University of New Mexico UNM Digital Repository

Chemistry ETDs

Electronic Theses and Dissertations

7-5-2012

A proposed palladium-catalyzed cycle for the epoxidation of alkenes

Marie Vernell Parkes

Follow this and additional works at: https://digitalrepository.unm.edu/chem_etds

Recommended Citation

Parkes, Marie Vernell. "A proposed palladium-catalyzed cycle for the epoxidation of alkenes." (2012). https://digitalrepository.unm.edu/chem_etds/25

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Chemistry ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Marie Vernell Parkes

Chemistry and Chemical Biology

This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

Martin Kirk_____

Wei Wang

David Bear_____

A Proposed Palladium-Catalyzed Cycle for the Epoxidation of Alkenes

by

Marie Vernell Parkes

Bachelor of Science, Chemistry, California Institute of Technology, 2000 Master of Science, Chemistry, University of California, Los Angeles, 2004

DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy Chemistry

The University of New Mexico Albuquerque, New Mexico

May, 2012

ACKNOWLEDGMENTS

First and foremost, I must acknowledge my wonderful husband, Dale, for enthusiastically supporting me during my long journey through graduate school. Thank you for always doing what is best for our family. You are my best friend, my love, and my partner in everything I do. I love you and would not be here without you.

When I started graduate school at UNM, I was so fortunate to find an advisor who was not only doing interesting research, but also a supportive, encouraging, and understanding mentor in Rick Kemp. Without Rick's guidance in my chemical research, support in choosing an atypical approach to my project, and patience and understanding as my personal life and academic career collided so many times, I wouldn't have made it through grad school. Rick, "thank you" isn't quite strong enough for the appreciation I feel.

To my three wonderful daughters, Adelaida, Cordelia, and Estella, you bring joy to my life and a smile to my face. You are strong, beautiful, smart, happy girls and I will always love you.

I have been blessed with a strong support network in my family. To my parents, Annette Rawlinson, Mikel Rawlinson, Steve Fox, Mary Jo Fox, and Charlotte Parkes, thank you for your unconditional love and continued support through the years. I am so fortunate to have such loving parents! The love,

iii

support, and friendship of my siblings, Bill Nadeau, Rachel Nadeau, Michael Fox, Sami Ezzo, BJ Murphy, Rachel Murphy, Richard Parkes, and Laura Parkes, has meant so much to me through the years. And to my nieces and nephews, Billy, Elizabeth, Sarah, Benjamin, and Simon, you are all precious and beloved children. I have great hopes for your futures!

I have had several mentors, both in chemistry and in life, without whose support, guidance, and concern I would be lost. A few of those mentors who have had the greatest impact on my life are Orville Chapman, Teresita McCarty, Craig Merlic, Ken Houk, and Jack Roberts. I appreciate each of you taking the time and effort to guide me at various stages of my life.

The members of my dissertation committee have provided valuable suggestions and advice about my dissertation project and graduate career. Discussions with Karen Goldberg and her group at the University of Washington have been particularly useful in generating and expanding on new ideas on this project. Additionally, the computational-chemistry-related assistance and direction provided by Rick Muller and Hua Guo have been particularly important throughout the course of this research project. I've really appreciated having each of you to turn to over the past several years.

Finally, I need to thank the members of the Kemp group for their support, assistance, and willingness to share information with me over the years. Thank you all.

iv

A Proposed Palladium-Catalyzed Cycle for the Epoxidation of Alkenes

Marie Vernell Parkes

Bachelor of Science, Chemistry, California Institute of Technology, 2000 Master of Science, Chemistry, University of California, Los Angeles, 2004 Doctor of Philosophy, Chemistry, The University of New Mexico, 2012

ABSTRACT

Epoxides are an important chemical functional group, used in a wide variety of processes, from the small-scale production of pharmaceuticals to the large-scale production of propylene oxide. Current methods for production of epoxides require costly multi-step syntheses that use toxic or explosive reagents, result in low yields, and produce co-products that must be removed and often disposed. The development of an atom-efficient general method, preferably catalytic, for converting alkenes to epoxides using safe, cheap, and readily available molecular oxygen as the stoichiometric oxidant would be a great advance in both industrial and academic chemistry. Presented here is a proposed catalytic cycle in which molecular oxygen is used as the stoichiometric oxidant for the epoxidation of alkenes. The cycle begins with a palladium hydride bearing a tridentate ligand. Molecular oxygen adds to the palladium hydride, forming a palladium hydroperoxide that will act as the active oxidant in the catalytic cycle. This palladium hydroperoxide then transfers one oxygen atom to an alkene, producing palladium hydroxide and the desired epoxide. Finally, the palladium hydride is regenerated from palladium hydroxide by addition of hydrogen gas and elimination of water.

Each individual step of this proposed catalytic cycle was studied computationally using density functional theory calculations. Specifically, the palladium-hydrogen bond dipole and the palladium-hydrogen bond length were examined in relation to formation of the palladium hydroperoxide; the effect of the electrophilicity of the alkene on the epoxidation was studied; and the relationship between the characteristics of the tridentate ligand and the mechanism of palladium-hydride regeneration were examined. Computational results and suggested direction for future experimental focus are presented.

vi

Table of Contents

List of Figuresx	
Chapter 1: Background and Proposed Catalytic Cycle	
Functionalization of Organic Substrates1	
Importance of Epoxides2	
Transition Metal Peroxides as Oxidants3	
Structure of Transition Metal Peroxides5	
Formation and Reactivity of Transition Metal Peroxides7	
Oxygen Transfer to Organic Substrates9	
Proposed Catalytic Cycle12	
Chapter 2: Methods and Methods Verification	
Description of Methods Used for Geometry Optimizations	
Description of Methods Used for Transition States	
Description of Methods Used to Find Minimum Energy Crossing Points (MECP)21	
Confirmation of Geometry Optimizations22	
Confirmation of Reaction Coordinates	
Chapter 3: Insertion of Molecular Oxygen into a Palladium-Hydride Bond to Form a Palladium Hydroperoxide	

	First Step of Proposed Catalytic Cycle	39
	Computational Insight into Reaction Mechanism	40
	Orientation of Oxygen and Palladium Hydride during Oxygen Insertion	46
	Methods Verification by Reproduction of Known Computational Results	48
	Palladium-Hydrogen Bond Dipole as a Proxy for Activation Barrier to Oxygen Insertion	55
	Bond Dipoles Obtained Using CHELPG Charges	61
	Bond Dipoles Obtained Using Mulliken Charges	62
	Reaction Coordinates Determined for Six Complexes	64
	Correlation between Transition State Barrier and Bond Dipole	70
	Transition State Barrier Correlates Well with Palladium-Hydrogen Bond Length	73
	Conclusions and Direction for Future Experimental Work	75
Chapte	er 4: Oxygen Atom Transfer from a Palladium Hydroperoxide to an Alkene to form an Epoxide	77
	Second Step of Proposed Catalytic Cycle	77
	Experimental Evidence for Oxygen Atom Transfer	78
	Partial Negative Charge of Proximal Oxygen Atom in Palladium Hydroperoxide	80
	Reaction Mechanism Determined for Model System	81
	Effect of Nucleophilicity of Alkene on Activation Energy	84
	Conclusions and Direction for Future Experimental Work	89

Chapter 5: Palladium Hydride Regeneration from Palladium Hydroxide and Hydrogen
Third Step of Proposed Catalytic Cycle91
Possible Mechanisms Considered for Hydrogenolysis of Palladium Hydroxide92
Reaction Coordinate Reproduced for Model System
Effect of Ligand Atoms of Attachment on Reaction Mechanism95
Conclusions and Direction for Future Experimental Work
Chapter 6: Conclusions 105
Proposed Catalytic Cycle 105
Computational Results for Each Step of the Proposed Catalytic Cycle . 106
Summary of Results110
List of Appendices
Appendix A: Abbreviations and Symbols114
Appendix B: Optimized Geometries of Selected Complexes
References

List of Figures

Figure	1-1: Examples of organic transformations accomplished using peracids.All abbreviations and symbols used are listed in Appendix A:Abbreviations and Symbols.3
Figure	1-2: Classes of transition metal oxides and peroxides
Figure	1-3: Electronic consideration of early and late transition metal peroxides . 7
Figure	1-4: Examples of oxygen-transfer reactions accomplished by transition metal peroxides
Figure	1-5: (a) The Sharpless asymmetric oxidation efficiently converts allylic alcohols to epoxides. (b) The proposed active oxidant is a binuclear titanium alkyl peroxide complex
Figure	1-6: Generic mechanism for the transition-metal mediated epoxidation of an alkene with alkyl peroxide10
Figure	1-7: Mechanisms of epoxidation proposed by (a) Sharpless ³¹ and (b) Mimoun ³²
Figure	1-8: Frenking's calculations ³³ suggest the intermediate proposed by Mimoun will decompose to an aldehyde or ketone rather than an epoxide
Figure	1-9: Proposed catalytic cycle for the epoxidation of an alkene using molecular oxygen as the stoichiometric oxidant
Figure	1-10: Insertion of oxygen into palladium hydride bond demonstrated by Goldberg, Kemp, and coworkers ³⁶ 15
Figure	1-11: Transfer of oxygen atom from palladium hydroperoxide to alkene, producing an epoxide
Figure	1-12: Regeneration of palladium hydride from palladium hydroxide has been demonstrated by Goldberg, Kemp, and coworkers ⁴⁰

- Figure 2-8: Structure overlay geometry agreement between crystal structure⁷⁴ (green) and computationally optimized geometry (blue) for (2-(diisopropylphosphino)-N-(2-(diisopropylphosphino)-4-methylphenyl)-4methylaniline)palladium hydride. Circled atoms were used to prepare the

structure overlay. Color scale shows difference in atom position (in Å) for	
structure overlay)

Figure 3-1: First step of proposed catalytic cycle is insertion of oxygen into	
palladium-hydride bond	39

Figure 3-3: Reaction coordinate determined by the Goddard group³⁸ for insertion of oxygen into palladium-hydride bond. Reprinted with permission from Keith, Jason M.; Muller, Richard P.; Kemp, Richard A.; Goldberg, Karen I.; Goddard, William A., III; Oxgaard, Jonas. Mechanism of Direct Molecular Oxygen Insertion in a Palladium(II)-Hydride Bond. *Inorganic Chemistry* 2006, *45*, 9631-9633. Copyright 2006 American Chemical Society....... 41

- Figure 3-5: Reaction coordinate prepared by Goddard and coworkers in 2005³⁷ for insertion of oxygen into a palladium-hydride bond with a lone-pair-bearing ligand. Reprinted with permission from Keith, Jason M.; Nielsen, Robert J.; Oxgaard, Jonas; Goddard, William A., III. Pd-Mediated Activation of Molecular Oxygen in a Nonpolar Medium. *Journal of the American Chemical Society* 2005, *127*, 13172-13179. Copyright 2005 American Chemical Society.

Figure 3-9: Reaction coordinate for insertion of oxygen into palladium-hydride bond, as calculated in this research and by Goddard and coworkers³⁸...49

Figure	3-11: Optimized geometries of intermediate (12) and minimum energy crossing point structure (13) for insertion of oxygen into palladium-hydride bond
Figure	3-12: Optimized geometry of singlet product palladium hydroperoxide (14) 54
Figure	3-13: Examples of palladium hydride complexes with (a) anionic tridentate ligand and with (b) neutral tridentate ligand and counterion
Figure	3-14: All PCP complexes examined computationally57
Figure	3-15: All PNP complexes examined computationally
Figure	3-16: All PPP, PSiP, PCN, PCO, OCO, and SCS complexes examined computationally
Figure	3-17: All CCC and CNC complexes examined computationally 59
Figure	3-18: All NNN and NCN complexes examined computationally 60
Figure	3-19: The bond dipole is calculated as the differences in atomic charge between the palladium and hydrogen atoms, multiplied by the palladium-hydrogen bond length
Figure	3-20: Bond dipoles from CHELPG charges, grouped by atoms of attachment of the tridentate ligand
Figure	3-21: Bond dipoles from Mulliken charges, grouped by atoms of attachment of the tridentate ligand
Figure	3-22: Bond dipoles from Mulliken charges and bond dipoles from CHELPG charges plotted against each other
Figure	3-23: Six complexes chosen for further study, based on CHELPG-charge- derived palladium-hydride bond dipoles
Figure	3-24: Reaction coordinate for oxygen insertion into (2,6- bis((difluorophosphino)methyl)phenyl-C-P-P')palladium hydride (18)66

Figure	isopropylphosphino)phenyl)amide-N,P,P')palladium hydride (29)
Figure	3-26: Reaction coordinate for oxygen insertion into bis(1,3-bis(2- pyridylmethyl)imidazol-2-ylidene-C-N-N')palladium hydride (56)
Figure	3-27: Reaction coordinate for oxygen insertion into (2,6-bis(3-N- methylimidazol-2-ylidene-1-yl)phenyl-C-C'-C")palladium hydride (41) 69
Figure	3-28: Reaction coordinate for oxygen insertion into ((2-(methoxymethyl)-6-((di- <i>tert</i> -butylphosphino)methyl))phenyl-C-O-P)palladium hydride (38) 70
Figure	3-29: Transition state energy plotted against CHELPG-charge-derived palladium-hydrogen bond dipole71
Figure	3-30: Transition state energy plotted against Mulliken-charge-derived palladium-hydrogen bond dipole72
Figure	3-31: Correlation between transition state energy and palladium-hydrogen bond length74
Figure	3-32: Analysis of palladium-hydrogen bond lengths in calculated structures, with points representing complexes containing neutral ligands circled
Figure	3-33: Palladium hydride complexes with relatively long palladium- hydrogen bonds that should be examined further experimentally
Figure	4-1: Second step of proposed catalytic cycle is oxygen atom transfer from palladium hydroperoxide to an alkene, forming an epoxide
Figure	4-2: Oxygen atom transfer from palladium hydroperoxide to isocyanide to form isocyanate has been demonstrated ³⁹
Figure	4-3: Oxygen atom transfer from palladium hydroperoxide to triphenylphosphine to form phosphine oxide has been demonstrated ⁹¹ 79
Figure	4-4: Seven palladium hydroperoxides examined for CHELPG charge on proximal oxygen, with CHELPG charges indicated

Figure 4-5: Reaction coordinate for epoxidation of propene (81)
Figure 4-6: Representations of (a) palladium hydroperoxide and alkene reactants, (b) "butterfly" transition state, and (c) palladium hydroxide and epoxide products
Figure 4-7: Alkenes examined for epoxidation range from electron-rich to electron-poor
Figure 4-8: Reaction coordinate for epoxidation of methoxyethene (85)
Figure 4-9: Reaction coordinate for epoxidation of styrene (86)
Figure 4-10: Reaction coordinate for epoxidation of methylacrylate (87)
Figure 4-11: Reaction coordinate for epoxidation of acrylonitrile (88)
Figure 5-1: Third step of proposed catalytic cycle is regeneration of palladium hydride from palladium hydroxide and hydrogen
Figure 5-2: Conversion of (2,6-bis((di- <i>tert</i> -butylphosphino)methyl)phenyl-C-P- P')palladium hydroxide (96) to the corresponding palladium hydride 16, demonstrated by Kemp, Goldberg, and coworkers ⁴⁰
Figure 5-3: Two reaction mechanisms for the hydrogenolysis of palladium hydroxide 96 proposed by Kemp, Goldberg, and coworkers: ⁴⁰ a) oxidative addition and reductive elimination through an octahedral palladium(IV) intermediate 97, and b) internal electrophilic substitution through a four-center transition state 98
Figure 5-4: Reaction coordinate for conversion of palladium hydroxide 96 and hydrogen to palladium hydride 16 and water, as calculated in this research and by Kemp, Goldberg, and coworkers ⁴⁰
Figure 5-5: Palladium hydroxides considered for hydrogenolysis
Figure 5-6: Reaction coordination for regeneration of palladium hydride 41 from the corresponding palladium hydroxide 99

Figure	5-7: Reaction coordination for regeneration of palladium hydride 54 from the corresponding palladium hydroxide 100
Figure	5-8: Reaction coordination for regeneration of palladium hydride 40 from the corresponding palladium hydroxide 102
Figure	5-9: Reaction coordination for regeneration of palladium hydride 39 from the corresponding palladium hydroxide 101101
Figure	5-10: Possible mechanism for the addition of hydrogen to ((2- (methoxymethyl)-6-((di- <i>tert</i> -butylphosphino)methyl))phenyl-C-O- P)palladium hydroxide, as proposed by Goldberg, Kemp, and coworkers ⁹⁸
Figure	6-1: Proposed catalytic cycle for the epoxidation of an alkene using molecular oxygen as the stoichiometric oxidant
Figure	6-2: First step of proposed catalytic cycle is insertion of oxygen into palladium-hydride bond
Figure	6-3: Second step of proposed catalytic cycle is oxygen atom transfer from palladium hydroperoxide to an alkene, forming an epoxide
Figure	6-4: Third step of the proposed catalytic cycle is regeneration of palladium hydride from palladium hydroxide and hydrogen

Chapter 1: Background and Proposed Catalytic Cycle

Functionalization of Organic Substrates

Petroleum feedstocks serve as the primary source of organic materials, accounting for over 90% of the world's industrial organic chemicals.¹ Petroleumbased hydrocarbons are cheap, readily available starting materials that can be converted into almost any organic product: plastics, pharmaceuticals, insecticides, and detergents, for example.^{1,2} However, the chemicals obtained from petroleum feedstocks are relatively unfunctionalized and require selective derivatization in order to be converted into useful products. Functionalization occurs through oxidation, reduction, carbon-carbon bond formation, and carbon-carbon bond cleavage; of these, perhaps the most useful is oxidation.

