NNR, 3 classes and GWrisamaki, @S an only feature). Results (especially CEP and o)
are highly sensitive to the chosen thresholds. By chance, the thresholds originally
used (20%, 80%) happened to give extremely good results. These results become
much worse, however, after relatively small changes in the chosen thresholds

Table 33. The sensitivity of the results on the chosen thresholds. The case study of a lead time of
five monthsin Lake Péijanne on April 1.

Thresholds CEP R? n c n
20,80 14 0.36 0 19 42
25,75 45 -0.07 -2 23 42
33,67 52 -0.39 0 27 42
15,85 12 0.24 2 23 42

Because the thresholds affect the CEP of the models, it should also be studied how
much the thresholds affect the selection of the best model. Thus, the whole validation
procedure and selection of the best models was repeated with different thresholds by
using two case studies: by studying the forecasts of a time period of three months in
Heingoki on April 1 and the forecasts of a time period of one month in Ruunapuro on
October 1. Three classes were used in the analysis. The supervised classes were
established by dividing the estimated distribution based either on the 20% and 80%,
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the 30% and 60%, the 33% and 67%, or the 40% and 70% percentiles. In Heingjoki,
independently of the chosen percentiles, the lowest estimated CEPs varied between 30
and 35%. At the same time o varied between 19 and 22%. The feature combinations
of the models giving the lowest CEPs were similar, but not always exactly equal. The
ASWE was, however, part of each of the feature combinations giving the lowest
CEPs.

In Ruunapuro on October 1, it was not possible to use the 20% and 80% percentiles of
the normal distribution. The available time-series of the hydrological variables were
such that the extreme classes would have contained only a few observations. The
results for the other three pairs of percentiles were similar to each other.
Independently of the percentiles, the lowest estimated CEPs were around 40% and the
relative forecast errors remained large. The best feature combinations were based on
the observations on precipitation and preceding streamflow.

The best results for different cases were given out in the previous chapters (Table 7,
Table 10, Table 12, Table 16, Table 19, Table 24, Table 27 and Table 30). These
results are sensitive to the chosen quantiles. By using different quantiles, the best
models may be dlightly different but generally the feature combinations remain
similar including intuitively reasonable variables. The fact that the best feature
combinations occasionally change with the chosen quantiles, confirm that the forecast
power of variables is weak and the differences in the efficiency of the different
variables in the classification are small. Usually, the values of the variables in
different classes are overlapping.

3.6 Discussion

According to Lettenmaier and Wood (1993), long-term forecasting methods can be
divided into three classes. index-variable, storage accounting and conceptual
simulation. The WSFS of the Finnish Environment Ingtitute (Vehviléinen, 1994) is a
typical example of conceptual simulation, whereas linear regression models used in
long-term inflow forecasting fall into the index-variable methods. These are the two
types of models used in long-term inflow forecasting in Finland so far. In this study, a
categorical long-term inflow forecast model was developed. The model is simple in
terms of structure and can be classified into the index-variable methods. The focus
was on inflow sum forecasts and thus neither the timing nor the quantity of the high
and low flows was studied in detail.

New approach was highly motivated by the current operation policy of Lake Paijanne
but the model is easy to implement into all kinds of basins. Today, Lake Pajanne is
regulated based on the inflow sum forecast of the length of 2-6 months. The wetness
of the forthcoming period (5 classes) is forecast and the objective water levels are set
based on these forecasts. Thus, the structure of the developed forecast model
(categorical forecasts) would be fit for the real-time operation of the lake. The new
forecast model is based on an assumption that the current hydrological state of the
basin could reveal the shape of the forthcoming hydrograph. Thus, the new model
tries to utilise the conservative nature of the hydrological pattern in Finland. Long-
term weather forecasts were not used in forecasting because of their unreliability. First
effort was made, however, for utilising indices of North Atlantic Oscillation in long-
term inflow forecasting in Finland.
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Concepts of pattern recognition were used to produce categorical inflow forecasts.
Supervised pattern recognition was used to classify a forthcoming forecast period into
one of the classes describing the wetness of the period. In order to study the
sensitivity of the forecast power to chosen classification algorithm, two algorithms
were applied, k-NNR and minimum distance classifier. The former has been used
earlier in discharge forecasting, for example, by Yakowitz and Karlsson (1987),
Galeati (1990), Araghinejad et al. (2006) and Granz et al. (2005) but their approach
was not based on categorical forecasting. They used k-NNR to select the observations
from the historical records that most closely resemble the conditions preceding the
forecast period. Locally weighted polynomials of the neighbours were then used to
generate the mean of the streamflow forecast. Although in meteorological forecasting
applications of categorical forecasting are common, applications of categorical
streamflow forecasting are rare. Some examples are available, however (e.g. Piechota
et a., 1998).

The success of the two classification algorithms, k-NNR and MDC, was almost
identical. However, the minimum distance classifier seemed to be more reliable if
only a few observations were available for each class. The value of k had little effect
on the results when k-NNR was used, although for some feature combinations it was
impossible to use k>1 because of the limited amount of data. Thus, the use of a low
value of k was found reasonable in this study because of the low number of
observations in each of the classes. Some examples were found, however, where
results were better when larger values of k were used.

To compare the accuracy of the new forecast model and to ease the simulations of the
lake-river systems in regulation planning, daily inflow forecasts were generated based
on the categorical forecast. The inflow forecast was based on the inflow series of the
years in the class in question (Equation 3-2). Thus, compared to the linear regression
models, the model enables a logic and straightforward calculation of the daily inflow
forecasts. In addition, the model is non-parametric and by using the leave-one-out
method (cross-validation), the model is easy to validate by using the whole data set
without re-optimisation of the parameters. On the other hand, in real-time forecasting,
the confidence limits of the forecasts should be available. Although no theoretical
basis for the confidence limits of the model was derived, the limits can be
approximated based on the validation results: a suitable distribution can be fitted to
the data of the forecast errors and it can be used to approximate the confidence limits.
The forecast method has two obvious weaknesses compared to conceptual simulation
and linear regression models. The model is unable to accurately forecast extremely
high and low flows because of the structure of Equation 3-2. In addition, the same
eguation is averaging the forecasts of a chosen class and thus, the model occasionally
does not take into account all the information given by the features. However, by this
selection the structure of the model remains simple and thus, perhaps more attractive
for the engineers responsible for inflow forecasting and operation of the lake-river
systems.

In addition to the selection of the features, the classification algorithm and the number
of classes, the thresholds for classifying the supervised patterns into different classes
must be subjectively chosen when the model is applied. The thresholds could be
optimised based on some goodness-of-fit criteria in the training set to minimise the
errors of the inflow forecasts concerning the correctly classified patterns. In some of
the cases, the thresholds were chosen in away that a priori probabilities of the classes
were unequal. Out of the two applied classifiers: the k nearest neighbours rule and the
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minimum distance classifier, especially the latter is based on an assumption about the
equiprobable (a priori) classes. Thus, the classifiers were not used optimally.
Furthermore, it was pointed out that the model is sensitive to the selection of the
thresholds (Chapter 3.5). Thus, the modeller should be careful in this phase of the
application.

The selection of the best models was mainly based on the estimated classification
error probability. This criterion does not take into account the rank differences in
classification errors or the number of observation used in validation. This might be
one of the reasons for the problems related to the sensitivity of the models to the
chosen quantiles. For a low number of observations, the increase in the CEP is
relatively large if one additional observation is available or one of the originally
correctly classified observations is misclassified after the change of the quantiles. In
addition, the number of the periods on which the estimated CEPs were based, was not
equal for all of the combinations. This might increase the quality of one combination
compared to another. If several models gave equal CEPs, the other criterions were
used for model selection. The models were also evaluated based on the relative errors
of the forecasts and the R-criterion of the forecasts. For case studies, where small and
close to zero values are handled, relative errors may be huge, although absolute errors
would be reasonable in respect of the size of the reservoir (e.g Lake Pyhgarvi study in
October). Thus ¢ or u proved not to be very good goodness-of-fit criteria in these
types of case studies.

The discursion of the available data was also a problem in the model selection.
Sometimes, the number of patterns available from the wettest and driest classes was
only 0-5. Theoretically, the objects in the training set should be typical representations
of the classes and several examples of each of the classes should also be available.
Thus, it is reasonable to ask whether the few patterns in the training set in the
application are enough for the proper use of the classifiers. Generally, the
classification of the extreme periods succeeded quite well, even though only a few
training patterns were available. Hence, the available observations have arguably been
typical representatives of the extreme classes.

In Lake Paijanne, the accuracy of the model is good (Table 7, Table 10). On April 1,
the areal snow water equivalent, the Pieksdmaki groundwater level, the inflow volume
of the forecast period of two weeks preceding the forecast date and the water level of
Lake Konneves were used in the models with the lowest CEPs. In October, the
inflow sum of the period of two weeks preceding the forecast date, the precipitation
sum of the preceding period (May-September) and the water level of Lake Konnevesi
were the most important features. In the light of the R, forecast accuracy was between
0.26 and 0.64 on April 1, being the lowest for the longest forecast lead times. On
October 1 the R? varied between 0.70 and 0.86. The standard deviation of the forecast
error was around 6=20% on both of the forecast dates and was not extremely sensitive
to the forecast length.

In Ruunapuro, the estimated classification error probabilities of the best models on
April 1 varied between 28 and 47% (Table 12). In the Heingjoki stream, the CEPs
were similarly 20-49% (Table 19). For both of the basins, the models were practically
unbiased. An exception was the forecast model of a time period of one month. The
standard deviation of the relative errors varied between 20 and 30% for the different
forecast lengths. Based on the R-sgquared criterion, the forecast power of the model
can be considered weak. The maximum R?is 0.51 for the forecasts of a time period of
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two months in Heingjoki and the minimum as low as -0.60 for the forecasts of a time
period of one month in Ruunapuro. On October 1, the lowest estimated CEPs varied
between 30 and 49% and ¢ was almost without exceptions over 50% for both of the
basins. At the same time, the R? varied between +0.72 and -0.70. Although the
estimated classification error probabilities are large, most of the misclassifications are
small. Often the periods are misclassified only by a single step. A high probability of
classifying a dry period into the “dry” or “normal” class instead of the “wet” class is
achieved. Similarly, awet period is classified with a high probability into the “wet” or
“normal” class.

Long-term discharge forecasting in the small basins is difficult. The lake percentage
of the two small basins, Ruunapuro and Heingjoki, is practically 0 and the areas of the
basins are very small. Thus, the delays are very short. The forecast power of the
current hydrological state of the basin is not sufficient, because the forthcoming
weather conditions have a strong influence on the runoffs. For example, the estimated
correlation coefficient between the streamflow volume and the precipitation sum for
the period between April 1 and September 30 was 0.52 in the Ruunapuro basin and
0.75 in the Heingoki basin. Hence, quite naturally, the forecast errors of the new
model were large. The method could be used to some extent for spring and summer
forecasting, however, mainly because of the dependence between the discharge sum
of the forthcoming period and the areal snow water equivalent in the basins. Such a
good variable for forecasting on October 1 was not found. In the winter time, the
weather conditions in the area seem to affect the discharges in the basins more than
the state of groundwater table or the precipitation sum before the forecast period. The
value of the soil moisture data in forecasting remains unclear, however, because of the
short observation period. A significant correlation between the soil moisture data in
Aijéla and the streamflow volume of the forthcoming month was found however, both
on April 1 and on October 1. Generally, the accuracy of the model for forecasting the
streamflow of the small experimental basinsis not high enough so as to be reasonable
to utilize these forecasts in forecasting the inflow to Lake Péijanne.

similar to those of the two small basins. The basin of the lake is small compared with
the size of the lake. In addition, the evaporation from the lake complicates inflow
forecasting when the weather forecasts are not used. Thus, both the forecast accuracy
of the new method and the accuracy of the estimated linear regression models are
moderate on April 1 and poor on October 1. The lowest estimated CEPs in the
forecasts on April 1 varied from 14% up to 35%. At same time, the R? of the forecasts
varied between 0.13 and 0.52, being the highest for the forecasts of a time period of
two months. The standard deviations of the relative forecast errors (o) were large
(from 49 up to 154%) due to the overestimated inflow volumes of the very dry
periods. On October 1, the model could not be used for forecasting the inflows to
Lake Pyh&jarvi. The values of the R? of the forecasts were less than 0, and both & and
u were very large. The results show the difficulties related to long-term inflow
major factorsin the water balance of the lake and therefore, the forecast power of the
current hydrologic state of the basin is insufficient.

A more thorough study should be aimed at linking the climatology to the hydrological
phenomena in large basins in Finland. Although the indices of North Atlantic
Oscillation were utilised only in a single application of the new forecast model,
severa significant correlation coefficients were found between the inflow to Lake
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Paijanne and the NAO indices (Appendix B). This endorses the observations of Uvo
and Berndtsson (2002) who found highly significant correlations (up to 0.6) between
the winter precipitation in southern Finland and the seasonal NAO index of a period
between December and March. Thus it was presumed that inflows of the snowmelt
season are correlated with the NAO index. In comparison, in Norway up to 55 % of
the variance in streamflow can be explained by the variation of the NAO index
(Cherry et al., 2005). Furthermore, in the Belarus part of the Baltic Sea basin
significant correlations coefficients (about 0.2-0.3) were found between seasonal
NAO indices and river discharges especially in winter (Danilovich et al., 2007). The
NAO signal is strongest in winter (Hurrell et al., 2003a) and therefore it was not
surprising that when forecasting autumn and winter inflows in the Lake Péijanne
basin in October, the NAO indices were not included in the feature vectors.

By using the same data set for estimating the multiple linear regression models, it was
possible to compare the accuracy of the new method with a well-known forecast
approach. In Lake Péijanne, the forecast accuracy of the methods is quite similar, in
the small basins the linear regression models are better and in Lake Pyhgérvi, results
are again similar. The results strengthen the view that, instead of a poor model
structure, the poor forecast accuracy in the small basins and in Lake Pyhgjérvi is due
more to the nature of the basins and the chosen features (no weather forecasts). Only a
few times the feature combinations used for the new model were also the best set of
independent variables in the multiple linear regression models. Often more variables
were used in the new approach, and as a consequence, fewer observations (i.e. fewer
years) were normally used to evaluate the accuracy. However, in Ruunapuro on April
1, for example, the same features were used and the results were better for the linear
regression models. The reason could be the possibility to weight the independent
variables differently in the regression equations; in the new model the variables were
equally weighted.

Although a reliable comparison of the results with those of other studies is difficult,
results of some long-term forecast studies are worth a mention. The multiple
correlation coefficient for the multiple regression model by Virta (1969) for
forecasting inflow of Lake Paijanne was R=0.96 for the period between April 16 and
June 30. In the same study, the R was only slightly lower in summer and autumn for
the monthly forecasts. These figures are based on the data sets used for parameter
estimation and in addition, the observed values of the precipitation of the forecast
period were used in model calibration. Thus these figures are not directly comparable
with the results of this study. However, the aforementioned study combined with the
results of this study confirm that the inflow to Lake Paijanne can be forecast relatively
well for several months in advance. This is due to the long residence time of the basin.

Gurer (1975) fitted linear regression models to forecast spring and autumn discharge
sums in three basins in Finland. The forecast periods and the study basins were
different compared with this study. However, for spring flow the average error
(standard error of estimate/average inflow) in the different basins varied between = 9
and = 18%. For seasonal summer and autumn inflows, the error was on an average +
22% in the Kemihaara basin and + 30% in Pielinen. For seasonal winter flow, the
model had a + 20% error in the Pielinen basin. These figures are based on the data
that were used to calibrate the model.

Kuusisto used a conceptual rainfall-runoff model to forecast the inflow sum of atime
period of six months on April 1 into Lake Saimaa (Kuusisto, 1978). The model was
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validated by using only two years. For 1974 the observed inflow sum was about the
same as the 10-20% percentile of the forecast. The forecast accuracy was the best at
the end of the period. For 1975 the relative error in the inflow sum forecast was 21%
at the end of the period. Kuusisto compared the results with the ones from a linear
regression model. Because only two years were available, Kuusisto was unable to
make reliable conclusions. However, the essential differences were found only in the
confidence limits of the forecasts: the limits were wider in the forecasts of the linear
regression model. The WSFS of the Finnish Environment Institute is mainly used for
real-time flood warning in short-term periods. In addition, the model is used for long-
term forecasting to help the operation of the regulated lake-river systems.
Unfortunately, thorough studies about the accuracy of the long-term forecasts of the
WSFS have not been published. As a matter of fact, the number of studies about the
operational accuracy of real-time forecast models is generally limited. However, e.g.
Johnell et al. (2007) and Olsson and Lindstrom (2008) have evaluated the accuracy of
the forecasts of a lead-time of 10 days concerning the operational HBV-96 (Lindstréom
et a., 1997) model in Sweden. The errors of streamflow volume forecasts were not
studied but the average bias of the daily forecasts errors varied between the range of -
20% and +80%. Druce (2001) has analysed the accuracy of the seasonal inflow
volume forecasts produced by an operational conceptual hydrologic model and
compared the results with the ones of a regression model in Columbia River. Mean
percentage errors of the forecasts of the conceptual model for a period between
February and September were 3.37% on January 1 and 2.32% on February 1. At the
same time, the coefficient of variation was 0.086 and 0.073, respectively. Generally,
the mean forecasts of the regression model were slightly poorer. The comparison of
the results is difficult because of the different performance measures used for
evaluation. It seems, however, that the difference between the accuracy of simple
models and conceptual ssimulation models in long-term forecasting is not especially
large.

