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ABSTRACT 

The National Institutes of Health (NIH) budget doubling from 1998 through 2003 

stimulated demand for biomedical scientists, increasing both relative wages and 

employment. However, because research doctorates in these fields may take six years or 

more to complete, there is a substantial lag in the labor supply response to changing 

market conditions. Rational expectations models assume that prospective graduate 

students can forecast their expected future wages, taking into account other students’ 

likely responses and thus also future employment levels. However, prior research on 

student enrollment and degree completion in science and engineering fields suggests that 

market conditions at the time of enrollment are taken as proxies for future conditions. 

Previous studies also suggest that graduate student enrollment and PhD completions may 

be responsive to changes in availability and mechanism of financial support. This thesis 

uses instrumental variables estimation on time-series data including biomedical 

scientists’ wages and employment, bachelor’s degrees and PhD completions, and NIH 

and private industry research funding, to examine responsiveness of labor supply to 

changing market conditions, and particularly to changes in NIH funding levels. We find 

that graduate student enrollment and PhD completions are highly responsive to NIH 
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financial support, to current trends in job availability at time of enrollment, and to 

expected earnings. 
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I. INTRODUCTION 

The number of science and engineering (S&E) PhDs awarded annually in the 

United States has been rising consistently from the 1960s to the present. Life sciences 

specifically have grown to see more than 11 thousand degrees granted in 2010, from 

fewer than three thousand graduates in 1966.  

From 1998 through 2003, Congress effectively doubled the total combined budget 

for the U.S. National Institutes of Health (NIH), from $18.3 billion to $36.4 billion in 

constant 2010 dollars. The resulting increase in demand for biomedical scientists was 

largely reflected in dramatically increased demand for postdoctoral researchers; 

temporary appointments that have become a near-ubiquitous career waypoint for freshly 

minted PhDs. This is in contrast to the academic market of the 1970s (Stephan, 2012). 

The rapid growth in demand for postdocs was almost entirely met by an influx of 

international PhDs moving to the United States specifically to fill the need (Garrison, 

2005). However, the increase in demand for labor apparently had no effect on more 

permanent, tenured and tenure-track faculty positions (Blume-Kohout, 2012). 

Economists are coming to believe that the life science labor market may be 

saturated – providing a career path where scientists forfeit significant earnings for 

tenuous career prospects (Stephan, 2012). Given that trainees have become a primary 

engine of research in the lab-focused biomedical education system, universities may be 

motivated to overproduce scientists. Biomedical students graduating in the late seventies 
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had an approximate 30% chance of receiving a tenure-track position by 1985. This 

dropped to 20% for students graduating in the late eighties and surveyed in 1995 

(Committee on Dimensions, 1998). Where increased biomedical science investment was 

expected to create long-term job opportunities within these fields, it may not be doing so. 

For the group of elite 1992-1994 National Research Service Award (NRSA) winners it 

yielded little career assistance (Levitt, 2010). As of 2010, more than a decade after their 

graduations, only approximately 25% of those students had achieved tenure at a 

university. That trend has continued and the biomedical labor market still struggles to 

absorb fully-trained biomedical scientists into full-time and tenure-track faculty research 

positions (Stephan, 2012).  

The changing life science labor market may alter job prospects at every level. 

While established end-career prospects may motivate students to matriculate, funding 

opportunities also determine enrollment. Garrison et. al. (2005) found that the number of 

research assistants funded by the NIH held steady from 1995 through 2000 - the 

beginning of the NIH budget doubling.  In contrast, we found that the number of RAs 

was already increasing in that time period.  
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Figure 1: Students funded by NIH – Data from NIH Data Book, 2012 and NCSES 

The appearance of declining employment rates in the biomedical sciences elicits 

concerns over institutional stewardship of the future biomedical workforce. Do 

universities care about the ultimate placement of their graduates?  Do funding institutions 

realize that the current system may be preparing the majority of graduate students, given 

that most are hoping for a tenured career in academia, for undesired career outcomes?    

The NIH Advisory Committee to the Director (ACD) Biomedical Research Workforce 

Working Group recently issued a report addressing the NIH’s understanding of these 

issues. NIH administration seems to recognize the current state of the life science labor 

market and the task force ultimately recommends limits on the number of funding years 
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available to each student and a move from RA grants to training grants: the better to 

guide and homogenize training quality across institutions (Tilghman, 2012). At the 

institutional level it may be more difficult to coordinate enrollment based on the job 

market. Institutions are given to supplementing or withdrawing graduate student funding 

counter-cyclically to the National Institutes of Health (Ehrenberg, 1993).  

Present concerns about the over-production and the quality of biomedical 

scientists come on the heels of a pervasive historical fears that the United States is under-

producing in the sciences. Rising Above the Gathering Storm, a report from the National 

Research Council, paints a global landscape in which the United States is falling behind 

other nations in scientific education, research, and productivity (2005). Should we fail to 

remain competitive, the report argues, the United States will de-facto sacrifice economic 

and political status to other nations. 

This paper extends research which has previously primarily focused on 

undergraduates, into the market for PhD-trained workers. Whether graduate students, and 

specifically those in life sciences, choose graduate training in response to current or 

future expected future labor market conditions has yet to be firmly established. Degrees 

in biomedical science appear so specialized, and require such a sacrifice of early career 

earnings, that it begs the question whether students who have chosen to study in these 

fields are doing so out of a natural affinity for the subject or the non-pecuniary benefit, 

rather than simply a desire to maximize their lifetime earnings. Other graduate degrees, 

such as the MBA, require a shorter time investment in education to produce greater 
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expected lifetime earnings. Furthermore, since pursuit of a PhD is a long-term career 

investment, often in excess of five years, market conditions at graduation may be vastly 

different from market conditions at the time of enrollment. In an ideal labor market, 

students considering a graduate degree would make informed decisions based on their 

best understanding of their future career prospects including inherent non-pecuniary 

benefits. 

While changes in graduate and undergraduate enrollment are broadly a function 

of population growth, there are important policy questions to be addressed in short-term 

enrollment trends. It is generally accepted that the university has acted within the labor 

market as a refuge from down economies for undergraduates. A workforce facing high 

unemployment rates or low wages will return to the university (Betts and McFarland, 

1995). While we are measuring the macroeconomic determinants of graduate biomedical 

matriculation, we also take into account other influences, such as the availability of 

funding.  Previous research has found that interest rates affect the attractiveness of school 

to potential students (Dellas and Koubi, 2003) and the sources of funding available to a 

student affect his or her ability to complete a degree (Ampaw, 2010). Cohort size has also 

proven to be important. An influx of foreign students into a given field will result in 

lower wages and employment rates within that field (Borjas, 2006). Students, 

undergraduates especially, have proven themselves to be vulnerable to business cycles 

and to be rational actors in the labor market (Dellas and Sakellaris, 2003). When the 

opportunity-cost of education is low, that is when unemployment rates are high or wages 
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are low, people choose to pursue education in higher numbers. Student demographics 

also have some effect on matriculation. Male students with high undergraduate GPAs are 

more responsive to business cycles than are students with low GPAs and females (Bedard 

and Herman, 2008).  

