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ABSTRACT 

Landscapes can influence natural resource values and management in a variety of 

ways. These diverse influences can be generated by biophysical or social systems, or 

interactions between systems. This dissertation examines the landscape determinants of 

natural resource values and management. 

Chapter 2 examines moose habitat preferences with a spatial discrete-choice 

model. The study tests for spatial autocorrelation and compares the results to results from 

nonspatial models. The objective of this analysis is to explore the human-based and 

naturally occurring determinants of moose habitat selection while presenting a method 

and example for addressing spatial correlation between spatially positioned alternatives in 

a discrete-choice study. The results provide a number of insights into the seasonal habitat 

preferences of Alaskan moose. The significance of the estimated spatial dependence 

parameter suggests that accommodating spatial dependence across habitat alternatives is 
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an important consideration in resource selection studies. Application of this modeling 

framework to natural resource economics is discussed. 

The third chapter examines demand for forest recreation in a National Forest 

between 2005 and 2010 with a spatial travel cost model that accounts for landscape 

effects associated with an individual’s home residence. Willingness to pay for access to 

the forest declined in real terms between 2005 and 2010. This decline is likely related to 

shifts in the typical mix of activities that draw visitors to the forest and changes in forest 

quality. The models produce significant estimated spatial dependence parameters, 

indicating that origin-based spatial dependence is an important consideration for 

recreation demand modeling.  

Chapter 4 examines optimal population control of wild horses in the American 

West across two spatial scales.  Removal and fertility control scenarios were simulated 

and compared in terms of economic benefits and characteristics of the optimal population 

and management time-paths. The benefits of removal-only management exceeded the 

benefits of population management using only fertility control. However, fertility control 

of a fixed proportion of the population increased the net benefits of removal management 

in some cases.  The results also suggest that increasing the Bureau of Land Management 

resources devoted to horse gathers could substantially improve the effectiveness of 

fertility control management.  
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Chapter 1:  Introduction 

 

 

1.1   Landscapes and Natural Resources 

 Natural resources come in many forms, ranging from extractive resources such as 

coal and timber to environmental service resources such as carbon storage and nutrient 

cycling. Natural resources are by definition formed through biophysical processes but 

human systems largely govern their value, use, and management. Natural resources are 

often located in a specific area or associated with some spatial distribution, and thus are 

associated with a specific natural and human landscape.  

 By the most common definition a landscape comprises the visible features 

characterizing an area of land including landforms, vegetation, and the human-built 

environment. Landscapes are defined more generally in this work to include the 

surrounding socio-economic and cultural environment as well. 

 Several factors indicate that the topic of this dissertation, the influence of 

landscape on natural resources, is ripe for research.  First, this line of research is 

consistent with a systems-based approach to management focusing on interactions among 

biophysical and human processes. A systems approach permits a more holistic evaluation 

of resource management alternatives, including interactions and feedback loops. Second, 

economically efficient allocation of management resources requires an understanding of 

how landscape characteristics influence natural resource values and processes. This 

knowledge is also necessary for crafting effective conservation and utilization policies for 

natural resources. Third, technological change in the form of advancing capabilities of 
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GIS programs, increasing availability of geospatial data, and faster computer processing, 

continues to expand the tools available for modeling spatially heterogeneous and 

interconnected systems. Additional progress is still welcome in this area as estimating 

spatial models with discrete dependent variables remains computationally cumbersome 

with larger sample sizes.  

 There are two overarching research objectives of this dissertation. First, the 

studies contained within this dissertation investigate how landscape influences natural 

resource values, and appropriate management. The second objective is to demonstrate the 

application of spatial econometric models with discrete dependent variables to issues in 

natural resource economics.  

1.2   Mechanisms of Landscape Influence 

 Landscapes influence the management of natural resources through a number of 

pathways. In-situ natural landscape features, for example, can serve as substitutes or 

compliments to natural resources. Alternatively, terrain and land cover may influence the 

accessibility of natural resources for use. Stationary human-built landscape features, such 

as roads, structures, and dams also influence the value and accessibility of natural 

resources. Another pathway through which natural resources are influenced is landscape 

disturbances. These include disturbances caused by human activities, such as pollution 

and land development, and naturally occurring disturbances including weather patterns 

and natural disasters. Natural resources are also influenced by the social and cultural 

landscape. For example, cultures with established social norms are associated with 

improved management of common pool natural resources (Ostrom et al., 1994). The 
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socio-economic landscape, including resident demographics, may also influence natural 

resources values and the local policies that govern their use.  

1.3   Empirical Models for Analyzing Landscape Effects 

 Empirical analysis of georeferenced data requires treatment of two spatial effects: 

spatial dependence and spatial heterogeneity (Anselin, 1988). Spatial dependence is 

related to the tendency of nearby observations to be similar. It is in some ways similar to 

time dependence, which arises when observations occur at similar times, except that 

spatial dependence is multidimensional. The second spatial effect, spatial heterogeneity, 

occurs when a relationship being modeled changes functionally over space. Spatial 

heterogeneity can be partially addressed in nonspatial econometric models by including 

variables that, for each observation, describe landscape membership or characteristics. 

Treatment of spatial dependence is more challenging and requires the use of spatial 

econometric models. These models assume that spatial interdependencies are generated 

by an underlying spatial stochastic process, a family of random variables that are well 

defined according to a predefined joint distribution (Anselin, 1988). Locally covariant 

random fields are spatial stochastic processes that assume spatial dependencies go to zero 

after some threshold distance between observations (Anselin, 1988). 

 The workhorse linear regression models of spatial econometrics include the 

spatial autoregressive model (SAR), the spatial error model (SEM), and the spatial 

autocorrelation model (SAC).  Discussion of these models illustrates the structure and 

source of spatial dependence in spatial econometric models. The SAR model in equation 

1.1 incorporates spatial dependence in the form of a spatially lagged dependent variable. 
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In this situation, the dependent variable at one point is space can depend on the 

explanatory variables associated with a different point in space. Weighting matrix   

(nxn) controls the relative level of spatial dependence between two observations and 

dependence parameter   reflects the overall magnitude of dependence. Common 

specifications of   include inverse distance between paired observations and an indicator 

variable that equals one if paired observations are spatial neighbors.  

                                                                        (1.1) 

Alternatively, the SEM model in equation 1.2 considers spatial error dependence. This 

form of spatial dependence occurs when error observed at one location depends on the 

error at nearby locations. The standard normal random variable   represents latent 

community characteristics such as social capital and culture.  

                                                                          (1.2) 

Because   is unobserved, the vector    becomes imbedded in the error term when    is 

ignored. The SEM model assumes that the latent variable of neighborhood characteristics 

  follows a spatial autoregressive process so that    (     )    , where     (    ) 

is a random vector of disturbances,   is the spatial weighting matrix, and   is a scalar 

spatial dependence parameter. 

 The SAR model unifies spatial error dependence and spatial lag dependence in a 

single model. The typical SAR model estimates a spatial parameter and specifies a spatial 

weighting matrix for both the spatial error and spatial lag dependence structures. 

 The SAR, SEM, and SAC linear regression models serve as a departure point for 

the development of more complex and flexible spatial economic models such as the 
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discrete dependent variable models used in this dissertation. Discrete dependent variable 

models introduce additional complexities in estimation. Specifically, discrete dependent 

variable spatial econometric models often do not produce a closed form solution for the 

likelihood function and simulation techniques are generally required for estimation (e.g. 

Schnier & Felthoven, 2011). However, simulation techniques are computationally 

burdensome and can restrict the size of a usable dataset (Billé & Arbia, 2013; Fleming, 

2004). Another class of discrete dependent variable spatial econometric models produces 

closed form likelihood functions.  Two models with closed-form likelihood functions are 

utilized in this dissertation to examine the influence of landscape on natural resources. 

1.4   Contributions of this Dissertation 

 This dissertation investigates the influence of landscape characteristics on natural 

resources and their appropriate management with three studies from the American West. 

The complex interactions that occur among biophysical and human processes in a 

landscape over time cannot be captured in a single comprehensive model. Instead, the 

analyses in this dissertation extend established models of natural resource management to 

consider the influence of landscape. Each analysis focuses on different natural resources 

and mechanisms of landscape influence. The three studies, contained in Chapters 2-4, 

examine moose habitat selection, forest recreation demand, and wild horse population 

management respectively.   

 The analysis presented in Chapter 2 examines Alaskan moose radio collar data 

with spatial econometric techniques to investigate the landscape determinants of moose 

habitat selection. Within the random utility framework, a discrete-choice model was 

developed that frames habitat selection as a choice among alternative habitat patches with 
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heterogeneous attributes.  A unique habitat choice set was derived for each moose by 

imposing a grid over an area defined by the 50% kernel density contour of observed 

moose locations (i.e. core home range). Each grid cell represents a habitat alternative for 

the moose. Repeatedly observing moose choices among heterogeneous alternatives 

reveals moose preferences for landscape features. The natural landscape features 

specified as habitat attributes in model include slope, elevation, and forest cover. The 

proximity of habitat patches to human-built trails and roads is also considered as a 

determinant of habitat selection.   Additionally, the distance between the habitat patch 

where the moose was last seen and alternative patches is included in the model as a 

habitat attribute so that observed choices are conditioned on the animal’s previous 

location. The spatial generalized extreme value (GEV) model of discrete choice 

employed for estimation permits a test of spatial dependence and accommodates flexible 

substitution among adjacent habitat patches. Based on the literature review, this is the 

first discrete-choice habitat selection study to test for and accommodate spatial 

dependence. From a policy perspective, understanding wildlife habitat preferences helps 

land managers asses habitat value based on landscape characteristics. Habitat value 

estimates can then inform lands management policies including use regulations, 

conservation priorities, and development planning. 

  The spatial discrete-choice econometric model employed in Chapter 2 is 

readily applicable to a variety of environmental and natural resource economics contexts. 

These contexts include: 1) recreation demand modeling, 2) examining the landscape 

determinants of migration, and 3) valuing environmental change. With respect to 

recreation demand, the methods in Chapter 2 could test for and accommodate potential 
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spatial dependence among recreation alternatives in a site-choice travel cost model. These 

methods could also account for spatial dependence among migration destination 

alternatives in a gravity model of amenity migration. Finally, there is promise for 

applying these methods to stated choice non-market valuation studies. Specifically, the 

methods in Chapter 2 could be employed to account for spatial dependencies among 

georeferenced environmental alternatives in a choice experiment. 

  Chapter 3 analyzes demand for forest recreation day trips in the front 

range of Colorado with a single-site travel cost model. A count-copula model is 

developed to test for and accommodate origin-based spatial dependence in the data
1
. 

Origin-based spatial dependence in recreation demand is likely related to interactions 

between individuals, unobserved neighborhood characteristics and diffusion effects 

(Sener & Bhat, 2012). Spatial heterogeneity is also addressed in the model through the 

inclusion of zip code income. Mean per-trip willingness to pay for access (WTPA) is 

estimated with 2005 and 2010 data and the welfare results are compared across years. 

The results indicate that WTPA for trips to Roosevelt-Arapahoe National Forest (RANF) 

decreased from 2005 to 2010, although the decrease is statistically insignificant in one of 

the presented specifications. This finding is likely related to changes in forest quality and 

changes in the activity-mix of visitors. The economic downturn may have also played a 

role, although the findings of (Loomis & Keske, 2012) suggest that the recession did not 

significantly influence alpine recreation expenditures in Colorado. The spatial 

determinants of recreation demand are an important for forest managers tasked with 

regulating, monitoring, and maintaining recreation resources at RANF.    

                                                           
1
 As opposed to spatial dependence among recreation alternatives. 
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 Chapter 4 develops and evaluates optimal control models of wild horse population 

management using non-lethal methods. The optimal population paths and net present 

value (NPV) benefits of fertility control and horse removal management methods are 

simulated over a 50-year horizon and then compared to the value of the existing 

management. Scenarios are also considered that combine optimal removal with fixed-

proportion fertility control. Finally, scenarios are simulated that relax model gather 

constraints to investigate the impact of increased available resources for gather efforts.  

Optimal wild horse management is also examined across spatial scales to see how the 

optimal solution is influenced by the scope of management objectives. Specifically, 

separate herd-scale and state-scale models are developed that differ according to their 

specification of gather costs and gather constraints. The simulation results indicate that 

implementing long-term population strategies compared to the short-sighted policies 

currently in place is associated with significant economic benefits. Furthermore, the 

results suggest that increasing BLM gather resources could improve the effectiveness of 

fertility-control population management. This study adds to previous static economic 

analyses of Western horses (Bartholow, 2007; Garrott & Oli, 2013) and the results 

support policy suggestions laid out by the NRC (2013) and Garrott and Oli (2013).  

 The spatial econometric models applied in chapters 2 and 3 permit testing and 

accommodation of spatial dependencies in models with discrete dependent variables. 

Reviews by Fleming (2004) and Billé and Arbia (2013) discuss the estimation 

difficulties
2
 associated with estimating discrete dependent spatial econometric models 

and common techniques to work around these issues. The computationally tractable 

                                                           
2
 Due to the presence of multi-dimensional integrals in the likelihood function 
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spatial modeling techniques used in this dissertation have yet to see extensive use in the 

natural resource economics literature despite the inherently spatial nature of natural 

resource management.  
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Chapter 2:  Flexible substitution and spatial dependence in a discrete-choice model 

of habitat selection 

 

 

2.1   Introduction 

Many decisions made by individual agents include a spatial component. Until 

recently, this dimension of choice had not been given full attention by researchers 

modeling discrete choice. Researchers since have made headway in dealing with the 

spatial elements of choice modeling, but the literature is still thin, in part due to 

difficulties with the computational burden involved in estimating spatial models of 

discrete choice.  

Discrete-choice models are concerned with explaining the determinants of 

observed choices made by individuals among a number of discrete alternatives. Discrete-

choice modeling has been applied to many choice contexts using both stated preference 

and revealed preference data. The migration decisions of American adults have been 

analyzed under this framework (Davies et al., 2001) as well have as the recreational 

choices of teenagers in the San Francisco Bay Area (Sener & Bhat, 2012). Discrete-

choice models also have been applied to habitat selection in animals, the context used for 

the current study.  All three of the discrete-choice models described above involve a 

spatial component, a potential complication for the estimated econometric model. This 

chapter accommodates spatial effects in an ecological discrete-choice model. Accounting 

for spatial correlation offers the potential to improve models of habitat selection that 

serve as valuable tools for wildlife managers.   
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Ecologists study animal habitat selection with individual location data such as 

radio telemetry data. From this data, ecologists may construct resource selection 

functions to investigate the relationship between the ecological characteristics at a 

location and the likelihood of habitat use at that location by a given animal. A variety of 

discrete-choice models has been utilized to investigate animal resource selection.  

Generally, these discrete-choice models characterize habitat selection as a choice among 

habitat patches in a landscape. Studying resource selection is useful for accumulating 

information about the habitat needs of certain organisms. Resource selection models also 

allow for the development of visual wildlife management tools such as habitat suitability 

maps. 

The objective of this analysis is to present a method and example for 

accommodating spatial correlation in discrete-choice resource selection studies. A 

secondary goal is to explore the anthropogenic and naturally occurring determinants of 

resource selection in coastal Alaskan moose. With Kenai moose location data from 2004-

2006, we estimate habitat selection preferences with a spatially explicit discrete-choice 

model, test for spatial autocorrelation, and compare the model with nonspatial methods. 

The results provide a number of insights into the seasonal habitat preferences of tracked 

moose and suggest that accommodating spatial dependence across habitat alternatives is 

an important consideration in resource selection studies.   

2.2   Literature Review 

This chapter is concerned with modeling locational choices made by moose as 

they position themselves across a heterogeneous landscape. Moose habitat choices are 
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inherently a spatial phenomenon. Ignoring spatial effects, this type of multinomial choice 

is commonly modeled with the conditional logit model. A major advantage of the 

conditional logit model is that it provides a closed-form solution for choice probabilities. 

However, conditional logit models impose the strong assumptions of IID, Gumbel 

distributed errors and unobserved response homogeneity. Together, these restrictions 

imply the independence of irrelevant alternatives (IIA) property, or that the probability 

ratio of an individual choosing between two alternatives is independent of the availability 

of other possible alternatives (Hensher et al., 2005). IIA implies that all pairs of 

alternatives in the choice set must be equally similar or dissimilar. When choices involve 

a spatial dimension, spatial dependence can lead to violations of the rigid assumptions 

described above (see Smirnov, 2010). Spatial dependence or spatial autocorrelation occur 

when outcomes that occur in closer proximity tend to be similar or dissimilar. Spatial 

effects increasingly are being addressed in discrete-choice studies, and recent reviews by 

Smirnov (2010) and Billé and Arbia (2013) highlight the emerging literature on spatial 

discrete choice. However, many of the spatial discrete-choice specifications offered in the 

literature (e.g. Fleming, 2004) are not of a closed form, requiring simulation methods for 

model estimation. The large number of alternatives and observations associated with 

telemetry-based discrete-choice models pose a substantial computational burden when 

simulation methods are necessary for spatial-model estimation ( Fleming, 2004). 

2.2.1  Discrete-Choice Habitat Selection Studies 

Resource selection functions are functions proportional to the probability of 

habitat use (Manly et al., 2002) that generally contain animal and habitat characteristics 

as the independent variables.  Resource selection functions are valuable because they 
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inform wildlife managers about the habitat needs of managed wildlife and the impacts of 

habitat change. Resource selection functions are used to manage commercial fisheries, 

inform endangered species debates, and understand the impacts of anthropogenic habitat 

change (Manly et al., 2002). One useful output from resource selection functions are 

habitat suitability maps, which map the probability of use to the landscape and provide a 

visual representation of habitat quality (D. S. Johnson et al., 2008). Furthermore, recent 

technological advances, including satellite tracking and land cover imagery, have 

increased the amount of habitat selection data available. These advancements allow 

development of more accurate and sophisticated resource selection studies.  

Discrete-choice models are one type of resource selection function model used in 

wildlife management literature. A summary of prior published discrete-choice model 

resource selection studies is presented next.   

 McCracken et al. (1998) presented an early effort to analyze habitat selection with 

discrete-choice models using radio collar data from female black bears in the mountains 

of central Oregon. Beginning with the standard conditional logit model, the authors 

expand the specification to accommodate for sampling of choice sets, vary choice sets 

according to selection times, and incorporate the effects of animal characteristics (i.e., 

gave birth to cubs). The analysis first approximates annual home range and then analyzes 

selection within the home range. Yearly choice sets are constructed by sampling the 

unused resource units (units are one square meter) at a ratio of about three sampled units 

for each observed location. Model covariates include habitat type, slope, elevation, and 

distance to roads and streams. All variables except elevation and distance are categorical. 

The results prove similar to those estimated with a standard logit model.  
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A study by Cooper and Millspaugh (1999) used the conditional logit model to 

examine resource (bed site) selection by elk in South Dakota. Model covariates include 

canopy, slope, distance to roads, aspect (categorical), and pairwise interactions. 

Alternatives are defined by identifying relatively homogeneous habitat patches in the 

landscape. The available choices are the set of habitat patches surrounding the chosen bed 

site. Thus, this study accounts for changing resource availability over time as the 

constructed choice set changes across locations.  

Manly et al. (2002) dedicated a chapter of their book to discrete-choice resource 

selection functions and presented two relevant examples. The first example is from 

Arthur et al.’s (1996) study of polar bear habitat selection.  An available habitat area is 

constructed for each location observation (fix) based on a 200 km radius from where the 

animal was located three days prior.  The choice set is divided into habitat types within 

the defined choice set. A simple iterative estimation method produces estimated selection 

coefficients representing selection preference for habitat types.  

 The second example presented in Manly et al. (2002) comes from a study by G. 

Golet at the U.S. Fish and Wildlife Service in Anchorage, Ala. The research examined 

data, with a traditional conditional logit model, on seabird foraging site selection in 

Prince William Sound, Alaska.  The “area where the birds were observed foraging” 

(Manly et al., 2002, p. 156) was overlaid with a grid of 232 cells measuring 500 m by 500 

m to define the choice set and alternatives. Model covariates include distance from 

previous location, various cell habitat characteristics, and interacted individual 

characteristic variables. The study finds wide heterogeneity (specialization) in the feeding 

patterns of individual birds. Finally, Manly et al. (2002) present an argument that in the 
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case of large choice sets, random sampling of the choice set does not affect estimation 

under certain conditions.  

McDonald et al. (2006) presented an overview of discrete choice models of 

habitat selection. Their paper includes a brief literature review of discrete-choice models 

in habitat selection studies, an exposition of the methods commonly used in wildlife 

discrete-choice models, and an example analysis with data from Northern spotted owls in 

California. Wildlife habitat selection data often contains data on repeated habitat choices 

made from one or more choice set, where only a single random sample from each choice 

set is available. The owl data is of this type, where choices are made with replacement. 

Choice sets were defined from the observed 95% utilization home ranges, and 

observation points are spaced 125 m apart.  

Boyce (2006) explored the role of spatial scale in animal habitat selection. The 

study defines two dimensions of scale in resource selection studies: (a) resolution or grain 

and (b) domain or extent of the study area. The author notes that model design choices 

regarding these scale dimensions should be considered in light of what is known about 

the ecological processes being modeled. With regard to resolution, Boyce suggests first 

recognizing the scale at which the ecological process being studied occurs. Secondly, he 

suggests comparing the fit of empirical models of various scales. The scale of the 

ecological process under consideration also should guide the choice of domain. For 

example, to adequately characterize mule deer habitat selection, ecological variation must 

be characterized at the landscape scale instead of at the narrower home range scale. The 

author cites (D. H. Johnson, 1980) in noting that resource selection functions intended to 

identify habitats for direct management or for study of forage selection usually will be at 
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the landscape or within home range scale.  The study also mentions the role of scale in 

autocorrelation, where data at finer spatial and temporal scales tend to be more 

autocorrelated. A few methods for diagnosing and addressing autocorrelation in resource 

selection modeling are discussed briefly.  

Recent discrete-choice habitat selection studies have incorporated random effects 

to accommodate individual animal heterogeneity and other potential violations of the IIA 

assumption. Thomas et al. (2006) presented a Bayesian random effects discrete-choice 

model to investigate population level resource selection that incorporates individual 

animal heterogeneity. Specifically, population-level inference is achieved using Markov 

chain Monte Carlo simulation techniques. The authors used radiolocation data from 76 

female caribou in the Alaskan Arctic. Covariates included elevation, NDVI, and land 

cover type. The choice sets were created by overlaying daily population-level 99% 

utilization distributions from the animals being studied  and then divided that area into 

131 habitat cells, each 8     in area. The alternatives were defined as cells 1 through 

131. Highlights from the results include significant heterogeneity in individual resource 

selection and that NDVI is found to have a quadratic effect on habitat selection.  