The greatest challenges associated with the oxidation of hydrocarbons are selectivity in the atoms that are oxidized and in avoiding the complete combustion of the hydrocarbon. Effective partial-oxidation of a hydrocarbon will lead to oxidation of only the desired atoms without complete combustion to carbon dioxide.³ Oxidation generally occurs by the elimination of hydrogen from an organic molecule or the replacement of a carbon-bound hydrogen atom with a more electronegative element such as oxygen, nitrogen, or a halide.^{2,3} The addition of oxygen to a hydrocarbon is a special case of oxidation termed

oxygenation. The conversion of an alkene to an epoxide is one such example of a partial-oxidation oxygenation reaction in which a carbon-carbon double bond is converted to a carbon-carbon single bond with the addition of an oxygen atom.

Importance of Epoxides

Epoxides are important functional groups in both industrial and academic chemistry, used in a wide variety of processes, from the small-scale production of pharmaceuticals to the large-scale production of propylene oxide for the conversion to polyure thane and propylene glycol. With the potential for simultaneous introduction of two chiral centers when prepared from alkenes, chiral epoxides are important precursors in the synthesis of enantiomerically pure organic molecules.⁴⁻⁶ Commercially, only ethylene oxide, butadiene monoepoxide, and butadiene di-epoxide can be prepared in single-step pathways using molecular oxygen as oxidant without producing significant amounts of coproducts.^{7,8} Epoxidations of other alkenes require costly multi-step syntheses that use toxic or explosive reagents, result in low yields, and produce co-products that must be removed and often disposed. The development of an atom-efficient general method, preferably catalytic, for converting alkenes to epoxides using safe, cheap, and readily available molecular oxygen as the stoichiometric oxidant would be a great advance in both industrial and academic chemistry.

Transition Metal Peroxides as Oxidants

For years, chemists have used organic peracids to stoichiometrically oxidize organic substrates.⁶ Peracids are extremely reactive and versatile oxidants, and derivatives have been used to effect the transformations of tertiary amines to amine oxides, ketones to esters, sulfides to sulfoxides, phosphines to phosphine oxides, and alkenes to epoxides, among other oxidations (see Figure 1-1).^{9,10} Each of these oxidations involves the transfer of the distal peracid oxygen to the organic substrate.⁶

Figure 1-1: Examples of organic transformations accomplished using peracids. All abbreviations and symbols used are listed in Appendix A: Abbreviations and Symbols.

Despite their versatility in synthesis, organic peracids have a number of

drawbacks: they are not highly selective and attempts to use them for

asymmetric epoxidations have met with limited success.^{2,10} Furthermore, organic peracids suffer from safety concerns because the peroxide bond is easily cleaved, making the peracid explosively unstable to heat, moisture, light, air, and shock.^{2,10} Therefore, extreme care must be taken in the preparation, storage, and use of peracids. Due to these limitations, alternatives to peracids are in high demand.

Some alternatives to peracids that have been investigated are molecular oxygen, alkyl peroxides, and hydrogen peroxide.¹¹ In particular, the selective oxidation of hydrocarbons with molecular oxygen has been one of the most sought-after transformations in catalysis. Oxygen is a known oxidant, but because it is a ground-state triplet,¹² reactions between molecular oxygen and most organic compounds are spin-forbidden.¹² Alkyl peroxides and hydrogen peroxide are cheaper than peracids, but are much less reactive and are not able to accomplish the wide variety of oxidations that can be achieved with peracids.¹¹

Transition metals can be used to overcome the problems encountered by both molecular oxygen and alkyl peroxides. With large spin-orbit coupling constants,¹³ transition metals are able to overcome the spin-forbidden prohibition of reaction between triplet molecular oxygen and singlet substrates and increase the reactivity of alkyl peroxides and hydrogen peroxides.^{11,12} Transition metal peroxides have both advantages and disadvantages as oxidation reagents. Advantageously, they are more stable than peracids, can be used catalytically, and can be used as heterogeneous catalysts, which are easy to recover from a

reaction and reuse.¹² However, their relative expense and difficulty in preparation must be considered as drawbacks.

Structure of Transition Metal Peroxides

The broad class of transition metal peroxides can take a number of different forms, the most common of which are shown in Figure 1-2.¹⁴ The term "peroxometal" generally refers to the η^2 species¹⁵⁻¹⁹ and will be used as such here. A superoxometal species consists of the transition metal bound to only one oxygen atom, with the distal oxygen bearing an unpaired electron.¹⁵ Superoxometal species are generally less stable than peroxometals and form only when coordination of the distal oxygen is sterically hindered.¹⁵ Structurally, transition metal alkylperoxides or hydroperoxides adopt a conformation along a continuum between a side-on-bonded structure and an end-on bonded structure. In a side-on bonded structure, the distances between the transition metal atom and two oxygen atoms are identical; an end-on-bonded structure has one oxygen atom that is so far away from the transition metal that it cannot be considered a bonding interaction.¹⁵

Figure 1-2: Classes of transition metal oxides and peroxides

Transition metal peroxides are typically divided into two groups: early transition metal peroxides and late transition metal peroxides. Early transition metals have empty d-orbitals, allowing the lone pair of electrons on oxygen to donate into the empty d-orbitals, resulting in a partial positive charge on oxygen and an electrophilic oxygen.²⁰ Late transition metals have filled d-orbitals, the electrons of which can donate into the empty oxygen-oxygen π^* orbital, resulting in a partial negative charge on oxygen and a nucleophilic oxygen.²⁰ Examples of both types of interactions are shown in Figure 1-3.

Figure 1-3: Electronic consideration of early and late transition metal peroxides

Formation and Reactivity of Transition Metal Peroxides

Transition metal peroxides have traditionally been prepared by either of two methods: addition of molecular oxygen to a transition metal or reaction of a transition metal with hydrogen peroxide.^{21,22} Because the resulting product complexes are indistinguishable, the distinction between them has become less important in recent years.²³

Transition metal peroxides can accomplish a variety of oxidations, including both oxygenations and oxidations that do not involve oxygen-transfer. Examples of oxygen-transfer reactions that use transition metal peroxides are epoxidation, oxygenation of nitrogen and sulfur, and addition of molecular oxygen to dienes.²⁴⁻²⁸ Several examples are shown in Figure 1-4.

Figure 1-4: Examples of oxygen-transfer reactions accomplished by transition metal peroxides

One of the most-studied applications of transition metal peroxide oxidation is the Sharpless asymmetric epoxidation system. In this process, an allylic alcohol is epoxidized with reasonably high yield and very high enantioselectivity using titanium tetra-*iso*-propoxide, *tert*-butyl peroxide, and either enantiomer of diethyltartrate.²⁹ The oxidant is the achiral *tert*-butyl peroxide; asymmetric induction comes from the contribution of diethyltartrate as the chiral auxiliary.²⁹ The active oxidant is believed to be a binuclear titanium alkyl peroxide as shown in Figure 1-5.³⁰

Figure 1-5: (a) The Sharpless asymmetric oxidation efficiently converts allylic alcohols to epoxides. (b) The proposed active oxidant is a binuclear titanium alkyl peroxide complex.

Oxygen Transfer to Organic Substrates

It is well known that, although alkyl peroxides are poor oxidizers, alkyl peroxides in the presence of transition metals are excellent oxidizers.¹¹ It has therefore been proposed that a peroxometal species, which is much more reactive than the original alkyl peroxide, is the active species in such reactions.⁵ The proposed mechanism of oxidation for a generic epoxidation involves, at the most basic level, three steps:

- the complexation of a metal to a peroxide, resulting in an alkylperoxometal,
- 2. the introduction of an alkene to the metal species, forming some intermediate metal-peroxide-alkene complex, and
- 3. the release of an epoxide and regeneration of the initial metal species.

This most basic mechanism is shown in Figure 1-6.

There has been considerable controversy regarding the nature of the metal-peroxide-alkene intermediate. Two mechanisms have been proposed: one by Sharpless and the other by Mimoun. Sharpless proposed a nucleophilic attack of substrate on the peroxide oxygen, through a "butterfly" transition state, followed by loss of ligand and simultaneous release of the epoxide.³¹ This is shown in Figure 1-7a. Mimoun proposed that the reaction begins with loss of ligand, occurs through a peroxometallocycle intermediate, and results in the same epoxide, as shown in Figure 1-7b.³²

Figure 1-7: Mechanisms of epoxidation proposed by (a) Sharpless³¹ and (b) Mimoun³²

For many years, fierce debate raged over the correct mechanism for epoxidation. In 2000, however, Frenking and coworkers performed computations that show that the peroxometallocycle intermediate proposed by Mimoun would decompose to the ketone or aldehyde with alkyl migration rather than to an epoxide, as shown in Figure 1-8.³³ This strongly suggests that the mechanism proposed by Mimoun, with two discrete intermediates, is not a likely pathway for the epoxidation of an alkene.

Figure 1-8: Frenking's calculations³³ suggest the intermediate proposed by Mimoun will decompose to an aldehyde or ketone rather than an epoxide

Proposed Catalytic Cycle

The selective functionalization of organic substrates, achieved cheaply, cleanly, and employing reusable materials, has long been a goal of synthetic chemists.⁵ Although transition metal peroxides are known to epoxidize specific, functionalized alkenes (such as allylic alcohols, homoallylic alcohols, enolates, and enones), an efficient transition metal peroxide reagent for the epoxidation of nonfunctionalized alkenes using molecular oxygen as the primary oxidant is not known.^{24,34,35}

The goal of this research is to develop a transition-metal-mediated catalytic cycle in which molecular oxygen is used as a stoichiometric oxidant in the epoxidation of alkenes. There are four key features of this goal: the transitionmetal-mediation, the catalytic nature of the reaction, the use of molecular oxygen as the stoichiometric oxidant, and the resulting epoxidation of an alkene. Each of these key features is discussed in more detail below. First, the epoxidation should be mediated by a transition metal. A reaction between molecular oxygen and an organic substrate would be spin-forbidden, but a transition metal's large spin-orbit coupling constant can overcome this limitation.¹³ Second, the reaction should be catalytic in the metal. Transition metals are relatively expensive and generally not abundant, so the ability to use them efficiently is important in making the reaction attractive for use, both in research settings and in industry. Third, molecular oxygen will be used as the stoichiometric oxidant. Molecular oxygen is cheap, readily available, and a known oxidant. Finally, the net result of the reaction should be to transfer an oxygen atom to an organic substrate, ideally converting an alkene to an epoxide.

The proposed generic catalytic cycle, in which a shorthand notation is used to indicate a tridentate ligand bound to palladium by three atoms of attachment, is shown in Figure 1-9. Each of the steps of this catalytic cycle will be examined computationally to guide the experimental research being done in this field. Performing these calculations can offer several benefits. For example, computational results may indicate that certain palladium hydrides are better suited to this cycle than other palladium hydrides, thus allowing experimentalists to focus on the complexes most likely to achieve the desired epoxidation. If, on the other hand, the calculations confidently indicate that the cycle has a fundamental flaw that cannot be overcome, the results may allow the experimentalists to avoid wasting a significant amount of time and money on a cycle that is doomed to fail. Studying the individual steps of the proposed

catalytic cycle will contribute significantly to the fundamental understanding of partial oxidation catalysis.

Figure 1-9: Proposed catalytic cycle for the epoxidation of an alkene using molecular oxygen as the stoichiometric oxidant

The proposed cycle begins with a tridentate-ligand-bearing palladium hydride that serves as the initial pre-catalyst. Oxygen gas is added to the palladium hydride to produce a palladium hydroperoxide, which will be the active oxidant. An oxygen atom is then transferred from the palladium hydroperoxide to an organic substrate, leaving a palladium hydroxide. The palladium hydride is regenerated from the palladium hydroxide by the addition of hydrogen gas and elimination of water.

The first step of the proposed catalytic cycle is the addition of oxygen to a palladium hydride to generate the palladium hydroperoxide. This reaction has been demonstrated for the conversion of (2,6-bis((di-*tert*-butylphosphino)methyl)phenyl-C-P-P')palladium hydride (1) to the corresponding palladium hydroperoxide **2**, as shown in Figure 1-10.³⁶ Although initial computational studies by Goddard and coworkers indicated that it was necessary for the ligand to have a lone pair of electrons,³⁷ experimental work by Goldberg, Kemp, and coworkers demonstrated that this was not the case.³⁶

Figure 1-10: Insertion of oxygen into palladium hydride bond demonstrated by Goldberg, Kemp, and coworkers³⁶

Computational mechanistic studies have been done on a model system related to this reaction,³⁸ and a wide variety of tridentate palladium hydrides (or their analogs) are known. These tridentate palladium hydrides will be examined

in this research to determine the effect of ligand electronics on the mechanism of this reaction.

The second step in this catalytic cycle is the transfer of an oxygen atom from palladium hydroperoxide to an alkene, as shown in Figure 1-11. Although oxygen atom transfer to an alkene has not yet been experimentally demonstrated, there is evidence that the oxygen atom will transfer from a palladium hydroperoxide to an isocyanide to form the isocyanate.³⁹ This evidence of oxygen atom transfer to an organic substrate is encouraging; by tuning the electrophilicity of the alkene, it should be possible to demonstrate oxygen atom transfer to an alkene as well. The effect of the electrophilicity of the alkene on the reaction will be explored, to determine if the reaction proceeds more readily with electron-rich alkenes or with electron-poor alkenes.

Figure 1-11: Transfer of oxygen atom from palladium hydroperoxide to alkene, producing an epoxide

Finally, in order to complete the catalytic cycle, the palladium hydride must be regenerated from the palladium hydroxide. This conversion has been demonstrated experimentally for the regeneration of (2,6-bis((di-*tert*butylphosphino)methyl)phenyl-C-P-P')palladium hydride (**1**) from the corresponding palladium hydroxide,⁴⁰ as shown in Figure 1-12. Mechanistic studies have suggested that, for a model system, this reaction occurs through internal electrophilic substitution,⁴⁰ proceeding through a two-electron, four-center transition state rather than through an oxidative addition/reductive elimination mechanism. The effect of ligand atoms of attachment on the activation barrier of this reaction will be explored.

Figure 1-12: Regeneration of palladium hydride from palladium hydroxide has been demonstrated by Goldberg, Kemp, and coworkers⁴⁰

Computational chemistry will be used to guide future experimental work on the catalytic cycle proposed above. Evaluating a palladium hydride for potential oxygen insertion experimentally can be very difficult and time-consuming, especially since preparing the palladium hydride pre-catalyst can be synthetically challenging. The additional uncertainty surrounding inserting oxygen into the palladium hydride makes the experimental testing of these complexes a shot in the dark. Likewise, conclusions drawn solely from theoretical work can be trusted only to the extent that the theory is valid. The extension of computational results that have been validated by comparison with experimental work will provide a strong foundation for conclusions and guidance for further experimental progress on the proposed catalytic cycle.