To sum up, the accuracy of the new model does not seem to differ significantly from
that of the linear regression models in the case of long-term inflow volume forecasting
to Lake Péijanne. The models were tested and compared, however, only on two dates.
It turned out that, in addition to the areal snow water equivalent, also the groundwater
levels, the observed inflows, the precipitation, the NAO indices and the water levels
of the upstream lakes can be used to forecast inflows months in advance. Thus, it
might be possible to use the model also on other dates, if the basin is large enough.
For the small basins and Lake Pyhgarvi, the areal snow water equivalent seemsto be
the only variable really valuable in long-term forecasting and thus the value of the
model outside of the snowmelt season is limited without weather forecasts. However,
due to the basin properties, the possibilities for long-term forecasting are poor
irrespective of the forecast model.

Lastly, the structure of the forecast model is simple and thus it is not suffering from
the scientific details and complicated simulations. Whether the accuracy of the model
is till sufficient for the rea-time operation of the lake-river system and how much the
inaccuracy affects the success of the operation is studied in the next chapter.
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4 Value of long-term inflow forecasts

41 Method

4.1.1 General methodology

The value of inflow forecasts has been discussed in several journal papers. The most
cited paper is the one by Yeh et al. (1982) who studied the value of long-term inflow
forecasts in the California State Water Project using artificial forecasts. Monthly (j)
forecasts were generated by using the equation

Fi=Q; +¢e Q) (4-1)

where F; is the forecast, Q; the observed inflow volume of the month j and ¢ is the
parameter describing forecast accuracy, a character of the forecast model. The
forecast model was presumed unbiased and thereby the random number ¢ was set
normally distributed N(0,1). By operating the studied reservoir system theoretically
with different values of ¢ and with different forecast periods, it was possible to
approximate the dependence of the value of inflow forecasts on their accuracy and
length. The forecasts and the comparisons were based on the historical streamflow in
1914-1973. A similar approach was used when Mishalani and Palmer (1988) studied
the value of inflow forecasts for the water supply of the Seattle metropolitan area in
the United States. The approach is justified and intuitively attractive.

In this method, the results are dependent on the update frequency of the forecasts. If
the forecast is updated every day (Equation 4-1), the effect of a single large forecast
error on the regulation is small. This is due to the unbiased forecast model. In
addition, the approach does not take into account the problemsrelated to the timing of
high and low flows during the forecast period. The correct timing of a flood season
may not be a serious matter in large lakes. However, in the small ones, where the
storage capacities are small, even a small error in the timing of the maximum flood
may cause severe problems.

The aim of the current study is to approximate the dependence of the success of the
regulation on the accuracy, length and update frequency of the inflow forecasts. The
idea of Yeh et al. isused. As distinct from their approach, the forecast error is now
generated for the whole forecast period at the same time, not individually for each of
the months in the forecast period.

F=Q+e>s:Q (4-2)

Thus in Equation 4-2, F is the forecast and Q the observed inflow volume of the
forecast period. The absolute error of the generated forecast is then uniformly divided
over the whole forecast period. This makes it possible to simulate daily water levels
and releases of the studied system.

The value of the forecasts is aso studied in the case where forecast errors are lag-1
autocorrelated. New observations between two consecutive forecast dates rarely
contain such information as to lead to a dramatic change in the long-term forecasts
and their errors. Therefore, an unbiased model that has no autocorrelation between the
forecast errors is unlikely to exist. To add autocorrelation into the errors of the
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artificial forecasts, a sequence of random numbers ¢ is generated by using the
eguation

€jq =8 %6 + & - a?), 4-3)

where a; is the lag-1 autocorrelation coefficient between the forecast errors and ¢ is
normally distributed N(0O,1). It is easy to see that also g+1 is now N(0O,1). When the
effects of autocorrelation between the consecutive forecast errors are studied, the
coefficient a;=0.80 is used. The value was subjectively chosen, because no studies
were found about the possible autocorrelation between the forecast errors. However,
by selecting a large value for a;, the effect of the additional autocorrelation should be
distinguishable from the case of a;=0.0.

The study is based on the theoretical operation of two different kinds of reservoir
accuracy on the operation of a single reservoir system is studied. When studying the
River Kymijoki system, the focus was on a multi-reservoir system. The simulation
period in the case of Lake Pyhgarvi is 1966-2004 and in that of River Kymijoki 1964-
2004. These periods consist of all kinds of water years, from droughts (2002-2003) to
very wet years (e.9.1974-1975). The forecast length in the study varies between 30
and 360 days and forecasts are updated every 15 days. Briefly, the basic algorithm is
as follows:

1. By using the Equation 4-2, the inflow volume of the forecast period is
generated.

2. The release sequence of the forthcoming period is optimised by using the
inflow forecast and a release optimisation algorithm simulated annealing.

3. The system is operated by using the optimised release sequence and the
observed inflow sequence until the next forecast date (the length of this period
isthe update frequency of the forecasts).

4. Moveto step 1, unlessthe simulation period is at the end. It that case, move to
step 5.

5. Calculate the value of the forecasts for the whole simulation period by using
the optimised releases and the observed inflow.

Because of the randomly generated forecast errors, the simulation period was
recalculated and operated 15 times and the average values are later analysed. The
dependence between the update frequency of the forecasts and the success of the
three separate simulations. In these simulations, new forecasts were generated either
every 5, 15 or 30 days.

The value of ¢ is varied between 0.0 (perfect forecast) and 1.0 to study the effect of
the forecast error on the value of the forecasts. The historical daily averages are also
used as forecasts to give a base point to the study. If the average historical inflows
give better results than the forecasts of an inaccurate forecast model, the model should
not be used in real-time operation.

A heurigtic optimisation algorithm, simulated annealing, is used to optimise the
releases of the forecast period based on the given forecasts. The optimisation problem
isto maximise the expected value of the objective function G(R,S)
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max , E, [G(R S,1)] (4-4)

where R is the release and S the storage of the reservoir. | is the inflow that is a
stochastic variable with a density function f(l1). However, in this study the basic
approach is such that the mean forecast is used in the operation of the systems without
the confidence limits of the forecasts. Thus, the inflow | is assumed to be known.
Thereby, it is supposed that the reservoir system is operated optimally based on a
single forecast and the confidence limits of the forecasts or the ensemble forecast are
not taken into account. Thus, a deterministic problem (Equation 4-5) is solved.

max , G(R, S, 1) (4-5)

The author is well aware of the uncertainties of the inflow forecasts in real-time
operation of the systems: the optimisation problems are stochastic in nature. However,
it is expected that the consequences of the decreasing accuracy of the forecasts are
similar irrespective of the optimisation algorithm. To study whether this assumption is
fair, the main part of the study in the case of Lake Pyhgérvi is repeated by solving a
stochagtic problem (Equation 4-4). This problem can also be written as

¥

max, F5(R.S,1)f(1)dl (4-6)
-¥

By discretizing the density function of the inflow forecast, the problem is

max, a8 pG(RSI,) (4-7)
i=1

Now the uncertainties related to the inflow forecasts are taken into account. To
shorten the time needed for the simulation, n=5 is used: the 10%, 30%, 50%, 70%,
90% percentiles of the mean inflow forecasts are used with equal probabilities p;. The
results based on this approach are presented in Chapter 4.2.4.

Between the two consecutive forecast dates, optimised releases are used and
information on new inflow observations is not utilised. At the end of each of the
forecast update periods (normally 15 days), the latest inflow observations are used to
update the current real state of the system. To decrease the number of the variablesin
the optimisation, releases are constant over periods of five days. For example, when
the length of aforecast period is 60 days, instead of 60 variables only 12 variables are
used. Thus, releases can be increased or decreased only after a period of five days.
This decreased the number of the decision variables and thus, the computing time
needed in the optimisation. The assumption of using five-day periods can also be
justified by studying the current operation of the lakes. Lake Péijanne, for example, is
regulated on a monthly basis and daily regulation is not used.

4.1.2 Simulation model of Lake Pyhajarvi

aweir inthe outlet in Kauttuankoski (Figure 27). Three hydropower plants are located
downstream of Lake Pyhgéarvi in River Eurgjoki: one in Pappilankoski, the second in
Paneliankoski and the third in Eurakoski since 2006. The combined capacity of these
power plants is 0.9 MW. The effects of the regulation of Lake Pyhgarvi on these
three hydropower plants downstream were not, however, taken into account in the
study.
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Figure 27. Flowchart of the L ake Pyhgjarvi smulation model.

The model of Lake Pyhgjarvi simulates daily water level changes of the lake based on
given inflows and releases. The known linkage between the water level, the area and
the volume of the lake (WAV curve) were utilised. Releases are optimised based on
the inflow forecasts. Inflows are originally calculated by using the water balance
equation. A constant head (10.9 m) is used in the Kauttuankoski power plant and the
maximum discharge through the turbines is set to 6.0 m*/s. The regulation licence sets
some regtrictions on releases. Firstly, the maximum release through the Kauttuankoski
weir is 17 m%/s. This is the maximum capacity of the downstream river reach. In
addition, releases that are less than 2.0 m*/s should be avoided. This is the case also
during the dry seasons. The minimum release limit, 0.8 m*/s, cannot be violated under
any circumstances. This is due to water supply needs of the downstream plants. In
addition, to accomplish a steady release series, the maximum release change between
two consecutive periods of a length of five days was set to 2 m’/s.

Because the net inflows are used in the model instead of approximating evaporation
and rainfall separately, some bias may occur. The amount of evaporation (m/d) from
the lake is dependent on the area of the lake (water level). When using optimised
release sequences in the simulation, water levels will differ from the observed ones.
Normally thiswould lead to changes in lake evaporation and precipitation and thus, in
the net inflow. In the model, however, this phenomenon is not taken into account and
originally approximated inflows are used. Because the lake is large, the relative errors
in evaporation and precipitation are arguably small.

4.1.3 Simulation model of River Kymijoki

A flowchart describing the discrete water balance model of the River Kymijoki
system is shown in Figure 28. Water levels of four regulated lakes: Paijanne,
releases and discharges are simulated in a single control weir in Kalkkinen and 12
hydroelectric power plants in River Kymijoki. Arrows are used to describe the runoffs
in the flowchart. The water balance equation was used to approximate the inflows into
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the system. Release from an upstream lake or a power plant equals the inflow of a
next lake or a plant downstream if lateral inflows are not added. A daily time-step was
used in the model.

| |

Mankala

Voikkaa

Kuusankoski

Keltti

Vuolenkoski
Myllykoski

Anjalankoski

Klasard
Korkeakoski

Koivukoski

Ahvenkoski Ediskoski

Lo

Figure 28. Flowchart of the River Kymijoki water balance simulation model.

The regulation of Lake Péijanne is based on the use of a control weir in Kalkkinen. In
addition, the man-made canal joining Lake Paijanne and Lake Ruotsalainen can be
used for regulation. However, about 70% of the outflow runs through the natural
cascade in Kalkkinen and this outflow cannot be controlled (Figure 29). The outflow
through the natural cascade was approximated in the model by using the rating curve
of the cascade.



101

Figure 29. Kalkkinen natural cascade (Ieft) and the regulation weir in Kalkkinen (right).

Discharge in the river reach between Lake Ruotsalainen and Lake Konnivesi
(Jyrangonvirta) was simulated by using the available rating curve. The discharge is
dependent on the water levels of both of the lakes. Downstream, River Kymijoki
divides into several streams and the amount of water led to these streams is controlled.
All instructions and restrictions given in the regulation licenses concerning the
discharges in the different streams were also taken into account in the simulation
model.

Several simplifications have been made to the model compared with the real lake-
river system. Firstly, some small lakes (e.g. Lake Arrajérvi, Lake Tammijéarvi) in the
flow path of River Kymijoki are not simulated. Secondly, hydraulic models are not
included. Therefore, water is flowing through the system without delays. In the
model, the releases from the V oikkaa power plant will end up in the Baltic Sea during
the same day. In reality, the delay between Lake Pyhdjarvi in litti (Voikkaa) and the
Gulf of Finland is dependent on the discharge but is approximated to be around 57 to
80 hours or dightly more (National Board of Waters, 1972b).

In addition, only the most important inflows that enter the system are taken into
and water from the Channel of Valkeala enters the system just upstream of the
Kuusankoski power plant. In addition, lateral water from Channel of R&aveli to Lake
(River Arrajoki basin) are taken into account in the model. However, no inflows are
added to the system downstream of the Kuusankoski power plant. Compared with the
flow in the river, these additional inflows downstream of Kuusankoski were
considered irrelevant and economically unsubstantial when releases were optimised
upstream. This is supported by the fact that on average, 75% of the discharge in the
outlets of River Kymijoki originates from Lake Péaijanne (National Board of Waters,
1972b).

Because of the lack of a hydraulic model, the head at each of the power plants was set
constant. An exception was made for the Vuolenkoski power plant, where the head
was linearly dependent on the water level of Lake Konnivesi. This was due to the
current release control policy. The lake is operated by keeping the water level close to
the upper water level limit defined in the regulation license and thus by maximising
the head in Vuolenkoski.

In Table 34, the characteristics of all of the power plants in River Kymijoki are
presented. Efficiency factors of the power plants were set to #=0.83. The factor was
kept constant at each of the power plants irrespective of the discharge.
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Table 34. Statistics about the hydroelectric power plants in River Kymijoki (Jarvinen and
Marttunen, 2000).

Power plant Head [m] Maximum discharge
through the turbines [m®/s]
V uolenkoski 3.5 370
Mankala 8.1 400
Voikkaa 9.0 400
Kuusankoski 9.2 400
Keltti 6.1 340
Myllykoski 7.0 470
Anjalankoski 9.7 435
Korkeakoski 125 95
Koivukoski 52 45
Klasaro (Loosarinkoski) 3.2 180
Ahvenkoski 11.0 250
Ediskoski (Stockfors) 9.0 5.3

might cause some bias into the simulations when releases are fixed because of the
changed water levels and lake areas. Changes are small compared with the total lake
area, however, and thus error concerning evaporation is probably very small.
Regardless of these assumptions and simplifications, the water balance model of the
Kymijoki basin simulates the lake-river system well. The average annual energy
production calculated by the model (1.29 TWh/a) is close to the 1.26 TWha given in
the literature (The Ministry of Trade and Industry, 2005). In addition, water levels of
the lakes in the model obey the observed values well, if the observed release
sequences are used at the outlets of the lakes.

4.1.4 Release optimisation by using smulated annealing

4141 Algorithm

Simulated annealing is used to find the optimal release sequence of the reservoir
system based on the given inflow forecast. The analogy of an annealing process with
optimisation is based on the analogy between the energy state of an annealing liquid
and the value of the cost or objective function in the optimisation problem. In the
process, the energy state and the value of the objective function should decrease. In
this study, the aim is to maximize the value of the objective function and therefore,
the algorithm is not used in its basic form. The description of the optimisation
algorithm follows the presentation of Teegaravapu and Simonovic (2002). To
maximize the objective function



103

Select variables that influence the system
Initialise the parameters of the algorithm
Introduce random generations to find a candidate solution (neighbour)

A w D P

Obtain the performance measure Gy associated with the candidate solution
using a simulation model and objective function

|F[Gnew> Goid] THEN accept the new solution and set Goig = Grew
EL SE accept/reject the move based on a stochastic criterion

ol

Repeat steps 3-5 for L cycles
Lower “the temperature”
Store the best solution obtained so far

© ®©® N o

Repeat steps 3-8 until stopping criterion is met

The criterion for determining whether to accept or reject the candidate move in step 5

g < ml n(l’ e(' (Gold - GneN)/T) ) (4_8)

where y is a uniformly distributed random number over the interval (0,1). If the
eguation is TRUE, the candidate solution is accepted (set Goig = Grew) and the value of
the objective function decreases. The purpose of this step is to avoid situations where
the optimisation algorithm would stick into a local maximum. If the equation is
FALSE, the candidate solution is rejected. T in the equation is “temperature” that is
decreased (step 7) as the optimisation proceeds. This assures that toward the end of
the optimisation, the possibility to move into a poorer solution decreases. T is called
temperature, because the algorithm tries to simulate the cooling of a glass mass to an
optimal form.

Three parameters in the model must be selected subjectively based on the problem:
the initial temperature, the parameter L, and the cooling schedule. In addition, the user
has to select the stopping criterion. The larger the L and the lower the cooling
velocity, the longer the time that the algorithm needs to find the solution. At the same
time, the solution is probably closer to the global optimum. Therefore, the user often
has to select between increased computer time and increased accuracy.