Duchesne et al. (2010) also used a random parameters discrete-choice model to 

account for individual heterogeneity in Canadian bison. The authors tested the need for, 

and effectiveness of, random parameter models to deal with animal heterogeneity and IIA 

violations. The choice sets were constructed though a matched design (sampling)  

“… each observed location is associated with a specific set of random locations 

drawn within a limited spatial domain…” (Duchesne et al., 2010, p. 549). 

This is the same approach used in the aforementioned study by McDonald et al. (2006). 
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Kneib et al. (2011) presented an example of another class of discrete-choice 

habitat selection models, where categorical habitat types are the alternatives. The method 

then is applied to songbirds in South America and brown bears in Europe. Their model 

incorporates individual characteristics and random effects to accommodate individual 

selection heterogeneity. The model also incorporates nonparametric covariates. 

Individual-specific random terms are included to account for multiple choices across 

individuals. The authors assert that their choice context is appropriate when the analysis 

is focused on habitat choice, but clearly it does not address animal movement. Of note, 

Güthlin et al. (2011) also pursued a discrete-choice model of this form to examine habitat 

choice in European brown bears. 

Few discrete-choice models in habitat selection literature account directly for the 

spatial and temporal dependence inherent in high-frequency satellite telemetry data. 

Ramsey and Usner (2003) developed an extension to the discrete-choice model that 

accounts for autocorrelation. Their model includes a persistence parameter to account for 

the tendency of animals to stay in the same habitat over successive fixes.  D. S. Johnson 

et al. (2008) built on the work of Christ et al. (2008) and accommodated autocorrelation 

in a Gaussian-process movement model. The Gaussian model outperforms the Ramsey 

and Usner (2003) model and a naïve discrete-choice model in analyzing simulated and 

example data. All of these models are based on a choice context with categorical habitat 

classifications as alternatives. However, they do consider movement, unlike the work of 

Kneib et al. (2011) and Güthlin et al. (2011).   
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2.2.2   Moose Habitat Selection Literature  

  Prior published studies have examined habitat selection in the Alaskan moose 

sub-species.  Weixelman et al. (1998) analyzed winter habitat selection by moose in the 

central Kenai Peninsula of Alaska, where the data for the current study was collected.  

The authors found that forage selection did not vary over the winter despite variable 

forage availability. Snow depth and distance to escape cover also are identified as 

important determinants of moose habitat selection.  

Maier et al. (2005) investigated the determinants of moose population density in 

Alaska’s interior. Moose are found to concentrate in areas of moderate elevation, and 

near towns and rivers. The study also finds that moose respond more to environmental 

variables at a relatively small spatial scale (34    ) compared to larger spatial scales.   

 Numerous studies have investigated habitat selection in other moose sub-species 

as well. While some of these results vary, other published findings are consistent across 

regions and sub-species.  One of these common results is that moose select habitat 

hierarchically at multiple spatial scales, over which selection determinants may vary (e.g. 

Jiang et al., 2009; Månsson et al., 2012).  Variation based on seasonal (e.g. Nikula et al., 

2004) and diurnal (e.g. Bjørneraas et al., 2011) temporal scales also are  reported scale 

determinants of moose habitat selection. Elevation, a proxy for snow depth (e.g. Dussault 

et al., 2005; Poole & Stuart-Smith, 2006), and animal gender (e.g. Bjørneraas et al., 2012; 

Nikula et al., 2004) also are determinants of habitat selection in moose found across 

geographies and moose sub-species.  
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 A recent research article by McLoughlin et al. (2011) estimated research selection 

functions for Canadian moose across seasons and land management types with a random-

effects logit model. The within-home range analysis (i.e., 95% utilization distribution) 

found variation in resource selection across land management types and seasons. The 

probability of habitat use was found to decrease with distance from roads in the spring 

and summer and to increase with distance from roads in the winter across land 

management types. In the autumn, when recreational hunting occurs, the effect of roads 

was found to differ across land management types. Habitats near roads were found to 

attract and moose in areas where moose hunting was prohibited and to repel moose where 

hunting was allowed. The authors concluded that these behaviors were due to threats 

from hunting as well as from predators that use the roads. 

  Section 2.2 reviews the discrete choice habitat selection and moose habitat 

selection literatures. This chapter contributes to the former by presenting a 

computationally tractable method for accommodating spatial dependence that can arise 

based on unobserved similarities between nearby habitats. Specifically, the method 

allows for flexible substitution patterns compared to non-spatial methods.   

2.3   Model and Methods 

This analysis utilizes a variant of the generalized GEV discrete-choice model (C. 

R. Bhat & Guo, 2004) that offers a closed-form solution while accounting for unobserved 

similarities between alternative habitat patches. This approach is appropriate when the 

alternatives associated with a discrete-choice model are arranged spatially, as is the case 

with habitat selection. A few previous studies in transportation literature have utilized 
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this specification to accommodate spatial dependence in models of human locational 

choices (Bekhor & Prashker, 2008; C. R. Bhat & Guo, 2004). The current chapter 

employs the GEV discrete-choice model to accommodate spatial dependence in a model 

of habitat selection.  

The GEV specification allows for complex substitution patterns among habitat 

patch alternatives, relaxing the assumption of error independence in the conditional logit 

model. Specifically, the model incorporates spatial dependence between adjacent habitat 

patches. The utilized specification affords accommodation of complex substitution 

patterns in a computationally tractable model. However, this GEV approach to discrete-

choice modeling also has drawbacks. Specifically, the model does account for 

unobserved preference heterogeneity or heteroscedasticity of the random terms among 

alternatives (Hunt et al., 2004). The model is theoretically inconsistent if the estimated 

spatial parameter () is less than zero or greater than one. 

The basic setup of this study starts with imposing a digital grid over the core 

home range (95% kernel density contour) of moose tracked with radio collars. Then, 

variables describing the landscape are used to explain observed moose locations. The 

most common theoretical motivation for discrete-choice analysis of this kind is the 

random utility model (RUM). RUM assumes that the utility derived from an alternative is 

due to observable as well as to unobservable (random) components and that if faced with 

a choice between alternatives; an individual will select the alternative yielding the highest 

utility.  In the most basic RUM model, shown in equation 2.1, the benefit that an 

individual moose will get from selecting a given location i is composed of an observable 
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component (  ) and a random, unobservable component (   )  The observed part is 

assumed to be linear in parameters.  

                                                                  (2.1) 

                     

Moose make a locational choice decision among   habitat patches (         ). The 

term      in equation 2.2 is an indicator variable that equals one if spatial alternatives i 

and j are adjacent and equals zero otherwise. Thus, spatial alternative i shares an 

unobserved, shared utility component with ∑    
 
    other spatial units (i.e., the number 

of adjacent units). Unobserved correlation between units may be described using paired 

“nests” with dis-similarity parameter    A paired nest is constructed for each of spatial 

unit i’s adjacent spatial units, and the total number of paired nests equals ∑ ∑    
 
     

   
   . 

The  allocation parameter,       , assumes an equal allocation of correlation to each nest 

created from the units adjacent to i. Sener et al. (2011)  relax this assumption to create 

more flexible specifications of the allocation parameter.  Their model accommodates 

correlation between nonadjacent units and correlation that is a function of independent 

variables.  This study uses the allocation parameter specification in equation 2.2 and 

assumes correlation between cell i and nearby cells is allocated equally between spatial 

units. This is an intuitive assumption for the current moose habitat-selection application, 

where the observations (grid cells) are uniform.  

      
   

∑     
  ;   where  ∑                                                (2.2) 

Now, consider the following “G” function within the generalized extreme value (GEV) 

class in equation 2.3.  
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                           (2.3) 

            Where:                ;                and ∑              

Note that these conditions imply that   is a non-negative, homogeneous degree-one 

function that goes to positive infinity whenever any of its arguments also go to positive 

infinity  Also, the nth cross-partial derivatives are non-negative for odd n and non-

positive for even n because       (if    ). Thus, equation 2.4 represents a 

cumulative extreme-value distribution.  

 (          )     { ∑ ∑ [(       )
 

 ⁄  (       )
 

 ⁄ ]
 

 
     

   
   }        (2.4) 

The term    represents the random element of utility for spatial unit i. Thus, each random 

term    has a univariate extreme value marginal CDF given by the standard Gumble 

distribution function: 

 (  )     { ∑       
   

   }     {     }                        (2.5) 

The bivariate marginal CDF for two adjacent (correlated) spatial units is then given by 

equation 2.6. 

   (     )     {
 (       ) 

    (       ) 
     

 [(      
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 ⁄  (      

   )
 

 ⁄ ]
 }                   (2.6) 

And the bivariate marginal CDF for two nonadjacent (and thus independent) spatial units 

is given in equation 2.7. 

 (     )     { ∑       
   

    ∑       
   

   }     {         }        (2.7) 
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If the random components of utility are distributed according to the CDF above (i.e. 

(          ) ),then by the GEV postulate, the probability of choosing the i 
th

 spatial unit 

is shown in equation 2.8. Note that when    , the model collapses to the standard 

conditional logit model. 
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2.4   Data and Variables 

This chapter analyzes moose habitat selection using a spatial discrete-choice 

model where the set of location alternatives available to each moose is defined by 

imposing a grid over a given animal’s core home range. Each cell represents a location 

option for the moose. Within home range, habitat selection is modeled as a function of 

natural and anthropological cell features.   

An animal’s home range is the area where it lives and travels, and its core home 

range is the area it uses most intensely. Specifically, home range is commonly defined in 
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terms of a utilization distribution, a probability density function in two dimensions. The 

core home range of an animal is its 50% utilization distribution contour, or the area where 

the moose is expected to be with 50% probability. Following the guidance of Walter, 

Fischer, Baruch-Mordo, and VerCauteren (2011) for large telemetry datasets, we 

calculate the core home range (i.e., 50% utilization distribution) with kernel density 

estimation using a Gaussian (bivariate normal) kernel and the plug-in estimator for 

bandwidth selection. Home range estimation was carried out using packages in the 

geospatial modeling environment software. 

To describe the available location options, data was collected on the 

characteristics of each core home-range cell. The data collected include natural and 

anthropological landscape features. The elevation in meters at each cell centroid (ELEV) 

is calculated using a digital elevation map sourced from the U.S. Geological Survey’s 

2011 National Elevation Dataset. The elevation data is at one arc-second resolution. The 

elevation data was analyzed with Arcmap10 to calculate the slope (SLOPE) at each cell 

centroid. A land cover raster with 25 m cells provides data for other variables used in the 

analysis. The land cover data is from the 2001 USGS National Land Cover Database 

(HOMER et al., 2004). The land cover data is converted into the dummy (i.e. 0/1) 

variable FOR that equals one if a habitat cell is more than 50% forested. Besides forests, 

dwarf scrub and shrub/scrub land cover types dominate the moose home ranges.  Two 

measures of anthropological influence also are included in this analysis: the distance to 

human-built trails (TRDIST) and the distance to public roads (RDDIST). Both variables 

are measured from the cell centroid. The trail data was published in 2006 by the Alaska 

Department of Natural Resources. The road data was developed in 2010 by the Kenai 
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Peninsula Borough GIS Department. Of concern, the road data was created after the 

moose location data was collected. However, the moose locations are located generally in 

the national forest, away from recent road construction. This was verified for the relevant 

areas by comparisons with the 2001 land cover data’s development layers. Definitions of 

the habitat characteristic variables are in Table 2.1. 

The moose location data is sourced from four moose that were radio-collared by 

the U.S. Fish and Wildlife Service (USFS) in Alaska. All four moose reside primarily in 

the Chugach National Forest on the Kenai Peninsula, near the southern portion 

Resurrection Pass Trail. Two of the moose also travel in April to the town of Soldotna. 

The data is split into summer and winter samples to reflect the seasonal variation in 

resource availability and other determinants of habitat selection (e.g., snow cover). 

Summer is defined as April through September, with winter comprised of the remaining 

months. The radio collars transmit locations, also called fixes, every two hours. Sample 

statistics on the moose location data is in Table 2.2. The table includes the number of 

location observations used in the analysis, the percentage of time a fix was unavailable 

(% miss), and the relevant time period for the sample. No sample experienced a rate of 

failure of attempted fixes greater than 7%. The data was collected from March 2006 to 

November 2011.  

 The Resurrection Pass Trail is popular year-round with tourists and residents of 

the Kenai Peninsula. In the summer, there is hiking, mountain biking, and horseback 

riding. In the winter, there is snowmobiling, snowshoeing, dog sledding, and skiing. Two 

cabins in the area are open year-round, at Trout Lake and Juneau Lake. On the southern 

boundary of the study area is Highway 1, which connects the Kenai Peninsula to 
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Anchorage.  The study area offers an opportunity to observe ecological and 

anthropological determinants of habitat selection.   

This analysis focuses habitat selection within an animal’s core home range and is 

thus at a relatively “fine” scale of hierarchal resource selection. This is consistent with 

research suggesting that moose select habitat at finer spatial scales (Maier et al., 2005). 

The statistic % used in Table 2.2 indicates that within a core home range, utilization is 

distributed unevenly. For example, an average of 20% of core home range habitat cells 

went unutilized across the eight seasonal moose samples. This suggests preference 

heterogeneity for within core home range habitat cells.  

Resource selection studies can be biased if attempted GPS fixes are unsuccessful 

due to habitat characteristics (e.g. Frair et al., 2004; Nielson et al., 2009). The percentage 

of unsuccessful fix attempts is given by % miss in Table 2.2. Unsuccessful fix attempts 

are less than 1.5% of the total attempts in five of the eight seasonal moose samples. The 

remaining samples include 6% to 7.5% unsuccessful attempts. Nielson et al. (2009) found 

that if 10% or more of fixes are unsuccessful, it can cause biased results. 

While most model variables are habitat-cell characteristics, one individual 

characteristic is included as well. The individual variable, DIST equals the distance from 

the centroid where the moose was located previously to the other cells within the 

animal’s core home range. This variable approximates the difference in cost to the animal 

of relocating to nearby versus distant habitat cells.  

 The sample is constrained so that the DIST variable has a consistent interpretation 

across observations. Specifically, all considered location observations were preceded by 
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another location observation within the core home range two hours prior (as scheduled). 

This ensures that DIST always equals the distance from the cell where the animal was 

located two hours prior.  

Previous studies have uncovered seasonal variation in moose habitat selection 

patterns  (e.g. McLoughlin et al., 2011; Nikula et al., 2004) due to changing resource 

availability. Separate summer and winter models are estimated to account for these 

seasonal differences. Winter is assumed to span October through March while summer is 

defined as the period from April through September.   

 The final model in equation 2.9 explains moose habitat choice with three naturally 

occurring landscape features (SLOPE, ELEV, FOR), two anthropogenic landscape 

characteristics (RDDIST, TRDIST), and a variable that conditions the choice on the 

animal’s previous location (DIST).  

                                                               (2.9) 

                                                            

 

2.5   Results 

Seasonal habitat choice models were estimated for individual moose with choice 

sets defined according to summer and winter core home ranges. Results from the 

conditional logit and GEV individual models are in Tables 2.3 and 2.4.  Standard errors, 

calculated with the estimated Fisher information matrix, are in parenthesis. One, the 

estimated GEV model (627 winter), fails to converge, and two others (809 summer, 807 

winter) produce negative values on the diagonal of the estimated information matrix. 
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These models are not considered in further analysis. Another set of seasonal models 

estimates habitat selection parameters using data from all four moose. The results are 

displayed in Table 2.5. These pooled models depict typical habitat preferences across the 

four moose examined in the current study. 

An objective central to this analysis is to accommodate spatial dependence among 

alternatives in a habitat-selection discrete-choice model. The significance of spatial 

parameter rho indicates significant spatial dependence between adjacent habitat cells.  

The determinants of habitat selection vary across the individual moose models. A 

negative and significant estimated coefficient on a given variable indicates a negative 

relationship between that variable and the probability of habitat selection. For example, 

the negative and significant estimated coefficients on DIST indicate that moose are less 

likely to select more distant habitats compared to nearby ones. The negative and 

significant estimated coefficients on ELEV indicate that Moose 809 and 627 prefer lower-

elevation habitats within their core home ranges across seasons. Moose 805 prefers 

lower-elevation habitats during summer months. The multi-moose models indicate that 

when considered on aggregate, moose tend to prefer lower-elevation areas within their 

core home ranges across seasons.  

The effect of terrain slope on habitat selection differs among the individual 

moose. Moose 805 prefers steeper habitats in the summer and flatter habitats in the 

winter. Moose 809 prefers steeper habitats within its winter home range. Moose 627 and 

Moose 807 also prefer flatter habitats within summer home range  in the conditional logit 

and GEV specifications, respectively. In the multi-moose models, the insignificance of 
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the estimated slope parameter is not surprising given the differential impact of slope on 

habitat selection across individual models.  

TRDIST indicates that habitats further from trails are preferred during the winter 

months. The multi-moose model results also suggest that moose avoid trails during the 

winter months. In three of the winter models (809, 805 and multi-moose), moose are less 

likely to select habitat cells with greater than 50% forest cover based on the negative and 

significant estimated coefficients on FOR. However, none of the summer models indicate 

a relationship between forest cover and habitat selection.  

Human disturbances also are significant determinants of habitat choice in the 

estimated models. The positive and significant estimated coefficient on TRDIST in the 

multi-moose models supports that when considered across individuals, our sample of 

moose prefers habitats nearer trails during the summer months. Results from the 

individual models indicate that habitats near trails were preferred by Moose 809 during 

winter months. In the summer, Moose 807 preferred core home-range habitat locations 

nearer to trails, but Moose 627 preferred habitats further from trails.  Likewise, the 

positive and significant estimated coefficient on RDDIST for the winter multi-moose 

model suggests that moose tended to prefer core home-range cells near to roads in the 

summer months.  
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2.6   Discussion 

A central implication of the model results is that spatial dependence across 

alternatives is an important consideration in habitat selection studies. The results of both 

classes of models offer insights into the habitat preferences of the four moose examined 

in this study.  

The estimated individual moose models examine moose selection at the individual 

level and allow for comparison across individual results.  The multi-moose models 

examine core home-range habitat selection in multiple moose simultaneously to consider 

moose choices on aggregate. These models may be useful to resource managers who are 

tasked with prioritizing land conservation for a given animal population or geographical 

area.  

 A majority of the estimated models indicate that moose prefer lower-elevation 

habitats within their core home ranges.  Three of the estimated models (809, 805, and 

multi-moose) depict a negative relationship between densely forested habitats and moose 

habitat during the winter season, but forests have no impact in the summer models. This 

result could be related to seasonal shifts in forage availability. For example, dense forests 

may not provide the best forage in winter 

Moose prefer winter within home-range habitats that are relatively further from 

trails in two of the estimated models (809, multi-moose). These findings could be related 

to increased predation near linear features or to avoidance of human impacts. This finding 

has been   reported for roads but not for trails (McLoughlin et al., 2011).  In the summer, 

Moose 807 prefers core home-range habitats that are relatively farther from trails. The 
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GEV model suggests Moose 627 may prefer habitats farther from trails during the 

summer. This result implies that trails can serve to attract or repel a given moose during 

the summer months. Again, these impacts are likely related to predation and/or to human 

interaction. For example, moose may be attracted to trails if the human impacts near trails 

reduce the predation risk in that area.  

 Likewise, two of the selection models (multi-moose, 627) indicate preference for 

summer within home-range habitats in relatively closer proximity to roads. As with trails, 

roads are linear features that can attract or repel moose depending on environmental 

conditions. In the study area, roads attract moose in the summer, perhaps due to reduced 

predation risk. Roads attracted Moose 627 in the winter months but otherwise do not 

have a discernible effect on habitat selection across winter models.  

The multi-moose model specification imposes preference homogeneity across 

individual moose. While the individual model results and reported literature to not reflect 

preference homogeneity, increasing the number of moose in a multi-moose model 

captures the typical determinants of habitat selection across the moose considered. When 

considered across a sufficiently large sample of moose, the estimated preference 

parameters from the multi-moose specification could provide useful for guiding 

population-level habitat management and conservation strategies.  

Future models may incorporate random effects and individual characteristics into 

aggregated GEV models to accommodate individual preference heterogeneity (e.g., Sener 

2012). The disadvantage of random effects models, and the reason they are not pursued in 

this analysis, is the computational burden imposed by the associated simulation-based 
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estimation with large datasets. As technology advancements reduce these constraints, 

random effects should be incorporated into the current study’s model of habitat selection. 

Individual characteristics also are absent in the current model due to a lack of data, but 

future studies would benefit by incorporating into the model gender, age, and other 

individual characteristics.      

This chapter utilizes a spatial discrete-choice econometric model employed in this 

chapter has a number of environmental and natural resource economics applications. 

These applications include site-choice recreation demand, amenity migration, and 

environmental valuation. To illustrate a recreation demand application, suppose that 

resource managers plan to estimate demand for recreational fishing sites positioned 

across the landscape with a site-choice travel cost model. The spatial GEV model would 

be useful for testing and accommodating spatial dependence among nearby fishing sites. 

