STUDY OF NOVEL SYNTHETIC METHODOLOGIES FOR INDOLYL DERIVATIVES AND BETA-FLUOROENALS

Xiaobei Chen

Follow this and additional works at: https://digitalrepository.unm.edu/chem_etds
Part of the Physical Chemistry Commons

Recommended Citation

Chen, Xiaobei. "STUDY OF NOVEL SYNTHETIC METHODOLOGIES FOR INDOLYL DERIVATIVES AND BETAFLUOROENALS." (2015). https://digitalrepository.unm.edu/chem_etds/44

Xiaobei Chen
eandidate

Chemistry and Chemical Biology
\#ераттाтепा

This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee:

Wei Wang , Chairperson

Changjian Feng
$\underline{\text { Fu-Sen Liang }}$

Charles E. Melançon

Yang Qin

STUDY OF NOVEL SYNTHETIC METHODOLOGIES FOR INDOLYL
 DERIVATIVES AND
 BETA-FLUOROENALS

by
\section*{XIAOBEI CHEN}
B.S., Pharmacy, Fudan University, P.R. China, 2002
Ph.D., Chemistry, University of New Mexico, USA, 2015

DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Chemistry
The University of New Mexico
Albuquerque, New Mexico

May, 2015

ACKNOWLEDGEMENTS

My deepest gratitude goes first and foremost to my Ph.D. advisor, Professor Wei Wang, for his constant encouragement and guidance. Without his consistent and illuminating instruction, my research would not have reached its present form.

Second, I would extend my sincere thanks to all committee members, Professor Yang Qin, Professor Charles E. Melançon III, Professor Fu-Sen Liang and Professor Changjian Feng, for reading and evaluating my dissertation in busy time.

Finally, I wish to convey my appreciation to Professor Jiang Zhang in Shanghai JiaoTong University for the computational study, and all the current and former group members in Professor Wang's group for their selfless help and valuable advice in my research.

STUDY OF NOVEL SYNTHETIC METHODOLOGIES FOR INDOLYL DERIVATIVES AND BETA-FLUOROENALS

By
Xiaobei Chen
B.S., Pharmacy, Fudan University, P.R. China, 2002
Ph.D., Chemistry, University of New Mexico, USA, 2015

Abstract

One of the central goals in modern organic synthesis is to develop efficient synthetic strategies for the preparation and study of complex molecules possessing interesting structural, biological, and physical properties. Toward this end, my Ph. D. work focuses on the development of novel synthetic methodologies for the facile construction of synthetically and biologically significant molecular architectures.

The tert-prenylated indoles and indolines are widely present in a large collection of natural products and biologically active compounds. Although significant efforts have been made on the development of efficient methods to prepare these intriguing molecular architectures, few methods have been explored to introduce the challenging reverse prenyl group (1,1-dimethylallyl) at indolyl C2-position. In this regard, we have uncovered the unprecedented efficient aza-Claisen rearrangement involved the two-step reaction of 3-indolyl bromides with enamines as an effective approach to 2-alkylidene substituted indolines. Furthermore, these versatile products have been explored in a
number of new organic transformations to create new organic molecules. A notable example is that we have discovered a divergent Prins cyclization strategy to form indole fused seven-membered cyclic ethers and indoline fused five-membered tetrahydrofurans, respectively. Importantly, a novel variant of the Prins cyclization involving an unprecedented oxygen-participated rearrangement in the formation of the indoline fused five-membered tetrahydrofurans is realized for the first time. It is found that aliphatic aldehydes favor the classic Prins cyclization in the 7-membered ring formation while aromatic and allylic aldehydes for the new non-classic pathway for the formation of the 5-membered ring. The observed experimental results have also been rationalized by the computational studies.

Fluoroalkene $(\mathrm{C}=\mathrm{CF})$ is widely used in organic synthesis and this functionality is often employed as a bioisostere for replacement of the peptide bond in the field of peptide and peptidomimetic chemistry. Given its broad utilities while the lack of general methods to construct the important functionality, we have developed a novel organocatalytic and direct conjugate addition of HF to alkynals catalyzed by a simple secondary amine. The highly stereoselective (Z)- β-fluoroenals are generated. The versatile (Z)- β-fluoroenal adducts serve as versatile building blocks in a variety of new organic transformations, thus generating highly valued, structurally diverse fluorinated compounds.

Table of Contents

ACKNOWLEDGEMENTS iii
Abstract iv

1. Aza-Claisen Rearrangement Involved Syntheses of 2-Alkylidene Substituted Indolines 1
1.1 Introduction 1
1.2 Research Design 2
1.3 Results and Discussion 4
1.4 Derivatization 9
1.5 Conclusions 11
1.6 Experimental Section 12
1.7 References 62
2. Regioselective Construction of Indoline/Indole Fused Five Membered and
Seven Membered Cyclic Ethers Involving A Novel Variation of Prins Cyclization. 64
2.1 Introduction 64
2.2 Results and Discussion. 69
2.3 Computational Study for Mechanistic Investigations 80
2.4 Conclusions 84
2.5 Experimental Section 85
2.6 References 108
3. Highly Efficient and Stereoselective Synthesis of (Z)- $\boldsymbol{\beta}$-Fluoro Enals from
Alkynals and Applications in Synthesis 111
3.1 Introduction 111
3.2 Research Design 112
3.3 Results and Discussion 114
3.4 Synthetic Applications 117
3.5 Conclusions 121
3.6 Experimental Section 121
3.7 References 143
List of Abbreviations 145

1. Aza-Claisen Rearrangement Involved Syntheses of 2-Alkylidene Substituted Indolines

1.1 Introduction

The tert-prenylated indoles and indolines are featured in a large collection of natural products and biologically active compounds, such as fellutanine $\mathrm{D}(\mathbf{1})$ and cycloechinulin (2). ${ }^{1}$ Although extensive efforts have been made on the development of efficient methods for the preparation of these intriguing molecular architectures, few methods have been explored to introduce the challenging reverse prenyl group (1,1-dimethylallyl) at indolyl C2-position (Figure 1.1.1). ${ }^{2}$ Because C 2 is less electrophilic than C 3 and the reverse prenyl group exhibits more highly steric hinderance. Currently, there are only two popular methods used for the installation of the functionality. Nucleophilic tertprenylation was developed by Danishefsky and coworkers. ${ }^{3}$ In this approach, indoles are treated with tert-BuOCl and freshly prepared prenyl-9-BBN at $-78{ }^{\circ} \mathrm{C}$ (Scheme 1.1.1). However, the use of low temperature and freshly prepared reagents reduces its experimental convenience. The less used Claisen rearrangement was also reported. ${ }^{4}$ The 2-tert prenylated indolines are obtained through the Claisen rearrangement from the prenylated indole system. The process suffers from poor regioselectivity of tertprenylation and prenylation (Scheme 1.1.2). Therefore, a general and practical method to prepare 2-alkylidene substituted indole derivatives that bear a sterically demanding quaternary center, and in particular, a method for 2-tert-prenylation of indoles, remains to be developed.

fellutanine $D(1)$

cycloechinulin (2)

Figure 1.1.1 Numbering of the indole system.

Scheme 1.1.1 Nucleophilic tert-prenylation.

Scheme 1.1.2 Claisen Rearrangement.

1.2 Research Design

The Claisen and the Cope rearrangements are established as reliable protocols to generate defined configured tertiary and quaternary carbon centers. ${ }^{5}$ Compared with the Claisen rearrangement, the aza-Claisen rearrangement requires more drastic conditions because more energy is essential to bring the nitrogen atom in the chair topology of the transition state. ${ }^{6,7}$ Recently, it has been reported that the quaternized molecules can
significantly reduce the energy and allow the rearrangement to occur at lower temperatures (Scheme 1.2.1). ${ }^{8}$ Therefore, we envisioned that the charge-accelerated azaClaisen rearrangement could be explored for a new reverse prenylation and serve as a suitable key step in our design and syntheses of 2-alkylidene substituted indolines. The resultant new versatile building blocks, 2-(1', 1'-dimethyl ethanalyl)indolines, can be potentially explored in the syntheses of 2-tert-prenylated indole derivatives (Scheme 1.2.2).

Scheme 1.2.1 Charge-accelerated aza-Claisen rearrangement

Scheme 1.2.2 Strategy in this work $(P=$ protecting group, $X=$ halide substituent $)$.

1.3 Results and Discussion

We commenced our study by optimizing reaction conditions for the proposed azaClaisen rearrangement followed by hydrolysis using indolyl chloride (3a) and enamine 4a as the starting materials (Table 1.3.1).

Table 1.3.1: Optimization of reaction conditions for the aza-Claisen rearrangement. ${ }^{a}$

Entry	Solvent	$\begin{aligned} & \text { Additive } \\ & (2 \text { eq. }) \end{aligned}$	T $\mathbf{T}^{\left({ }^{\circ} \mathrm{C}\right)}$	$t_{2}(\mathrm{~h})$	Yield (\%) (for 2 steps)
1	$\mathrm{H}_{2} \mathrm{O}$	-	100 (no MW)	3	22
2	$\mathrm{H}_{2} \mathrm{O}$	-	100 (no MW)	12	17
3	$\mathrm{H}_{2} \mathrm{O}$	-	$100^{\text {b }}$	0.8	26
4	$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=1: 2$	-	$100^{\text {b }}$	0.8	31
5	$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=2: 1$	-	$100^{\text {b }}$	0.8	36
6	$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=4: 1$	-	$100^{\text {b }}$	0.8	39
7	EtOH	-	$100^{\text {b }}$	0.8	<5
8	EtOH/ $/ \mathrm{H}_{2} \mathrm{O}=4: 1$	-	$100^{\text {b }}$	1.5	48
9	EtOH/ $\mathrm{H}_{2} \mathrm{O}=4: 1$	-	$100^{\text {b }}$	2	43
10	$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=4: 1$	-	$100^{\text {b }}$	2.5	40
11	DMF/ $\mathrm{H}_{2} \mathrm{O}=4: 1$	-	$100^{\text {b }}$	1.5	41
12	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}=4: 1$	-	$100^{\text {b }}$	1.5	44
13	$i \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}=4: 1$	-	$100^{\text {b }}$	1.5	51
14	$t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=4: 1$	-	$100^{\text {b }}$	1.5	39
15	$i \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}=4: 1$	PhCOOH	$100^{\text {b }}$	1.5	43
16	$i \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}=4: 1$	$\mathrm{Bu}_{4} \mathrm{NBr}$	$100^{\text {b }}$	1.5	38
17	$i \mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}=4: 1$	$4 \AA$ MS	$100^{\text {b }}$	1.5	40

[^0]According to the theoretical studies of Jorgensen and Severance, ${ }^{9}$ protic solvents, which would have a favorable hydrogen-bonding effect on the rate of pericyclic reactions, were chosen to test the reactions initially. Table 1.3.1 summarizes the results of this study in which various solvents, additives and reaction time were probed. An accelerating effect by microwave irradiation was noticed. Without microwave, long reaction time was needed with lower yield (Table 1.3.1, entry $1.100^{\circ} \mathrm{C}, 3 \mathrm{~h}, 22 \%$ yield). Under microwave irradiation, the reaction time was shortened and yield was better (Table 1.3.1, entry 3. 0.8 h, 26% yield). The addition of ethanol in water $\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}=1: 2\right)$ resulted in an improving yield (Table 1.3.1, entry $4,31 \%$ yield). The reaction yield was proportional to the increasing ratio of ethanol in the solvent mixture (Table 1.3.1, entry 4-6). However, in pure ethanol, almost no desired product was formed suggesting the critical role of water in the reaction (Table 1.3.1, entry 7). The reaction time was also investigated (Table 1.3.1, entry $6,8-10$). The suitable reaction time was found to be 1.5 h which enabled the reaction to achieve a yield of 48%. Thereby, 1.5 -hour was chosen for further optimization. Among different solvent systems probed (Table 1.3.1, entry 8, 11-14), a combination of isopropanol/water (4:1) showed the best result with 51% yield (Table 1.3.1, entry 13). There was no positive effect observed when various additives were used including acid (Table 1.3.1, entry 15), PTC (Table 1.3.1, entry 16) and $4 \AA$ MS (Table 1.3.1, entry 17).

The first step was also optimized with various protecting groups, halide substituents and enamines (Table 1.3.2).

Table 1.3.2: Optimization of reaction conditions for the first step. ${ }^{a}$

Entry	3	4	T $\left.\mathrm{T}_{1}{ }^{\text {a }} \mathrm{C}\right)$	t_{1}	Yield (\%, for 2 steps)
1	3a $(\mathrm{X}=\mathrm{Cl}, \mathrm{P}=\mathrm{Ac})$	4a (N,N-dimethyl-)	rt	9 h	51
2	3b ($\mathrm{X}=\mathrm{Cl}, \mathrm{P}=\mathrm{Ms}$)	4 a	rt	9 h	55
3	3c ($\mathrm{X}=\mathrm{Cl}, \mathrm{P}=\mathrm{Boc}$)	4a	rt	9 h	35
4	3d $(\mathrm{X}=\mathrm{Cl}, \mathrm{P}=\mathrm{Tf})$	4a	rt	9 h	No desired product
5	3e ($\mathrm{X}=\mathrm{Br}, \mathrm{P}=\mathrm{Ms}$)	4a	rt	2 h	45
6	3 e	4a	rt	1 h	67
7	3 e	4a	rt	0.5 h	58^{b}
8	3 e	4b (pyrrolidin-1-yl)	rt	0.5 h	67
9	3 e	4b	rt	15 min	72
10	3 e	4b	rt	12 min	77
11	3 e	4b	rt	10 min	73
12	3 e	4b	rt	5 min	56
13	3 e	4b	50	12 min	58
14	3 e	4b	0	12 min	33

[^1]carried out at room temperature for 12 minutes using bromide $\mathbf{3 e}$ and enamine $\mathbf{4 b}$, a yield of 77% for this two-step reaction was obtained (Table 1.3.2, entry 10). Longer or shorter reaction time in the first step decreased the total yield (Table 1.3.2, entry 8, 9, 11 and 12). Change of the reaction temperature in the first step reduced the yields dramatically (Table 1.3.2, entry 13 and 14). Therefore, the reaction conditions described in entry 10 is optimal.

Having established the optimal reaction conditions, we probed the scope of the process (Table 1.3.3). A variety of indole bromides, bearing electron-donating or withdrawing substituents ($\mathbf{3} \mathbf{e} \sim \mathbf{0}$), were successfully applied and furnished 2,2-dimethyl ethanal at indolyl C2-position using enamine $\mathbf{4 b}$ in good yields.

Table 1.3.3: Substrate scope of indole bromides. ${ }^{a}$

Entry	$\mathbf{3}$	\mathbf{R}	\mathbf{P}	$\mathbf{T}_{\mathbf{1}}\left({ }^{\mathbf{}} \mathbf{C}\right)$	$\boldsymbol{t}_{\boldsymbol{l}}(\mathbf{m i n})$	$\mathbf{6}$	Yield (\%, for two steps)
$\mathbf{1}$	$\mathbf{3 e}$	-	Ms	rt	12	$\mathbf{6 e}$	77
$\mathbf{2}$	$\mathbf{3 f}$	-	Ac	rt	15	$\mathbf{6 f}$	37
$\mathbf{3}$	$\mathbf{3 g}$	-	Ts	rt	20	$\mathbf{6 g}$	48
$\mathbf{4}$	$\mathbf{3 h}$	$5-\mathrm{CH}_{3}$	Ms	rt	15	$\mathbf{6 h}$	71
$\mathbf{5}$	$\mathbf{3 i}$	$5-\mathrm{OCH}_{3}$	Ms	rt	5	$\mathbf{6 i}$	73
$\mathbf{6}$	$\mathbf{3 j}$	$5-\mathrm{F}$	Ms	rt	45	$\mathbf{6 j}$	72
$\mathbf{7}$	$\mathbf{3 k}$	$5-\mathrm{Cl}$	Ms	50	15	$\mathbf{6 k}$	66
$\mathbf{8}$	$\mathbf{3 l}$	$5-\mathrm{Br}$	Ms	50	15	$\mathbf{6 l}$	64
$\mathbf{9}$	$\mathbf{3 m}$	$6-\mathrm{Br}$	Ms	rt	35	$\mathbf{6 m}$	66
$\mathbf{1 0}$	$\mathbf{3 n}$	$5-\mathrm{NO}_{2}$	Ms	rt	80	$\mathbf{6 n}$	66

11 3o $5-\mathrm{CO}_{2} \mathrm{Me} \quad \mathrm{Ms} \quad 50 \quad 15 \quad 60 \quad 85$
${ }^{a}$ The reactions were carried out on a $0.05-\mathrm{mmol}$ scale of $\mathbf{3}$ and monitored by appearance of 6 by TLC and ${ }^{1} \mathrm{HNMR}$ spectroscopy.

Although the yields of the two-step reactions are high in most cases, we observed a trace amount of compound 7 as a side product. We reasoned that the most probable mechanism for generation of compound 7 was $S_{N} 2$ reaction of indole bromide $\mathbf{3 e}$ (Scheme 1.3.1).

Scheme 1.3.1 Proposed mechanisms for generation of $6 \mathbf{e}$ and 7.

1.4 Derivatization

The second phase of this work was directed towards exploring the utility of these new building blocks 6. One of our major goals for this work is to introduce a reverse prenyl group at indolyl C2-position. In order to achieve this goal, compound $\mathbf{6 e}$ was treated with methyltriphenylphosphonium bromide under typical Wittig reaction conditions, and 2-tert-prenylated indoline $\mathbf{8}$ was obtained effectively. Moreover, reverse prenyl groups bearing various substituents ($\mathbf{9}$ and 10) can be also introduced successfully to compound $\mathbf{6 e}$ with the corresponding Wittig reagents (Scheme 1.4.1).

10, 86\%, Z-geometry
Scheme 1.4.1 Wittig reactions of $\mathbf{6 e}$. Reagents and conditions: (i) $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{Br}$, $\mathrm{n}-\mathrm{BuLi}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}-\mathrm{rt}$; (ii) $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{PhBr}$, n-BuLi, THF, $0{ }^{\circ} \mathrm{C}$ - rt; (iii) $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{CH}_{3} \mathrm{Br}, \mathrm{n}$-BuLi, THF, $0{ }^{\circ} \mathrm{C}$ - rt.

Interestingly, indoline-fused sultams (11a and 11b) were generated when compound 6e was treated with lithium hydroxide (Scheme 1.4.2). It is noted that sultams (cyclic sulfonamides) have emerged as privileged structures in drug discovery due to their diverse biological properties. ${ }^{10}$ A number of sultams have been reported that exhibit broad biological properties against a variety of enzymes including COX-2, ${ }^{11}$ HIV integrase, ${ }^{12}$ lipoxygenase, ${ }^{13}$ Calpain I^{14} and MMP-2 ${ }^{15}$. In addition, tricyclic lactam 12 was obtained quantitatively from acetyl protected indoline $\mathbf{6 f}$ by treatment with
potassium carbonate. An intramolecular aldol reaction was proposed for the formation of 11a, 11b and 12 (Scheme 1.4.2). It is noteworthy that stryknin (13), a highly toxic alkaloid used as a pesticide ${ }^{16}$, contains a similar moiety in its structure.

Scheme 1.4.2 Intramolecular Aldol reactions of $\mathbf{6 e}$ and $\mathbf{6 f}$. Reagents and conditions: (i) $\mathrm{LiOH}, i-\mathrm{PrOH}$, reflux; (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 50^{\circ} \mathrm{C}$.

Exposure of 3-methyleneindoline $\mathbf{1 5}$ in the presence of TiCl_{4} at room temperature resulted in a high yield of the re-aromatized indole 16 (Scheme 1.4.3). Through intramolecular ene reaction cyclopent[b]indole 17 was generated in a very high yield. Significantly, compound 17 is a precursor of natural product Bruceolline D (19). A twostep deprotection and oxidation procedure was employed to convert $\mathbf{1 7}$ into the target $\mathbf{1 9}$ (Scheme 1.4.3). The total yield from compound 6e to Bruceolline D (19) was 62%. In addition, Bruceolline E (20) and J (21) can be achieved from Bruceolline D (19) by a protocol reported by Lopchuk and Gribble recently. ${ }^{17}$

Scheme 1.4.3 Syntheses of re-aromatised indole 16 and bruceolline D (19). Reagents and conditions: (i) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$; (iii) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (iv) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; (v) MeONa, MeOH, reflux; (vi) IBX, DMSO, rt.

1.5 Conclusions

In summary, we have developed a novel aza-Claisen rearrangement involved a twostep reaction of indole bromides (3) with enamine (4b) as an effective method for the generation of 2-alkylidene substituted indolines (6). These products can be conveniently elaborated to synthesize new molecules, as demonstrated in the preparation of 2-tertprenylated indolines, indole fused sultams, indole fused lactams and natural productBruceolline D.

1.6 Experimental Section

General Information: Commercial reagents were used as received, unless otherwise stated. Merck 60 silica gel was used for chromatography, and Whatman silica gel plates with fluorescence F_{254} were used for thin-layer chromatography (TLC) analysis. Visualisation was effected with ultraviolet light, potassium permanganate or 2,4dinitrophenylhydrazine as appropriate. ${ }^{1} \mathrm{H}, 1 \mathrm{D}-\mathrm{NOE}$ and ${ }^{13} \mathrm{CNMR}$ spectra were recorded on a Bruker Avance III 300 unless otherwise stated. $\mathrm{CDCl}_{3}\left(\delta=7.26\right.$ and 77.0 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra respectively $)$ and DMSO-d6 ($\delta=2.50$ and 39.5 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra respectively) were used as references. Data for ${ }^{1} \mathrm{H}$ are reported as follows: chemical shift (ppm) , and multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, m $=$ multiplet). Data for ${ }^{13} \mathrm{C}$ NMR are reported as ppm . Multiplicities of carbons were determined by DEPT and comparison with similar compounds. Mass spectra were recorded using a Waters/Micromass LCT Premier instrument.

1.6.1 Preparation of indolyl chloride substrates

1.6.1.1 Procedures for the preparation of substrates $\mathbf{3 a}$

(1H-indol-3-yl)methanol

To a solution of aldehyde $22(2.90 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added NaBH_{4} $(756 \mathrm{mg}, 20 \mathrm{mmol})$ in some portions slowly within 30 min at $0^{\circ} \mathrm{C}$. The reaction was continuted to stir at $0{ }^{\circ} \mathrm{C}$ for 30 min . Brine 30 mL was added and extrated with EtOAc for three times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product $\mathbf{2 3}$ was pure enough to be used directly in the next step. Yield: $100 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.14$ (br, $1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.16(\mathrm{~m}, 3 \mathrm{H}), 4.92(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}, 2 \mathrm{H})$.

3-(((tert-Butyldimethylsilyl)oxy)methyl)-1H-indole

To a solution of compound $\mathbf{2 3}$ ($770 \mathrm{mg}, 5.2 \mathrm{mmol}$) and imidazole ($885 \mathrm{mg}, 13 \mathrm{mmol}$) in DMF (5 mL) was added $\operatorname{TBSCl}(1.58 \mathrm{~g}, 10.4 \mathrm{mmol})$ in one portion. The reaction was stirred at rt for 30 min before water (30 mL) was added and extracted with EtOAc. The aqueous layer was discarded and the organic layer was washed with brine. The organic
layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was submitted to chromatography to give the desired product 24 (1.37 g, yield: 100%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99$ (br, 1 H), 7.67 (d, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-6.97(\mathrm{~m}, 3 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H})$.

1-(3-(((tert-Butyldimethylsilyl)oxy)methyl)-1H-indol-1-yl)ethanone

To a solution of compound $24(1.37 \mathrm{~g}, 5.2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.1 \mathrm{~g}, 20.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(2.12 \mathrm{~g}, 20.8 \mathrm{mmol})$. The reaction was refluxed for 15 h . Solvent and excess reactants were removed under reduced pressure. The residue was submitted to chromatography to give the desired product 25 (1.40 g , yield: 89%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.26$ $(\mathrm{m}, 3 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H})$.

1-(3-(Hydroxymethyl)-1H-indol-1-yl)ethanone

To a solution of compound $25(1.4 \mathrm{~g}, 4.6 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added concentrated hydrochloric acid (1.5 mL). The reaction was stirred at rt for 10 min and NaHCO_{3} aqueous solution was added to quench the reaction. The mixture was extracted with EtOAc for three times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The crude product was washed with EtOAc/hexanes $=1 / 5$ to afford pure product $26(720 \mathrm{mg}, 83 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 8.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.29$ $(\mathrm{m}, 3 \mathrm{H}), 4.88(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$.