For the optimisation, an initial solution is needed. Three different strategies were used
to find a valid initial solution in each of the optimisation problems. In the first
strategy, the release sequence was generated in a stochastic manner and if necessary,
it was changed as little as possible to fulfil the release restrictions. In the second
strategy, releases were held equal to the latest observation of the preceding
optimisation period during the new optimisation period, if this release sequence
fulfilled all of the release restrictions. The third strategy used the current optimal
solution as long as possible and after that a constant value was used until the end of
the period. Because of the update frequency of 15 days, releases of only 15 days at the
end of the new period have not been optimised in the previous optimisation task.
Thus, this initial solution can be reasonably good if the forecasts of a time period of
several months are studied and changes in the accuracy of the forecasts are small.
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In step 7 of the algorithm, the value of T is lowered. It can be done in several ways.
The most popular and probably the simplest schedule, an exponential cooling rule, is
now used:

T =ax_,. (4-9)

At each temperature T;, L candidate solutions are generated and tested. Thereafter, the
temperature is cooled again by multiplying by a factor o. By choosing a small value
for a, it is possible that the system is cooled too fast and the algorithm sticks into a
local optimum. Thus, « is normally set to 0.85-0.99.

The stopping criterion can be selected at least in two ways. Either an absolute
stopping temperature is used or the optimisation is stopped when the convergence has
ended. In this study, it is supposed that an optimal release sequence has been found if
the value of the objective function does not change significantly during three
consecutive temperatures.

Because of the stochastic nature of the algorithm, the optimisation does not guarantee
aglobal optimum. Therefore, it is a basic procedure to run the algorithm several times
with different initial solutions and finally choose the best solution from the ensemble.
In other words, instead of allocating all the possible time C to a single walker, it is
wiser to run n independent walkers and allocate C/n steps for each of those and
choose the best result (Salamon et al., 2002). Again, the decision about the number of
parallel runs has to be made by the person supervising the process. The above
mentioned three strategies were used to obtain valid initial solutions for the parallel
runs in each of the optimisation tasks.

4.1.4.2 Objective function

Regulation rules and the control of a multi-purpose reservoir system are always a
compromise between several objectives. The planning of release rules is complicated
because there is no commensurable variable available that could be used to evaluate
each of the objectivesreliably. If the economic value is used, the hydroelectric power
benefits are quite easy to approximate, but it is very difficult to approximate
recreational and ecological effects and losses caused by floods and droughts
financially.

Even so, in this study, the economic value of the regulation is used to determine the
value of the inflow forecasts. Some loss functions are subjectively chosen and thus,
the final value of the objective function is highly subjective. Hence, also the number
of days during which objective water levels, absolute water levels or discharge
constrains are violated, is studied. Changes in hydroelectric power production can be
approximated economically, however.

In addition to the perfect inflow forecasts, it is also necessary to have perfect
knowledge of the future market prices of electricity to make an optimal decision of
the releases. In this study, electricity markets are not ssmulated and thus it is supposed
that al generated electricity can be purchased immediately using a given, constant
market price.

Objective function in the case study of L ake Pyhajarvi

It is supposed that all of the electricity generated in the Kauttuankoski power plant
can be sold at a price by depending on the market price b of the day i. Real market
prices are not used. Instead, constant prices are given for the model for summer and
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winter months: from November to March 30€/MWh and 28 € MWh in summer. The
effects of electricity demand and prices on the quantitative value of the forecasts are
not considered here, although Kim and Palmer (1997) have showed that they may
significantly affect the value of the forecasts. The head of the plant is set constant
(H=10.9 m) and so is its efficiency factor #=0.8. The benefit of hydroelectric power
generation during a period of a length d isthen

d
Hydro = § hxr xgxR xH x245p, . (4-10)

i=1
Here, p is the density of water (1000 kg/m®), g is the acceleration due to gravity (9.81
m/s%), R isthe daily release through the turbines (m%s), H is the head of the plant (m),
24 isfor the 24 hours aday and by isthe price of electricity (E/MWh). To avoid spill, a
cost function is used in the optimisation.

d

LOSSpy, = 1 X7 X0 Ry H R4 (4-12)
i=1

where

RSPILL,i = maX(O; R| - RCAP) (4'12)

is the difference between the maximum capacity (Reap) Of the turbines (6 m®/s) and
the daily release. Thus, the cost is the potential economic value of the daily release
that exceeds the capacity of the plant.

Based on the regulation rule of Lake Pyhdjarvi, discharge should be kept above 2.0
m®/s also during dry seasons and the minimum release limit, 0.8 m*/s, should never be
violated to assure water supply for the downstream plants. Therefore, a cost function
was set to minimise the number of days, during which the daily release is less than 2.0
m’/s. A subjectively chosen cost function was used

d
Loss o = & 10* R ow, (413)

i=1
where R_ow; is the difference between 2 m*/s and daily release if daily release is less
than 2 m’/s. The absolute minimum release was set to 0.8 m’/s.

Limits have been set for the upper and lower water levels of Lake Pyhgjarvi in the
regulation rule. The lower water level limit is N43+44.54 m and the upper limit is
N43+45.12 m throughout the year. Inreality, it is permitted to exceed the upper water
level limit for short periods of time if it is caused by wind or unusua hydrologic
conditions. Each day, when the limits were violated, a cost was calculated using

LOSSyugsi = 10° #Mcalc,i : Wabs) : (4-14)

The large penalty charge guarantees that violations of these limits are avoided at any
cost in the release optimisation. Thus, for the upper water level limit violations, the
simulated operation is somewhat stricter than the real-world operation. In the
operation licence of the lake, some objective water levels are also set. Now, an upper
and lower objective level was set for the first and fifteenth day of each month. Most of
the objective levels were set subjectively based on the mean observed water levels.
The idea was to keep the head of the power plant at least at the height of the observed
average or slightly higher. The objectives aswell as the absolute water level limits are
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shown in Figure 30. To obey the objectives a cost was calculated each day when they
were violated:

LOSSy0q, =100 41000, - W,y |f @15

Between these days, no losses are calculated independent of whether the water levels
are inside or outside the objectives. The cubic loss function and the additional
multipliers are subjectively chosen. By using this model, the optimisation resulted in
water levels that reminded the actual release control policy in the lake. In addition, the
benefits of hydropower production were not the only driving force in the optimisation.
Water levels are given in meters in Equation 4-14 and in Equation 4-15.
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Figure 30. Objective water levelsof Lake Pyhajérvi.
Finally, the objective function of the optimisation algorithm of each forecast period is

Gy (R S,1) = Hydro(R) - L0ss66(R.S,1)- w10
LO$\NOBJ (R’ S| ) - LO$SPILL (R) - LO$LOW (R)

As can be seen, no terminal function is set for the state of the reservoir at the end of

the forecast period. However, the objective water levels and the relatively short

update frequency of the forecasts compared with the forecast length guarantee that the
reservoir is not optimised purely based on the maximisation of hydropower

production.

Objective function in the Kymijoki case study

The main goals of regulation in the River Kymijoki basin are flood control and
effective hydroelectric power production. The value of hydropower production is
calculated by using the equation

d 12
Hydro = é é h xr xR *H, R4, (4-17)

i=1 j=1
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where 12 is the number of the power plants. In Equation 4-17, the price of electricity
is not dependent on the market situation. It was assumed that the electricity produced
could be sold immediately at a constant price. During the summer months (April-
October), the price was set also in this case study to 28 €/ MWh and during winters to
30 €/MWh.

Loss functions are defined to avoid possible flood and drought problems and to keep
water levels between the objective upper and lower limits. A loss function was also
set for spill. An equation similar to Equation 4-17 was used to calculate the financial
value of the spillage. As a difference, the term “release through the turbines” R ; was
changed for spill.

4

Lossg,, = é é hxr xgxRg, ;; XH ;X4 (4-18)
i=1 j=1

where

Reiij = maX(O; R, - RCAP,j) (4-19)

and Reap; is the capacity of the turbines in power plant j.

The water level limits defined in the operation licenses cannot be violated without a
grant of exemption. If fixed absolute water level limits were violated, a penalty was
calculated for each day based on the extent of the violations as follows

4
LOSSpgs; =10° xké ‘Mcalc,i,k - Wabs,i,k) (4-20)
=1

where k is the index for the lake. The purpose of the large multiplier in (4-20) is to
avoid violations in the optimisation process at any cost and thereby to avoid any
losses caused by floods and droughts. The loss function for daily violations of the
objective water levelsis.

4 3
LOSSWOBJ i :lOOXé calc,ik Wobj,i,k‘) (4-21)
k=1

In both of these functions water levels are given in centimetres. The objective water
levels of Lake Paijanne are presented in Figure 31. Figure 32, Figure 33 and Figure 34
show the objective water levels of Lake Ruotsalainen, Lake Konnivesi and Lake
Pyhgérvi in litti, respectively. These water levels are mainly derived from the studies
of Jarvinen and Marttunen (2000). They investigated ecologically sustainable water
levels and discharge changes in the Kymijoki basin in their extensive work (Jéarvinen
and Marttunen, 2000). The objective water levels are defined in the model for the 1%
and 15™ day of each month. The absolute water level limits are extracted from the
operation licenses. However, for Lake Péaijanne such limits are not set and thus the
water level limits used are subjectively chosen. This is the case also for the lower
water level limit in Lake Ruotsalainen.

limits of the lake can be exceeded if inflow to the lake is over 400 m%s. In the
simulation model, no losses corresponding to the absolute upper water level violations
were calculated during these kinds of days.
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Figure 31. Objective and absolute water levels of Lake Paijanne used in the model. Absolute
water level limitsare subjectively chosen.
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Figure 32. Objective water levelsof Lake Ruotsalainen. Lower W aps ar e subj ectively chosen.
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Figure 33. Objective water levelsof Lake Konnives.
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Figure 34. Objective water levelsof Lake Pyhajarvi in litti.

Several constraints are set on the releases of different power plants and control weirs.
Both minimum and maximum releases are set. In addition, there are some restrictions

on discharge changes. These are collected into Table 35.
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Table 35. Releaserestrictionsin the River Kymijoki system.

Minimumrelease | Maximum release | Maximum release
[m°/q] [m?/q] change [m*/s]
Lake Paijanne 50 550 50
V uolenkoski 50 600 50
Voikkaa 50 700 50

Firstly, the minimum release from Lake P&ijanne was set to 50 m*/s and the maximum
was set to 550 m*/s. In addition, in the regulation licenses the maximum release
change during a five days period in Kalkkinen is constricted to 100 m*/s and to 20-25
m®/s daily. In the model, this was taken into account by restricting the maximum
release change between two consecutive periods of a length of five days to 50 m*/s.
Larger changes may cause some algal problems to fishing nets in Lake Ruotsalainen
and Lake Konnivesi located just downstream of Lake Paijanne.

The maximum release of the Vuolenkoski power plant was set to 600 m*/s and the
minimum to 50 m%s. Similarly, the maximum release change between two
consecutive periods was set to 50 m*/s. Compared with historical releases, these were
hard restrictions, as some changes that are larger than 100 m*/s have been recorded
since 1964.

The maximum release of the Voikkaa power plant was set to 700 m*/s. The minimum
release was set to 50 m*/s and the maximum release change between two consecutive
periods was set to 50 m*/s. In Voikkaa it is also necessary to keep the minimum
release above 150 m*/s unless some exceptional water conditions occur. At the same
time, the maximum should be kept, if possible, below 395 m®/s. Larger discharges
will cause spillage and flood problems downstream and low discharges will harm, for
example, the recreational use of theriver.

Based on the regulation license of the Kymijoki system and especially Lake Paijanne,
discharge in Kuusankoski should be kept above 150 m*/s. This is mainly due to the
recreational use of River Kymijoki but also because of breeding and migration of
salmon and other fishes. Therefore, a cost function was set to minimise low
discharges downstream of Kuusankoski. A subjectively chosen cost function

d
Loss oy =a 10° R o, (4-22)

i=1
where

Roow; =max(0150- R) (4-23)

and R is daily discharge in Kuusankoski was used. In River Kymijoki, discharges
over 400-500 m*/s cause recreational losses and flood problems downstream. In the
optimisation, the avoidance of large releases was taken into account by setting a loss
function for spills in different power plants (Equation 4-18). Additional loss functions
were not set to minimise large floods downstream. To sum up, the objective function
of the optimisation problem is

GKymijoki (R) = Hydro- LO$SPILL - LO$LOW - LO$\NABS - LO$\NOBJ (4-24)
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4.14.3 Section of a new candidate solution (neighbour)

In the optimisation algorithm, the candidate solution is randomly selected from the
“neighbourhood” of the current solution. The definition of a neighbour is a problem
specific task and with good choices, it is possible to decrease the computer time
needed to find close to optimal or optimal solutions. A neighbour should be defined so
that it is possible to move from each state to any other via a reasonable number of
steps.

defined based on the current solution by increasing or decreasing the release of a
single or two randomly selected periods of a length of five days by 0.1 m*/s. Whether
to change the release only in a single period or in two periods is based on a stochastic
criterion. If a generated random number (Uni(0,1)) is higher than 0.5, only a single
change is made. The possibility to change the releases of two periods ensures that also
the timing of the releases is optimal: if the optimal volume has already been found, it
is possible to change the timing by increasing the releases in one period and by
decreasing the releases in some other period. The neighbourhood of the current
solution isrestricted to releases that fulfil all release constrains.

In the case study of River Kymijoki, release sequences of three weirs are to be
optimised simultaneously. If aforecast period of 30 daysis used, six variables in each
of the control weirs must be optimised: six for Lake Paijanne, six for Lake Konnivesi

increases, of coursg, if the forecast period gets longer.

In the River Kymijoki reservoir system, a new candidate solution is generated by
randomly increasing or decreasing the release (+ 5 m’/s) of none, one or two periods
for each of the three control weirs. Hence, it is possible that the new candidate
solution differs from the current optimal sequence only slightly. For example, only a
single five day release might be decreased (increased), say, in Voikkaa. On the other
hand, it is also possible that releases are decreased (increased) for two periods in each
of the reservoirs of the system. Of course, the chosen neighbour must fulfil all of the
release constraints before it is accepted as a new candidate solution.

4144 Parameters

According to Salamon et al. (2002), the initial temperature T, can be chosen in a few
different ways. In this study, a simple criterion is used and Ty is set s0 that about half
of the moves downhill are accepted at the beginning of the optimisation. Therefore,
the initial value Ty depends on the scale of the objective function of the problem.
However, above al To depends on the sensitivity of the values of the objective
function to the selection criteria of a new candidate solution. One of the benefits of
approving a big percentage of downhill moves at the beginning of the maximisation is
that consequently, the initial states of the parallel runs will certainly be clearly
different. In the present study, the algorithm was stopped when the value of the
objective function had not improved after three consecutive temperatures.

Because of the third-degree penalty functions (Equations 4-15 and 4-21), the value of
the objective function increases quite sharply at the beginning of the algorithm if a
poor initial state is used. Thereafter, the climb velocity decreases. This feature made it
very difficult to choose the cooling schedule T; of the algorithm (value of o (Equation
4-8) and L). Parameter values used in the optimisation were set based on test runs.
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Computer time used for optimisation was not a problem, if only a single optimisation
was considered. Even by using a large L, a slow cooling schedule and a long
optimisation period (many variables), the computer time of a single optimisation was
a matter of seconds. However, to maintain a reasonable time in overall computation
(parallel runs, different tasks), it was necessary to am at good close to optimal
solutions in the shortest possible time. In Table 36 the parameters used in the case
study of Lake Pyhgjarvi are given. The sensitivity of the results to parameter selection
is discussed in Chapter 4.4. Five parallel runs were used in each of the optimisation
problems.

Table 36. Parameters used in the optimisation of thereleasesin Lake Pyhajarvi.

Forecast length | Updateinterval Variables o L
30 15 6 090 | 50
60 15 12 090 | 50
90 15 18 090 | 50
120 15 24 0.90 | 100
150 15 30 0.90 | 100
180 15 36 0.90 | 100
270 15 54 0.90 | 100
360 15 72 0.90 | 200

The optimisation of the four reservoir systems of the River Kymijoki system
including three control weirs is a much more complicated task than optimisation of a
single reservoir system. At each of the optimisation tasks, three parallel runs with
different initial states were made and the best result of the ensemble was selected.
Especially when using a randomly selected initial state, the value of the objective
function increases rapidly at the beginning of the optimisation. Therefore, it was
difficult to find a proper cooling schedule for the problem. In the case study of River
Kymijoki, the exponential cooling schedule was modified slightly. In the beginning
the value of a was set to 0.5. This guaranteed fast cooling while the value of the
objective function was increasing rapidly. The value of o was increased, however,
while cooling down the temperature by a step 0.02 until it reached the chosen
maximum value (Table 37). Therefore, the cooling velocity was faster at the
beginning of the optimisation (e = 0.50) compared to the cooling velocity at later
stages. In Table 37, the parameter values used in the optimisation are given. In the
case study of River Kymijoki the longest forecast period studied was 120 days.

Table 37. Parameters used in the optimisation of thereleasesin the River Kymijoki basn.

Forecast length | Update interval Variables Max o L
30 15 18 0.90 | 200
60 15 36 0.90 | 300
90 15 54 0.90 | 400
120 15 72 0.90 | 400
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4.2 Resultsfor the case of Lake Pyhgjarvi

4.2.1 Perfect inflow forecasts

in the outlet are presented in Figure 35. The simulation was based on the utilisation of
perfect inflow forecasts (¢=0.0) of atime period of three months (90 days). Forecasts
were updated every 15 days. The observed values are also shown for comparison.