The spatial dependence among sites could be weighted according to distance between 

nearby sites, adjacency, and shared border length. Compared to a typical travel cost 

study, the only additional data required to estimate a spatial travel cost model is the 

spatial position or extent of each fishing site. This data can then be manipulated into a 

neighbor weighting matrix. The GEV model’s closed form solution allows for estimation 

both large choice sets and large number of observed choices. Furthermore, the spatial 

kernel density techniques in this paper could be useful for defining an angler’s choice set 

based on reported trips.  
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Table 2.1   Moose Habitat Variable Descriptions 

Variable Description Units 

ELEV Elevation at the habitat patch centroid  meters 

SLOPE Percent slope at the habitat patch centroid degrees 

FOR 
Equals one if habitat is more than 50% forested and 

equals zero otherwise 
0/1 

RDDIST 
Distance from the habitat patch to the nearest developed 

road 
kilometers 

TRDIST 
Distance from the habitat patch to the nearest developed 

trail 
kilometers 
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Table 2.2   Moose Location and Core Home Range Descriptive Statistics 

 
Moose 809 Moose 807 

 
Winter Summer Winter Summer 

Variable Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

ELEV 488.145 

159.74

0 

929.50

7 486.453 

305.92

6 

728.71

7 503.921 

366.74

6 

714.61

8 459.593 

25.15

2 

859.14

5 

 
(155.991) 

  

(113.655) 

  

(116.546) 

  

(208.585) 

  SLOPE 0.095 0.000 0.301 0.083 0.000 0.354 0.067 0.002 0.256 0.076 0.000 0.288 

 
(0.075) 

  

(0.078) 

  

(0.046) 

  

(0.066) 

  FOR 0.301 0 1 0.364 0 1 0.290 0 1 0.129 0 1 

 
(0.460) 

  

(0.484) 

  

(0.458) 

  

(0.338) 

  RDDIST 7.028 0.001 12.714 7.752 1.287 11.953 10.052 5.114 15.314 7.912 0.005 9.633 

 
(3.686) 

  

(3.128) 

  

(2.956) 

  

(3.067) 

  TRDIST 1.219 0.049 4.235 0.836 0.015 1.643 1.952 0.003 5.598 2.041 0.019 6.463 

 
(0.760) 

  
(0.420) 

  
(1.986) 

  
(1.868) 

  
Cells 166 

  

77 

  

62 

  

62 

  Location

s 3455 

  

4121 

  

1349 

  

3528 

  % used 79% 

  

92% 

  

97% 

  

60% 

  % miss 0.8% 

  

1.2% 

  

0.5% 

  

6.1% 

  
Start date 

2006.03.2

5 

  

2006.04.0

1 

  

2006.10.0

1 

  

2006.04.0

1 

  
End date 

2008.03.3

1   

2007.09.2

9   

2007.03.3

1   

2007.08.0

2   

Note: Standard deviation in parentheses. 
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Table 2.2 (cont.)    Moose Location and Core Home Range Descriptive Statistics 

 
Moose 805 Moose 627 

 
Winter Summer Winter Summer 

Variable Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

ELEV 443.459 

88.03

0 

719.89

5 403.989 

24.99

6 

920.45

3 399.593 

103.70

2 

717.35

5 359.273 

189.86

3 

504.82

0 

 
(183.671) 

  

(189.428) 

  

(132.374) 

  

(99.801) 

  SLOPE 0.073 0.001 0.247 0.059 0.000 0.264 0.118 0.000 0.382 0.089 0.000 0.185 

 
(0.050) 

  

(0.063) 

  

(0.100) 

  

(0.054) 

  FOR 0.537 0 1 0.437 0 1 0.286 0 1 0.130 0 1 

 
(0.500) 

  

(0.499) 

  

(0.455) 

  

(0.344) 

  RDDIST 8.368 0.014 13.890 7.158 0.000 9.729 5.778 0.125 9.220 5.443 0.310 8.979 

 
(4.625) 

  

(3.064) 

  

(3.433) 

  

(3.995) 

  TRDIST 1.501 0.000 5.292 1.490 0.005 6.725 1.144 0.204 3.117 0.943 0.051 2.078 

 
(1.605) 

  
(2.02) 

  
(0.622) 

  
(0.605) 

  
Cells 188 

  

87 

  

70 

  

23 

  Locations 1426 

  

3475 

  

3009 

  

1516 

  % used 76% 

  

75% 

  

77% 

  

83% 

  % miss 0.9% 

  

6.3% 

  

1.0% 

  

7.4% 

  Start date  2006.10.0

1 

  

2006.04.0

1 

  

2007.11.29 

  

2008.04.0

2 

  End date 2007.03.3

1   

2007.08.0

2   
2008.11.14 

  

2008.09.3

0   

Note: Standard errors in parentheses. 
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Table 2.3   Summer Individual Habitat Selection Models 

 
Moose 809 Moose 807 Moose 805 Moose 627 

Variable CL GEV$ CL GEV CL GEV CL GEV 

DIST -9.91*** - -11.26*** -9.93*** -10.12*** -8.94*** -12.99*** -10.98*** 

 
(0.132) 

 

(0.171) (0.169) (0.146) (0.146) (0.362) (0.386) 

ELEV -3.08** - -7.26** -5.78* -3.060 -0.352 -10.35*** -12.13*** 

 
(1.275) 

 

(3.064) (2.977) (2.334) (2.16) (3.862) (3.346) 

SLOPE 1.060 - -0.565 -3.12* 6.67*** 5.15*** -2.51* -1.708 

 
(0.858) 

 

(1.780) (1.782) (1.414) (1.289) (1.507) (1.305) 

FOR 0.274** - -0.600 -0.637 -0.136 -0.066 2.706 2.452 

 
(0.136) 

 

(0.378) (0.347) (0.183) (0.164) (6.96) (2.792) 

RDDIST 0.219 - -0.157 -0.120 -0.321 -0.307 1.38** 1.70*** 

 
(0.189) 

 

(0.262) (0.247) (0.205) (0.188) (0.559) (0.498) 

TRDIST -0.017 - 2.51*** 1.84** 0.324 0.104 -1.133 -1.47* 

 
(0.300) 

 

(0.747) (0.744) (0.446) (0.418) (0.807) (0.699) 

RHO 
 

- 

 

0.196* 

 

0.329*** 

 

0.464*** 

    

(0.112) 

 

(0.049) 

 

(0.062) 

N 3969 - 3459 3459 3402 3402 1479 1479 

K 6 - 6 7 6 7 6 7 

LL -2861 - -1887 -1875 -2202 -2180 -530 -522 

AIC 5733 - 3786 3764 4416 4374 1072 1058 

Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1; $ = model did not converge. 
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Table 2.4   Winter Individual Habitat Selection Models 

 
Moose 809 Moose 807 Moose 805 Moose 627 

Variable CL GEV CL GEV$ CL GEV CL GEV$ 

DIST -9.123*** -8.15*** -9.84*** - -7.77*** -6.70*** -9.12*** - 

 
(0.136) (0.178) (0.240)  (0.155) (0.152) (0.127) 

 
ELEV -2.654** -2.302** 0.163 - -1.787 -1.662 -3.34*** - 

 
(0.825) (0.751) (2.790)  (1.888) (1.641) (1.168) 

 
SLOPE 1.26** 1.185** -0.879 - -3.96*** -2.54*** -0.457 - 

 
(0.631) (0.555) (1.519)  (1.121) (0.891) (0.746) 

 
FOR -0.282*** -0.244*** -0.085 - -0.203 -0.191* 0.006 - 

 
(0.076) (0.071) (0.214)  (0.138) (0.114) (0.131) 

 
RDDIST -0.060 -0.047 -0.073 - 0.167 0.112 0.396* - 

 
(0.097) (0.087) (0.292)  (0.205) (0.178) (0.205) 

 
TRDIST 0.510** 0.480** -0.347 - 0.430 0.279 0.423 - 

 
(0.186) (0.163) (0.593)  (0.318) (0.283) (0.338) 

 
RHO 

 

0.457*** 

 

- 

 

0.246*** 

 

- 

  
(0.096) 

 
 

 
(0.045) 

 
 

N 3388 3388 1301 - 1384 1384 2988 - 

K 6 7 6 - 6 7 6 - 

LL -3254 -3269 -895 - -1628 -1612 -2870 - 

AIC 6740 6552 1802 - 3268 3238 5751 - 

Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1; $ = model did not converge. 
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Table 2.5   Pooled Habitat Selection Models 

 
Summer Winter 

 
CL GEV CL GEV 

DIST -10.586*** -9.353*** -8.969*** -7.750*** 

 
(0.103) (0.108) (0.085) (0.084) 

ELEV -2.644*** -1.921** -2.110*** -1.761*** 

 
(0.795) (0.737) (0.524) (0.456) 

SLOPE 0.645 0.472 -0.426 -0.231 

 
(0.511) (-0.461) (0.370) (0.322) 

FOR 0.148 0.137 -0.173** -0.137** 

 
(0.163) (-0.144) (-0.053) (0.049) 

RDDIST 0.210** 0.182* -0.009 -0.009 

 
(0.103) (0.095) (0.059) (0.051) 

TRDIST 0.185 0.099 0.437** 0.385** 

 
(0.255) (0.235) (0.137) (0.120) 

RHO 
 

0.449*** 

 

0.314*** 

  

(0.033) 

 

(0.027) 

N 12309 12309 9061 9061 

K 6 7 6 7 

LL -7559.1615 -7531.4905 -8696.8803 -8648.2314 

AIC 15130 15077 17406 17310 

Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 



 

 

39 

 

 

 
Chapter 3:  A Copula Approach for Accommodating Spatial Dependence in Models 

of Recreation Demand 

 

 

 

 

3.1   Introduction 

 

Recreation demand is commonly modeled using travel cost approaches where 

demand is assumed to depend on the distance traveled to the site. The travel cost model 

describes a spatial process where households positioned in the landscape make decisions 

about which recreation sites to visit and how often. Spatial effects are common in 

spatially arraigned data, and spatial heterogeneity and spatial dependence are potentially 

important considerations for travel cost models. Spatial heterogeneity often is addressed 

though the inclusion of variables describing characteristics of the landscape. Testing for 

and accommodating spatial dependence, on the other hand, can be more difficult.  

Spatial effects in recreation demand models can arise from either the spatial 

positioning of households or from the spatial positioning of alternative sites. This paper 

models recreation demand at a single site and examines potential spatial dependence 

based on the locations of household residence. These effects may arise through 

interactions among individuals or through the presence of an unobserved random field 

that influences recreation demand decisions.  

 Estimating spatial models with discrete dependent variables, such as recreational 

trips, presents additional challenges compared to the case of continuous, dependent 

variables (Billé & Arbia, 2013; Fleming, 2004; Smirnov, 2010). Copula functions offer a 

general approach to modeling joint discrete distributions for spatially correlated data 

from univariate discrete marginal distributions. The copula approach is an attractive 
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alternative for modeling spatial dependence with count data based on its relative 

advantages with model flexibility, estimation, and inference (see Cameron & Trivedi, 

2013 pg. 319).  

This paper presents and implements a method for testing and accommodating 

spatial dependence in models of recreation demand based on a copula function approach.  

The method is applied to a travel cost model of recreation for a national forest in 

Colorado. Results reveal significant spatial dependence in the data and suggest that 

spatial dependence can be an important consideration in recreational demand models. 

Individual willingness to pay for access (WTPA), weighted according to sampling 

stratification, is estimated for 2005 and 2010. Results from both of the model 

specifications estimated indicate that estimated mean WTPA declined from 2005 and 

2010, although the decline is not statistically significant for one specification. The 

underlying cause of a decline in WTPA for trips to RANF from 2005 to 2010 is likely 

associated with changes in economic activity, changes in the recreational activity mix of 

RANF visitors, and changes in forest quality over this period.  

3.2   Background 

 

3.2.1   Spatial Effects in Recreation Demand 

 

Spatial effects often are present in data that is positioned in space, such as 

recreational trip data. The two major spatial effects discussed in the literature are spatial 

dependence, also referred to as spatial autocorrelation, and spatial heterogeneity (Anselin, 

1988). Spatial heterogeneity occurs when spatial relationships or characteristics of 

observations vary over space.  Spatial heterogeneity can be accommodated in recreational 

demand models though location-specific variables (Parsons, 2003; Phaneuf & Smith, 
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2005). Spatial dependence describes a fundamental relationship between outcomes 

occurring at one point in space and outcomes occurring elsewhere.  The basic intuition 

for positive spatial dependence comes from Tobler’s (1970) first law of geography: 

“Everything is related to everything else, but near things are more related than distant 

things”(p. 236). However, a major complication in accommodating spatial dependence in 

decision models is that most spatial interdependencies are not directly observable 

(Smirnov, 2010).  

Spatial effects can be an important consideration when undertaking recreation 

demand analysis. Recreational visit observations are usually are defined geographically 

for both an origin location and a site location.  Thus, in addition to the relationship 

between trip distance and demand, recreational trip data may exhibit spatial dependence 

between potential alternative sites or among origin locations. The former case applies to 

site-choice random utility models (RUM) of recreation demand. The current study 

examines a single-site model and focus on spatial dependence between recreational 

decision makers according to the location of their residence.  

In the context of recreational behavior, the underlying causes of spatial 

dependence may include social interaction effects, unobserved location-related, or 

neighborhood effects, and diffusion effects (C. Bhat & Zhao, 2002; Brady & Irwin, 

2011). Social interactions between individuals can influence recreational demand though 

recommendations, storytelling, and group recreational trips. Social interactions can cause 

spatial dependence if such interactions are more likely to occur between individuals who 

live near each other than individuals who live far apart. Regarding social interactions, 

Smirnov (2010) notes: “Spatial interdependencies between individuals affect their 
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preferences, creating the phenomenon of socially influenced decision-making, so that 

individuals neither act fully independently, nor reach decisions jointly ” (p. 292). 

Diffusion refers to the market-level processes governing the spread of 

technologies and ideas across society. Diffusion can cause spatially dependent demand if 

ideas and technologies that impact recreation preferences spread in a systematic manner 

across the landscape.  

The final source of recreational spatial dependence is unobserved neighborhood 

characteristics, a broad category that refers to all of the unobserved similarities between 

nearby neighborhoods. Unobserved neighborhood characteristics that influence recreation 

demand may include traffic patterns, the presence of unobserved recreation substitutes, 

and social norms. Spatial dependence can result if these unobserved demand determinants 

are heterogeneous across the analyzed landscape and thus influence demand in a spatial 

manner.   

Estimating models of spatial dependence with count or categorical data 

complicates model estimation (Fleming, 2004). Specifically, many of the solutions 

proposed in the literature for dealing with spatial dependence with discrete data rely on 

simulation or approximations for estimation and can be computationally burdensome. 

This paper uses a copula function and a composite likelihood function to accommodate 

spatial dependence among individuals in a model of recreation demand.   

3.2.2   Spatial Recreation Demand Literature 

Travel cost modeling captures an inherently spatial process. Individuals decide 

whether to travel to a given site, or to a menu of sites, from their home location. 
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Surprisingly, there is a relative dearth of literature examining spatial issues related to the 

travel cost method.  

Early travel cost literature dealt with spatial limits of the model (Kerkvliet & 

Nowell, 1999; Smith & Kopp, 1980), finding that the nature of the recreational good is 

different for local versus long-distance recreationalists. This literature suggests that travel 

cost models, especially those based on assumptions about automobile operating costs, 

should focus on local recreation users (Phaneuf & Smith, 2005).  

Spatial heterogeneity has long been incorporated into travel cost models using 

explanatory variables that describe an individual’s origin location. For example, Parsons 

(2003) listed urban/rural distinction as one of the most commonly included variables in 

the single-site travel cost model. Two recently published articles explored spatial 

heterogeneity in models of recreation demand. The first paper (Termansen et al., 2013) 

estimated a RUM site choice model that includes random effects to account for 

preference heterogeneity and spatially explicit variables to account for spatial 

heterogeneity in recreation values. The estimated parameters then are utilized in mapping 

resource values and policy scenarios. A second paper, by Abildtrup et al. (2013), used a 

two-step method to explore the determinants of preference heterogeneity and the 

potential for endogenous spatial sorting in recreation demand. In the first step, the authors 

conduct a choice experiment using an actual site as the status quo alternative and 

hypothetical sites as other alternatives to derive estimates of individual willingness to pay 

(WTP) for site attributes. The second step investigates the determinants of individual 

WTP that are related to an individual’s spatial position in the landscape. The second-

stage analysis provides some support for endogenous travel distances related to parking 
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and picnic facilities and indicates that the endogenous sorting problem described by 

Parsons (1991) warrants future research.  

As discussed in the preceding subsection, recreational trip data may exhibit spatial 

dependence due to social interaction effects, diffusion, or unobserved location-related 

effects. However, previous studies do not examine origin-based spatial dependence in 

models of recreation demand. This paper models recreation demand at a national forest in 

Colorado with a model that accounts for spatial dependence between observations.  

3.3 Theoretical Model 

The present analysis uses a single-site travel cost model to estimate the 

willingness to pay for access (WTPA) for day trips to Roosevelt-Arapahoe National 

Forest in Colorado. The household production framework provides motivation for the 

generic travel cost problem. Households choose quantities of recreation and other goods 

to maximize utility subject to time and money constraints. Users of the site are arranged 

in the landscape heterogeneously and have different trip costs based on their distance to 

the site and individual characteristics. The central assumption of the travel cost model is 

that trip cost to a recreation site is directly related to demand for the site. All else equal, 

lower demand is expected from individuals who reside further away from the recreation 

site and thus incur higher trip costs.  The travel cost method allows for construction of 

recreation demand curves through observation of the relationship between trip cost and 

trip-taking behavior.  In other words, the travel cost method is roughly explained as a 

downward sloping demand curve with quantity of trips demanded on the horizontal axis 

and trip cost on the vertical axis. 
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Recreation demand also depends on other factors, such as the trip cost of 

substitute recreation sites, income, and other individual characteristics (Parsons, 2003). 

An expression for trip demand is in equation 3.1, where    is the number of trips taken by 

individual  . On the left side,       and      are individual     study site trip cost and 

substitute trip cost, respectively. Income is given by     and    is a vector of individual 

characteristics.  

    (                )                                                        (3.1) 

Individual consumer surplus for the site, or access value, is given in equation 3.2. It is 

calculated as the integration of the demand curve between individual     trip cost (   )  

and the relevant choke price (   ). 

     ∫  (                )    
   

                                             (3.2) 

This is also a close approximation for on-annual WTPA  as recreation demand models  

generally are associated with a small budget share and low income effects (Haab & 

McConnell, 2002). 

3.4   Empirical Model 

Obtaining a sufficiently large sample of site users from representative recreation 

surveys can be costly if users represent only a small fraction of the surveyed population. 

For this reason, trip data often is collected on-site so that site users can be accessed 

directly. The trip data used in this study was collected on-site at locations in the 

Roosevelt-Arapahoe National Forest. The dependent variable used in this paper is the 

number of visits to RANF in the past 12 months. A count model is used to estimate the 

demand function in equation 3.1 because it deals with this type of data. However, data 
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collected on-site is characterized by the properties of truncation and over dispersion, 

which must be accounted for when selecting an estimator.   

On-site data is truncated at zero because only trip-takers are observed in the 

sample (i.e.     ). Failure to account for truncation leads to inconsistent parameter 

estimates because truncated count data  has a different conditional distribution and mean 

than the underlying data generating process (Cameron & Trivedi, 2013). This issue is 

typically addressed by normalizing the probability density function for trips by the 

probability of participation (i.e.         ) so that the density function of the truncated 

model integrates to one (Haab & McConnell, 2002).  

Data collected on-site also is stratified endogenously, meaning that on-site 

samples are more likely to capture avid users of the site. Shaw (1988) formally defined 

endogenous stratification, showing that the on-site trip probability is proportional to the 

number of trips taken. This is stated formally in equation 3.3, where  (  ) is the on-site 

probability that a visitor took   trips,  ( ) is the population probability of   trips, and 

  ( ) is the number of  expected   trips in the population.  

 ( )  
   ( )

  ( )
                                                            (3.3) 

This form also accounts for truncation because the normalization constant cancels due to 

endogenous stratification (Haab & McConnell, 2002).  

The result in equation 3.3 can be applied easily  to the Poisson distribution. The 

Poisson has probability density function   (         )   
     

 

  

    
 with the intensity 

parameter    equal to the expected number of trips and the variance. Thus, equation 3.3 

becomes  (       )   
     

 

    

(     ) 
 for the case of the endogenously stratified and truncated 
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Poisson. Note that this is simply the Poisson distribution with the trip count variable 

decreased by one.  

A limitation of the endogenously stratified Poisson model used in the current 

study model is that the intensity parameter, parameterized as        (   ), holds the 

mean and variance equivalent. The negative binomial model allows for a relaxation of 

this constraint through estimation of a dispersion parameter. The zero truncated NB2 

model accounts for truncation in the data but not for endogenous stratification. Truncated 

Poisson estimators with choice-based regression weights (Bowker et al., 2009; Kriesel et 

al., 2005) can be employed to accommodate overdispersion in on-site models, but this 

specification experienced convergence issues with the RANF data used in this study and 

can  lead to biased estimates (Stynes et al., 2003).  

This paper is centrally concerned with the investigation of spatial dependence in 

recreation demand models. Addressing spatial dependence in discrete models introduces 

a variety of challenges compared to the continuous dependent variable case (see Fleming, 

2004). Most discrete spatial models rely on computationally intensive simulation or 

approximation procedures to deal with the multidimensional integrals that often appear in 

the likelihood functions.  

3.4.1   The Copula Approach 

A copula, or linking function, is used in this analysis to accommodate potential 

spatial dependence among observations in a model of recreation demand. Copulas are 

distribution functions that link multivariate distributions to their one-dimensional 

marginal distributions. Copulas describe a dependence relationship among random 

variables with pre-specified marginal distributions. The copula approach permits 
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derivation of a parametric joint distribution for the data from individual marginal 

distributions using Sklar’s theorem (1973). Copula models are attractive for a variety of 

reasons (see Cameron & Trivedi, 2013), including that they separate inference about the 

marginal distributions of the random variables from the dependence structure, permitting 

a test of spatial dependence.   The copula function in equation 3.4 is a cumulative 

distribution function (CDF) with n univariate margins, where    is distributed standard 

uniformily. The parameter   describes the correlation between the marginal distributions. 

  (       )                                                          (3.4) 

If the trip count variable    has CDF   ( ), then the integral transform of   (  ) is 

uniformily distributed. Thus, the n-variate distribution function   (       ) with 

univariate marginal distributions   (  )    (  ) is given by: 

  (       )                                                                       (3.5) 

       (  )    (  )     (  )    (  )                                                               

         (  )        (  )                                             

   (  (  )     (  ))                                                                                              

Alternatively, this can be expressed as: 

 (       )   (  
  (  )     

  (  ))                                             (3.6) 

   (       )                                                                                                                

where   
  (  )     and      

  (  ). In the case of zero correlation, the joint 

distribution is the product of the marginal distributions.   

With discrete trip count data, the CDF is a step function, and thus      
  ( ) is 

not a unique value. This paper follows standard practice of evaluating at the minimum of 

the interval. The CDF   ( ) is given by the endogenously stratified Poisson distribution 
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as described in the preceding section.  The vector of demand parameters   then enters the 

empirical model through   ( ).  

The functional form of the copula function itself is unknown a priori and must be 

chosen by the analyst.  Three candidate spatial copula forms were explored for use in this 

analysis including the Farlie-Gumbel-Morgenstern, Generalized Gumbel, and 

multivariate Gaussian forms (see Sener & Bhat, 2012).  The Gaussian form was selected 

for the copula function because the other forms lead to convergence issues in estimation.  

The multivariate Gaussian copula generalizes a multivariate normal dependence structure 

to non-normal marginals. The multivariate Gaussian copula is given in equation 3.7. 

  (        )    (             )   (   (  )      (  ))               (3.7) 

The function   is a   dimensional standard normal CDF with mean zero and a 

correlation matrix whose off-diagonal elements are captured in the vector    The term 

   ( ) represents the inverse of the univariate standard normal CDF. The spatial process 

in the Gaussian copula is assumed to be isotropic (i.e.         )  and the Gaussian 

copula is parameterized as follows.  