1-(3-(Chloromethyl)-1H-indol-1-yl)ethanone

To a solution of compound $\mathbf{2 6}(720 \mathrm{mg}, 3.8 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(768 \mathrm{mg}, 7.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added $\mathrm{MsCl}(545 \mathrm{mg}, 4.7 \mathrm{mmol})$ within 15 min at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at the same temperature for 5 min before the mixture was submitted to chromatography directly (eluted by hexane/EtOAc $=10 / 1$) to give the desired product 3a (468 mg , yield: 59\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H})$.

1.6.1.2 Procedures for the preparation of substrates 3b

1-(Methylsulfonyl)-1H-indole-3-carbaldehyde

To a solution of aldehyde $22(1.45 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.05 \mathrm{mg}, 5.6 \mathrm{~mL}, 40 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{MsCl}(2.34 \mu \mathrm{~L}, 30 \mathrm{mmol})$ dropwise. After addition, the reaction was warmed to room temperature and stirred for 30 min at rt . Ice-water was added to quench the reaction. The resulting mixture was extracted with EtOAc. The combined organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by chromatography to afford the desired product 27 (1.83 g, yield 82%). ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$.

(1-(Methylsulfonyl)-1H-indol-3-yl)methanol

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{2 3}$ in 91% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}$, $3 \mathrm{H}), 1.63(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H})$.

3-(Chloromethyl)-1-(methylsulfonyl)-1H-indole

The title compound was prepared in the same procedure as described above in the preparation of compound 3a in 67% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.91(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{~s}$, $3 \mathrm{H})$.

1.6.1.3 Procedures for the preparation of substrates 3 c

tert-Butyl 3-(((tert-butyldimethylsilyl)oxy)methyl)-1H-indole-1-carboxylate

To a solution of compound $24(261 \mathrm{mg}, 1.0 \mathrm{mmol})$ and DMAP ($24 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added $(\mathrm{Boc})_{2} \mathrm{O}(261 \mathrm{mg}, 1.5 \mathrm{mmol})$. The reaction was stirred at rt for 1.5 h . Water was added and the mixture was extracted with EtOAc for three times. The organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by chromatography to afford the desired product $29(375 \mathrm{mg}$, yield: $100 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16(\mathrm{br}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $149.7,135.8,129.3,124.3,122.9,122.4,121.0,119.4,115.2,83.3,58.0,28.1,27.4,25.9$, 18.4, -5.3.

tert-Butyl 3-(hydroxymethyl)-1H-indole-1-carboxylate

The title compound was prepared in the same procedure as described above in the preparation of compound 26 in 93% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.14(\mathrm{br}, 1 \mathrm{H})$,
$7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.84 ($\mathrm{s}, 2 \mathrm{H}$), 1.66 ($\mathrm{s}, 9 \mathrm{H})$.

tert-Butyl 3-(chloromethyl)-1H-indole-1-carboxylate

The title compound was prepared in the same procedure as described above in the preparation of compound 3a in 75% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.15(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 9 \mathrm{H})$.

1.6.1.4 Procedures for the preparation of substrates 3d

1-((Trifluoromethyl)sulfonyl)-1H-indole-3-carbaldehyde

To a solution of aldehyde $22(290 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(810 \mathrm{mg}, 1.1 \mathrm{~mL}, 8 \mathrm{mmol})$ and DMAP ($244 \mathrm{mg}, 2 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{Tf}_{2} \mathrm{O}(1 \mathrm{~mL}$,

6 mmol) dropwise. After addition, the reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$. Ice-water was added to quench the reaction. The resulting mixture was extracted with EtOAc. The combined organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by chromatography to afford the desired product 31 (360 mg , yield 65%). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.15(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H})$.

(1-((Trifluoromethyl)sulfonyl)-1H-indol-3-yl)methanol

The title compound was prepared in the same procedure as described above in the preparation of compound 23 in 95% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.91\left(\mathrm{dd}, J_{l}=\right.$ $\left.7.1 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.70(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 3 \mathrm{H}), 4.89(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.72$ (t, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$).

3-(Chloromethyl)-1-((trifluoromethyl)sulfonyl)-1H-indole

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{3 a}$ in 73% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.92\left(\mathrm{dd}, J_{l}=\right.$ $\left.6.6 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.74\left(\mathrm{dd}, J_{I}=5.6 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 4.75$ ($\mathrm{s}, 2 \mathrm{H}$).

1.6.2 Preparation of indolyl bromide substrates

1.6.2.1 Procedures for the preparation of substrates 3 e

3-(Bromomethyl)-1-(methylsulfonyl)-1H-indole

To a solution of compound $28(3.05 \mathrm{~g}, 13.5 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added $\mathrm{PBr}_{3}(4.8 \mathrm{~g}, 1.7 \mathrm{~mL}, 17.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 40 min , and then poured into a mixture of ice and saturated NaHCO_{3} aqueous solution. The resulting mixture was extracted with EtOAc three times. The combined organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by chromatography to afford the desired product $3 \mathrm{e}(3.56 \mathrm{~g}$, yield $91 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 7.90\left(\mathrm{dd}, J_{l}=6.9 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.46-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H})$.

1.6.2.2 Procedures for the preparation of substrates $3 f$

1-(3-(Bromomethyl)-1H-indol-1-yl)ethanone

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{3 e}$ in 68% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 8.43(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{~s}$, $3 \mathrm{H})$.

1.6.2.3 Procedures for the preparation of substrates $\mathbf{3 g}$

1-Tosyl-1H-indole-3-carbaldehyde

To a solution of aldehyde $22(1.45 \mathrm{~g}, 10 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~g}, 2.8 \mathrm{~mL}, 20 \mathrm{mmol})$ and DMAP ($122 \mathrm{mg}, 1 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of $\mathrm{TsCl}(2.86 \mathrm{~g}, 15 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ dropwise. After addition, the reaction was warmed to rt and stirred for 3.5 hours. Ice-water was added to quench the reaction. The resulting mixture was extracted with EtOAc. The combined organic phase was washed with 1 M HCl aqueous solution, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by chromatography to afford the desired product $33(2.85 \mathrm{~g}$, yield $95 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 10.09(\mathrm{~s}, 1 \mathrm{H}), 8.24\left(\mathrm{dd}, J_{1}=6.8 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.94\left(\mathrm{dd}, J_{1}\right.$ $\left.=7.2 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H})$.

(1-Tosyl-1H-indol-3-yl)methanol

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{2 3}$ in 86% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61\left(\mathrm{dd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55(\mathrm{~s}, 1 \mathrm{H})$, $7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$.

3-(Bromomethyl)-1-tosyl-1H-indole

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{3 e}$ in 88% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.96(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.

1.6.2.4 Procedures for the preparation of substrates 3 h

5-Methyl-1H-indole-3-carbaldehyde

$\mathrm{POCl}_{3}(103 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ was added dropwise to anhydrous DMF $(472 \mu \mathrm{~L})$ that was maintained at $10-20^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min and then chilled to $0{ }^{\circ} \mathrm{C}$. A solution of compound $\mathbf{3 5}(159 \mathrm{mg}, 1 \mathrm{mmol})$ in anhydrous DMF $(285 \mu \mathrm{~L})$ was added. The ice bath was removed and the solution was warmed to rt. After 2 hours, the reaction mixture was poured into ice, 2 M NaOH aqueous solution was added until pH was strongly basic. The off-white precipitate was formed and collected, and dried in vacuo to give the desired product 36 (136 mg, yield 86%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 10.04(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{br}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.49(\mathrm{~s}, 3 \mathrm{H})$.

5-Methyl-1-(methylsulfonyl)-1H-indole-3-carbaldehyde

The title compound was prepared in the same procedure as described above in the preparation of compound 27 in 69% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.10(\mathrm{~s}, 1 \mathrm{H})$, $8.16(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H})$.

(5-Methyl-1-(methylsulfonyl)-1H-indol-3-yl)methanol

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{2 3}$ in 75% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.22\left(\mathrm{dd}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.85\left(\mathrm{dd}, J_{l}=5.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$.

3-(Bromomethyl)-5-methyl-1-(methylsulfonyl)-1H-indole

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{3 e}$ in 78% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.78(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H})$.

1.6.2.5 Procedures for the preparation of substrates 3 i

5-Methoxy-1-(methylsulfonyl)-1H-indole-3-carbaldehyde

The title compound was prepared in the same procedure as described above in the preparation of compound 27 in 72% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.09(\mathrm{~s}, 1 \mathrm{H})$, $8.06(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.08\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.26$ (s, 3H).

(5-Methoxy-1-(methylsulfonyl)-1H-indol-3-yl)methanol

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{2 3}$ in 78% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.84(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$.

3-(Bromomethyl)-5-methoxy-1-(methylsulfonyl)-1H-indole

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{3 e}$ in 90% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.79(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03\left(\mathrm{dd}, J_{I}=9.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.64(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H})$.

1.6.2.6 Procedures for the preparation of substrates $\mathbf{3 j}$

5-Fluoro-1H-indole-3-carbaldehyde

$\mathrm{POCl}_{3}(1 \mathrm{~mL}, 11 \mathrm{mmol})$ was added dropwise to anhydrous DMF $(5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at rt and then chilled to $0^{\circ} \mathrm{C}$. A solution of
compound $42(1.35 \mathrm{~g}, 10 \mathrm{mmol})$ in anhydrous DMF (1.4 mL) was added. The ice bath was removed and the solution was warmed to rt. After 3 hours, the reaction mixture was poured into ice, 6 M NaOH aqueous solution was added until pH was strongly basic. The mixture was refluxed overnight and then cool to rt. The yellow precipitate was formed and collected, and dried in vacuo to give the desired product 43 (1.0 g , yield 61%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.95(\mathrm{~s}, 1 \mathrm{H}), 7.93\left(\mathrm{dd}, J_{1}=9.3 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.84(\mathrm{~s}$, $1 \mathrm{H}), 7.34\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.02\left(\mathrm{td}, J_{l}=9.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$.

5-Fluoro-1-(methylsulfonyl)-1H-indole-3-carbaldehyde

The title compound was prepared in the same procedure as described above in the preparation of compound 27 in 66% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 10.09(\mathrm{~s}$, $1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.39\left(\mathrm{td}, J_{l}=9.0 \mathrm{~Hz}, J_{2}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71(\mathrm{~s}, 3 \mathrm{H})$.

(5-Fluoro-1-(methylsulfonyl)-1H-indol-3-yl)methanol

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{2 3}$ in 87% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.85\left(\mathrm{dd}, J_{l}=\right.$ $\left.9.0 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.38\left(\mathrm{dd}, J_{l}=8.6 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.12\left(\mathrm{td}, J_{1}\right.$ $\left.=9.0 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.84\left(\mathrm{dd}, J_{1}=5.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{t}, J$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H})$.

3-(Bromomethyl)-5-fluoro-1-(methylsulfonyl)-1H-indole

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{3 e}$ in 91% yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.85\left(\mathrm{dd}, J_{l}=\right.$ $\left.9.0 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.41\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15\left(\mathrm{td}, J_{1}\right.$ $\left.=9.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H})$.

1.6.2.7 Procedures for the preparation of substrates $3 k$

5-Chloro-1-(methylsulfonyl)-1H-indole-3-carbaldehyde

The title compound was prepared in the same procedure as described above in the preparation of compound 27 in 69% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.09(\mathrm{~s}, 1 \mathrm{H})$, $8.37(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$.

(5-Chloro-1-(methylsulfonyl)-1H-indol-3-yl)methanol

The title compound was prepared in the same procedure as described above in the preparation of compound 23 in 95% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.11(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$.

3-(Bromomethyl)-5-chloro-1-(methylsulfonyl)-1H-indole

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{3 e}$ in 86% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.83(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H})$.

1.6.2.8 Procedures for the preparation of substrates 31

5-Bromo-1-(methylsulfonyl)-1H-indole-3-carbaldehyde

The title compound was prepared in the same procedure as described above in the preparation of compound 27 in 64% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.09(\mathrm{~s}, 1 \mathrm{H})$, $8.53(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$.

(5-Bromo-1-(methylsulfonyl)-1H-indol-3-yl)methanol

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{2 3}$ in 96% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87(\mathrm{~s}, 1 \mathrm{H})$,
$7.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.11(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Bromo-3-(bromomethyl)-1-(methylsulfonyl)-1H-indole

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{3 e}$ in 88% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.88\left(\mathrm{dd}, J_{1}=\right.$ $\left.2.0 \mathrm{~Hz}, J_{2}=0.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.78\left(\mathrm{dd}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=0.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{dd}$, $\left.J_{I}=8.7 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.60(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H})$.

1.6.2.9 Procedures for the preparation of substrates 3 m

6-Bromo-1-(methylsulfonyl)-1H-indole-3-carbaldehyde

The title compound was prepared in the same procedure as described above in the preparation of compound 27 in 68% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.10(\mathrm{~s}, 1 \mathrm{H})$, $8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H})$.

(6-Bromo-1-(methylsulfonyl)-1H-indol-3-yl)methanol

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{2 3}$ in 96% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46\left(\mathrm{dd}, J_{l}=8.4 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.42(\mathrm{~s}, 1 \mathrm{H})$, $4.86(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$.

6-Bromo-3-(bromomethyl)-1-(methylsulfonyl)-1H-indole

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{3 e}$ in 75% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.09(\mathrm{~d}, J=1.5$
$\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51\left(\mathrm{dd}, J_{l}=8.4 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.50(\mathrm{~s}, 1 \mathrm{H})$, $4.62(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H})$.

1.6.2.10 Procedures for the preparation of substrates $\mathbf{3 n}$

5-Nitro-1H-indole-3-carbaldehyde

The title compound was prepared in the same procedure as described above in the preparation of compound 43 in 80% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 10.03$ (s, $1 \mathrm{H}), 8.95(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.16\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.72$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$.

1-(Methylsulfonyl)-5-nitro-1H-indole-3-carbaldehyde

The title compound was prepared in the same procedure as described above in the preparation of compound 27 in 75% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 10.16$ (s, $1 \mathrm{H}), 8.98(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.38\left(\mathrm{dd}, J_{1}=9.3 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.15$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$.

(1-(Methylsulfonyl)-5-nitro-1H-indol-3-yl)methanol

The title compound was prepared in the same procedure as described above in the preparation of compound 23 in 95% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+2\right.$ drops of MeOD-d4): $\delta 8.63(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.26\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.99(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H})$.

3-(Bromomethyl)-1-(methylsulfonyl)-5-nitro-1H-indole

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{3 e}$ in 85% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.68(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.33\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.03(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H})$, 4.67 (s, 2H), 3.25 (s, 3H).

1.6.2.11 Procedures for the preparation of substrates 30

Methyl 3-formyl-1H-indole-5-carboxylate

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{4 3}$ in 93% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+2\right.$ drops of MeOD- d_{4}): $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 7.97\left(\mathrm{dd}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.89(\mathrm{~s}$, $1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 3-formyl-1-(methylsulfonyl)-1H-indole-5-carboxylate

The title compound was prepared in the same procedure as described above in the preparation of compound 27 in 94% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.14(\mathrm{~s}, 1 \mathrm{H})$, $9.03(\mathrm{~s}, 1 \mathrm{H}), 8.19\left(\mathrm{dd}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 1H), 3.98 (s, 3H), 3.33 (s, 3H).

Methyl 3-(hydroxymethyl)-1-(methylsulfonyl)-1H-indole-5-carboxylate

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{2 3}$ in 75% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.43(\mathrm{~s}, 1 \mathrm{H})$, $8.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.96(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Methyl 3-(bromomethyl)-1-(methylsulfonyl)-1H-indole-5-carboxylate

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{3 e}$ in 100% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.47(\mathrm{~s}, 1 \mathrm{H})$, $8.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, 3.20 (s, 3H).

1.6.3 Preparation of enamine substrates

1.6.3.1 Procedures for the preparation of substrates $\mathbf{4 a}$

N, N, 2-Trimethylprop-1-en-1-amine (4a)

To a stirred solution of isobutyraldehyde $\mathbf{6 3}(7.2 \mathrm{~g}, 100 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added dimethylamine 64 (40% aq., $13.5 \mathrm{~g}, 120 \mathrm{mmol}$) slowly at $0^{\circ} \mathrm{C}$, followed by the addition of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(16 \mathrm{~g})$ in one pot. The mixture was stirred vigorously for 20 min . The solution was transformed into another flask, anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(8 \mathrm{~g})$ was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred vigorously for 10 min . Again, the solution was transformed into another flask, anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(5 \mathrm{~g})$ was added at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred vigorously for 10 min . Then the solution was transformed into another flask, $4 \AA$ MS (9 g) was added and the mixture was stirred very slowly at rt for 5
h. Repeating the above operation for three times and the resulting solution was submitted to distillation to give 3.0 g desired enamine product, 30% yield. ${ }^{1} \mathrm{H} \mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.31(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 1.67(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H})$.

1.6.3.2 Procedures for the preparation of substrates $\mathbf{4 b}$

1-(2-Methylprop-1-en-1-yl)pyrrolidine (4b)

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{4 a}$ in 42% yield as a colorless liquid, b.p. $75-76{ }^{\circ} \mathrm{C} / 75 \mathrm{mmHg}$ $\left(92-106{ }^{\circ} \mathrm{C} / 115-118 \mathrm{mmHg}^{18}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.60(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.93(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.77(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$.

1.6.4 Preparation of products 6 through aza-Claisen rearrangement

1.6.4.1 Typical Procedure for preparation of products 6 from indolyl chloride substrates

To a solution of compound $\mathbf{3 a}(10.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(0.2 \mathrm{~mL})$ was added enamine $\mathbf{4 a}$ ($0.25 \mathrm{mmol}, 5 \mathrm{eq}$.$) . The reaction was stirred at room temperature$
for 9 h before solvent and excess enamine 4a were removed under reduced pressure. To the residue was added $i-\mathrm{PrOH}(1.2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ and the reaction mixture was put into microwave condition ($100 \mathrm{~W}, 100{ }^{\circ} \mathrm{C}$) for 90 min . The resulting mixture was added into brine $(10 \mathrm{~mL})$ and extracted with EtOAc for 3 times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was submitted to chromatography to give the desired product $\mathbf{6 a}$ as an oil in 51% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.7,169.0,143.7,141.3$, $131.9,129.6,124.3,120.8,116.0,106.9,67.4,51.5,24.0,18.2,15.9 . \mathrm{MS}^{2}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}$244.1338, found 244.1336.

1.6.4.2 Procedure for preparation of products 6 from indolyl bromide substrates

General Procedure: To a solution of compound $\mathbf{3}$ ($0.05 \mathrm{mmol}, 1 \mathrm{eq}$.$) in anhydrous$ $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added enamine $\mathbf{4 b}(0.1 \mathrm{mmol}, 2$ eq.). The reaction was stirred at room temperature or $50^{\circ} \mathrm{C}$ for the time listed in Table 1.3.3. To the reaction mixture was added i - $\mathrm{PrOH}(1.2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$, and the resulting solution was put into microwave condition ($100 \mathrm{~W}, 100{ }^{\circ} \mathrm{C}$). After 90 min of microwave irradiation, the reaction mixture was added into brine (10 mL) and extracted with EtOAc for 3 times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was
removed under reduced pressure and the residue was submitted to chromatography to afford the corresponding product 6 .

2-Methyl-2-(3-methylene-1-(methylsulfonyl)indolin-2-yl)propanal
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.95$ $(\mathrm{s}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 203.8$ (CH), 144.1 (C), 142.6 (C), 132.1 (C), $130.5(\mathrm{CH}), 126.3(\mathrm{CH}), 120.8(\mathrm{CH}), 118.6(\mathrm{CH})$, $108.1\left(\mathrm{CH}_{2}\right), 70.3(\mathrm{CH}), 51.9(\mathrm{C}), 35.2\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}^{+}$280.1007, found 280.1008.

2-(1-Acetyl-3-methyleneindolin-2-yl)-2-methylpropanal
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H})$, 0.77 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.7(\mathrm{CH}), 169.0(\mathrm{C}), 143.7(\mathrm{C}), 141.3(\mathrm{C})$, $131.9(\mathrm{C}), 129.6(\mathrm{CH}), 124.3(\mathrm{CH}), 120.8(\mathrm{CH}), 116.0(\mathrm{CH}), 106.9\left(\mathrm{CH}_{2}\right), 67.4(\mathrm{CH})$,
$51.5(\mathrm{C}), 24.0\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 15.9\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}$244.1338, found 244.1336.

2-Methyl-2-(3-methylene-1-tosylindolin-2-yl)propanal
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.28\left(\mathrm{td}, J_{I}=8.1 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.19\left(\mathrm{dd}, J_{l}=7.8 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 7.08-7.05 (m, 3H), $5.29(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.0(\mathrm{CH})$, 144.3 (C), 144.1 (C), 142.5 (C), 133.5 (C), 132.7 (C), 129.9 (CH), 129.4 (CH), 127.5 $(\mathrm{CH}), 126.0(\mathrm{CH}), 120.4(\mathrm{CH}), 119.4(\mathrm{CH}), 107.2\left(\mathrm{CH}_{2}\right), 70.4(\mathrm{CH}), 51.7(\mathrm{C}), 21.5\left(\mathrm{CH}_{3}\right)$, $18.8\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}^{+} 356.1320$, found 356.1322.

2-Methyl-2-(5-methyl-3-methylene-1-(methylsulfonyl)indolin-2-yl)propanal
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H})$, $7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.8(\mathrm{CH}), 142.7$ (C), 141.9 (C), $136.3(\mathrm{C}), 132.1(\mathrm{C}), 131.4(\mathrm{CH}), 121.2(\mathrm{CH}), 118.5(\mathrm{CH}), 107.7\left(\mathrm{CH}_{2}\right)$, $70.6(\mathrm{CH}), 51.9(\mathrm{C}), 34.8\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}^{+}$294.1164, found 294.1163.

2-(5-Methoxy-3-methylene-1-(methylsulfonyl)indolin-2-yl)-2-methylpropanal

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ $(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.8(\mathrm{CH}), 158.5$ (C), 142.9 (C), 137.5 (C), 133.4 (C), 119.9 (CH), $116.7(\mathrm{CH}), 108.3\left(\mathrm{CH}_{2}\right), 105.3(\mathrm{CH}), 70.8(\mathrm{CH}), 55.7\left(\mathrm{CH}_{3}\right), 51.8(\mathrm{C}), 34.6\left(\mathrm{CH}_{3}\right), 18.7$ $\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S}^{+} 310.1113$, found 356.1109 .

2-(5-Fluoro-3-methylene-1-(methylsulfonyl)indolin-2-yl)-2-methylpropanal

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.50\left(\mathrm{dd}, J_{l}=8.7 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.11\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.02(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.24(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.5(\mathrm{CH}), 161.4$ (d, $\left.J=244.8 \mathrm{~Hz}, \mathrm{C}\right), 142.1$ (C), 140.1 (C), 134.1 (C), $120.2(\mathrm{~d}, J=8.6 \mathrm{~Hz}, \mathrm{CH}), 117.5(\mathrm{~d}, J=24.2 \mathrm{~Hz}, \mathrm{CH}), 109.6\left(\mathrm{CH}_{2}\right), 107.7(\mathrm{~d}, J=$ $24.3 \mathrm{~Hz}, \mathrm{CH})$, $70.7(\mathrm{CH}), 51.9(\mathrm{C}), 34.9\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right), 17.4\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FNO}_{3} \mathrm{~S}^{+}$298.0913, found 298.0906.

2-(5-Chloro-3-methylene-1-(methylsulfonyl)indolin-2-yl)-2-methylpropanal
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.66(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H})$, $4.98(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 203.4(\mathrm{CH}), 142.6(\mathrm{C}), 141.6(\mathrm{C}), 133.8(\mathrm{C}), 132.1(\mathrm{C}), 130.4(\mathrm{CH}), 121.0$ $(\mathrm{CH}), 119.7(\mathrm{CH}), 109.7\left(\mathrm{CH}_{2}\right), 70.5(\mathrm{CH}), 52.0(\mathrm{C}), 35.2\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right), 17.4\left(\mathrm{CH}_{3}\right)$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClNO}_{3} \mathrm{~S}^{+}$314.0618, found 314.0611.