455 4
r 20
45
_ 445 4 " 1_5
£ — Optimised W m&
I E
™ — Observed W —
< o
= 44 - » — Optimised Q r 10
M‘ KW‘“ | Observed Q
I— "o ‘LA_I o]
435 UW_W J L; Aﬂk -5
Lo
Sl .I Brmd A l_M,_
43 T T T O

01/01/1971  01/01/1972  01/01/1973  01/01/1974 01/01/1975 01/01/1976

Figure 35. Observed release sequence during 1971-1976 and optimised release sequence attained
by using perfect forecasts of a lead-time of 90 days. Water levelsare also shown.

Two important phenomena that are valid throughout the whole simulation period
(1967-2004) can be seen. Firstly, both the extent of spill and the number of days
during which the maximum release capacity (6.0 m’/s) is exceeded, have decreased
compared to observations in the case where perfect inflow forecasts were used.
period without violating the upper and lower water level limits set in the regulation
licenses (N43+44.54 m and N43+45.12 m). In historical records these limits were
violated during 813 days, partly because of the possibility to violate the upper limit
during unusua hydrologic conditions. In addition, the variation of both the releases
and the water level has decreased and the release sequence is smoother. The average
water level in the ssmulation was N43+44.83 meters while it was only one centimetre
higher in real-life based on the observations during the same period.
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Figure 36. Dependence of the value of perfect forecasts on forecast length in Lake Pyh&jéarvi.
Simulation of years 1967-2004.

When using perfect inflow forecasts the operation of the system improves as the
forecast period gets longer (Figure 36). This is true up to the longest period studied.
At first the improvement is rapid but steadies to modest as the forecast length exceeds
5-6 months. Some of the objective water levels and loss functions were subjectively
chosen. Thus, instead of analysing the value of the objective function G(R), it is more
valuable to study how often the objective and absolute water levels and the objective
minimum release (2.0 m%s) are violated. In addition, it isimportant to study the effect
of availability of longer forecasts on hydropower.

Figure 36 shows that the total number of violations (nyvioL) decreases as the forecast
period gets longer. When using perfect inflow forecasts of atime period of one month
in the operation of the reservoir, the fixed absolute upper and lower water level limits
of the lake were violated on 438 days (nwassu and nwags. in Table 38). When using
forecasts of a length of 60 days these limits were violated only on 12 days. When
using longer, perfect forecasts, the absolute water level limits were not broken at al.
The number of violations of the objective water levels (nwogy) can be decreased by
over a half if the forecast period is lengthened from 30 days to periods exceeding
three months. At the same time, aso the number of days during which objective
minimum release is violated (ng) decreases rapidly. It decreases from 990 days by
using a forecast period of a length of one month to 146 days by using forecasts of a
length of 360 days. Because the regulation did not begin until 1975 and the goals of
the regulation may have been different during different seasons, it is not worthwhile
to compare these figures with the observed values.

The additional benefit gained from the use of longer inflow forecasts decreases
significantly when the forecast length of 5-6 months is exceeded. After that the
increase in the value of the objective function and the decrease in nyo_ (the total
number of violations) are almost entirely caused by the ability to avoid more
efficiently the releases that violate the release limit, 2.0 m*/s. For example, the nwos;
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decreases only from 239 to 212 while lengthening the forecast period from 120 days
to 360 days (see Table 38).

Table 38. Number of violations concerning water levels and outflowsin Lake Pyh&jérvi by using
perfect inflow forecasts of different lengths.

Length of theforecast [d] | nwass. | Nwassu No NwoBsJ
30 408 30 990 524
60 12 0 1013 345
90 0 0 823 264
120 0 0 667 239
150 0 0 595 224
180 0 0 538 217
270 0 0 275 217
360 0 0 146 212

Hydropower production in the Kauttuankoski power plant would have increased
significantly if perfect forecasts had been available. Compared with the value of
hydropower by using the observed releases, 2 530 000 €, the value would have been
larger, about 2 780 000 €, if perfect forecasts of a time period of 12 months had been
available. The comparison was made only for the period of regulation (1975-2004).
The value of hydropower production would have increased about 9% and by using the
set constant prices, 8450 € per year. This was mainly due to the decreased spillage in
the Kauttuankoski plant. The effect of lengthening the forecast period on hydropower
production is shown in Figure 37 for the period 1967-2004. Hydropower production
benefits from short forecasts at the expense of acceptable water levels as terminal
function was not set. If longer forecasts are used (2-3 months), the water level of the
lake begins to dominate the objective function more at the expense of hydropower
production. If the forecast period is lengthened up to a year, it is possible to gain
almost the same benefit as by using the forecasts of 30 days, but at the same time
avoid most of the problems related to water levels. However, the differences in
hydropower production between the different forecast lengths are small, less than 1%.
In addition, one should bear in mind that results are partly dependent on the chosen
loss functions.
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Figure 37. Value of hydroelectric power production as a function of forecast length (perfect
forecasts) in Lake Pyhgjarvi for period 1967-2004.

4.2.2 Inaccurateinflow forecasts

the historical inflows of three and four months as forecasts. In addition, the lake was
operated through the ssimulation period by using inaccurate artificia inflow forecasts.
The artificial forecasts were generated by using the Equation 4-2 with different values
of 0. Also the effect of autocorrelation between the forecast errors was analysed. The
values of the objective function as a function of forecast length and accuracy are
shown in Figure 38.

The extension of inflow forecasts up to a period of five to six months improves the
operation of the lake even if the forecasts are poor (0=1.0). Despite the large errors,
the inflow forecasts contain much valuable information because of the unbiased
model. If forecast errors are small and forecasts are updated regularly, the value of the
forecast increases with the forecast length up to a year’s period. Generally, the less
accurate the forecasts, the shorter the longest reasonable forecast period. For ¢=0.1 it
was at least a year, for ¢=0.3 at least nine months, for 6=0.5 about sx months and for
0=1.0 about five months. Because of the uncertainties related to the random number ¢
in the Equation 4-2, and the subjectively chosen cost functions, these figures are only
suggestive. The additional autocorrelation between the forecast errors makes these
periods slightly shorter. For small values of ¢, the effect of the autocorrelation is very
small, however. If 6=0.1 or ¢=0.3 the change in the value of the inflow forecasts
caused by the additional autocorrelation (a;=0.80) is not datistically significant
compared with the case where a;=0. If 6=1.0, the additional autocorrelation (a;=0.8)
in the forecasts will cause serious problems in the operation of the lake. These
problems were not dependent on the forecast length.

Up to a certain forecast length and up to a certain o, it is valuable to use longer
forecasts although forecast accuracy would simultaneously decrease. Thus, at least a
forecast length of two months should be used in the operation of Lake Pyhgjarvi. For
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example, it is better to use the average historical inflow of atime period of 90 to 120
days as a forecast instead of the perfect forecasts of a time period of 30 days.
Depending on forecast accuracy, a some point the additional value of the longer
forecasts is lost, however. Generally, it seemsthat it is not worthwhile to use forecast
significantly at the same time. For example, it is more worthwhile to use forecasts of
120 days with ¢=0.1 or ¢=0.3 than forecasts of 150 days or longer with 6=0.5. The
differences are statistically significant. If errors are larger, this forecast period is
shorter. Although the differences in the values of the objective function are not
statistically significant (confidence limit 0.05) at every pairwise comparison, the
variance of the value of the objective function also increases with increasing o. In
addition, on average, the absolute water level limits and the release restrictions are
violated more often.
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Figure 38. Value of the objective function as a function of forecast length and accuracy in Lake
Pyhdjarvi. Index 2 indicates that consecutive forecast errors were a,=0.8 autocorrelated. A =
aver age historical inflow as a forecast.

These results can also be studied in the light of hydropower production, water levels
and releases. The results are compared with the outcome of the lake operation where
the perfect inflow forecasts of a time period of 12 months were utilised. So, it is
possible to analyse the extent to which the inaccurate forecasts and shorter forecasts
cause problems and decrease the potential hydropower production and its financial
value. In Appendix G, the number of days during which the different violations
occurred are presented for the different forecast accuracies and forecast periods.

If aforecast length of three months or longer is used, it is possible to avoid violations
of the fixed, absolute, lower water level limits in Lake Pyhgérvi, although inflow
forecasts would contain small errors. At the same time, only occasional single
violations of the upper limits are recorded. For shorter periods, the number of
violationsis large even if perfect forecast are used.
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The objective water levels are violated although perfect forecasts are used. The
number (nwog;) is not affected as small errors occur, but increases (uniformly) as the
forecast accuracy continues to weaken. The decrease in accuracy also significantly
increases the number of the minimum release violations (ng). The overall number of
the violations is a multiple of the chosen base point both if the forecast length is short
and if forecast errorsare large.

Figure 39 shows the effect of the forecast length and accuracy on the value of
hydroelectric power production. Compared with the simulation using perfect forecast
of a length of 360 days, it is possible to lose up to 0.7% of the financial value of
hydropower by just using too short inflow forecasts in the operation. Financially, this
is not more than 600 €/a year in Lake Pyhdjarvi, but as already seen, “losses’ are
larger if the water level and the release restrictions are taken into account.

By combining short forecasts with forecast inaccuracy, the financial loss percentage
can be over 10% (over 10000 €/a). A small random error (¢ = 0.1) in the forecasts
decreases the annual benefit of hydroelectric power production only by 0.2-1.4%. If it
were possible to increase forecast accuracy from ¢ = 0.3 to o = 0.1, hydroelectric
power production would benefit by 1-3% depending on the forecast length.

The autocorrelation (a;=0.80) between the forecast errors has no significant effect on
the value of hydroelectric power production compared with the case where a;=0. By
using the historical average as an inflow forecast, the losses are concentrated on the
unwanted flood and drought problems instead of large losses related to hydropower
production. By using the historical average of a time period of three months as a
forecast, the simulated losses in hydropower production are no more than 3.1% of the
optimal value. For the chosen prices, it is only 2800 € per year.
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Figure 39. Dependence between the value of hydroelectric power production and forecast error
and length in Lake Pyhgjarvi. The results by using the mean historical inflow as a forecast are
mar ked with the symbol A.

The sequence of the random number ¢ in the Equation 4-2 causes a stochastic effect
on the results. A large random error on some occasion may have larger effects on the
operation of the lake than an equal error on some other occasion. Therefore, the whole
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period was simulated 15 times. The variances of the results between the independent
runs (15 times 1967-2004) for each value of o were not presented above. For each
simulation, a different forecast error sequence was attained and as a consequence, the
value of the objective function for the whole period 1967-2004 was different. Fifteen
independent runs do not guarantee, naturally, that the worst (and best) case scenario
would be studied but they do give an idea about the possible consequences of the
forecast errors on the operation of the lake. An analysis of the standard deviations of

Forecasts of alength of 90 days with ¢=0.3 are used as an example. The whole period
1967-2004 was simulated 15 times by updating the forecasts every 15 days. The
results of the runs for which the objective function obtained its minimum and
maximum values are given.

Table 39. The results of the smulations of the period 1967-2004 when using forecasts of a lead-
time of 90 daysand 6=0.3 in Lake Pyh&jérvi. Results of the runs for which the objective function
obtained its minimum and maximum values ar e given. Aver age values and standar d deviations of
the 15 parallel runsar e also given.

G(R) Hydropower NwaBssL NwABsU Ng NwosJ NvioL
value [€]
Min -27899566 3404115 0 7 1020 275 1302
Average -24484409 3391034 0 7 957 266 1231
Max -22023200 3385885 0 6 880 271 1157
St.dev 1718056 16356 0 6 79 10 81

As demonstrated, the value of the objective function varied from -14% to +10%
around the average value. The differences in the number of violations of the absolute
upper and lower and objective water level limits are relatively small. The number of
violations of low releases, however, varied between 880 and 1020. Generally, the
larger the error (o), the larger the standard deviations.

4.2.3 Update frequency of the forecasts

The update frequency of the forecasts affects the results. The longer the update
frequency, the worse is the operation of the system even in the case where perfect
forecasts are available. The differences in the results are accentuated if the forecast
model is inaccurate. In real time forecasting and operation of a system, forecasts and
observed inflows are compared and evaluated daily. If values differ significantly,
forecasts and/or the planned operation of the system is updated. Thus, it is unlikely
that a reservoir or a reservoir system is operated by using poor forecasts for a very
long period. To sudy the dependence between the update frequency of the forecasts
simulated using three different update frequencies (5, 15 and 30 days). The system
was operated both using perfect forecasts and using different values of . The results
corresponding to the perfect inflow forecasts are shown in Figure 40. The system was
operated in each case from 1967 until the end of 2004. As before, the average values
of 15 independent runs are presented.
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Figure 40. Dependence between the value of the forecags and their update frequency by using
perfect inflow forecastsin Lake Pyhajérvi.

The longer the update frequency, the worse the system can be operated. This is true
especidly if long update frequencies are used compared with the forecast length.
Differences are small if the forecast period is long. When a forecast period of 60 days
and perfect forecasts were used, the number of days during which the lower absolute
water level limit was exceeded, increased from 11 to 12 and again to 49 days, when
the update frequency was lengthened from 5 first to 15 days and again to 30 days. At
the same time, both the number of days during which the release in the Kauttuankoski
dam was less than 2.0 m*/s and the number of days during which the objective water
levels were violated increased. The results were similar when a forecast period of 90
days was used, although the absolute water level limits were not violated in any of the
simulations. When using perfect inflow forecasts, the effect of the update frequency
on hydropower production was insignificant. The longer the forecast length is
compared with update frequency, the less significant is the update frequency of the
forecasts in reservoir operation.

For inaccurate forecasts, the results are similar. If errors are small, the success of the
regulation will decrease if short forecasts and a long update frequency are used. For
longer forecast periods, differences are insignificant. For larger errors, the update
frequency is in a more significant role. For ¢=0.5, it is possible to lose 1-2% of
hydroelectric power production and increase the number of violations up to 20% if the
update frequency of the forecasts is changed from 15 days to 30 days.

4.2.4 Confidencelimitsof theinflow forecasts

All of the preceding results were based on the assumption that the system is operated
based on the mean forecast; see Equations 4-4 and 4-5. Thus, the confidence limits of
the forecast were not used and the optimisation problem was a deterministic one. To
study the effect of solving a stochastic problem (Equation 4-4) instead of the
deterministic problem (Equation 4-5), the optimisation problem was updated and all
the calculations were re-run. The main results are shown in Figure 41 and Figure 42.
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Figure 41. The value of the objective function as a function of forecast length and accuracy by
using stochastic optimisation in Lake Pyhgjarvi.
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Figure 42. Number of violations as a function of forecast length and accuracy by using stochastic
optimisation in Lake Pyhajarvi.

If the confidence limits are taken into account, the value of the objective function
improves compared with the results of the deterministic optimisation. This is true if
forecast errors are decent. If very poor forecasts are used (6>0.5), it is better to solve
the deterministic problem. This is due to the loss functions of the problem. The
overall value of the objective function decreases because of the unnecessarily large
usage of releases that are below the release limit 2 m*/s.
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The additional value of the longer forecasts is small if the 5-6-month forecast period
is exceeded. If, however, errors are small (¢=0.1), it is reasonable to use a forecast
period of a length of up to 9 months ahead. If errors are larger and if errors do not
increase as the forecast period lengthens, the optimal forecast length is about 5-6
months. The additional value of the forecasts is lost, however, if the accuracy
decreases at the same time. For example, it is better to use forecasts of a length of 4
months with the accuracy of ¢=0.1 than those of 5 months with the accuracy of ¢=0.3.
For poor forecast, it is not reasonable to lengthen the forecast period from 3-4 months
if forecast accuracy decreases significantly at the same time.

Hydropower production will decrease if the confidence limits are utilised. Thisis due
to large costs associated with the absolute water level limit violations. Although the
probability of over- or underestimating the inflow volume and thus the probability of
violating the water level limits is very small, the high costs of the violations force into
non-optimal releases with respect to hydropower production. The effect of utilising
the confidence limits of the forecasts on hydropower production is dependent on the
forecast length and accuracy. Generally, the production decreases from 0.1 up to 9%
compared with the use of the deterministic optimisation. At the same time, however,
the total number of the violations decreased by up to 10% if ¢ is 0.1 or 0.3. For larger
o, the increasing number of ng causes an increase in nyio. and a decrease in the value
of G(R, S 1). If hydroelectric power production is compared with the results of the
simulation using perfect forecasts of a time period of 360 days, the decrease in the
production is from 1% up to 18% depending on the accuracy and length of the
forecasts. Again, one should bear in mind that results are dependent on the chosen
subjective cost-functions.

4.3 Resultsfor the case of River Kymijoki

The value of the inflow forecasts in the River Kymijoki basin was studied. All the
lateral inflows downstream of Lake Paijanne were based on water balance studies and
were accurate. Therefore, the study is about the dependence between the inflow
forecasts to Lake Paijanne and the operation of the lake-river system supposing that
all the forthcoming, lateral inflows are perfectly known.