    
(  )

 
 ̃  

  (  )
 
 ̃  

                                                             (3.8) 

The term   ̃   is a vector of variables that influence the degree of spatial dependence 

between observations i and j and          by definition. The parameter   is 

estimated. The form presented above permits usage of various spatial dependence 

determinants common in the literature. Depending on the construction of vector   ̃  , 

spatial dependence can be based on observations being in some predefined area or 

“neighborhood,” shared neighborhood border length of paired observational units, or 
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inverse distance between observations.  All three of these options were explored for the 

current model. A single neighborhood indicator variable was chosen for  ̃   based on 

model performance and the inability of the inverse distance and shared border length 

specifications to accommodate spatial dependence between same the ZIP code 

observations.  

3.4.2   Estimation 

Recall that the data include   observations of annual trip counts for individuals 

residing in geographically positioned ZIP codes. Using the Gaussian copula described in 

the preceding section with endogenously stratified Poisson univariate marginals, the 

likelihood function is given in equation 3.9, where   is a vector of parameters governing 

recreation demand and    is the observed data (Kazianka, 2013).  

 (   )   ∑   
    ∑ (  )   (           ) 

                               (3.9) 

In this expression,       ( (  ))  is the marginal CDF;         ( )  (  )
 ( (  )) is 

the left hand side limit of  ( (  )) for          and   ∑   
 
   . Estimation of this 

function is not computationally tractable because it requires summing over    terms in 

each optimization step and because copula functions can be difficult to accurately 

compute in high dimensions (Kazianka, 2013). Following recent literature (Kazianka & 

Pilz, 2010; Sener & Bhat, 2012), this paper uses a pairwise composite likelihood function 

to simplify the expression in equation 3.9 into a tractable form.  The pairwise likelihood 

function given in equation 3.10 uses bivariate copulas to accommodate dependence 

between observational pairs. The composite approach allows the analyst to construct a 

pseudo-likelihood function when marginal likelihoods can be computed for subsets of the 

data. The resulting pseudo-likelihood function is unbiased and displays consistency and 
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asymptotic normality under typical regularity assumptions. This analysis utilizes a 

pairwise marginal likelihood estimation approach, analogous to a composite likelihood 

with bivariate margins. 

   (   )   ∏ ∑ ∑ (  )   (         )
 
    

 
    

 
     {     }                       (3.10) 

For the Gaussian copula form utilized in this analysis, spatial dependence is 

accommodated through the estimated off-diagonal element of the copula correlation 

matrix  . This paper estimates a single spatial dependence parameter  ̂ for all 

neighborhood pairs.  

 

  (       )   (   (   )  
  (   )   )                                              (3.11) 

Substituting equation 3.11 into equation 3.10, the pairwise approach the copula function 

becomes  

  (     )  ∑ ∑ (  )   (         )
 
    

 
                                              (3.12) 

The non-negative weight terms     are indicator variables that equal one if observations   

and   are spatial neighbors and equals zero otherwise. The normalizing weight terms 

  are inversely related to individual  ’s number of spatial neighbors. These weights 

allocate spatial dependence for each observation based on the number of spatial 

neighbors. 

   
 

∑       
                                                                      (3.13) 

The log of the transformed likelihood function is in equation 3.14 below. Maximizing 

this function will yield parameter estimates for the recreation demand determinants and 

the spatial dependence structure.  
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                                    (3.14) 

 

3.5   Data and Variables 

This study analyzes two National Visitor Use Monitoring (NVUM) datasets 

collected in 2005 and 2010 at the Roosevelt-Arapahoe National Forest in Colorado. The 

Roosevelt-Arapahoe National Forest consists of two contiguous National Forests, 

Roosevelt and Arapahoe. Roosevelt-Arapahoe National Forest encompasses 1,537,543 

acres (USFS, 2014b) in the foothills and mountains bordering the Front Range area of 

Colorado. It is the nearest National Forest to residents in Boulder, Fort Collins and 

Denver, and is one of the most frequently visited forest in the National Forest system 

with 23 million annual recreation visits (USFS, 2014a). Visitors to RANF pursue a 

variety of recreational activities in all seasons. Popular activities include hiking, downhill 

and cross country skiing, fishing, hunting, and recreational vehicle use.  

The visitation data analyzed in this study is sourced from the National Visitor Use 

Monitoring (NVUM) program administered by the U.S. Forest Service. This program 

began in 2000 to produce ongoing estimates of visitation at national forests and 

grasslands (hereafter referred to as national forests). The program collects on-site data 

from visitor interviews using random, stratified sampling (English et al., 2002). Survey 

implementation involves stopping last-exiting vehicles at forest use sites and collecting 

data from the individual with the most recent birthday who is 16 years   or older.   The 

first round of data was collected at 120 national forests from 2000-2003. The second-

round and third-round NVUM surveys collected information from individuals on the 

number of trips taken to the national forest in the past year (TRIPS) and the distance 
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traveled from their residence to the interview site (DIST). Limited demographic 

information also was collected from respondents, including gender, age category, and ZIP 

code. Unfortunately, substitute activity and income data was collected for only a fraction 

of the sample and thus is not utilized in the analysis. Detailed trip expenditures and 

access fees also were not available for the entire sample. Respectively, the spatial 

distribution of annual trip observations for the 2005 and 2010 samples is depicted Figure 

3.1 and Figure 3.2.  

This study models demand for recreation day trips to Roosevelt-Arapahoe 

National Forest. Thus, the 2005 and 2010 samples are restricted to individuals taking day 

trips for the primary purpose of recreation. The samples also are restricted to remove 

outliers. Specifically, individuals reporting more than 150 annual trips, individuals who 

traveled more than 250 miles one-way, and vehicles with more than 10 passengers are 

removed from the samples.  To provide a proxy for individual income, per-capita income 

is estimated by ZIP code for both 2005 and 2010 using tax return data
3
, resulting in the 

variable ZIPINC.   

 Trip costs are assumed equivalent to the sum of travel costs and the opportunity 

cost of time. Travel costs are calculated as the product of round-trip travel distance and 

$0.14, the per-mile cost of personal and charitable vehicle use in 2005 and 2010, 

according to AAA.  Treatment of the opportunity cost of time has received a great deal of 

attention in the literature, but no general consensus has emerged. Most studies assume 

                                                           
3
 Using publically available U.S. Internal Revenue Service data from 2008, per-capita 

income is estimated by dividing the adjusted gross income by the estimated population. 

Population is estimated as the total number of dependents claimed. Due to data 

availability, inflation adjusted 2008 tax is used to construct ZIPINC for 2010. For further 

information, see  http://www.irs.gov/uac/SOI-Tax-Stats-Individual-Income-Tax-

Statistics-ZIP-Code-Data-(SOI) 

http://www.irs.gov/uac/SOI-Tax-Stats-Individual-Income-Tax-Statistics-ZIP-Code-Data-(SOI)
http://www.irs.gov/uac/SOI-Tax-Stats-Individual-Income-Tax-Statistics-ZIP-Code-Data-(SOI)
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that individuals substitute labor for leisure at the margin and estimate time costs as a 

fraction of the wage rate (Parsons, 2003). In the absence of individual income data, this 

study approximates time cost as one third of the wage rate
4
 times travel time, assuming 

an average vehicle speed of 60 miles per hour.  

 In accordance with consumer theory, the cost of day trips to substitute national 

forests is expected to influence forest trip demand. As mentioned, substitute trip location 

was not available for the data. Spatial variables were constructed to estimate the influence 

of substitutes on trip demand. Substitute national forest area within a 50km radius was 

calculated for each ZIP code centroid to represent the relative abundance of substitutes. 

This variable, and similar variables calculated for different radiuses, did not provide an 

adequate representation of substitute trip costs in the data. Specifically, these proxy 

variables produced positive estimated coefficients. The distance from ZIP code centroid 

to the nearest substitute forest boundary similarly did not represent substitutes in the data. 

Substitute prices are not included in the model in the absence of a suitable proxy for 

substitute trip costs. A diminished role for substitute trip price in determining trip demand 

is expected for this study site due to the spatial position of RANF relative to its users. 

RANF offers a large and accessible recreation area to Front Range residents while 

substitute National Forests are a longer trip compared to RANF for the majority of the 

sample. 

Welfare estimation using the NVUM data requires that welfare estimates 

incorporate the NVUM sampling strategy. Specifically, the number of individuals 

                                                           
4
 Hourly wage is calculated as ZIPINC divided by hours worked, assuming 2,087 hours 

worked per year based on U.S. federal government standards. 

https://www.opm.gov/policy-data-oversight/pay-leave/pay-administration/fact-

sheets/computing-hourly-rates-of-pay-using-the-2,087-hour-divisor/. 
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traveling in the sampled vehicle and the random stratified sampling frame must be 

accounted for. The following discussion describes how these issues were considered in 

this paper.  

Recall that the demand model parameters   enter the empirical model through 

parameterization of the endogenously stratified Poisson intensity parameter   . Assuming 

an exponential distribution for the intensity parameter
5
 (i.e.        (         )), 

equation 3.15 gives the annual WTPA  per vehicle where    
         (Haab & 

McConnell, 2002). 

      ∫     (            )
 

        
  

   
                                         (3.15) 

Dividing by the expected number of trips
6
 yields an expression for per trip WTPA in 

(16).  

      
 

   
                                                                  (3.16) 

This expression is converted to per-person WTPA in equation 3.17 by dividing by the 

number of persons in the sampled vehicle,       , assuming that respondents make 

each trip with the same number of companions and to the same RANF site.  

      
 

 

   

       

⁄                                                         (3.17) 

Following Bowker et al. (2009), we generate the weighted average welfare by 

incorporating the NVUM sampling weights into welfare calculations. The weighted 

average measure in equation 3.18 is used in this paper for subsequent calculations of 

welfare.  

                                                           
5
 Choke price under this assumption is infinite. 

6
      (  )   
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∑                

 
   

∑          
 
   

                                                   (3.18) 

 

 The determinant of the degree of spatial dependence between two observations, 

 ̃  , is defined as a single indicator variable that equals one if individuals   and   are 

spatial neighbors and equals zero otherwise. Observations are spatial neighbors if their 

ZIP code centroids are within 5 km or 2.5 km of each other, depending on the 

specification. The pairwise marginal likelihood function in equation 3.14 excludes 

observations for which there are no spatial neighbors. In the 5 km neighborhood 

specification of  ̃    this results in dropping 52 and 49 observations from the 2005 and 

2010 samples, respectively.  In the 2.5km neighborhood specification, 74 and 78 

neighborless observations are dropped from the 2005 and 2010 samples, respectively. 

Tables 3.1 through 3.4 provide descriptive statistics of the data for the 5 km and 2.5 km 

neighborhood specifications across the 2005 and 2010 samples.  

3.6   Results 

Spatial copula models with 5 km and 2.5 km spatial neighborhood specifications 

were estimated by maximizing the previously discussed pairwise marginal likelihood 

function for the 2005 and 2010 samples. Weighted likelihood specifications
7
 also were 

estimated to incorporate sampling weights (Wang et al., 2004); however, these models 

provide an inferior model fit compared to the unweighted  models, according to AIC and 

BIC measures. The unweighted model results thus are preferred, and instead sampling 

weights are instead incorporated during welfare calculation.   

                                                           
7
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Two specifications were estimated through pairwise marginal maximum 

likelihood for each model.  The first is a “sparse” specification and explains trip behavior 

using only trip cost (TCOST) and the spatial dependence parameter. The second “full” 

specification adds gender (FEMALE), the number of individuals in the sampled vehicle 

(NUMVEH), and ZIP code per capita income (ZIPINC). Robust standard errors clustered 

by ZIP code are used for inference
8
.  Respectively, model results for the 5 km and 2.5 km 

neighborhood specifications are presented in Table 3.5 and Table 3.6.   

The full specification is preferred to the sparse specification across years and 

neighborhood specifications, according to AIC and BIC measures of fit. For this reason, 

the full specification is the focus of subsequent discussion and analysis.  

 The trip cost (TCOST) variable produces significant estimated coefficients at the 

.01 level across models. The individual variable estimated coefficients vary in 

significance across models, but the significant estimates are consistent in sign. In the 

2010 5 km neighborhood specification, being female (FEMALE) is significantly 

associated with taking fewer trips. The 2005 5 km neighborhood model indicates that 

vehicles carrying more passengers are associated with taking more annual trips to RANF. 

As expected, individuals who live in ZIP codes of higher per-capita income (ZIPINC) are 

significantly associated with taking more recreational trips across 5 km neighborhood 

models and are at the .1 level of significance  for the 2005 2.5 km neighborhood model .  

 Spatial dependence is present in recreation demand for day trips to RANF, as 

indicated by the significance of the estimated spatial neighborhood parameter NEIGH
9
 at 

the .01 level across all estimated models. The magnitude of the spatial dependence 

                                                           
8
 Obtained via the sandwich estimator 

9
   in equation 3.8 
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parameter   is consistently approximately 0.75, a sign that spatial dependence is also 

practically significant
10

 in the model. The results suggest that spatial dependence is a 

potentially important determinant of recreational demand.  

Individual per-trip WTPA was calculated using equation 3.18, and the results are 

presented in Table 3.7. Error bounds were constructed following the Krinsky-Robb 

procedure and using the clustered sandwich estimator variance-covariance matrix 

(Krinsky & Robb, 1986).  In the 5 km neighborhood specification, estimated per trip 

WTPA decreases to $40.08 in 2010 from $43.73 in 2005 in 2010 USD.   Mean individual 

WTP decreases even more over that time   in the 2.5 km neighborhood models, from 

$32.04 in 2005 to $19.61 in 2010. The WTPA estimates from the 2.5km neighborhood 

model are higher across years, and in 2010 they are about half the size of the WTPA 

estimates from the 5km model. A significant change in WTPA from 2005 to 2010 is 

found with the 2.5 km neighborhood model, as the error bounds do not overlap.  

 

3.7   Discussion 

 

This paper presents and implements a method for testing and accommodating 

origin-based spatial dependence in models of recreation demand.  Furthermore, this 

analysis evaluates the hypothesis that WTPA for day trips to RANF remained the same 

from 2005 and 2010 data.   The results indicate that significant spatial dependence exists 

in recreation demand for trips to RANF, after controlling for trip cost and individual 

characteristics. The estimated models also provide some evidence that WTPA for day 

trips to RANF declined from 2005 to 2010.  

                                                           
10

 Recall that this parameter is the estimated off-diagonal of the standard normal 

correlation matrix from the Gaussian copula. 
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The copula method used to accommodate spatial dependence in this study is 

straightforward, and the model can be estimated without computationally burdensome 

simulation techniques. The significant spatial dependence uncovered in the recreational 

demand model suggests that spatial dependence can play a role in recreation behavior. 

Accommodation of spatial dependence is a step toward incorporating a potentially 

important, but generally ignored, dimension of recreation demand. Spatially dependent 

recreation behavior is likely related to social interactions, diffusion effects, and 

unobserved landscape characteristics (Sener & Bhat, 2012). However, the causes and 

dynamics of spatial dependence are poorly understood and further research is warranted.  

 The welfare estimates indicate that WTPA decreased from 2005 to 2010, although 

the change is not significant in the 5 km neighborhood specification
11

. The most obvious 

reason for this decline is the sustained reduction in employment and income that 

accompanied the 2008 financial crisis and subsequent recession.  The recreation demand 

models from 2005 support this possibility as they indicate that income is significantly 

associated with trip behavior. However, Loomis and Keske (2012) suggest that nature-

based high mountain recreation in Colorado did not decline over this period in terms of 

visitor expenditures or total visits. Another potential explanation for reduction in WTPA 

from 2005 to 2010 is changes to the activity mix at RANF. Cordell (2012) found that the 

typical mix of recreational activities in national forests shifted substantially from 2000 to 

2010, with increased participation in nature-based activities, such as wildlife viewing, 

and decreased participation in traditional outdoor activities, such as hunting and fishing. 

The results also show a decline in snowboarding participation and motorized activities 

                                                           
11

 A 10 km neighborhood model also was estimated, and the results show a significant 

decline in WTPA from 2005 to 2010. 
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declined from 2005 to 2010. A shifting activity mix at RANF could be related to the 

decline in per-trip WTPA found in the 2.5km neighborhood model. For example, the 

proportion of motorized vehicle users, a costly and gear-intensive activity type, declined 

from 13% of the weighted sample in 2005 to 9% in 2010. Likewise, the percentage of 

anglers fell from 11% of the weighted sample in 2005 to 7% of the weighted sample in 

2010. The 2010 weighted sample was composed of 28% hikers compared to 16% in the 

2005 sample. Consistent with the national trend, the activity mix in the RANF samples 

shifted away from gear-intensive snow sports and toward nature-based hiking. The 

activity mix shift at RANF may have contributed to the decline in mean per-trip WTPA 

from 2005 to 2010 found in the 2.5km neighborhood model. Evolving preferences, and 

potential shifts in forest recreation activities need to be accounted for when crafting forest 

policy on maintenance, use regulations, and conservation priorities.  

 Other factors were also affecting forest recreation values from 2005 to 2010 

including wildfires and infestation by the mountain pine beetle. Differences in weather 

patterns across the samples might have also had an effect on annual forest recreation 

value and activities across the samples.  

Spatial parameters in econometric models are generally not tied to a single 

causation or source but instead represent the aggregation of various causes of spatial 

dependence. Unwinding the factors that determine spatial dependence is a challenging 

but promising avenue for future research. For example, wireless apps like Nextdoor could 

be utilized to measure social interactions between neighbors and then test whether 

interactions introduce spatial dependence. Furthermore, more precise information about 
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the location of one’s home would allow for an improved specification of the determinants 

of spatial dependence ( ̃  ) in recreation demand. 
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Table 3.1   Descriptive Statistics for the 2005 Sample with 5 km Neighborhoods 

 
 

Variable Description Mean StDev Min Max Median 

COUNT 
The number of respondent trips to 

RANF in the past 12 months 
17.610 22.069 1 120 10 

TCOST 

Travel cost of a visit to RANF 

with time cost based on per-capita 

ZIP code income (in hundreds of 

2005 USD) 

0.226 0.136 0.004 0.858 0.202 

FEMALE 
=1 if respondent is a female and 

=0 otherwise 
0.294 0.456 0 1 0 

NUMVEH 
Number of passengers in 

respondent’s vehicle 
2.315 1.151 1 8 2 

ZIPINC  

Average ZIP code income (in 

hundreds of thousands of 2005 

USD) 

0.357 0.160 0.119 1.623 0.315 

 

Note: n=909
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Table 3.2   Descriptive Statistics for the 2010 Sample with 5 km Neighborhoods 

 

Variable Description Mean StDev Min Max Median 

COUNT 
The number of respondent trips 

to RANF in the past 12 months 
17.270 22.357 1 130 9 

TCOST 

Travel cost of a visit to RANF 

with time cost based on per- 

capita ZIP code income (in 

hundreds of 2010 USD) 

0.218 0.135 0.004 0.847 0.193 

FEMALE 
=1 if respondent is a female 

and =0 otherwise 
0.375 0.485 0 1 0 

NUMVEH 
Number of passengers in 

respondent’s vehicle 
2.564 1.391 1 9 2 

ZIPINC  

Average ZIP code income (in 

hundreds of thousands of 2010 

USD) 

0.363 0.139 0.111 1.432 0.328 

 
Note: n=741
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Table 3.3   Descriptive Statistics for the 2005 Sample with 2.5 km Neighborhoods 

 

Variable Description Mean StDev Min Max Median 

COUNT 

The number of respondent 

trips to RANF in the past 12 

months 

17.880 22.425 1 120 10 

TCOST 

Travel cost of a visit to RANF 

with time cost based on per- 

capita ZIP code income (in 

hundreds of 2010 USD) 

0.226 0.137 0.045 0.858 0.201 

FEMALE 
=1 if respondent is a female 

and =0 otherwise 
0.293 0.455 0 1 0 

NUMVEH 
Number of passengers in 

respondent’s vehicle 
2.315 1.159 1 8 2 

ZIPINC  

Average ZIP code income (in 

hundreds of thousands of 

2010 USD) 

0.363 0.161 0.144 1.623 0.325 

 
Note: n=864
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Table 3.4   Descriptive Statistics for the 2010 Sample with 2.5 km Neighborhoods 

 

Variable Description Mean StDev Min Max Median 

COUNT 

The number of respondent 

trips to RANF in the past 12 

months 

17.480 22.561 1 130 10 

TCOST 

Travel cost of a visit to 

RANF with time cost based 

on per-capita ZIP code 

income (in hundreds of 2010 

USD) 

0.214 0.133 0.004 0.847 0.187 

FEMALE 
=1 if respondent is a female 

and =0 otherwise 
0.380 0.486 0 1 0 

NUMVEH 
Number of passengers in 

respondent’s vehicle 
2.558 1.380 1 9 2 

ZIPINC  

Average ZIP code income (in 

hundreds of thousands of 

2010 USD) 

0.362 0.127 0.111 0.799 0.328 

 
Note: n=692
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Table 3.5   Spatial Travel Cost Models With 5 km Neighborhoods 

 

  2005 2010 

CONST 3.999*** 3.382*** 4.481*** 3.279*** 

 

(0.016) (0.074) (0.018) (0.085) 

TCOST -2.075*** -1.476*** -3.416*** -1.359*** 

 

(0.014) (0.042) (0.023) (0.037) 

FEMALE 

 

-0.165   -0.865** 

  

(0.172)   (0.358) 

NUMVEH 

 

0.172**   0.144 

  

(0.082)   (0.387) 

ZIPINC 

 

0.785***   1.14*** 

  

(0.074)   (0.036) 

NEIGH 1.098*** 1.098*** 1.085*** 1.092*** 

  (0.000) (0.002) (0.121) (0.214) 

N 886 886 721 721 

K 3 6 3 6 

LL -99588 -99550 -80923 -80825 

AIC 199181 199112 161852 161661 

BIC 199196 199141 161866 161689 
 

Notes: Clustered sandwich standard errors in parenthesis; 

*** p<0.01, ** p<0.05, * p<0.1. 
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Table 3.6   Spatial Travel Cost Models With 2.5 km Neighborhoods  

 

  2005 2010 

CONST 3.722*** 3.594*** 4.406*** 3.982*** 

 

(0.001) (0.246) (0.006) (0.223) 

TCOST -1.436*** -2.015*** -3.406*** -2.811*** 

 

(0.007) (0.066) (0.020) (0.158) 

FEMALE 

 

-0.253   -0.208 

  

(0.186)   (0.658) 

NUMVEH 

 

0.218   0.257 

  

(0.457)   (0.280) 

ZIPINC 

 

0.557*   -0.292 

  

(0.313)   (0.381) 

NEIGH 1.095*** 1.088*** 1.098*** 1.091*** 

  (0.037) (0.104) (0.000) (0.367) 

N 864 864 692 692 

K 3 6 3 6 

LL -97247 -96942 -77686 -77851 

AIC 194500 193896 155377 155714 

BIC 194515 193924 155391 155742 
 

Notes: Clustered sandwich standard errors in parenthesis; 

*** p<0.01, ** p<0.05, * p<0.1. 
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Table 3.7   Estimated Individual Per-trip WTP for Access to Roosevelt-Arapaho National Forest 

 

  5 km neighborhood 2.5 km neighborhood 

  2005 2010 2005 2010 

Mean $43.73 $40.08 $32.04 $19.61 

Range $38.55 - $50.53 $38.73 - $46.41 $27.73 - $37.99 $18.91 - $20.34 

 

Notes: Krinsky-Robb (1986) confidence intervals; 2010 U.S. dollars. 
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Figure 3.1   NVUM 2005 Day Trip Recreation Visitors to Roosevelt-Arapaho National Forest by Home Zip Code 
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Figure 3.2   NVUM  2010 Day Trip Recreation Visitors to Roosevelt-Arapaho National Forest by Home Zip Code 
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Chapter 4:   Optimal Population Control of Wild Horse Populations with Nonlethal 

Methods at Two Spatial Scales 

 

 

4.1   Introduction  

Wildlife populations provide a variety of amenities to society, including 

consumptive and nonconsumptive recreation, ecosystem regulation, and nonuse values. 