2-(5-Bromo-3-methylene-1-(methylsulfonyl)indolin-2-yl)-2-methylpropanal

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H})$, $5.66(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$, $1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.4(\mathrm{CH}), 143.1(\mathrm{C}), 141.5(\mathrm{C}), 134.1(\mathrm{C})$, $133.3(\mathrm{CH}), 124.0(\mathrm{CH}), 120.1(\mathrm{CH}), 119.6(\mathrm{C}), 109.7\left(\mathrm{CH}_{2}\right), 70.4(\mathrm{CH}), 52.0(\mathrm{C}), 35.3$ $\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right), 17.4\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNO}_{3} \mathrm{~S}^{+}$ 358.0113, found 358.0114.

2-(6-Bromo-3-methylene-1-(methylsulfonyl)indolin-2-yl)-2-methylpropanal
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}$, 2H), $5.65(\mathrm{~d}, ~ J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.4(\mathrm{CH}), 145.1$ (C), 141.6 (C), 131.1 (C), 129.5 $(\mathrm{CH}), 124.1(\mathrm{C}), 121.9(\mathrm{CH}), 121.7(\mathrm{CH}), 108.9\left(\mathrm{CH}_{2}\right), 70.5(\mathrm{CH}), 52.0(\mathrm{C}), 35.5\left(\mathrm{CH}_{3}\right)$, $18.7\left(\mathrm{CH}_{3}\right), 17.4\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNO}_{3} \mathrm{~S}^{+}$358.0113, found 358.0118.

2-Methyl-2-(3-methylene-1-(methylsulfonyl)-5-nitroindolin-2-yl)propanal

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22\left(\mathrm{dd}, J_{l}=\right.$ $\left.8.7 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.85\left(\mathrm{dd}, J_{l}=1.8 \mathrm{~Hz}, J_{l}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.38(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.9$ (CH), 148.8 (C), 146.0 (C), 140.5 (C), 133.1 (C), $126.1(\mathrm{CH}), 118.0(\mathrm{CH}), 116.6(\mathrm{CH}), 111.6\left(\mathrm{CH}_{2}\right), 70.8(\mathrm{CH}), 52.2(\mathrm{C}), 36.6\left(\mathrm{CH}_{3}\right), 18.5$ $\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+} 325.0858$, found 325.0864.

Methyl 2-(2-methyl-1-oxopropan-2-yl)-3-methylene-1-(methylsulfonyl)indolin-5carboxylate
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02\left(\mathrm{dd}, J_{l}=\right.$ $\left.8.4 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H})$, $5.05(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz ,
CDCl_{3}): $\delta 203.4(\mathrm{CH}), 166.1(\mathrm{C}), 147.6(\mathrm{C}), 141.5(\mathrm{C}), 132.3(\mathrm{C}), 132.1(\mathrm{CH}), 128.2(\mathrm{C})$, $122.4(\mathrm{CH}), 117.8(\mathrm{CH}), 109.6\left(\mathrm{CH}_{2}\right), 70.6(\mathrm{CH}), 52.4\left(\mathrm{CH}_{3}\right), 52.1(\mathrm{C}), 35.9\left(\mathrm{CH}_{3}\right), 18.5$ $\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}^{+} 338.1062$, found 338.1062.

1.6.5 Preparation of side products 7 through aza-Claisen rearrangement

Method A: To a solution of aldehyde 7 (1 eq.) in MeOH was added NaBH_{4} (1 eq.) in some portions slowly within 30 min at $0^{\circ} \mathrm{C}$. The reaction was continuted to stir at $0{ }^{\circ} \mathrm{C}$ or rt for 30 min . Brine was added and extrated with EtOAc for three times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was submitted to chromatography to give the desired product 66.

2,2-Dimethyl-3-(1-(methylsulfonyl)-1H-indol-3-yl)propan-1-ol

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{6 e}$ to generate $\mathbf{7 e}$ in 9% yield followed by Method A in 100% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39-7.32 (m, 2H), $7.26(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H})$.

3-(5-Fluoro-1-(methylsulfonyl)-1H-indol-3-yl)-2,2-dimethylpropanal

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{6 j}$ in 7% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.58(\mathrm{~s}, 1 \mathrm{H})$, $7.84\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.20\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.09\left(\mathrm{td}, J_{l}=9.0 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.14(\mathrm{~s}$, $6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FNO}_{3} \mathrm{~S}^{+}$298.0913, found 298.0919.

3-(5-Bromo-1-(methylsulfonyl)-1H-indol-3-yl)-2,2-dimethylpropan-1-ol

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{6 1}$ to generate $\mathbf{7 1}$ in 11\% yield followed by Method A in 100\% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44\left(\mathrm{dd}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.24(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{~s}$, 2H), 0.94 (s, 6H).

2,2-Dimethyl-3-(1-(methylsulfonyl)-5-nitro-1H-indol-3-yl)propan-1-ol

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{6 n}$ to generate $\mathbf{7 n}$ in $\mathbf{6 \%}$ yield followed by Method A in 100\% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.66(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.25\left(\mathrm{dd}, J_{1}=9.3 \mathrm{~Hz}, J_{2}=\right.$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 2 \mathrm{H})$, $0.97(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}$327.1015, found 327.1012.

Methyl 3-(3-hydroxy-2,2-dimethylpropyl)-1-(methylsulfonyl)-1H-indole-5carboxylate

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{6 o}$ to generate $\mathbf{7 o}$ in 11% yield followed by Method A in $\mathbf{1 0 0 \%}$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.40(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=\right.$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 2 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H})$, $2.74(\mathrm{~s}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}^{+}$340.1219, found 340.1220.

1.6.6 Derivatization of compound 6e

1.6.6.1 Procedure for preparation of 2-tert-prenylated indolines through Wittig reactions

2-(2-Methylbut-3-en-2-yl)-3-methylene-1-(methylsulfonyl)indoline

To a stirred suspension of methyltriphenylphosphonium bromide ($93 \mathrm{mg}, 0.26 \mathrm{mmol}$) in anhydrous THF (2 mL) at $0{ }^{\circ} \mathrm{C}$ was added $1.6 \mathrm{M} \mathrm{n}-\mathrm{BuLi}$ in hexanes $(165 \mu \mathrm{~L}, 0.26$ mmol) dropwise. The reaction mixture was stirred at the same temperature for 30 min with the formation of a bright yellow coloration. A solution of compound $\mathbf{6 e}(56 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in anhydrous THF (1 mL) was added dropwise. After stirring for 1 hour at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm to rt and stirred at rt for 2 hours. Then, the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution (10 mL) and extracted with EtOAc for three times. The combined organic phase was washed with brine, dried over anhydrous NaSO_{4} and filtered. The solvent was removed under reduced pressure. The residue was submitted to chromatography to give the desired product $\mathbf{8}$ (61 $\mathrm{mg}, 100 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28\left(\mathrm{td}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16\left(\mathrm{td}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.75\left(\mathrm{dd}, J_{l}=17.1 \mathrm{~Hz}, J_{2}=11.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.42(\mathrm{t}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.4(\mathrm{C})$, 143.2 (CH), 142.8 (C), 132.9 (C), 129.9 (CH), 125.9 (CH), $120.6(\mathrm{CH}), 118.7(\mathrm{CH})$, $113.4\left(\mathrm{CH}_{2}\right), 107.8\left(\mathrm{CH}_{2}\right), 74.5(\mathrm{CH}), 42.3(\mathrm{C}), 35.0\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}^{+}$278.1215, found 278.1211.

2-(2-Methyl-4-phenylbut-3-en-2-yl)-3-methylene-1-(methylsulfonyl)indoline

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{8}$ in 66% yield as a mixture of E / Z isomers. The E / Z ratio was determined to be 1:1.5 by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2.5 \mathrm{H}), 7.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2.5 \mathrm{H}), 7.36-7.13(\mathrm{~m}, 17.5 \mathrm{H}), 6.54(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, 1.5H, Z-isomer), 6.28 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$, E-isomer), 6.07 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{E}$-isomer), 5.67 (s, 1.5H, Z-isomer), 5.64 (s, 1H, E-isomer), 5.49 (d, $J=12.6 \mathrm{~Hz}, 1.5 \mathrm{H}, \mathrm{Z}$-isomer), 5.26 (s, 1.5H, Z-isomer), 5.11 (s, 1H, E-isomer), 4.54 (s, 1.5H, Z-isomer), 4.51 (s, 1H, Eisomer), 2.59 (s, 3H, E-isomer), 2.55 (s, 4.5H, Z-isomer), 1.26 (s, 3H, E-isomer), 1.08 (s, $3 \mathrm{H}, \mathrm{E}-\mathrm{i}$ omer), 1.04 (s, 4.5H, Z-isomer), 0.79 (s, 4.5H, Z-isomer). ${ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 144.5$ (C), 144.4 (C), 143.4 (C), 143.0 (C), 138.9 (C), 137.6 (C), 136.7 (CH), 135.5 (CH), 133.0 (C), 132.9 (C), 130.1 (CH), 130.0 (CH), 129.9 (CH), 128.6 (CH), $128.4(\mathrm{CH}), 127.5(\mathrm{CH}), 127.0(\mathrm{CH}), 126.4(\mathrm{CH}), 126.1(\mathrm{CH}), 125.9(\mathrm{CH}), 120.6(\mathrm{CH})$, $120.5(\mathrm{CH}), 118.8(\mathrm{CH}), 118.7(\mathrm{CH}), 107.9\left(\mathrm{CH}_{2}\right), 107.7\left(\mathrm{CH}_{2}\right), 75.0(\mathrm{CH}), 74.6(\mathrm{CH})$, 43.7 (C), 41.9 (C), $35.1\left(\mathrm{CH}_{3}\right), 35.0\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}^{+} 354.1528$, found 354.1531.

(Z)-3-Methylene-2-(2-methylpent-3-en-2-yl)-1-(methylsulfonyl)indoline

The title compound was prepared in the same procedure as described above in the preparation of compound $\mathbf{8}$ in 86% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.60$ $(\mathrm{d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 5.19\left(\mathrm{dd}, J_{1}=12.0 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.76\left(\mathrm{dd}, J_{l}=7.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.95$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 144.6(\mathrm{C}), 143.6(\mathrm{C}), 135.4(\mathrm{CH}), 133.2(\mathrm{C})$, $129.9(\mathrm{CH}), 126.0(\mathrm{CH}), 125.8(\mathrm{CH}), 120.5(\mathrm{CH}), 118.6(\mathrm{CH}), 107.6\left(\mathrm{CH}_{2}\right), 73.9(\mathrm{CH})$, $42.4(\mathrm{C}), 35.0\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right)$. The geometry of the olefin was confirmed by 1D-NOE spectra (Table 1.6.6.1.1). MS (ESI $) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}^{+}$292.1371, found 292.1374.

Table 1.6.6.1.1: NOE of compound $10\left(\mathrm{CDCl}_{3}\right)$

Irradiated (ppm)	Observed (ppm)
$5.19(\mathrm{dd}, 1 \mathrm{H})$	$5.47-5.38(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H})$
$1.76(\mathrm{dd}, 3 \mathrm{H})$	$5.47-5.38(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H})$

1.6.6.2 Procedure for preparation of indoline-fused sultams

To a solution of compound 6 e ($14 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{i}-\mathrm{PrOH}(2 \mathrm{~mL})$ was added anhydrous LiOH ($1.8 \mathrm{mg}, 0.075 \mathrm{mmol}$). The resulting mixture was refluxed for 2 hours. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and extracted with EtOAc for three times. The combined organic phase was washed with water and brine,
dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was removed under reduced pressure. The residue was submitted to chromatography to give compound 11a $(8.2 \mathrm{mg}$, 59% yield) and compound $\mathbf{1 1 b}$ ($5.4 \mathrm{mg}, 39 \%$ yield).

Compound 11a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20\left(\mathrm{td}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.97\left(\mathrm{td}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.66(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.13$ $(\mathrm{m}, 1 \mathrm{H}), 3.46\left(\mathrm{dd}, J_{1}=12.9 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.20\left(\mathrm{dd}, J_{1}=12.9 \mathrm{~Hz}, J_{2}=11.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.3(\mathrm{C})$, $141.3(\mathrm{C}), 130.3(\mathrm{CH}), 127.9(\mathrm{C}), 122.6(\mathrm{CH}), 120.5(\mathrm{CH}), 112.0(\mathrm{CH}), 106.4\left(\mathrm{CH}_{2}\right)$, $73.4(\mathrm{CH}), 70.1(\mathrm{CH}), 53.1\left(\mathrm{CH}_{2}\right), 40.9(\mathrm{C}), 20.1\left(\mathrm{CH}_{3}\right), 11.4\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ $(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NNaO}_{3} \mathrm{~S}^{+}$302.0827, found 302.0829. The relative configuration was determined by 1D-NOE spectra (Table 1.6.6.2.1).

Table 1.6.6.2.1: NOE of compound 11a $\left(\mathrm{CDCl}_{3}\right)$

Irradiated (ppm)	Observed (ppm)
$0.67(\mathrm{~s}, 3 \mathrm{H})$	$3.20(\mathrm{dd}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H})$
$1.25(\mathrm{~s}, 3 \mathrm{H})$	$5.14(\mathrm{~d}, 1 \mathrm{H}), 4.46(\mathrm{t}, 1 \mathrm{H}), 0.67(\mathrm{~s}, 3 \mathrm{H})$

Compound 11b: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21\left(\mathrm{td}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.98\left(\mathrm{td}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dt}$, $\left.J_{1}=10.2 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57\left(\mathrm{dd}, J_{1}=13.8 \mathrm{~Hz}, J_{2}=3.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 3.38\left(\mathrm{dd}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.2$ (C), $141.8(\mathrm{C}), 130.3(\mathrm{CH}), 127.9(\mathrm{C}), 122.7(\mathrm{CH}), 120.6$ $(\mathrm{CH}), 112.0(\mathrm{CH}), 105.4\left(\mathrm{CH}_{2}\right), 76.3(\mathrm{CH}), 68.7(\mathrm{CH}), 51.4\left(\mathrm{CH}_{2}\right), 38.9(\mathrm{C}), 21.2\left(\mathrm{CH}_{3}\right)$,
$18.8\left(\mathrm{CH}_{3}\right)$. MS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NNaO}_{3} \mathrm{~S}^{+}$302.0827, found 302.0816. The relative configuration was determined by 1D-NOE spectra (Table 1.6.6.2.2).

Table 1.6.6.2.2: NOE of compound 11b $\left(\mathrm{CDCl}_{3}\right)$

Irradiated (ppm)	Observed (ppm)
$0.75(\mathrm{~s}, 3 \mathrm{H})$	$3.93(\mathrm{dt}, 1 \mathrm{H}), 3.57(\mathrm{dd}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H})$
$1.25(\mathrm{~s}, 3 \mathrm{H})$	$5.10(\mathrm{~d}, 1 \mathrm{H}), 4.96(\mathrm{t}, 1 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H})$

1.6.6.3 Procedure for preparation of indoline-fused lactams

A solution of compound $\mathbf{6 f}(13 \mathrm{mg}, 0.053 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(11 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was stirred at $50^{\circ} \mathrm{C}$ for 1 h . Solvent was removed and the residue was submitted to chromatography to give compound $\mathbf{1 2}(12.5 \mathrm{mg}, 100 \%$ yield) as a mixture of distereomers ($d r=3: 1$). The product was purified by recrestallization to afford compound 12 ($5.9 \mathrm{mg}, 47 \%$ yield) as a mixture of distereomers ($d r=6: 1$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.02\left(\mathrm{dd}, J_{l}=18.3 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.51\left(\mathrm{dd}, J_{l}=18.3\right.$ $\left.\mathrm{Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1(\mathrm{C})$, 143.6 (C), 141.7 (C), $130.0(\mathrm{CH}), 129.5(\mathrm{C}), 124.3(\mathrm{CH}), 119.9(\mathrm{CH}), 117.1(\mathrm{CH}), 104.3$ $\left(\mathrm{CH}_{2}\right), 72.9(\mathrm{CH}), 68.7(\mathrm{CH}), 39.8(\mathrm{C}), 39.4\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{3}\right), 11.8\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right)$
$\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}^{+}$244.1338, found 244.1338. The relative configuration of the major diastereomer was determined by 1D-NOE spectra (Table 1.6.6.3.1).

Table 1.6.6.3.1: NOE of compound $12\left(\mathrm{CDCl}_{3}\right)$

Irradiated (ppm)	Observed (ppm)
$0.77(\mathrm{~s}, 3 \mathrm{H})$	$2.51(\mathrm{dd}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$
$1.38(\mathrm{~s}, 3 \mathrm{H})$	$5.23(\mathrm{~d}, 1 \mathrm{H}), 4.42(\mathrm{t}, 1 \mathrm{H}), 3.88(\mathrm{t}, 1 \mathrm{H}), 0.77(\mathrm{~s}, 3 \mathrm{H})$

1.6.6.4 Procedure for preparation of re-aromatized indole 16

2-Methyl-2-(3-methylene-1-(methylsulfonyl)indolin-2-yl)propan-1-ol

The title compound was prepared in the same procedure as described above in Method A in 95% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.19(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.94\left(\mathrm{dd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.18\left(\mathrm{dd}, J_{1}=11.5 \mathrm{~Hz}\right.$, $\left.J_{2}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.09\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.43$ (s, 3H).

2-Methyl-2-(3-methylene-1-(methylsulfonyl)indolin-2-yl)propyl acetate

To a solution of compound $\mathbf{1 4}(70 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added DMAP ($67.5 \mathrm{mg}, 0.55 \mathrm{mmol}$) followed by $\mathrm{Ac}_{2} \mathrm{O}(47.5 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. This reaction mixture was stirred for 0.5 h at $0^{\circ} \mathrm{C}$, and then poured into a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with EtOAc. The combined organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. The solvent was removed under reduced pressure. The residue was submitted to chromatography to give compound $\mathbf{1 5}$ ($80.2 \mathrm{mg}, 100 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}$, $1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 3.95\left(\mathrm{dd}, J_{l}=22.7 \mathrm{~Hz}, J_{2}=11.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$, 0.97 (s, 3H), 0.83 (s, 3H).

2-Methyl-2-(3-methyl-1-(methylsulfonyl)-1H-indol-2-yl)propyl acetate

To a solution of compound $\mathbf{1 5}(12.6 \mathrm{mg}, 0.04 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $0.1 \mathrm{M} \mathrm{TiCl}_{4}$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(78 \mu \mathrm{~L}, 0.008 \mathrm{mmol})$ at rt . The reaction was
stirred at rt for 18 h before iced NaHCO_{3} aqueous solution was added to quench the reaction. The mixture was extracted with EtOAc , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by chromatography to afford the desired product $16\left(11.3 \mathrm{mg}, 90 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ 8.01-7.98 (m, 1H), 7.47-7.44 (m, 1H), 7.34-7.31 (m, 2 H), $4.56(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 170.9(\mathrm{C}), 142.4(\mathrm{C}), 139.9(\mathrm{C}), 134.3(\mathrm{C}), 125.8(\mathrm{C}), 125.7(\mathrm{CH}), 124.9(\mathrm{CH})$, $118.8(\mathrm{CH}), 117.5(\mathrm{CH}), 71.0\left(\mathrm{CH}_{2}\right), 39.7(\mathrm{C}), 35.3\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 12.5$ $\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}^{+}$324.1270, found 324.1267.

1.6.6.5 Procedure for preparation of Bruceolline D

3,3-Dimethyl-4-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-2-ol

To a solution of compound $\mathbf{6 e}(14 \mathrm{mg}, 0.05 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 0.1 M TiCl 4 in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL}, 0.01 \mathrm{mmol})$ at rt . The reaction was stirred at rt for 2 h before iced NaHCO_{3} aqueous solution was added to quench the
reaction. The mixture was extracted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by chromatography to afford the desired product $17\left(13.6 \mathrm{mg}, 97 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 8.00-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H})$, $4.41(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16\left(\mathrm{dd}, J_{I}=15.0 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{dd}$, $\left.J_{l}=15.0 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 147.4 (C), 139.7 (C), 126.9 (C), 124.2 (CH), 123.8 (CH), 121.6 (C), $119.4(\mathrm{CH}), 114.5$ $(\mathrm{CH}), 85.1(\mathrm{CH}), 46.3(\mathrm{C}), 40.3\left(\mathrm{CH}_{3}\right), 31.4\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right)$ $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}^{+}$280.1007, found 280.1006.

18

3,3-Dimethyl-1,2,3,4-tetrahydrocyclopenta[b]indol-2-ol

Compound 17 ($30 \mathrm{mg}, 0.107 \mathrm{mmol}$) was added to 3 M NaOMe in $\mathrm{MeOH}(1 \mathrm{~mL})$. The resulting mixture was refluxed for 8 hours. Then, the reaction was cooled to rt and poured into ice, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was submitted to chromatography to give compound $\mathbf{1 8}$ ($15.9 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.81(\mathrm{br}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 2 \mathrm{H})$, $4.46(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27\left(\mathrm{dd}, J_{1}=14.4 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.67\left(\mathrm{dd}, J_{1}=14.4 \mathrm{~Hz}\right.$, $\left.J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.1(\mathrm{C})$,
139.6 (C), 125.0 (C), 120.9 (CH), $119.8(\mathrm{CH}), 118.7(\mathrm{CH}), 111.7(\mathrm{C}), 111.6(\mathrm{CH}), 85.2$ $(\mathrm{CH}), 43.0(\mathrm{C}), 33.2\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}^{+}$202.1232, found 202.1231.

Bruceolline D (19)

3,3-Dimethyl-3,4-dihydrocyclopenta[b]indol-2(1H)-one

To a solution of compound $\mathbf{1 8}(10 \mathrm{mg}, 0.05 \mathrm{mmol})$ in DMSO $(0.25 \mathrm{~mL})$ was added IBX $(45 \%, 62 \mathrm{mg}, 0.1 \mathrm{mmol})$. The reaction mixture was stirred at rt for 1 h , and then poured into ice-water, extracted with EtOAc for three times. The combined organic phase was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was submitted to chromatography to give bruceolline D 19 ($9.1 \mathrm{mg}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07$ (br, 1 H), 7.52 (dd, $J_{l}=8.4 \mathrm{~Hz}$, $\left.J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.41\left(\mathrm{dd}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.24-7.14(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H})$, 1.39 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 219.8$ (C), 146.0 (C), 138.3 (C), 124.5 (C), $122.0(\mathrm{CH}), 120.4(\mathrm{CH}), 119.2(\mathrm{CH}), 111.7(\mathrm{CH}), 109.7(\mathrm{C}), 47.2(\mathrm{C}), 37.4\left(\mathrm{CH}_{2}\right), 24.1$ $\left(\mathrm{CH}_{3}\right)$. Spectral data were in accordance with those in literature. ${ }^{17} \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}^{+}$200.1075, found 200.1073.