4.3.1 Perfect inflow forecasts

Firstly, the operation of the Kymijoki lake-river system was studied in the case where
the accurate inflows to Lake Pajanne were used as forecasts. Different forecast
lengths were studied. The update frequency of the forecasts was 15 days. As an
example, a seven-year season of water levels simulated by using perfect inflows of a
time period of 90 days as forecasts is shown in Figure 43. Some important facts can
be seen. Firstly, the annual maximum water level of Lake Péijanne does not rise as
high as the maximum of the observed values. The averages of the simulated and
observed water levels of Lake Péijanne, however, are about the same. Thus, water
level changes have smoothed.

Secondly, because of the more effective use of live capacities of the lakes, the average
water levels of Lake Ruotsalainen and Lake Konnives in the simulation are less than
the averages of the observed values. Water levels of the lakes are close to the fixed
minimum water level limits before spring floods. Thus, for the benefit of the whole
system, the spring drawdown in Lake Ruotsalainen and Lake Konnives should have



such away that its water level would not have exceeded the upper water level limits
as often. Also the maximum water levels have fallen. Thus, the simulated average is
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below the mean of the observed values in Lake Pyh&jarvi.

The averages of the ssimulated water levels are shown in Table 40 and the average
observation-based water levels were shown already in Table 1 (page 33). The
simulated maximum and minimum water levels during the operation period 1965-
2004 only dlightly approach each other when the forecast period gets longer. By using
the live capacities of the lakes efficiently, some of the flood peaks downstream of
Lake Pyhgérvi during the simulation period 1965-2004 decreased. This effect was

small, however.
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Figure 43. Simulated water levels in the River Kymijoki system during 1984-1990 when the
system was oper ated by using perfect forecasts of a lead-time of 90 days.
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Table 40. The simulated maximum and minimum water levelsin the lakesin the River Kymijoki
system during 1965-2004 when the system was oper ated by using perfect inflow for ecasts; see also

Table 1.

Paijanne Ruotsalainen

Forecast Wmax Average Wmin Wmax Average Wmin
Length [NN+m] [NN+m]  [NN+m] [NN+m] [NN+m] [NN+m]

30 78.76 78.08 77.36 77.65 77.27 76.27

60 78.69 78.15 77.48 77.65 77.36 76.29

20 78.71 78.18 77.53 77.65 77.39 76.34

120 78.71 78.19 77.57 77.65 77.39 76.32

Konnivesi Pyhajéarvi

Forecast Wmax Average Wmin Wmax Average Wmin
Length [NN+m] [NN+m]  [NN+m] | [NN+m] [NN+m] [NN+m]

30 77.40 77.14 76.20 65.58 65.15 65.10

60 77.40 77.23 76.20 65.55 65.18 65.10

20 77.40 77.26 76.20 65.52 65.19 65.10

120 77.40 77.27 76.20 65.62 65.20 65.10

The value of the objective function increases as the forecast period becomes longer,
but only until the forecast length of three months is used (see 6=0.0 in Figure 44). The
perfect forecasts of a length of three months contain most of the relevant information
needed in the optimal operation of the lake-river system. The additional value of the
longer forecasts is small. In fact, already the additional value of using forecasts of a
length of 90 days instead of forecasts of a length of 60 days is relatively small.

The additional value of the longer, perfect forecasts can be seen in the decreasing
number of the days during which the objective and the absolute water level limits are
violated (Table 41). By lengthening the forecast period, it is possible to decrease the
number of violations of the objective water level limits to two-thirds in Lake Paijanne
and in Lake Konnives and to one-fifth in Lake Ruotsalainen. In Lake Pyhgérvi this
effect is small, however. The overall number of the violations of the objective water
level limits remains large. The large number is a consequence of small losses caused
by small violations. most of the violations are in the order of magnitude of only a few
centimetres.

The violations of the absolute water level limits could be practically avoided by using
the shortest forecast period of one month, with the exception of Lake Pyhgarvi in
consequence of the small live capacity of the lake compared with its average inflow.
Notice that the violations of the fixed water level limits are permitted in the operation
licenses if the lake' sinflow islarge.

Table 41. Violations of water level limits (1965-2004) in the River Kymijoki system when perfect
forecastswere utilised.

Paijanne Ruotsalainen Konnivesi Pyhajarvi
Forecast Nwass | Nwoss Nwass | Nwoss Nwass | Nwoss Nwags Nwogy
length
30 2 914 2 462 0 317 141 17
60 0 741 1 137 0 203 147 20
90 0 627 0 78 0 202 152 26
120 0 636 0 73 0 209 125 25
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Two things can be seen immediately when the value of the perfect forecasts on the
hydroelectric power production is studied. Firstly, by using longer forecasts, spillage
can be decreased and the overall production increased. It is also possible to benefit
more from higher prices during wintertime. However, the effect is small. Compared
with hydroelectric power production simulated using the observed releases, the
increase in power production resulting from the use of perfect inflow forecasts of four
months is around 9.5 GWh (0.7%) annually (Table 42). The small increase in the
production may be financially considerable, however. If this is viewed as an annual
financial benefit, it would increase the income of the power companies by about
282 000 € per year if constant prices are used. An important part of this increase is
due to a more efficient utilisation of the live capacities of Lake Konnivesi and Lake
Ruotsalainen (spring drawdown).

Table 42. The effect of forecast length on hydroelectric power production in the River Kymijoki
basin by using perfect forecasts compared to the case of using observed releasesin 1965-2004.

Forecast Increase compared to observed releases 1965-
length 2004
(51249415 MWh, 1 477 772 065 €).
[d] MWh [%] € [%] MWh/a €/a
Observed 0.0 0.0 0 0
30 0.0 -0.1 -2100 -32000
60 0.4 0.4 4700 163000
90 0.6 0.7 8000 252000
120 0.7 0.8 9500 282000

4.3.2 Inaccurateinflow forecasts

The system was also operated using the daily historical inflow averages as forecasts.
In addition, artificial random errors were added to the perfect forecasts by using
different values of ¢ in the Equation 4-2 and by adding autocorrelation between the
consecutive errors (Equation 4-3).

To take into account the contingency of the errors and their timing, the simulation
period was run through 15 times and the averages of the results of these simulations
were studied. The update frequency of the forecasts was 15 days. The value of the
objective function of the period 1965-2004 for the forecasts of different lengths and
different values of ¢ are given in Figure 44. To narrow the scale in the figure, poor
results corresponding to the use of the historical averages and forecasts of accuracy of
0=0.5 asforecasts are not shown.
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Figure 44. The value of the objective function as a function of forecast length and accuracy in the
River Kymijoki system. Index 2 isused for a;=0.8. Simulation period 1965-2004.

If errors are small (6=0.1), the value of the objective function is only slightly less
compared to the case of the perfect forecasts (¢=0.0). However, the increase in the
errorsto 0=0.2 and to 6=0.3 evidently decreases the value of the forecasts. In addition,
it was discovered that if ¢=0.5, forecasts were so weak that the success of the
operation of the lake-river system based on these forecasts was poor.

If forecast accuracy does not decrease, it isworthwhile to lengthen the forecast period
up to 90 days in cases where the errors are small (6=0.1 or ¢=0.2). For the less
accurate forecasts, the effects are less obvious. If forecast accuracy decreases
significantly (e.g. from ¢=0.1 to ¢=0.2) as the forecast period lengthens, it is better to
use shorter forecasts. Generally, the relatively small additional value of the longer
forecasts is lost if forecast errors increase as function of the forecast lead time. The
additional autocorrelation will increase the losses caused by the inaccurate forecasts.
This negative effect on the overall operation of the system increases with increasing o.

The drop in the value of the objective function as a consequence of inaccurate
forecasts is mainly caused by the inability to avoid the fixed water level limits (Table
43). Inaccurate forecasts can increase the total number of water level violations in the
four lakes studied by over 50%. This is the case when using 60-day forecasts and
increasing the error from ¢=0.0 to 0.5. For the individual lakes, this increase can be
much larger. For example, in Lake Péijanne the number of violations of the fixed
absolute water level limits increased from 2 to 158 while ¢ increased from 0.0 to 0.5
and the forecast period of 30 days was considered. Generally, Lake Paijanne is the
most vulnerable to forecast errors if measured based on the violations of the water
level limits.

The decrease in forecast accuracy also affects the operation of Lake Ruotsalainen and
Lake Konnivesi. The less accurate the forecasts are, the more violations occur.
However, these |akes are not as sensitive to forecast accuracy as L ake Péijanne.
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Table 43. The dependence between forecast length and accuracy and the number of fixed water
level limitsviolationsin Lake Péijanne and the downstr eam lakes.

Forecast length and | nwass | Nwoss | Nwaes | Nwoss | Nwass | Nwoss | Nwass | Nwoss
accuracy Paij. | Paij. | Ruots. | Ruots. | Konni. | Konni. | Pyhdj. | Pyhaj.
30, 0=0.0 2 914 2 462 0 317 141 17
30, 0=0.1 29 897 5 447 0 306 124 16
30, 0=0.2 42 868 10 423 0 305 163 20
30, 0=0.3 70 838 22 409 4 312 161 21
30, 0=0.5 158 813 87 384 37 345 224 29
30, 0=0.1, a;=0.8 23 892 3 452 0 311 138 16
30, 0=0.2, a;=0.8 49 850 7 439 0 301 139 18
30, 0=0.3, a;=0.8 93 818 17 421 5 301 159 20
30, 0=0.5, a;=0.8 217 806 66 397 29 326 200 23
30, aver. inflow 548 826 18 465 1 280 213 21
60, 0=0.0 0 741 1 137 0 203 147 20
60, 0=0.1 1 697 3 137 0 190 153 21
60, 0=0.2 21 661 12 145 1 205 180 24
60, 0=0.3 74 687 25 158 3 246 214 27
60, 0=0.5 183 732 135 187 47 311 304 36
60, 0=0.1, a;=0.8 0 691 1 146 0 202 147 20
60, 0=0.2, a;=0.8 a7 687 4 165 0 219 161 23
60, 0=0.3, a;=0.8 157 707 21 179 4 248 200 27
60, 0=0.5, a;=0.8 439 752 109 212 34 313 258 34
60, aver. inflow 495 729 24 253 0 190 273 36
90, 0=0.0 0 627 0 78 0 202 152 26
90, 0=0.1 0 591 2 84 0 198 139 25
90, 0=0.2 16 596 12 100 0 212 170 28
90, 0=0.3 48 637 27 120 3 243 212 32
90, 0=0.1, a;=0.8 3 613 1 95 0 211 129 25
90, 0=0.2, a;=0.8 42 662 5 129 0 221 151 27
90, 0=0.3, a;=0.8 154 698 12 149 0 252 180 30
90, aver. inflow 595 730 34 193 0 204 321 49
120, 0=0.0 0 636 0 73 0 209 125 25

The total number of violations of the water level limits in different runs with a;=0.8
are also shown in Table 43. Generally, compared with the case of a;=0.0, the number
of violations of the water level limits increases. For small errors and short forecast
periods (30 days), the effect can be opposite, however. At worg, the additional
autocorrelation more than doubles nyags compared with the case of using a;=0.0. This
is the case e.g. for Lake Péijanne for forecast periods of 60 or 90 days and large
values of ¢ (¢=0.3 and 6=0.5).

The effect of the inaccurate forecasts on hydroelectric power production was also
studied. Table 44 shows the results. The effects are calculated by comparing the
results of different simulations with the results of the run using perfect forecasts of a
time period of 120 days. In other words, it was set asthe “global” optimum.

If the forecast period is shorter than 120 days, some losses in energy production exist
even if the perfect forecasts are available. These losses are less than 1% of the
maximum production but financially up to a few hundred thousands Euros per year
for the forecast period of 30 days. The losses will increase if forecasts are inaccurate.
If short forecasts are combined with the inaccuracies, losses can rise up to amost a
million Euros annually. If the forecast length is kept constant and the forecast error is
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increased by 0.1 (e.g. from 0=0.1 to ¢=0.2), the average decrease in hydropower
production is of the order of magnitude from 0.1 to 0.6% during the period 1965-
2004. This means about 1.7-8.0 GWh (40 000 € - 235 000 €) annually. If the
operation of the system is based on the inflow forecasts of a time period of three
months (a;=0.0), the increased accuracy of the model from ¢=0.3 to 6=0.2 would
benefit the power companies as much as 8.0 GWh (235 000 €) per year. At the same
time, the flood and drought problems would decrease significantly. The number of the
fixed absolute water level violations (nwass) would more than halve in Lake Péijanne
and Lake Ruotsalainen.

Generally with the smaller errors (6=0.1 or ¢=0.2), the longer forecasts will give
additional gain for the hydroelectric power companies supposing that the errors do not
increase as the forecast lead time gets longer. If the errors are larger, the use of longer
forecasts may even cause more losses than benefits. The results concerning
hydroelectric power production by using a;=0.8 are also shown in Table 44. The
energy production is higher compared with the case of a;=0.0.

The results of the simulations where the average historical inflow sequence is used as
a forecast give a possibility to compare the cases of “perfect forecasts’ versus “no
forecasts’. In reality, forecast accuracy is somewhere between these two extremes. If
a system can be operated better with the average historical inflow than with the
forecasts of the hydrological models or the regression equations, there is no reason to
maintain the forecast system. The results corresponding to the average flows are poor,
however. The value of the objective function is about as poor as in the case of using
0=0.5. In the light of hydropower production, the use of the historical average as the
inflow forecast is not as crucial. Rather, the problems are related to the flood and
drought problems (Table 43). Hydropower production would decrease by about 0.6 %
(7.4 GWh/a) if the average inflow (90 days) is used as aforecast instead of the perfect
inflow of atime period of 120 days.
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Table 44. Hydroelectric power production in the River Kymijoki system by using forecasts of
different accuracies and lengths compared with results of using perfect forecasts of a lead-time of
120 days. Simulation period 1965-2004.

Forecast length and accuracy | Change compared with results of using
perfect forecasts of a lead-time of 120
days

[d] MWh % € [%] [MWh/a] [€/a]

120, 0=0.0 0.0 0.0 0 0

30, 0=0.0 -0.9 -0.8 -11600 | -315000

30, 0=0.1 -1.0 -1.0 -12900 | -354000

30, 0=0.2 -1.2 -1.2 -15600 | -432000

30, 0=0.3 -1.4 -1.4 -18500 | -520000

30, 0=0.5 -2.0 -2.0 -26100 | -744000

30, 0=0.1, a,=0.8 -1.0 -0.9 -12300 | -336000

30, 0=0.2, a,=0.8 -1.1 -1.0 -14000 | -384000

30, 0=0.3, a,=0.8 -1.3 -1.2 -16700 | -464000

30, 0=0.5, a,=0.8 -1.9 -1.8 -24300 | -687000

30, aver. inflow -0.9 -0.9 -12000 | -328000

60, 6=0.0 -0.4 -0.3 -4800 -119000

60, 0=0.1 -0.6 -0.5 -7500 -198000

60, 0=0.2 -1.0 -1.0 -13500 | -375000

60, 0=0.3 -1.5 -1.5 -19500 | -548000

60, 0=0.5 -2.5 -2.5 -32300 | -931000

60, 0=0.1, a,=0.8 -0.5 -0.4 -6300 -162000

60, 0=0.2, a,=0.8 -0.8 -0.7 -10300 | -279000

60, 0=0.3, a,=0.8 -1.3 -1.2 -16500 | -459000

60, 0=0.5, a,=0.8 -2.3 -2.3 -30300 | -859000

60, aver. inflow -0.6 -0.6 -8100 -210000

90, 6=0.0 -0.1 -0.1 -1500 -31000

90, 0=0.1 -0.4 -0.3 -4800 -127000

90, 0=0.2 -0.9 -0.8 -11000 | -311000

90, 0=0.3 -1.5 -1.5 -19100 | -547000

90, 0=0.1, a,=0.8 -0.3 -0.2 -3600 -93000

90, 0=0.2, a,=0.8 -0.7 -0.6 -8700 -239000

90, 0=0.3, a,=0.8 -1.1 -1.1 -13700 | -391000

90, aver. inflow -0.6 -0.5 -7400 -196000

In the above presentation, the average values of the 15 independent runs were
Equation 4-2 affects the results. Fifteen independent runs will contain neither the
worse nor the best sequence in the light of the variables studied. In the case study of
River Kymijoki, the effect of the e-sequence on the results was stronger for the bigger
values of ¢: the variation between the results of the 15 independent runs increased
considerably as a function of ¢. Because of the large variances, differences in the
mean values of the objective function between the results for the different values of o
were not aways dtatistically significant (Figure 44). However, if hydropower
production or the number of violations is studied, the dependence of the result on o is
much larger than that on the e-sequence. Thus, it is reasonable to concentrate on
analysing the average values of the independent runs for each o.
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4.4 Rédiability of simulated annealing

Because of the heuristic nature of the simulated annealing algorithm, optimal
solutions are not guaranteed. The reliability of the algorithm is dependent on the
chosen parameter values and on the proper selection of the neighbourhood from
which new candidate solutions are chosen.

schedule. This was mainly due to the optimisation problem that was not too difficult
to solve. The parameter values that were used (Table 36) were chosen based on the
test runs. In Table 45 an example is given. Forecasts of a time period of 90 days were
used and thus, 18 variables were optimised. The period from 1967 to 2004 was
considered with perfect knowledge of the inflow of the forthcoming period and this
information was updated every 15 days. The whole simulation period was run through
ten times for each of the parameter sets. The average values of the results are given in
Table 45. The results are not very different in the light of nyoL and thus the selection
of the values of the parameters was based mainly on the consumed computer time
resulting in favouring the smaller values of o and L.