Wildlife populations also can impose costs on society through interference with human 

economic activities, degradation of habitat, and spreading of disease. Striking a balance 

between the costs and benefits of wildlife typically involves active population 

management. Population control is most commonly carried out through increased 

regulated hunting or trapping
12

 (Rondeau, 2001).  However, when species are endeared to 

the public, lethal population control methods can be associated with significant societal 

costs. In these cases, wildlife can be captured and relocated or held in captivity. Fertility-

control methods also are advocated as a humane population control alternative.  

This paper evaluates alternative nonlethal population control strategies for wild 

horse populations in the American West--an animal for which traditional population 

control methods are not a desirable option. The value of current management is estimated 

and policy simulations are carried out for optimal horse removal, fertility control, and 

mixed removal and fertility-control management scenarios. Additional simulations relax 

model constraints on horse gathering efforts to investigate the policy question of how 

                                                           
12

 Bear, wolf, coyote, cougar, beaver, geese, alligator, porcupine, and deer populations 

are actively managed in North America.  
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increasing the resources available for management would influence optimal population 

control programs.  The analysis is carried out for state-level and herd-level spatial scales. 

4.2   Background 

Free roaming horses are an enduring icon of the American West, but for decades 

an effective and sustainable management plan for wild horses has eluded land managers.     

Western wild horse populations are descendants of domestic animals introduced by 

Spanish explorers in the early 1500s. Once introduced, populations grew quickly, and by 

the year 1800 wild horses roamed in large herds, ranging from Texas to California 

(Dobie, 2005). 

4.2.1   Management of Wild Horses in the Western United States 

Rapid settlement of the western United States and the subsequent development of 

western lands led to conflicts with wild horse populations in the 1800s and 1900s. During 

this time, wild horses were sought out and destroyed or captured for commercial 

slaughter to prevent their interference with grazing and agricultural activities (Phillips, 

2012). By 1971, the total U.S. population was reduced to 9,500 horses (PITT, 1985). 

Beginning in the mid-20th century, horse and animal welfare advocates decried the 

inhumane treatment of removed animals and lobbied Congress for wild horse protection. 

The campaign garnered public interest and media coverage, and in 1959 Congress passed 

legislation to prohibit the use of aircraft or motorized vehicles to hunt horses and burros 

on public lands (PITT, 1985). In 1971, Congress   passed the Wild and Free-Roaming 

Horses and Burros Act, banning private horse gathers and tasking the federal Bureau of 

Land Management (BLM) with “protection, management and control of wild free-

roaming horses and burros on public lands” (NRC, 2013). The language in the bill also 
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guides the BLM to manage horses and burros at “the minimal feasible level” to “achieve 

and maintain a thriving natural ecological balance on the public lands” (NRC, 2013).  

These directives must be balanced with the BLM’s mandate to manage public lands for 

multiple uses.  Without active control, horse populations often become a stress on grazing 

land (Pimentel et al., 2005).  To prevent rangeland degradation, the BLM actively gathers 

wild horses and removes them from the range with the goal of keeping populations near 

predetermined appropriate management levels (AMLs). Adoptive homes are sought for 

removed horses and unadopted animals are sent to long-term holding facilities. The BLM 

does not support selling unwanted horses for slaughter.
13

  

In recent years, unwanted horses have been accumulating at holding facilities, and 

the budget for caring for these animals is growing unsustainably. During the 2012 fiscal 

year, a full 64% of the Wild Horse and Burro Program’s $71.8 million budget was 

dedicated to maintaining captive horses (BLM, 2014).  In 2000, by comparison, holding 

accounted for  46% the $19.8 million total program budget (GAO, 2008). Furthermore, 

Garrott and Oli (2013) estimated that the total NPV cost of caring for the horses currently 

in holding, if no more are added, at nearly $350 million. Under the existing management 

program, the authors estimate the total 2013-2030 costs of maintaining unadopted horses 

in captivity would total $1.1 billion. 

Wildlife fertility-control methods are used with a variety of wildlife species as a 

means of mitigating human-wildlife conflicts (Fagerstone et al., 2010), and limited 

fertility-control efforts are currently undertaken by the BLM. Using static methods, 

                                                           
13

 This practice was banned by law between 1988 and 2004 and currently is not 

advocated by BLM policy (Phillips, 2012). 
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Bartholow (2007) and de Seve and Boyles Griffin (2013) find significant cost savings 

associated with undertaking fertility control in wild horse populations. This study 

contributes to the literature a dynamic economic analysis of wild horse management.  

4.2.2   Optimal Control of Wildlife Populations 

 A study by Rondeau and Conrad (2003) examined optimal management of urban 

deer populations in New York in a model characterized by start-up costs and linear stock-

dependent marginal costs of culling.  The linearity of their cost function is consistent with 

a “bang-bang” optimal solution, but the startup costs and stock-dependent costs violate 

the sufficient conditions for the bang-bang optimality described by Spence and Starrett 

(1975). Instead, Rondeau and Conrad (2003) found that pulsing, or letting the population 

rise before culling intermittingly, is the optimal solution for an urban deer population in 

New York. The optimality of pulsing in deer management stems from economies of scale 

in culling, and pulsing may be part of an optimal horse management policy if economies 

of scale exist in horse gathering. 

4.3    Two Models of Wild Horse Population Control 

 This section develops optimal control models of wild horse population 

management. In essence, the problem is to choose a sequence of annual population 

control efforts to maximize over time the net benefits of a wild horse population. Two 

methods of population control are considered: horse removal and horse fertility control. 

Under current technology, both removal and fertility control generally require that herds 

be gathered on the range. With removal, gathered horses are transported to short-term 

facilities where adoptive homes are sought for the animals. Unadopted horses are shipped 
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to long-term holding facilities. With fertility-control methods such as Porcine Zona 

Pellucida (PZP) injections, horses are treated immediately after they are gathered. Once 

treated, fertility controlled horses are released. Implementing fertility-control operations 

also requires additional horse population monitoring (via helicopter) compared to a horse 

removal program (Bartholow, 2007).  

The state variable    is the number of horses in the horse population at the end of 

year    and the horse population changes over time according to growth function  (    ). 

Specifically,  (    ) is the change in population from the end of year     to the end of 

year   in the absence of population management. The choice variable    is the number of 

horses removed or the number of horses made infertile. The marginal cost of horse 

gathers a given period   (        ) is considered a function of population size      and 

management choice  . The marginal costs of transporting horses (   ), horse adoptions 

(  ), and holding unadopted horses (  ) are assumed to be constants. Adoption demand 

(     ) also is assumed to be constant across time.  

Wild horses are associated with economic impacts beyond the costs of population 

management. Wild horses provide recreation benefits for wildlife watchers and nonuse 

values for individuals who take satisfaction in knowing that wild horses roam the western 

range. Horse populations also can impose economic costs through degradation of 

rangelands shared with wildlife species and domestic livestock. The annual net economic 

benefits provided by wild horses are given by the function  (    ). 

The discount factor   reflects time preference and is bound between 0 and 1 

(inclusive). Wild horse managers are constrained by the number and proportion of 
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animals that can be gathered in a given year (NRC, 2013, p. 13), and constraint parameter 

  is the maximum proportion of the population that can be gathered in one period.  

4.3.1   Optimal Horse Removal 

The net present value of a single herd of wild horses using horse removal methods 

is maximized where the chosen sequence of horse gathers and removals {       } 

solves the problem in 4.1. 

   {  }
∑   [

 (    )

 
     (        )      (    )        ]

 
         (4.1) 

Subject to: 

         (    )      

         

             

 (   )    

Where:  

  {
                            
                 

 

The timing of management operations in the models is as follows. Removals and 

fertility-control measures (  ) occur at the beginning of year t, when the population is size 

    . By the end of year  , the population transitions to size   . Periods are one year. 

Periods end after foals are born, and the next period begins before mating does, imposing 

the assumption that none of the removed or treated horses are pregnant. Also,   (    ) is 

divided by   because the benefits of population      are realized in the previous period, 

where  (   )   . 

.  
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4.3.2   Optimal Fertility Control 

 The marginal cost of fertility-control treatment    is assumed to be constant 

(Bartholow, 2007), as is the annual fixed cost of population monitoring  . The remaining 

parameters and variables are the same as for the horse removal problem. For simplicity, 

the model of fertility control assumes that treatment is 100% effective in making 

individuals infertile for one year. Furthermore, animals treated in year   impact the 

population transition that occurs between year     and year  . The optimal fertility-

control program is a sequence of fertility treatment choices that maximizes the problem: 

   {  }
∑   [

 (    )

 
     (        )          ] 

                                          (4.2) 

Subject to: 

         (       ) 

         

             

 (   )    

Where: 

   {
             

        
 

The model assumes that the fertility-control effort controls the internal rate of horse 

population growth.  

4.4   Model Calibration 

The following section specifies parameter values and functional forms for the 

defined models of horse removal and fertility-control. Population management models 

are presented for state and herd spatial scales. The state-scale and herd-scale models 
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consider horse populations of different sizes and differ in their treatment of gather costs. 

The herd-scale models are based on the Beatys Butte herd management area (HMA) in 

eastern Oregon. The state-scale models are constructed with data from five states with 

similarly sized wild horse and burro populations, Arizona, California, Oregon, Utah, and 

Wyoming
14

, and the state-scale policy scenarios represent typical conditions in the states 

considered. All of the values used in the models are inflation-adjusted to 2014 dollars. 

The discount parameter   is assumed to be 0.95 to reflect a 5% discount rate.  

4.4.1   Wild Horse Population Biology 

Wild horse populations in the American West are growing at approximately 15-20 

percent per year (NRC, 2013). Current BLM population targets (AMLs) have led to high 

these growth rates because the AMLs are set below levels where density affects 

population growth (NRC, 2013). Eberhardt and Breiwick (2012) examined population 

data from four horse populations in France, Argentina, and the United States.  They 

found that the populations grew according to a theta logistic growth function with the 

parameter controlling the inflection point equal to two, as shown in equation 4.3.  

 (    )        [  (
    

 
)
 

]                                                (4.3) 

The parameter K is the carrying capacity, and   is the intrinsic growth rate. The 

study estimated an intrinsic growth rate ( ) of 0.28 and a carrying capacity of 1,202 

horses for the Beatys Butte herd in eastern Oregon. These estimates serve as parameters 

in the herd-scale models. In 2013, the BLM set the AML for this herd at 250 animals. 

                                                           
14

 The total 2004 wild horse and burro populations in these states were as follows: AZ-

2,133;  CA-4,129;  OR-3,085;  UT-2,745;  WY-4,381. 
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The state-scale scenarios also assume that the state horse population grows 

according to equation 4.3 with       . Applying the theta logistic growth function at 

the state-scale imposes the assumption that the state horse population grows as if all 

horses in the state belong to the same reproducing population. The average population in 

the five states considered was 3,294 in 2004, the year for which other parameter estimates 

are available. The average ALM across the states was 2,485 in 2004. The state-scale 

carrying capacity is assumed to be in the same proportion to the AML as Beatys Butte 

herd. Thus, a carrying capacity of 12,000 is assumed for the typical five-state wild horse 

population.  

The theta logistic growth function exhibits a few properties worth pointing out. 

The term       represents the internal increment of growth, and      (
    

 
)
 

 captures 

the density-dependent effects. As carrying capacity (K) goes to infinity, the population is 

unconstrained by density effects, and population growth is equal to the internal increment 

of growth. Conversely, as the stock approaches the carrying capacity, the theta logistic 

growth function goes to zero. 

4.4.2 Gather Costs 

Horse gathers are required for implementing horse removal and fertility-control 

population management methods. Available BLS cost data was used to construct stock-

dependent average total cost functions for the state-scale and herd-scale scenarios. In the 

herd-scale scenarios, marginal costs of horse gathers decline linearly with population. 

Citing correspondence with BLM, an unpublished study reported that the average per-

hose gather cost is $500 in a population of 50 and is $150 in a population of 1,000 
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(Arneson et al., 2002). Thus, the average total cost of gathers declines as the herd 

population increases. Equation 4.4 is the linear function connecting these data points and 

is the functional form that defines average total gather costs in the herd-scale models.  

  (     )                                                                      (4.4) 

To account for fixed costs, the minimum cost conducting a single horse gather for the 

Beatys Butte herd is set to $11,396 following Bartholow (2007)
 15 

. The maximum 

percentage of the population that can be gathered in a given period   is set to 0.9 at the 

herd-level, based on previous gather data for the Beatys Butte herd
16

. 

 Removal costs in the state-scale model are proportional to the percent of the 

population removed in a given year. The total 2004 horse removal costs for each state 

were calculated as the product of the average removal costs reported by Bartholow 

(2007) and the number of removals that occurred that year
17

 for the five states under 

consideration. The percentage of the stock removed in 2004, calculated as total removals 

over total population, ranges from 17% in Arizona to 45% in Wyoming. The relationship 

between the proportion of animals removed and the total removal costs provides a basis 

for estimating gather costs at the state scale. Figure 4.1 depicts the relationship between 

the proportion of the population removed and total removal costs. The fitted linear 

equation connecting the data points is in equation 4.5.  

  (        )  = 1,864,940.29       ⁄ - 165,913.85                                    (4.5)  

                                                           
15

 Bartholow estimates herd fixed removal costs of $10,000 (2007 USD) 
16

 More than 90% percent of the Beatys Butte herd was removed in 2009. 
17

 Data on population size, AML, removal, and adoption are from the BLM website: 

http://www.blm.gov/wo/st/en/prog/whbprogram/herd_management/Data.html.  
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This equation implies that removing the entire state population of horses in one period 

costs roughly $1.7 million in 2014 USD and assumes that complete removal costs are 

equivalent across the five states considered. The parameter   is assumed to be 0.5 at the 

state scale because no state under consideration was observed gathering more than half of 

its state-horse population in a single year. A minimum cost of $34,189
18

 is assumed for 

removal operations at the state scale. Removal costs include transportation costs, and thus 

no additional transportation costs (   ) are included in the state-scale model. Equation 4.5 

is used for state-scale fertility- control scenarios even though fertility control does not 

require transportation. Thus, the model may overstate gather costs for state-scale fertility 

control.    

4.4.3   Transportation, Adoption, and Holding Costs 

 

When wild horses are removed from the range, they are transported to holding 

facilities. The average transportation cost for one horse from the range to a holding 

facility is $243 (Arneson et al., 2002). The model assumes that all horses removed from 

the range are associated with this constant shipping cost.  

Removed horses are made available to the public for adoption. The cost to the 

BLM of conducting an adoption, including advertising, equipment, facility rental, and 

staff travel, is approximately $1,544 (Zeigler, 2012). The standard adoption fee is $125 

per animal (BLM, 2014). The number of annual wild horse adoptions averaged 170 in 

2012 for the five states considered, and the state-scale model assumes      . The 

                                                           
18

 Assumes that three herds must be managed to initiate state-level management. 

Equivalent to $30,000 in 2007 USD. 
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Beatys Butte herd’s proportional population share of Oregon adoptions in 2012 was 68, 

and      in the herd-scale model.  

Unadopted animals are sent to long-term holding facilities. Garrott and Oli (2013) 

estimated that the annual maintenance cost per horse in holding was $1,074 (2012 USD) 

and that the average life expectancy of animals entering holding is 15 years. Assuming a 

5% discount rate, the present-value cost of holding a horse for 15 years (  ) is $11,865. 

4.4.4   Fertility Control Application 

Fertility-control management can reduce population growth rates. A recent 

National Research Council report states that fertility-control agents have:  

“. . . the potential to reduce population growth rates and hence the number of 

animals added to the national population each year” (NRC, 2013, p 13). 

The population transition function for the fertility-control management scenarios is 

shown in equation (4.6). The form of equation 4.6 assumes that the percent of a 

horse population not fertility treated (  ) is proportional to the growth rate following 

fertility control. Alternatively, this form could be interpreted as having a 

reproducing population of (        ) animals that exert density effects on growth 

consistent with a population of      animals. 

             [   (
  

 
)
 

]                                                  (4.6) 

Where: 
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Undertaking fertility control in wild horse populations requires additional population 

monitoring efforts compared to management with horse removal. Based on the previous 

estimates,  the marginal cost of fertility-control application (   ) is $244, and the annual 

cost of fertility monitoring ( ) is $5,698 (Bartholow, 2007). 

4.4.5   Net Benefits Function 

Wild horse populations are associated with significant benefits and costs. Wild 

horses provide existence benefits to wild horse supporters and recreation benefits to 

wildlife enthusiasts. When populations go unmanaged, wild horses can damage rangeland 

shared with other wildlife and domestic livestock. Pimentel et al. (2005) estimated that 

U.S. populations of wild horses and burros cause $5 million in forage losses annually. 

Bastian et al. (1999) found that the marginal opportunity costs of additional horses on the 

range in excess of target population levels in Wyoming is $2,695 per horse. At levels 

well beyond the AML, marginal damage rises to approximately $3,546.  This analysis 

follows Rondeau and Conrad (2003) in assuming that total net benefits can be 

represented by a Gompertz function where: 

  ( )  {
                                  

      (  ⁄ )       
                                                  (4.7) 

The AML set by the BLM is assumed to be the population level   ̅  that corresponds with 

the maximum of  ( ). The Gompertz is a single, peaked function, and thus    ( ̅) = 0, 

  ( )            ̅ and   ( )            ̅. The marginal damage caused by an 

additional wild horse at high population levels is approximately $3,546 (Bastian et al., 

1999). Assuming that this is the value of marginal damage at carrying capacity, then 

  ( )        . Parameters   and   then can be solved for by considering this equation 
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together with the equation at the maximum. In the state-level model, parameters   and   

are equal to 2,251.83 and 6,754.93, respectively. The resulting function implies that a 

population of 10 horses produces $147,000 total net benefits annually, a population at the 

five-state average AML (2,485) produces $5.6 million in net benefits, and a herd at the 

five-state average carrying capacity (12,000) produces annual net benefits of  negative 

$15.5 million. In the herd-scale model, parameter   equals 2,258.07, and parameter   

equals 679.57. This function implies that the Beatys Butte herd is associated with annual 

net benefits of $95,000, $565,000, and negative $1.5 million when the population is at 10, 

at the AML (250), and at K (1,200) respectively.  

4.5   Results 

 

This section presents simulated optimal management programs based on the 

previously specified models and parameters. The 50-year net present value of 

management scenarios was calculated under the status quo and under various optimal 

population management regimes. A 50-year time horizon is used to compare scenarios. A 

long-term planning horizon is appropriate for this context because the public will manage 

wild horses for the foreseeable future. 

4.5.1 Valuation of Current Management 

 

The value of the existing horse management was estimated to establish a baseline. 

Historical horse gather and removal data from the BLM provides the basis for 

constructing baseline scenarios
19

. A horse gather at the Beatys Butte herd management 
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 Data is not available on the limited fertility control efforts undertaken by the BLM so 

the baseline scenarios focus on removals. 
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area in 2009 removed 379 animals, more than 90% of the estimated population

20
. This 

was the only horse gather at Beatys Butte from 2009 to 2013.  The herd-scale baseline 

management scenarios assumed a five-year management cycle where 80% of the 

population is removed in the first year and then no removals occur for the next four years. 

The NPV of this management program over a 50-year management horizon is -$12 

million.  

Management actions from 2005 to the present were evaluated at the state-scale to 

construct current state-management scenarios. Each of the five states considered 

undertook some removal efforts each year, although the intensity of removal efforts 

sometimes varied substantially from year to year. A spike in removals is common 

following a few years of lower intensity management. Additionally, horse stocks in the 

states remained relatively constant from 2004-2013. The state-scale baseline management 

scenario assumed a variable five-year management cycle based on removing fixed 

proportions of the population. In the first year of the cycle, 45% of the population is 

removed, followed by 25% in the second and third years, and 15% for the final two years 

of the cycle. The estimated NPV of state-level wild horse management under current 

policies is -$45.8 million over a 50-year time horizon.  

4.5.2 Solving the Dynamic Optimization Problem 

 

The existence of an analytical solution to the horse population control problem is 

unlikely because the objective function is linear in the control variable, nonmonotone in 

the state variable, has a nonlinear law of motion for the stock, and marginal costs 
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Comparison of the gather data to the population data suggests the population was 

underestimated. 
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decrease as stock increases (Rondeau & Conrad, 2003).  Instead, this analysis seeks 

analytical insights through simulations.  

The solution to the problem in (4.1) is produced by solving Bellman equation 4.8 

subject to the constraints from before and the terminal condition  (       )   0 where 

 is the finite time horizon. 

(4.8) 

 (       )      {  } { 
 [

 (    )

 
     (        )          (        )   

       ]}  (       (       ) 

The function  (   ) is the maximum achievable NPV benefits starting at time   with 

stock level   and given action  . All subsequent actions are assumed to be taken 

optimally, given the action taken in the current period. Bellman equation 4.9 is the 

equivalent for fertility-control population management. 

 (       )      {  } { 
 [

 (    )

 
     (        )         ]}       (       ) 

(4.9) 

The Bellman equations were solved in the computer program MATLAB with a backward 

recursion algorithm that starts at the terminal period and works back to the initial period.  

Terminal period   is set to 70 years so that the realization of the terminal condition is not 

taken into account in the optimal management simulations. Robustness checks with 

longer horizon models suggest that the solutions are stationary. To facilitate dynamic 
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programming of the solution, the problems were discretized through rounding of the state 

variable to the nearest integer before each value calculation
21

.  