This thesis analyzes recent trends in the market for biomedical science PhDs and 

evaluates the extent to which graduate student enrollments reflect rational foresight 

regarding future market conditions. To a first approximation, one might expect current, 

short-run demand shifts for biomedical scientists to affect current new PhD enrollments, 

as such shifts may affect students’ perceptions of longer-run career prospects. On the 

other hand, the particular policy shift examined here—the NIH budget doubling—was 

announced in advance, so rational agents might have anticipated that early trends in 

wages and job growth would not persist. 

Using time-series data from a variety of nationally representative surveys 

including counts of first-time graduate student enrollments, PhD completions, estimates 

of biomedical scientists’ and alternative occupations’ salaries and employment rates, and 

both NIH and biopharmaceutical industry R&D expenditures over the period 1998 

through 2010, we evaluate the relative importance of various incentives which draw 

students towards a career in biomedical sciences. In particular, we assess how changes in 

NIH R&D expenditures influence both demand and supply in the market for biomedical 

sciences workforce. We find that the increase in demand during the budget doubling 

period, reflected both in higher relative wages and in job growth for biomedical sciences 
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occupations, appears to have lured students to enroll in graduate programs. However, 

students who entered in 1998 were graduating just as the expansion came to an end, and 

since 2006 the number of PhDs produced each year by U.S. biomedical sciences 

programs has generally exceeded the growth in U.S. jobs. 

Empirically, Ryoo and Rosen (2004) found fluctuations in demand for 

professional engineers were substantially driven by changes in R&D and defense-related 

public expenditures. Along those lines, in this paper we evaluate responsiveness of 

demand for biomedical scientists to changes in NIH appropriations and industrial 

biopharma R&D. 

I.A. Summary of Findings 

We find that graduate student enrollment and PhD completions are responsive to 

expected earnings and to employment rates in biomedical fields. Enrollment and 

completions are especially responsive to NIH funding levels. Because NIH R&D is 

influential on the supply side and the demand side, it lacked the exogeneity necessary to 

identify market effects. 

 

II. EMPIRICAL APPROACH 

In the analysis that follows, we combine data from various government data 

sources on wages, employment, and education. Due to data limitations and strong 

evidence of a structural break after the NIH budget doubling concluded, our time series 

here is limited to 12 years, with some models using fewer observations due to inclusion 
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of lagged variables. Nonetheless, our results are consistent with expectations from 

previous literature, and demonstrate a valid solution to the unique empirical challenge 

posed. The approach demonstrated thus should be useful to future analyses, when more 

data become available. Our estimations employ first-differenced OLS models in order to 

mitigate autocorrelation, and instrumental variables estimation to avoid simultaneity bias.  

II.A. Data 

Bureau of Labor Statistics Occupational Employment Statistics 

Average salary estimates and employment statistics for biomedical scientists and 

alternative career fields were calculated for years 1999 through 2010 using data from the 

Bureau of Labor Statistics’ (BLS) Occupational Employment Statistics (OES) survey. 

The Bureau of Labor Statistics, an agency within the U.S. Department of Labor, collects 

OES data semiannually from 200,000 business establishments. Wage estimates in the 

OES are produced by combining current-period survey data with that collected from the 

previous two surveys. That is, estimates reported for May 2012 would be calculated using 

data from the May 2012, November 2011, and May 2011 surveys. Due to occupation 

code reclassifications after 1998, this dataset is our limiting series. All wage estimates are 

inflated to constant 2010 dollars using the chained consumer price index. 

To generate the biomedical scientist average wage time-series, we followed the 

occupation classification from the recent NIH Advisory Committee to the Director 

(ACD) task force report. These occupations are detailed in Table 1. The average wage for 

each year is a weighted average, where the weights are determined by the number of 
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people in that occupation code, relative to the total sum of employees across all 

biomedical sciences occupations.  

In Figure 2 we see that biomedical salaries began to grow more quickly just as the 

NIH budget doubling came to an end. There was also a spike in biomedical science 

compensation around 2001, in the middle of the NIH program of expansion. 

 

Figure 2: Biomedical Salary and NIH Obligations 
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The first wage series is the weighted average salary for individuals holding 

bachelor’s degrees in biological sciences or chemistry, who have not earned (and are not 

currently earning) a graduate degree. We constructed this series by combining data from 

the National Science Foundation’s Survey of Doctoral Recipients, and the American 

Community Survey, as described below.  

NSF Survey of Doctoral Recipients (SDR) 

The Survey of Doctoral Recipients (SDR) is a longitudinal survey of individuals 

who have received a doctorate degree in science, engineering, or health fields from a U.S. 

institution. Collected by the National Science Foundation every two to three years, it 

follows a sample of individuals from the time they receive their PhD in a science, 

engineering, or health-related field, until they reach age 75. 

First, we used publicly-available SDR data to determine which bachelor’s degree 

fields are associated with earning PhDs in life sciences fields. For surveys conducted in 

1999 through 2008, we find more than 80% of life sciences PhDs earned bachelor’s 

Table 1. Biomedical Scientist Occupation Codes for BLS OES Data 

Occupation Code Occupation Title 

11-9121 Natural Sciences Managers 

17-2031 Biomedical Engineers 

19-1021 Biochemists and Biophysicists 

19-1022 Microbiologists 

19-1023 Zoologists and Wildlife Biologists 

19-1041 Epidemiologists 

19-1042 Medical Scientists, except Epidemiologists 

19-4021 Biological Technicians 

25-1042 Postsecondary Biological Sciences Teachers 
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degrees in biological sciences or chemistry. Health-related majors such as nursing were 

also represented among the PhDs, but those majors less frequently chose to pursue 

research PhDs. As such, we felt the biological sciences and chemistry majors’ alternative 

careers would be most representative of the alternatives a prospective PhD student might 

consider. 

American Community Survey Public Use Microdata Sample 

We use the 2009 American Community Survey (ACS) Public Use Microdata 

Sample (PUMS) to identify occupations associated with bachelor’s degrees in biological 

sciences and chemistry. We first calculated the survey-weighted share of all biological 

sciences and chemistry Bachelor’s-degree holders in each occupation code, as well as the 

share of all S&E-degree holders in each occupation code. Then, we merged these 

calculated shares from ACS with BLS OES wage data by 4-digit Standard Occupational 

Classification system code (SOC), and used these shares to estimate a weighted average 

salary by year for bachelor’s degree holders across these alternative occupations. 

NSF-NIH Survey of Graduate Students and Postdoctorates in Science and Engineering 

We use the NSF-NIH Survey of Graduate Students and Postdoctorates (GSS) to 

estimate the number of students entering U.S. biomedical sciences degree programs each 

year. The GSS is an annual survey of departments and other degree-granting units at U.S. 

academic institutions, granting degrees in S&E fields. The survey collects data on part- 

and full-time enrollment, student demographics, and students’ sources of financial 

support. For this analysis, we use counts of first-time full-time students, total students 
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enrolled, and students whose primary source of financial support is NIH funding, 

including NIH-funded research assistantships, traineeships, or fellowships across 

institutions offering PhDs in biological, medical, and other life sciences.  