This research is designed to streamline the experimental work by examining each step of the proposed catalytic cycle computationally to determine if the individual steps are chemically feasible. First, a variety of palladium hydrides will be studied computationally to determine how easily oxygen can be inserted into the palladium-hydride bond. Next, oxygen atom transfer from a model palladium hydroperoxide to several alkenes will be considered computationally. The electrophilicity and nucleophilicity of the carbon-carbon bonds will be correlated to the transition state barrier for epoxidation. Finally, computational methods will be used to examine the effect of the atom of attachment *cis* to the hydroxide in palladium hydride regeneration reactions. Each of these steps can be studied computationally much faster and more easily than they can be examined experimentally.
Chapter 2: Methods and Methods Verification

Description of Methods Used for Geometry Optimizations

In an effort to quickly and efficiently identify palladium complexes that might be suitable for use as oxygen transfer catalysts, density functional theory (DFT) calculations were used to optimize geometries and calculate energies of both stable species and transition states. Geometry optimizations for all complexes and frequency calculations for transition states were performed at the density functional level of theory, employing Becke's three-parameter hybrid functional^{41,42} combined with the Lee, Yang, and Parr correlation functional⁴³ (B3LYP). The hybrid DFT functional B3LYP is known to produce good descriptions of reaction profiles for transition-metal-containing compounds⁴⁴ and the energies provided by this level of theory have proved reproducible for neutral molecules.⁴⁵ All computations were performed using the Gaussian03 program.⁴⁶ Palladium, iron, and bromine were described with the LANL2DZ effective core potential and double- ζ valence basis set.^{47,48} All other elements were described including the core electrons, using Pople's 6-31+g(d) basis set.⁴⁹⁻⁵¹

Atomic charges were estimated using both the Mulliken charge method^{52,53} and the CHELPG charge method.⁵⁴ Both methods are commonly used to estimate atomic point charges, with charges assigned to individual atoms

based on very different techniques. Mulliken charge assignment makes use of the basis functions that are used to represent the wave functions; because of this, charges assigned by the Mulliken method are very dependent on the basis set used.⁵⁵⁻⁵⁷ CHELPG charges are derived by measuring the electrostatic potential at grid points in space and assigning the resulting charges back to atoms in the molecule.⁵⁵ It is commonly acknowledged that different methods of atomic charge assignment produce widely varying values and cannot be compared against each other.⁵⁶ Although the CHELPG charges are considered more reliable than Mulliken charges,^{55,56} Mulliken charges are still useful for predicting trends among similar molecules⁵⁷ and were therefore considered as well. All energies were evaluated at 0 K and are presented relative to reactants along the reaction coordinate. Optimized geometries, calculated energies, and other relevant data for all complexes examined are included in Appendix B: Optimized Geometries of Selected Complexes.

Description of Methods Used for Transition States

Transition state geometries were optimized and evaluated for the correct number of imaginary frequencies through vibrational frequency calculations; the presence of exactly one imaginary frequency corresponds to a transition structure. All transition states were carefully checked using intrinsic reaction coordination calculations to confirm that the transition state structure smoothly

connected the reactants and products along the reaction coordinate, and the vibrational mode associated with the imaginary frequency was examined to confirm that it corresponded to the correct movement of involved atoms.⁵⁸⁻⁶⁰

Description of Methods Used to Find Minimum Energy Crossing Points (MECP)

The first step of the catalytic cycle is the addition of molecular oxygen to a palladium hydride. Palladium hydrides are ground-state singlets and molecular oxygen is a ground-state triplet.¹² The product palladium hydroperoxides are much more stable as singlets than as triplets, making the overall conversion formally spin-forbidden, as shown in Figure 2-1. The large spin-orbit coupling constant of palladium allows the reaction to cross from the triplet surface of reactants to the singlet surface of the palladium hydroperoxide product;¹³ this is particularly important when the singlet and triplet potential energy surfaces intersect near a transition state. To locate the minimum energy crossing point between these two potential energy surfaces, the methodology introduced by Harvey and coworkers⁶¹⁻⁶³ was employed. This technique combines the energies and gradients of the singlet and triplet surfaces into effective gradients that can be followed to locate the geometry and energy of the MECP structure.

Figure 2-1: The minimum energy crossing point (MECP) is the point along the reaction coordinate at which the singlet and triplet potential energy surfaces intersect

Confirmation of Geometry Optimizations

The vast majority of the palladium complexes examined are proposed complexes that have not been prepared experimentally. However, there are seven palladium hydrides and two palladium hydroperoxides with published crystal structures. For each of those nine complexes, the published crystal structures were compared with the optimized calculated geometries obtained in computationally to confirm that the calculated geometries were reasonable.

The comparisons were done using the "calculate structure overlay" feature in the Mercury⁶⁴⁻⁶⁷ structural visualization program. Calculated geometries of these complexes were optimized in the gas phase, while the crystal structures are taken from solid-state structures in which crystal packing forces may alter the geometry of peripheral groups. Rather than comparing every atom in the complex, only the palladium, metal-bound hydrogen (if located crystallographically), atoms directly attached to palladium, and other core atoms were compared. Counterions, hydrogen atoms other than the palladium-bound hydrogen, and other remote atoms were not compared. Comparisons of the crystal structures and optimized calculated geometries are described below.

Figure 2-2 shows the structure overlay for (bis(4-fluoro-2-(diisopropylphosphino)phenyl)amide-N,P,P')palladium hydride (**3**), a complex reported by Ozerov and coworkers in 2004.⁶⁸ The core atoms of the calculated structure provide an excellent atomic position match with the corresponding atoms in the crystal structure, with less than 0.1 Å difference for each atom in the structure overlay and root-mean-square (RMS) difference of 0.03 Å. The palladium-bound hydride was not included in the structure overlay because it could not be crystallographically located in the crystal structure.

Figure 2-2: Structure overlay geometry agreement between crystal structure⁶⁸ (green) and computationally optimized geometry (blue) for (bis(4-fluoro-2-(diisopropylphosphino)phenyl)amide-N,P,P')palladium hydride. Circled atoms were used to prepare the structure overlay. Color scale shows difference in atom position (in Å) for structure overlay.

The structure overlay for (2,5-bis((di-*tert*-butylphosphino)methyl)ferrocen-1-yl-C,P,P')palladium hydride⁶⁹ (**4**) is shown in Figure 2-3. The core atoms of the calculated structure, including iron, match excellently with the corresponding atoms in the crystal structure, with less than 0.1 Å difference in the positions of all atoms in the structure overlay. The RMS difference in core atom position was 0.04 Å. Because the hydride atom bridged the palladium atom and borane in the crystal structure, it was not included in the structure overlay.

Figure 2-3: Structure overlay geometry agreement between crystal structure⁶⁹ (green) and computationally optimized geometry (blue) for (2,5-bis((di-*tert*-butylphosphino)methyl)ferrocen-1-yl-C,P,P')palladium hydride. Circled atoms were used to prepare the structure overlay. Color scale shows difference in atom position (in Å) for structure overlay.

Figure 2-4 shows the structure overlay for (bis(4-methyl-2-(diisopropylphosphino)phenyl)amide-N,P,P')palladium hydroperoxide⁷⁰ (**5**). The core atoms of the calculated structure match very well with the corresponding atoms in the crystal structure, with less than 0.1 Å difference for all atoms in the structure overlay and RMS difference of 0.05 Å. The hydroperoxide oxygen and hydrogen atoms were not included in the structure overlay due to the inherent flexibility of that group.

Figure 2-4: Structure overlay geometry agreement between crystal structure⁷⁰ (green) and computationally optimized geometry (blue) for (bis(4-methyl-2-(diisopropylphosphino)phenyl)amide-N,P,P')palladium hydroperoxide. Circled atoms were used to prepare the structure overlay. Color scale shows difference in atom position (in Å) for structure overlay.

The structure overlay for (2,6-bis((di-*tert*-butylphosphino)methyl)phenyl-C-P-P')palladium hydride⁷¹ (**1**) is shown in Figure 2-5 below. The core atoms of the calculated structure provide an excellent atomic position match with the corresponding atoms in the crystal structure, with less than 0.1 Å difference for all atoms in the structure overlay and RMS difference in core atom position 0.05 Å. The palladium-bound hydrogen atom position was not used for the structure overlay because it could not be crystallographically located in the crystal structure.

Figure 2-5: Structure overlay geometry agreement between crystal structure⁷¹ (green) and computationally optimized geometry (blue) for (2,6-bis((di-*tert*-butylphosphino)methyl)phenyl-C-P-P')palladium hydride. Circled atoms were used to prepare the structure overlay. Color scale shows difference in atom position (in Å) for structure overlay.

The computed geometry and crystal structure for (1,3-bis(2-(diisopropylphosphino-P)phenyl)imidazolidin-2-ylidene)palladium hydride⁷² (**6**) are shown in Figure 2-6. The core atoms of the calculated structure provide a very good atomic position match with the corresponding atoms in the crystal structure, with less than 0.1 Å difference in all of the core atoms in the structure overlay. The RMS difference in core atom position was 0.08 Å. The palladium-hydrogen bond length in the crystal structure of **6** is significantly longer than the corresponding bond in the optimized calculated geometry (1.77 Å in the crystal structure, 1.61 Å in the computed geometry), differing by 0.16 Å. Although the position of the hydride was located and refined isotropically in the crystal structure,⁷² the palladium-hydrogen bond is quite long. An analysis of similar structures (four-coordinate palladium hydrides with the hydride bound only to palladium) in the Cambridge Structural Database⁷³ revealed that **6** has an unusually long palladium-hydrogen bond: of the seventeen similar palladium hydrides included in the analysis, the palladium-hydrogen bond in **6** is almost 0.12 Å longer than the next longest palladium-hydride bond. The mean bond length among similar complexes is 1.56 Å, with fifty percent of complexes having bond lengths between 1.52 Å and 1.61 Å (see Figure 2-7). The bond distance in the computed geometry is typical of bond distances in crystal structures of similar complexes. Although the authors of this crystal structure mentioned that the palladium-hydride bond distance was unusually long,⁷² they did not provide an explanation for it.

Figure 2-6: Structure overlay geometry agreement between crystal structure⁷² (green) and computationally optimized geometry (blue) for (1,3-bis(2-(diisopropylphosphino-P)phenyl)imidazolidin-2-ylidene)palladium hydride. Circled atoms were used to prepare the structure overlay. Color scale shows difference in atom position (in Å) for structure overlay.

Figure 2-8 shows the structure overlay for (2-(diisopropylphosphino)-N-(2-(diisopropylphosphino)-4-methylphenyl)-4-methylaniline)palladium hydride⁷⁴ (**7**). The core atoms of the calculated structure match very well with the corresponding atoms in the crystal structure, with less than 0.15 Å difference for all atoms in the structure overlay and RMS difference of 0.08 Å. The palladiumhydrogen bond lengths in the crystal structure and optimized calculated geometry are remarkably similar, differing by only 0.03 Å (1.54 Å in the crystal structure, 1.57 Å in the computed geometry).

Figure 2-8: Structure overlay geometry agreement between crystal structure⁷⁴ (green) and computationally optimized geometry (blue) for (2-(diisopropylphosphino)-N-(2-(diisopropylphosphino)-4-methylphenyl)-4methylaniline)palladium hydride. Circled atoms were used to prepare the structure overlay. Color scale shows difference in atom position (in Å) for structure overlay.

Figure 2-9 shows the structure overlay for (P,P-bis(3-

diethylphosphinopropyl)phenylphospino)palladium hydride⁷⁵ (**8**). The flexibility of the propyl linkers makes this complex particularly conformationally sensitive to its local environment. Because of this, only the palladium, palladium-bound hydrogen, and three phosphorus atoms were included in the structure comparison. The computed and crystal structure geometries still match relatively well, with an RMS difference of only 0.11 Å and a maximum difference less than 0.15 Å for every compared atom. It is apparent from the figure, however, that the remote atoms do not align well with one another; this discrepancy is attributed to the packing of the crystal structure in this very flexible molecule. The palladium-hydrogen bond lengths in the crystal structure and optimized calculated geometry are very similar, differing by only 0.05 Å (1.65 Å in the crystal structure, 1.59 Å in the computed geometry).

Figure 2-9: Structure overlay geometry agreement between crystal structure⁷⁵ (green) and computationally optimized geometry (blue) for (P,P-bis(3diethylphosphinopropyl)phenylphospino)palladium hydride. Circled atoms were used to prepare the structure overlay. Color scale shows difference in atom position (in Å) for structure overlay.

The computed geometry and crystal structure for (2,6-bis(diisopropylphosphinomethyl)phenyl)palladium hydride⁷⁶ (**9**) are shown in Figure 2-10a. Although the RMS difference in atom locations is only 0.11 Å, the two phosphorus atoms and one methylene carbon have only moderately good overlap, with location differences of 0.16 Å to 0.17 Å for these three atoms. This discrepancy is due to the difference in "twist" of the two geometries: when the dihedral angles formed from the *ortho* phenyl carbon, *ipso* phenyl carbon, palladium, and phosphorus are compared, the crystal structure geometry has a significantly smaller dihedral angle than the optimized calculated geometry (5.3° for crystal structure geometry, 12.0° for calculated geometry). This can be seen

by viewing the complexes along the hydrogen-palladium bond, as in Figure 2-10b below. An analysis of similar structures (four-coordinate palladium complexes containing a tridentate ligand bound to palladium through two phosphorus atoms and a phenyl ring) in the Cambridge Structural Database⁷³ revealed that the dihedral angle of the calculated geometry is typical of similar complexes: of the thirty-four structures included in the analysis, only five have dihedral angles 5.3° or smaller. The average dihedral angle for similar crystal structures is 11.1°, with fifty percent of complexes having dihedral angles between 5.9° and 15.8° (see Figure 2-11). It is important to note that the crystal structure of this complex was found to be a dimer, and the palladium hydride fragment co-crystalized with two molecules of K-Selectride[®] reagent (potassium tri-sec-butylborohydride). It is possible that the presence of K-Selectride reagent forced the complex into a conformation in which the aromatic ring and the plane defined by palladium and the two phosphorus atoms were closer to co-planarity than they would have been in the gas phase or in the absence of K-Selectride complex. Despite the fact that the K-Selectride fragment is complexed to the hydride in the crystal structure, the palladium-hydrogen bond lengths in the crystal structure and optimized calculated geometry are nearly identical at 1.65 Å.

Figure 2-10: (a) Structure overlay geometry agreement between crystal structure⁷⁶ (green) and computationally optimized geometry (blue) for (2,6-bis(diisopropylphosphinomethyl)phenyl)palladium hydride, and (b) view of crystal structure (green) and computationally optimized geometry (blue) projected along the hydrogen-palladium bond. Circled atoms were used to prepare the structure overlay. Color scale shows difference in atom position (in Å) for structure overlay.

Figure 2-11: Analysis of *ortho*-carbon, *ipso*-carbon, palladium, phosphorus dihedral angles in crystal structures, in the Cambridge Structural Database⁷³ based on four-coordinate palladium complexes containing a tridentate ligand bound to palladium through two phosphorus atoms and a phenyl ring

The structure overlay for (2,6-bis((di-*tert*-butylphosphino)methyl)phenyl-C-P-P')palladium hydroperoxide³⁶ (**2**) is shown in Figure 2-12. With an RMS difference in atom locations of 0.17 Å, these two geometries match only moderately well, with the two phosphorus atoms and one methylene carbon providing the largest discrepancies in the overlay. This large discrepancy is again due to the dihedral angle formed from the *ortho*-carbon, *ipso*-carbon, palladium, and phosphorus: the crystal structure has an unusually small dihedral angle, relative to both the calculated geometry and other similar crystal structures. Crystal structures of similar complexes have a significantly larger dihedral angle (see Figure 2-11 above for an analysis of the dihedral angles in crystal structures of similar complexes). The crystal structure for this complex has a dihedral angle of only 0.6°, the smallest dihedral angle in the Cambridge Structural Database.⁷³ The calculated structure has a dihedral angle of 10.6°, which is much more typical of the crystal structures of similar complexes.

Figure 2-12: (a) Structure overlay geometry agreement between crystal structure³⁶ (green) and computationally optimized geometry (blue) for (2,6-bis((di-*tert*-butylphosphino)methyl)phenyl-C-P-P')palladium hydroperoxide, and (b) view of crystal structure (green) and computationally optimized geometry (blue) projected along the palladium-*ipso*-carbon bond. Circled atoms were used to prepare the structure overlay. Color scale shows difference in atom position (in Å) for structure overlay.