The state-scale and herd-scale scenarios were simulated deterministically with a 

50-year planning horizon for the horse removal and fertility management models. Results 

from the four scenarios, including the optimal removal and population over time, and the 

present value of the management regime, are presented in Table 4.2.  

4.5.3 Horse Removal Simulations  

 

In the state-scale scenario, the optimal horse removal program yielded $13.8 

million in NPV benefits over a 50-year period. During that time, the mean annual horse 

removal was 318 animals with a standard deviation of 273.5. Also, the minimum number 

of horses removed in a given year was 186 animals, and the maximum was 1,644. The 

optimal path for the horse population over the 50-year period is shown in Figure 4.2. The 

starting population level is the five-state horse population average for 2004. The optimal 

removal strategy is to decrease the population to below 1,000 animals in the first five 

years and then begin a three-year pulsing cycle where the population fluctuates between 

828 and 894 and removals range between 186 and 312.  Pulsing exploits economies of 

scale in horse gather costs by increasing removal effort in a given period after allowing 

the population to grow previously. 

The herd-scale horse removal scenario produced $4 million in net benefits over 

the 50-year horizon. The mean number of horses removed over this period was 66, with a 

standard deviation of 48.5. The maximum number of horses removed in a given year was 
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 In the state-level model, discretization also involved grouping the horses into six-horse 

units to limit the dimensionality of the linear programming problem. 
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400, and the minimum was 56. The optimal horse population path for this scenario is 

shown in Figure 4.3. The initial population is 532 based on the 2013 estimated population 

for the Beatys Butte herd. In the first few years, the population drops steeply due to a 

high number of initial removals. When the population reaches approximately 250, the 

herd AML, the path flattens out. This is likely related to the fact that the benefits function 

is maximized at the AML, and population reduction beyond the AML represents a 

tradeoff between reduced management costs and foregone population benefits. By year 

17, the population reaches a steady state of 208 animals, and management remains 

constant at 56 removals for the balance of the periods.  

4.5.4 Horse Fertility Control Simulations 

 

Deterministic simulations were run next for the herd-scale and the state-scale 

scenarios with fertility-control management. When used as the only population control 

method, fertility control produced -$4.7 million in NPV benefits at the state scale over the 

50-year horizon. The state-scale optimal management program averaged 3,863 horses 

treated annually, with a standard deviation of 273.5. The minimum number of horses 

treated in a given year was 1,644 while the maximum was 4,236. The optimal 50-year 

population path is displayed in Figure 4.4. The path traces an S-curve, with population 

growing quickly from the initial population level and then slowly approaching the steady 

state of 8,478 animals.  

 At the herd-scale, the NPV of the optimal fertility-control program was -$2.8 

million over a 50-year horizon. The optimal fertility-control program averaged 377 

animals treated annually, with a standard deviation of 33.5. The minimum number of 

horses treated was 349, and the maximum was 408. The optimal population path 
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associated with this scenario is shown in Figure 4.5. The population decreases gradually 

from the initial value to a steady-state population of 392 animals over the first 35 years of 

the program. 

4.5.5 Horse Removal with Fixed Proportion Fertility Control 

 

The previous two subsections indicate that management with optimal horse 

removal produces larger NPV benefits than does management with optimal fertility 

control across spatial scales. This result is related to the relatively large number of horse 

gathers required to implement optimal fertility control. Fertility control alone does not 

appear to be a preferred optimal management alternative, but fertility control may benefit 

management if used in tandem with horse removal. This section develops and evaluates a 

model of optimal horse removal with annual fertility control of a fixed proportion of the 

population. The optimal removal program with fixed-proportion fertility control is a 

sequence of removal choices that maximizes problem 4.10, where    is the percentage of 

the stock fertility controlled annually.  

   {  }
∑   [

 (    )

 
 (         )  (               )     

 (    )                    

] 
         (4.10) 

Subject to: 

         (       )      

         

             

 (   )    

Where:  
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The population change from one period to the next under this hybrid management system 

is given in equation 4.11. The total number of horses gathered in period   equals    

      .   

             [(    )  (
  

 
)
 

]                                                (4.11) 

The Bellman equation in 4.9 was solved with backwards recursion assuming a 70-year 

horizon and subject to the constraints from before and the terminal condition  (  

     )   0.  

 (       )      {  } { 
 [

 (    )

 
 (        )  (              )     

  (    )                   

]}      (   ) 

                                                        (       )                

Four management scenarios that differed according to their assumed value of   were 

simulated for a 50-year management horizon for the herd-scale and state-scale models. 

Table 4.3 contains characteristics of the optimal management and population paths. In the 

state-scale scenarios, fixed fertility control led to larger steady-state populations and 

higher NPV benefits compared to removal alone. The scenario with 20% percent annual 

fertility control of the stock yielded $17.7 million in NPV benefits, the highest of the 

fixed fertility-control scenarios and nearly $4 million more than in the removal-only 

scenario. Additionally, the 20% fixed fertility-control scenario sustained an optimal 

steady-state population more than 200 animals larger than the steady state population in 
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the removal-only scenario. The state-scale fixed fertility optimal population paths are 

shown in Figures 4.6a to 4.6d. The increased fixed fertility-control effort is associated 

with longer approach paths to the optimal steady-state population level and less extreme 

shifts in management.    

 In the herd-level simulations, fixed-proportion fertility control led to lower NPV 

benefits with similar steady-state populations compared to horse removal alone.  The 

optimal population paths under this scenario are in Figures 4.7a to 4.7d. The optimal 

herd-scale removal program under fixed-proportion fertility control involves pulsing, 

where managers limit population management in some periods to exploit the economies 

of scale in horse gathering in subsequent periods. 

4.5.6 State-scale Population Management Without Gather Constraints 

 

The state-scale management scenarios considered so far assume that no more than 

50% of a state’s horse population can be gathered in a single period (i.e.      ). This 

assumption is consistent with recent BLM management efforts in the states considered 

but may be the result of BLM resource limitations rather than physical constraints. This 

section presents simulations that relax the gather constraint, consistent with increased 

available resources for gathers. The optimal 50-year population paths for horse 

management with     are shown in Figures 4.8 through 4.10. Characteristics of the 

optimal population and management paths with     are in Table 4.4. The horse 

removal only and horse removal with a 20% fixed fertility-control management scenario 

simulations both produced higher NPV benefits compared to their constrained 

counterpart. The population paths in the unconstrained models also approach the steady 

state more quickly.  
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The fertility control problem showed the most dramatic change from the 

constrained scenario to the unconstrained scenario. The NPV benefits increase from -$4.7 

million in the constrained case to $63.7 million in the unconstrained case. The steady-

state population is also 70% lower with unconstrained fertility control. The optimal 

population path with unconstrained fertility control, shown in Figure 4.9, reduces the 

population in the first 20 years before entering the pulsing cycle. One complete cycle 

lasts eight periods and includes seven periods of intense fertility control (>98%) and one 

period of moderate fertility control (66%), which allows the population to increase.  

The 50-year NPV benefits of fertility control increase dramatically when horse 

gathers are unconstrained. However, the optimal management program with 

unconstrained fertility control requires that nearly all of the animals in a given state  be 

gathered in six of every seven years and may not be feasible regardless of available 

resources.  

Additional simulations were run to evaluate fertility-control management benefits 

when       . The NPV benefits of state-scale fertility control increase from -$2 

million when        to $12.3 million when      . Fertility-control NPV benefits 

rise to $25.7 million and $38.2 million when the gather constraint   equals 0.75 and 0.8, 

respectively. Together these results suggest that fertility control is preferred to all other 

management programs considered when more than75% of the state horse population can 

be treated in each period.  
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4.6   Discussion 

 

The 50-year NPV benefits of optimally chosen management programs are greater 

than the estimated NPV benefits of current management across models and scenarios. 

The NPV benefit values for the simulated scenarios are summarized in Table 4.5. In the 

state-scale model, the NPV benefits of state-scale optimal horse removal exceed the 

benefits of the current management program by $60 million, a large figure compared to 

the NPV estimates calculated for the other management scenarios. The most noticeable 

difference in the optimal vs. the status quo removal programs is that the optimal 

programs call for a sharp reduction in the early periods. Thus, the model of optimal 

control developed in this paper supports recent calls for immediate and high intensity 

management actions (Garrott & Oli, 2013; NRC, 2013). More broadly, the results suggest 

that a strategic, long-term approach to population management can substantially increase 

the societal value of wild horses compared to current management. 

This chapter developed and analyzed optimal control models of wild horse 

population management with nonlethal methods. The simulation results reveal a number 

of management implications. Optimal fertility control is associated with larger steady-

state populations compared to optimal horse removals. However, optimal fertility control 

leads to lower NPV benefits compared to removals. This pattern is consistent across the 

state-scale and herd-scale simulations. These results suggest that fertility control alone is 

not a tenable strategy for managing wild horse populations. 

 The optimal steady-state population levels in the most scenarios were below 

current levels. The exception occurs when the state-scale fertility-control models are 
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gather constrained. This suggests that optimal management often involves reducing 

populations first. 

A program of fixed-proportion fertility control with optimally chosen removals 

increases the NPV benefits compared to removal alone in the state-scale scenarios and 

decreases the NPV benefits compared to removal alone in the herd-level scenarios. NPV 

benefits in the state-scale analysis were highest with constant fertility control of 

approximately 20%.  

Without gather constraints, state-scale management with fertility control yields 

the highest NPV benefits across the considered scenarios. However, unconstrained 

fertility control requires a large share of the population to be  treated each year. The NPV 

benefits of state-scale fertility control are the largest of any state-scale management 

program considered when at least 75% of the population can be gathered annually. From 

a policy perspective, this result suggests that enhancing the BLM’s ability to conduct 

large-scale gathers could improve the effectiveness of fertility-control efforts and 

increase the economic benefits provided by wild horse populations over time. Optimal 

fertility-control efforts require substantially more gathers annually compared to optimal 

removal. However, the costs of additional gathers are outweighed by the benefits of 

foregone adoption and holding costs. 

 For two reasons, the analysis might overstate costs in the fertility-control 

scenarios. First, the model assumes that fertility treatment lasts for only one year where in 

reality PZP and similar treatments can last for more than two years (Bartholow, 2007). 

Second, in the state-level scenarios, the costs of removals are used as a proxy for the cost 
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of horse gathers, so that transportation costs are included even though with fertility 

control no transportation is necessary.  Despite these issues, unconstrained fertility 

control yields the highest NPV of any policy considered.  

 Future dynamic analysis of wild horse management might explore a scenario 

where removal and fertility-control efforts are chosen simultaneously with the objective 

of maximizing NPV benefits.  
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Table 4.1   Parameters Values Used in the Optimal Control Models 

Parameter Description State-scale Herd-scale 

    Number of horses at start of analysis 3,294 532 

K Carrying capacity 12,000 1202 

  Intrinsic growth rate of horse populations 0.28 0.28 

    Average shipping costs for one horse from range to holding facility $242.99 $242.99 

   Net cost of administering an adoption $1,415.12 $1,415.12 

      Annual adoption demand for wild horses 170 68 

   NPV cost of holding horse for 15 years $11,865 $11,865 

   Fertility control cost per horse $243.88 $243.88 

  Population monitoring cost of fertility control effort $5,698.15 $17,094.44 

  Discount factor 0.95 0.95 
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Table 4.2   Solution Characteristics for Optimal Horse Removal and Fertility Control  

  State Scale Herd Scale 

  Removal Fertility Control  Removal Fertility Control  

Optimal management 

  

  

 mean 318.1 3,863.3 66.0 377.4 

stdev 273.5 706.4 48.5 33.5 

min 186 1,644 56 349 

max 1,626 4,236 400 477 

steady state 186-312 4,236 56 349 

Optimal population 

 

  

  initial 3,294 3,294 532 532 

mean 985.1 7,752.7 222.8 421.3 

stdev 438.6 1,400.4 46.7 36.7 

min 828 3,294 208 392 

max 3294 8,478 532 532 

steady state 828-894 8,478 208 392 

Benefits 

 

  

  

50-year NPV 

$13.8 

million -$4.7 million 

$4.0 

million $2.8 million 
Note: Multiple steady-state values represent the range of a pulsing cycle. 
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Table 4.3   Solution Characteristics for Optimal Horse Removal by Percentage of Population Fertility Controlled Annually 

  State Scale Herd Scale 

  10% 15% 20% 25% 10% 15% 20% 25% 

Optimal management 

   

  

    mean 333.8 317.6 337.4 375.0 58.6 55.1 50.4 45.5 

stdev 226.8 214.0 186.5 161.8 52.0 50.7 49.8 50.1 

min 228 228 246 252 0 0 0 0 

max 1,314 1,152 984 816 361 340 319 304 

steady state 228-282 228 246  252  0-68 0-67 0-65 0-68 

Optimal population 

   

  

    initial 3,294 3,294 3,294 3,294 532 532 532 532 

mean 1,174.6 1,170.5 1,352.7 1,571.6 216.3 211.6 205.8 191.1 

stdev 446.7 503.4 516.8 566.9 53.3 56.0 59.6 63.7 

min 1,020 978 1,122 1,230 172 159 161 153 

max 3,294 3,294 3,294 3,294 532 532 532 532 

steady state 

1,020-

1,044 978 1,122 1,230 172-224 174-214 161-207 153-184 

Benefits 

   

  

    

50-year NPV 

$15.9 

million 

$16.9 

million 

$17.7 

million 

$17.1 

million 

$3.7 

million 

$3.6 

million 

$3.5 

million 

$3.4 

million 
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Table 4.4   Solution Characteristics for State-scale Management without Gather 

Constraints 

  Removal Fertility control  

Removal with 20% 

fertility control 

Optimal management 

   mean 298.3 2,557.3 298.6 

stdev 433.0 340.8 337.7 

min 186 1,608 180 

max 3,276 3,294 2,616 

steady state 216-312 1,608-2,586 246 

Optimal population 

   initial 3,294 3,294 3,294 

mean 912.4 2,630.5 1,167.9 

stdev 341.2 220.0 305.4 

min 828 2,424 1,068 

max 3,294 3,294 3,294 

steady state 828-870 2,424-2,622 1,122 

Benefits    

50-year NPV $18.3 million $63.7 million $25.1 million  
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Table 4.5   Net Present Value of 50-year Management Scenarios  

  
Removal Fertility control 

Fertility control 

with        

State level    

Status quo     

50-year NPV -$45.8  - -  

Optimal    

50-year NPV $13.8  -$4.7  $25.7 

Herd level    

Status quo     

50-year NPV -$12.0  -  -  

Optimal    

50-year NPV $4.0  $2.8 -  

    
Note: In millions of 2014 U.S. dollars 
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Figure 4.1   State Removal Costs and the Proportion of Stock Removed, 2004  

 

Note: AZ, 17%; CA, 24%; OR, 28%; UT, 23%; WY, 45%.; In 2004 USD. 

 

Figure 4.2   Optimal Horse Population over Time: Horse Removal, State-scale  

 

 

Removal cost  = 1,864,940.29*𝑌(𝑡) /𝑋(𝑡−1) - 165,913.85 
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Figure 4.3   Optimal Horse Population over Time: Horse Removal, Herd-scale 

 

 

Figure 4.4   Optimal Horse Population over Time: Fertility Control, State-scale 

 

 

 



 

 

103 

 

 

 
Figure 4.5   Optimal Horse Population over Time: Fertility Control, Herd-scale 

 

Figure 4.6a   Optimal Horse Population over Time: Horse Removal with Fertility Control 

of 10% of Population, State-scale 
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Figure 4.6b   Optimal Horse Population over Time: Horse Removal with Fertility Control 

of 15% of Population, State-scale 

 

Figure 4.6c   Optimal Horse Population over Time: Horse Removal with Fertility Control 

of 20% of Population, State-scale 
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Figure 4.6d   Optimal Horse Population over Time: Horse Removal with Fertility Control 

of 25% of Population, State-scale 

 

Figure 4.7a   Optimal Horse Population over Time: Horse Removal with Fertility Control 

of 10% of Population, Herd-scale 
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Figure 4.7b   Optimal Horse Population over Time: Horse Removal with Fertility Control 

of 15% of Population, Herd-scale 

 

Figure 4.7c   Optimal Horse Population over Time: Horse Removal with Fertility Control 

of 20% of Population, Herd-scale 
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Figure 4.7d   Optimal Horse Population over Time: Horse Removal with Fertility Control 

of 25% of Population, Herd-scale 

 

Figure 4.8   Optimal Horse Population over Time: Unconstrained Horse Removal 

 ( =1), State-scale 
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Figure 4.9   Optimal Horse Population over Time: Unconstrained Horse Fertility Control 

( =1), State-scale 

 

Figure 4.10   Optimal Horse Population over Time: Unconstrained Horse Removal ( =1) 

with Fertility Control of 20% of Population, State-scale 
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Chapter 5:   Concluding Remarks 

 

 

5.1   Dissertation Summary 

 This dissertation presented three studies that each explore the role of landscape in 

determining natural resource values and management. The first two studies also apply 

computationally tractable spatial econometric models for analysis of discrete dependent 

variables.  

The first study examined moose habitat selection in a heterogeneous landscape 

with a discrete choice model.  The data was analyzed using a variant of the generalized 

GEV model with an allocation parameter to nest correlation between adjacent habitat 

patches. This approach is novel to habitat selection literature and allows for complex 

substitution patterns among habitat-patch alternatives. Model results provide a number of 

insights into the seasonal habitat preferences of tracked moose, including the influence of 

natural and human-built landscape features.  The significance of the spatial parameter in 

the estimated models suggests that spatial dependence is an important consideration for 

discrete-choice habitat studies.  Furthermore, this study demonstrates the generalized 

GEV model’s ability to test and accommodate spatial dependence in a large dataset. 

These properties are valuable to spatial econometricians, and the generalized GEV model 

appears like an appropriate general model for analyzing other situations where choice 

alternatives are arranged spatially.  
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The second study analyzed demand for forest recreation in Colorado with a spatial 

travel cost model. The analysis focused on two objectives. First, mean per-trip WTPA 

was estimated and compared across samples from 2005 to 2010.   The decline in 

estimated WTPA over this period is explained jointly by  the economic recession and  a 

shift towards nature-based activity participation ,and away from motorized and other gear 

intensive activities. Second, the study developed and applied a spatial travel cost model 

to investigate the landscape determinants of recreation demand. Spatial dependence can 

result from interactions among individuals in the same landscape or through the presence 

of an unobserved random field that influences recreation demand through some spatial 

stochastic process.  The spatial model utilized a copula, or linking function to permit 

spatial dependence among observations. Model results revealed significant spatial 

dependence among recreational-demand decisions, suggesting that spatial dependence is 

an important consideration in models of recreation demand.  

The horses ranging on public lands in the American West are managed to control 

the benefits and costs they produce for society. The third and final study in this 

dissertation utilized optimal control models and simulation techniques to analyze non-

lethal wild horse population management at two spatial scales. Results from policy 

simulations produced a number of findings that are relevant to management.    First, 

optimally chosen scenarios yielded significantly larger estimated NPV benefits than the 

current management scenario across management types and spatial scales. This finding 

stresses the importance of undertaking strategic management actions that consider future 

costs and benefits.  Second, the NPV benefits of management with optimal removal were 

greater than with optimal fertility control. In the state-scale scenarios, fertility control of a 
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fixed proportion of the population increased the value of optimal removal management. 

At the state-scale, fertility control became the optimal strategy when 75% or more of the 

population could be gathered annually.  

5.2   Future Research 

 The models and findings produced by this dissertation invite future research 

efforts to examine the influence of landscape factors on natural resource values and 

management.   

 The spatial econometric models utilized in this study have seen sparse application 

in the natural resource economics field despite their advantages in estimation and spatial 

inference.  There are a number of potential applications for these models related to 

examining landscape-natural resource effects.  For example, the generalized GEV model 

could be used to accommodate dependence among recreational sites in a site-choice 

travel cost model. Alternatively, the generalized GEV model is appropriate for analyzing 

models of residential choice, where location alternatives are spatially correlated.  

Similarly, the copula model from chapter two is appropriate for testing and analyzing 

origin-based spatial dependence in discrete dependent variable models.  

 Future research might also improve upon the presented studies. Incorporating 

individual characteristics into the habitat selection model is one obvious potential 

improvement that would provide useful information to wildlife managers.  In the 

recreation demand analysis, a comparison of the fitted values produced by spatial and 

nonspatial models could facilitate a comparison of model fit. Thus, generating model 

predictions that incorporate spatial effects is another area for future research. Finally, 
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future optimal control studies of wildlife might consider incorporating two or more 

management decisions so that optimal ‘hybrid’ management programs may be developed. 