Figure 3 demonstrates how enrollments have risen throughout the NIH budget 

doubling years, flattening out as the NIH expansion came to an end, and reaching a sharp 

peak in 2008.  Enrollments rose consistently throughout most of the 12 years in our data 

set, only beginning to decline as the NIH began funding more students.  This may 

indicate that biomedical graduate students do indeed have cobweb expectation. 

 

Figure 3: Enrollments and Availability of Funding 

 

Integrated Postsecondary Education Data System (IPEDS) Completions 

Counts of the number of students graduating each year from U.S. institutions with 

Bachelor’s degrees in biological sciences and chemistry-related fields, as well as in all 
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S&E fields, were obtained from the National Center for Education Statistics’ IPEDS 

Completions Survey. This data is collected annually in the Spring from all higher 

education institutions within the United States and Washington D.C. that participate in 

federal student financial aid programs. 

Survey of Earned Doctorates 

The Survey of Earned Doctorates (SED) has been used to collect statistics on the 

complete population of students graduating with PhDs each year, from 1957 to present. 

This survey includes information on race, gender, citizenship, as well as degree 

characteristics. We use the SED data to determine the number of completions in 

biomedical science fields each year. Figure 4 shows a similar interaction to Figure 3 

except that completions are rising consistently as NIH funding becomes scarcer. This 

may demonstrate that as NIH funding dries up, students become more motivated to 

complete their degrees and graduate. 
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Figure 4: Graduates and Availability of Funding 

Macroeconomic Data Series 

In addition to the survey microdata sources noted above, we also use four macro-

level data series to evaluate possible demand shifters. NIH R&D obligations by year were 

obtained from the NSF Survey of Federal Funds for R&D, adjusted to constant 2010 

dollars using the Biomedical Research and Development Price Index (BRDPI).  
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Figure 5: Employment and NIH Obligations 

Real U.S. Gross Domestic Product (GDP) estimates in chained 2010 dollars are 

calculated using U.S. Bureau of Economic Analysis (BEA)
1
 data. In addition, we 

construct two alternative estimates of annual biopharmaceutical industry expenditures. 

The first is Pharmaceutical Research and Manufacturers Association (PhRMA) members’ 

reported expenditures on domestic R&D adjusted to constant 2010 dollars using the 

BRDPI. This series includes all R&D expenditures in the US by the pharmaceutical trad 

association’s members, including both US and foreign-owned firms. The second uses 

BEA R&D satellite accounting data for pharmaceutical and medicine manufacturers 

(NAICS code 3254), available for years 1998 through 2007, and extrapolates that series 

                                                 

1
 Data available online at 

http://www.bea.gov/newsreleases/general/rd/2010/xls/1998_2007_rd_data_2010RDSA.xls 

http://www.bea.gov/newsreleases/general/rd/2010/xls/1998_2007_rd_data_2010RDSA.xls
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through 2010 based on annual changes in PhRMA-reported expenditures. In contrast with 

the PhRMA series, the BEA data excludes foreign-owned firms, but includes all US 

domestic industry-performed and industry-funded R&D. 

Figure 6 shows the interaction between employment and pharmaceutical R&D 

obligations, showing that employment consistently trails the pharmaceutical industry by 

approximately one year. 

 

 

Figure 6: Employment and Pharma R&D Obligations 
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Table 2. Summary of Variables 

 Mean Standard 

Deviation 

Employment in Biomedical Fields 280568 58300.55 

Average Annual Biomedical Workforce Salary 74667 4056.571 

First-Time Full-Time Graduate Students Entering 

Biomedical Sciences PhD Programs 

20121.2 2644.293 

Full-Time Biomedical Sciene Graduate Students Supported 

by the NIH 

17270.5 2342.308 

Gross Domestic Product (in Billions of Dollars) 13404.2 1090.24 

Total NIH R&D Obligations (in Millions of Dollars) 28638.7 4274.858 

Total Life Sciences Broad Field U.S. PhD Completions 8262.77 6979 

Total Bio/Med/Chem Bachelor's Degrees Conferred this 

Year in the U.S. 

171639 30958.31 

Average Annual Salary for BioChem Bachelor's Grads 53789.6 2359.66 

PhRMA Member Companies R&D Expenditures (in 

Millions of Dollars) 

35016.9 4620.01 

Pharmaceutical R&D Investment 51217.9 15734.58 

All Salary, Investment, and Gross Production data are represented in constant 2010 

dollars. 

 

II.B. Models 

As discussed by Freeman (1976) and others, markets for highly-skilled labor are 

subject to substantial “production lag,” where labor supply is largely predetermined by 

entry into training programs several years prior. We use both cobweb and forward-

looking analyses in order to determine whether students are reacting to present-day 

conditions or attempting to forecast the future job market. The cobweb-type models make 

the assumption that present-day, time t enrollment is determined by present-day, time t 

market conditions. Participants in this labor market are committing to participation in a 
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labor market for which they have no more indication of wage rates than the present wage 

rate (Hoy, 2001). In contrast, forward-looking models assume that students in time t are 

attempting, with some success, to predict wages and employment at the time they will be 

entering the market, time t+d.   Here, we begin by estimating the supply of new entrants 

into biomedical sciences graduate programs, as follows: 

1121
 

 tdtdtt
GradEnterAltSalaryBioSalaryGradEnter  (1) 

Equation (1) asserts that the number of students entering biomedical sciences 

graduate programs in a given year should be determined largely by expected salaries for 

completed biomedical sciences PhDs d years hence, BioSalaryt+d, where d is the time 

delay between admission and completion to reduce effects of any exogenous trend in 

enrollment, we include the first lag of the dependent variable. In addition to considering 

their expected future wages if they go on and complete a biomedical sciences PhD, 

prospective students should also consider the opportunity cost of choosing to attend 

graduate school, instead of pursuing some alternative career path accessible to those who 

have earned only a Bachelor’s degree. For simplicity, in equation (1) we ignore the 

opportunity cost associated with years spent in graduate school, so include only the 

expected salaries for those alternative careers d years hence, AltSalaryt+d. In addition, due 

to data limitations, we are not able to use average wages by experience. Where ideally 

wage expectations could be represented by expected lifetime earnings, we are forced to 

use annual wage data. Ryoo and Rosen (2004) assume that over a short time series the 
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wage profile by age and experience will be stable. If that assumption can be borrowed 

then this simplification should not affect our results. 

Finally, note that in our empirical analyses, all variables are log-transformed. By 

using logged variables in most of our equations, we demonstrate the percent change in 

the dependent variable as a result of a percent change in independent variables. This 

gives a constant elasticity formulation where independent variable coefficients will give 

the elasticity of the dependent variable under the assumption that all other variables are 

held constant. 