1.7 References

[1] Recent reviews: (a) R. M. Williams, E. M. Stocking, J. F. Sanz-Cervera, Top. Curr. Chem., 2000, 209, 97-173; (b) S. Li, Nat. Prod. Rep., 2010, 27, 57-78.
[2] T. Lindel, N. Marsch, S. K. Adla, Top. Curr. Chem., 2012, 309, 67-129.
[3] Some examples of nucelophilic tert-prenylation: (a) J. M. Schkeryantz, J. C. G. Woo, P. Siliphaivanh, K. M. Depew, S. J. Danishefsky, J. Am. Chem. Soc., 1999, 121, 11964-11975; (b) P. S. Baran, T. J. Maimone, J. M. Richter, Nature, 2007, 446, 404-408; (c) T. Lindel, L. Brauchle, G. Golz, P. Bohrer, Org. Lett., 2007, 9, 283286.
[4] Some examples of 2-tert-prenylation through Claisen rearrangement: (a) H . Plieninger, H. Sirowej, D. Raum, Chem. Ber., 1971, 104, 1863-1868; (b) T. Kawasaki, K. Masuda, Y. Baba, K. Takada, M. Sakamoto, Chem. Pharm. Bull., 1994, 42, 1974-1976; (c) L. V. Dunkerton, H. Chen, B. P. McKillican, Tetrahedron Lett., 1988, 29, 2539-2542.
[5] For reviews on Claisen and Cope rearrangements see: (a) H. Frauenrath, in HoubenWeyl (Methods of Organic Chemistry), Stereoselective Synthesis, Vol. E21d; G. Helmchen, R. W. Hoffmann, J. Mulzer, E. Eds. Schaumann, Thieme: Stuttgart, 1995, 3301-3756; (b) P. Metzner, Pure Appl. Chem., 1996, 68, 863-868; (c) D. Enders, M. Knopp, R. Schiffers, Tetrahedron: Asymmetry, 1996, 7, 1847-1882; (d) H. Ito, T. Taguchi, Chem. Soc. Rev., 1999, 28, 43-50; (e) U. Kazmaier, S. Maier, F. L. Zumpe, Synlett, 2000, 1523-1535; (f) S. M. Allin, R. D. Baird, Curr. Org. Chem., 2001, 395-415; (g) M. Hiersemann, L. Abraham, Eur. J. Org. Chem., 2002, 14611471; (h) Y. Chai, S.-P. Hong, H. A. Lindsay, C. McFarland, M. C. McIntosh, Tetrahedron, 2002, 58, 2905-2928.
[6] (a) R. E. Ireland, R. H. Mueller, A. K. Willard, J. Am. Chem. Soc., 1962, 84, 17541755; (b) R. E. Ireland, J.-P. Vevert, J. Org. Chem., 1980, 45, 4259-4260; (c) T. Tsunoda, O. Sasaki, S. Ito, Tetrahedron Lett., 1990, 31, 727-730; (d) S. E. Denmark, M. A. Harmata, J. Org. Chem., 1983, 48, 3369-3370; (e) S. E. Denmark, M. A. Harmata, K. S. White, J. Am. Chem. Soc., 1989, 111, 8878-8891; (f) H. O. House, J. Lubinkowski, J. J. Good, J. Org. Chem., 1975, 40, 86-92.
[7] S. Marcinkiewicz, J. Green, P. Mamalis, Tetrahedron, 1961, 14, 208-222.
[8] U. Nubbemeyer, Synthesis, 2003, 961-1008.
[9] D. L. Severance, W. L. Jorgensen, J. Am. Chem. Soc., 1992, 114, 10966-10968.
[10] L. Levy, Drugs Future, 1992, 17, 451-454.
[11] (a) X. Rabasseda, S. J. Hopkins, Drugs of Today, 1994, 30, 557-563; (b) M. Inagaki, T. Tsuri, H. Jyoyama, T. Ono, K. Yamada, M. Kobayashi, Y. Hori, A. Arimura, K.

Yasui, K. Ohno, S. Kakudo, K. Koizumi, R. Suzuki, S. Kawai, M. Kato, S. Matsumoto, J. Med. Chem., 2000, 43, 2040-2048.
[12] F. Brzozowski, F. Saczewski, N. Neamati, Bioorg. Med. Chem. Lett., 2006, 16, 5298-5302.
[13] Y. Misu, H. Togo, Org. Biomol. Chem., 2003, 1, 1342-1346.
[14] G. J. Wells, M. Tao, K. A. Josef, R. Bihovsky, J. Med. Chem., 2001, 44, 3488-3503.
[15] R. J. Cherney, R. Mo, D. T. Meyer, K. D. Hardman, R. Q. Liu, M. B. Covington, M. Qian, Z. R. Wasserman, D. D. Christ, J. M. Trzaskos, R. C. Newton, C. P. Decicco, J. Med. Chem., 2004, 47, 2981-2983.
[16] INCHEM: http://www.inchem.org/documents/pims/chemical/pim507.htm.
[17] J. M. Lopchuk, I. L. Green, J. C. Badenock, G. W. Gribble, Org. Lett., 2013, 15, 4485-4487.
[18] Y. Chan, W. W. Epstein, Org. Synth., 1988, CV6, 496-499; 1973, 53, 48-51.

2. Regioselective Construction of Indoline/Indole Fused Five Membered and Seven Membered Cyclic Ethers Involving A Novel Variation of Prins Cyclization

2.1 Introduction

Indole/indoline fused cyclic ethers are featured in a number of natural products and biologically active molecules. For instance, (-)-phalarine (1, Figure 2.1.1), which was isolated from the perennial grass Phalaris coerulescens in 1999, ${ }^{1}$ displayed a [4.3.3.0] fused tricyclic core structure including a furanobisindole ring system and has been the long standing focus of extensive synthetic effort. ${ }^{2}$ Although the biological properties of (-)-phalarine has not been reported, the unique and complex molecular architecture still warrants medicinal evaluation since many alkaloids isolated from the genus Phalaris have been proven to be poisonous to livestock when the native plant was ingested (e.g., canary grass, P. arundinacea). Compound $\mathbf{2}$ was shown to possess potent, bladderselective smooth muscle relaxant properties by activating the large-conductance Ca^{2+} activated potassium channel (BKCa) and thus are potentially useful for the treatment of urge urinary incontinence. ${ }^{3}$ Angustilodine (3) and alstilobanine E (4) were discovered in the same Malayan plant Alstonia angustiloba. ${ }^{4}$ Alstilobanines E (4) was found to possess modest relaxant activity against phenylephrine-induced contractions of thoracic rat aortic rings with endothelium. ${ }^{4 \mathrm{~b}}$ Compound 5 exhibited cytotoxic effect on osteoblast. ${ }^{5}$ Compounds 6 and 7 were shown to elicit substantial estrogen agonist activity while compounds $\mathbf{8}$ and $\mathbf{9}$ showed moderate estrogen antagonistic character. ${ }^{6}$ Our research work geared toward bioactive compound library development.

5

2 muscle relaxant

$3 R=M e$ angustilodine $4 \mathrm{R}=\mathrm{H}$ alstilobanine E

$6 R=$ ethyl piperidine $7 R=$ ethyl pyrrolidine

$8 \mathrm{R}=$ ethyl piperidine $9 R=$ ethyl pyrrolidine

Figure 2.1.1 Some natural products and biologically active compounds

A general strategy to generate cyclic ethers is to use the Prins cyclization. The Prins cyclization involves a facile coupling of an unsaturated alcohol and an aldehyde promoted by an acid to form both C-O and C-C bonds in a single step. ${ }^{7}$ The cyclization is driven through an oxocarbenium ion intermediate (12) that is generated directly from the corresponding unsaturated alcohol and aldehyde (Scheme 2.1.1). In many examples of the Prins cyclization, a homoallylic alcohol (γ, δ-unsaturated alcohol, 10) is employed to generate a tetrahydropyran (THP) ring exclusively. This is attributed to the transition state (TS1) taking a chair form, which is more stable than that (TS2) of a tetrahydrofuran (THF) ring formation (Scheme 2.1.1). Compared with the numerous examples of 6membered THP formation, only a small number of examples have been reported to form 5-memebred THF products (16). When double bond geometry in the homoallylic alcohol (10) is Z, $\mathbf{T S} 2$ can be formed in competition with $\mathbf{T S} 1$ due to 1,3-diaxial interaction between H and R^{3} in TS1. As a result, a mixture of tetrahydropyran and tetrahydrofuran is generated. ${ }^{8}$ THF products can be formed exclusively when substituents on the
homoallylic acohol meet some particular requirements to stabilize the exocyclic carbocation 14 (i.e., $\mathrm{R}^{3}=\mathrm{OH}, \mathrm{OR},{ }^{9} \mathrm{CH}_{2} \mathrm{SiR}_{3},{ }^{10} \mathrm{Ar}^{11}$ and terminally dialkyl groups ${ }^{12}$). Therefore, the regioselectivity of the ring-size between THP and THF is dependent on the structure of homoallylic alcohol. To the best of our knowledge, no studies have been reported to synthesize respective THPs and THFs from the same homoallylic alcohol precursors.

Scheme 2.1.1 General mechanism and regioselectivity of Prins cyclization

Compared with six-membered THP rings, seven-membered cyclic ethers are less stable as a result of transannular (Prelog), ${ }^{13}$ bond (Baeyer), and torsional (Pitzer) strains. ${ }^{14}$ The synthesis of seven-membered cyclic ethers remains a significant challenge, primarily because both entropic and enthalpic barriers hamper cyclization. Although the Prins cyclization is a powerful method for ring formation, the construction of sevenmembered cyclic ethers via Prins cyclization remains elusive. So far, only a few examples have been reported, most of which are intramolecular Prins cyclization. ${ }^{15}$ The intramolecular Prins cyclization requires preparation of a precursor for the cyclization. For instance, Overman and his coworkers carried out a seminal work based on this indirect cyclization strategy. ${ }^{15 b-d}$ A Prins cyclization precursor 20 was prepared from a
silyl activated 4-alken-1-ol $\mathbf{1 7}$ which allows intramolecular cyclization to happen under the promotion of an excess of BCl_{3} (Scheme 2.1.2). Obviously, the precursors are not easily accessible in such methodologies. Direct and simple methodologies to give sevenmembered cyclic ethers via intermolecular Prins cyclization are extremely rare. ${ }^{16}$ Furman and coworkers incorporated a methylsilane group with 5-alkyn-1-ol (23) to trap the generated oxocarbenium ion (25) in the Prins cyclization giving 2,7-disubstituted-3vinylidene oxepanes (24, Scheme 2.1.3). ${ }^{16 \mathrm{a}}$ But this method is limited in the scope to aryl aldehydes as the reaction partners. The other method have been developed by Padrón and coworkers in 2012. ${ }^{16 b}$ The cis-2,7- disubstituted oxepanes 28 were successfully synthesized via Prins cyclization from unactivated δ, ε-unsaturated alcohols 27 and aldehydes (Scheme 2.1.4). TMSCl were used in the reaction as the chloride source and thus the amount of Lewis acid - iron (III) salts was reduced to a catalytic amount. However, the scope of this method is limited to alkyl aldehydes.

Scheme 2.1.2 Synthesis of (+)-Isolaurepinnacin (22) via intramolecular Prins cyclization ${ }^{15 \mathrm{~d}}$

Scheme 2.1.3 Synthesis of oxepane 24 from propargylsilane $\mathbf{2 3}^{16 a}$

Scheme 2.1.4 Iron (III)/trimethylsilyl chloride-catalyzed direct synthesis of oxepanes ${ }^{16 b}$

To the best of our knowledge, examples of regioselectivity of ring-size using Prins cyclization from same unsaturated alcohols have not been reported. Herein, we report a divergent Prins cyclization via a classic and an usual procedure to give seven-membered cyclic ethers and five-membered tetrahydrofurans, respectively. Notably, we made an amazing discovery of a novel variation of Prins cyclization, which is involving a novel procedure of oxygen-participated rearrangement. This new Prins cyclization mechanism is different from the previously reported mechanism and is described for the first time. In addition, the regioselectivity of the ring-size is dependent on the aldehydes, not the
unsaturated alcohols as previously reported examples. When alkyl aldehydes are used, the reactions proceed via a classic Prins cyclization mechanism to afford sevenmembered cyclic ethers which are not easily synthesized using other methods. However, when aromatic and allylic aldehydes are used, THFs are generated through the unprecedented cyclization procedure involving oxygen-participated rearrangement.

2.2 Results and Discussion

Our initial investigation focused on the model reaction of equal equivalent indoline 31 and benzaldehyde (32) in the presence of various Brønsted acid and Lewis acid (Table 2.2.1).

Table 2.2.1: Exploration of acid promoted Prins cyclization. ${ }^{a}$

Entry	Acid	Solvent	T (${ }^{\text {a }}$ C	$t(\mathrm{~h})$	33a $: 33 b^{\text {b }}$	$\begin{gathered} (33 a+33 b) \\ \text { Yield }(\%)^{c} \end{gathered}$
1	$2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aq.	DCM	rt	1	decomposed	-
2	1 equiv. HF-Py	CHCl_{3}	rt	3	decomposed	-
3	100 equiv. AcOH	DCM	rt	48	No rxn	-
4	100 equiv. TFA	DCM	rt	0.5	$0.8: 1$	59
5	3 equiv. PhCOOH	PhH	80	16	No rxn	-
6	3 equiv. pTsOH	PhCH_{3}	60	3	decomposed	-
7	3 equiv. 10-CSA	PhH	80	20	$2: 1$	55
8	3 equiv. MsOH	DCM	rt	1	$1.4: 1$	73
9	0.3 equiv. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	DCM	rt	1	$3: 1$	66
10	0.3 equiv. TMSOTf	DCM	rt	2	4:1	25^{d}
11	0.3 equiv. FeCl_{3}	DCM	rt	0.5	$1: 1.4$	56

$\mathbf{1 2}$	0.2 equiv. TiCl_{4}	DCM	rt	6	$1: 4$	17
$\mathbf{1 3}$	3 equiv. ZnCl_{2}	CHCl_{3}	rt	24	$1.4: 1$	29

${ }^{a}$ The reactions were carried out on a $0.025-\mathrm{mmol}$ scale of $\mathbf{3 1}$ and monitored by appearance of 33a and 33b by TLC and ${ }^{1}$ HNMR spectroscopy. ${ }^{b}$ The ratio of 33a: 33b was determined by ${ }^{1}$ HNMR spectroscopy. ${ }^{c}$ Yields of isolated mixture of 33a and 33b. ${ }^{d}$ Conversion percentage.

When treated with inorganic acid like $\mathrm{H}_{2} \mathrm{SO}_{4}$, indoline 31 was decomposed while the benzaldehyde (32) was remained unreacted (Table 2.2.1, entry 1). Regular carboxylic acids, such as acetic acid and benzoic acid, are too weak to carry out the reaction (Table 2.2.1, entry 3 and 5). However, two products 33a and 33b were isolated when trifluoro acetic acid was employed with a little excess of 33b (Table 2.2.1, entry 4). Sulfonic acids were also screened (Table 2.2.1, entry 6 to 8). Camphor-10-sulfonic acid gave better ratio (Table 2.2.1, entry 7) and methyl sulfonic acid delivered better yield (Table 2.2.1, entry 8).

Next, we screened some Lewis acids (Table 2.2.1, entries 9 to 12). TMSOTf gave the best selectivity of product $\mathbf{3 3 a}$ (Table 2.2.1, entry 10). But the reaction wat not complete. The yield shown in the table is the conversion percentage. 75% of indoline 31 was remained. It indicated that stoichiometric amounts of TMSOTf are necessary. Meanwhile, when using titanium chloride, all the indoline $\mathbf{3 1}$ was consumed (Table 2.2.1, entry 12). However the yield was very low (17\%). The major product in this reaction is compound 33c. Compound 33c can also be obtained when treating indoline $\mathbf{3 1}$ with 1 equiv. of TMSOTf without adding benzaldehyde (32, Scheme 2.2.1). Although the yield was low, TMSOTf delivered the best selectivity for 33a. Therefore this Lewis acid was chosen for further optimization to selectively produce 33a (Table 2.2.2).

Scheme 2.2.1 Generation of product 33c.

The reaction went to completion when using 1 equivalent TMSOTf (Table 2.2.2, entry 1). Increasing amount of TMSOTf and prolonged reaction time facilitated the selectivity of 33a but the yield was decreased a little bit (Table 2.2.2, entry 2). Further increase of TMSOTf was detrimental to the yield (Table 2.2.2, entry 3). The addition of benzoic acid is useless (Table 2.2.2, entry 4). However, the addition of pyridine resulted in a clean reaction based on the crude proton NMR and the yield increased slightly (Table 2.2.2, entry 5). The only side product in this reaction was compound 33c. Further increase of pyridine resulted in improving the total yield of a mixture of $\mathbf{3 3} \mathbf{a}$ and $\mathbf{3 3 b}$, but the selectivity of 33a was dropped (Table 2.2.2, entry 6). The addition of 1 equivalent of pyridine decreases the acidity in the reaction. Accordingly, the amount of TMSOTf was further increased to compensate for the loss of acidity. As a result, the reaction ended up with excellent selectivity and good yield of 33a (Table 2.2.2, entry 7). Interestingly, when the reaction time was shortened to 10 minutes, the selectivity of 33a decreased greatly while the generation of 33b increased a lot (Table 2.2.2, entry 8). We suspected that 33b was transformed into 33a. To confirm the transformation, isolated 33b was treated under the conditions described in Table 2.2.2, entry 7. The reaction afforded exclusive 33a as the final product. When trace amount of water was added, the yield and the selectivity decreased dramatically (Table 2.2.2, entry 9). It indicated that the reaction should be run under anhydrous conditions. So activated molecular sieves were added resulting in an
excellent yield of 91% (Table 2.2.2, entry 10). When the reaction was carried out in 300 mg-scale, a quantitative yield was obtained.

Table 2.2.2: Optimization of reaction conditions for selective synthesis of 33a. ${ }^{a}$

Entry	TMSOTf Equiv.	Additive	t (h)	33a : 33b ${ }^{\text {b }}$	$\begin{aligned} & (33 a+33 b) \\ & \text { Yield } \left.^{(\%}\right)^{c} \end{aligned}$
1	1	-	2	5:1	75
2	2	-	16	Only 33a	71^{e}
3	3	-	16	Only 33a	33^{e}
4	2	0.2 equiv PhCOOH	16	Only 33a	71^{e}
5	2	0.2 equiv Py	16	Only 33a	73^{e}
6	2	1 equiv Py	16	5:1	79
7	3	1 equiv Py	16	Only 33a	83^{e}
8	3	1 equiv Py	10 min	$2.2: 1$	85
9	3	$\begin{gathered} 1 \text { equiv } \mathrm{Py}+2 \mu \mathrm{~L} \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	16	$5: 1$	50
10	3	1 equiv Py $+4 \AA$ MS	16	Only 33a	91^{e}

${ }^{a}$ The reactions were carried out on a $0.025-\mathrm{mmol}$ scale of $\mathbf{3 1}$ and monitored by appearance of $\mathbf{3 3 a}$ and $\mathbf{3 3 b}$ by TLC and ${ }^{1}$ HNMR spectroscopy. ${ }^{b}$ The ratio of $\mathbf{3 3 a}: \mathbf{3 3 b}$ was determined by ${ }^{1}$ HNMR spectroscopy. ${ }^{c}$

Yields of isolated mixture of 33a and 33b. ${ }^{d}$ Conversion percentage. ${ }^{e}$ Yields of isolated 33a.
The structure of product 33a was confirmed by X-ray crystallography (Figure 2.2.1).
The fused tetrahydrofuran ring is toward inside and thus the hydrogen on C10 and the styryl group on C7 are toward outside. The NOE observed between the hydrogen on C10 and the methyl group on C 7 in compound $\mathbf{3 3 c}$ is consistent with the results from X-ray crystallography of 33a. Therefore, the reaction delivered excellent diastereomeric selectivity. The C13=C14 in the styryl group was found to be in the E conformation.

Figure 2.2.1 Crystal structure of 33a and NOE for 33c.

The scope of the reactions was probed accordingly (Table 2.2.3). Various substitution pattern on the benzene ring in benzaldehydes can be tolerated (Table 2.2.3, entry 2 to 4). The reaction worked well with strong electron-donating and weak electronwithdrawing groups (Table 2.2.3, entry 5 and 6). Strong electron-withdrawing substituent, such as CF_{3}, gave a lower yield (Table 2.2.3, entry 7). Compound 33c was the only side product observed in this case. Higher conjugated electrophiles are also favorable substrates for this reaction (Table 2.2.3, entry 8 to 10). When using allylic aldehyde (Table 2.2.3, entry 11), 43b was increased. However, 43a was still the predominant product in the reaction but lost some control ability of E / Z selectivity. When alkyl aldehydes, such as isobutyl aldehyde (Table 2.2.3, entry 12), were employed under the conditions described in Table 2.2.3, a mixture of $\mathbf{4 4 a}, \mathbf{4 4 b}$ and $\mathbf{3 3} \mathbf{c}$ was obtained after 5 minutes (44a:44b:33c=1:2.5:4). Because product 44b was dominately formed over 44a, we assumed that aliphatic aldehydes might be favorable to generate sevenmembered cyclic ethers. To verify our assumption, we used isobutyl aldehyde as the model substrate to screen conditions which could lead to generate seven-membered cyclic ethers exclusively (Table 2.2. 4).

Table 2.2.3: Reaction scope for selective synthesis of 33a~44a. ${ }^{a}$

		$\leftarrow^{\mathrm{Oy}(1 \mathrm{eq}}$	 MSOTf (3 eq) $\text { 1) }+4 \mathrm{~A} \mathrm{MS}$	q), (beads), 33a~44a	
Entry	R	T (${ }^{\circ} \mathrm{C}$)	$t(\mathbf{h})$	$\mathrm{a}: \mathrm{b}^{\text {b }}$	Yield (\%) ${ }^{\text {c }}$
1	Ph-	rt	16	Only 33a	91
2	$p-\mathrm{CH}_{3} \mathrm{Ph}-$	rt	16	Only 34a	91
3	$m-\mathrm{CH}_{3} \mathrm{Ph}-$	rt	16	Only 35a	91
4	$o-\mathrm{CH}_{3} \mathrm{Ph}-$	rt	16	Only 36a	91
5	$p-\mathrm{CH}_{3} \mathrm{OPh}-$	rt	2	Only 37a	95
6	$p-\mathrm{BrPh}-$	rt	16	Only 38a	93
7	$p-\mathrm{CF}_{3} \mathrm{Ph}-$	rt	16	Only 39a	63
8	$\mathrm{PhCH}=\mathrm{CH}-$	0	5 min	Only 40a	91
9	$\mathrm{PhC}=\mathrm{C}-$	rt	16	Only 41a	92
10	naphthalen-1-yl	rt	16	Only 42a	94
11	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}-$	0	10 min	43a $\mathbf{4 3 b}=7: 1$	63^{d}
12	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-$	rt	5 min	44a : 44b = $1: 2.5$	13

${ }^{a}$ The reactions were carried out on a $0.075-\mathrm{mmol}$ scale of $\mathbf{3 1}$ and monitored by appearance of $\mathbf{3 3 a} \sim \mathbf{4 4} \mathbf{a}$ by TLC and ${ }^{1} \mathrm{HNMR}$ spectroscopy. ${ }^{b}$ The ratio of $\mathbf{a}: \mathbf{b}$ was determined by ${ }^{1} \mathrm{HNMR}$ spectroscopy. ${ }^{c}$ Yields of isolated 33a~44a. ${ }^{d}$ Yield of $E Z$ mixture with $E: Z=5: 1$.

When treated with Brønsted acids (Table 2.2.4, entry 1 to 4), the selectivity for 44b was not improved. Then, Lewis acids were studied and it was found that the selectivity was improved (Table 2.2.4, entry 5 to 14). Among them, ZnCl_{2} delivered the best outcome without generation of compound 33c (Table 2.2.4, entry 6).

Table 2.2.4: Optimization of acids for selective synthesis of 44b. ${ }^{a}$

4	3eq. Binol-Phosphoric acid	48 h	No reaction
5	3eq. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	1 h	$1: 1.7: 0$
6	3eq. ZnCl_{2}	24 h	$1: 13: 0$
7	3eq. FeCl_{3}	7 h	33c is dominant
8	3eq. AlCl_{3}	6 h	Very messy
9	3eq. CuCl_{2}	43 h	33c is dominant
10	3eq. CuBr_{2}	43 h	messy
11	3eq. HgCl_{2}	43 h	No reaction
12	3eq. BiCl_{3}	6 h	$1: 2: 0$
13	3eq. SnCl_{2}	43 h	$1: 6: 0.5$
14	3eq. InCl_{3}	12 h	$1: 5: 0.5$

${ }^{a}$ The reactions were carried out on a $0.025-\mathrm{mmol}$ scale of $\mathbf{3 1}$ and monitored by appearance of $\mathbf{4 4 a}$ and $\mathbf{4 4 b}$ by TLC and ${ }^{1}$ HNMR spectroscopy. ${ }^{b}$ The ratio of $\mathbf{4 4 a}: \mathbf{4 4 b}: \mathbf{3 3 c}$ was determined by crude ${ }^{1}$ HNMR spectroscopy.

Next, we continued to optimize the reaction conditions for selective synthesis of 44b (Table 2.2.5). Various solvents and additives were screened (Table 2.2.5, entries 1 to 5). Chloroform was found to be the optimal one. Decrease of temperature to $4{ }^{\circ} \mathrm{C}$ slowed down the reaction and increased generation of compound 44a (Table 2.2.5, entry 8). When the amount of aldehyde was decreased to 5 equivalents and zinc chloride to 1.5 equivalents, the reaction still worked well (Table 2.2.5, entry 11). However, when using 0.3 equivalents of zinc chloride, no reaction happened and all the starting material remained (Table 2.2.5, entry 12). And further decrease of aldehyde to 2 equivalents resulted in a low yield due to the increasing generation of compound 33c (Table 2.2.5, entry 13). As a result, the conditions described in Table 2.2.5, entry 11 were found to be optimal.