This analysis shows that the calculated optimized geometries presented

here match extremely well with known experimental geometries, with RMS

distance differences of less than 0.17 Å for core atoms. The three structures in which the geometries matched least well are worth noting. For 8 (shown in Figure 2-9 above), the ligand is particularly flexible, making the conformation very sensitive to packing in the crystal structure. In the crystal structure of 9 (shown in Figure 2-10 above), the dihedral angle formed by the ortho-carbon, ipso-carbon, palladium, and phosphorus is significantly smaller than the corresponding dihedral angle of the computed geometry. Significantly, the dihedral angle of the computed geometry is much more typical of dihedral angles found in similar structures than is the dihedral angle of the crystal structure itself. The crystal structure of this particular complex is a dimer co-crystalized with two molecules of K-Selectride reagent, which was likely responsible for coplanarity of the aromatic ring and the plane defined by palladium and two phosphorus atoms in the crystal structure. Likewise, the dihedral angle formed by the ortho-carbon, ipso-carbon, palladium, and phosphorus is significantly smaller than the corresponding dihedral angle of the computed geometry in **2**. This can be seen in Figure 2-12 above. Again, the dihedral angle of the computed geometry is much more typical of similar dihedral angles found in related structures than is the dihedral angle of the crystal structure itself.

For three of the four palladium hydride complexes in which the palladiumbound hydrogen was crystallographically determined, the calculated palladiumhydrogen bond lengths matched exceptionally well with corresponding bonds in the crystal structures (within 0.05 Å). For the fourth complex, the palladium-

hydrogen bond distance did not match well, but the palladium-hydrogen bond distance in the crystal structure was noted by the authors to be unusually long. As noted above, the calculated palladium-hydrogen bond distance was very similar to palladium-hydrogen bond distances found in similar crystal structures.

Overall, these results confirm that the geometry optimizations presented here are providing appropriate and reasonable representations of the complexes being examined. This validation provided the confidence necessary to draw conclusions from the geometry optimization calculations done in the following chapters.

Confirmation of Reaction Coordinates

Further verification of the methods used here was performed by reproducing the reaction coordinate presented by Goddard and coworkers³⁸ for the insertion of molecular oxygen into a palladium-hydride bond. Despite a slight difference in methods, the energies obtained for reactants, transition state, intermediate, and products were very similar, with energy differences of at most 2.2 kcal/mol between the energies calculated by Goddard and coworkers and the values calculated here. The predicted energies of the minimum energy crossing point (MECP), however, differed by 5.9 kcal/mol, which is significant. This 5.9 kcal/mol variation is most likely due to differences in implementation of the MECP program in the two calculations. These results will be discussed in more detail in

Chapter 3 below. Additionally, the reaction pathways considered by Goldberg, Kemp, and coworkers⁴⁰ for the regeneration of palladium hydride from palladium hydroxide were reproduced to further validate the methods used here. Energies for stable species (reactants, products, and intermediate) differed from those reported in the literature by at most 2.5 kcal/mol and energies for the transition state differed by 4.6 kcal/mol. These results will be discussed in more detail in Chapter 5 below.

Chapter 3: Insertion of Molecular Oxygen into a Palladium-Hydride Bond to Form a Palladium Hydroperoxide

First Step of Proposed Catalytic Cycle

The first step of the proposed catalytic cycle, direct insertion of molecular oxygen into a palladium-hydride bond, is known experimentally³⁶ and has been studied computationally.³⁸ A generic form of this reaction is shown in Figure 3-1.

Figure 3-1: First step of proposed catalytic cycle is insertion of oxygen into palladium-hydride bond

Experimentally, this reaction was demonstrated by Goldberg, Kemp, and coworkers³⁶ for (2,6-bis((di-*tert*-butylphosphino)methyl)phenyl-C-P-P')palladium hydride (**1**). The resulting palladium hydroperoxide **2** is stable in the solid phase in the absence of light, but decomposes in solution and in the presence of light to the corresponding palladium hydroxide (Figure 3-2).

Figure 3-2: Experimental evidence for insertion of oxygen into palladium-hydride bond demonstrated by Goldberg, Kemp, and coworkers³⁶

Computational Insight into Reaction Mechanism

The mechanism of oxygen insertion into palladium-hydride bonds has been the subject of several recent publications.^{37,38,77-87} Goddard, Goldberg, Kemp, and coworkers elucidated the mechanism for this reaction using quantum mechanics for a model pincer-based system (2,6-bis(phosphinomethyl)phenyl-C-P-P')palladium hydride.³⁸ The introduction of oxygen led to a transition state with a 13 kcal/mol barrier and then to an intermediate in which the oxygen had abstracted hydrogen away from palladium. This intermediate can be thought of as a palladium(I)/hydroperoxy radical pair that are closely associated with one another. This triplet intermediate complex can then rearrange and undergo a spin flip at a minimum energy crossing point that is 12 kcal/mol higher in energy than the reactants, resulting in a singlet palladium(II) hydroperoxide that is 27 kcal/mol more stable than the initial reactants. Note that the corresponding triplet product is almost 7 kcal/mol less stable than the reactants. This reaction coordination is shown in Figure 3-3.

Figure 3-3: Reaction coordinate determined by the Goddard group³⁸ for insertion of oxygen into palladium-hydride bond. Reprinted with permission from Keith, Jason M.; Muller, Richard P.; Kemp, Richard A.; Goldberg, Karen I.; Goddard, William A., III; Oxgaard, Jonas. Mechanism of Direct Molecular Oxygen Insertion in a Palladium(II)-Hydride Bond. *Inorganic Chemistry* 2006, *45*, 9631-9633. Copyright 2006 American Chemical Society.

The reaction coordinate shown does not indicate an explicit transition state between the palladium(I)/hydroperoxy radical pair intermediate and product palladium hydroperoxides, but it is apparent that some transition state must exist on the reaction coordinate between these two stable complexes. Kinetics experiments performed by Goldberg, Kemp, and coworkers³⁶ provided insight into the relative energies of the first transition state, identified in the reaction coordinate above, and the second transition state, not explicitly identified but presumably located near the minimum energy crossing point. When the palladium-bound hydrogen atom was replaced by deuterium, the authors noted a

significant retardation in the observed reaction rate, corresponding to a kinetic isotope effect ($k_{\rm H}/k_{\rm D}$) of 5.8(5) (see Figure 3-4). This large observed kinetic isotope effect strongly suggests that the palladium-bound hydrogen atom is involved in the rate-determining step of the reaction. This is consistent with the first transition state along this reaction coordinate having higher energy than the second transition state.

Figure 3-4: Kinetic isotope experiment performed by Goldberg, Kemp, and coworkers³⁶ for oxygen insertion into palladium-hydrogen bond

Experimental demonstration of this reaction for a system in which palladium was bound to a tridentate ligand without free lone pairs of electrons³⁶ refuted the idea initially proposed by Goddard and coworkers in 2005³⁷ that the

metal center must be coordinated to a ligand with a lone pair of electrons in order to facilitate oxygen insertion. For a palladium hydride containing a bidentate ligand and lone-pair-bearing chloride ligand, oxygen insertion proceeds from a transition state similar to that shown above through an intermediate in which the hydrogen atom of the palladium hydroperoxide is hydrogen-bonded to chlorine. This reaction coordinate is shown in Figure 3-5. More recent experimental and computational work by Stahl and coworkers^{79,87} suggests that, for palladium hydrides with a lone-pair-bearing ligand such as chloride, the insertion of oxygen into the palladium-hydride bond will occur in three discrete steps: reductive elimination of hydrogen chloride, addition of oxygen to form an η^2 peroxopalladium species, and finally oxidative addition of hydrogen chloride, resulting in the palladium hydroperoxide. This pathway is shown in Figure 3-6.

Figure 3-5: Reaction coordinate prepared by Goddard and coworkers in 2005³⁷ for insertion of oxygen into a palladium-hydride bond with a lone-pair-bearing ligand. Reprinted with permission from Keith, Jason M.; Nielsen, Robert J.; Oxgaard, Jonas; Goddard, William A., III. Pd-Mediated Activation of Molecular Oxygen in a Nonpolar Medium. *Journal of the American Chemical Society* 2005, *127*, 13172-13179. Copyright 2005 American Chemical Society.

Figure 3-6: Oxygen insertion pathway proposed by Stahl and coworkers⁸⁷ for palladium hydrides containing a lone-pair-bearing ligand

Further insight into the mechanism of oxygen insertion was provided by

the Russo group in 2007.78 Russo and coworkers provided a detailed analysis of

the reaction coordinate along the singlet pathway, following the mechanism from the transition state identified by Goddard and coworkers³⁸ above through a very stable intermediate in which palladium is bound to the central oxygen of a hydroperoxy group. Rearrangement from this stable intermediate to the product palladium hydroperoxide is expected to be exothermic and proceeds through a low-energy transition state in which palladium is equidistant from both oxygen atoms. This reaction mechanism is shown in Figure 3-7 and reveals an alternative pathway for insertion of oxygen into the palladium hydride bond.

Figure 3-7: Further insight into the reaction coordinate of oxygen insertion into a palladium-hydride bond provided by Russo and coworkers,⁷⁸ showing both the triplet and singlet potential energy surfaces. Reprinted from *Chemical Physics Letters*, *443*, Chowdhury, Sugata; Rivalta, Ivan; Russo, Nino; Sicilia, Emilia, On the Insertion Mechanism of Molecular Oxygen into a Pd(II)-H Bond. Something to Add, pages 183-189, Copyright 2007, with permission from Elsevier.

Orientation of Oxygen and Palladium Hydride during Oxygen

Insertion

There are several different ways in which the oxygen and palladium

hydrides might interact; three of those possibilities are shown in Figure 3-8

below. First, the oxygen molecule could approach the hydrogen atom in the plane of the molecule to abstract hydrogen from palladium (Figure 3-8a). Alternatively, the oxygen molecule could approach the palladium-hydride bond above the plane of the molecule, with the two bonds parallel (Figure 3-8b) or with the oxygen-oxygen bond perpendicular to (Figure 3-8c) the palladium-hydride bond in preparation for either adding to palladium or abstracting hydrogen.

Figure 3-8: Three ways in which the palladium hydride and oxygen can interact: (a) oxygen approaches the hydrogen atom in the plane of the molecule; (b) oxygen approaches the palladium hydride above the plane of the molecule with oxygen parallel to the palladium-hydride bond, and (c) oxygen approaches the palladium hydride above the plane of the molecule with oxygen perpendicular to the palladium-hydride bond (note that all hydrogen atoms other than the palladium-bound hydrogen have been omitted for clarity) In fact, the work done by Goddard and coworkers³⁸ indicates that the oxygen molecule approaches the hydrogen atom in the plane of the palladium hydride molecule in preparation for abstracting the hydrogen from the palladium. Palladium(II) has one empty d orbital, but that empty orbital is the $d_{(x^2-y^2)}$ orbital, which has lobes oriented toward the ligands and is therefore not particularly available for attack by oxygen. With attack of oxygen at the palladium atom blocked, oxygen instead abstracts the hydride, resulting in the intermediate palladium(I)/hydroperoxy radical pair shown in Figure 3-3 above.

Methods Verification by Reproduction of Known Computational Results

In order to verify the methods used here, the reaction mechanism calculations performed by Goddard and coworkers³⁸ were reproduced using their model system, (2,6-bis(phosphinomethyl)phenyl-C-P-P')palladium hydride (**10**). One significant difference between the methods used here and those used by the Goddard group is the software platform: Goddard and coworkers used the Jaguar 6.5 program,⁸⁸ while the calculations in this work were performed with Gaussian03.⁴⁶ The functionals used were identical (B3LYP^{41,43}) and similar basis sets (LACVP^{*47,49,50} in this work and LACVP^{**} used by Goddard and coworkers³⁸) were employed. Goddard and coworkers performed their calculations with implicit solvent effects for benzene using the Poisson-

Boltzmann continuum approximation, while solvent effects were ignored here. The reaction coordinates obtained by both Goddard and coworkers and in this work are shown in Figure 3-9.

Despite the differences in methods, the results obtained were very similar, confirming that the methods used here are appropriate for a series of similar calculations. The energies obtained for the reactants, transition state, intermediate, and products differed from those obtained by Goddard and coworkers³⁸ by at most 2.2 kcal/mol, a reasonable difference considering the methods used were slightly different. At one stage of the calculations, however, the two results demonstrate considerable deviation: the predicted energies of the

minimum energy crossing point (MECP) differ significantly: 12.2 kcal/mol obtained by Goddard and coworkers³⁸ compared to 6.3 kcal/mol in this work. This difference is most likely due to differences in implementation of the Minimum Energy Crossing Point program between Jaguar and Gaussian.

All significant aspects of the structures of reactants, transition state, intermediate, and product are consistent with those published by Goddard and coworkers.³⁸ The palladium-hydrogen bond length in the optimized geometry of the reactant palladium hydride **10** is 1.63 Å; this bond length increases to 1.78 Å in the transition state **11**, with concomitant increase in oxygen-oxygen bond distance from 1.21 Å to 1.27 Å. The oxygen-hydrogen bond length in the transition state **11** is 1.35 Å, representing formation of the oxygen-hydrogen bond in the first step of the reaction. These changes can be seen in Figure 3-10.

Figure 3-10: Optimized geometries of reactant palladium hydride (10) and transition state structure (11) for insertion of oxygen into palladium-hydride bond

The hydroperoxy radical in the palladium(I)/hydroperoxy radical pair intermediate **12** is orientated approximately 35° below the plane of the molecule and is 2.35 Å from the palladium atom, with the hydrogen atom of the hydroperoxy radical closest to palladium. In this intermediate, hydrogen is fully bonded to oxygen, with a bond distance of 1.01 Å, while the oxygen-oxygen bond length has further increased to 1.33 Å. The palladium-oxygen bond length in the optimized structure at the minimum energy crossing point **13** is 2.16 Å and the oxygen-oxygen bond length is 1.42 Å. The alpha oxygen atom is 58° above the plane of the molecule. These changes can be seen in Figure 3-11.

Figure 3-11: Optimized geometries of intermediate (12) and minimum energy crossing point structure (13) for insertion of oxygen into palladium-hydride bond

In proceeding from the minimum energy crossing point **13** to the singlet product palladium hydroperoxide **14**, both oxygen atoms move back into the plane of the molecule and closer to palladium, with a bond length of 2.06 Å between palladium and the alpha oxygen in the product. The oxygen-oxygen

bond length can now be described as a fully single bond, with a bond distance of 1.48 Å. The optimized geometry of the product singlet palladium hydroperoxide **14** can be seen in Figure 3-12. Note that the singlet palladium hydroperoxide is 33.8 kcal/mol more stable than the corresponding triplet palladium hydroperoxide **15**. Throughout this reaction coordinate, very little structural change occurs in the ligand or in the ligand attachments to palladium; almost all of the structural change occurs in the two oxygen atoms and hydrogen, as would be expected.

Figure 3-12: Optimized geometry of singlet product palladium hydroperoxide (14)
Palladium-Hydrogen Bond Dipole as a Proxy for Activation Barrier to Oxygen Insertion

Although the computations required to map out the reaction coordinate for insertion of molecular oxygen into a palladium-hydride bond are faster than experimental work, they still require a significant amount of time and computer resources. To further expedite the screening of these palladium hydrides, it would be advantageous to find some easily-calculated property of the palladium hydrides that could serve as a proxy for facility of oxygen insertion. One property that was hypothesized to reasonably correlate with ease of oxygen insertion is the palladium-hydride bond dipole. Recall that the first step of the oxygen insertion is abstraction of the hydrogen atom by oxygen. Because oxygen is an extremely electronegative element, more electropositive hydrogen atoms were expected to undergo hydrogen atom abstraction most readily. Therefore, palladium hydrides with relatively electropositive hydrogen atoms were expected to have the smallest transition state barrier for insertion of oxygen to form the corresponding palladium hydroperoxide. The electronegativity of the hydrogen atom is very easily determined computationally, allowing for rapid screening of the palladium hydride complexes and rapid identification of promising candidates for further experimental exploration.

To test this theory, the geometries of forty-nine palladium hydride complexes were optimized and palladium-hydride bond dipoles were calculated based on the optimized structures. The set of palladium hydrides considered all

55

contain a single tridentate ligand, resulting in primarily square-planar palladium hydrides. Most of the tridentate ligands studied are anionic, allowing palladium to exist in the palladium(II) oxidation state. Some of the ligands examined are neutral ligands; those complexes were modeled with a counterion to maintain the palladium(II) oxidation state. Examples of palladium hydride complexes with anionic ligands (Figure 3-13a) and neutral ligands with counterions (Figure 3-13b) are shown below.