If graduate students have rational expectations regarding future market conditions, 

then students’ expectations at time t for BioSalaryt+d and AltSalaryt+d would, on average, 

equal the true values of each variable at time t+d. However, rational prospective students 

may also consider strategic labor supply responses by other prospective students and 

existing PhD scientists. To assess this possibility, in equation (2) we add the stock of 

biomedical scientists employed at time t+d: 

  (2) 

If students have “cobweb” expectations, then their expectation for BioSalaryt+d would 

simply be the current salary for biomedical scientists, BioSalaryt, and likewise their 

expectation for AltSalaryt+d would be AltSalaryt. Likewise, their expectations regarding 

future job growth may depend on current changes in employment levels for biomedical 

scientists, BioEmp. We test these alternative assumptions about students’ expectations 

empirically. 



GradEnter
t
 

1
BioSalary

td
 

2
AltSalary

td
 

3
BioEmp

td
GradEnter

t1


2
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One difficulty with the formulations in equations (1) and (2) above, as discussed 

by Ryoo & Rosen (2004), is that they do not control for exogenous year-to-year changes 

in cohort size that could affect the number of students completing college, and thus 

eligible to enter PhD programs (i.e., supply shifters). We therefore also consider the 

following relative supply model: 



GradEnter
t

BachDeg
t

 
1

BioSalary
t  d

AltSalary
t  d

 
2

BioEmp
t  d

TotEmp
t  d

 
3
 (3) 

In this specification, the dependent variable represents the share of students who 

graduated with bachelor’s degrees in biology or chemistry in year t and went on to enter 

graduate programs in biomedical science fields in the following academic year. The 

explanatory variable is the relative financial prospects at graduation, in year t+d, for a 

student who completes a PhD in biomedical sciences, versus the wages paid for those 

majors’ alternative career paths. 

If we presume that all workforce outcomes for biomedical sciences PhDs are 

considered by prospective students—including non-science-related and non-research 

jobs—then the correct measure for students’ expected income at graduation is the average 

entry-level wage for a biomedical sciences PhD, regardless of his or her occupation, as 

we calculate from the SDR data. 

On the other hand, if new PhDs are taking non-research and non-science-related 

jobs due to an excess labor supply that depresses entry-level wages in biomedical 

sciences research occupations, then only the wages in those specific positions are 

relevant. This latter specification is somewhat more attractive for our market model, as 
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these wages are the relevant prices for the demand side of the market. However, in that 

case, the rational expectations labor supply model should also include a measure of the 

stock of biomedical sciences researchers as well. We explore each of these specifications 

empirically, below. 

Again, ignoring for simplicity any additional signals a student may receive during 

his or her d years of graduate training that might affect expectations of future salaries, the 

number of biomedical sciences PhDs supplied to the market at time t, Gradt, is then 

determined mainly by GradEntert-d:    



Grad
t
 

1
GradEnter

t  d
 


NIHFunded

t  

  0

d

  
4  (4) 

In equation (4) above, we expect the term 1 will be less than one, reflecting usual 

attrition from doctoral programs. We also add additional terms to assess whether 

increases in the proportion of students funded by NIH research assistantships, 

traineeships, or fellowships impacts timely PhD completions. The outcome variable 

Gradt shows the influx of new PhDs into the labor supply that year. Like equation (3), 

this equation can also be expressed in relative terms, to avoid supply-side shift effects 

like changes in cohort size. 

We can interpret 




  as the impact of changes in the availability of NIH support 

for students in each year of their PhD program on their probability of completing the PhD 

within d years. A significant negative coefficient would imply that an increase in NIH 

support for students during that year of a given cohort’s graduate training actually 

decreases the six year completion rate for the cohort. When first-differencing the 
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variables as in the empirical analyses below, the coefficient represents the effect of 

acceleration in NIH spending in any given year on the rate of PhD completion.  

 

Figure 7:  Impacts of changes NIH graduate student support on 6-year PhD 

completions in years 1 through 6 - 95% Confidence Interval 

Adding relative wages both at entry and at graduation provides an alternative 

estimate of the effects of wages on the number of students who ultimately are eligible to 

enter the workforce. To preserve degrees of freedom given the relatively short time series 

we have available, in this model we consider only the percentage of biomedical sciences 

graduate students funded by NIH six years prior to graduation, as a supply-side attractor: 
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In the empirical analysis, we also investigate variations on equation (5) that are 

exclusively cobweb (i.e., include only salary and number of jobs at time t-d) or 

exclusively forward-looking (i.e., include only salary and number of jobs at time t). 

Modeling Demand for Biomedical Scientists 

In recent years approximately 70 percent of new PhD biomedical scientists have 

taken postdoctoral research/training positions (Stephan, 2012). Many of these 

postdoctoral positions are funded by NIH extramural research and training grants, but 

some are in industry (e.g., at biopharmaceutical firms) and in government. We therefore 

represent the (inverse) demand function for biomedical scientists as follows: 

 



BioSalary
t

AltSalary
t

 
1

BioEmp
t

TotEmp
t

 
2

NIHRnD
t

GDP
t

 
3

PharmaRnD
t

GDP
t

 
6  

(6) 

In this representation, the dependent variable is the log relative wage for 

biomedical scientists, and BioEmpt is the total number of biomedical scientists employed 

at time t. The demand-shifters are total NIH obligations for R&D in year t, NIHRnDt, 

representing demand for postdoctoral workers in academia and government, and 

estimated annual pharmaceutical and biotechnology industry R&D expenditures, 

PharmaRnDt, to represent demand in industry. As usual, we expect the sign on 1 will be 

negative, reflecting that an increase in labor market supply will, all else equal, reduce 

PhDs’ market wages. 

Finally, we can also estimate the relative demand function directly, with quantity 

demanded as the dependent variable: 
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
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 (7)
 

II.C. Econometric Estimation 

If an exogenous shock to wages or employment in one period affects unobserved 

factors in later periods, there may exist autocorrelation in the error terms. While there are 

many ways of testing for autocorrelation, here we follow Ryoo and Rosen (2004) in using 

the Durbin-Watson tests.  

The Durbin-Watson test, or d statistic, uses the OLS residuals to detect first-order 

autocorrelation. The d statistic is calculated as: 

 



d 

ˆ u 
t
 ˆ u 

t 1 
2

t  2

T



ˆ u 
t

2

t 1

T



 2 1  ˆ    

The term 



ˆ  is the sample correlation coefficient, estimated from the residuals: 

 



ˆ 
ˆ u 

t
ˆ u 

t 1 

ˆ u 
t

2
 

Because the correlation coefficient is bounded between -1 and 1, where -1 is perfect 

negative autocorrelation and 1 is perfect positive correlation, the d statistic will be 

approximately 2 when there is no autocorrelation, will approach zero when 

autocorrelation is strongly positive, and will approach 4 when autocorrelation is strongly 

negative. Durbin and Watson (1951) derived a table of critical values, that is, lower and 

upper bounds for an acceptable d statistic, given various combinations of number of 

explanatory variables and sample size. The closer the d statistic is to 2, the greater the 

probability that we fail to reject the null hypothesis of no autocorrelation. 
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The original Durbin-Watson test assumes strict exogeneity of the regressors, 

which precludes its use in autoregressive models like that in equation (1). In models such 

as that, where lagged values of the dependent variable are included among the 

explanatory variables, the d statistic will be biased towards 2 and thus we may fail to 

reject the null of no autocorrelation, even when autocorrelation is present. Durbin (1970) 

presented a more general alternative test that permits lagged dependent variables, and 

also assesses presence of higher-order autocorrelation.  