Table 45. The effect of the optimisation parameters on the results in the case study of Lake
Pyhajéarvi.

0} L G(R) G(R) nwassu NwassL No  Nwosy
St.dev.

95 100 -21160000 850000 0 0 830 265

95 50 -21390000 720000 0 0 824 265

90 100 -21690000 520000 0 0 834 265

90 50 -21080000 600000 0 0 813 264

85 100 -21440000 490000 0 0 834 265

To improve the reliability of the results, several parallel runs were made for each of
the optimisation problems and the best result was finally chosen. The number of the
parallel runs was also chosen based on the test runs. In the case study of Lake
explained in Chapter 4.1.4.1. Three runs were based on the stochastic initial state and
one for each other strategy. Because the problem was not too complicated, less than
five parallel runs might well have been enough. Usualy, the independent walkers
ended up with equal or amost equal results and the release sequences seemed
intuitively valid. Therefore, the optimisation algorithm can be considered reliable and
the number of parallel runs was not increased.

In the case study of River Kymijoki, the optimisation problem was more difficult. The
assessment of the performance of the algorithm was also difficult because of the
nature of the cost functions. Quite similar release sequences could give deviant results
because of the subjectively chosen, third degree penalty functions. Occasionally, the
results of different runs appeared to be considerably different in the light of the value
of the objective function and hence, it was justified to require more parallel runs. In
addition, the standard deviation of the results of the parallel runs decreased as a
function of consumed computer time. In the light of the release sequences and water
levels, the differences between the parallel runs were not so large, however. Thus,
only three parallel runs were used. In most cases, the best results were obtained by
using the current solution extrapolated with a constant release for the last 15 days of
the forecast period as an initial solution; see Chapter 4.1.4.1. Table 46 gives an
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example of the sensitivity of the optimisation to the schedule parameters o and L in
the case study of River Kymijoki. The whole simulation period was run through five
times with each of the parameter combinations using the perfect inflow forecast of a
time period of 90 days and an update interval of 15 days. The values shown are
averages of these runs.

Table 46. The effect of the optimisation parameters on the results in the case study of River
Kymijoki.

Length of o L G(R) G(R)

the forecast Average St. dev
[d]
90 0.8 200 1252100000 1600000
90 0.8 400 1259100000 2200000
90 0.8 600 1261000000 1800000
90 0.8 1000 1261700000 1700000
90 0.9 200 1258300000 2300000
90 0.9 400 1261200000 900000
90 0.9 600 1261800000 700000
90 0.9 1000 1263600000 400000

The value of the objective function increases as a function of time consumed for the
optimisation and the value seems to approach asymptotically the value assumed to be
the global optimum. However, the approach velocity is slow and because the time
available for the calculations was limited, a compromise had to be made between the
parameters and the accuracy of the result.

Based on the results presented in Table 46, the value of o was set to «=0.90 in the
optimisation of a time period of 90 days. Secondly, the value of L was set to L=400.
Compared with the results given by the parameter values «=0.90 and L=1000, the
time consumed in the calculations was about 40% less but the value of the objective
function was only about 0.2% less. The effect on hydropower production is even less
significant. Therefore, the use of the chosen parameter values is justified, but the
inaccuracy of the optimisation should be taken into account when the results are
analysed. The chosen parameter values for the forecasts of different lengths were
presented in Table 37.

Because of the heuristic nature of the algorithm, one cannot assume that the optimised
release sequence is optimal for the given inflow forecasts. The effect of the algorithm
on the results can be approximated by using perfect forecasts and by optimising the
same problem several timesin arow and studying the results. In both case studies, the
simulation period was run through 15 times with perfect forecasts and by updating the
of the value of the objective function for the whole simulation period are about 1 to
4% of the average values. Also in the case study of the River Kymijoki system, the
standard deviations are low compared with the mean values. The deviations varied
from 2.5% in the case of the forecasts of atime period of 30 days to clearly under 1%
in the case of longer forecasts. Differences are even smaller if hydroelectric power
production is studied. There are some differences in nwags, Nwoss and ng between the
results especially in the River Kymijoki system. The most sensitive are the variables
of the lake. The order of magnitude, however, remains similar also for these variables.
Thus, the effect of the chosen optimisation algorithm on the results is arguably small.
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Also the selection of the neighbourhood of the current solution affects the speed of the
convergence of the algorithm. When the new neighbour is explored, the release
change in an individual 5 days period was set to 5 m*/sin the River Kymijoki system
(see Chapter 4.1.4.3). It was studied whether the increase of this step and the
lengthening of the constant release sequence from 5 days would speed up the
convergence. It turned out that with larger values, ssimulated annealing did not
converge properly. Totaly different neighbourhood strategies were not applied.

4.5 Discussion

45.1 Releaseoptimisation

Simulated annealing was used in the optimisation. The use of the algorithm is
justified. As the computer capacity has increased, it is not necessary to worry that
much about the consumed computer time of a stochastic optimisation in the real-time
operation of the lake-river systems, as individual optimisation problems are solved in
seconds. At the same time, it is neither necessary to use linear functions nor to
discretise the problem and therefore, the special characteristics of the problems are
easily taken into account. Although the algorithm is easy to implement, the general
use of simulated annealing in the optimal operation of a multi-reservoir system is not
straightforward. This is due to the subjectively chosen parameter values for the
algorithm. The selection of the parameter values requires a good knowledge of the
characteristics of the problem. A poor selection of the parameters and an ineffective
definition of the neighbourhood of the current solution may lead to a solution that is
not even close to the optimal one. In addition, the computer time used in large scale
problems increases considerably and unnecessarily.

In the main part of the study, releases were optimised purely based on the mean
forecasts without using the confidence limits of the forecasts. However, as shown in
Chapter 4.2.4, solving the same problem by taking into account the uncertainties
related to the forecasts, the nature of the answers to the research questions remained
similar. In practice, the approach to the operation of Lake Paijanne is such that during
the spring flood season, releases are planned based on higher than mean forecasts to
avoid flood damages in the lake and downstream (Marttunen and Jarvinen, 1999),
although many operation policies are simulated. Therefore, one can fairly state that
the use of asingle forecast is not very different from the practice still in use.

In this study, the optimisation problems were not solved, for comparison, by using
any other optimisation algorithms and the optimal solutions were not available.
However, the sensitivity analysis showed that in the two case studies, the results were
not significantly dependent on the parameter values chosen for the algorithm. The
values were set based on careful studies (Chapter 4.4). In addition, results were
intuitively rational and independent runs of the whole simulation period ended up
relatively close to each other, athough almost 1000 independent, consecutive
optimisation tasks were solved. By increasing the available computer time
significantly, the results of the optimisation improved slightly, but the increase of the
value of the objective function for the whole simulation period was less than 1%. The
effect on the main variables studied was even less. Although it is obvious that
different choices would impact the individual numbers analysed in the study, it is
clear that the mainresults arerelatively reliable.
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Earlier, only a few papers have been published on the use of smulated annealing in
reservoir optimisation. Teegaravapu and Simonovic (2002) presented the context and
applied the algorithm for two systems, each containing four reservoirs. Their study
suggested that simulated annealing could be used to obtain at least near-optimal
solutions for the multi-period reservoir operation problems. Mantawy et al. (2003)
used a more sophisticated algorithm and solved a long-term hydropower scheduling
problem in a system of four reservoirs connected in series with improved results.
Tospornsampan et al. (2005) used simulated annealing with promising results in the
optimisation of multiple reservoirs in a case study of the Mae Klong system in
Thailand. The present study strengthens the view that simulated annealing is aflexible
algorithm in the release optimisation of multi-purpose lake-river systems.

4.5.2 Value of inflow forecasts

A multi-purpose single-reservoir system was studied by using the characteristics of
system of the River Kymijoki basin was studied. In both of the case studies the
simulation period was first run through by using perfect inflow forecasts. When using
perfect forecasts, the value of the inflow forecasts increased as the forecast period got
longer: in Lake Pyhgéarvi up to 360 days and in Lake Paijanne up to 120 days.
months was exceeded and in the River Kymijoki system, the improvement of the
operation was quite small when the forecast lead time of 2-3 months were lengthened.
The errors in the forecast shorten the “reasonable”’ forecast lengths. If errors are small
(0=0.1), a forecast lead-time of at least 12 months could be used in Lake Pyhgjarvi.
On the other hand, if forecast are poor (¢=1.0) only a forecast period of five months
should be utilised. Generally, it seems that it is not worthwhile to use inflow forecast

of a lead-time longer than 3-4 months in Lake Pyh&érvi, if forecast accuracy

be used in the River Kymijoki system. In the River Kymijoki system, it is not
necessarily valuable to lengthen the forecast period if forecast errors are larger than or
egual to 0=0.3. The additional value of the longer forecasts is lost if forecast accuracy
weakens significantly (e.g. from ¢=0.1 to ¢=0.2) regardless of the forecast length
(Figure 44). If forecast errors increase as the forecast period gets longer, the impact of
using longer forecasts may be negative.

The most important reason for the differences in the optimal forecast lengths of the
two case studies is the live capacities of the systems. Large systems can utilise long-
term information even though forecast errors are relatively large. On the other hand,
small systems are very sensitive to forecast errors. Thus, the optimal forecast period
depends mainly on the live capacity of the system - and naturally on the accuracy of
the forecasts.

In the River Kymijoki system it seemed that the lake most vulnerable to forecast
errors was, surprisingly, Lake Paijanne, the largest lake of the system. One reason for
the vulnerability of Lake Paijanne could be the use of its live capacity to avoid larger
floods downstream. The chosen cost functions may lead to a control where, for the
benefit of the whole system, it is better to store floods in Lake Péijanne. This control
causes small violations of its water level limits instead of leading the same flood
downstream and causing more severe violations of water level limits in the smaller
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lakes. The cost of a1l cm violation is equally large in each of the lakes, although there
are much more properties in the shores of Lake Paijanne compared with smaller lakes
downstream. The regulation of Lake Péaijanne is also inefficient because of the
inability to regulate the whole outflow. However, the cods for violating the objective
water levels by a few centimetres are small in the model as well as in real-life.
Thereupon, these limits are violated regularly by a centimetre or two because it
benefits the operation of the whole system.

due to its small live capacity. Even small errors in the inflow forecasts can cause
severe water level limit violations because of the long update frequency of the
forecasts compared to the number of days needed to fill the whole live capacity with
the average inflow. However, the problems can be avoided, or the negative
conseguences can be decreased, if the upstream lakes are regulated so that the largest
floods are smoothed before they enter Lake Pyhgéarvi. The better the forecasts, the
better this can be done.

According to Takeuchi and Sivaarthitkul (1995), a forecast lead-time of
approximately two months should be used for reservoirs with live capacity of 0.22
times the average annual inflow, that of 3 months for reservoirs of 0.5 times the
annual inflow and at least that of 6 months for reservoirs of 1.0 times the annual
inflow. These figures are dependent on forecast accuracy. The results of this study are
similar. Depending on forecast accuracy, a forecast lead-time of about 1-3 months
should be utilised in the River Kymijoki system (0.25 times the average inflow) and a
lead-time of about 3-12 months in the Lake Pyhgarvi system (0.57 times the average
inflow). In addition to forecast accuracy and size of the system, also the shape of the
hydrograph and the possible restrictions related to the release sequences affect the
optimal lead-time of the forecasts.

The results can also be analysed in the light of hydropower production, water levels
and release sequences. The system of Lake Pyhdérvi can be operated in a way that
the fixed, absolute upper and lower water level limits would not be violated, if perfect
forecasts of a length of 90 days or longer were available (Table 38). Compared with
hydroelectric power production by using the observed releases, the possibility of
using a perfect inflow forecast of 360 days increased the power production by about
9%. The downstream power plants were not taken into account in the simulation.
Thus, more variables should be taken into account in the real-time operation of the
system. However, because the availability of perfect inflow forecasts would decrease
the spillage and smooth the release sequence, it is quite likely that results would be
similar, even if the missing variables were taken into account.

The use of the perfect inflow forecast would have increased hydropower production
by 0.7% compared with the production for the observed releases in the River
Kymijoki system. The relatively small increase may be a consequence of relatively
good inflow forecasts used in the past in the real-time operation of the system. On the
other hand, the relatively small live capacities (25% of the annual inflow) and the
water level and discharge limitations of the lakes and the unregulated natural cascade
in Kalkkinen restrict the possibilities in real time operation. Therefore, the chosen
release strategy does not affect hydropower production considerably. In addition, in
the simulations, strict objective water levels were set for the lakes in the River
Kymijoki system. For example, in Lake Paijanne the objective water level limits used
in the model are used in real-time operation only for the last few years. Thus, in
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history the live capacity of the system has been utilised much more effectively
compared to the simulation. Although the difference in hydroelectric power
production is relatively small, the numbers of water level limit violations of the
observed and simulated cases differ significantly.

The study by Yeh et al. (1982) discussed a system with a live capacity of
approximately 0.8 times the annual inflow. The gain of the perfect forecasts of atime
period of three months for hydropower production was 6.48 percent compared with
the status quo. Hamlet et al. (2001) showed that by advancing the forecasts of the
snowmelt season by six months with the help of the indices of El Nifio/Southern
Oscillation (ENSO) and Pacific decadal oscillation (PDO), they could gain a financial
benefit of about 7.6 percentage compared with the status quo in Columbia River
(reservoir size 0.3 times average inflow).

Compared with the optimal operation, the use of short and inaccurate forecasts may
cause losses of up to 10% in the financial value of hydropower production in the Lake
Pyhgarvi system (Figure 39). At the same time, violations of the absolute water level
limits can not be avoided (Appendix G). Compared with the optimal operation
(forecast period 120 days, perfect forecast), the use of short and inaccurate forecasts
in the River Kymijoki system may cause losses of up to 2.5% annually in hydropower
production (Table 44). Financially this can rise up to aimost a million Euros annually.
At the same time problems related to the water levels and releases in the regulated
lakes are multiplied.

It was shown that by improving the forecast accuracy of the inflows of Lake Paijanne
e.g. from ¢=0.2 to ¢=0.1, hydropower production in the River Kymijoki system can
increase as much as 0.6% annually. It is important to notice that the additional benefit
of more accurate forecasts is larger, if the initial forecasts are poor (Figure 38, Figure
44). In the Lake Pyhgarvi system, hydropower production would increase about 1-
3%, if the accuracy of the forecasts could be increased from ¢=0.3 to ¢=0.1. In
addition, for effective operation of the systems, long-term forecasts should be utilised
in both systems. Optimisation models should be used and as the case study of the
River Kymijoki system showed, the whole system should be operated as an entity
instead of maximising the operation of the individual units within the larger system.
Especially the live capacities of Lake Ruotsalainen and Lake Konnivesi could be
utilised more efficiently.

Maurer and Lettenmaier (2004) have collected the results of these types of studies.
They compared the live capacities of the systems and the additional relative gain from
the forecasts for hydropower production (“perfect forecasts’ vs “no forecasts’). The
gain for hydropower varies between 1-13.6% for systems whose live capacities vary
from 0.3 to 3.0 times the annual inflow. It is natural that for very large reservoirs the
value of long-term forecasts is relatively small because the capacity of the system to
smooth the forecast errors is large. On the other hand, for very small reservoirs the
additional value of the long-term forecasts is also small because the possibilities of the
system to smooth the inflows are restricted. Thus, the relative additional value of the
long-term forecasts is the highest for the mid-size reservoir systems but is in any case
decreased by 3% and in the River Kymijoki system by 0.6% if historical daily
averages were used as forecasts (“no forecasts’) instead of perfect inflow forecasts. At
the same time, flood and drought problems increased significantly.
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Also the effect of the update frequency on the results was studied by using the case
study of Lake Pyhgjarvi. It was shown that the value of the forecasts is dependent on
the update frequency of the forecasts (Figure 40). This is true especially if the update
frequency is sparse and the forecast period is short. If a long lead-time is used, the
effect diminishes. In the case study of Lake Pyhgarvi, the effect of the update
frequency had more influence on the water level and release violations than on
hydropower production. The effect of lengthening the update frequency on
hydropower production is insignificant if perfect forecast are used. By using the error
0=0.5, hydropower production decreases by 1-2% if the update frequency is
lengthened from 15 to 30 days. The effect is larger if the number of violations of the
regrictions is studied. The effect is probably even more significant for the systems
with smaller live capacities (e.g. River Kymijoki).

This result can also be seen as an evidence of the importance of using up to date
information and observations in inflow forecasting. In Finland, especially during
winters, some of the hydrologic data, useful in forecasting, are measured and updated
approximately twice a month. For example, ground water levels and snow water
equivalents are measured by using this frequency unless some special need or unusual
hydrological conditions occur. In this study, the update frequency of the forecasts was
set to 15 days. Thisis along time, if the value of the short-term flood forecasts was
studied. In long-term forecasting, however, it is rare that any significant new
information, valuable for long-term forecasting, would occur more often than once in
15 days.