Table 2.2.5: Optimization of reaction conditions for selective synthesis of 44b. ${ }^{a}$

Entry	Equiv of 45	Equiv of $\mathbf{Z n C l}_{2}$	Solvent	T (${ }^{\circ} \mathrm{C}$)	Additive	$t(h)$	Yield (\%) ${ }^{\boldsymbol{b}}$
1	10	3	$\mathrm{CH}_{3} \mathrm{CN}$	rt	-	15	No reaction
2	10	3	DMSO	rt	-	15	No reaction
3	10	3	DMF	rt	-	15	No reaction
4	10	3	PhCH_{3}	rt	-	16	72
5	10	3	CHCl_{3}	rt	-	24	73
6	10	3	CHCl_{3}	rt	$4 \AA$ MS powder	27	$<10^{c}$
7	10	3	CHCl_{3}	rt	1 equiv py	24	No reaction
8	10	3	CHCl_{3}	4	-	72	$<70^{c}$
9	10	3	CHCl_{3}	50	-	8	69
10	5	3	CHCl_{3}	rt	-	24	73
11	5	1.5	CHCl_{3}	rt	-	24	73
12	5	0.3	CHCl_{3}	rt	-	24	No reaction
13	2	1.5	CHCl_{3}	rt	-	24	56

${ }^{a}$ The reactions were carried out on a $0.025-\mathrm{mmol}$ scale of $\mathbf{3 1}$ and monitored by appearance of $\mathbf{4 4 b}$ by TLC and ${ }^{1}$ HNMR spectroscopy. ${ }^{b}$ Yields of isolated $\mathbf{4 4 b}$. ${ }^{c}$ Conversion percentage.

The optimized protocol can be employed for the reactions of a variety of alkyl aldehydes and indoline $\mathbf{3 1}$ (Table 2.2.6). The reaction worked well with both linear and branched aliphatic aldehydes (Table 2.2.6, entries 1 to 9). But hydrocinnamaldehyde delivered a lower yield due to the increasing generation of $\mathbf{5 3 a}$ (Table 2.2.6, entry 10). As expected, when using benzaldehyde, the reaction was very messy and 33a was obtained a little more than 33b (Table 2.2.6, entry 11). The total yield of 33a and 33b in this case was less than 30%.

Table 2.2.6: Reaction scope for selective synthesis of 44b~53b. ${ }^{a}$

Entry	R		Yield (\%) ${ }^{\text {b }}$
1	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-$	44b	73
2	$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{-}$	45b	76
3	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}{ }^{-}$	46b	72
4	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}{ }^{-}$	47b	75
5	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2}{ }^{-}$	48b	69
6	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}{ }^{-}$	49b	75
7	$\mathrm{CH}_{3} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CH}-$	50b	68^{c}
8	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CH}-$	51b	$77^{\text {c }}$
9	$c-\mathrm{C}_{6} \mathrm{H}_{11}{ }^{-}$	52b	69
10	$\mathrm{PhCH}_{2} \mathrm{CH}_{2}{ }^{-}$	53b	49
11	Ph-	33b	12

${ }^{a}$ The reactions were carried out on a $0.075-\mathrm{mmol}$ scale of $\mathbf{3 1}$ and monitored by appearance of $\mathbf{4 4 b} \sim \mathbf{5 3 b}$ by TLC and ${ }^{1} \mathrm{HNMR}$ spectroscopy. ${ }^{b}$ Yields of isolated 44b ~53b. ${ }^{c}$ Products are diastereomer mixtures.

Because observed 33b could be transformed into 33a (Table 2.2.2, entry 1, 2, 7 and 8), we proposed that the reaction of indoline $\mathbf{3 1}$ and an aldehyde generates the oxocarbenium ion $\mathbf{5 4}$ which evolves to the corresponding seven-membered cyclic ethers 44b to 53b via the carbocation 55 (Scheme 6). THFs 33a to 43a could be generated from the corresponding bicycle $\mathbf{5 6}$ via the carbocation $\mathbf{5 7}$ which should be more stable than the carbocation 55 when R is aromatic or allylic substituent. This proposed mechanism explains why 33a to 43a was obtained exclusively when R is aromatic or allylic substituent. It also rationalizes that 39a was obtained in a moderate yield because strong electron-withdrawing substituents on the benzene ring destabilize the carbocation 57 . To our knowledge, such Prins cyclization mechanism for the synthesis of 33a to 43a is different from the previously reported mechanism.

Scheme 2.2.2 Proposed mechanism for regioselective synthesis of 33a~43a and 44b ~ 53b

Interestingly, when cyclopropanecarboxaldehyde (58) was used under the classic Prins cyclization conditions, the reaction did not generate seven-membered cyclic ether. Instead, a ring opening product $\mathbf{5 9}$ was obtained in a quantitative yield (Scheme 2.2.3).

The chloride may facilitate the ring opening process. The single double bond position was verified by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY.

Scheme 2.2.3 Proposed mechanism for synthesis of $\mathbf{5 9}$

2.3 Computational Study for Mechanistic Investigations

To fully understand the reaction mechanism of the unusual Prins cyclization reaction for the synthesis of 33a to 43a, we employ the DFT (M06 ${ }^{17} / 6-31+\mathrm{G}^{* 18}$) methods to investigate the electronic structure and energetics along the reaction potential energy surface (PES), where the effect of solvent is considered with the polarizable continuum medium (PCM) ${ }^{19}$ model. To facilitate the calculations, R was designated as ethyl group (alkylic substituent) and phenyl group (aromatic substituent) specifying R / S configuration.

Starting from seven-membered cyclic carbocation 55 (Scheme 2.3.1), in path-b-Et pro-products $5 \mathbf{5 5}(\mathrm{R}=\mathrm{Et})$ were located through a water-mediated proton-transfer pathway, where the energy barriers are calculated to be 19.2 and $18.9 \mathrm{kcal} / \mathrm{mol}$ in S and R chiral structures, respectively (Figure 2.3.1). On the other hand, in path-a-Et the cyclic torsion of carbocation $\mathbf{5 5}$ could generate bicycle $\mathbf{5 6}$ and the corresponding carbocation $\mathbf{5 7}$
through 55a. Carbocation 57-Et is less stable than carbocation 55-Et by ~22 kcal/mol. It is noteworthy that seven-membered cyclic ethers (product b) were slightly favorable compared with THFs (product a) when R is ethyl substituent.

Scheme 2.3.1 Proposed pathways of carbocation 55

Next, the reaction mechanism with R designated as phenyl group was investigated. Also a water-mediated proton-transfer pathway was found in path-b-Ph, where the energy barriers are $18.9 \mathrm{kcal} / \mathrm{mol}$ in both R and S configurations (Figure 2.3.2). Interestingly, different from path-a-Et, the energy barriers of the rate-determine-step in path-a-Ph, which is the formation of carbocation 57 , are 12.7 and $10.9 \mathrm{kcal} / \mathrm{mol}$ in S and R configurations, respectively. These barriers are much lower than those in path-b-Ph (Figure 2.3.2) and in path-a-Et (Figure 2.3.1). It should be noted that compared with seven-membered cyclic ethers (product b), THFs (product b) are the more favorable products when R is phenyl substituent.

Figure 2.3.1 Free energy profiles of carbocation $\mathbf{5 5}$ with ethyl group

Moreover, the deprotonation of carbocation $\mathbf{5 7}$ to generate product a in path-a with a base could proceed through different approaches and reception directions, therefore, four isomers will be obtained including cis-Et, trans-Et, cis-Ph and trans-Ph. According to our calculations the trans-products are much lower in free energy than the cis-products. It is proposed that trans-products have less steric hindrance and more matched electronic orientation between H^{a} and the lone pair of the oxygen in THF. In detail, the trans-Et is $3.2 \mathrm{kcal} / \mathrm{mol}$ lower in free energy than the $c i s-E t$ in gas phase and $2.8 \mathrm{kcal} / \mathrm{mol}$ lower in
chloroform, while the trans-Ph is $7.9 \mathrm{kcal} / \mathrm{mol}$ lower in free energy than the cis-Ph in gas phase and $6.4 \mathrm{kcal} / \mathrm{mol}$ lower in chloroform. Optimized structures of isomers a with free energies are demonstrated in Figure 2.3.3.

Figure 2.3.2 Free energy profiles of carbocation $\mathbf{5 5}$ with phenyl group

trans-Et
($\mathrm{P}_{\mathrm{a}}-\mathrm{Et}$)
$\Delta \mathrm{G}=0 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{G}_{\mathrm{sol}}=0 \mathrm{kcal} / \mathrm{mol}$

cis-Et
($\mathrm{P}_{\mathrm{a}}{ }^{-E t}$)
$\Delta \mathrm{G}=3.2 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{G}_{\mathrm{sol}}=2.8 \mathrm{kcal} / \mathrm{mol}$

trans-Ph ($\mathrm{P}_{\mathrm{a}}{ }^{-}-\mathrm{Ph}$)
$\Delta \mathrm{G}=0 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{G}_{\mathrm{sol}}=0 \mathrm{kcal} / \mathrm{mol}$

cis-Ph
($\mathrm{P}_{\mathrm{a}}-\mathrm{Ph}$)
$\Delta \mathrm{G}=7.9 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{G}_{\text {sol }}=6.4 \mathrm{kcal} / \mathrm{mol}$

Figure 2.3.3 Optimized structures of cis and trans products a: free energy in gas and solution (PCM model) are shown.

2.4 Conclusions

In summary, we have developed a divergent Prins cyclization via a classic and an unusual processes involving oxygen-participated rearrangement to give seven-membered cyclic ethers and five-membered tetrahydrofurans, respectively. The nature of products formed depends on the aldehyde substrates. Aliphatic aldehydes facilitate the classic Prins cyclization pathway to afford the seven-membered cyclic ethers. However, when aromatic and allylic aldehydes are used, new five-membered tetrahydrofurans are generated through the novel Prins cyclization process. The mechanisms of the Prins cyclizations are rationalized by computational studies.

2.5 Experimental Section

General Information: Commercial reagents were used as received, unless otherwise stated. Merck 60 silica gel was used for chromatography, and Whatman silica gel plates with fluorescence F_{254} were used for thin-layer chromatography (TLC) analysis. Visualisation was effected with ultraviolet light, potassium permanganate or 2,4dinitrophenylhydrazine as appropriate. ${ }^{1} \mathrm{H}, 1 \mathrm{D}-\mathrm{NOE}$ and ${ }^{13} \mathrm{CNMR}$ spectra were recorded on a Bruker Avance III 300 unless otherwise stated. $\mathrm{CDCl}_{3}\left(\delta=7.26\right.$ and 77.0 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra respectively) and DMSO- $\mathrm{d}_{6}\left(\delta=2.50\right.$ and 39.5 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra respectively) were used as references. Data for ${ }^{1} \mathrm{H}$ are reported as follows: chemical shift (ppm) , and multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, m $=$ multiplet). Data for ${ }^{13} \mathrm{C}$ NMR are reported as ppm . Multiplicities of carbons were determined by DEPT and comparison with similar compounds. Mass spectra were recorded using a Waters/Micromass LCT Premier instrument.

2.5.1 Preparation of indoline substrate 31

1-(Methylsulfonyl)-1H-indole-3-carbaldehyde

To a solution of aldehyde $\mathbf{6 3}(1.45 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.05 \mathrm{mg}, 5.6 \mathrm{~mL}, 40 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{MsCl}(2.34 \mu \mathrm{~L}, 30 \mathrm{mmol})$ dropwise. After addition, the reaction was warmed to room temperature and stirred for 30 min at rt . Ice-water was added to quench the reaction. The resulting mixture was extracted with EtOAc. The combined organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by chromatography to afford the desired product $64(1.83 \mathrm{~g}$, yield $82 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 10.12(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$.

(1-(Methylsulfonyl)-1H-indol-3-yl)methanol

To a solution of aldehyde $\mathbf{6 4}(2.90 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ was added NaBH_{4} $(756 \mathrm{mg}, 20 \mathrm{mmol})$ in some portions slowly within 30 min at $0^{\circ} \mathrm{C}$. The reaction was continuted to stir at $0^{\circ} \mathrm{C}$ for 30 min . Icy water 100 mL was added and a large amount of white precipitate formed. The mixture was filtered to afford pure alcohol $\mathbf{6 5}$ in 91% yield. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}$, $1 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$.

3-(Bromomethyl)-1-(methylsulfonyl)-1H-indole

To a solution of compound $\mathbf{6 5}(3.05 \mathrm{~g}, 13.5 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added $\mathrm{PBr}_{3}(4.8 \mathrm{~g}, 1.7 \mathrm{~mL}, 17.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 40 min , and then poured into a mixture of ice and saturated NaHCO_{3} aqueous solution. The resulting mixture was extracted with EtOAc three times. The combined organic phase was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by chromatography to afford the desired product $66(3.56 \mathrm{~g}$, yield $91 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.90\left(\mathrm{dd}, J_{l}=6.9 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.46-$ $7.36(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H})$.

2-Methyl-2-(3-methylene-1-(methylsulfonyl)indolin-2-yl)propanal

To a solution of compound $\mathbf{6 6}(144 \mathrm{mg}, 0.5 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ was added enamine $\mathbf{6 7}(125 \mathrm{mg}, 1 \mathrm{mmol})$. The reaction was stirred at room temperature for 12 min . To the reaction mixture was added $i-\mathrm{PrOH}(2.4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.6 \mathrm{~mL})$, and the resulting solution was put into microwave condition $\left(100 \mathrm{~W}, 100^{\circ} \mathrm{C}\right)$. After 90 min of microwave irradiation, the reaction mixture was added into brine $(10 \mathrm{~mL})$ and extracted
with EtOAc for 3 times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford the corresponding product $\mathbf{6 8}(107 \mathrm{mg}$, yield $77 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H})$, $2.62(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.8(\mathrm{CH}), 144.1$ (C), $142.6(\mathrm{C}), 132.1(\mathrm{C}), 130.5(\mathrm{CH}), 126.3(\mathrm{CH}), 120.8(\mathrm{CH}), 118.6(\mathrm{CH}), 108.1\left(\mathrm{CH}_{2}\right)$, $70.3(\mathrm{CH}), 51.9(\mathrm{C}), 35.2\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}^{+}$280.1007, found 280.1008.

2-Methyl-2-(3-methylene-1-(methylsulfonyl)indolin-2-yl)propan-1-ol

To a solution of aldehyde $\mathbf{6 8}(894 \mathrm{mg}, 3.2 \mathrm{mmol})$ in MeOH was added NaBH_{4} (121 $\mathrm{mg}, 3.2 \mathrm{mmol}$) in some portions slowly within 30 min at $0^{\circ} \mathrm{C}$. The reaction was continuted to stir at $0{ }^{\circ} \mathrm{C}$ for 30 min . Brine was added and extrated with EtOAc for three times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was submitted to chromatography to give the desired product 31 (855 mg , yield 95%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.94\left(\mathrm{dd}, J_{l}=11.5\right.$ $\left.\mathrm{Hz}, J_{2}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.18\left(\mathrm{dd}, J_{1}=11.5 \mathrm{~Hz}, J_{2}=9.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.09\left(\mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=\right.$
$5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.8$ (C), $142.6(\mathrm{C}), 133.0(\mathrm{C}), 129.9(\mathrm{CH}), 126.2(\mathrm{CH}), 120.4(\mathrm{CH}), 118.8(\mathrm{CH}), 108.1\left(\mathrm{CH}_{2}\right)$, $70.4(\mathrm{CH}), 68.5\left(\mathrm{CH}_{2}\right), 40.9(\mathrm{C}), 34.5\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right)$.

2.5.2 Preparation of products 33a~43a

General Procedure: To a solution of compound $\mathbf{3 1}(21 \mathrm{mg}, 0.075 \mathrm{mmol}, 1 \mathrm{eq}$.$) in$ anhydrous $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$ was added aldehyde ($0.075 \mathrm{mmol}, 1 \mathrm{eq}$.), pyridine ($6 \mu \mathrm{~L}$, $0.075 \mathrm{mmol}, 1 \mathrm{eq}.), 4 \AA \mathrm{MS}$ and TMSOTf ($42 \mu \mathrm{~L}, 0.225 \mathrm{mmol}, 3$ eq.), sequentially. The reaction was stirred at room temperature or $0{ }^{\circ} \mathrm{C}$ for the time listed in Table 2.2.3. The reaction mixture was added into saturated NaHCO_{3} aqueous solution (5 mL) and extracted with DCM for 3 times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford the corresponding product $\mathbf{3 3 a} \sim 43$.

(E)-3,3-Dimethyl-4-(methylsulfonyl)-8b-styryl-3,3a,4,8b-tetrahydro-2Hfuro [3,2-b]indole
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.19(\mathrm{~m}, 8 \mathrm{H}), 6.47$ $\left(\mathrm{dd}, J_{1}=27.6 \mathrm{~Hz}, J_{2}=15.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.6(\mathrm{C})$, 135.9 (C), 132.6 (C), 130.9 (CH), $130.6(\mathrm{CH}), 128.7(\mathrm{CH}), 128.2(\mathrm{CH}), 126.7(\mathrm{CH})$, $126.3(\mathrm{CH}), 125.6(\mathrm{CH}), 115.5(\mathrm{CH}), 92.4(\mathrm{C}), 80.0(\mathrm{CH}), 77.9\left(\mathrm{CH}_{2}\right), 44.2(\mathrm{C}), 35.8$ $\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}^{+}$370.1477, found 370.1480 .

(E)-3,3-Dimethyl-8b-(4-methylstyryl)-4-(methylsulfonyl)-3,3a,4,8b-tetrahydro-

2H-furo[3,2-b]indole

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.19(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.42\left(\mathrm{dd}, J_{l}=30.0 \mathrm{~Hz}, J_{2}=15.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.97(\mathrm{~s}$, $1 \mathrm{H}), 3.64(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, $3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.7$ (C), 138.2 (C), 133.1 (C), 132.6 (C), $130.7(\mathrm{CH}), 130.6(\mathrm{CH}), 129.9(\mathrm{CH}), 129.4(\mathrm{CH}), 126.6(\mathrm{CH}), 126.3(\mathrm{CH}), 125.6$ $(\mathrm{CH}), 115.5(\mathrm{CH}), 92.4(\mathrm{C}), 80.0(\mathrm{CH}), 77.9\left(\mathrm{CH}_{2}\right), 44.2(\mathrm{C}), 35.8\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right)$, $21.2\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}^{+} 384.1633$, found 384.1634.

(E)-3,3-Dimethyl-8b-(3-methylstyryl)-4-(methylsulfonyl)-3,3a,4,8b-tetrahydro-2H-furo[3,2-b]indole
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.24-$ $7.15(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.45\left(\mathrm{dd}, J_{l}=38.7 \mathrm{~Hz}, J_{2}=15.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.98(\mathrm{~s}$, $1 \mathrm{H}), 3.65(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, $3 \mathrm{H}), 1.16$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.7$ (C), 138.3 (C), 135.8 (C), 132.6 (C), $130.8(\mathrm{CH}), 130.7(\mathrm{CH}), 130.6(\mathrm{CH}), 129.0(\mathrm{CH}), 128.6(\mathrm{CH}), 127.4(\mathrm{CH}), 126.3$ $(\mathrm{CH}), 125.6(\mathrm{CH}), 123.8(\mathrm{CH}), 115.5(\mathrm{CH}), 92.4(\mathrm{C}), 80.0(\mathrm{CH}), 77.9\left(\mathrm{CH}_{2}\right), 44.2(\mathrm{C})$, $35.8\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}^{+}$384.1633, found 384.1631.

(E)-3,3-Dimethyl-8b-(2-methylstyryl)-4-(methylsulfonyl)-3,3a,4,8b-tetrahydro-2H-furo[3,2-b]indole
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.25-$ $7.12(\mathrm{~m}, 4 \mathrm{H}), 6.72(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J$ $=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 142.7$ (C), 135.7 (C), 135.2 (C), 132.7 (C), 132.3 (CH), $130.6(\mathrm{CH}), 130.4(\mathrm{CH}), 128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 126.3(\mathrm{CH}), 126.2(\mathrm{CH}), 125.8(\mathrm{CH})$, $125.6(\mathrm{CH}), 115.5(\mathrm{CH}), 92.4(\mathrm{C}), 80.0(\mathrm{CH}), 77.8\left(\mathrm{CH}_{2}\right), 44.3(\mathrm{C}), 35.7\left(\mathrm{CH}_{3}\right), 26.6$ $\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}^{+}$384.1633, found 384.1635 .

(E)-8b-(4-Methoxystyryl)-3,3-dimethyl-4-(methylsulfonyl)-3,3a,4,8b-tetrahydro-

$\mathbf{2 H}$-furo [3,2-b] indole

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.36\left(\mathrm{dd}, J_{l}=18 \mathrm{~Hz}\right.$, $\left.J_{2}=16.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.7(\mathrm{C})$, 142.7 (C), 132.7 (C), $130.5(\mathrm{CH}), 130.2(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{C}), 127.9(\mathrm{CH}), 126.3$ $(\mathrm{CH}), 125.6(\mathrm{CH}), 115.5(\mathrm{CH}), 114.1(\mathrm{CH}), 92.4(\mathrm{C}), 80.0(\mathrm{CH}), 77.8\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right)$, $44.2(\mathrm{C}), 35.8\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$.

(E)-8b-(4-Bromostyryl)-3,3-dimethyl-4-(methylsulfonyl)-3,3a,4,8b-tetrahydro-

2H-furo[3,2-b]indole

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.44\left(\mathrm{dd}, J_{1}=29.3 \mathrm{~Hz}, J_{2}=15.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.98$ $(\mathrm{s}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.7$ (C), 134.8 (C), $132.3(\mathrm{C}), 131.8(\mathrm{CH}), 131.5$ $(\mathrm{CH}), 130.7(\mathrm{CH}), 129.4(\mathrm{CH}), 128.2(\mathrm{CH}), 126.2(\mathrm{CH}), 125.6(\mathrm{CH}), 122.1(\mathrm{C}), 115.5$ $(\mathrm{CH}), 92.2(\mathrm{C}), 79.8(\mathrm{CH}), 77.9\left(\mathrm{CH}_{2}\right), 44.3(\mathrm{C}), 35.9\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrNO}_{3} \mathrm{~S}^{+} 448.0582$, found 448.0593.

(E)-3,3-Dimethyl-4-(methylsulfonyl)-8b-(4-(trifluoromethyl)styryl)-3,3a,4,8b-tetrahydro-2H-furo[3,2-b]indole
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.59-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56\left(\mathrm{dd}, J_{I}=21.3 \mathrm{~Hz}, J_{2}=15.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.21(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 142.7$ (C), 139.3 (C), $133.3(\mathrm{CH}), 132.1(\mathrm{C}), 130.8(\mathrm{CH}), 129.1(\mathrm{CH}), 126.9$ $(\mathrm{CH}), 126.2(\mathrm{CH}), 125.7(\mathrm{CH}), 115.5(\mathrm{CH}), 92.1(\mathrm{C}), 79.8(\mathrm{CH}), 77.9\left(\mathrm{CH}_{2}\right), 44.3(\mathrm{C})$, $35.9\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}$ 438.1351, found 438.1352.

3,3-Dimethyl-4-(methylsulfonyl)-8b-((1E,3E)-4-phenylbuta-1,3-dien-1-yl)-

3,3a,4,8b-tetrahydro-2H-furo[3,2-b]indole

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.24-$ $7.19(\mathrm{~m}, 2 \mathrm{H}), 6.80\left(\mathrm{dd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=9.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.53(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}$, $\left.J_{1}=15.3 \mathrm{~Hz}, J_{2}=9.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.12(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 142.7$ (C), 136.7 (C), $134.6(\mathrm{CH}), 134.3(\mathrm{CH}), 132.6(\mathrm{C}), 131.0(\mathrm{CH}), 130.6$ $(\mathrm{CH}), 128.7(\mathrm{CH}), 128.0(\mathrm{CH}), 127.4(\mathrm{CH}), 126.4(\mathrm{CH}), 126.2(\mathrm{CH}), 125.6(\mathrm{CH}), 115.6$ $(\mathrm{CH}), 92.2(\mathrm{C}), 80.1(\mathrm{CH}), 77.8\left(\mathrm{CH}_{2}\right), 44.2(\mathrm{C}), 35.8\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$.