Instrumental Variables (IV) Estimation 

 Structural market models, such as the supply and demand equations we estimate 

here, are characterized by jointly (simultaneously) determined prices and quantities. If 

estimated independently, without taking into account the information provided by other 

equations in the system, simultaneous equations will yield inconsistent results. 

Specifically, if the error term in one equation is correlated with an explanatory variable in 

the other equation, simultaneous equations bias will occur. 

 Empirically, one approach to estimating simultaneous equations is two-stage least 

squares (2SLS) IV. To implement 2SLS IV estimation for the labor supply equation, we 

need to find one or more instruments that are highly correlated with biomedical 

scientists’ wages, but are otherwise uncorrelated with unobserved factors affecting the 

number of students enrolling in (or completing) PhD programs in biomedical sciences. 

Ryoo and Rosen (2004) employ the third and fourth lags of public and private defense 

R&D spending relative to total GDP, which they argue reflect changes in demand that 
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only affect supply of bachelor’s-degree engineers through their prospective wages. For 

us, NIH R&D as a share of total GDP would be analogous, but empirically we find that 

public (NIH) R&D funding is in fact a strong predictor of supply as well as demand, and 

therefore does not assist in resolving the identification problem. This relationship 

between our nominal “demand shifter” NIH funding and graduate student enrollments 

can be seen very clearly in Figure 8, below. 

 

Figure 8: Relative Enrollment and Relative NIH Funding 

 

In the analyses that follow, we therefore instrument for wages using only the third 

and fourth lags of pharmaceutical industry R&D expenditures, relative to GDP. The 

relevance of industry R&D expenditures to market wages is tested via the partial F-
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statistic for the excluded instruments in the first stage regression. To maximize the 

number of usable observations in our time series given restrictions on available data, we 

employ the PhRMA estimated R&D expenditures as instruments, and use the BEA 

pharmaceutical R&D estimates as the explanatory variable for our demand equations. 

Overid Testing 

In addition to the relevance condition—that industry R&D expenditures must be 

correlated with the endogenous regressor, market wage—industry R&D expenditures 

must also satisfy the exogeneity condition. That is, industry R&D expenditures can only 

be correlated with graduate student enrollment and completions via the price mechanism 

(wages). When the system is overidentified, meaning the number of exogenous 

instrumental variables exceeds the number of problematic endogenous variables, we can 

use the Sargan or Hansen tests of overidentifying restrictions (“overid tests”) to assess 

whether evidence supports exogeneity of the instruments. 

Overid tests essentially construct alternative models using subsets of the 

instruments so that the system is “just-identified,” meaning there are only as many 

instruments as there are regressors, and then compare the residuals. If the overid test 

statistic exceeds its critical value, this can be interpreted either as evidence that one or 

more of the instruments is correlated with the error term (so is not exogenous after all), or 

possibly that the omitted instruments actually belong in the second-stage regression and 

our equation is misspecified (see Davidson and McKinnon (2004), p. 336-338). 
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Using Hansen’s J-statistic, we are testing the null hypothesis that all of the 

instrumenting variables are valid. If the critical value associated with this test is large 

relative to the chi-squared random variable, and significant at the .05 or .10 significance 

level, then we reject the null hypothesis.  

III. RESULTS 

In this section we summarize the results of econometric regressions used in this paper. 

We have used time-series data to create OLS and IV models which provide some insight 

into the responsiveness of graduate students to macroeconomic inputs. The conclusions 

resulting from these estimations, combined with descriptive statistics, help to map the 

realities of the biomedical workforce. 

Models of the Supply of Biomedical Scientists 

We begin with basic OLS regression to see if graduate students in biomedical 

fields express rational expectations in the labor market. Models (1) and (2) in Table 3 are 

dynamic autoregressive models, with the log of the number of students entering PhD 

programs as the dependent variable. All equations are in a log-log format, giving us the 

elasticity of any given variable. 

 The dynamic ordinary least squares model (1) has for an outcome variable the log 

of entering PhD students. Predictor variables are the six-year leads of wages and 

employment. This regression finds no significant effects on enrollment for either of the 

labor market variables. Only the coefficient on the lagged AR(1) dependent variable is 
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significant, with a coefficient exceeding one, indicating an unstable, or non-stationary, 

process.  

Lacking useful results from the forward-looking dynamic model, we test cobweb 

expectations in model (2). In this regression logged wages and employment are measured 

in the present time period t. PhD enrollment is found to be significantly correlated with 

employment. A 1% increase in biomedical jobs will yield an approximately .45% 

increase in graduate enrollment (p<.001).  

For model (3) we add the use of relative variables to our OLS cobweb model in 

order to control for any cohort effects. It is possible that population trends may be 

increasing PhD enrollments, instead of labor market trends. For this reason we divide the 

dependent variable by the number of students graduating from the university with a 

degree in biology or chemistry. In addition, we relativize wages by dividing by an 

opportunity-cost salary and employment by dividing by employment in non-PhD S&E 

careers fields. 

Model (3) yields no significant results and is revealed by the Durbin-Watson test 

to have high autocorrelation. We attempt to mitigate autocorrelation in model (4) by 

returning to a dynamic cobweb model and first-differencing all variables. The 

autoregressive variable in this model is the only significant variable, revealing that a 1% 

increase in logged relative enrollment in the previous period will increase logged relative 

enrollment in the present period by .83%. 
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Table 3. Rational versus Cobweb Expectations in PhD Enrollments 

 (1) (2) (3) (4) 

 

OLS 

Dynamic 

Forward 

OLS 

Dynamic 

Cobweb 

OLS 

Relative 

Cobweb 

OLS 

Relative 

Dynamic 

First-

Differenced 

Cobweb 

Wages 
-0.148 -0.973 -1.942 1.178 

(0.903) (0.686) (2.884) (0.749) 

Employment 
0.0674 0.445*** 0.603 -0.0883 

(0.0661) (0.129) (0.200) (0.308) 

Graduate First-Time 

Enrollment, t-1 

1.197*** 0.164  0.829*** 

(0.156) (0.258)  (0.202) 

     

Observations 12 12 12 11 

Durbin-Watson 2.088 2.118 0.373 2.299 

Durbin's alternate 0.0405 0.0551 29.59 1.157 

Durbin's alternate p-value 0.846 0.821 0.000616 0.318 

*** p<0.01, ** p<0.05, * p<0.1 

Outcome variable for models (1) and (2) is the log of the number of students entering 

PhD programs in biomedical sciences. Outcome variable for models (3) and (4) is the log 

of the ratio of the number of students entering PhD programs to the number of Bachelor's 

degrees earned in biological sciences and chemistry. 