The aforementioned results were based on solving a deterministic problem where
inflow | was assumed to be known. Also the stochastic problem was solved in the
period from 5-6 months was small. The values of the objective function were slightly
better compared with the results related to the deterministic problem if forecast errors
were small. Hydroelectric power production decreased at the same time as the flood
and drought problems decreased. Compared with the chosen “optimal operation”, the
use of short and inaccurate forecasts can decrease hydropower production up to 18%.
The additional value of the longer forecastsislost if forecasts of about 3-6 months are
used (depending on the initial accuracy) and the forecast accuracy decreases at the
same time. Some of the issues related to the sensitivity and reliability of the study
method and thus the results are discussed in the following chapters.

452.1 Artificial forecasts

The artificial forecast error was calculated based on the observed inflow volume of
the forecast period (Equation 4-2). The absolute forecast error was then uniformly
divided for the whole period. The approach is straightforward but at least three
problems are related to it. Firstly, instead of dividing the error uniformly for the whole
period, it would also have been possible to presume that the errors of the daily
discharges would increase as the distance from the forecast date increases. In addition,
if there are both dry and wet periods within the forecast period, the chosen approach
will cause events where relatively larger forecast errors are generated for the dry
periods than for the wet ones. The effects of the chosen approach on the results can
only be guessed. Intuitively, forecast errors are smaller just after the forecast date
when compared with errors in the daily forecasts up to six months ahead. However,
there is no way to divide the errors objectively by using this approach either and thus
the decreasing accuracy of the forecasts with respect to the forecast length was not
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taken into account. If a monthly time step had been used, these kinds of assumptions
would not have been needed. On the other hand, by using a daily time-step it was
possible to get more information about the system. Probably, the chosen approach
improves the operation of the system and thus the results concerning the inaccurate
forecasts. This is especialy true for the lakes with a small live capacity, as no large,
sudden errors exist in the inflow forecasts. On the other hand, the short update
frequency of the forecasts might soften the effect; at least unless the largest errors
occur during the first 15 days.

Secondly, the chosen approach leads to a situation where the timing of the
forthcoming flood and drought periods is known: forecasts were inaccurate only
concerning the volume of the inflows. This might affect the results especialy for the
case study of River Kymijoki because of the small live capacity of the system.
Especially Lake Pyhgéarvi in litti would suffer from the mistiming of the forthcoming
floods, even if the inflow sum forecasts were perfect. Thisis due to the small capacity
of the lake compared with its average inflow. In the case study of Lake Pyhgarvi in
Sakyl§, the effect would probably not be as critical because of the large live capacity.
Also the high update frequency of the forecasts decreases the effect of mistiming the
floods on the results in the approach used in this study.

Thirdly, by using different values for o, the artificially generated, absolute forecast
errors (Mm?®) are lower for the periods of low flow compared with flood seasons. This
means that no floods are forecast for the periods where the observed inflows are low.
On the other hand, it is possible to forecast drought for a high flow period. If ¢ is
relatively small in the Equation 4-2, this is not a serious problem. For large o, thisisa
drawback, however. The same problem was already noticed when ¢ was used as a
goodness-of-fit criterion in the evaluation of the new forecast model developed in
Chapter 3.

Lateral inflows to the system downstream of Lake Péijdnne were considered to be
perfectly known. In reality, forecasts of the lateral inflows are inaccurate and it is
possible that the errors cumulate and significantly affect the operation of the system.
This is especially true when a reservoir with a small live capacity such as Lake
Pyhgarvi in litti in the Kymijoki system is considered. The results attained relating
the accuracy of the forecasts and the operation of the River Kymijoki system are thus
somewhat biased. If similar forecasts for the lateral inflows had been used, the results
would probably show the need for even more accurate forecasts in the operation of the
system. The effect cannot be huge, however, because 75% of the discharge in the
outlets of the Kymijoki River system originates from Lake Péijanne. All the above
discussion about the accuracy and the reliability of the results is relevant. Moreover,
the effects are parallel. All the ssimplifications and assumptions have decreased the
effect of the forecast errors on the results especially in the River Kymijoki basin.
Thus, it ispossible that in reality the negative effect of the inaccurate forecasts on the
regulation is stronger than approximated in this study.

452.2 Objective functions

The optimal solution of any model is optimal only with respect to the model itself, not
necessarily with respect to the real system (Loucks and Van Beek, 2005). Also in this
study, subjectively chosen loss functions were used. The results are dependent on this
selection and thus, precise conclusions should be avoided. For example, both reservoir
systems could probably be operated more efficiently with respect to hydropower
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production if the whole live capacity could be utilised through the year without any
objective water levels. In practice, water level limits decrease the live capacity of the
system.

The basis for the selection of the loss functions was the current operation policy of the
system. The objective water levels were set on the basis of the recent studies on River
The absolute water level limits are set in the regulation licenses except for the lower
water level limit in Lake Ruotsalainen and limits in Lake Paijanne. These limits were
subjectively set. In the case study of River Kymijoki, the loss functions were similar
for each of the lakes. By putting more weight on the water level violations in Lake
Paijanne, the flood and drought problems downstream had probably been larger. Now,
the capacity of Lake Paijanne was used to avoid larger water level violations
downstream.

The objective water levels were set for the 1% and the 15" of each month. At the same
time, an update frequency of 15 days was used for the forecasts. Thus, during the
simulation period the forecast dates varied between, for example, the first, tenth or,
say 28" of any month. As a consequence, the objective water levels are not a exactly
the same spot for every optimisation problem, and sometimes only a single objective
water level fals into the period of 30 days. If the forecast period is long, the effect on
the results is insignificant, but for the short forecast lengths, it might underline the
importance of hydropower production by using the maximum capacity of the
hydropower plants at the expense of the water levels of the studied lakes. However,
the most relevant results are related to the longer forecasts and therefore, this
drawback is not considered that significant.

In the River Kymijoki basin, the financial costs caused by the high water levels have
been studied (Eskola, 1999). The financial losses caused by floods for agriculture,
forestry and buildings have been approximated. The curves relating these variables to
the water level limits in the River Kymijoki basin were available, but they were not
used. It is obvious that the whole system is operated much more strictly than on the
basis of purely economic values. The absolute water level limits are obeyed although
the economic losses caused by the violations would not be large.

The price of electricity has recently risen and this increases the financial value of the
inflow forecasts. In this study, constant prices were used and an assumption was made
that all produced electricity can aways be sold immediately at the given price. In
reality, the price of electricity is dependent on the market situation and that should
also be taken into account in the release optimisation. In addition, one of the biggest
benefits of hydropower production is the easy usage of power plants to control the
variations in electricity consumption. Hydropower plants are easily shut down and
turned on again. In this study, the usage of hydropower plants for control is not taken
into account. This is a drawback, but the effects of using hydropower for control
could not be taken into account because the electricity markets were not modelled.
This is aso the reason why the additional value of the inflow forecasts in the light of
non-firm and firm electricity markets was not sudied. As shown by Hamlet et a.
(2002), earlier inflow forecasts can increase the possibility of making non-firm
electricity delivery deals with a large additional economical value for hydropower
companies.

The efficiency factors of the power plants were set constant in the study. Constant
values were also used for the heads of the different plants except for the V uolenkoski
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power plant. Hence, the need for hydraulic models was avoided. If these were taken
into account, it is probable that slightly higher water levels would have been aimed at
especidly in the case study of Lake Pyhgjarvi. It is reasonable to assume that neither
of these simplifications has affected the general results. This is supported by the fact
that by using the observed release sequences, the hydropower production of the
simulation model was close to the production reported by the power companies.

Theresults are analysed only in the light of the water level and release limit violations
and hydroelectric power production. Ecological aspects such as breeding of fishes and
nesting of birds are not studied in detail. It is supposed that the objective water levels
that are set to take into account these matters, guarantee a good state of the lakes for
breeding of different species. It is possible, however, that large forecast errors
occurring in springtime may cause severe problems for nesting of birds although only
occasional violations of the water level limits would occur. The value of the inflow
forecasts for different seasons was not studied separately. For example, it might be
reasonable to use longer forecasts for the seasons with a low inflow because the live
capacity of the lake is larger compared with the average inflow of the period in
guestion.

Despite the limitations and simplifications of the methodology discussed in the
previous chapters, the results are in line with the outcomes of similar international
studies. High accuracy of forecasts should be aimed at if reservoirs are small
compared with annual inflow (Lake Paijanne). With large reservoirs, long-term
Similar conclusions have been presented in the studies of Kim and Palmer (1997) and
Takeuchi and Sivaarthitkul (1995).

4.5.3 Utilization of theresults

The results of the two parts of this study can be combined. The usability of the new
model in real time forecasting can be evaluated based on the results of the second part
of this study. It was shown that if the distribution of the relative forecast errorsis too
wide, forecasts should not be used. Although in the first part of the study the forecasts
were made for periods as long as six months, it was discovered in the second part that
in the optimal operation of the River Kymijoki system only forecasts of lead-times up
to 2-3 months are necessary. It is, however, of hydrologic interest to analyse the
possibilities to forecast as far as six months ahead in these study basins. The accuracy
of the new model for forecasting a period of three months ahead was about ¢=0.16
(16%) on April 1 and 6=0.2 (20%) on October 1 and for forecasting a period of two
months ahead about the same. These figures can be compared with the results in
Figure 44, Table 43 and Table 44. The optimal forecast length for operation of the
system by using forecasts of this accuracy is about 2-3 months. If compared with the
optimal operation (4 months of perfect forecasts available), the use of the forecast
model with this accuracy would cause losses less than 1% in hydropower production
annually. Neither would the number of absolute water level violations increase
dramatically, compared with the optimal operation. An improvement in the accuracy
of the inflow forecasts from ¢=0.2 to ¢=0.1 in Lake Paijanne (a;=0.0) would increase
hydropower production by about 0.6% (6.0 GWh annually) in the River Kymijoki
basin.

In Lake Pyhdjarvi the accuracy of the model was at best about ¢=0.5 on April 1 and
closeto 6=1.0 on October 1, although these figures were dightly unreliable because of



140

a few large errors. The optimal forecast length by using this kind of forecast would
still be around 5-6 months. However, the losses in hydropower production caused by
inaccurate forecast could be as much as 10%. By improving the forecast accuracy in
Lake Pyhgjérvi from ¢=0.5 to ¢=0.3, hydropower production would increase about 2-
3%.

Because the value of the inflow forecasts is dependent on the characteristics of the
reservoirs, the usability of the forecasts models should not be evaluated purely based
on the goodness-of-fit criteria. Also the system for which the forecast model is
planned should be presented. For a very large reservoir, indicative forecasts are
adequate and neither the maintenance of expensive forecast systems nor the expensive
projects aiming at improvements in forecast accuracy is justified if the expected
improvement in accuracy is small. For example, amodel can be sufficiently good with
alow value of R? if long-term forecasts are used and the target system has a large live
capacity. An approach given in this study would be valuable in approximating the
usefulness of the forecast model.

In Finland, the live capacities of the regulated lakes are relatively small. In some of
the rivers that are most vulnerable to floods (e.g. River Kyronjoki), the live capacity is
only about 5% of the annual discharge. Normally, the live capacities of the
watercourses are less than 100% of the annual runoff. The live capacities of the two
most important Finnish rivers for hydroelectric power production, River Kemijoki and
River Oulujoki, are around 40% and 60% of the annual discharge downstream,
respectively. In 2005, a report was published on the possibilities to increase
hydropower production in Finland (The Ministry of Trade and Industry, 2005). The
potential energy lost as spill was approximated to be as much as 750 GWh annually.
The potential increase in hydropower production by improving the accuracy of the
inflow forecasts and thereupon regulation was not discussed. The issue was also
ignored in the latest report on the possibilities to increase hydropower production in
Finland (Oy Vesirakentgja, 2008)

Let us assume that the results of the study could be generalized. By using a
conservative approximation that the results of the River Kymijoki system are valid all
over Finland, it might be possible to increase hydroelectric power production by a
minimum of 90 GWh (0.7%-13000 GWh) annually, if perfect inflow forecasts were
available. Because the live capacities of the most important lake-river systems in
Finland are larger than the live capacity of the River Kymijoki system, and because
the whole outflow of Lake Péijdnne can not be regulated, the additional value of a
perfect forecast would probably be at least few percentages. In Lake Pyhgjarvi, where
the live capacity is 57% of the annual inflow, it was approximated to be as much as
9%. Thus, the percentage might be as large as 5%. This would increase hydropower
production by about 650 GWh annually. Thus it is possible that a great part of the
spillage might be avoided without updating the regulation licenses if the accuracy of
the long-term forecasts could be improved. At the same time flood and drought
problems would decrease.

In reality, perfect forecasts are a utopia, and thus the potential increase in hydropower
production by improving forecast accuracy lies below these approximations. As a
matter of fact, improvement in accuracy is very difficult to achieve. As the case
studies showed, the improvement in forecast accuracy in Lake Paijanne, for example,
from ¢=0.2 to 6=0.1 would benefit hydropower production in River Kymijoki system
by about 0.6 % annually. In Lake Pyhgjarvi, the improvement in forecast accuracy, for
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example, from ¢=0.5 to ¢=0.3 would benefit hydropower production by about 2-3%
annually. Thus if this is the accuracy of the current real-time forecast models, the
possibilities of improving hydropower production in Finland by improving forecast
accuracy might be as much as 0.5-2% (65 GWh-260 GWh). At the same time, flood
and drought problems would, of course, decrease. These figures can be compared with
approximations of the increase in production if the man-made reservoir in Vuotos in
the River Kemijoki basin or the reservoir in Kollgja in the River lijoki basin were
built. The potential production increase based on the Vuotos reservoir is 325 GWh/a
and on the Kollgja reservoir 200 GWh/a (Oy Vesirakentaja, 2008). Thus the
possibilities for improving the forecast accuracy and operation policies should be
further studied.
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5 Conclusions
The main findings of the study can be summarised in the following points:

1. A non-parametric, long-term categorical discharge forecast model was
developed. The analysis of forecast accuracy shows that the model is
comparable with linear regression equations. This was true especialy in
forecasting the inflows to Lake Paijanne. For small basins and L ake Pyhgjarvi,
the forecast accuracy of the model was modest on April 1 and poor on October
1.

2. Thefirst effort was made for utilising indices of North Atlantic Oscillation for
long-term inflow forecasting in Finland. Although the indices were finally
utilised only in a single forecast model, significant correlation coefficients
were found between NAO indices and the inflows of Lake Paijanne of a
different length starting from April 1. Thus, further studies are needed.

3. In real-time operation of lake-river systems, the forecast length should be
carefully selected. The use of too short forecasts causes losses compared with
optimal operation even if perfect forecasts are available. On the other hand,
the use of a lead-time of several months may cause losses compared with the
use of shorter forecasts if the forecast accuracy is weak. Thus, the optimal
forecast length is dependent on forecast accuracy.

4. The dependence between the accuracy of the forecasts and the benefits of the
forecasts were studied for the first time in Finland. The results are in line with
the outcomes of similar international studies. For large reservoirs, long-term
forecasts should be utilised without giving too much a focus on the accuracy.
On the other hand, for reservoirs that are small compared with the annual
inflow, short forecasts with high accuracy should be aimed at. In Lake
Pyhgarvi this meant that inflow forecasts exceeding a lead-time of 5-6 months
give very little additional value for the operation. In Lake Paijanne, this
threshold was approximately 2-3 months.

5. In real-time forecasting, long-term forecasts should be updated regularly
hydropower production by using an update frequency of 30 days compared
with that of 15 days can be 1-2% if inaccurate forecasts are used. The losses
are even more significant when water levels and release violation are taken
into account.

6. It was estimated that by using existing regulation licenses, the maximum
increase in hydropower production in Finland by improving forecast accuracy
and by using sufficiently long forecasts might be as much as 0.5-2%.

7. In the River Kymijoki system, it would be possible to increase the overall
electricity production by optimising the whole system at the same time instead
of trying to maximise the production of the individual plants separately. The
operation of the whole as an entity system would cause larger spring
drawdowns especially in Lake Konnivesi-Ruotsalainen compared with the
present situation.

8. Simulated annealing is a flexible optimisation algorithm for the operaion of a
lake-river system. Nonlinear cost functions are easily adapted and it is not
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necessary to discretise the model. The high computational burden of the
algorithm is not a problem because of the increased computational efficiency
of computers. The results of the parallel runs in both of the case studies were
equal or almost equal and were intuitively logical. Thus despite the heuristic
nature of the algorithm it can be considered reliable.
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6 Summary

This thesis aimed to improve knowledge of long-term inflow and streamflow forecasts
in Finland. The study consists of two main parts. In the first part, a new type of index
variable method for long-term inflow forecasting was developed and evaluated. In the
second part, the value of long-term inflow forecasts was studied in general. The first
specific objective of the study was to develop a long-term discharge forecast model
that uses pattern recognition as an aid and does not use weather forecasts as input. The
k-nearest neighbour rule and the minimum distance classifier were used to classify a
forthcoming period into a wetness class based on the feature vector combined of the
hydrologic observations from the basin. The accuracy of the model was studied in
four case studies on two different dates. It was found that the accuracy of the method
was comparable with the accuracy of the linear regression models, but with a simpler
model structure.