Figure 3-13: Examples of palladium hydride complexes with (a) anionic tridentate ligand and with (b) neutral tridentate ligand and counterion

The complexes examined were grouped by the atoms of attachment to palladium and are shown below. All of the complexes examined that coordinate to palladium through phosphorus-carbon-phosphorus (PCP) are shown in Figure 3-14, and the complexes that coordinate to palladium through phosphorusnitrogen-phosphorus (PNP) are shown in Figure 3-15. Figure 3-16 shows the complexes that coordinate to palladium through either phosphorus-phosphorusphosphorus (PPP), phosphorus-silicon-phosphorus (PSiP), phosphorus-carbonnitrogen (PCN), phosphorus-carbon-oxygen (PCO), oxygen-carbon-oxygen (OCO), or sulfur-carbon-sulfur (SCS). Complexes that coordinate to palladium through either carbon-carbon-carbon (CCC) or carbon-nitrogen-carbon (CNC) are shown in Figure 3-17, and the complexes that coordinate to palladium through nitrogen-nitrogen-nitrogen (NNN) or through nitrogen-carbon-nitrogen (NCN) are shown in Figure 3-18. Although very few of the palladium hydride complexes have been prepared as shown, several related species are known, such as the analogous palladium halides or other metal hydrides.

Figure 3-14: All PCP complexes examined computationally

Figure 3-15: All PNP complexes examined computationally

Figure 3-16: All PPP, PSiP, PCN, PCO, OCO, and SCS complexes examined computationally

Figure 3-17: All CCC and CNC complexes examined computationally

Figure 3-18: All NNN and NCN complexes examined computationally

For each palladium hydride complex examined, the geometry of the complex was first optimized, and then the palladium-hydride bond dipole was calculated using both the Mulliken charge^{52,53} and the CHELPG charge.⁵⁴ The bond dipole was calculated as the difference in electron density at the palladium and hydrogen atoms, multiplied by the palladium-hydrogen bond distance (see Figure 3-19).

Figure 3-19: The bond dipole is calculated as the differences in atomic charge between the palladium and hydrogen atoms, multiplied by the palladium-hydrogen bond length

Bond Dipoles Obtained Using CHELPG Charges

Bond dipoles calculated using CHELPG charges⁵⁴ ranged from -0.23 Debye (protic hydrogen atom with more electronegative palladium) to +0.97 Debye (hydridic hydrogen atom with more electropositive palladium), with most dipoles in the range -0.1 Debye to +0.5 Debye. The strongest factor influencing the bond dipole was the nature of the atoms of attachment of the tridentate ligand. The calculated bond dipoles, grouped by the atoms of attachment of the tridentate ligand, are shown in Figure 3-20. Generally, palladium-hydride complexes with ligands that have more electronegative atoms attached to palladium have smaller palladium-hydrogen bond dipoles and therefore more protic hydrogen atoms. Complexes with ligands that have less electronegative atoms attached to palladium have larger palladium-hydrogen bond dipoles and therefore more hydridic hydrogen atoms. At the far end of this scale are the complexes with hemilabile ligands; they have the largest palladium-hydrogen bond dipoles and the most hydridic hydrogen atoms.

Range of Pd-H Bond Dipoles Calculated using CHELPG Charges

Figure 3-20: Bond dipoles from CHELPG charges, grouped by atoms of attachment of the tridentate ligand

Bond Dipoles Obtained Using Mulliken Charges

Using Mulliken charges,^{52,53} bond dipoles ranged from -3.3 Debye (very protic hydrogen atom with more electronegative palladium) to 0.0 Debye (hydrogen atom and palladium atom equally electronegative) and are shown in Figure 3-21, grouped by atoms of attachment of the tridentate ligand. Unlike with the CHELPG charges calculated above, the correlation between the bond dipole obtained from Mulliken charges and the ligand atoms of attachment is weak; in

fact, the bond dipoles obtained from Mulliken charges did not appear to correlate well with any properties of the ligand.

Range of Pd-H Bond Dipoles Calculated using Mulliken Charges

Figure 3-21: Bond dipoles from Mulliken charges, grouped by atoms of attachment of the tridentate ligand

Although Mulliken charges and CHELPG charges are designed as measures of the same properties, there was essentially no correlation between the bond dipoles obtained from the two different methods. This lack of correlation is widely acknowledged in other systems⁵⁵ and is seen in Figure 3-22. Because the CHELPG charges are assigned by fitting the measured molecular electrostatic potential while Mulliken charges are assigned based on the theoretical wavefunction, it is not surprising that bond dipoles from these two measures are not well correlated.

Pd-H Bond Dipoles Calculated using CHELPG Charges and Mulliken Charges

Figure 3-22: Bond dipoles from Mulliken charges and bond dipoles from CHELPG charges plotted against each other

Reaction Coordinates Determined for Six Complexes

With the bond dipoles calculated, six species were chosen for further consideration and complete reaction coordinates were calculated for oxygen insertion of those six species. Because the CHELPG-derived charges are considered more reliable than Mulliken charges,^{55,56} bond dipoles resulting from the CHELPG charges were used as the basis of selection for complexes to

examine further. The six complexes chosen for further consideration were selected because they span the range of CHELPG-charge-derived palladiumhydride bond dipoles. To ensure representation of the wide variety of palladium hydride complexes considered above, one complex with a neutral ligand and one with a hemilabile ligand were included. The complexes chosen are shown in Figure 3-23. The reaction coordinate for the insertion of oxygen into **10** was discussed above (see Figure 3-9).

Figure 3-23: Six complexes chosen for further study, based on CHELPG-chargederived palladium-hydride bond dipoles

For each of these six complexes, the oxygen insertion reaction coordinate was mapped, including reactants, transition state, intermediate, MECP structure, and products. The resulting reaction coordinates for the five complexes not already discussed above are presented below. Figure 3-24 shows the reaction coordinate for (2,6-

bis((difluorophosphino)methyl)phenyl-C-P-P')palladium hydride (**18**). The reaction proceeds through a transition state **57** that is 17.1 kcal/mol higher in energy than the reactants. The final singlet palladium hydroperoxide **58** is 24.0 kcal/mol more stable than the reactants and 29.5 kcal/mol more stable than the corresponding triplet **59**.

Figure 3-24: Reaction coordinate for oxygen insertion into (2,6bis((difluorophosphino)methyl)phenyl-C-P-P')palladium hydride (18)

The insertion of molecular oxygen into (bis(4-methyl-2-(di-

isopropylphosphino)phenyl)amide-N,P,P')palladium hydride (**29**) is shown in Figure 3-25. The transition state **62** barrier of 19.9 kcal/mol is the largest seen in this set of palladium hydrides and the product singlet palladium hydroperoxide **5** is 22.4 kcal/mol lower in energy than the reactants and 33.4 kcal/mol lower in energy than the corresponding triplet **63**. Interestingly, the minimum energy crossing point structure **64** for this reaction is relatively high in energy: 3.7 kcal/mol higher in energy than the palladium(I)/hydroperoxy radical pair intermediate **65** and 7.1 kcal/mol higher in energy than the triplet palladium hydroperoxide product **63**.

Figure 3-25: Reaction coordinate for oxygen insertion into (bis(4-methyl-2-(diisopropylphosphino)phenyl)amide-N,P,P')palladium hydride (29)

The reaction coordinate for insertion of oxygen into bis(1,3-bis(2-

pyridylmethyl)imidazol-2-ylidene-C-N-N')palladium hydride (56) is shown in

Figure 3-26. The abstraction of hydrogen proceeds through a transition state 66

that is 16.8 kcal/mol higher in energy than the reactants. The

palladium(I)/hydroperoxy radical pair intermediate **67**, the minimum energy crossing point **68**, and the final product singlet palladium hydroperoxide **69** are all progressively lower in energy, ending at the singlet palladium hydroperoxide **69** that is 35.9 kcal/mol lower in energy than the reactants and 37.5 kcal/mol lower in energy than the corresponding triplet palladium hydroperoxide **70**.

Figure 3-26: Reaction coordinate for oxygen insertion into bis(1,3-bis(2-pyridylmethyl)imidazol-2-ylidene-C-N-N')palladium hydride (56)

Figure 3-27 shows the reaction coordinate for the reaction of oxygen and (2,6-bis(3-N-methylimidazol-2-ylidene-1-yl)phenyl-C-C'-C")palladium hydride (**41**). Although the transition state **71** is relatively low in energy (15.1 kcal/mol higher energy than the reactants), the palladium(I)/hydroperoxy radical pair intermediate **72** is only 2.4 kcal/mol lower in energy than the transition state **71**.

The product singlet palladium hydroperoxide **74** is 36.8 kcal/mol more stable than the reactants and 42.7 kcal/mol more stable than the corresponding triplet palladium hydroperoxide **75**.

Figure 3-27: Reaction coordinate for oxygen insertion into (2,6-bis(3-N-methylimidazol-2-ylidene-1-yl)phenyl-C-C'-C'')palladium hydride (41)

The insertion of molecular oxygen into ((2-(methoxymethyl)-6-((di-*tert*butylphosphino)methyl))phenyl-C-O-P)palladium hydride (**38**) is the most favored reaction among those examined here. The transition state **76** barrier is only 14.6 kcal/mol and the final product singlet palladium hydroperoxide **79** is 36.1 kcal/mol more stable than both the reactants and the triplet palladium hydroperoxide **80**. This reaction coordinate is shown in Figure 3-28.

Figure 3-28: Reaction coordinate for oxygen insertion into ((2-(methoxymethyl)-6-((di-*tert*-butylphosphino)methyl))phenyl-C-O-P)palladium hydride (38)

Correlation between Transition State Barrier and Bond Dipole

After determining the transition state barriers for insertion of molecular oxygen into each of the six palladium hydrides shown above, the energies of the transition states were compared with the palladium-hydrogen bond dipoles previously calculated using CHELPG charges. A plot of transition state energy versus CHELPG-charge-derived palladium-hydrogen bond dipole is shown in Figure 3-29. The expected strong correlation between transition state energies and palladium-hydrogen bond dipoles was not seen.

Figure 3-29: Transition state energy plotted against CHELPG-charge-derived palladium-hydrogen bond dipole

Since the Mulliken charges and CHELPG charges were so different and the palladium-hydride bond dipoles had already been calculated for Mulliken charges, a plot of the transition state energies against the Mulliken-chargederived palladium-hydride bond dipoles was prepared. The results are shown in Figure 3-30, but again there is no correlation seen between the two.

Figure 3-30: Transition state energy plotted against Mulliken-charge-derived

palladium-hydrogen bond dipole

Although the palladium-hydrogen bond dipoles were expected to correlate well with the transition state barrier for oxygen insertion, no correlation was found and the palladium-hydrogen bond dipole is not a good surrogate measure for the energy required to insert molecular oxygen into the palladium-hydrogen bond. This lack of correlation can be rationalized by considering the reaction mechanism. The high-energy transition state for this reaction is for the first step of the reaction: abstraction of a hydrogen atom from palladium leading to a palladium(I)/hydroperoxy radical pair intermediate. Importantly, the rate-determining step involves the abstraction of a *hydrogen atom*, not a proton. If the rate-determining step were abstraction of a palladium hydride with an electropositive palladium-bound hydrogen and conversely, abstracting a proton

from a palladium hydride with an electronegative palladium-bound hydrogen would require more energy. Since the mechanism in question involves the abstraction of a hydrogen atom rather than a proton, it is reasonable that the palladium-hydrogen bond dipole is not correlated with the activation energy of the reaction. Instead, the activation energy should be correlated with some measure of how tightly bound the hydrogen atom is to the palladium. A palladium hydride with a more weakly bound hydrogen atom should undergo hydrogen atom abstraction more easily than a palladium hydride with a more strongly bound hydrogen atom bond strength are inversely proportional and bond length is often considered a measure of bond strength,^{89,90} a plot of the transition state energies versus palladium-hydrogen bond lengths was prepared.

Transition State Barrier Correlates Well with Palladium-Hydrogen Bond Length

The palladium-hydrogen bond lengths had been calculated as part of the initial geometry optimization for each of the forty-nine palladium hydride complexes; excellent agreement was found between the calculated palladium-hydrogen bond lengths and published crystal structures for the four palladium hydrides in which the hydrogen atom was crystallographically located. After realizing that the transition state barriers did not correlate well with the palladium-hydrogen bond dipole, other measurable properties of the palladium hydride

73

complexes were considered for correlation with the transition state barriers. Since the transition state involves abstraction of the hydrogen atom from palladium, the transition state barrier was plotted against palladium-hydrogen bond length; a relatively strong correlation ($R^2 = 0.85$) was seen, as shown in Figure 3-31. Complexes with longer, weaker palladium-hydride bonds have lower barriers to insertion and thus undergo more facile oxygen insertion than do the complexes with shorter, stronger palladium-hydride bonds.

Figure 3-31: Correlation between transition state energy and palladium-hydrogen bond length

For addition of molecular oxygen to palladium hydrides, complexes with a relatively long palladium-hydrogen bond are expected to undergo oxygen insertion more readily than complexes with a relatively short palladium-hydrogen bond. Palladium-hydrogen bond lengths for the complexes considered ranged

from 1.55 Å to 1.69 Å and are shown in Figure 3-32. Notably, complexes with neutral ligands and a counterion tended to have relatively short palladium-hydrogen bonds.

Figure 3-32: Analysis of palladium-hydrogen bond lengths in calculated structures, with points representing complexes containing neutral ligands circled

Conclusions and Direction for Future Experimental Work

The transition state barriers calculated here are all less than 20 kcal/mol, and the oxygen insertion reactions should therefore proceed at a reasonable rate at room temperature. Furthermore, the palladium hydroperoxide products are much lower in energy than the corresponding reactants, so the reaction is thermodynamically favored. The work presented here supports future experimental work in this area focusing on palladium-hydride complexes with relatively long palladium-hydrogen bonds. Since palladium hydride complexes with neutral ligands and a counterion tended to have relatively short palladiumhydrogen bonds, they should be avoided. Specifically, complexes with the longest palladium-hydrogen bonds that should be examined experimentally based on the calculations performed here include those shown in Figure 3-33. Note that two of these complexes have hemilabile ligands; although complexes with hemilabile ligands might be preferred for oxygen insertion, hemilabile ligands are not suitable for the palladium hydride regeneration step and therefore will not be suitable complexes for the catalytic cycle (see Chapter 5).

Figure 3-33: Palladium hydride complexes with relatively long palladium-hydrogen bonds that should be examined further experimentally

Chapter 4: Oxygen Atom Transfer from a Palladium Hydroperoxide to an Alkene to form an Epoxide

Second Step of Proposed Catalytic Cycle

The second step of the proposed catalytic cycle is the oxygen atom transfer from a palladium hydroperoxide to an organic substrate. This is arguably the most important step of the catalytic cycle since the organic alkene is converted to an epoxide in this step. A generic form of this reaction is shown in Figure 4-1.

Figure 4-1: Second step of proposed catalytic cycle is oxygen atom transfer from palladium hydroperoxide to an alkene, forming an epoxide

Experimentally, oxygen transfer to an alkene is the one step of the proposed catalytic cycle that has not yet been demonstrated. Since oxygen transfer is critical to the entire catalytic cycle, there was concern about whether this step is thermodynamically allowed. Because it was not feasible for the experimentalists to examine every palladium hydroperoxide, with every alkene, in every solvent, at every temperature, under all possible conditions to find a combination in which they could demonstrate epoxidation of an alkene, computational results were particularly important for this step of the reaction.

Experimental Evidence for Oxygen Atom Transfer

Although oxygen atom transfer from a palladium hydroperoxide to an alkene has not yet been demonstrated experimentally, there is evidence that the oxygen atom will transfer from a presumed palladium hydroperoxide, formed *in situ*, to an isocyanide to form the isocyanate (see Figure 4-2).³⁹ *tert*-Butyl isocyanide was added to a solution containing (2,6-bis((dicyclohexylphosphino)methyl)phenyl-C-P-P')palladium hydride (**17**); the resulting solution was pressurized with oxygen, presumably generating *in situ* (2,6-bis((dicyclohexylphosphino)methyl)phenyl-C-P-P')palladium hydroperoxide, which then transferred one oxygen atom to *tert*-butyl isocyanide to generate the corresponding isocyanate. The identity of the resulting palladium complex was not clear, but was presumed to be the palladium hydroxide. The experimental verification that the oxygen atom can transfer to an organic substrate is encouraging and suggests that, under the right conditions and with the right alkene, epoxidation of an alkene should be possible.