Finally, stochastic state transitions might be incorporated in the optimal wildlife control 

model to reflect the random nature of fertility treatment effectiveness.  
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Appendix:   MATLAB and R codes 

Generalized GEV Habitat Selection Regression (R): Section 2.5 

 

######################################################################## 

#------------------------------------------------------------------------------------ 

# Generalized GEV Habitat Selection Model 

# collared moose location data 

# Data required: (both identified by id) 

# moose location data - "m809w6_250_loc.csv" 

# Land features data - "allcov_250.csv" 

# Core home range raster - "m809w6_250r.tif" 

# Code written by Robert Fonner 

# ----------------------------------------------------------------------------------- 

#######################################################################  

 

setwd("") 

# Read in available_habitat.txt 

features <- read.csv("allcov_250.csv", header=T, sep=",") 

names(features) 

 

# Create Dummys for cover type variables 

features$scrub_dum <- as.numeric(features$pct_scrub >= 50) 

features$for_dum <- as.numeric(features$pct_for >= 50) 

 

# Number of cells in study area 

n.cells <- length(features$id) 

n.cells 
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# elev in km 

features$elevationkm <- features$dem/1000 

 

# Read in gps_locations.txt 

locations <- read.csv("m809w6_250_loc.csv", header=T, sep=",") 

locations$id[locations$id==0] <- NA #NA non-identified fixes 

 

# Number of fix attempts 

fix.attempts <- length(locations$id) 

 

# Deviate variables from their mean 

features$elevationkm <- features$dem/1000 

features$slope1 <- features$slope - mean(features$slope) 

features$elevationkm1 <- (features$elevationkm - mean(features$elevationkm)) 

features$wat_dist1 <- (features$wat_dist - mean(features$wat_dist)) 

features$rd_dist1 <- (features$rd_dist - mean(features$rd_dist)) 

features$tr_dist1 <- (features$tr_dist - mean(features$tr_dist)) 

 

# Matrices of habitat data 

distance <- as.matrix(dist(cbind(features$xpts, features$ypts))) 

slope <- matrix(features$slope1, nrow=n.cells, ncol=n.cells, byrow=T) 

elevation <- matrix(features$elevationkm1, nrow=n.cells, ncol=n.cells, byrow=T) 

cosaspect <- matrix(features$cosaspect, nrow=n.cells, ncol=n.cells, byrow=T) 

pct_for<- matrix(features$pct_for, nrow=n.cells, ncol=n.cells, byrow=T) 

pct_scrub<- matrix(features$pct_scrub, nrow=n.cells, ncol=n.cells, byrow=T) 
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scrub_dum<- matrix(features$scrub_dum, nrow=n.cells, ncol=n.cells, byrow=T) 

for_dum<- matrix(features$for_dum, nrow=n.cells, ncol=n.cells, byrow=T) 

wat_dist<- matrix(features$wat_dist1, nrow=n.cells, ncol=n.cells, byrow=T) 

rd_dist<- matrix(features$rd_dist1, nrow=n.cells, ncol=n.cells, byrow=T) 

tr_dist<- matrix(features$tr_dist1, nrow=n.cells, ncol=n.cells, byrow=T) 

lnwat_dist <- matrix(log(features$wat_dist1+1e-50), nrow=n.cells, ncol=n.cells, 

byrow=T) 

 

#'Load homerange raster and identify adjacent cells 

r <-raster("m809w6_250r.tif") 

# SpatialPointsDataFrame from raster 

sp.points <- rasterToPoints(r, spatial = TRUE) #raster to point conversion 

# Distance based neighbors (with only 4 neighbors) 

dnb <- dnearneigh(sp.points, d1 = 0, d2 = 251)  # d2 =251 because the cell size is 250 

list.w <- nb2listw (dnb,zero.policy=TRUE) # list alpha mat 

weight.mat <- as(listw2mat(list.w),"sparseMatrix") # this is the alpha matrix 

alpha.mat <- weight.mat 

alpha.vec <- sapply(list.w$weights,unique) 

alphaj <- matrix(alpha.vec, nrow=n.cells, ncol=n.cells, byrow=T) 

 

#Lag variable 

locations$Lag <- rep(1, times=fix.attempts) 

for(i in 2:fix.attempts){ 

  if(is.na(locations$id[i-1]) == T) locations$Lag[i] <- locations$Lag[i-1] + 1 

} 

 

# Detected (Yes = 1; No = 0) 

detected <- as.numeric(!is.na(locations$id)) 
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locations <-locations[detected==1,] #drop unidentified 

fix.num <-length(locations$id) 

######################################################################## 

#============================================================== 

# Habitat Selection Model 

# Conditional Logit Likelihood 

CL <- function( a ){ 

  # Matrix of movement probabilities (based on Discrete Choice Function) 

  EXP = exp(a[1]*distance +a[2]*elevation +a[3]*slope + a[4]*for_dum +a[5]*rd_dist + 

a[6]*tr_dist) 

  sumEXP = matrix(apply(EXP, 1, sum), nrow=n.cells, ncol=n.cells, byrow=F) 

  D <- EXP / sumEXP 

  dimnames(D) <- dimnames(distance) 

  prob = rep(NA, times=fix.num) 

  for(i in 2:fix.num){ 

    # If 2 consecutive scheduled GPS fixes were successful 

    if(locations$Lag[i]<12){ 

      prob[i] <- D[rownames(features[features$id == locations$id[i-1],]),  

                   rownames(features[features$id == locations$id[i],])]  

    } 

  } 

  -sum(log(prob), na.rm=T) 

}   

 

# Maximize likelihood to obtain starting values 

out1.optim <- optim( theta <- rep(-.1,times=6), CL, hessian=TRUE, method="BFGS" , 

control=list(maxit=5000, trace=2)) 

cl_pars <- out1.optim$par 
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startv <- c(cl_pars,.5) 

 

#Generalized GEV likelihood  

mat.num <-  

  function(r, c, alphaj, exb, alpha.mat, rho){ 

    a <- (alphaj[r, c] * exb[r, c])^(1/rho) *  

      ((alphaj[r, c] * exb[r, c])^(1/rho) + (alpha.mat[c, ] * exb[r, ])^(1/rho))^(rho-1) 

    return(sum(a[alpha.mat[c, ] != 0])) 

  } 

mat.num.vec <- Vectorize(mat.num, vectorize.args = c('r', 'c')) 

mat.den <-  

  function(r, c, alphaj, exb, alpha.mat, rho){ 

    a <-   

      ((alphaj[r, c] * exb[r, c])^(1/rho) + (alpha.mat[c, ] * exb[r, ])^(1/rho))^(rho) 

    a[1:c] <- 0 

    return(sum(a[alpha.mat[c, ] != 0])) 

  } 

mat.den.vec <- Vectorize(mat.den, vectorize.args = c('r', 'c')) 

 

SCL <- function( par ){ 

  a <- par[1:k] 

  rho <- par[k+1] 

  EXP <- exp(a[1]*distance +a[2]*elevation +a[3]*slope + a[4]*for_dum +a[5]*rd_dist + 

a[6]*tr_dist) 

   P.num <-  

    outer(1:n.cells,1:n.cells, FUN = mat.num.vec, alphaj = alphaj, exb = EXP, 

          rho = rho, alpha.mat = alpha.mat) 

  P.den <-  
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    outer(1:n.cells,1:n.cells, FUN = mat.den.vec, alphaj = alphaj, exb = EXP, 

          rho = rho, alpha.mat = alpha.mat)  

  P.denSum <- matrix(rowSums(P.den), nrow = n.cells, ncol = n.cells, byrow = FALSE) 

  D <- P.num / P.denSum 

  dimnames(D) <- dimnames(distance) 

  prob <- rep(NA, times = fix.num)  

 for(i in 2:fix.num){ 

  if(locations$Lag[i]<12){ 

     #Grabs rows from D corresponding to the ith cell features and the i-1th fix. 

      prob[i] <- D[rownames(features[features$id == locations$id[i - 1], ]),  

                   rownames(features[features$id == locations$id[i], ])] 

    }   

  } 

  return(-sum(log(prob), na.rm=T)) 

}   

 

#Optimization with box constraints 

k <- length(rsf_pars)  

upperb<-c(rep(1000,times=k),.9998) 

lowerb<-c(rep(-1000,times=k),.0001) 

 

out1.optim <- optim( theta <- startv, SCL, method="L-BFGS-B" , 

                     lower=lowerb,upper=upperb, control=list(trace=2), hessian=TRUE) 

summary(out1.optim) 

 

#Print Results 

theta <- out1.optim$par 
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k <- length(theta) 

LL <- -out1.optim$value 

AIC <- 2*k - 2*LL 

n <- nrow(locations) 

vcm <- solve(out1.optim$hessian) 

#Robust SE 

SCLns <- function( par ){ 

  a <- par[1:k] 

  rho <- par[k+1] 

  EXP <- exp(a[1]*distance +a[2]*elevation +a[3]*slope + a[4]*for_dum +a[5]*rd_dist + 

a[6]*tr_dist) 

   P.num <-  

    outer(1:n.cells,1:n.cells, FUN = mat.num.vec, alphaj = alphaj, exb = EXP, 

          rho = rho, alpha.mat = alpha.mat) 

  P.den <-  

    outer(1:n.cells,1:n.cells, FUN = mat.den.vec, alphaj = alphaj, exb = EXP, 

          rho = rho, alpha.mat = alpha.mat)  

  P.denSum <- matrix(rowSums(P.den), nrow = n.cells, ncol = n.cells, byrow = FALSE) 

  D <- P.num / P.denSum 

  dimnames(D) <- dimnames(distance) 

  prob <- rep(NA, times = fix.num)  

 for(i in 2:fix.num){ 

  if(locations$Lag[i]<12){ 

      prob[i] <- D[rownames(features[features$id == locations$id[i - 1], ]),  

                   rownames(features[features$id == locations$id[i], ])] 

    }   

  } 

  return(-log(prob)) 
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}   

jacob <- jacobian(SLCns, theta ,method="Richardson" )  

jacob <- na.omit(jacob) 

bread <- vcm 

meat <- t(jacob)%*%jacob 

sandwich <- bread%*%meat%*%bread 

robse <- sqrt(diag(sandwich)) 

t <- theta/robse 

pval <- 2*(1-pt(abs(t),df=n-k))          

results <- cbind(theta,robse,t,pval)       

colnames(results)<-c("theta","robse","t","p") 

rownames(results)<-c("b_dist", "b_elev", "b_slope", "b_fordum" ,"b_rddist", 

"tr_dist","rho") 

print(results,digits=3) 

# --------------------------    End    ---------------------------------------------- 

# =========================================================== 

######################################################################## 
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Generalized GEV Habitat Selection Regression (R): Section 3.6 

 

######################################################################## 

#------------------------------------------------------------------------------------ 

#  NVUM recreational day-trip data from Roosevelt-Arapahoe National Forest  

# Data required: (all identified by ZIPCODE) 

# 2010 NVUM data - "NVUM_RANF_10_dayrec.csv" 

# IRS tax and income data by zip code - "IRS_zip_08.csv" 

# Zip code centroid coordinates –“ zip_04.csv” 

# Code written by Robert Fonner 

# ----------------------------------------------------------------------------------- 

#######################################################################  

setwd("") 

 

#load programs 

library(sp) 

library(mnormt) 

library(Newbold & Massey) 

library(numDeriv) 

library(car) 

library(sandwich) 

 

#set seed for random number generation 

set.seed(123) 

 

#Read  in data 

NVUM_RoosArap <- read.csv("NVUM_RANF_10_dayrec.csv", header=T, sep 
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NVUM_RoosArap <- NVUM_RoosArap[order(NVUM_RoosArap$ZIPCODE),] 

# IRS Zipcode income for  08 

zip_dat08 <- read.csv("", header=T, sep=",") 

#Zip code centroids 

zip_04 <- read.csv("", header=T, sep=",")  

zip_04 <- subset(zip_04,select=c(latitude,longitude,ZIPCODE)) 

zip_dat <- merge(zip_04,zip_dat08, by="ZIPCODE") NVUM_RoosArap <- 

merge(NVUM_RoosArap,zip_dat, by="ZIPCODE") 

#weights 

nvexpand <- NVUM_RoosArap$NVEXPAND 

#Inflate from 2008 to 2010 USD 

zipinc <- NVUM_RoosArap$agi/NVUM_RoosArap$exemptions/1000*1.012787  

tdist <- NVUM_RoosArap$TRAVEL_DISTANCE 

#Travel cost 

transpcost <- 2*(tdist*.14) 

timecost2 <- 2*((1/60)*tdist*(zipinc*1000/2087*(1/3))) #2087hrs/year 

tcost <- transpcost + timecost 

#Trips 

count <- NVUM_RoosArap$NV_VISITS_12MONTHS 

count1 <- count -1 

numveh <- NVUM_RoosArap$PEOPLE_IN_VEHICLE 

female <- as.numeric(NVUM_RoosArap$PERSON1_SEX == "F") 

ZIPCODE <- as.numeric(as.character(NVUM_RoosArap$ZIPCODE)) 

lat <- NVUM_RoosArap$latitude 

long <- NVUM_RoosArap$longitude 

data <- as.data.frame(cbind(tcost,count,female,zipinc,ZIPCODE,count1,lat,long,numveh, 

tdist, nvexpand)) 

data <- na.omit(data) 
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data <- data[data$count>0&data$tdist<250&data$count<150& data$ZIPCODE>60035 & 

data$numveh<10,] # Trim sample 

#Drop neighbor-less observations 

coord <- cbind(data$long,data$lat) 

Wdis<- spDists(coord,coord,longlat=TRUE) 

thresh <- ifelse(Wdis <= 2.5,1,0) # no correlation after 5 km 

diag(thresh) <-0 

data <- data[apply(thresh, 1, sum)>1,] 

######################################################################## 

#============================================================== 

'*** Distcrete spatial copula***' 

 

#Distance matrix nxn in meters 

coords <- cbind(data$long,data$lat) 

Wdist<- spDists(coords,coords,longlat=TRUE) 

Winvdist <- ifelse(Wdist==0,0,1/Wdist) 

 

#Omega threshold distance weights 

omega.mat <- ifelse(Wdist <= 2.5,1,0) # no correlation after 2.5 km 

diag(omega.mat) <-0 

#omega.mat <- Matrix(omega.mat, sparse= TRUE) 

 

#Mu standardizing weights 

neigh.sum <- apply(omega.mat, 1, sum) 

length(neigh.sum[neigh.sum==0]) 

neigh.sum[neigh.sum==0] <- 1 #avoid Inf values by dividing zeros by ones 

mu.mat <- omega.mat/matrix(neigh.sum, nrow(data), nrow(data), byrow=F) 
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#Shared zip matrix (neighbor) component of vector S 

Wneigh <- ifelse(Wdist <= 2.5,1,0)   

diag(Wneigh) <-0 

#Scaling  

data$tcost <- data$tcost/100 

data$pcturb <- data$pcturb/100  

data$zipinc <- data$zipinc/100 

#canned poisson 

canpoisson <- glm(count1~tcost+female+numveh+zipinc, family = "poisson", data=data)  

startv <- c(coefficients(canpoisson),1)  

 

'Gaussian Copula Likelihood' 

gauscop <-  

  function(r,c,exb, y, theta, omega.mat){  

    gcop <- 0 

    if(omega.mat[r,c]!=0){ 

      varcov <- matrix(c(1,theta[r,c],theta[c,r],1),2,2) ### depends on parameterization 

       

      qnorm.c1 <- ifelse(ppois(y[c],exb[c])==1,qnorm(1-1e-7, mean=0, 

sd=1),qnorm(ppois(y[c],exb[c]), mean=0, sd=1)) 

       

      qnorm.r1 <- ifelse(ppois(y[r],exb[r])==1,qnorm(1-1e-7, mean=0, 

sd=1),qnorm(ppois(y[r],exb[r]), mean=0, sd=1)) 

       

      qnorm.c0 = ifelse(y[c]>0,qnorm(ppois((y[c]-1),exb[c]), mean=0, sd=1),qnorm(1e-50, 

mean=0, sd=1)) 

      if(qnorm.c0==Inf) qnorm.c0 <- qnorm(1-1e-7), mean=0, sd=1) 
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      qnorm.r0 = ifelse(y[r]>0,qnorm(ppois((y[r]-1),exb[r] ), mean=0, sd=1),qnorm(1e-50, 

mean=0, sd=1)) 

      if(qnorm.r0==Inf) qnorm.r0 <- qnorm(1-1e-7), mean=0, sd=1)                     

       

      phi.11 <- pmnorm(c(qnorm.r1,qnorm.c0), mean=c(0,0),varcov) 

      phi.00 <- pmnorm(c(qnorm.r0,qnorm.c0), mean=c(0,0),varcov) 

      phi.01 <- pmnorm(c(qnorm.r0,qnorm.c1), mean=c(0,0),varcov) 

      phi.10 <- pmnorm(c(qnorm.r1,qnorm.c0), mean=c(0,0),varcov) 

       

      gcop <- sum(c(phi.11,-phi.10,phi.00,-phi.01), na.rm=TRUE) 

    } 

    return(gcop) 

  } 

gauscop.vec <- Vectorize(gauscop, vectorize.args = c('r', 'c')) 

 

x<-length(startv) 

GAUSCOPULA <- function( par ){ 

  a <- par[1:x] 

  sig <- par[(x+1)]  #:(k+2) 

  theta.num <-  exp(sig[1])*Wneigh  

  theta <- theta.num/(1+theta.num) 

  EXB <- exp(a[1] + a[2]*data$tcost +a[3]*data$female + a[4]*data$numveh + 

a[5]*data$zipinc)  

 

  copula.mat <- outer(1:n,1:n, FUN = gauscop.vec, exb = EXB, y = data$count1, 

theta=theta, omega.mat=omega.mat) 

  copula.mat <- ifelse(copula.mat < 0,0,copula.mat) 

  LL.mat <- mu.mat * omega.mat * log(copula.mat+1e-50)  
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  return(-sum(LL.mat, na.rm=T)) 

}   

out1.optim <- optim( params <- startv, GAUSCOPULA, hessian=TRUE, 

control=list(maxit=2000)) 

out1.optim$converge 

theta <- out1.optim$par 

theta 

LL <- -out1.optim$value 

k <- length(theta) 

AIC <- 2*k - 2*LL 

hessian <- out1.optim$hessian 

vcm <- solve(hessian) 

#Standard errors 

setheta <- sqrt(diag(solve(hessian))) 

setheta 

 

#Robust Clustered Standard Errors 

#Input for jacobian 

x<-length(startv) 

GAUSCOPULAns <- function( par ){ 

  a <- par[1:x] 

  sig <- par[(x+1)]  #:(k+2) 

  theta.num <-  exp(Roheim et al.)*Wneigh  

  theta <- theta.num/(1+theta.num) 

  EXB <- exp(a[1] + a[2]*data$tcost +a[3]*data$female + a[4]*data$children 

+a[5]*data$zipinc) 
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  copula.mat <- outer(1:n,1:n, FUN = gauscop.vec, exb = EXB, y = data$count1, 

theta=theta, omega.mat=omega.mat) 

  copula.mat <- ifelse(copula.mat < 0,0,copula.mat) 

  LL.mat <- mu.mat * omega.mat * log(copula.mat+1e-50)  

  return(-apply(LL.mat,1,sum))  

}  

 

jacob <- jacobian(GAUSCOPULAns, theta ,method="Richardson" )  

jacob <- na.omit(jacob) 

bread <- vcm 

meat <- t(jacob)%*%jacob 

sandwich <- bread%*%meat%*%bread 

robse <- sqrt(diag(sandwich)) 

#clustered 

m <- length(unique(data$ZIPCODE)) 

u <- jacob 

u.clust <- matrix(NA,nrow=m,ncol=k) 

for(j in 1:k){ 

u.clust[,j] <- tapply(u[,j],data$ZIPCODE,sum) 

} 

cl.vcov <- vcm %*% ((m/ (m-1)) * t(u.clust) %*% (u.clust)) %*%  vcm 

clstse <- sqrt(diag(cl.vcov)) 

clstse 

t <- theta/clstse #setheta 

t 

pval <- 2*(1-pt(abs(t),df=n-k)) 

pval 
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######################################################################## 

#============================================================== 

‘***Store regression results in csv file***’ 

 

ses <- paste("(",clstse,")", sep="")   

ts <- c(t[1],"",t[2],"",t[3],"",t[4],"",t[5],"",t[6],"",rep("", times=4))  

pvals <- c(pval[1],"",pval[2],"",pval[3],"", pval[4],"",pval[5],"",pval[6],"",  rep("", 

times=4))  

 

thetap <- round(theta, digits=3) 

thetastar <- rep(NA, times=k) 

for(i in 1:k){ 

  if(pval[i] > .01) thetastar[i] <- thetap[i] 

  if(pval[i] <=.01) thetastar[i] <- paste(thetap[i],"***",sep="") 

  if(pval[i] <=.05 & pval[i] > .01) thetastar[i] <- paste(thetap[i],"**",sep="") 

  if(pval[i] <= .1 & pval[i] > .05) thetastar[i] <- paste(thetap[i],"*",sep="") 

} 

thetastarp <- 

c(thetastar[1],ses[1],thetastar[2],ses[2],thetastar[3],ses[3],thetastar[4],ses[4],thetas

tar[5],ses[5],thetastar[6],ses[6],n,k,LL,AIC) 

results <- cbind(thetastarp,ts,pvals)       

colnames(results)<-c("theta","t","pval") 

rownames(results)<-c("CONST", "", "TCOST2" , "", "d_NEIGH","" ,"FEMALE","", 

"NUMVEH","" ,"ZIPINC",  "N", "K", "LL", "AIC") 

print(results,digits=3) 

 

write.csv(results, file = "C:/Users/Robert 

Fonner/Documents/UNM/Recreation_choice/results/RA_gauscop_2.5km_TC_20

10.csv", row.names = TRUE) 
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write.csv(cl.vcov, file = "C:/Users/Robert 

Fonner/Documents/UNM/Recreation_choice/results/RA_gauscop__2.5km_clstvc

m_2010.csv", row.names = F) 

write.csv(theta, file = "C:/Users/Robert 

Fonner/Documents/UNM/Recreation_choice/results/RA_gauscop_2.5km_theta_2

010.csv", row.names = F) 

write.csv(startv, file = "C:/Users/Robert 

Fonner/Documents/UNM/Recreation_choice/results/RA_gauscop_2.5km_startv_

2010.csv", row.names = F) 

######################################################################## 

#============================================================== 

'*** Krinsky Robb CIs ***' 

theta  <- as.matrix(read.csv("C:/Users/Robert 

Fonner/Documents/UNM/Recreation_choice/results/RA_gauscop_2.5km_theta_2

010.csv", sep="," , header = T)) 

vcm  <- as.matrix(read.csv("C:/Users/Robert 

Fonner/Documents/UNM/Recreation_choice/results/RA_gauscop__2.5km_clstvc

m_2010.csv.csv", sep="," , header = T)) 

#Welfare measure 

wtpa <- exp(theta[1] + theta[2]*data$tcost +theta[3]*data$female 

+theta[4]*data$numveh + theta[5]*data$zipinc)/-theta[2] 

wtpa.visit <- -1/theta[2] 

CS.i <- sum( wtpa.visit/data$numveh*data$nvexpand)/sum(data$nvexpand)*100 

#Mean CS 

CS.i 

#Krinsky Robb CIs per person per trip value 

Cpr = chol(vcm[1:(k-1),1:(k-1)]) 

B <- matrix(theta[1:(k-1)]) 

Nsim <- 10000 

siglevel <- .05 

simCS <- matrix(NA,nrow=Nsim, ncol=1) 

for( i in 1:Nsim){ 
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  x <- matrix(rnorm(k-1)) 

  Z <- B + Cpr%*%x 

  CS.i <- -1/Z[2]/data$numveh*data$nvexpand 

  CS.weight <- sum(CS.i)/sum(data$nvexpand) #sum.nvexpand 

  simCS[i] <- CS.weight 

} 

simCS <- simCS[order(simCS)] 

#Lower Bound 

lowbnd <- simCS[Nsim*siglevel+1] 

lowbnd*100 

#Upper Bound 

Upbnd <- simCS[Nsim*(1-siglevel)-1]  

Upbnd*100 
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Solving for Benefit Function Parameters:  Section 4.4.4 

%State-scale 

syms a b  

S = solve(a*(log(b)-log(12000)-1)== -3545.81, a*(log(b)-log(2484)-1)== 0) 

 

 

Wild Horse Dynamic Simulations(MATLAB): Section 4.5 

% Code written by Robert Fonner 

%STATUS QUO NPV 

% statusquo.csv - 50-year population and removals under status quo 

cd('Results') 

statusquo = csvread('statusquo.csv', 1, 0); 

X_sqs = statusquo(:,1); %Status quo population, state-level 

Y_sqs = statusquo(:,2); %Status quo removal, state-level 

X_sqh = statusquo(:,3); %Status quo population, herd-level 

Y_sqh= statusquo(:,4); %Status quo removal, herd-level 

  

%Run the code below after defining reward matrix (f) for state 

t = 1:50; 

NPV50_state = zeros(50,1); 

for i = 1:50 

NPV50_state(i) = f(round(X_sqs(i)/hu)+1,round(Y_sqs(i)/hu)+1)/(1+.05)^t(i); 

end 

sum(NPV50_state) 

  

%Run the code below after defining reward matrix (f) for herd 

t = 1:50; 

NPV50_herd = zeros(50,1); 

for i = 1:50 

NPV50_herd(i) = f(X_sqh(i)+1,Y_sqh(i)+1)/(1+.05)^t(i); 

end 

sum(NPV50_herd) 

 

%HORSE REMOVAL 

%State level parameters% 

hu = 6; %horse units 

x0 =  3295; % initial population 

Cad = hu*(1543.77-128.65); % costs of adoption minus adoption fee 

gamma = 170/hu; %adoption demand 

holdcost =  hu*1105.34; % annual maintenance cost for horses in holding 
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holdyr = (0:14)'; %  avg 15 years in holding 

SC = 34188.88; %start-up costs 

K = 12000/hu; %carrying capacity  

X = (0:K)'; % vector of states 

n = length(X); % number of states 

Y = (0:K)'; % vector of actions 

m = length(Y); % number of actions 

rho = 0.95; % discount factor 

r = .28; % internal rate of growth 

alpha = .5; %percent of horses that can be rounded up in one period 

Coc = hu*2694.818127; % marginal opportunity cost of range use after AML 

AML = 2485; 

Xhu = hu*X; 

%Benefits - Gompertz fnc. 