Wages and employment variables for model (1) are six-year leads, reflecting expected 

market conditions at time of graduation with perfect foresight (rational expectations). 

Models (2)-(4) use current wages and employment levels (cobweb expectations). Models 

(3) and (4) use the log of the ratio of wages for biomedical sciences vs. alternative career 

fields, and the log of the ratio of employment in biomedical sciences occupations vs. 

alternative career fields.  

In model (4), all variables are first-differenced to mitigate autocorrelation. 

All equations are estimated using OLS, and fully robust standard errors are reported in 

parentheses below each coefficient estimate. 
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Autocorrelation seems to be resolved by first-differencing all of the variables. 

However, the explanatory variables of wage and employment remain insignificant. Least 

there be simultaneity from the two independent variables, we run a first-differenced 

cobweb model, model (1) in table 4, with only log relative wage as the independent 

variable. This regression provides us with a unit-elastic result for wage (p<.1).  

Using the same variables as model (1), we switch to IV regression for model (2). 

This should help address any endogeneity that may have been an issue in the wage 

variable. IV regression reveals a wage elasticity of 3, (p<0.1). When we add lagged 

variables of wage and employment in model (3), now calculating PhD completions 

instead of entrants, we find a similar elasticity on wage which is also significant. This 

indicates that labor supply is highly responsive to changes in wage. 

Model (4) exchanges the present-day wage calculation for a lagged NIH funding 

variable – the effect of logged, relative, first-differenced NIH funding of students in time 

period t-6 on present-day logged, relative, first-differenced completions. Employment at 

time t-6 is very significant (p<.001), indicating that a 1% change in the first-difference of 

employment results in an .87% change in the first-difference of completions. The lagged 

wage variable is not significant at all – indicating that students may care more about their 

prospect of getting a job than they do about the wage they will earn. The NIH funding 

variable is also very significant (p<.001), and it is negative. A 1% increase in the change 

in NIH funding at the time of enrollment actually has a 1.4% negative effect on the 
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change in completions. This may be because an increased number of students being 

funded by the NIH could have a negative effect on the quality of student. 
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Table 4. Cobweb vs Rational Expectations on PhD Enrollment and Completions 

 (1) (2) (3) (4) 

 
OLS 

Cobweb 

First-

Differenced 

Enrollments 

IV Cobweb 

First-

Differenced 

Enrollments 

IV Mixed 

First-

Differenced 

Completions 

IV Cobweb 

First-

Differenced 

Completions 

Relative Wage, t 
0.974* 3.167* 3.596**  

(0.434) (1.827) (1.812)  

Relative Employment, t 
    

    

Relative Wage, t-6 
  0.346 1.006 

  (1.421) (0.778) 

Relative Employment, t-6 
  0.409 0.874*** 

  (0.283) (0.0782) 

Relative Enrollment, t-1 
0.793*** 0.601**   

(0.156) (0.261)   

Percent of Students with NIH 

Funding, t-6 

   -1.492*** 

   (0.351) 

Observations 11 11 5 5 

Durbin-Watson 2.163    

Durbin's alternate 0.214    

Durbin's alternate p-value 0.656    

First-Stage F-stat 

OLS 

0.222 0.417 4.193 

Partial R-squared  0.5973 0.4804 

Hansen's J-statistic 3.030 0.0541 0.316 

Hansen's J p-value 0.220 0.816 0.574 

Outcome variables for models (1) and (2) are first-differenced logs of the ratios of first-

time graduate student enrollment in biomedical sciences PhD programs, over total 

Bachelor's degrees in biological sciences and chemistry that year. Outcome variables for 

models (3) and (4) are logs of the ratio of PhDs completed over the sixth lag of 

Bachelor's degrees. 
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Table 5, model (1) once again raises the issue of simultaneity. The dynamic OLS 

regression produces strong significance on each of the four variables included, the 

negative coefficient on present-day log relative wage has returned. This implies that an 

increase in the relative wage for biomedical scientists of 1% decreases PhD completions 

by 2%, (p<.001). Two other variables in the model are more predictable, with 

employment and NIH Funding both being highly significant. Students will complete their 

PhD more quickly with the possibility of a job and they will complete it in a less timely 

manner if they enrolled at a time of NIH funding expansion.  

Model (2) returns to IV regression, using the exact same variables from model 

(1), but the first-stage partial F-statistic is unimpressive. The instrumented variable in this 

model is the lagged relative PhD completions variable – indicating that instruments do a 

better job of predicting quantity than price. 

IV models (3) and (4) provide very strong results. This is most likely a result of 

the reduction in the number of observations, in addition to the time period over which 

they span. NIH obligations and industry R&D are the instruments for employment in this 

model. The observations in these two models cover the years 2006 through 2010 – a 

period which follows the NIH budget expansion years when Congress was no longer 

emphasizing biomedical research. Whereas the NIH was a significant driver the labor 

market in the past, when budget growth stopped other variables were given the 

opportunity to become influential – including industry R&D. The partial F-statistic for 

models (3) and (4) are very good compared to previous estimations. 
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Both models indicate that scientist supply is very responsive to changes in wages. 

Model (3) controls for the availability of NIH student support at matriculation, producing 

a significant coefficient nearly identical to that from table 4, model (4). The story remains 

that students who enroll in the midst of NIH support growth are less likely to graduate in 

a timely manner. Model (4) finds something unique to previous NIH support coefficients 

in this paper. Students who are in the middle of their biomedical studies when the NIH 

begins an expansion are more likely to graduate. For a 1% increase in the change in the 

proportion of NIH students funded in year 3 of their PhD program, there will be a 1.2% 

increase in the six-year completion rate (p<.001). 
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Table 5. Effects of NIH Funding for Graduate Students on PhD Completion Rates 

 (1) (2) (3) (4) 

 OLS 

Forward 

Dynamic 

IV Forward 

Dynamic 

IV Mixed 

First-

Differenced 

IV Mixed 

First-

Differenced 

Log Wage, t -2.063** 1.494 2.912*** 4.157*** 

 (0.758) (1.631) (0.900) (0.350) 

Log Employment, t 0.463*** 1.183***   

 (0.0695) (0.190)   

Log Percent of Students 

with NIH Funding, t-6 

-2.423*** -3.715*** -1.453***  

(0.494) (0.476) (0.262)  

Log Percent of Students 

with NIH Funding, t-3 

   1.235*** 

   (0.0857) 

Log Employment, t-6   0.721*** 0.463*** 

   (0.112) (0.0381) 

Log Relative Completions, 

t-1 
0.793*** 0.682***   

 (0.156) (0.144)   