(E)-3,3-Dimethyl-4-(methylsulfonyl)-8b-(4-phenylbut-1-en-3-yn-1-yl)-3,3a,4,8b-tetrahydro-2H-furo[3,2-b]indole
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 7 \mathrm{H}), 7.20(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.47\left(\mathrm{dd}, J_{I}=27.6 \mathrm{~Hz}, J_{2}=15.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.47(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ $(\mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~s}$, $3 \mathrm{H}), 1.236(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.1(\mathrm{CH}), 142.6(\mathrm{C})$, $131.7(\mathrm{C}), 131.5(\mathrm{CH}), 130.8(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 126.2(\mathrm{CH}), 125.6(\mathrm{CH})$, $122.8(\mathrm{C}), 115.5(\mathrm{CH}), 110.8(\mathrm{CH}), 92.1(\mathrm{C}), 91.9(\mathrm{C}), 86.6(\mathrm{C}), 79.6(\mathrm{CH}), 77.9\left(\mathrm{CH}_{2}\right)$, 44.3 (C), $35.7\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right)$, $20.6\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}^{+}$394.1477, found 394.1471.

(E)-3,3-Dimethyl-4-(methylsulfonyl)-8b-(2-(naphthalen-1-yl)vinyl)-3,3a,4,8b-tetrahydro-2H-furo[3,2-b]indole
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.90-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-$ $7.40(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.8$ (C), $134.0(\mathrm{CH}), 133.7$ (C), 133.6 (C), 132.6 (C), 131.2 (C), 130.7 $(\mathrm{CH}), 128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 128.0(\mathrm{CH}), 126.3(\mathrm{CH}), 126.2(\mathrm{CH}), 126.0(\mathrm{CH}), 125.7$ $(\mathrm{CH}), 125.6(\mathrm{CH}), 124.0(\mathrm{CH}), 123.3(\mathrm{CH}), 115.6(\mathrm{CH}), 92.5(\mathrm{C}), 80.0(\mathrm{CH}), 77.9\left(\mathrm{CH}_{2}\right)$, $44.3(\mathrm{C}), 35.7\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}^{+} 420.1633$, found 420.1633.

3,3-Dimethyl-4-(methylsulfonyl)-8b-((1E,3E)-penta-1,3-dien-1-yl)-3,3a,4,8b-tetrahydro-2H-furo[3,2-b]indole
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-5.84(\mathrm{~m}, 3 \mathrm{H}), 5.71-5.64(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$, 1.12 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 142.4(\mathrm{C}), 132.6(\mathrm{C}), 131.6(\mathrm{CH}), 131.5$ $(\mathrm{CH}), 131.0(\mathrm{CH}), 130.3(\mathrm{CH}), 130.1(\mathrm{CH}), 126.0(\mathrm{CH}), 125.3(\mathrm{CH}), 115.3(\mathrm{CH}), 92.0$ $(\mathrm{C}), 79.9(\mathrm{CH}), 77.6\left(\mathrm{CH}_{2}\right), 43.9(\mathrm{C}), 35.5\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right)$.

(E)-5,5-Dimethyl-6-(methylsulfonyl)-2-(prop-1-en-1-yl)-2,4,5,6-tetrahydro-1H-oxepino[4,5-b]indole
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H})$, $5.82-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.57(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}$, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~s}$, $3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H})$.

2.5.3 Preparation of product 33c

33c

3,3,8b-Trimethyl-4-(methylsulfonyl)-3,3a,4,8b-tetrahydro-2H-furo[3,2-b]indole

To a solution of compound $\mathbf{3 1}$ ($21 \mathrm{mg}, 0.075 \mathrm{mmol}, 1$ eq.) in anhydrous CHCl_{3} (1.5 mL) was added TMSOTf ($14 \mu \mathrm{~L}, 0.075 \mathrm{mmol}, 1 \mathrm{eq}$.). The reaction was stirred at room temperature for 0.5 h . The reaction mixture was added into saturated NaHCO_{3} aqueous solution (5 mL) and extracted with DCM for 3 times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford the corresponding product $\mathbf{3 3 c}$ (21 $\mathrm{mg}, 100 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.17\left(\mathrm{td}, J_{l}=7.5 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 141.5(\mathrm{C}), 134.5(\mathrm{C}), 130.0(\mathrm{CH}), 125.2(\mathrm{CH}), 124.1(\mathrm{CH}), 114.9(\mathrm{CH}), 89.2$ (C), $79.2(\mathrm{CH}), 77.4\left(\mathrm{CH}_{2}\right), 44.1(\mathrm{C}), 35.4\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}^{+}$282.1164, found 282.1165.

Table 2.5.3.1 NOE of compound $\mathbf{3 3 c}\left(\mathrm{CDCl}_{3}\right)$

Irradiated (ppm)	Observed (ppm)
$3.78(\mathrm{~s}, 1 \mathrm{H})$	$2.77(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$
$1.72(\mathrm{~s}, 3 \mathrm{H})$	$3.78(\mathrm{~s}, 1 \mathrm{H})$

2.5.4 Preparation of products 44b ~ 53b

General Procedure: To a solution of compound $\mathbf{3 1}(21 \mathrm{mg}, 0.075 \mathrm{mmol}, 1 \mathrm{eq}$.) in anhydrous $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$ was added aldehyde (0.375 mmol , 5 eq .), and anhydrous
$\mathrm{ZnCl}_{2}(0.113 \mathrm{mmol}, 1.5 \mathrm{eq}$.). The reaction was stirred at room temperature for 24 h . The reaction mixture was added into ice-water and extracted with DCM for 3 times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford the corresponding product $\mathbf{4 4 b} \boldsymbol{\sim} \mathbf{5 3 b}$.

2-Isopropyl-5,5-dimethyl-6-(methylsulfonyl)-2,4,5,6-tetrahydro-1H-oxepino[4,5b]indole
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 8.10-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81\left(\mathrm{dd}, J_{l}=11.7 \mathrm{~Hz}, J_{2}=6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.56(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.00\left(\mathrm{dd}, J_{1}=6.9 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.5$ (C), 138.5 (C), $131.6(\mathrm{C}), 125.2(\mathrm{CH}), 124.3(\mathrm{CH}), 122.7(\mathrm{C}), 118.3(\mathrm{CH}), 116.4(\mathrm{CH})$, $82.3(\mathrm{CH}), 77.9\left(\mathrm{CH}_{2}\right), 40.6(\mathrm{C}), 37.7\left(\mathrm{CH}_{3}\right), 33.6(\mathrm{CH}), 25.2\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{2}\right), 24.2$ $\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right)$.

2-Ethyl-5,5-dimethyl-6-(methylsulfonyl)-2,4,5,6-tetrahydro-1H-oxepino[4,5-

b]indole

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.09-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-$ $2.86(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.6$ (C), 138.6 (C), 131.7 (C), 125.2 (CH), $124.3(\mathrm{CH}), 122.5(\mathrm{C}), 118.3(\mathrm{CH}), 116.5(\mathrm{CH}), 78.9(\mathrm{CH}), 78.0\left(\mathrm{CH}_{2}\right), 40.7(\mathrm{C}), 37.6$ $\left(\mathrm{CH}_{3}\right)$, $29.5\left(\mathrm{CH}_{2}\right)$, $28.1\left(\mathrm{CH}_{2}\right)$, $25.2\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{3}\right), 10.1\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ $(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}^{+}$322.1471, found 322.1485.

2-Butyl-5,5-dimethyl-6-(methylsulfonyl)-2,4,5,6-tetrahydro-1H-oxepino[4,5-

b]indole

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.09-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30$ (m, 2H), $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.86$ $(\mathrm{m}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.6$ (C), 138.6 (C), $131.8(\mathrm{C}), 125.2(\mathrm{CH}), 124.3$ $(\mathrm{CH}), 122.6(\mathrm{C}), 118.4(\mathrm{CH}), 116.5(\mathrm{CH}), 78.0\left(\mathrm{CH}_{2}\right), 77.6(\mathrm{CH}), 40.7(\mathrm{C}), 37.6\left(\mathrm{CH}_{3}\right)$, $36.5\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

5,5-Dimethyl-6-(methylsulfonyl)-2-pentyl-2,4,5,6-tetrahydro-1H-oxepino[4,5-

b]indole

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 8.09-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.86$ $(\mathrm{m}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.32(\mathrm{~m}, 8 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.6(\mathrm{C}), 138.6(\mathrm{C}), 131.8(\mathrm{C}), 125.2(\mathrm{CH}), 124.3$ $(\mathrm{CH}), 122.6(\mathrm{C}), 118.3(\mathrm{CH}), 116.5(\mathrm{CH}), 78.0\left(\mathrm{CH}_{2}\right), 77.6(\mathrm{CH}), 40.7(\mathrm{C}), 37.6\left(\mathrm{CH}_{3}\right)$, $36.7\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{3}\right), 22.6\left(\mathrm{CH}_{2}\right), 14.1$ $\left(\mathrm{CH}_{3}\right)$.

2-Hexyl-5,5-dimethyl-6-(methylsulfonyl)-2,4,5,6-tetrahydro-1H-oxepino[4,5b]indole
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.09-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30$ (m, 2H), $4.00(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.86$ $(\mathrm{m}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.26(\mathrm{~m}, 10 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=6.3 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.6(\mathrm{C}), 138.6(\mathrm{C}), 131.8(\mathrm{C}), 125.2(\mathrm{CH}), 124.3$ $(\mathrm{CH}), 122.6(\mathrm{C}), 118.3(\mathrm{CH}), 116.5(\mathrm{CH}), 78.0\left(\mathrm{CH}_{2}\right), 77.6(\mathrm{CH}), 40.7(\mathrm{C}), 37.5\left(\mathrm{CH}_{3}\right)$, $36.8\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{3}\right), 22.6$ $\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right)$.

2-Isobutyl-5,5-dimethyl-6-(methylsulfonyl)-2,4,5,6-tetrahydro-1H-oxepino[4,5-

b]indole

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 8.09-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-$ $2.84(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.26(\mathrm{~m}$, $2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.7(\mathrm{C}), 138.6(\mathrm{C}), 131.8$ (C), 125.2 (CH), $124.4(\mathrm{CH}), 122.7(\mathrm{C}), 118.4(\mathrm{CH}), 116.5(\mathrm{CH}), 78.1\left(\mathrm{CH}_{2}\right), 75.6(\mathrm{CH})$, $45.8\left(\mathrm{CH}_{2}\right), 40.7(\mathrm{C}), 37.6\left(\mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{3}\right), 24.6(\mathrm{CH}), 24.3\left(\mathrm{CH}_{3}\right), 23.3$ $\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right)$.

50b

2-(sec-Butyl)-5,5-dimethyl-6-(methylsulfonyl)-2,4,5,6-tetrahydro-1H-oxepino[4,5-b] indole (diastereomer mixture)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.09-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}$, $3 \mathrm{H}), 1.73-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.92(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.5(\mathrm{C}), 138.5(\mathrm{C}), 131.6(\mathrm{C}), 125.2(\mathrm{CH}), 124.3$ $(\mathrm{CH}), 123.4(\mathrm{C}), 118.3(\mathrm{CH}), 116.4(\mathrm{CH}), 80.6(\mathrm{CH}), 78.2\left(\mathrm{CH}_{2}\right), 40.6(\mathrm{CH}), 40.5(\mathrm{C})$, $37.6\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right), 12.0\left(\mathrm{CH}_{3}\right)$.

5,5-Dimethyl-6-(methylsulfonyl)-2-(pentan-2-yl)-2,4,5,6-tetrahydro-1H-oxepino[4,5-b] indole (diastereomer mixture)
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 8.09-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 4.01-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 1.63$
$(\mathrm{s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 5 \mathrm{H}), 0.99-0.90(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 145.5(\mathrm{C}), 138.5(\mathrm{C}), 131.6(\mathrm{C}), 125.2(\mathrm{CH}), 124.3(\mathrm{CH}), 123.5(\mathrm{C}), 118.4$ $(\mathrm{CH}), 116.4(\mathrm{CH}), 80.9(\mathrm{CH}), 78.2\left(\mathrm{CH}_{2}\right), 40.5(\mathrm{C}), 38.7(\mathrm{CH}), 37.6\left(\mathrm{CH}_{3}\right), 35.1\left(\mathrm{CH}_{2}\right)$, $25.7\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{2}\right), 14.8\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right)$.

2-Cyclohexyl-5,5-dimethyl-6-(methylsulfonyl)-2,4,5,6-tetrahydro-1H-

 oxepino[4,5-b]indole${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 8.09-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 3.96(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80\left(\mathrm{dd}, J_{l}=12 \mathrm{~Hz}, J_{2}=6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.52(\mathrm{~d}, J=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.68(\mathrm{~m}, 5 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}$, $3 \mathrm{H}), 1.32-1.08(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.5$ (C), 138.5 (C), 131.7 (C), $125.1(\mathrm{CH}), 124.3(\mathrm{CH}), 122.8(\mathrm{C}), 118.3(\mathrm{CH}), 116.4(\mathrm{CH}), 81.8(\mathrm{CH}), 77.9\left(\mathrm{CH}_{2}\right), 43.7$ $(\mathrm{CH}), 40.6(\mathrm{C}), 37.7\left(\mathrm{CH}_{3}\right), 28.9\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right)$, $25.5\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{3}\right), 24.3\left(\mathrm{CH}_{3}\right)$.

5,5-Dimethyl-6-(methylsulfonyl)-2-phenethyl-2,4,5,6-tetrahydro-1H-oxepino[4,5-b]indole
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.07-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.26$ $(\mathrm{m}, 4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.02-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H})$, $1.86-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.4(\mathrm{C})$, 141.8 (C), 138.4 (C), 131.5 (C), 128.4 (CH), 128.2 (CH), 125.7 (CH), 125.1 (CH), 124.2 $(\mathrm{CH}), 122.2(\mathrm{C}), 118.2(\mathrm{CH}), 116.3(\mathrm{CH}), 78.0\left(\mathrm{CH}_{2}\right), 76.3(\mathrm{CH}), 40.6(\mathrm{C}), 38.3\left(\mathrm{CH}_{2}\right)$, $37.4\left(\mathrm{CH}_{3}\right), 31.7\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right)$.

5,5-Dimethyl-6-(methylsulfonyl)-2-phenyl-2,4,5,6-tetrahydro-1H-oxepino[4,5b]indole
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-7.28(\mathrm{~m}, 8 \mathrm{H}), 5.16$ $\left(\mathrm{dd}, J_{l}=9.9 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.26(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.33-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$.

2.5.5 Preparation of product 59

(E)-8b-(4-Chlorobut-2-en-1-yl)-3,3-dimethyl-4-(methylsulfonyl)-3,3a,4,8b-tetrahydro-2H-furo[3,2-b]indole

To a solution of compound $\mathbf{3 1}$ ($21 \mathrm{mg}, 0.075 \mathrm{mmol}$, 1 eq.) in anhydrous CHCl_{3} (1.5 mL) was added aldehyde $\mathbf{5 8}(28.6 \mu \mathrm{~L}, 0.375 \mathrm{mmol}, 5 \mathrm{eq}$.$) , and anhydrous \mathrm{ZnCl}_{2}(15.4 \mathrm{mg}$, $0.113 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) . The reaction was stirred at room temperature for 24 \mathrm{~h}$. The reaction mixture was added into ice-water and extracted with DCM for 3 times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under
reduced pressure and the residue was submitted to chromatography to afford the corresponding product $59\left(26.6 \mathrm{mg}, 100 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.61-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.45-$ $5.35(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.71(\mathrm{~m}$, $2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 142.1(\mathrm{C}), 133.1(\mathrm{C}), 131.0(\mathrm{CH}), 130.4(\mathrm{CH}), 127.9(\mathrm{CH}), 125.1(\mathrm{CH}), 124.7$ $(\mathrm{CH}), 114.5(\mathrm{CH}), 77.6\left(\mathrm{CH}_{2}\right), 76.3(\mathrm{CH}), 44.1(\mathrm{C}), 43.8\left(\mathrm{CH}_{2}\right), 42.9\left(\mathrm{CH}_{2}\right), 36.3\left(\mathrm{CH}_{3}\right)$, $35.7\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClNO}_{3} \mathrm{~S}^{+}$ 370.1238, found 370.1226.

2.5.6 Materials and Methods in Computational Study

We employ DFT methods to investigate the electronic structure and energetics along the reaction potential energy surface (PES), where the effect of solvent is considered with the polarizable continuum medium (PCM) model. All calculations are performed with Gaussian 09 software package. ${ }^{20}$

The geometries discussed in this work are fully optimized in gas phase at M06/6$31+\mathrm{G}^{*}$. Frequency calculations are carried out to confirm the nature of the stationary points. The zero-point energies and the thermal correction at 298.15 K and 1 atm are obtained with the harmonic approximation at optimized structures. The PCM model, SMD ${ }^{21}$, is employed to evaluate the influence of solvent on the PES with single point calculation at M06/6-311+G**22 level. Solvent effect is taken into account in relative energies discussed in this work without exception.

2.6 References

[1] N. Anderton, P. A. Cockrum, S. M. Colegate, J. A. Edgar, K. Flower, D. Gardner, R. I. Willing, Phytochemistry, 1999, 51, 153.
[2] (a) C. Chan, C. Li, F. Zhang, S. J. Danishefsky, Tetrahedron Lett., 2006, 47, 4839;
(b) C. Li, C. Chan, A. C. Heimann, S. J. Danishefsky, Angew. Chem., 2007, 119, 1466 - 1469; Angew. Chem. Int. Ed., 2007, 46, 1444; (c) C. Li, C. Chan, A. C. Heimann, S. J. Danishefsky, Angew. Chem., 2007, 119, 1470; Angew. Chem. Int. Ed., 2007, 46, 1448; (d) J. D. Trzupek, D. Lee, B. M. Crowley, V. M. Marathias, S. J. Danishefsky, J. Am. Chem. Soc., 2010, 132, 8506; (e) H. Ding, D. Y. -K. Chen, Angew. Chem. Int. Ed., 2011, 50, 676.
[3] J. A. Butera, S. A. Antane, B. Hirth, J. R. Lennox, J. H. Sheldon, N. W. Norton, D. Wargab, T. M. Argentieri, Bioorg. Med. Chem. Lett., 2001, 11, 2093.
[4] (a) T.-S. Kam, Y.-M. Choo, Helv. Chim. Acta, 2004, 87, 366; (b) K. Koyama, Y. Hirasawa, K. Zaima, T. C. Hoe, K.-L. Chan, H. Morita, Bioorg. Med. Chem., 2008, 16, 6483.
[5] U. S. Singh, R. Shankar, A. Kumar, R. Trivedi, N. Chattopadhyay, N. Shakya, S. Palne, S. Gupta, K. Hajela, Bioorg. Med. Chem., 2008, 16, 8482.
[6] U. S. Singh, R. Shankar, G. P. Yadav, G. Kharkwal, A. Dwivedi, G. Keshri, M. M. Singh, P. R. Moulik, K. Hajela, Eur. J. Med. Chem., 2008, 43, 2149.
[7] Recent reviews on Prins cyclization, see: (a) T. Martín, J. I. Padrón, V. S. Martín, Synlett, 2014, 25, 12; (b) S. J. Greco, R. G. Fiorot, V. Lacerda, Jr., R. B. dos Santos, Aldrichimica Acta, 2013, 46, 59; (c) X. Han, G. Peh, P. E. Floreancig, Eur. J. Org. Chem., 2013, 1193; (d) A. S. Kleinke, D. Webb, T. F. Jamison, Tetrahedron, \2012, 68, 6999; (e) V. D. Dyachenko, E. N. Karpov, Russian J. Org. Chem., 2011, 47, 1; (f) E. A. Crane, K. A. Scheidt, Angew. Chem. Int. Ed., 2010, 49, 8316; (g) C. Olier, M. Kaafarani, S. Gastaldi, M. P. Bertrand, Tetrahedron, 2010, 66, 413.
[8] X. -F. Yang, J. T. Mague, C. -J. Li, J. Org. Chem., 2001, 66, 739.
[9] (a) S. Ünaldi, M. Özlügedik, R. Fröhlich, D. Hoppe, Ad. Synth. Catal., 2005, 347, 162; (b) D. Hoppe, T. Krämer, C. F. Erdbrügger, E. Egert, Tetrahedron Lett., 1989, 30; (c) S. Takano, K. Samizu, K. Ogasawara, Synlett, 1993, 785; (d) S. Takano, K. Samizu, K. Ogasawara, J. Chem. Soc., Chem. Commun., 1993, 1032.
[10] (a) T. K. Sarkar, S. A. Haque, A. Basak, Angew. Chem., Int. Ed., 2004, 43, 1417; (b) C. Chen, P. S. Mariano, J. Org. Chem., 2000, 65, 3252; (c) S. M. Miles, S. P. Marsden, R. J. Leatherbarrow, W. J. Coates, J. Org. Chem., 2004, 69, 6874. (d) S. M. Miles, S. P. Marsden, R. J. Leatherbarrow, W. J. Coates, Chem. Commun., 2004, 2292; (e) J. H. Cassidy, S. P. Marsden, G. Stemp, Synlett, 1997, 1411; (f) C. Meyer, J. Cossy, Tetrahedron Lett., 1997, 38, 7861.
[11] (a) A. C. Spivey, L. Laraia, A. R. Bayly, H. S. Rzepa, A. J. P. White, Org. Lett., 2010, 12, 900; (b) Y. Suzuki, T. Niwa, E. Yasui, M. Mizukami, M. Miyashita, S. Nagumo, Tetrahedron Lett., 2012, 53, 1337; (c) B. V. Subba Reddy, S. Jalal, P. Borkar, J. S. Yadav, P. Gurava Reddy, A. V. S. Sarma, Tetrahedron Lett., 2013, 54, 1519.
[12] (a) T. -P. Loh, Q. -Y. Hu, K.-T. Tan, H.-S. Cheng, Org. Lett., 2001, 3, 2669; (b) T. P. Loh,; Q. -Y. Hu, L.-T. Ma, J. Am. Chem. Soc., 2001, 123, 2450.
[13] J. D. Dunitz, V. Prelog, Angew. Chem., 1960, 72, 896.
[14] (a) J. Dale, Angew. Chem., Int. Ed. Engl., 1966, 5, 1000; (b) E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books: Sausalito, CA (USA), 2006, 100.
[15] (a) F. López, L. Castedo, J. L. Mascareñas, J. Am. Chem. Soc., 2002, 124, 4218; (b) L. E. Overman, A. Castañeda, T. A. Blumenkopf, J. Am. Chem. Soc., 1986, 108, 1303; (c) A. Castañeda, D. J. Kucera, L. E. Overman, J. Org. Chem., 1989, 54, 5695; (d) D. Berger, L. E. Overman, P. A. Renhowe, J. Am. Chem. Soc., 1997, 119, 2446.
[16] (a) B. Furman, M. Dziedzic, I. Justyniak, Tetrahedron, 2008, 64, 3103; (b) M. A. Purino, M. A. Ramírez, A. H. Daranas, V. S. Martín, J. I. Padrón, Org. Lett., 2012, 14, 5904; (c) A. Barbero, A. Diez-Varga, F. J. Pulido, Org. Lett., 2013, 15, 5234.
[17] Zhao, Y. Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
[18] (a) G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris. J. Chem. Phys., 1988, 89, 2193-2218. (b) G. A. Petersson and M. A. AlLaham. J. Chem. Phys., 1991, 94, 6081-6090. (c) V. A. Rassolov, J. A. Pople, M. A. Ratner, and T. L. Windus. J. Chem. Phys., 1998, 109, 1223-1229. (d) V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, L. A. Curtiss. J. Comp. Chem., 2001, 22, 976-984.
[19] (a) Tomasi, J.; Mennucci, B.; Cances, E. J. Mol. Struct. (THEOCHEM), 1999, 464, 211-226. (b) Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys., 2002, 117, 43-54.
[20] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;

Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
[21] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2009, 113, 63786396.
[22] (a) McLean, D.; Chandler, G. S. J. Chem. Phys., 1980, 72, 5639-5648. (b) Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys., 1980, 72, 650-654.

3. Highly Efficient and Stereoselective Synthesis of (Z)- β-Fluoro Enals from Alkynals and Applications in Synthesis

3.1 Introduction

Fluorination reaction has become a widespread and important strategy to introduce fluorine atoms into pharmaceutics and bioactive compounds with significant improving drug properties in many cases, such as 5 -fluorouracil (5-FU, 1) and atorvastatin (Lipitor, 2). ${ }^{1}$ Compared to hydrogen, fluorine is much more electronegative but has a similar small size. ${ }^{2}$ Incorporating fluorine atoms increases lipophilicity, improves its partitioning into membranes and hence increases bioavailability. ${ }^{2,3}$ Moreover, the strong C-F bond resists deactivation in the liver by cytochrome P450 oxidases reducing drug metabolism. ${ }^{4}$ Therefore, fluorine and fluorinated substituents are attractive bioisosteres.