The second and third specific objectives were addressed by studying two case studies,
reservoir system, River Kymijoki. The aim was to determine the reasonable inflow
forecast length in Finnish conditions and to identify the characteristics affecting this
length. In addition, the aim was to assess the economic value of the long-term inflow
forecasts and how this value depends on the forecast length, accuracy and update
frequency. Moreover, the goal was to determine at which point the increasing errors
of the forecasts overtake the additional value of the longer forecasts. In Chapter 4 it
using forecasts of a lead-time from 3 to 12 months depending on the forecast accuracy
(Figure 38). In Lake Péaijanne, this length was shorter, no more than 1-3 months
while it is only about 25% in the River Kymijoki system. This is the most important
reason for the differences in the optimal forecast lengths of the systems. In Lake

time of 90 days or more are used and the forecast accuracy decreases significantly as
the forecast period is lengthened. In Lake Paijanne, the additional value of longer
forecasts is lost if the forecast accuracy decreases. This phenomenon is not dependent
on the forecast length. In real-time operation, forecasts and planned operation should
be updated regularly enough. It was shown that by lengthening the update frequency
1-2% and the number of violations would increase by about 20%, if the accuracy of
the forecasts is around ¢=0.5.

The increase in hydroelectric power production is 3.1% if perfect forecasts of a lead-
average inflows as forecasts and a lead-time of 90 days. Similarly it is 0.6% in the
River Kymijoki system (120 days perfect vs. 90 historical averages). At the same
time, the flood and drought problems decrease more significantly.

The fourth specific objective of the study was to gpproximate the realistic possibilities
of increasing hydroelectric power production in Finland only by improving the
accuracy of the long-term inflow forecasts. By studying the live capacities of the most
important lake-river systems for hydropower production and comparing these with the

realistic possibilities of increasing hydroelectric power production in Finland by
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improving forecast accuracy might be as much as 0.5-2% (65 GWh-260 GWh
annually).

The fifth specific objective was to assess the possibilities of simulated annealing in
optimisation of the lake-river systems. By using the algorithm in the aforementioned
studies it was found out that the algorithm is very flexible and because of the
increased computer capacity it is a respectable option for the optimisation algorithm
in complicated optimisation problems.

Finally, the usability of the new forecast model, developed in the first part of the
study, in real-time forecasting was evaluated by combining the two parts of the study.
The method used for evaluating the long-term inflow forecasts is well suited for
analysing the usefulness of the forecast model. It was concluded that the forecasts for
however, the accuracy of the model was poor outside the snowmelt season. However,
because of the large live capacity of the lake, the consequences of poor forecasts are
not as crucial as they would be in the River Kymijoki system.
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APPENDIX A. A map of the sub-basinsnorth from Lake Paijanne
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Figure A-1.1. A map of the River Kymijoki basin north from L ake Péijanne. Sub-basin outlets
are pointed out by arrows.
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APPENDIX B. Correlation matrix for Lake Paijanneon April 1
B-1 Correlation matrix on April 1 between the hydrologic variables in the basin and forthcoming accumulated inflow to Lake Paijanne.

S - 5 & I : :
e o o S e o 2 = = s

Qupr 1.00
Qupr-viay 0.85  1.00
Qapr-sun 070 096  1.00
Qupr-aul 061 089 0098 1.00
Qupraug 055 084  0.94 099  1.00
Qupr-sep 050 079  0.90 096 099  1.00
ZPaug-sep 022 030 035 035 037 038  1.00
Wciijary 033 018 0.5 012 012 013 017  1.00
Wiceitele 066 050 045 038 034 030 046 054  1.00
Waaarijary 050 041  0.38 030 024 019 009 044 044  1.00
Wiimasjarv 009 003  0.09 013 025 034 055 002 009 012  1.00
Weiclavesi 070 071  0.70 066 062 059 042 044 080 045  0.14
Wiconneves 060 058 057 052 048 045 053 049 083 036 0.8
Woeppavesi 059 045 037 030 023 018 025 062 060 061  0.07
Woesijany 060 044 036 027 020 015 024 059 076 056  -0.27
ASWE1 025 046 052 057 060 061 018 -018 002 -0.28 -0.04
ASWE2 011 033  0.39 045 049 051 013 -028 -019 -0.30  -0.06
GWoicksamaid 069 052 041  -032 024 -020 -024 056 071 052 0.3
GWoadasiok 060 042 037  -033 029 -024 -020 -045 072 -0.84 -0.01
GWajaia 047 046 044 037 031 026 051 048 063 032  0.10
GWoehkoo 051 040  0.35 026 021 020 034 034 081 047  0.26
GWinutiala 075 063 055 045 037 030 024 048 078 059  -0.22
GWiaakiima 061 056 053 048 043 041 057 033 087 035 021
NAOpec-reb 038 028  0.26 027 028 027 027 040 040 028  -0.45

2Q2psijanne 0.75 0.63 0.56 0.51 0.47 0.44 0.33 0.56 0.89 0.60 0.10



B-2. Correlation matrix on April 1 in Lake Padijanne (cont.)

B-2

7 g B s — N g s E: g 3 £ 3 £
a e g = n ) T S = = z @] o
2 = 2 = < < % % o 5 5 % < 9

WPieIavesi 1.00

Wckonnevesi 0.94 1.00

W eppavesi 0.63 0.57 1.00

Whesijarvi 0.70 0.67 0.64 1.00

ASWE1 0.10 0.05 -0.15 -0.14 1.00

ASWE2 -0.04 -0.12 -0.28 -0.29 0.86 1.00

GWhieksamaki -0.69 -0.68 -0.65 -0.88 0.10 0.25 1.00

GWhadasjoki -0.71 -0.64 -0.70 -0.83 0.17 0.31 0.59 1.00

GWiijaia 0.64 0.71 0.57 0.30 0.02 -0.08 -042 -045 1.00

GWvyehkoo 0.75 0.77 0.46 0.66 -0.10 -0.30 -0.75 -0.69 0.53 1.00

GWyutkala 0.71 0.71 0.61 0.87 -0.02 -0.16 -0.90 -0.77 031 069 1.00

GWhyiaakkima 0.87 0.89 0.45 0.66 0.12 0.01 -0.72 -057 046 081 0.72 1.00

NAODpec.-Feb 0.25 0.16 0.30 0.48 0.03 -0.02 -0.37 -0.37 0.18 0.24 042 035 1.00

ZQ2psijanne 0.85 0.82 0.76 0.81 -0.02 -020 -0.78 -0.87 061 078 086 0.80 026 1.00



APPENDIX C. Correlation matrix for Lake Paijanne on October 1.
C-1 Correlation matrix on October 1 between the hydrologic variables in the basin and forthcoming accumulated inflow to Lake Paijanne.

© c o© © o© o
Qoct 1.00
QOct—Nov 0.98 1.00
QOct—Dec 0.95 0.99 1.00
QOct—Jan 0.93 0.97 1.00 1.00
Qoct-Feb 092 096 099 1.00 1.00
Qoct-Mar 090 095 098 099 1.00 1.00
2Q2psijanne 0.91 0.87 0.82 0.80 0.79 0.77
ZQ2psijanne 0.91 0.86 0.82 0.80 0.79 0.77
ZPMay-sep 0.86 0.84 0.79 0.77 0.76 0.75
Weivijarvi 0.72 0.68 0.65 0.64 0.64 0.64
Weeitele 0.84 0.80 0.75 0.73 0.71 0.69
Wsaarijarvi 0.33 0.33 0.27 0.24 0.23 0.23
Weiiimasjarvi 0.19 0.22 0.19 0.17 0.15 0.17
Whiglavesi 0.85 0.83 0.81 0.80 0.79 0.78
Weonnevesi 0.89 0.85 0.81 0.80 0.79 0.77
Wi eppavesi 0.93 0.90 0.86 0.84 0.83 0.81
Wesijarvi 0.65 0.60 0.52 0.49 0.47 0.44
GWhjjaia 0.50 0.47 0.41 0.37 0.34 0.32
GWwutkala 0.75 0.72 0.67 0.64 0.63 0.63
GWovehkoo 0.59 0.60 0.60 0.59 0.58 0.57
GWhaakkima 0.79 0.76 0.72 0.70 0.70 0.70
GWhieksamaki -0.49 -0.48 -044 -0.40 -0.38 -0.34
GWhpadasjoki -0.60 -0.59 -056 -0.53 -0.50 -0.49

NAO;yi-sep 0.16 0.16 0.15 0.16 0.16 0.16



C-2 Correlation matrix on October 1 in Lake Paijanne (cont.)

S g9 & = = £ £ 5 £ 5 = © 5 & F 3z 7 £

ZQZPaijanne 1.00

ZQ4Paijanne 0.98 1.00

ZPvay-sep 0.86 0.85 1.00

WKivijaWi 0.74 0.74 0.79 1.00

WKeitele 0.88 0.89 0.87 0.82 1.00

WSaarijarvi 0.34 0.33 0.49 0.39 0.37 1.00

WKiimasjarvi 0.23 0.23 0.43 0.33 0.29 0.01 1.00

Wpie|avesi 0.86 0.87 0.86 0.71 0.87 0.45 0.20 1.00

WKonnevesi 0.91 0.92 0.86 0.70 0.87 0.47 0.12 0.90 1.00

W,_eppavesi 0.95 0.95 0.84 0.72 0.90 0.23 0.35 0.87 0.90 1.00

W\/esijawi 0.66 0.66 0.57 0.58 0.58 0.38 0.16 0.57 0.66 0.57 1.00

GWAiJ-é-ﬂé-l 0.62 0.61 0.51 0.39 0.62 0.34 0.33 0.55 0.54 0.50 0.28 1.00

GW,\,Iutkala 0.74 0.73 0.76 0.64 0.66 0.50 0.08 0.67 0.72 0.62 0.70 0.53 1.00

GWVehkoo 0.68 0.72 0.61 0.58 0.61 0.18 0.45 0.49 0.57 0.62 0.64 0.48 0.59 1.00

GWNaakkima 0.75 0.73 0.72 0.71 0.73 0.31 0.36 0.62 0.76 0.72 0.54 0.29 0.50 0.39 1.00

GWPieksamaki -0.48 -0.49 -0.62 -0.37 -0.30 -0.29 -0.47 -0.32 -0.37 -0.52 -0.60 0.23 -0.67 -0.35 -0.59 1.00

GWPadasjoki -0.64 -0.65 -0.51 -0.54 -0.50 -0.02 -0.30 -0.40 -0.55 -0.47 -0.71 -0.05 -0.71 -0.61 -0.49 0.59 1.00
0.17 0.14 0.10 0.07 0.09 0.06 -0.09 0.03 0.12 0.12 0.16 0.22 0.22 0.36 0.13 0.13 -0.04 1.00

NAOJuI-Sep



APPENDIX D. Correlation matrix for Ruunapuro on April 1.
D-1. Correlation matrix for Ruunapuro on April 1.

D-1

< s 5 3 5 5 = S 3 < = <
©° s & 6 5 & 2 & & § §F & &
W

Qapr 1.00

QApr—May 0.49 1.00

Qapr-aun 0.40 0.94 1.00

Qapr-aul 0.31 0.85 0.95 1.00

Qapr-aug 0.21 0.70 0.83 0.94 1.00

Qapr-sep 0.15 0.61 0.75 0.87 0.97 1.00

ASWE 0.15 0.59 0.62 0.68 0.66 0.62 1.00

Friiela 0.41 0.43 0.37 0.31 0.35 0.32 0.12 1.00

Freorest 0.40 0.45 0.30 0.20 0.17 0.13 -0.00 0.74 1.00

ZQ2ruunapuro 0.18 0.03 -0.04 -0.03 0.07 0.06 -0.32 0.39 0.27 1.00

GWhjjaia 0.12 0.21 0.17 0.07 0.08 0.08 -0.33 0.46 0.42 0.29 1.00

ZPaug-oct 0.02 0.20 0.19 0.20 0.25 0.27 0.10 0.20 0.01 0.14 0.57 1.00

SMaijala 063 -0.26 -040 -0.39 -0.37 -0.45 -0.38 0.13 0.20 046 -0.04 -0.58 1.00




APPENDIX E. Correlation matrix for Heingjoki on April 1

E-1. Correlation matrix for Heingjoki on April 1

E-1

s g E 3 EH g = £ g H H e §,
§ i ¢ i i it oz P oI o: i3
o o o o o < w o o o &
W W
Qupr 1.00
QApr—May 0.38 1.00
Qapr-aun 0.27 0.93 1.00
Qapr-aul 0.19 0.86 0.95 1.00
Qapr-aug 0.09 0.67 0.84 0.93 1.00
Qapr-sep 0.06 0.59 0.77 0.86 0.98 1.00
ASWE 0.24 0.72 0.71 0.71 0.63 0.61 1.00
Friield -0.06 0.11 0.09 0.04 0.05 0.01 0.07 1.00
Friorest 0.04 0.19 0.08 0.02 -0.03 -0.09 0.14 0.86 1.00
ZQ2heingjoki 0.29 0.04 -0.03 -0.08 -0.04 -0.05 -0.26 0.27 0.30 1.00
ZQ2heingjoki 0.28 0.04 -0.02 -0.06 -0.01 -0.02 -0.25 0.26 0.29 0.96 1.00
GWoyehkoo 0.12 -0.04 -0.04 -0.17 -0.07 -0.04 -0.28 0.57 0.31 0.52 0.57 1.00
2P aug-oct 0.10 0.11 0.16 0.09 0.10 0.08 -0.14 0.08 0.04 -0.02 -0.05 0.33 1.00




APPENDIX F. Examplesof theinflow forecasts for Lake Paijanne on April 1.

I dos-10 " I das-10
r Bnv-T0 . - Bny-T0
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Figure F-1.1. Forecastsfor different lead timeson April 1 for 1977 using the models shown in
Table7. Darker lineindicates the observation and lighter (dashed line€) indicates the forecast.
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Figure F-1.2. Forecastsfor different lead timeson April 1 for 1982 using the models shown in
Table7. Darker lineindicates the observation and lighter (dashed line€) indicates the forecast.
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Figure F-2.1. Forecastsfor different lead timeson April 1 for 1984 using the models shown in
Table7. Darker lineindicates the observation and lighter (dashed line€) indicates the forecast.
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Figure F-2.2. Forecastsfor different lead timeson April 1 for 1991 using the models shown in
Table7. Darker lineindicates the observation and lighter (dashed line€) indicates the forecast.
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Figure F-3.1. Forecastsfor different lead timeson April 1 for 1992 using the models shown in
Table7. Darker lineindicates the observation and lighter (dashed line€) indicates the forecast.
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Figure F-3.2. Forecastsfor different lead timeson April 1 for 1993 using the models shown in
Table7. Darker lineindicates the observation and lighter (dashed line€) indicates the forecast.
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APPENDI X G. Dependence between forecast accuracy and length and number
of violationsin regulation of L ake Pyh&jarvi.

Forecast | Accuracy | NwassL NwABSU Ng NwogJ nyo. | Percentage
length of the increase of ny,oL
[d] forecast compared with
o the case of 360
days’ perfect
forecasts

360 0 0 0 146 212 358 0
90 average 98 335 907 451 1791 401
120 average 35 334 771 434 1574 340
30 0 408 30 990 524 1952 446
30 0.1 413 40 1005 517 1974 452
30 0.3 438 84 1037 501 2059 476
30 0.5 450 116 1061 492 2118 492
30 1 483 189 1265 498 2434 581
60 0 12 0 1013 345 1370 283
60 0.1 9 7 1032 338 1386 288
60 0.3 11 19 1076 335 1441 303
60 0.5 21 46 1225 348 1639 358
60 1 75 152 1723 405 2355 558
90 0 0 0 823 264 1088 204
90 0.1 0 4 861 261 1126 215
90 0.3 0 7 957 266 1231 244
90 0.5 0 22 1141 291 1455 307
90 1 39 140 1855 372 2406 573
120 0 0 0 667 239 906 153
120 0.1 0 4 708 237 949 165
120 0.3 0 11 844 237 1092 205
120 0.5 0 32 1080 264 1376 285
120 1 41 93 1924 348 2406 573
150 0 0 0 595 224 819 129
150 0.1 0 1 652 222 876 145
150 0.3 0 7 821 230 1059 196
150 0.5 5 22 1106 259 1392 289
150 1 31 94 2022 338 2484 594
180 0 0 0 538 217 755 111
180 0.1 0 3 559 213 775 117
180 0.3 5 6 765 228 1004 181
180 0.5 1 32 1092 257 1381 286
180 1 47 112 2130 338 2628 635
270 0 0 0 275 217 492 38
270 0.1 0 1 287 220 507 42
270 0.3 3 7 651 229 889 149
270 0.5 1 44 1187 262 1494 318
270 1 32 124 2480 355 2992 737
360 0 0 0 146 212 358 0
360 0.1 0 2 231 218 450 26
360 0.3 0 8 506 225 738 106
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