78

Figure 4-2: Oxygen atom transfer from palladium hydroperoxide to isocyanide to form isocyanate has been demonstrated³⁹

Additionally, oxygen atom transfer to an inorganic substrate has been demonstrated. Smythe, in her Ph.D. work at the University of Washington in the Goldberg group, obtained triphenylphospine oxide from triphenylphosphine in the presence of (2,6-bis((di-*tert*-butylphosphino)methyl)phenyl-C-P-P')palladium hydroperoxide⁹¹ (**2**), as shown in Figure 4-3. This conversion is likely driven by formation of the strong phosphine oxide bond.

Figure 4-3: Oxygen atom transfer from palladium hydroperoxide to triphenylphosphine to form phosphine oxide has been demonstrated⁹¹

Partial Negative Charge of Proximal Oxygen Atom in Palladium Hydroperoxide

The oxygen atom transfer reaction has not yet been examined computationally or experimentally, and so the mechanism is not yet known. It is reasonable to suggest, however, that the oxygen proximal to the transition metal is the one transferred to the alkene. Proximal oxygen atom transfer is seen in several analogous epoxidations with transition metal alkyl peroxides.^{6,92,93}

As a late transition metal, palladium is electron-rich and can donate electrons into the empty oxygen-oxygen π^* orbital, resulting in a partial negative charge on oxygen and thus enabling nucleophilic addition of the proximal oxygen to the carbon-carbon double bond. The partial negative charge of the oxygen atom proximal to palladium in palladium hydroperoxides was confirmed by determining the CHELPG charges of the oxygen atoms in the seven palladium hydroperoxides shown in Figure 4-4. The CHELPG charges for the oxygen proximal to palladium ranged from -0.32 Debye to -0.44 Debye, showing all to be strongly electron-rich. This electron-rich oxygen was expected to transfer most readily to electron-deficient alkenes rather than electron-rich alkenes.

80

Figure 4-4: Seven palladium hydroperoxides examined for CHELPG charge on proximal oxygen, with CHELPG charges indicated

Reaction Mechanism Determined for Model System

The reaction mechanism for oxygen atom transfer to an alkene was first examined for (2,6-bis(phosphinomethyl)phenyl-C-P-P')palladium hydroperoxide (14), with propene (81) as the oxygen atom acceptor. The double bond in propene is very slightly electron-donating. The reaction coordinate for this reaction is shown in Figure 4-5. The oxygen atom transfers in a simple concerted manner, through transition state 82 in which the oxygen atom proximal to palladium complexes to the alkene in a "butterfly" formation. This transition state barrier is 25.1 kcal/mol and the resulting product palladium hydroxide **83** and epoxide **84** are 41.5 kcal/mol lower in energy than the reactants.

Figure 4-5: Reaction coordinate for epoxidation of propene (81)

Several changes occur as the reaction progresses, as seen in Figure 4-6. Notably, the distance between palladium and the proximal oxygen atom increases from 2.06 Å in the palladium hydroperoxide **14** to 2.21 Å in the transition state **82** as the oxygen-oxygen bond distances increases from 1.48 Å to 1.67 Å. The carbon-carbon bond in the alkene increases from 1.34 Å (typical double bond) in the alkene reactant **81** to 1.41 Å in the transition state **82** to 1.47 Å (typical single bond) in the epoxide product **84**. From the transition state **82** to the product epoxide **84**, the oxygen-carbon bond lengths decrease from 2.35 Å and 1.65 Å to 1.44 Å each as the carbon-oxygen bonds are formed. As expected, the oxygen atom proximal to palladium is transferred to the alkene. The oxygen atom is transferred in a simple concerted manner through a "butterfly" transition state. Interestingly, the distance between palladium and the oxygen atom distal to palladium is longer in the transition state **82** than it is in either the reactants or products: it first increases from 2.91 Å in the palladium hydroperoxide **14** to 3.17 Å in the transition state **82** before decreasing to a typical palladium-oxygen bond length of 2.06 Å in the product palladium hydroxide **83**. This suggests that there is some interaction between the palladium and distal oxygen atom in the palladium hydroperoxide **14** that diminishes in the transition state **82**.

Figure 4-6: Representations of (a) palladium hydroperoxide and alkene reactants, (b) "butterfly" transition state, and (c) palladium hydroxide and epoxide products

Effect of Nucleophilicity of Alkene on Activation Energy

Knowing the general mechanism of the reaction, the effect of the alkene nucleophilicity on the activation energy for this reaction was next considered. Five different alkenes were examined, ranging from electron-rich to electron-poor, as shown in Figure 4-7. Methoxyethene (**85**) has a very electron-rich carbon-carbon double bond due to electron donation from the neighboring methoxy group. Both propene (**81**) and styrene (**86**) have carbon-carbon double bonds that are neither particularly electron-rich nor particularly electron-deficient: the methyl group adjacent to the double bond in propene (**81**) is very slightly electron-donating through the inductive effect and the phenyl ring in styrene (**86**) is very slightly electron-donating through the resonance effect, but these effects are very small and the alkenes are essentially neither electron-rich nor electron-poor. Both methyl acrylate (**87**) and acrylonitrile (**88**) have very electron-rich

Figure 4-7: Alkenes examined for epoxidation range from electron-rich to electron-poor

The single electron-rich alkene examined, methoxyethene (**85**), proceeds through a transition state **89** with an activation barrier of 25.7 kcal/mol, the largest activation barrier in the series of alkenes examined. This reaction coordinate is shown in Figure 4-8. Like the analogous reaction coordinate for epoxidation of propene (**81**), the products of this reaction (palladium hydroxide **83** and epoxide **90**) are more stable than the reactant palladium hydroperoxide **14** and methoxyethene (**85**).

Figure 4-8: Reaction coordinate for epoxidation of methoxyethene (85)

Like propene (81), the carbon-carbon double bond of styrene (86) is neither particularly electron-rich nor electron-deficient. The phenyl group on styrene (**86**) has some ability to both donate and accept electron density from the alkene, but the effect on the double bond is weak relative to the more electronrich methoxyethene (**85**) and the electron-deficient methyl acrylate (**87**) and acrylonitrile (**88**). The 22.1 kcal/mol activation barrier for oxygen atom transfer to styrene (**86**) is lower than it is for methoxyethene (**85**) and propene (**81**); like methoxyethene (**85**) and propene (**81**), the reactants (palladium hydroperoxide **14** and alkene **86**) are significantly higher in energy than the products of this reaction, palladium hydroxide **83** and epoxide **92** (see Figure 4-9).

Figure 4-9: Reaction coordinate for epoxidation of styrene (86)

Methyl acrylate (**87**) has a very electron-deficient carbon-carbon double bond. *A priori*, oxygen atom transfer to methyl acrylate (**87**) was expected to be favored over oxygen atom transfer to more electron-rich alkenes. Indeed, epoxidation of methyl acrylate (**87**) has the smallest activation barrier of all the alkenes examined: the transition state **93** is only 13.9 kcal/mol higher in energy than the reactants. This activation barrier is more than 8 kcal/mol smaller than for the epoxidation of styrene (**86**) and is shown in Figure 4-10. The product epoxide **94** and palladium hydroxide **83** are significantly lower in energy than the reactant alkene **87** and palladium hydroperoxide **14**.

Figure 4-10: Reaction coordinate for epoxidation of methylacrylate (87)

The last of the five alkenes, acrylonitrile (**88**), is the most electron-deficient alkene examined. Despite several attempts to find the transition state for oxygen atom transfer to acrylonitrile, the transition state calculation did not converge. This could be because the epoxidation of acrylonitrile is so facile and the transition state barrier is so small that the transition state could not be located. Like the other epoxidation reactions examined, the products (epoxide **95** and palladium hydroxide **83**) are significantly more stable than the reactants (alkene **88** and palladium hydroperoxide **14**), by 35.1 kcal/mol. This is shown in Figure 4-11.

Figure 4-11: Reaction coordinate for epoxidation of acrylonitrile (88)

Conclusions and Direction for Future Experimental Work

The transition state barriers calculated here range from 13.9 kcal/mol for the epoxidation of methyl acrylate (**87**) to 25.7 kcal/mol for the epoxidation of methoxyethene (**85**); clearly, epoxidation of electron-deficient alkenes is significantly favored over epoxidation of electron-rich alkenes. Thermodynamically, the epoxidation reaction is favored for all alkenes: the products are significantly lower in energy than the reactants. These calculations strongly support future experimental work focusing on epoxidation of electrondeficient alkenes such as methyl acrylate. Although a transition state for the epoxidation of acrylonitrile (**88**) could not be identified computationally, acrylonitrile has a very electrophilic carbon-carbon double bond and would be a good candidate for further experimental work. Other alkenes to consider that were not examined here include cyclohexenone, acrylic acid, methyl isopropenyl ketone, methacrylonitrile, and N,N-dimethylmethacrylamide: all have electrondeficient carbon-carbon double bonds and therefore the activation barrier for epoxidation is expected to be low.
Chapter 5: Palladium Hydride Regeneration from Palladium Hydroxide and Hydrogen

Third Step of Proposed Catalytic Cycle

The final step of the proposed catalytic cycle is the regeneration of palladium hydride from palladium hydroxide. A generic form of this reaction is shown below, in Figure 5-1. This reaction has been demonstrated experimentally for the conversion of (2,6-bis((di-*tert*-butylphosphino)methyl)phenyl-C-P-P')palladium hydroxide (**96**) to the corresponding palladium hydride⁴⁰ **16** (see Figure 5-2 below). On addition of 7.0 atm of hydrogen at room temperature, the palladium hydroxide **96** was converted to palladium hydride **16** quantitatively over the course of 60 hours. Kinetic studies and preliminary computational mechanistic studies were also performed by Kemp, Goldberg, and coworkers.⁴⁰

Figure 5-1: Third step of proposed catalytic cycle is regeneration of palladium hydride from palladium hydroxide and hydrogen

Figure 5-2: Conversion of (2,6-bis((di-*tert*-butylphosphino)methyl)phenyl-C-P-P')palladium hydroxide (96) to the corresponding palladium hydride 16, demonstrated by Kemp, Goldberg, and coworkers⁴⁰

Possible Mechanisms Considered for Hydrogenolysis of Palladium Hydroxide

Several mechanisms for this reaction were considered, including oxidative addition of hydrogen to the palladium hydroxide **96**, forming an octahedral palladium(IV) intermediate **97**, followed by reductive elimination of water to give the palladium hydride **16** as shown in Figure 5-3a. A second mechanism considered was internal electrophilic substitution,^{94,95} in which an electrophilic metal activates the hydrogen-hydrogen bond by pulling electron density from the metal-bound hydrogen atom while the lone pair of electrons on the hydroxide group abstracts the second hydrogen. This mechanism involves direct proton transfer from molecular hydrogen to the hydroxide oxygen with simultaneous dissociation of the palladium-oxygen bond and formation of a palladium-

hydrogen bond and would occur through a four-center transition state **98**, as shown in Figure 5-3b. The authors turned to computational methods to distinguish between the two potential pathways and found that the four-center transition state **98** is significantly lower in energy than the octahedral palladium intermediate **97**, suggesting that the reaction occurs through a concerted internal electrophilic substitution pathway.⁴⁰

Figure 5-3: Two reaction mechanisms for the hydrogenolysis of palladium hydroxide 96 proposed by Kemp, Goldberg, and coworkers:⁴⁰ a) oxidative addition and reductive elimination through an octahedral palladium(IV) intermediate 97, and b) internal electrophilic substitution through a four-center transition state 98

Reaction Coordinate Reproduced for Model System

As further verification of methods, the calculations performed by Kemp, Goldberg, and coworkers⁴⁰ to determine the energies of the octahedral palladium intermediate 97 and four-center transition state 98 were reproduced and are shown in Figure 5-4 for (2,6-bis(phosphinomethyl)phenyl-C-P-P')palladium hydroxide (96). There is a 2.5 kcal/mol difference in the energies determined for the octahedral palladium intermediate 97 and a 4.6 kcal/mol difference in the energies determined for the four-center internal electrophilic substitution transition state 98; these energy differences are in opposite directions, resulting in a 7.1 kcal/mol difference in the stabilization of the four-center transition state 98 over the octahedral intermediate 97. If the results obtained here are more accurate, then the internal electrophilic substitution reaction is only favored by 6.1 kcal/mol, rather than 13.2 kcal/mol as initially reported by Kemp, Goldberg, and coworkers.⁴⁰ The discrepancies seen between the two sets of calculations may be due to slight differences in basis sets used to describe main-group atoms (Kemp, Goldberg, and coworkers used "a valence double zeta plus polarization basis set"⁴⁰ while Pople's 6-31+q(d) split-valence double- ζ basis set with polarization and diffuse functions was used here). The palladium atom was described with the same basis set here and by Kemp, Goldberg, and coworkers,⁴⁰ and all other computational methods were identical to the extent described by Kemp, Goldberg, and coworkers. The transition state obtained here contains exactly one imaginary frequency and intrinsic reaction coordinate

94

calculations were performed to confirm that the transition state obtained connects the reactants and products and involves movement of the appropriate atoms.

Figure 5-4: Reaction coordinate for conversion of palladium hydroxide 96 and hydrogen to palladium hydride 16 and water, as calculated in this research and by Kemp, Goldberg, and coworkers⁴⁰

Effect of Ligand Atoms of Attachment on Reaction Mechanism

In an effort to determine the effect of the atoms attached to palladium *cis*

to the hydroxide and to provide guidance for the experimentalists working on this

project, the hydrogenolysis of a series of palladium hydroxides was examined. The palladium hydroxides considered are shown in Figure 5-5 and include ligands with carbon, nitrogen, oxygen, phosphorus, and sulfur atoms attached to palladium *cis* to the hydroxide. The mechanism of hydrogenolysis of (2,6bis(phosphinomethyl)phenyl-C-P-P')palladium hydroxide is discussed above; reaction coordinates for hydrogenolysis of the other palladium hydroxides will be presented below.

Figure 5-5: Palladium hydroxides considered for hydrogenolysis

The four-center transition state **103** and the octahedral intermediate **104** in the hydrogenolysis of (2,6-bis(N-methyl-imidazol-2-ylidene)methylphenyl-C-C'-C")palladium hydroxide (**99**) are close enough in energy that the reaction could reasonably undergo either internal electrophilic substitution or oxidative-

addition/reductive elimination to produce the desired palladium hydride **41** (see Figure 5-6). With an energy difference of only 7.5 kcal/mol, neither pathway is strongly favored over the other. The energy of the products is close to the energy of reactants, and so this reaction is not strongly favored thermodynamically.

Figure 5-6: Reaction coordination for regeneration of palladium hydride 41 from the corresponding palladium hydroxide 99

The calculated reaction mechanism for the hydrogenolysis of (2,6-bis((dimethylamino)methyl)phenyl-C-N-N')palladium hydroxide (**100**) is shown in Figure 5-7. For the hydrogenolysis of this palladium hydroxide **100**, the difference in energies between the octahedral palladium intermediate **105** and the four-center transition state **106** is quite large and the reaction would be expected to undergo hydrogenolysis only through the internal electrophilic substitution pathway. The products, palladium hydride **54** and water, are slightly higher in energy than the reactants, palladium hydroxide **100** and hydrogen.

At 15.5 kcal/mol, the difference in energy between the octahedral palladium intermediate **107** and the four-center transition state **108** for the hydrogenolysis of (2,6-bis(methylthiomethyl)phenyl-C-S-S')palladium hydroxide (**102**) is large enough that the system is unlikely to undergo oxidation-

addition/reductive-elimination (see Figure 5-8). Like the other palladium hydroxides examined, the reactants (palladium hydroxide **102** and hydrogen) and products (palladium hydride **40** and water) are very similar in energy and the internal electrophilic substitution transition state barrier is moderately large.

In addition to the palladium hydroxides discussed above, the reaction coordinate for conversion of (2,6-bis(methoxymethyl)phenyl-C-O-O')palladium hydroxide (**101**) to the corresponding palladium hydride **39** was examined (see Figure 5-9). Despite several efforts, however, the transition state along the

internal electrophilic substitution pathway for this reaction could not be located. Instead, when hydrogen is added to the palladium hydroxide **101**, hydrogen adds across the palladium-oxygen bond and one methoxy arm of the ligand dissociates, leaving palladium bound to the aromatic ring, one methoxy arm, hydrogen, and water (intermediate **109**). This intermediate **109** is over 26 kcal/mol more stable than the reactants, suggesting that this particular palladium hydroxide **101** would undergo hydrogenation across the palladium-oxygen bond rather than hydrogenolysis. The octahedral palladium intermediate **110** is 56.6 kcal/mol higher in energy than the palladium hydroxide **101** and hydrogen reactants, making hydrogenolysis through an oxidative-addition/reductiveelimination pathway highly unlikely. The difficulty finding a transition state for the hydrogenolysis of **101** could be due to the coordinatively labile methoxy arms on the ligand. Ethers are known to be particularly labile and can be incorporated into a ligand to facilitate reversible binding of small molecules to the metal center.^{96,97} Although that is often desired, the hydrogenation of the palladium hydroxide **101** allowed by the lability of the methoxy arm is counterproductive to the desired reaction here.