5-Fluorouracil (5-FU, 1)

Atorvastatin (Lipitor, 2)

Figure 3.1.1 Examples of fluorinated drugs

Among various fluorinated substituents, fluoroalkene ($\mathrm{C}=\mathrm{CF}$) has been widely used as a replacement for the peptide bond in the field of medicinal chemistry. ${ }^{5}$ Fluorine takes the position of the carbonyl O , and the planarity of the vinyl unit makes it quite a good match in size and geometry of the amide backbone (Figure 3.1.2). Contrary to such similarities, fluoroalkene moiety would be a non-hydrolyzable both chemically and
enzymatically. The lack of rotational freedom of fluoroalkene is also a different property from that of an amide bond. Because of these unique properties, fluoroalkene isosteres are utilized as non-hydrolyzable and/or conformationally restricted replacements for the parent amide bonds. In addition, fluoroalkenes can also serve as useful building blocks in the synthesis of fluorinated compounds.

Figure 3.1.2 Dipeptide and its fluoroalkene bioisostere 5

3.2 Research Design

Fluoroalkenes are generally obtained in multi-step synthetic sequences. ${ }^{6}$ For example, dihalide compound $\mathbf{7}$ is usually synthesized in advance to generate fluoroalkene $\mathbf{8}$ (Scheme 3.2.1). ${ }^{7}$

Scheme 3.2.1 Example of multi-step synthesis of fluoroalkene ${ }^{7}$

In this context, the direct addition of HF to alkynes should be a very attractive strategy. However, examples reported in this area are extremely rare. In 1985, Patrice Albert and Jack Cousseau carried out an addition of HF to alkynes using
tetrabutylammonium and polymer-supported dihydrogentrifluoride reagents (Scheme 3.2.2). ${ }^{8}$ However, a mixture of the Z - and E-isomers of the fluoro-adducts was obtained. Recently, a gold-catalyzed trans-hydrofluorination of alkynes was reported (Scheme 3.2.3). ${ }^{9}$ But this method is limited in the scope to symmetric internal alkynes. When electron-rich aryl substituent was employed, poor regioselectivity between α - and β fluorination was observed.

Scheme 3.2.2 HF addition to alkynes using $\mathrm{nBu}_{4} \mathrm{~N}^{+} \mathrm{H}_{2} \mathrm{~F}_{3}^{-}$or $\mathrm{P}^{+} \mathrm{H}_{2} \mathrm{~F}_{3}{ }^{-}$

Scheme 3.2.3 Au-catalyzed HF addition to alkynes

Recent studies from our group ${ }^{10}$ and others ${ }^{11}$ reveal that alkynals can be activated by a secondary amine catalyst via immium ion intermediate, which renders nucleophilic attack on the β-position. Based on these studies, we devised a new secondary amine catalyzed HF addition to alkynals (Scheme 3.2.4). It is hypothesized that activation of ynal 16 via iminium ion 19 is followed by the nucleophilic attack from fluorine on the β position. Trans-addition of proton to the allenamine 20 gives a new iminium ion 21. Then hydrolysis of $\mathbf{2 1}$ generates fluoroalkene 18.

F^{-}
20

18

Scheme 3.2.4 Proposed secondary amine catalyzed HF addition to alkynals

3.3 Results and Discussion

We commenced our study by screening secondary amine catalysts for the HF addition to phenylpropiolaldehyde (16a) using HF-pyridine (17) as fluorination source (Table 3.3.1).

Table 3.3.1 Optimization of reaction conditions for HF addition. ${ }^{a}$

cat.

Entry	Catalyst	Solvent	Additive	Time (h)	Conversion (\%)	Yield (\%)
$\mathbf{1}$	\mathbf{I}	t-BuOMe	None	7	70	56
$\mathbf{2}$	II	t-BuOMe	None	72	<10	-
$\mathbf{3}$	III	t-BuOMe	None	72	<10	-
$\mathbf{4}$	\mathbf{I}	t-BuOMe	0.8 equiv. DABCO	24	100	decomposed
$\mathbf{5}$	\mathbf{I}	t-BuOMe	0.5 equiv. TEA	72	100	43
$\mathbf{6}$	\mathbf{I}	t-BuOMe	1.0 equiv. TEA	36	100	38

$\mathbf{7}$	\mathbf{I}	t-BuOMe	1.0 equiv. pyridine	24	100	45
$\mathbf{8}$	\mathbf{I}	t-BuOMe	0.5 equiv. NaHCO_{3}	72	<10	-
$\mathbf{9}$	\mathbf{I}	t-BuOMe	1.2 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$	72	<10	-
$\mathbf{1 0}$	\mathbf{I}	t-BuOMe	1.2 equiv. KOAc	72	<10	-
$\mathbf{1 1}$	\mathbf{I}	Acetone	1.2 equiv. pyridine	72	100	17
$\mathbf{1 2}$	\mathbf{I}	$\mathrm{CH}_{3} \mathrm{CN}$	1.2 equiv. pyridine	72	100	30
$\mathbf{1 3}$	\mathbf{I}	EtOAc	1.2 equiv. pyridine	72	100	58
$\mathbf{1 4}$	\mathbf{I}	EtOAc	1.2 equiv. pyridine	4 h	100	58
$\mathbf{1 5}$	\mathbf{I}	EtOAc	1.0 equiv. pyridine	4 h	100	63
$\mathbf{1 6}$	\mathbf{I}	EtOAc	0.8 equiv. pyridine	1 h	100	82
$\mathbf{1 7}$	\mathbf{I}	EtOAc	0.5 equiv. pyridine	96 h	100	60

${ }^{a}$ The reactions were carried out on a $0.1-\mathrm{mmol}$ scale of $\mathbf{1 6 a}$ and monitored by appearance of 18a by
TLC and ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{b}$ Isolated yields.

Table 3.3.1 summarizes the results of the study in which various catalysts, solvents, additives and reaction time were conducted. Among the three catalysts screened, catalyst I was found to be the best (Table 3.3.1, entry 1). Most of 16a was left unreacted when using catalysts II and III (Table 3.3.1, entries 2 and 3). Based on the proposed mechanism (Scheme 3.2.4), basic conditions should favor the conjugate addition. Therefore, the reaction was treated with some organic (Table 3.3.1, entries 4 to 7) and inorganic bases (Table 3.3.1, entries 8 to 10). Inorganic bases retarded the HF addition process while organic bases accelerated it. Pyridine was found to be the optimal additive to the reaction (Table 3.3.1, entry 7). When the reaction was run in EtOAc, an increased yield of 58% was obtained (Table 3.3.1, entry 13). Next, the amount of pyridine and the reaction time were tuned. The reaction with 0.8 equivalent of pyridine stirring at room temperature for 1 hour delivered 18a in the Z-conformation, exclusively, with an excellent yield of 82% (Table 3.3.1, entry 16).

Having established the optimal conditions for HF addition, we examined the alkynal scope (Table 3.3.2). The reaction went smoothly with both electron-donating and electron-withdrawing substituents at para- and meta-position of benzene ring (Table 3.3.2, entries 1 to 8). However, when ortho-position was occupied, the yield decreased significantly. The reaction also worked well with heterocycles (Table 3.3.2, entries 10, 11 and 13) and fused ring system (Table 3.3.2, entry 12).

Table 3.3.2 Substrate Scope of Alkynals ${ }^{a}$

Entry	Alkynal	R	t (h)	Product	Yield (\%) ${ }^{b}$
1	16b	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	1	18b	80
2	16c	4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	1	18c	79
3	16d	4- $\mathrm{BrC}_{6} \mathrm{H}_{4}$	1	18d	75
4	16e	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	1	18e	76
5	16 f	4-MeC66 H_{4}	2	18 f	68
6	16 g	$4-\mathrm{OMeC} 6 \mathrm{H}_{4}$	4	18g	63
7	16h	$3-\mathrm{MeC}_{6} \mathrm{H}_{4}$	2	18h	73
8	$16 \mathbf{i}$	$3-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	1	18i	78
9	16j	2-F $\mathrm{C}_{6} \mathrm{H}_{4}$	1	18j	16
10	16k	3-pyridinyl	1	18k	45
11	161	$\mathrm{N}-\mathrm{Ts}$-3-indolyl	1.5	181	66
12	16m	2-naphthalenyl	1	18m	66
13	16n	2-thiophenyl	2.5	18n	79

[^2]

3.4 Synthetic Applications

Our next focus was directed towards the utilization of Z-fluoroalkenes in the synthesis of new fluorinated compounds.

3.4.1 Reactions Based on Aldehyde Functionality

Scheme 3.4.1.1 Reactions based on aldehyde functionality

Scheme 3.4.1.1 summarizes the reactions carried out with aldehyde group of β fluoroenal 18a. β-Fluoroenal 18a can be reduced by NaBH_{4} to deliver alcohol 22 in a quantitative yield. The Wittig reaction of β-fluoroenal 18a generated fluoro-diene $\mathbf{2 3}$ in a yield of 64.2%. When β-fluoroenal 18a was treated with $\mathrm{Pd}(\mathrm{OAc})_{2}$, aldehyde group was removed and a fluoroalkene 24 was obtained in a good yield. Notably, fluoroalkene 24 could be converted into a microbial tyramine oxidase inhibitor $\mathbf{2 5}$ according to the process reported. ${ }^{7}$ The Henry reaction of β-fluoroenal 18 a with $\mathrm{CH}_{3} \mathrm{NO}_{2}$ under the base 26 generated compound 27 in a good yield.

Scheme 3.4.1.2 Reaction of 18 a with 28

Interestingly, when β-fluoroenal 18a was treated with secondary amine 28, fluorine was lost and enamine 29 was obtained in a quantitative yield (Scheme 3.4.1.2). The loss of fluorine atom might result from nucleophilic substitution by hydroxyl group of iminium ion 30.

3.4.2 Reactions Based on $\mathrm{C}=\mathrm{C}$ Bonds

It is known that the C-F bond is the strongest single bond that carbon can form. ${ }^{12}$ In general, the currently known functionalization processes of $\mathrm{C}-\mathrm{F}$ bond often lose the fluorine atom. ${ }^{13}$ Therefore, the functionalization of $\mathrm{C}-\mathrm{F}$ bonds is a challenging task that has drawn much attention.

Sharpless epoxidation is known as a reliable protocol to generate epoxide from alkenes. The mild conditions employed in the Sharpless epoxidation may be able to leave C-F bond untouched. When alcohol 22 underwent the Sharpless epoxidation, fluoroepoxide 32 was obtained as expected, in a good yield and 34% ee (Scheme 3.4.2.1).

Scheme 3.4.2.1 Sharpless epoxidation of alcohol 22

Monofluorocyclopropanes elicit significant interest in medicinal chemistry, agrochemistry and liquid crystals as they combine the advantages of organofluorine compounds with the added structural rigidity and metabolic stability of cyclopropanes. ${ }^{14}$ However, limited studies have been carried out for their synthesis. ${ }^{15}$ The most popular strategy to synthesize this moiety is to utilize the Simmons-Smith reaction. Monofluorocyclopropane 34 was successfully generated from alcohol 22 under the conditions of the Simmons-Smith reaction (Scheme 3.4.2.1).

Scheme 3.4.2.2 Simmons-Smith reaction of alcohol 22

Another strategy to prepare monofluorocyclopropane is to utilize the reaction of TBS protected compound 35 with ethyl diazoacetate (36). The desired product 37 was prepared in an excellent yield and high diastereoselectivity using $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ as the catalyst (Scheme 3.4.2.3). Deprotection of compound $\mathbf{3 7}$ with TBAF resulted in removal of the TBS group as well as the ethyl group.

Scheme 3.4.2.3 Preparation of monofluorocyclopropane (37) via ethyl diazoacetate (36)

3.5 Conclusions

In summary, we have developed a novel highly efficient and stereoselective direct addition of F anion to alkynals catalyzed by a secondary amine. The β-fluoroenals are generated stereoselectively with Z-geometry. A variety of ynals can be applied for this conjugate addition process. Furthermore, we also have demonstrated the synthetic utilities of Z- β-fluoroenals for the preparation of new valuable fluorinated compounds by elaboration of aldehyde and $\mathrm{C}=\mathrm{C}$ bond functionalities including reduction, Henry, Wittig, decarbonylation of the aldehyde and cyclopropanation of the $\mathrm{C}=\mathrm{C}$ bond.

3.6 Experimental Section

General Information: Commercial reagents were used as received, unless otherwise stated. Merck 60 silica gel was used for chromatography, and Whatman silica gel plates with fluorescence F_{254} were used for thin-layer chromatography (TLC) analysis. Visualisation was effected with ultraviolet light, potassium permanganate or 2,4dinitrophenylhydrazine as appropriate. ${ }^{1} \mathrm{H}, 1 \mathrm{D}-\mathrm{NOE}$ and ${ }^{13} \mathrm{CNMR}$ spectra were recorded on a Bruker Avance III 300 unless otherwise stated. $\mathrm{CDCl}_{3}\left(\delta=7.26\right.$ and 77.0 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra respectively), DMSO-d6 $\left(\delta=2.50\right.$ and 39.5 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra respectively) and perfluorobenzene ($\delta=164.9$ for ${ }^{19} \mathrm{FNMR}$ spectra) were used as references. Data for ${ }^{1} \mathrm{H}$ are reported as follows: chemical shift (ppm), and multiplicity (s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$. Data for ${ }^{13} \mathrm{C}$ NMR are reported as ppm. Multiplicities of carbons were determined by DEPT and comparison with similar compounds. Mass spectra were recorded using a Waters/Micromass LCT Premier instrument.

3.6.1 Preparation of alkynal substrates

3.6.1.1 Procedure for preparation of 16a and 16 g

General Procedure: To a well-stirred solution of alkyne 39 (60 mmol) in anhydrous THF (150 mL) was added a solution of $\mathrm{n}-\mathrm{BuLi}$ in hexanes ($1.6 \mathrm{M}, 41.3 \mathrm{~mL}, 66 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred 15 min at $-40^{\circ} \mathrm{C}$, and then anhydrous DMF $(9.3$ $\mathrm{mL}, 120 \mathrm{mmol}$) was added in one portion. The mixture was allowed to slowly reach rt . After stirred for further 30 min , the reaction mixture was quenched by pouring into a biphasic mixture of $\mathrm{KH}_{2} \mathrm{PO}_{4}(30 \mathrm{~g}$, 220 mmol$)$ in $\mathrm{H}_{2} \mathrm{O}(270 \mathrm{~mL})$ and $\mathrm{EtOAc}(300 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The organic layer was separated and the aqueous layer was extracted with EtOAc for 3 times. The organic layers were combined, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford the corresponding product $\mathbf{1 6}$.

3-Phenylpropiolaldehyde

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.43(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$.

3-(4-Methoxyphenyl)propiolaldehyde

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$.

3.6.1.2 Procedure for preparation of 16 k and 16 n

General Procedure: To a well-stirred mixture of halide $40(1 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(58$ $\mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol})$ in TEA ($671 \mu \mathrm{~L}, 4.8 \mathrm{mmol}$) and anhydrous THF (2 mL) was added propargyl alcohol ($89 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$) at rt . The reaction mixture was stirred under the conditions listed below. The mixture was then filtered through a Celite pad. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford the corresponding alcohol 42.

To a solution of alcohol $42(0.75 \mathrm{mmol})$ in DMSO $(1 \mathrm{~mL})$ was added IBX $(700 \mathrm{mg}$, $1.13 \mathrm{mmol})$. The reaction mixture was stirred at rt for 0.5 h , and then poured into icewater, extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford the corresponding product $\mathbf{1 6}$.

3-(Pyridin-3-yl)prop-2-yn-1-ol

3-Bromo-pyridine was used as the starting material. The coupling reaction was stirred at $50{ }^{\circ} \mathrm{C}$ for $24 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 2.05(\mathrm{t}, J=5.7 \mathrm{~Hz})$.

3-(Pyridin-3-yl)propiolaldehyde

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.70\left(\mathrm{dd}, J_{l}=\right.$ $\left.4.8 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.90\left(\mathrm{dt}, J_{l}=8.1 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.37\left(\mathrm{ddd}, J_{1}=8.1 \mathrm{~Hz}\right.$, $\left.J_{2}=4.8 \mathrm{~Hz}, J_{3}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$.

42n

3-(Thiophen-2-yl)prop-2-yn-1-ol

2-Iodo-thiphene was used as the starting material. The coupling reaction was stirred at rt for $0.5 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.97\left(\mathrm{dd}, J_{l}=5.1 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.51(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 1.66(\mathrm{t}, J=5.7 \mathrm{~Hz})$.

16n

3-(Thiophen-2-yl)propiolaldehyde

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H})$.

3.6.1.3 Procedure for preparation of $\mathbf{1 6 m}$

41

42m

3-(Naphthalen-2-yl)prop-2-yn-1-ol

To a well-stirred mixture of bromide $40 \mathrm{~m}(414 \mathrm{mg}, 2 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70 \mathrm{mg}$, $0.1 \mathrm{mmol})$ and $\mathrm{CuI}(19 \mathrm{mg}, 0.1 \mathrm{mmol})$ in TEA $(1.3 \mathrm{~mL}, 9.6 \mathrm{mmol})$ and anhydrous THF $(4 \mathrm{~mL})$ was added propargyl alcohol $(175 \mu \mathrm{~L}, 3 \mathrm{mmol})$ at rt . The reaction mixture was refluxed for 12 h . The mixture was then filtered through a Celite pad. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford the corresponding alcohol $\mathbf{4 2 m}$ in 74% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97$ $(\mathrm{s}, 1 \mathrm{H}), 7.83-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 3 \mathrm{H}), 4.56(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 1.71(\mathrm{t}, J=5.7 \mathrm{~Hz})$.

16 m

3-(Naphthalen-2-yl)propiolaldehyde

To a solution of alcohol $\mathbf{4 2 m}(100 \mathrm{mg}, 0.55 \mathrm{mmol})$ in DCM (2 mL) was added activated MnO_{2} ($530 \mathrm{mg}, 5.5 \mathrm{mmol}$). The reaction mixture was stirred at rt for 4 h . The mixture was filtered through a Celite pad and the solvent was removed under reduced pressure. The residue was submitted to chromatography to afford alkynal $\mathbf{1 6 m}(81 \mathbf{m g}, 82 \%$
yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.48(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H})$, 7.61-7.55 (m, 3H).

3.6.2 Preparation of $\boldsymbol{\beta}$-fluoroenals 18a-18m

General Procedure: To a solution of alkynal $16(0.1 \mathrm{mmol})$, pyridine ($6.5 \mu \mathrm{~L}, 0.08$ $\mathrm{mmol})$ and cat. I ($5.1 \mathrm{mg}, 0.02 \mathrm{mmol}$) in EtOAc (1 mL) was added HF-Py $17(7.8 \mu \mathrm{~L}, 0.3$ mmol) at rt . The reaction mixture was stirred at rt for the time listed in Table 3.3.2. Then, the reaction mixture was poured into ice-water and extracted with EtOAc. The combined organic layers were washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford the corresponding product 18.

18a

(Z)-3-fluoro-3-phenylacrylaldehyde

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.55-7.45 (m, 3H), $6.10\left(\mathrm{dd}, J_{l}=33.6 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 188.7(\mathrm{~d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}), 171.5(\mathrm{~d}, J=273.8 \mathrm{~Hz}, \mathrm{C}), 132.5(\mathrm{CH}), 129.4(\mathrm{~d}, J=25.5$ $\mathrm{Hz}, \mathrm{C}), 129.1(\mathrm{CH}), 126.0(\mathrm{~d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}), 107.3(\mathrm{~d}, J=5.3 \mathrm{~Hz}, \mathrm{CH})$.

18b
(Z)-3-fluoro-3-(4-fluorophenyl)acrylaldehyde
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 10.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.04\left(\mathrm{dd}, J_{1}=33.9 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $188.5(\mathrm{~d}, J=11.9 \mathrm{~Hz}, \mathrm{CH}), 170.5(\mathrm{~d}, J=273.1 \mathrm{~Hz}, \mathrm{C}), 165.2(\mathrm{~d}, J=253.6 \mathrm{~Hz}, \mathrm{C}), 128.4$ $(\mathrm{t}, J=8.7 \mathrm{~Hz}, \mathrm{CH}), 125.7(\mathrm{~d}, J=23.3 \mathrm{~Hz}, \mathrm{C}), 116.5(\mathrm{~d}, J=22.3 \mathrm{~Hz}, \mathrm{CH}), 107.1(\mathrm{~d}, J=$ 4.1 Hz, CH).

(Z)-3-(4-chlorophenyl)-3-fluoroacrylaldehyde
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.07\left(\mathrm{dd}, J_{1}=33.6 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 188.4(\mathrm{~d}, J=11.8 \mathrm{~Hz}, \mathrm{CH}), 170.3(\mathrm{~d}, J=273.0 \mathrm{~Hz}, \mathrm{C}), 138.8(\mathrm{C}), 129.5(\mathrm{CH})$, $127.9(\mathrm{~d}, J=26.3 \mathrm{~Hz}, \mathrm{C}), 127.2(\mathrm{~d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}), 107.5(\mathrm{~d}, J=5.3 \mathrm{~Hz}, \mathrm{CH})$.

(Z)-3-(4-bromophenyl)-3-fluoroacrylaldehyde

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56\left(\mathrm{dd}, J_{l}=6.8 \mathrm{~Hz}, J_{l}=1.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.08\left(\mathrm{dd}, J_{l}=34.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 181.4(\mathrm{~d}, J=12.5 \mathrm{~Hz}, \mathrm{CH}), 162.3(\mathrm{~d}, J=272.5 \mathrm{~Hz}, \mathrm{C}), 125.4$ (C, CH), $121.2(\mathrm{~d}, J=26.3 \mathrm{~Hz}, \mathrm{C}), 120.2(\mathrm{~d}, J=7.5 \mathrm{~Hz}, \mathrm{CH}), 100.5(\mathrm{~d}, J=3.8 \mathrm{~Hz}, \mathrm{CH})$.

(Z)-3-fluoro-3-(4-nitrophenyl)acrylaldehyde

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.88(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.08\left(\mathrm{dd}, J_{1}=33.9 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 188.0(\mathrm{~d}, J=11.3 \mathrm{~Hz}, \mathrm{CH}), 168.5(\mathrm{~d}, J=273.3 \mathrm{~Hz}, \mathrm{C}), 149.8(\mathrm{C}), 135.2(\mathrm{~d}, J=$ $27.0 \mathrm{~Hz}, \mathrm{C}), 126.9(\mathrm{~d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}), 124.3(\mathrm{CH}), 109.7(\mathrm{~d}, J=5.0 \mathrm{~Hz}, \mathrm{CH})$.

18f

(Z)-3-fluoro-3-(p-tolyl)acrylaldehyde

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.05\left(\mathrm{dd}, J_{l}=33.9 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 188.8(\mathrm{~d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}), 171.8(\mathrm{~d}, J=273.5 \mathrm{~Hz}, \mathrm{C}), 143.4$ (C), $129.8(\mathrm{CH}), 126.6(\mathrm{~d}, J=25.6 \mathrm{~Hz}, \mathrm{C}), 126.0(\mathrm{~d}, J=8.5 \mathrm{~Hz}, \mathrm{CH}), 106.6(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $\mathrm{CH}), 21.6\left(\mathrm{CH}_{3}\right)$.

(Z)-3-fluoro-3-(4-methoxyphenyl)acrylaldehyde

${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 10.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.99\left(\mathrm{dd}, J_{l}=34.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.7$ (d, $\left.J=12.0 \mathrm{~Hz}, \mathrm{CH}\right), 171.7(\mathrm{~d}, J=272.3 \mathrm{~Hz}, \mathrm{C}), 163.1(\mathrm{C})$, $128.0(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \mathrm{CH}), 121.6(\mathrm{~d}, J=25.5 \mathrm{~Hz}, \mathrm{C}), 114.6(\mathrm{CH}), 105.7(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $\mathrm{CH})$, $55.5\left(\mathrm{CH}_{3}\right)$.

18h

(Z)-3-fluoro-3-(m-tolyl)acrylaldehyde

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ $7.35(\mathrm{~m}, 2 \mathrm{H}), 6.08\left(\mathrm{dd}, J_{I}=33.6 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 188.8(\mathrm{~d}, J=11.6 \mathrm{~Hz}, \mathrm{CH}), 171.8(\mathrm{~d}, J=274.1 \mathrm{~Hz}, \mathrm{C}), 138.9(\mathrm{C}), 133.3(\mathrm{CH})$, $129.3(\mathrm{~d}, J=25.9 \mathrm{~Hz}, \mathrm{C}), 129.0(\mathrm{CH}), 126.5(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{CH}), 123.2(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $\mathrm{CH}), 107.2(\mathrm{CH}), 21.4\left(\mathrm{CH}_{3}\right)$.