Observations 12 10 5 5 

Durbin-Watson 2.065    

Durbin's alternate 0.0578    

Durbin's alternate p-value 0.817    

First-Stage F-stat 

OLS 

1.013 3.353 7.855 

Partial R-squared 0.9558 .9821 .9192 

Hansen's J-statistic 0.0486 0.0169 1.057 

Hansen's J p-value 0.826 0.897 0.304 

Outcome variables for models (1) and (2) are the log of absolute PhD completions from 

biomedical PhD programs in a given year. Outcome variables for models (3) and (4) are 

the same, with the addition that these variables have been first-differenced. The log of 

wages is differenced in equations (3) & (4), as is the Logged Percent of Students with 

NIH funding in time period t-6.  
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Models of the Demand for Biomedical Scientists 

Table (6) model (1) presents results from an inverse (log-log) demand function 

where the first-difference of wages is determined by first-differenced values for 

employment, NIH R&D, and the lagged value of Industry R&D. We are able to use the 

third and fourth lags of pharmaceutical R&D investment as instruments for employment 

because the observations span a time period after the NIH budget doubling had come to 

an end. The overid test fails to reject the null hypothesis, allowing that the variables may 

be exogenous. By this specification we find that wages are negatively affected by 

employment rates so that a 1% increase in employment yields a .76% decrease in wages 

at time t (p<.001). This corroborates economic theory.  

We also calculate a traditional demand function. Model (2) relates the elasticity of 

biomedical science labor demand with respect to wages. Every coefficient is highly 

significant with an elasticity of -1.2% for the wage variable. This indicates that a 1% 

increase in wages results in a 1.2 percent decrease in biomedical labor demand (p<.001). 

While both models had ubiquitously significant coefficients and a strong partial 

first-stage F-stat, it is worthwhile to note that the coefficients on NIH R&D Obligations 

are larger than the coefficients for Industry R&D in both the invers demand function and 

the demand function. The NIH variable is significantly more influential in both models, 

with a value of  (.7, p<.001) in the inverse function and (.9, p<.001) in the regular 
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demand function. Industry R&D only had an elasticity of demand of less than .3 in both 

models (p<.001). 
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Table 6. Demand Functions for Biomedical Sciences Labor 

 (1) (2) 

 Inverse 

Demand 

Demand Function 

   

Employment, t -0.768***  

 (0.0273)  

Wage, t  -1.299*** 

  (0.0402) 

NIH R&D Obligations, t 0.695*** 0.906*** 

 (0.0578) (0.0553) 

Industry R&D, t-1 0.226*** 0.295*** 

 (0.0180) (0.0191) 

Constant 0.0369*** 0.0481*** 

 (0.00207) (0.00110) 

   

Observations 7 7 

First-Stage F-stat 80.17 597.2 

Partial R-squared 0.9836 0.9845 

Hansen's J-stat 1.546 1.471 

Hansen's J p-value 0.214 0.225 

Instruments L4D.lrgind 

L3D.lrgind 

L4D.lrgind 

L3D.lrgind 

The outcome variable for model (1) is the logged first-difference of wages 

within biomedical sciences. The outcome variable in model (2) is the log of 

first-differenced biomedical employment. All independent variables in 

equations (1) and (2) are first-differenced and logged. NIH R&D Obligations 

at time t and Industry R&D at time t-1 are both relative variables – each 

divided by GDP. 
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IV. CONCLUSIONS 

IV.A. Policy Implications 

This research finds that graduate biomedical students take wages and employment 

levels into consideration when they are deciding whether or not to pursue a PhD. We find 

that the most significant influence on matriculation is the level of National Institutes of 

Health funding available. A matriculated student is not, however, a future graduate. NIH 

funding ironically lures life science students into graduate school while simultaneously 

decreasing their chances of success. It may be that the allure of extra funding 

opportunities is too strong – drawing insufficiently prepared students into biomedical 

science. 

  In the first-differenced cobweb OLS model, we found positive unit-elastic wage 

significance upon enrollment. A one percent increase in wages would result in a one 

percent increase in enrollments. Using IV cobweb, first-differenced models, we found 

some significance in relative wages. We find robust evidence that elasticity of labor 

supply (as measured by PhD enrollment and completions) with respect to relative wages, 

whether at time of entry to the PhD program or at time of completion, has an elasticity of 

about 3. This implies that labor supply is highly responsive: a 1% increase in relative 

wages would result in a 3% increase in relative employment. It is using IV cobweb first-

differencing that we first see negative effect of NIH funding on completions. An inverse 

demand function reveals a very significant, negative effect of employment on salary. In a 
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regular demand function, NIH  R&D obligations are revealed to be very significant and 

unit elastic. 

The findings around NIH R&D funding are the most significant results of this 

research. This contributes to previous literature in the field indicating that discretion in 

the use of NIH funding for student aid is vital. Figure 8 indicates that students are highly 

responsive to the availability of funding when deciding whether to enroll. Figure 7 shows 

that the early availability of NIH funds in a student’s graduate career may delay or 

altogether prevent graduation. The NIH is right to have begun the research into graduate 

careers that began with the NIH Advisory Committee to the Director (ACD) Biomedical 

Research Workforce Working Group. Our results would indicate that the NIH can get the 

most from their human capital investments by restricting the years of graduate school in 

which NIH funding is available. If this funding were to be given to students beginning 

only in year 3 of their graduate school career, it might reduce excess enrollment of the 

unqualified while increasing completions. The NIH may, however, consider other 

strategies. If they wish to increase the overall quality of graduating students, the NIH may 

choose to continue funding students early in their careers – luring a greater number of 

applicants - under the assumption that only the brightest will complete, increasing the 

graduate pool from which scientists are made. 

IV.B. Limitations 

The most significant results from this paper have come from simple correlations. 

Figure 8 shows a very significant relationship between NIH funding and enrollment. The 
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econometric regressions run in this paper are hampered by the restricted availability of 

data - caused by the career code reclassifications in Bureau of Labor Statistics data which 

occurred in 1998. Our results, however, are in line with those produced in similar 

research. It is possible that these methods could be applied with an expanded dataset in 

the future, yielding similarly significant results around the importance of wages and 

employment rates.  

Ryoo and Rosen (2004) find a similar wage elasticity, between 2.5 and 4.5, in 

their research on engineering graduate students. Freeman (1974), Ryoo & Rosen (2004), 

and the research presented in this paper all found a greater relevance in cobweb 

expectation models. This would indicate that students may be less forward-looking in 

their decision making than they are responsive to present-day conditions. 

 

IV.C. Summary and Directions for Future Research 

This paper was unable to conduct an analysis of demographic responses to 

macroeconomic matriculation incentives. The data would indicate that race and gender 

have some effect on the types of occupations that students will ultimately work in. Future 

research should seek to understand the effect of race and gender on responsiveness to 

macroeconomic variables. It would also be ideal for these same analyses to be conducted 

with alternate wage data. The Survey of Doctoral Recipients could provide an alternate 

source of wage data for scientists working in biomedicine. Finally, a larger time series is 

needed in order to lend greater significance to these wage and employment results. In 15 
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or 20 years these analyses might be repeated, creating greater insight into the significance 

of wages and employment upon matriculation. In the meantime, the National Institutes of 

Health and other graduate student funding sources would do well to carefully examine 

the mechanisms and timelines by which they will assist potential and current students. 