100

Palladium Hydride Regeneration

Figure 5-9: Reaction coordination for regeneration of palladium hydride 39 from the corresponding palladium hydroxide 101

A similar reaction was seen by Goldberg, Kemp, and coworkers for ((2-(methoxymethyl)-6-((di-*tert*-butylphosphino)methyl))phenyl-C-O-P)palladium hydroxide, which has a hemilabile ligand.⁹⁸ Upon addition of hydrogen gas to the palladium hydroxide, the authors noted formation of a palladium(0) species containing two (2-(methoxymethyl)-6-((di-*tert*-butylphosphino)methyl))phenyl ligands, bound to palladium in monodentate fashion through the phosphorus atoms.⁹⁸ This is shown in Figure 5-10. Although the authors presented three potential mechanisms, they concluded that the mechanism shown in Figure 5-10 was most likely based on the results of hydrogen/deuterium scrambling experiments. The proposed four-coordinate hydro-hydridopalladium intermediate in which the methoxy arm of the ligand has dissociated from palladium is analogous to the stable hydro-hydridopalladium species **109** calculated for the addition of hydrogen to palladium hydroxide **101** in Figure 5-9 above. This similarity between the predicted outcome of addition of hydrogen to a palladium hydroxide complex with a hemilabile ligand and the observed experimental reaction between hydrogen and a palladium hydroxide complex with a hemilabile ligand provides further confirmation that the computational methods employed here are valid and accurately predicting experimental results.

Figure 5-10: Possible mechanism for the addition of hydrogen to ((2-(methoxymethyl)-6-((di-*tert*-butylphosphino)methyl))phenyl-C-O-P)palladium hydroxide, as proposed by Goldberg, Kemp, and coworkers⁹⁸

Conclusions and Direction for Future Experimental Work

Although the activation energies found for the regeneration of palladium hydride from palladium hydroxide are relatively large (ranging from 23.3 kcal/mol to 27.9 kcal/mol) and the products are not significantly more stable than the reactants, it is important to remember that this reaction has been demonstrated experimentally. Because the products and reactants are close in energy, the

potential exists for the reactants (palladium hydroxide and hydrogen) and products (palladium hydride and water) to exist in equilibrium. Obviously, the reverse reaction (conversion of palladium hydride to palladium hydroxide) would not be productive in the proposed catalytic cycle, so the reaction may need to be driven forward by the addition of an excess of hydrogen and the removal of water. Additionally, the choice of ligand clearly plays an important role in the regeneration of palladium hydride and hemi-labile ligands should be avoided because of the potential for hydrogenation of the palladium hydroxide rather than hydrogenolysis.

Chapter 6: Conclusions

Proposed Catalytic Cycle

The ability to selectively epoxidize alkenes using molecular oxygen as the stoichiometric oxidant is an ambitious but important goal. With large spin-orbit coupling constants, transition metals can mediate the reaction between the alkenes, which exist as singlets, and ground-state-triplet oxygen; achieving such a reaction catalytically would drastically reduce the cost and environmental impact associated with the transition metal. Accordingly, the catalytic cycle shown in Figure 6-1 was proposed and examined in its entirety computationally to determine whether such a catalytic cycle was feasible.

Figure 6-1: Proposed catalytic cycle for the epoxidation of an alkene using molecular oxygen as the stoichiometric oxidant

Computational Results for Each Step of the Proposed Catalytic Cycle

Each of the three steps of this proposed catalytic cycle was examined

here. The first step, insertion of oxygen into a palladium-hydride bond (shown in

Figure 6-2), proceeds through a transition state that is 14-20 kcal/mol higher in energy than the corresponding reactants. Such a moderate activation barrier should be easily overcome. The product of this reaction, a singlet palladium hydroperoxide, is significantly more stable than the reactants, thermodynamically driving the reaction toward the palladium hydroperoxide product.

Figure 6-2: First step of proposed catalytic cycle is insertion of oxygen into palladium-hydride bond

The large number of potential tridentate ligands that could be used in this reaction effectively prohibit both the experimental and direct computational identification of the best ligand to use. Experimentally, it is both expensive and time-consuming to prepare a large number of palladium hydrides and determine the appropriate conditions under which oxygen can be inserted into the palladium-hydride bond; computationally, it is time-consuming to map out the reaction coordinates for the preparation of a large number of palladium hydroperoxides. In light of this, a physical property of the starting palladium hydrides that correlated well with the activation energy required to insert oxygen was sought. Although the activation energies did not correlate well with the palladium-hydride bond dipoles, there was a good correlation between the

activation energies and lengths of the palladium-hydride bonds, making the bond length an appropriate proxy for the ease with which oxygen can be inserted into the palladium-hydride bond. Complexes with longer palladium-hydride bonds should undergo oxygen insertion more rapidly than complexes with shorter palladium-hydride bonds. Experimental focus for this step should concentrate on palladium hydrides with relatively long palladium-hydride bonds.

The second step of the catalytic cycle, transfer of oxygen from the palladium hydroperoxide to an alkene (shown in Figure 6-3), is arguably the most important step in the cycle, as it is the one accomplishing the desired conversion of an alkene to an epoxide. If necessary, the palladium hydroperoxide could be prepared differently or the palladium hydride could be regenerated from palladium hydroxide in a different way, but without the oxygen transfer step the catalytic cycle will not accomplish the desired conversion of alkenes to epoxides. Several alkenes were examined to determine whether oxygen transfer to electron-rich or electron-deficient alkenes would be more facile. With the oxygen atom proximal to the palladium relatively electron-rich, it was anticipated that oxygen transfer to electron-deficient alkenes would be most readily accomplished. Indeed, the calculations performed confirmed this: an activation barrier of 14 kcal/mol was found for oxygen atom transfer to electron-deficient alkenes, while up to 26 kcal/mol was required for oxygen transfer to electron-rich alkenes. Fortunately, the products of this reaction are considerably more stable than the reactants (41-44 kcal/mol more stable), providing a thermodynamic

108

driving force for oxygen transfer. Because this reaction has not yet been demonstrated experimentally and is vital to the success of the proposed catalytic cycle, experimentalists should focus on this reaction, first attempting epoxidation of electron-deficient alkenes.

Figure 6-3: Second step of proposed catalytic cycle is oxygen atom transfer from palladium hydroperoxide to an alkene, forming an epoxide

The last step of the catalytic cycle, regeneration of palladium hydride from palladium hydroxide (shown in Figure 6-4), is one that has been demonstrated experimentally. The effect of the ligand atoms of attachment *cis* to the hydride was explored. Despite the fact that activation barriers for this reaction are moderate (23-27 kcal/mol) and the products are not significantly more stable than the reactants, this reaction is feasible. However, hemilabile ligands should be avoided, as they may allow for hydrogenation of the palladium-hydride bond rather than hydrogenolysis, leading to undesired reactions.

Figure 6-4: Third step of the proposed catalytic cycle is regeneration of palladium hydride from palladium hydroxide and hydrogen

Summary of Results

To summarize the results obtained above, experimentalists should keep the following points in mind when attempting to demonstrate the individual steps of the catalytic cycle:

- for oxygen insertion into a palladium-hydride bond:
 - the reaction is favored thermodynamically and the transition state barriers are all less than 20 kcal/mol, indicating that this reaction should occur readily at or near room temperature,
 - to increase ease of oxygen insertion, focus on palladium hydride complexes with relatively long palladium-hydride bonds, as calculated in Chapter 3 above,
 - complexes with neutral ligands and a counterion tended to have relatively short palladium-hydrogen bonds, so should be avoided, and

- palladium-hydrogen bond dipoles, whether calculated from Mulliken charges or CHELPG charges, were not a good predictor of activation energy for oxygen insertion;
- for epoxidation of an alkene by palladium hydroperoxide:
 - o the reaction is thermodynamically favored,
 - activation barriers for epoxidation range from 14 kcal/mol for the most electron-deficient alkene to 26 kcal/mol for the most electron-rich alkene, therefore electron-deficient alkenes clearly undergo epoxidation more readily than electron-rich alkenes, and
 - since this is the most important step of the proposed catalytic cycle and since epoxidation of an alkene by palladium hydroperoxide has not yet been demonstrated experimentally, experimental efforts should be focused on this key step; and
- for the regeneration of palladium hydride from palladium hydroxide:
 - transition state barriers are relatively large (23-28 kcal/mol), so heat may be required for this step of the proposed catalytic cycle,
 - it may be necessary to add an excess of hydrogen and remove water as it is formed to drive the potential equilibrium toward palladium hydride, since the products (palladium hydride and

water) and reactants (palladium hydroxide and hydrogen) are close in energy, and

 complexes with hemilabile ligands should be avoided because they have the potential to undergo hydrogenation of the palladium hydroxide rather than hydrogenolysis.

In conclusion, no fundamental flaw was found in the catalytic cycle proposed and experimental work on this project should continue. The calculations performed here can provide guidance to the experimentalists working to demonstrate oxygen transfer from a palladium hydroperoxide to an alkene and attempting to prepare a fully functional transition-metal-mediated catalytic cycle in which molecular oxygen is used as a stoichiometric oxidant in the epoxidation of alkenes.

List of Appendices

Appendix A: Abbreviations and Symbols	114
Appendix B: Optimized Geometries of Selected Complexes	119

Appendix A: Abbreviations and Symbols

0	Degree
+	Transition state indicator
6-31+g(d)	Pople's split-valence double- ζ basis set with six primitive Gaussians
	comprising each core atomic orbital basis function and valence orbitals
	composed of two basis functions each, the first one composed of a
	linear combination of three primitive Gaussian functions and the other
	composed of one primitive Gaussian function, with polarization and
	diffuse functions added
δ	Partial negative charge
δ^{+}	Partial positive charge
ΔΕ	Change in energy
ΔG	Change in Gibbs free energy
ΔΗ	Change in enthalpy
ζ	Basis function applied to an atomic orbital
η	Hapticity of a ligand complexed to a transition metal
μ	Bond dipole
π	Bonding molecular orbital
π*	Antibonding molecular orbital
Å	Angstroms

APT	Atomic polar tensor atomic charge calculation scheme
atm	Atmospheres of pressure
B3LYP	Becke's three-parameter hybrid functional combined with the Lee, Yang,
	and Parr correlation functional
bipy	2,2'-Bipyridine
Bn	Benzyl group
(CCC)	Tridentate ligand attached to transition metal through three carbon
	atoms
CHELPG	Charges from electrostatic potentials using a grid-based method, an
	atomic charge calculation scheme
(CNC)	Tridentate ligand attached to transition metal through two carbon atoms
	and a central nitrogen atom
Су	Cyclohexyl group
$d(x^{2}_{x-y})$	d-Orbital with lobes aligned along the x- and y-axes
DFT	Density functional theory computational method
Et	Ethyl group
h	Hours
HMPA	Hexamethylphosphoramide
ⁱ Pr	Isopropyl group
К	Kelvin
kcal/mol	Kilocalories per mole
L	Any ligand
L _n	Any number of ligands

- LACVP* A basis set that uses the 6-31g(d) basis set for atoms H Ar and the LANL2DZ basis set for atoms heavier than argon
- LACVP** A basis set that uses the 6-31g(d,p) basis set for atoms H Ar and the LANL2DZ basis set for atoms heavier than argon
- LANL2DZ Los Alamos National Laboratories second-order double-ζ basis set of contracted Gaussian functions
- LDA Lithium diisopropylamide
- M Any transition metal
- Me Methyl group
- MECP Minimum energy crossing point
- (NCN) Tridentate ligand attached to transition metal through two nitrogen atoms and a central carbon atom
- (NNN) Tridentate ligand attached to transition metal through three nitrogen atoms
- (OCO) Tridentate ligand attached to transition metal through two oxygen atoms and a central carbon atom
- (PCN) Tridentate ligand attached to transition metal through a phosphorus atom, a carbon atom, and a nitrogen atom
- (PCO) Tridentate ligand attached to transition metal through a phosphorus atom, a carbon atom, and an oxygen atom
- (PCP) Tridentate ligand attached to transition metal through two phosphorus atoms and a central carbon atom
- Ph Phenyl group

(PNP)	Tridentate ligand attached to transition metal through two phosphorus
	atoms and a central nitrogen atom
(PPP)	Tridentate ligand attached to transition metal through three phosphorus
	atoms
(PSiP)	Tridentate ligand attached to transition metal through two phosphorus
	atoms and a central silicon atom
pyr	Pyridine
q _H	Atomic charge on hydrogen
q _{Pd}	Atomic charge on palladium
r	Bond length
R	Any organic substituent
R'	Any organic substituent
R"	Any organic substituent
R ¹	Any organic substituent
R ²	Any organic substituent
R ²	Coefficient of determination
(R)-BINOL	Optically active (R)-enantiomer of 1,1'-Bi-2-naphthol
RMS	Root-mean-square value
S	Spin
(SCS)	Tridentate ligand attached to transition metal through two sulfur atoms
	and a central carbon atom
SP	Single-point
STS	Spin transition state
^t Bu	tert-Butyl group

- TS Transition state
- X Any ligand
- X: A ligand with a lone pair of electrons

Appendix B: Optimized Geometries of Selected Complexes

This appendix contains additional structural information for selected complexes studied and presented in this dissertation. The information is included to provide the reader with a more complete understanding of the optimized geometry of each complex and to assist with reproduction of the work presented. For each complex, the appendix contains:

- the complex number, as referenced in the dissertation,
- the figures in which the complex was presented,
- a graphical representation of the complex, with most hydrogen atoms omitted,
- a ball-and-stick representation of the complex, presented in the optimized geometry, with atoms labeled by center number and element,
- the energy of the complex, in hartrees,
- palladium-hydrogen bond length, for palladium hydrides, and
- a table that lists, for each atom in the complex, the following:
 - o the center number and element,
 - o x,y,z coordinates,
 - Mulliken atomic charge,

- o CHELPG atomic charge (where applicable),
- o Mulliken atomic spin density (where applicable), and
- APT atomic charge (where applicable).