B = 2251.8312*Xhu.*log(6754.9303./Xhu); 

B(1) = 0; 

B = repmat(B,1,m); 

%Benefits - constant marginal decline after AML 

%B =   - max(Coc*(Xhu-AML),0); 

%B(1) = 0; 

%B = repmat(B,1,m); 

  

% Cost of removal - state 

Cr = zeros(n,m); 

for i=2:m 

Cr(:,i) = 1864940.29*Y(i)./X - 165913.85;  

Cr(1864940.29*Y(i)./X - 165913.85<SC,i) = SC; 

end 

  

Cht = holdcost*rho.^holdyr; 

Chi = sum(Cht); 

Ch = zeros(m,n); 

for i=1:m; 

Ch(:,i) = Chi*max(Y(i)-gamma,0); 

end 

  

%adoption cost 

Ca = zeros(m,n); 

for i=1:m; 

Ca(:,i) = Cad * min(gamma,Y(i)); 

end 

  

%Reward matrix 

f = B/rho - Cr - Ca - Ch; % 

for i=1:m; 

f(Y(i)>alpha*X,i) = -inf; 
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end 

%f(X<100,:) = -inf; % if population can be smaller than 500 then pulsing 

  

%Transition matrix 

g= zeros(m,n); 

for i=1:m 

j = max(0,round((hu*X + hu*X*r.*(1-(X/K).^2)-hu*Y(i))/hu))+1; 

j = min(j,K+1); 

g(:,i) = j; 

end 

  

%Optimization 

T = 70; % model horizon 

model.reward = f; 

model.transfunc = g; 

model.horizon = T; 

model.discount = rho; 

  

[vf,yf,pstar] = ddpsolve(model); 

  

%Analysis of optimal solution 

s1 = round(x0/hu+1); nyrs = 50; 

xfpath = ddpsimul(pstar,s1,nyrs); 

figure(3) 

plot((0:nyrs)',6*X(xfpath)); 

legend('Fifty Year Horizon'); 

xlabel('Year'); ylabel('Stock'); 

mean(X(xfpath)*hu) 

std(X(xfpath)*hu) 

min(X(xfpath)*hu) 

max(X(xfpath)*hu) 

  

  

% Compute horse removal path over 50 year horizon 

yfpath = zeros(nyrs,1); 

    for i=1:nyrs 

    yfpath(i) = yf(xfpath(i),i); 

    end 

mean(Y(yfpath)*hu) 

min(Y(yfpath)*hu) 

max(Y(yfpath)*hu) 

std(Y(yfpath)*hu) 

  

%NPV - 50 year horizon 

time = 1:nyrs; 

for i = 1:nyrs 
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NPV(i) = f(X(xfpath(i)),Y(yfpath(i)))/(1+.05)^time(i); 

end 

sum(NPV) 

  

figure(1); plot(X,Y(yf)); 

xlabel('Stock'); ylabel('Optimal Fertility Control'); 

figure(2); plot(X,vf); 

xlabel('Stock'); ylabel('Optimal Value'); 

  

%Herd level parameters% 

x0 =  532; % initial population 

Cf = 243.88; % marginal cost of fertility control 

Cad = 1543.77-128.65; % costs of adoption minus adoption fee 

Cshp = 242.99; % average shipping costs 

gamma = 68; %adoption demand 

holdcost =  1105.34; % annual maintenance cost for horses in holding 

holdyr = (0:14)'; %  avg 15 years in holding 

SC = 17094.44; %start-up costs 

K = 1202; %carrying capacity  

X = (0:K)'; % vector of states 

n = length(X); % number of states 

Y = (0:K)'; % vector of actions 

m = length(Y); % number of actions 

rho = 0.95; % discount rate 

r = .28; % internal rate of growth 

alpha = .9; %percent of horses that can be rounded up in one period 

Coc = 2694.818127; % marginal opportunity cost of range use at K 

AML = 250; 

%Benefits - Gompertz fnc. 

B = 2258.073*X.*log(679.570./X); 

B(1) = 0; 

B = repmat(B,1,m); 

%Benefits - constant marginal decline after AML 

%B =  - max(Coc*(X-AML),0); 

%B(1) = 0; 

%B = repmat(B,1,m); 

  

% marginal cost of roundup - herd 

Cri = -.4839*X+680.93;  

Cr = zeros(n,m); 

for i=2:m 

Cr(:,i) = Y(i)*Cri; 

Cr(Y(i)*Cri<11396.29,i) = 11396.29; 

end 

  

%Holding cost 
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Cht = zeros(length(holdyr),1); 

for i=1:length(holdyr) 

Cht(i) = holdcost*rho^holdyr(i) ; 

end 

Chi = sum(Cht); 

  

Ch = zeros(m,n); 

for i=1:m; 

Ch(:,i) = Chi*max(Y(i)-gamma,0); 

end 

  

%adoption cost 

Ca = zeros(m,n); 

for i=1:m 

Ca(:,i) = Cad * min(gamma,Y(i)); 

end 

  

%shipping cost 

Csh = zeros(n,m); 

for i=1:m 

Csh(:,i) = Cshp*Y(i); 

end 

  

%Reward matrix 

f = B/rho - Cr - Ca - Ch - Csh; 

for i=1:m; 

f(Y(i)>alpha*X,i) = -inf; 

end 

%f(X<45,:) = -inf; % over 50 just mrap to min allowed 

  

%Transition matrix 

g= zeros(m,n); 

for i=1:m 

j = max(0,round((X + X*r.*(1-(X/K).^2)-Y(i))))+1; 

j = min(j,K+1); 

g(:,i) = j; 

end 

  

%Optimization 

T=70 

model.reward = f; 

model.transfunc = g; 

model.horizon = T; 

model.discount = rho; 

  

[vf,yf,pstar] = ddpsolve(model); 
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%Analysis of optimal solution 

x0 = 532+1; nyrs = 50; 

xfpath = ddpsimul(pstar,x0,nyrs); 

figure(3) 

plot((0:nyrs)',X(xfpath)); 

legend('Fifty Year Horizon'); 

xlabel('Year'); ylabel('Stock'); 

mean(X(xfpath)) 

std(X(xfpath)) 

min(X(xfpath)) 

max(X(xfpath)) 

  

  

% Compute horse removal path over 50 year horizon 

yfpath = zeros(nyrs,1); 

    for i=1:nyrs 

    yfpath(i) = yf(xfpath(i),i); 

    end 

mean(Y(yfpath)) 

std(Y(yfpath)) 

min(Y(yfpath)) 

max(Y(yfpath)) 

  

  

%NPV - 50 year horizon 

time = 1:nyrs; 

for i = 1:nyrs 

NPV(i) = f(X(xfpath(i)),Y(yfpath(i)))/(1+.05)^time(i); 

end 

sum(NPV) 

  

 

%HORSE FERTILITY CONTROL% 

%State level parameters% 

hu = 6; %horse units 

x0 =  3295; % initial population 

Cf = hu*243.88; % marginal cost of fertility control 

SC = 34188.88; %start-up costs 

K = 12000/hu; %carrying capacity  

X = (0:K)'; % vector of states 

n = length(X); % number of states 
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Y = (0:K)'; % vector of actions 

m = length(Y); % number of actions 

rho = 0.95; % discount factor 

r = .28; % internal rate of growth 

alpha = .5; %percent of horses that can be rounded up in one period 

Coc = hu*2694.818127; % marginal opportunity cost of range use at K 

AML = 2485/hu; 

Xhu = hu*X; 

%Benefits - Gompertz fnc. 

B = 2251.8312*Xhu.*log(6754.9303./Xhu); 

B(1) = 0; 

B = repmat(B,1,m); 

Cm = repmat(3*5698.14,m,n); %monitoring costs 

Cm(:,1) = 0; 

  

% Cost of removal - state 

Cr = zeros(n,m); 

for i=2:m 

Cr(:,i) = 1864940.29*Y(i)./X - 165913.85;  

Cr(1864940.29*Y(i)./X - 165913.85<SC,i) = SC; 

end 

  

%fertility control cost 

Cfert = zeros(n,m); 

for i=1:m 

Cfert(:,i) = Cf*Y(i); 

end 

  

%Reward matrix 

f = B/rho - Cr - Cfert - Cm; %  

for i=1:m; 

f(Y(i)>alpha*X,i) = -inf; 

end 

  

%Transition matrix 

g = zeros(n,m); 

for i=1:m 

j = max(0,round((hu*X+hu*X*r.*( (1-Y(i)./X) -(X/K).^2 ))/hu)) + 1; 

j = min(j,K+1); 

g(:,i) = j; 

end 

  

%Optimization 

T = 70; 

model.reward = f; 

model.transfunc = g; 
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model.horizon = T; 

model.discount = rho; 

  

[vf,yf,pstar] = ddpsolve(model); 

  

%Analysis of optimal solution 

s1 = round(x0/hu+1); nyrs = 50; %round(x0/hu+1) 

xfpath = ddpsimul(pstar,s1,nyrs); 

figure(3) 

plot((0:nyrs)',hu*X(xfpath)); 

legend('Fifty Year Horizon'); 

xlabel('Year'); ylabel('Stock'); 

mean(X(xfpath)*hu) 

std(X(xfpath)*hu) 

min(X(xfpath)*hu) 

max(X(xfpath)*hu) 

  

  

% Compute horse removal path over 50 year horizon 

yfpath = zeros(nyrs,1); 

    for i=1:nyrs 

    yfpath(i) = yf(xfpath(i),i); 

    end 

mean(Y(yfpath)*hu) 

std(Y(yfpath)*hu) 

min(Y(yfpath)*hu) 

max(Y(yfpath)*hu) 

  

  

%NPV - 50 year horizon 

time = 1:nyrs; 

for i = 1:nyrs 

NPV(i) = f(X(xfpath(i)),Y(yfpath(i)))/(1+.05)^time(i); 

end 

sum(NPV) 

  

figure(1); plot(X,Y(yf)); 

xlabel('Stock'); ylabel('Optimal Fertility Control'); 

figure(2); plot(X,vf); 

xlabel('Stock'); ylabel('Optimal Value'); 

     

     

%Herd level parameters% 

x0 =  532; % initial population 

Cf = 243.88; % marginal cost of fertility control 

gamma = 68; %adoption demand 
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SC = 17094.44; %start-up costs 

K = 1202; %carrying capacity 

X = (0:K)'; % vector of states 

n = length(X); % number of states 

Y = (0:K)'; % vector of actions 

m = length(Y); % number of actions 

rho = 0.95; % discount rate 

r = .28; % internal rate of growth 

alpha = .9; %percent of horses that can be rounded up in one period 

Coc = 2694.818127; % marginal opportunity cost of range use at K 

AML = 250; % Appropriate management level set by BLM 

Cm = repmat(5698.14,m,n); %monitoring costs 

Cm(:,1) = 0; 

  

%Benefits - Gompertz fnc. 

B = 2258.073*X.*log(679.570./X); 

B(1) = 0; 

B = repmat(B,1,m); 

%Benefits - constant marginal decline after AML 

%B =  - max(Coc*(X-AML),0); 

%B(1) = 0; 

%B = repmat(B,1,m); 

  

% marginal cost of roundup - herd 

Cri = -.4839*X+680.93;  

Cr = zeros(n,m); 

for i=2:m 

Cr(:,i) = Y(i)*Cri; 

Cr(Y(i)*Cri<11396.29,i) = 11396.29; 

end 

  

%fertility control cost 

Cfert = zeros(n,m); 

for i=1:m 

Cfert(:,i) = Cf*Y(i); 

end 

  

%Reward matrix 

f = B/rho - Cr - Cfert-Cm; 

for i=1:m; 

f(Y(i)>alpha*X,i) = -inf; 

end 

%f(X<45,:) = -inf; % over 50 just mrap to min allowed 

  

%Transition matrix 

g = zeros(n,m); 
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for i=1:m 

j = max(0,round(X+X*r.*( (1-Y(i)./X) -(X/K).^2 ))) + 1; 

j = min(j,K+1); 

g(:,i) = j; 

end 

  

%Optimization with ddpsolve package 

% For discrete state and action variable case 

T = 70 

model.reward = f; 

model.transfunc = g; 

model.horizon = T; 

model.discount = rho; 

  

[vf,yf,pstar] = ddpsolve(model); 

  

%Analysis of optimal solution 

s1 = 532+1; nyrs = 50; 

xfpath = ddpsimul(pstar,s1,nyrs,yf); 

figure(3) 

plot((0:nyrs)',X(xfpath)); 

legend('Fifty Year Horizon'); 

xlabel('Year'); ylabel('Stock'); 

mean(X(xfpath)) 

std(X(xfpath)) 

min(X(xfpath)) 

max(X(xfpath)) 

  

% Compute horse removal path over 50 year horizon 

yfpath = zeros(nyrs,1); 

    for i=1:nyrs 

    yfpath(i) = yf(xfpath(i),i); 

    end 

mean(Y(yfpath)) 

std(Y(yfpath)) 

min(Y(yfpath)) 

max(Y(yfpath)) 

  

%NPV - 50 year horizon 

time = 1:nyrs; 

for i = 1:nyrs 

NPV(i) = f(X(xfpath(i)),Y(yfpath(i)))/(1+.05)^time(i); 

end 

sum(NPV) 
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%HYBRID MANAGEMENT% 

%State level parameters% 

hu = 6; %horse units 

x0 =  3295; % initial population 

Cad = hu*(1543.77-128.65); % costs of adoption minus adoption fee 

gamma = 170/hu; %adoption demand 

holdcost =  hu*1105.34; % annual maintenance cost for horses in holding 

holdyr = (0:14)'; %  avg 15 years in holding 

Cf = hu*243.88; % marginal cost of fertility control 

SC = 34188.88; %start-up costs 

K = 12000/hu; %carrying capacity 

X = (0:K)'; % vector of states 

n = length(X); % number of states 

Y = (0:K)'; % vector of actions 

pctfert = .2; %percent of horses treated 

Q = round(X*pctfert); %number of horses treated 

Cfert = repmat(Q*Cf,1,m); % Fertility costs 

m = length(Y); % number of actions 

rho = 0.95; % discount factor 

r = .28; % internal rate of growth 

alpha = 1; % percent of horses that can be rounded up in one period 

Cm = repmat(3*5698.14,m,n); %monitoring costs - 3 herds 

Cm(:,1) = 0; 

Coc = hu*2694.818127; % marginal opportunity cost of range use after AML 

AML = 2485; 

Xhu = hu*X; 

%Benefits - Gompertz fnc. 

B = 2251.8312*Xhu.*log(6754.9303./Xhu); 

B(1) = 0; 

B = repmat(B,1,m); 

  

% Cost of removal - state 

Cr = zeros(n,m); 

for i=2:m 

Cr(:,i) = 1864940.29*(Y(i)+Q)./X - 165913.85;  

Cr(1864940.29*(Y(i)+Q)./X - 165913.85<SC,i) = SC; 

end 

  

Cht = holdcost*rho.^holdyr; 

Chi = sum(Cht); 

Ch = zeros(m,n); 

for i=1:m; 

Ch(:,i) = Chi*max(Y(i)-gamma,0); 

end 
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%adoption cost 

Ca = zeros(m,n); 

for i=1:m; 

Ca(:,i) = Cad * min(gamma,Y(i)); 

end 

  

%Reward matrix 

f = B/rho - Cr - Ca - Ch - Cm - Cfert;  

for i=1:m; 

f((Y(i)+Q)>alpha*X,i) = -inf; 

end 

  

%Transition matrix 

g= zeros(m,n); 

for i=1:m 

j = max(0,round((hu*X + hu*X*r.*((1 - pctfert)-(X/K).^2)-hu*Y(i))/hu))+1; 

j = min(j,K+1); 

g(:,i) = j; 

end 

  

%Optimization 

T = 70; % model horizon 

model.reward = f; 

model.transfunc = g; 

model.horizon = T; 

model.discount = rho; 

  

[vf,yf,pstar] = ddpsolve(model); 

  

%Analysis of optimal solution 

s1 = round(x0/hu+1); nyrs = 50; 

xfpath = ddpsimul(pstar,s1,nyrs); 

figure(3) 

plot((0:nyrs)',hu*X(xfpath)); 

legend('Fifty Year Horizon'); 

xlabel('Year'); ylabel('Stock'); 

mean(X(xfpath)*hu) 

std(X(xfpath)*hu) 

min(X(xfpath)*hu) 

max(X(xfpath)*hu) 

  

% Compute horse removal path over 50 year horizon 

yfpath = zeros(nyrs,1); 

    for i=1:nyrs 

    yfpath(i) = yf(xfpath(i),i); 

    end 



 

 

143 

 

 

 
mean(Y(yfpath)*hu) 

std(Y(yfpath)*hu) 

min(Y(yfpath)*hu) 

max(Y(yfpath)*hu) 

  

%NPV - 50 year horizon 

time = 1:nyrs; 

for i = 1:nyrs 

NPV(i) = f(X(xfpath(i)),Y(yfpath(i)))/(1+.05)^time(i); 

end 

sum(NPV) 

  

figure(1); plot(X,Y(yf)); 

xlabel('Stock'); ylabel('Optimal Fertility Control'); 

figure(2); plot(X,vf); 

xlabel('Stock'); ylabel('Optimal Value'); 

  

%Herd level parameters% 

x0 =  532; % initial population 

Cf = 243.88; % marginal cost of fertility control 

Cad = 1543.77-128.65; % costs of adoption minus adoption fee 

Cshp = 242.99; % average shipping costs 

gamma = 68; %adoption demand 

holdcost =  1105.34; % annual maintenance cost for horses in holding 

holdyr = (0:14)'; %  avg 15 years in holding 

Cf = hu*243.88; % marginal cost of fertility control 

SC = 17094.44; %start-up costs 

K = 1202; %carrying capacity ASSUMPTION 

X = (0:K)'; % vector of states 

n = length(X); % number of states 

Y = (0:K)'; % vector of actions 

Cm = repmat(5698.14,m,n); %monitoring costs 

Cm(:,1) = 0; 

pctfert = .25; %percent of horses treated 

Q = round(X*pctfert); %number of horses treated 

Cfert = repmat(Q*Cf,1,m); % Fertility costs 

m = length(Y); % number of actions 

rho = 0.95; % discount rate 

r = .28; % internal rate of growth 

alpha = .9; %percent of horses that can be rounded up in one period 

Coc = 2694.818127; % marginal opportunity cost of range use at K 

AML = 250; 

%Benefits - Gompertz fnc. 

B = 2258.073*X.*log(679.570./X); 

B(1) = 0; 

B = repmat(B,1,m); 
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% marginal cost of roundup - herd 

Cri = -.4839*X+680.93;  

Cr = zeros(n,m); 

for i=2:m 

Cr(:,i) = (Q+Y(i)).*Cri; 

Cr((Q+Y(i)).*Cri<11396.29,i) = 11396.29; 

end 

  

%Holding cost 

Cht = zeros(length(holdyr),1); 

for i=1:length(holdyr) 

Cht(i) = holdcost*rho^holdyr(i) ; 

end 

Chi = sum(Cht); 

  

Ch = zeros(m,n); 

for i=1:m; 

Ch(:,i) = Chi*max(Y(i)-gamma,0); 

end 

  

%adoption cost 

Ca = zeros(m,n); 

for i=1:m 

Ca(:,i) = Cad * min(gamma,Y(i)); 

end 

  

%shipping cost 

Csh = zeros(n,m); 

for i=1:m 

Csh(:,i) = Cshp*Y(i); 

end 

  

%Reward matrix 

f = B/rho - Cr - Ca - Ch - Csh - Cfert - Cm; 

for i=1:m; 

f((Q+Y(i))>alpha*X,i) = -inf; 

end 

%f(X<45,:) = -inf; % over 50 just mrap to min allowed 

  

%Transition matrix 

g= zeros(m,n); 

for i=1:m 

j = max(0,round(X + X*r.*((1 - pctfert)-((X/K).^2))-Y(i)))+1; 

j = min(j,K+1); 

g(:,i) = j; 
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end 

  

%Optimization 

model.reward = f; 

model.transfunc = g; 

model.horizon = 70; 

model.discount = rho; 

  

[vf,yf,pstar] = ddpsolve(model); 

  

%Analysis of optimal solution 

x0 = round(x0+1); nyrs = 50; 

xfpath = ddpsimul(pstar,x0,nyrs); 

figure(3) 

plot((0:nyrs)',X(xfpath)); 

legend('Fifty Year Horizon'); 

xlabel('Year'); ylabel('Stock'); 

mean(X(xfpath)) 

std(X(xfpath)) 

min(X(xfpath)) 

max(X(xfpath)) 

  

  

% Compute horse removal path over 50 year horizon 

yfpath = zeros(nyrs,1); 

    for i=1:nyrs 

    yfpath(i) = yf(xfpath(i),i); 

    end 

mean(Y(yfpath)) 

std(Y(yfpath)) 

min(Y(yfpath)) 

max(Y(yfpath)) 

  

  

%NPV - 50 year horizon 

time = 1:nyrs; 

for i = 1:nyrs 

NPV(i) = f(xfpath(i),yfpath(i))/(1+.05)^time(i); 

end 

sum(NPV) 
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