 

 



44 

 

REFERENCES 

 

1. Ampaw, Frimpomaa D. . "The Effect of Labor Market Conditions and 
Financial Aid on Doctoral Student Retention," North Carolina State 
University, 2010, 143. 

 

2. Augustine, N. R. "Rising above the Gathering Storm: Energizing and 
Employing America for a Brighter Economic Future." Retrieved March, 
2005, 19, pp. 2008. 

 

3. Bedard, Kelly and Herman, Douglas A. "Who Goes to 
Graduate/Professional School? The Importance of Economic Fluctuations, 
Undergraduate Field, and Ability." Economics of Education Review, 2008, 
27(2), pp. 197-210. 

 

4. Betts, J. R. and McFarland, L. L. "Safe Port in a Storm: The Impact of 
Labor Market Conditions on Community College Enrollments." Journal of 
Human Resources, 1995, pp. 741-65. 

 

5. Blume-Kohout, Margaret E. and Adhikari, Dadhi. "Training the 
Biomedical Workforce: Does Funding Mechanism Matter?," Southern 
Economic Association 82nd Annual Meetings, . New Orleans, LA, 2012. 

 

6. Committee on Dimensions, Causes; Implications of Recent Trends in 
Careers of Life, Scientists and National Research, Council. Trends in 
the Early Careers of Life Scientists. The National Academies Press, 1998. 

 

7. Dellas, Harris and Koubi, Vally. "Business Cycles and Schooling." 
European Journal of Political Economy, 2003, 19(4), pp. 843-59. 

 

8. Dellas, H. and Sakellaris, P. "On the Cyclicality of Schooling: Theory and 
Evidence." Oxford Economic Papers, 2003, 55(1), pp. 148-72. 

 
9. Durbin, J. "Testing for Serial Correlation in Least-Squares Regression 

When Some of the Regressors Are Lagged Dependent Variables." 
Econometrica: Journal of the Econometric Society, 1970, pp. 410-21. 

 
10. Durbin, J. and Watson, G. S. "Testing for Serial Correlation in Least 

Squares Regression. Ii." Biometrika, 1951, pp. 159-77. 
 

11. Ehrenberg, Ronald G. "The Flow of New Doctorates." Journal of 
Economic Literature, 1992, 30(2), pp. 830-75. 



45 

 

 

12. Ehrenberg, R. G. and Mavros, P. G. "Do Doctoral Students' Financial 
Support Patterns Affect Their Times-to-Degree and Completion 
Probabilities," National Bureau of Economic Research, 1995. 

 

13. Ehrenberg, Ronald G.; Rees, Daniel I. and Brewer, Dominic J. 
"Institutional Responses to Increased External Support for Graduate 
Students." The Review of Economics and Statistics, 1993, 75(4), pp. 671-
82. 

 

14. Freeman, R. B. "A Cobweb Model of the Supply and Starting Salary of 
New Engineers." Industrial and Labor Relations Review, 1976, pp. 236-48. 

 

15. Freeman, R. B. "Employment Opportunities in the Doctorate Manpower 
Market." Industrial and Labor Relations Review, 1980, 33(2), pp. 185-97. 

 

16. Freeman, Richard B. "Fellowship Stipend Support and the Supply of 
Science and Engineering Students: Nsf Graduate Research Fellowships." 
American Economic Review, 2005, 95(2), pp. 61-65. 

 

17. Garrison, H. H.; Stith, A. L. and Gerbi, S. A. "Foreign Postdocs: The 
Changing Face of Biomedical Science in the Us." The FASEB journal, 
2005, 19(14), pp. 1938-42. 

 

18. Hamburger, Michael J. "Interest Rates and the Demand for Consumer 
Durable Goods." The American Economic Review, 1967, 57(5), pp. 1131-
53. 

 

19. Hoy, M. Mathematics for Economics: International Student Edition. Mit 
Press, 2001. 

 

20. Kennedy, P. E. A Guide to Econometrics, 5th Edition. MIT Press, 2003. 
 

21. Levitt, David. "Careers of an Elite Cohort of U.S. Basic Life Science 
Postdoctoral Fellows and the Influence of Their Mentor's Citation Record." 
BMC Medical Education, 10(1), pp. 80. 

 

22. National Research Council, NRC. Research-Doctorate Programs in the 
Biomedical Sciences: Selected Findings from the Nrc Assessment. 
National Academies Press, 2011. 

 



46 

 

23. NIH. "Biomedical Research Workforce Working Group Report," National 
Institutes of Health, 2012, 156. 

 
24. NSF. WebCASPAR Ingegrated Science and Engineering Recources 
25. National Science Foundation, 2008. 

 
26. Ryoo, J. and Rosen, S. "The Engineering Labor Market." Journal of 

political economy, 2004, 112(S1), pp. S110-S40. 
 

27. Smith, Courtney A. "Millennial Students Who Go Directly to Graduate 
School: Influences on This Decision and the Characterization of Their 
Experience," Wright State University. 

 
28. Stephan, Paula. How Economics Shapes Science. Harvard University 

Press, 2012. 
 

29. Stephan, Paula. "Perverse Incentives." Nature, 2012, 484(7392), pp. 29-
31. 

 
30. Tilghman, Shirley; Rockey, Sally; Degen, Sandra; Forese, Laura; 

Ginther, Donna; Gutierrez-Hartmann, Arthur; Hrabowski, Freeman; 
Jackson, James; Joshua-Tor, Leemor; Lifton, Richard, et al. 
"Biomedical Research Workforce Working Group Report," Bethesda, MD: 
National Institutes of Health, 2012. 

 
31. Wooldridge, J. M. Introductory Econometrics: A Modern Approach. South 

Western, Cengage Learning, 2009. 
 
 
 
 
 
  



47 

 

 

APPENDIX TABLE A1. 

American Community Survey Undergraduate Field-of-Degree Codes for 

Biological Sciences and Chemistry 

Code Field of Degree 

Biological Sciences Fields 

3600 Biology 

3601 Biochemical Sciences 

3602 Botany 

3603 Molecular Biology 

3604 Ecology 

3605 Genetics 

3606 Microbiology 

3607 Pharmacology 

3608 Physiology 

3609 Zoology 

3611 Neuroscience 

3699 Miscellaneous Biology and Epidemiology 

2402 Biological Engineering 

2404 Biomedical Engineering 

4002 Nutritional Sciences 

5102 Applied Biotechnology 

Chemistry Fields 

5003 Chemistry 

2405 Chemical Engineering 

Health Related Fields 

6100 General Medical and Health Services 

6102 Communication Disorders Sciences and Services 

6103 Health and Medical Administrative Services 

6104 Medical Assisting Services 

6105 Medical Technologies Technicians 

6106 Health and Medical Preparatory Programs 

6107 Nursing 

6108 Pharmacy 

6109 Treatment Therapy Professions 

6110 Community and Public Health 
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