$18 i$

(Z)-3-fluoro-3-(3-(trifluoromethyl)phenyl)acrylaldehyde

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16\left(\mathrm{dd}, J_{1}=33.6 \mathrm{~Hz}, J_{2}\right.$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 188.2(\mathrm{~d}, J=11.6 \mathrm{~Hz}, \mathrm{CH}), 169.6(\mathrm{~d}, J=$ $273.4 \mathrm{~Hz}, \mathrm{C}), 132.5,132.1,131.7,130.6,130.3,129.8,129.1,128.9,128.9,128.8,125.2$, $122.8,122.7,121.6,108.3(\mathrm{~d}, J=5.0 \mathrm{~Hz}, \mathrm{CH})$.

18j

(Z)-3-fluoro-3-(2-fluorophenyl)acrylaldehyde

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 10.24\left(\mathrm{dd}, J_{l}=7.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.73\left(\mathrm{td}, J_{l}\right.$ $\left.=7.8 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.56-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.29\left(\mathrm{dd}, J_{l}=35.7 \mathrm{~Hz}\right.$, $\left.J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 189.0(\mathrm{~d}, J=13.3 \mathrm{~Hz}, \mathrm{CH}), 166.1(\mathrm{~d}, J=$ $270.0 \mathrm{~Hz}, \mathrm{C}), 160.6\left(\mathrm{dd}, J_{l}=255.8 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, \mathrm{C}\right), 133.7(\mathrm{~d}, J=9.2 \mathrm{~Hz}, \mathrm{CH}), 127.9$ $(\mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{CH}), 117.8\left(\mathrm{dd}, J_{I}=27.8 \mathrm{~Hz}, J_{2}=9.9 \mathrm{~Hz}, \mathrm{C}\right), 116.7(\mathrm{~d}, J=22.1 \mathrm{~Hz}, \mathrm{CH})$, $112.4\left(\mathrm{dd}, J_{1}=14.3 \mathrm{~Hz}, J_{2}=3.89 \mathrm{~Hz}, \mathrm{CH}\right)$.

(Z)-3-fluoro-3-(pyridin-3-yl)acrylaldehyde

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.44\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=5.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.14\left(\mathrm{dd}, J_{l}=33.9 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 187.9(\mathrm{~d}, J$ $=11.5 \mathrm{~Hz}, \mathrm{CH}), 168.9(\mathrm{~d}, J=273.7 \mathrm{~Hz}, \mathrm{C}), 152.7(\mathrm{CH}), 147.0(\mathrm{~d}, J=8.6 \mathrm{~Hz}, \mathrm{CH}), 133.0$ (d, $J=7.8 \mathrm{~Hz}, \mathrm{CH}), 125.6(\mathrm{~d}, J=26.2 \mathrm{~Hz}, \mathrm{C}), 123.6(\mathrm{CH}), 108.3(\mathrm{~d}, J=4.4 \mathrm{~Hz}, \mathrm{CH})$.

(Z)-3-fluoro-3-(1-tosyl-1H-indol-3-yl)acrylaldehyde

${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 10.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.05\left(\mathrm{dd}, J_{1}=35.0 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 188.2(\mathrm{~d}, J=12.2 \mathrm{~Hz}, \mathrm{CH}), 167.0(\mathrm{~d}, J=267.8 \mathrm{~Hz}, \mathrm{C}), 146.1(\mathrm{C}), 135.3$ (C), $134.4(\mathrm{C}), 130.3(\mathrm{CH}), 128.5(\mathrm{~d}, J=8.5 \mathrm{~Hz}, \mathrm{CH}), 127.2(\mathrm{CH}), 126.0(\mathrm{CH}), 125.6(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, \mathrm{C}), 124.7(\mathrm{CH}), 120.6(\mathrm{CH}), 114.0(\mathrm{CH}), 112.8(\mathrm{~d}, J=28.3 \mathrm{~Hz}, \mathrm{C}), 108.5(\mathrm{~d}$, $J=4.1 \mathrm{~Hz}, \mathrm{CH}), 21.7\left(\mathrm{CH}_{3}\right)$.

18 m

(Z)-3-fluoro-3-(naphthalen-2-yl)acrylaldehyde

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.95-7.87(\mathrm{~m}$, $3 \mathrm{H}), 7.66-7.55(\mathrm{~m}, 3 \mathrm{H}), 6.22\left(\mathrm{dd}, J_{1}=33.9 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 188.6(\mathrm{~d}, J=12.2 \mathrm{~Hz}, \mathrm{CH}), 171.3(\mathrm{~d}, J=273.2 \mathrm{~Hz}, \mathrm{C}), 134.8(\mathrm{C}), 132.5(\mathrm{C})$, $129.0(\mathrm{CH}), 128.9(\mathrm{CH}), 128.4(\mathrm{CH}), 127.7(\mathrm{CH}), 127.2(\mathrm{CH}), 126.9(\mathrm{~d}, J=8.9 \mathrm{~Hz}, \mathrm{CH})$, $126.4(\mathrm{~d}, J=24.9 \mathrm{~Hz}, \mathrm{C}), 121.7(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{CH}), 107.5(\mathrm{~d}, J=5.0 \mathrm{~Hz}, \mathrm{CH})$.

(Z)-3-fluoro-3-(thiophen-2-yl)acrylaldehyde
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.18-$ $7.15(\mathrm{~m}, 1 \mathrm{H}), 5.92\left(\mathrm{dd}, J_{l}=33.3 \mathrm{~Hz}, J_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $180.8(\mathrm{~d}, J=10.5 \mathrm{~Hz}, \mathrm{CH}), 159.6(\mathrm{~d}, J=269.6 \mathrm{~Hz}, \mathrm{C}), 125.6(\mathrm{~d}, J=30.8 \mathrm{~Hz}, \mathrm{C}), 124.4$ $(\mathrm{CH}), 122.9(\mathrm{~d}, J=4.8 \mathrm{~Hz}, \mathrm{CH}), 121.6(\mathrm{CH}), 99.1(\mathrm{~d}, J=4.1 \mathrm{~Hz}, \mathrm{CH})$.

3.6.3 Derivatization of compound 18a

3.6.3.1 Reactions Based on Aldehyde Functionality of 18a

(Z)-3-fluoro-3-phenylprop-2-en-1-ol

To a solution of aldehyde $\mathbf{1 8 a}(92.6 \mathrm{mg}, 0.62 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(24 \mathrm{mg}, 0.62 \mathrm{mmol})$ in some portions slowly within 30 min at $0^{\circ} \mathrm{C}$. The reaction was stirred at rt for 30 min . Brine 10 mL was added and extrated with EtOAc for three times. The organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was submitted to chromatography to afford the alcohol 22 in 95% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.56-7.53 (m, 2H), 7.39-7.37 (m, 3H), $5.67\left(\mathrm{dt}, J_{1}=36.6 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.45(\mathrm{dd}$, $\left.J_{1}=7.1 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$.

(2E,4Z)-ethyl 5-fluoro-5-phenylpenta-2,4-dienoate

To a stirred solution of aldehyde 18a ($20.6 \mathrm{mg}, 0.137 \mathrm{mmol}$) in $\mathrm{PhCH}_{3}(1 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}(62 \mathrm{mg}, 0.178 \mathrm{mmol})$. The resulting mixture was stirred at rt for 1 h, and then poured into water. The mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford product 23 in 64% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77$
$\left(\mathrm{dd}, J_{l}=15.6 \mathrm{~Hz}, J_{2}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 3 \mathrm{H}), 6.22\left(\mathrm{dd}, J_{l}=\right.$ $\left.33.3 \mathrm{~Hz}, J_{2}=11.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.99(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24\left(\mathrm{dd}, J_{1}=14.3 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.7,162.9,159.4,136.1$, $136.0,130.9,130.6,130.2,128.6,124.7,124.6,120.9,120.8,104.3,104.1,60.3,14.2$.

Fluorovinyl benzene

To a solution of aldehyde $18 \mathrm{a}(15 \mathrm{mg}, 0.1 \mathrm{mmol})$ in cyclohexane $(1.3 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OAc})_{2}(1.8 \mathrm{mg}, 0.008 \mathrm{mmol})$ and $4 \AA \mathrm{MS}(30 \mathrm{mg})$. The resulting mixture was stirred at $140{ }^{\circ} \mathrm{C}$ for 72 h in a sealed tube. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford fluoroalkene $\mathbf{2 4}$ (9.3 $\mathrm{mg}, 76 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.37(\mathrm{~m}, 3 \mathrm{H}), 5.04(\mathrm{dd}$, $\left.J_{1}=49.7 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.86\left(\mathrm{dd}, J_{1}=18.0 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$.

(Z)-3-fluoro-1-nitro-3-phenylprop-2-en-1-ol

To a solution of aldehyde $\mathbf{1 8 a}(20 \mathrm{mg}, 0.134 \mathrm{mmol})$ in THF (1 mL) was added $\mathrm{CH}_{3} \mathrm{NO}_{2}(22.8 \mu \mathrm{~L}, 0.402 \mathrm{mmol})$ and compound $26(25.2 \mu \mathrm{~L}, 0.201 \mathrm{mmol})$, sequentially.

The reaction mixture was stirred at rt for 3 h , and then poured into ice-water. The mixture was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford product 27 in 83% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 3 \mathrm{H}), 5.56-5.41(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.6,157.2,130.6,130.2,129.9,128.5$, 124.6, 124.5, 102.5, 102.3, 79.1, 63.4, 63.3.

(E)-5-benzyl-2,2,3-trimethyl-1-(3-oxo-3-phenylprop-1-en-1-yl)imidazolidin-4-

one

To a solution of aldehyde $\mathbf{1 8 a}(15 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ was added pyridine ($24 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and compound $28(30.6 \mathrm{mg}, 0.12 \mathrm{mmol})$. The reaction mixture was stirred at rt for 16 h , and then diluted in EtOAc. The mixture was washed with $5 \% \mathrm{HCl}$ aqueous solution, water and brine, sequentially. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford product 29 in a quantitative yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-$ $7.44(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J$ $=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.49\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.28\left(\mathrm{dd}, J_{1}=14.0 \mathrm{~Hz}, J_{2}=2.0\right.$
$\mathrm{Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.5$, $167.5,144.0,139.7,135.2,131.7,130.2,128.4,128.3,127.7,127.3,96.0,79.6,61.0,33.3$, 27.4, 24.9, 24.8. $\mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$349.1911, found 349.1920.

3.6.3.2 Reactions Based on $\mathrm{C}=\mathrm{C}$ bond of 18a

32
(3-Fluoro-3-phenyloxiran-2-yl)methanol

To a mixture of $4 \AA$ MS (10 beads) and (D)-DET ($48 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) in anhydrous DCM (1.5 mL) at $-20{ }^{\circ} \mathrm{C}$ were successively added $\mathrm{Ti}(\mathrm{i}-\mathrm{PrO})_{4}(60 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ and TBHP ($72 \mu \mathrm{~L}, 0.4 \mathrm{mmol}$). The mixture was stirred at this temperature for 0.5 h . A solution of alcohol $22(30 \mathrm{mg}, 0.2 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(0.5 \mathrm{~mL})$ was then added to the reaction mixture. After stirring at $0{ }^{\circ} \mathrm{C}$ for 5 h , the mixture was hydrolyzed with a solution of $\mathrm{FeSO}_{4}(1 \mathrm{~g})$ and L-tartaric acid $(0.3 \mathrm{~g})$ in water $(30 \mathrm{~mL})$. The biphasic system was stirred during 20 min , extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford epoxide $\mathbf{3 2}$ (24.9 mg , 75% yield, $34 \% e e$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44$ (s, 5 H), 4.10-4.04 (m, 2H), 3.38-3.34(m, 1H), $1.87(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 133.2,132.7,129.7$, $128.5,125.5,125.4,98.2,94.7,64.6,64.3,60.1,60.0 .{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-$ 148.37.

(2-Fluoro-2-phenylcyclopropyl)methanol

$\mathrm{Et}_{2} \mathrm{Zn}(1 \mathrm{M}$ in hexanes, $300 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{I}_{2}(47.7 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ were successively added to a mixture of anhydrous $\mathrm{DCM}(0.8 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(62.2 \mu \mathrm{~L}, 0.6$ mmol) at $-20{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at this temperature for 10 min . A solution of boron ligand $33(32 \mathrm{mg}, 0.12 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(0.1 \mathrm{~mL})$ was then added. The resulting mixture was stirred at this temperature for 5 min . A solution of
alcohol $22(15 \mathrm{mg}, 0.1 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(0.1 \mathrm{~mL})$ was added to the reaction mixture. The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and stirred for 12 h at this temperature. The reaction was quenched by adding a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution. The mixture was extracted with DCM. The combined extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford flurorcyclopropane 34 ($13.4 \mathrm{mg}, 82 \%$ yield, 42% ee). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.35(\mathrm{~m}, 2 \mathrm{H})$, 7.32-7.28 (m, 3H), 4.06 (ddd, $\left.J_{1}=11.7 \mathrm{~Hz}, J_{2}=5.9 \mathrm{~Hz}, J_{3}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.86-3.78(\mathrm{~m}$, $1 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.26(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.1,138.8$, $128.3,127.5,124.2,124.1,82.8,80.0,61.6,61.5,28.0,17.8,17.9,17.7 .{ }^{19}$ F NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-191.9.

(Z)-tert-butyl((3-fluoro-3-phenylallyl)oxy)dimethylsilane

To a solution of alcohol $22(30 \mathrm{mg}, 0.2 \mathrm{mmol})$ in DCM was added imidazole (20 mg , $0.3 \mathrm{mmol})$ and $\mathrm{TBSCl}(45 \mathrm{mg}, 0.3 \mathrm{mmol})$, successively. After stirred at rt for 2 h , the reaction mixture was poured into ice-water, extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford protected product 35 in a quantitative yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55-7.51(\mathrm{~m}, 2 \mathrm{H})$,
$7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.59\left(\mathrm{dt}, J_{l}=36.9 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.50\left(\mathrm{dd}, J_{l}=6.8 \mathrm{~Hz}, J_{2}=2.3\right.$ Hz, 2H), 0.94 (s, 9H), 0.13 (s, 6H).

Ethyl 3-(((tert-butyldimethylsilyl)oxy)methyl)-2-fluoro-2-phenylcyclopropane

 carboxylateTo a mixture of compound $\mathbf{3 5}(25 \mathrm{mg}, 0.094 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(4 \mathrm{mg}, 0.009$ mmol) in anhydrous DCM (6 mL) at $40{ }^{\circ} \mathrm{C}$ was slowly added a solution of diazocompound $36(70 \mu \mathrm{~L}, 0.564 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(3 \mathrm{~mL})$ via a syringe pump during 2 h . The resulting mixture was refluxed for another 5 h . The mixture was then cooled to rt , washed successively with saturated NaHCO_{3} aqueous solution, water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford fluorocyclopropane 37 (30.8 $\mathrm{mg}, 93 \%$ yield, $\mathrm{dr}>10: 1$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.35(\mathrm{~m}, 5 \mathrm{H}), 4.39-4.25$ $(\mathrm{m}, 2 \mathrm{H}), 4.18\left(\mathrm{dd}, J_{l}=14.1 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.22\left(\mathrm{dd}, J_{l}=10.8 \mathrm{~Hz}, J_{2}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.09-2.01 (m, 1H), $1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 167.0,128.6,128.4,125.2,125.1,60.8,56.4,56.2,32.2,29.6,29.5,25.9,18.3$, 14.2, -5.3. ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-195.9.

38

2-Fluoro-3-(hydroxymethyl)-2-phenylcyclopropanecarboxylic acid

TBAF (1 M in $\mathrm{THF}, 150 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) was slowly added to a solution of compound $37(25 \mathrm{mg}, 0.075 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction solution was stirred at rt for 17 h , and then poured into ice-water. The mixture was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure and the residue was submitted to chromatography to afford deprotected product 38 ($5.9 \mathrm{mg}, 38 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-$ $2.78(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.8,135.0,134.7$, $128.8,128.7,124.4,124.3,78.3,77.1,65.5,65.4,32.5,32.3,31.0,30.8$.

3.7 References

[1] Recent reviews: (a) J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev., 2014, 114, 2432 2506; (b) K. Müller, C. Faeh, F. Diederich, Science, 2007, 317, 1881-1886.
[2] H. J. Böhm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Muller, U. Obst-Sander, M. Stahl, ChemBioChem, 2004, 5, 637-643.
[3] (a) A. Avdeef, Curr. Top. Med. Chem., 2001, 1, 277-351; (b) H. Fischer, M. Kansy, D. Bur, Chimia, 2000, 54, 640-645.
[4] B. K. Park, N. R. Kitteringham, P. M. O'Neill, Annu. Rev. Pharmacol. Toxicol., 2001, 41, 443-470.
[5] K. Zhao, D. S. Lim, T. Funaki, J. T. Welch, Bioorg. Med. Chem., 2003, 11, 207-215.
[6] (a) M. S. Raasch, R. E. Miegel, J. E. Castle, J. Am. Chem. Soc., 1959, 81, 26782680; (b) B. L. Dyatkin, E. P. Mochalina, E. P. Lur'e, I. L. Knunyants, USSR Patent, 503850, 1976; Chem. Abstr., 1976, 84, 135130x; (c) J. P. Gillet, R. SauvCtre, and J. F. Normant, Synthesis, 1982, 297-301.
[7] T. C. Rosen, S. Yoshida, R. Fröhlich, K. L. Kirk, G. Haufe, J. Med. Chem., 2004, 47, 5860-5871.
[8] P. Albert, J. Cousseau, J. Chem. Soc., Chem. Commun., 1985, 961-962.
[9] J. A. Akana, K. X. Bhattacharyya, P. Müller, J. P. Sadighi, J. Am. Chem. Soc., 2007, 129, 7736-7737.
[10] We have developed organocatalytic cascade reactions with ynals: (a) X. S. Zhang, S. L. Zhang, W. Wang, Angew. Chem., Int. Ed., 2010, 49, 1481-1484; (b) C. Liu, X. S. Zhang, R. Wang, W. Wang, Org. Lett., 2010, 12, 4948-4951; (c) X. S. Zhang, X. X. Song, H. Li, S. L. Zhang, X. B. Chen, X. H. Yu, W. Wang, Angew. Chem., Int. Ed., 2012, 51, 7282-7286.
[11] Organocatalytic reactions with ynals from other research groups: (a) S. B. Jones, B. Simmons, D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 13606-13607; (b) J. Alemán, A. Núñez, L. Marzo, V. Marcos, C. Alvarado, J. L. G. Ruano, Chem. Eur. J., 2010, 16, 9453-9456; (c) J. Aleman, A. Fraile, L. Marzo, J. L. G. Ruano, C. Izquierdo, S. Diaz-Tendero, Adv. Synth. Catal., 2012, 354, 1665-1671; (d) X. Cai, C. Wang, J. Sun, Adv. Synth. Catal., 2012, 354, 359-363; (e) L. J. Dong, T. T. Fan, C. Wang, J. Sun, Org. Lett., 2013, 15, 204-207.
[12] B. E. Smart, in Organofluorine Chemistry, R. E. Banks, B. E. Smart, J. C. Tatlow, Eds. (Plenum, New York, 1994), pp. 57-88.
[13] Selected recent examples of $\mathrm{C}-\mathrm{F}$ bond activation or functionlization: (a) Chen, Z.; He, C.; Yin, Z.; Chen, L.; He, L.; Zhang, X. Angew. Chem., Int. Ed., 2013, 52, 5813. (b) Yu, D.; Lu, L.; Shen, Q. Org. Lett., 2013, 15, 940. (c) Yu, D.; Shen, Q.; Lu, L. J. Org. Chem., 2012, 77, 1798. (d) Wang, F.; Hu, J. Chin. J. Chem., 2009, 27, 93 and references cited therein.
[14] (a) V. Vuligonda, Y. Lin, R. A. S. Chandraratna, Biorg. Med. Chem. Lett., 1996, 6, 213-218; (b) S. F. Martin, R. E. Austin, C. J. Oalmann, W. R. Baker, S. L. Condon, E. DeLara, S. H. Rosenberg, K. P. Spina, H. H. Stein, J. Med. Chem., 1992, 35, 1710-1721; (c) S. F. Martin, C. J. Oalmann, S. Liras, Tetrahedron, 1993, 49, 35213532; (d) A. Reichelt, S. F. Martin, Acc. Chem. Res., 2006, 39, 433-442; (e) P. Wipf, J. Xiao, Org. Lett., 2005, 7, 103-106; (f) N. A. Meanwell, J. Med. Chem., 2011, 54, 2529-2591.
[15] L.-P. B. Beaulieu, J. F. Schneider, A. B. Charette, J. Am. Chem. Soc., 2013, 135, 7819-7822.

List of Abbreviations

9-BBN	9-borabicyclo[3.3.1]nonane
$10-\mathrm{CSA}$	camphor-10-sufonic acid
Ac	acetyl
aq	aqueous
BINOL	$1,1^{\prime}$-bi-2,2'-naphthol
Boc	t-butoxycarbonyl
calcd	calculated
cat.	catalyst
CDCl	deuterated chloroform
COSY	correlation spectroscopy
DABCO	1,4 -diazabicyclo[2.2.2]octane
DCM	dichloromethane
DEPT	distortionless enhancement by polarization transfer
DET	diethyl tartrate
DFT	density functional theory
DMAP	$N, N-4-$ dimethylaminopyridine
DMF	N, N-dimethylformamide
DMSO	dimethylsulfoxide
$e e$	enantiomeric excess
ESI	electron spray ionization
Et	ethyl
EtOAc	ethyl acetate
h	hour
IBX	o-iodoxybenzoic acid
i-Pr	iso-propyl
Me	methyl
mg	milligram
min	minute
mL	milliliter
MS	mass spectrometry
MS	molecular sieves
Ms	mesyl (methanesulfonyl)
NBS	N-bromosuccinimide
NMR	nuclear magnetic resonance
NOE	nuclear overhauser effect
Ph	phenyl
ppm	PTC

Py	pyridine
quant.	quantitative
rt	room temperature
TBAF	tetra- n-butylammonium fluoride
TBHP	tert-butyl hydroperoxide
TBS (TBDMS)	t-butyldimethylsilyl
t-Bu	tert-butyl
TEA	triethylamine
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer Chromatography
TMS	trimethylsilyl
Ts	p-toluenesulfony
W	watt
μ L	microliter

[^0]: ${ }^{a}$ The reactions were carried out on a $0.05-\mathrm{mmol}$ scale of $\mathbf{3 a}$ and monitored by appearance of $\mathbf{6 a}$ by TLC and ${ }^{1} \mathrm{HNMR}$ spectroscopy. ${ }^{b} 100^{\circ} \mathrm{C}$ was achieved through 100 W microwave irradiation.

[^1]: ${ }^{a}$ The reactions were carried out on a $0.05-\mathrm{mmol}$ scale of $\mathbf{3}$ and monitored by appearance of $\mathbf{6}$ by TLC and ${ }^{1} \mathrm{HNMR}$ spectroscopy. ${ }^{b}$ Some of $\mathbf{3 e}$ remained unreacted.

 The first step starting from bromide $\mathbf{3 e}$ (Table 1.3.2, entry 5 to entry 14) is much faster than the corresponding reaction from chloride $\mathbf{3 b}$ (Table 1.3.2, entry 2). When Ms protected indole bromide $\mathbf{3 e}$ was stirred for 1 hour with enamine $\mathbf{4 a}$, a yield of 67% was obtained (Table 1.3.2, entry 6). The enamine salt $\mathbf{5}$ is not very stable, so longer reaction time is not beneficial (Table 1.3.2, entry 5). When shortening the reaction time of the first step, the reaction did not go to completion (Table 1.3.2, entry 7). So a more stable cyclic enamine $\mathbf{4 b}$ was used to replace $\mathbf{4 a}$ (Table 1.3.2, entry 8 to 14). When the first step was

[^2]: ${ }^{a}$ The reactions were carried out on a $0.1-\mathrm{mmol}$ scale of $\mathbf{1 6}$ and monitored by appearance of $\mathbf{1 8}$ by TLC and
 ${ }^{1}$ HNMR spectroscopy. ${ }^{b}$ Isolated yields.