*** *** ***

(PCP) palladium hydride 1

(see Figure 1-10, Figure 1-12, Figure 2-5, Figure 3-2, Figure 3-14)

Energy:	-1750.55930362	hartrees
---------	----------------	----------

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0000	-0.4985	0.0000	-1.6987	-0.0086		
2H	0.0000	-2.1513	0.0001	0.0020	-0.2863		
3C	0.0000	4.4356	-0.0001	-0.2472	-0.0719		
4C	-1.1837	3.7349	-0.2477	-0.3258	-0.2956		
5C	-1.1863	2.3316	-0.2541	0.6291	0.2056		
6C	0.0000	1.6036	-0.0001	1.0428	-0.3235		
7C	1.1863	2.3316	0.2540	0.6291	0.2057		
8C	1.1837	3.7349	0.2475	-0.3257	-0.2957		
9H	0.0000	5.5232	-0.0001	0.1676	0.1077		
10H	-2.1027	4.2866	-0.4435	0.1619	0.1163		
11H	2.1027	4.2866	0.4433	0.1619	0.1163		
12C	-2.4665	1.5782	-0.5823	-1.7285	-0.0403		
13C	2.4665	1.5782	0.5821	-1.7285	-0.0401		
14H	-3.3524	2.0512	-0.1388	0.2484	0.0311		

15H	-2.6325	1.5914	-1.6673	0.2509	0.0271	
16H	3.3524	2.0512	0.1385	0.2484	0.0310	
17H	2.6326	1.5916	1.6671	0.2509	0.0271	
18P	-2.3064	-0.2255	-0.0811	0.9648	-0.0468	
19P	2.3064	-0.2255	0.0811	0.9648	-0.0479	
20C	3.2490	-1.1727	1.4506	-0.4613	0.6512	
21C	3.1638	-0.3458	-1.6261	-0.4136	0.6250	
22C	-3.1638	-0.3457	1.6261	-0.4136	0.6240	
23C	-3.2489	-1.1728	-1.4506	-0.4613	0.6510	
24C	2.3166	-1.1434	2.6842	-0.4763	-0.2690	
25H	2.1184	-0.1240	3.0350	0.2169	0.0525	
26H	1.3559	-1.6189	2.4635	0.2589	0.0451	
27H	2.7947	-1.6887	3.5097	0.2111	0.0414	
28C	4.6052	-0.5469	1.8376	-0.4246	-0.4048	
29H	5.0283	-1.1077	2.6826	0.2164	0.0731	
30H	5.3356	-0.5833	1.0255	0.2165	0.0758	
31H	4.5071	0.4956	2.1590	0.2206	0.0621	
32C	3.4523	-2.6440	1.0388	-0.5066	-0.3980	
33H	4.2008	-2.7517	0.2470	0.2166	0.0707	
34H	3.8125	-3.2144	1.9060	0.2126	0.0713	
35H	2.5151	-3.0990	0.7005	0.2580	0.0842	
36C	-2.5475	0.7633	2.5096	-0.6074	-0.1892	
37H	-1.4585	0.6761	2.5700	0.2519	0.0115	
38H	-2.7825	1.7691	2.1471	0.2375	0.0260	
39H	-2.9561	0.6717	3.5253	0.2113	0.0265	
40C	-2.8317	-1.7093	2.2695	-0.6297	-0.3702	
41H	-1.7512	-1.8761	2.3127	0.2521	0.0668	
42H	-3.2272	-1.7279	3.2946	0.2081	0.0649	
43H	-3.2777	-2.5486	1.7286	0.2160	0.0709	
44C	-4.6911	-0.1528	1.5799	-0.3854	-0.4297	
45H	-5.1973	-0.9827	1.0777	0.2230	0.0841	
46H	-5.0789	-0.1098	2.6071	0.2184	0.0774	
47H	-4.9817	0.7806	1.0837	0.2248	0.0758	
48C	-3.4523	-2.6441	-1.0386	-0.5066	-0.3999	
49H	-2.5151	-3.0990	-0.7002	0.2580	0.0848	
50H	-4.2008	-2.7517	-0.2468	0.2166	0.0713	
51H	-3.8126	-3.2145	-1.9058	0.2126	0.0719	
52C	-2.3166	-1.1437	-2.6841	-0.4763	-0.2717	
53H	-1.3559	-1.6191	-2.4633	0.2589	0.0457	

54H	-2.7947	-1.6890	-3.5095	0.2111	0.0422	
55H	-2.1183	-0.1243	-3.0350	0.2169	0.0533	
56C	-4.6052	-0.5470	-1.8376	-0.4246	-0.4038	
57H	-5.0282	-1.1079	-2.6826	0.2164	0.0730	
58H	-5.3355	-0.5833	-1.0255	0.2165	0.0755	
59H	-4.5070	0.4954	-2.1591	0.2206	0.0618	
60C	2.8317	-1.7095	-2.2693	-0.6297	-0.3707	
61H	1.7512	-1.8764	-2.3125	0.2521	0.0669	
62H	3.2271	-1.7282	-3.2944	0.2081	0.0649	
63H	3.2778	-2.5487	-1.7284	0.2160	0.0710	
64C	2.5474	0.7631	-2.5097	-0.6074	-0.1892	
65H	1.4584	0.6758	-2.5700	0.2519	0.0116	
66H	2.7823	1.7690	-2.1473	0.2375	0.0259	
67H	2.9560	0.6714	-3.5254	0.2113	0.0264	
68C	4.6911	-0.1528	-1.5799	-0.3854	-0.4302	
69H	5.0789	-0.1099	-2.6071	0.2184	0.0774	
70H	4.9817	0.7806	-1.0839	0.2248	0.0759	
71H	5.1973	-0.9827	-1.0776	0.2230	0.0842	

*** *** ***

(PCP) palladium hydroperoxide 2

(see Figure 1-10, Figure 2-12, Figure 3-2, Figure 4-3, Figure 4-4)

Energy: -1900.93546116 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	0.0577	1.7330	-0.0414	1.5199	-0.5044		
2C	2.5295	1.7196	0.5626	-1.6462	-0.1976		
3H	2.6860	1.7394	1.6488	0.2574	0.0563		
4H	3.4135	2.1965	0.1205	0.2524	0.0685		
5C	1.2483	2.4578	0.2189	0.5282	0.3584		
6C	1.2532	3.8605	0.2055	-0.3352	-0.3615		
7H	2.1784	4.3994	0.4048	0.1659	0.1336		
8C	0.0808	4.5728	-0.0507	-0.2836	-0.0314		
9H	0.0892	5.6601	-0.0548	0.1716	0.1072		
10C	-1.1031	3.8766	-0.2997	-0.3719	-0.3629		
11H	-2.0207	4.4282	-0.4992	0.1662	0.1358		
12C	-1.1199	2.4740	-0.3021	0.5476	0.4247		
13C	-2.4085	1.7491	-0.6316	-1.8349	-0.4064		
14H	-2.5390	1.7274	-1.7208	0.2574	0.1045		

1						
15H	-3.2886	2.2684	-0.2314	0.2505	0.1118	
16C	3.1852	-0.2241	-1.6481	-0.5632	0.5295	
17C	3.2971	-1.0372	1.4343	-0.6235	0.6769	
18C	-3.3949	-0.9439	-1.3798	-0.5950	0.7172	
19C	-3.1029	-0.0813	1.6640	-0.5083	0.5305	
20C	2.8030	-1.5860	-2.2680	-0.6356	-0.4232	
21H	3.1711	-1.6220	-3.3028	0.2078	0.0855	
22H	1.7184	-1.7300	-2.2802	0.2630	0.0873	
23H	3.2423	-2.4294	-1.7294	0.2219	0.0938	
24C	4.7173	-0.0676	-1.6243	-0.3704	-0.3861	
25H	5.2104	-0.8984	-1.1110	0.2275	0.0775	
26H	5.0349	0.8692	-1.1511	0.2246	0.0670	
27H	5.0918	-0.0543	-2.6571	0.2195	0.0735	
28C	2.5824	0.8922	-2.5309	-0.6431	-0.1392	
29H	2.8490	1.8952	-2.1821	0.2353	0.0134	
30H	1.4908	0.8305	-2.5747	0.2532	-0.0028	
31H	2.9724	0.7807	-3.5516	0.2137	0.0250	
32C	2.3590	-1.0226	2.6646	-0.4749	-0.2090	
33H	1.4182	-1.5374	2.4480	0.2845	0.0164	
34H	2.1290	-0.0056	3.0048	0.2120	0.0311	
35H	2.8560	-1.5413	3.4960	0.2107	0.0287	
36C	3.5039	-2.5049	1.0074	-0.5460	-0.3513	
37H	4.2525	-2.6019	0.2141	0.2117	0.0539	
38H	2.5622	-2.9532	0.6741	0.2893	0.0702	
39H	3.8714	-3.0762	1.8712	0.2101	0.0555	
40C	4.6495	-0.4053	1.8244	-0.3994	-0.4927	
41H	5.0848	-0.9864	2.6491	0.2188	0.0916	
42H	4.5443	0.6264	2.1775	0.2183	0.0815	
43H	5.3727	-0.4117	1.0047	0.2178	0.0948	
44C	-2.4716	-1.1370	-2.6053	-0.5204	-0.3856	
45H	-3.0458	-1.6059	-3.4166	0.2091	0.0684	
46H	-1.6258	-1.7856	-2.3592	0.2793	0.0797	
47H	-2.0818	-0.1858	-2.9883	0.2125	0.0553	
48C	-3.8471	-2.3321	-0.8835	-0.5090	-0.4038	
49H	-4.6168	-2.2618	-0.1077	0.2121	0.0578	
50H	-3.0064	-2.9182	-0.5051	0.2870	0.1115	
51H	-4.2912	-2.8771	-1.7284	0.2073	0.0609	
52C	-4.6408	-0.1372	-1.8082	-0.3750	-0.4615	
53H	-5.1917	-0.7204	-2.5591	0.2187	0.0849	

1	1 1					1
54H	-4.3884	0.8221	-2.2711	0.2157	0.0786	
55H	-5.3271	0.0556	-0.9787	0.2216	0.0796	
56C	-2.3749	0.9827	2.5166	-0.6492	-0.1830	
57H	-2.7587	0.9308	3.5447	0.2121	0.0313	
58H	-2.5409	2.0015	2.1507	0.2382	0.0217	
59H	-1.2950	0.8090	2.5472	0.2497	0.0060	
60C	-2.8343	-1.4690	2.2884	-0.6807	-0.3011	
61H	-3.1385	-1.4487	3.3442	0.2058	0.0486	
62H	-1.7744	-1.7383	2.2371	0.2748	0.0614	
63H	-3.3994	-2.2641	1.7961	0.2277	0.0488	
64C	-4.6121	0.2243	1.6798	-0.3743	-0.4175	
65H	-5.1974	-0.5439	1.1671	0.2272	0.0806	
66H	-4.8456	1.1955	1.2279	0.2221	0.0693	
67H	-4.9601	0.2586	2.7214	0.2185	0.0811	
68O	0.2661	-2.3836	0.2839	-0.2033	-0.3761	
69O	-0.8111	-3.1857	-0.3343	-0.6687	-0.4978	
70P	2.3687	-0.0715	0.0727	1.5705	0.0899	
71P	-2.3203	-0.0328	-0.0774	1.4716	0.2227	
72Pd	0.0416	-0.3202	0.0112	-2.1303	0.0894	
73H	-0.3279	-4.0141	-0.4911	0.5038	0.3660	

*** *** ***

(PNP) palladium hydride 3

(see Figure 2-2, Figure 3-15)

Energy:	-1999	.60962913	hartrees
---------	-------	-----------	----------

Palladium-h	ydrogen	bond	length:	1.585	Å
			<u> </u>		

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0000	-1.1975	0.0000	-1.5521	-0.0987		
2H	0.0000	-2.7829	0.0000	0.0819	-0.2144		
3N	0.0000	0.9414	0.0000	0.3583	-0.1769		
4C	3.7110	2.7643	0.8197	-0.2539	0.4612		
5C	3.6628	1.4510	0.3848	0.1563	-0.4298		
6C	2.4245	0.8459	0.1174	-0.5099	0.1158		
7C	1.2010	1.5796	0.2616	0.6221	0.0247		
8C	1.3153	2.9071	0.7614	-0.1385	-0.1309		
9C	2.5469	3.4941	1.0333	-0.7701	-0.3437		
10H	4.5948	0.9036	0.2816	0.1956	0.1918		
11H	0.4179	3.4722	0.9826	0.2002	0.1382		
12H	2.6071	4.5049	1.4265	0.1979	0.1833		
13C	-3.7110	2.7643	-0.8198	-0.2539	0.4611		
14C	-2.5470	3.4941	-1.0333	-0.7702	-0.3436		

1						
15C	-1.3154	2.9071	-0.7614	-0.1384	-0.1311	
16C	-1.2010	1.5796	-0.2616	0.6221	0.0251	
17C	-2.4245	0.8459	-0.1175	-0.5103	0.1151	
18C	-3.6629	1.4509	-0.3848	0.1566	-0.4294	
19H	-2.6071	4.5049	-1.4264	0.1979	0.1833	
20H	-0.4179	3.4722	-0.9825	0.2002	0.1382	
21H	-4.5948	0.9035	-0.2817	0.1956	0.1917	
22P	-2.2788	-0.9322	0.3194	1.4309	0.1457	
23P	2.2788	-0.9322	-0.3194	1.4311	0.1454	
24C	-3.4745	-1.8454	-0.7944	-0.0105	0.3904	
25H	-4.4648	-1.3889	-0.6638	0.2148	-0.0578	
26C	-2.9131	-1.1555	2.0750	-0.3936	0.2815	
27H	-2.7876	-2.2309	2.2599	0.2273	-0.0368	
28C	2.9132	-1.1556	-2.0750	-0.3936	0.2806	
29H	2.7878	-2.2310	-2.2598	0.2273	-0.0361	
30C	3.4745	-1.8453	0.7945	-0.0106	0.3904	
31H	4.4647	-1.3887	0.6641	0.2149	-0.0578	
32C	4.3902	-0.7863	-2.2859	-0.6127	-0.2027	
33H	5.0660	-1.3490	-1.6320	0.2136	0.0302	
34H	4.6796	-1.0066	-3.3217	0.2131	0.0478	
35H	4.5606	0.2830	-2.1192	0.2385	0.0416	
36C	2.0043	-0.3955	-3.0562	-0.7507	-0.2423	
37H	2.0683	0.6873	-2.8977	0.2394	0.0435	
38H	2.3156	-0.6031	-4.0879	0.2081	0.0650	
39H	0.9559	-0.6911	-2.9474	0.2350	0.0386	
40C	3.5605	-3.3310	0.4055	-0.7890	-0.3746	
41H	2.5740	-3.8066	0.4564	0.2441	0.0927	
42H	3.9596	-3.4793	-0.6040	0.2152	0.0797	
43H	4.2255	-3.8568	1.1023	0.2120	0.0795	
44C	3.0519	-1.6829	2.2643	-0.7885	-0.2354	
45H	2.0700	-2.1381	2.4387	0.2360	0.0472	
46H	3.7796	-2.1826	2.9165	0.2062	0.0513	
47H	2.9982	-0.6308	2.5621	0.2368	0.0345	
48C	-3.5602	-3.3312	-0.4055	-0.7890	-0.3748	
49H	-3.9591	-3.4796	0.6041	0.2152	0.0799	
50H	-4.2253	-3.8570	-1.1022	0.2120	0.0794	
51H	-2.5737	-3.8065	-0.4565	0.2441	0.0928	
52C	-3.0522	-1.6829	-2.2643	-0.7885	-0.2354	
53H	-2.0702	-2.1379	-2.4388	0.2360	0.0471	

54H	-3.7799	-2.1826	-2.9163	0.2062	0.0513	
55H	-2.9987	-0.6307	-2.5620	0.2368	0.0345	
56C	-2.0043	-0.3952	3.0561	-0.7508	-0.2425	
57H	-0.9558	-0.6907	2.9473	0.2350	0.0386	
58H	-2.0685	0.6876	2.8975	0.2394	0.0434	
59H	-2.3156	-0.6028	4.0879	0.2081	0.0651	
60C	-4.3901	-0.7864	2.2859	-0.6127	-0.2029	
61H	-4.5607	0.2829	2.1191	0.2385	0.0415	
62H	-5.0658	-1.3493	1.6320	0.2136	0.0302	
63H	-4.6795	-1.0067	3.3217	0.2131	0.0479	
64F	4.9238	3.3404	1.0793	-0.3699	-0.2846	
65F	-4.9238	3.3403	-1.0794	-0.3699	-0.2846	

(PCP) palladium hydride 4

(see Figure 2-3, Figure 3-14)

Energy: -2028.81802534 hartrees

Palladium-hydrogen bond length: 1.659 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0001	-1.0113	0.4563	-1.6989	-0.0405		
2Fe	-0.0002	2.7235	-0.5867	-1.7151	0.0283		
3P	-2.3242	-0.8287	0.0926	0.5157	0.0092		
4P	2.3244	-0.8283	0.0925	0.5160	0.0114		
5C	0.0000	0.5851	-0.8215	1.9722	-0.2688		
6C	1.1573	1.1827	-1.4087	0.7590	0.1385		
7C	0.7200	2.1153	-2.4128	0.3321	-0.2282		
8H	1.3456	2.7427	-3.0377	0.1737	0.1266		
9C	-0.7202	2.1152	-2.4128	0.3315	-0.2286		
10H	-1.3459	2.7426	-3.0377	0.1737	0.1265		
11C	-1.1574	1.1826	-1.4087	0.7578	0.1396		
12C	0.0017	3.2869	1.4312	-0.0474	-0.1796		

1						
13H	0.0036	2.5932	2.2611	0.1946	0.1258	
14C	1.1548	3.8136	0.7707	-0.1577	-0.1336	
15H	2.1865	3.5976	1.0178	0.1689	0.1143	
16C	0.7120	4.6626	-0.2900	-0.0161	-0.1139	
17H	1.3462	5.1887	-0.9921	0.1828	0.1092	
18C	-0.7172	4.6606	-0.2880	-0.0168	-0.1149	
19H	-1.3547	5.1850	-0.9884	0.1828	0.1099	
20C	-1.1547	3.8104	0.7739	-0.1586	-0.1339	
21H	-2.1851	3.5915	1.0238	0.1689	0.1142	
22C	-2.5339	0.7383	-0.9711	-2.1061	-0.0878	
23H	-3.1959	0.5328	-1.8210	0.2514	0.0338	
24H	-3.0369	1.5032	-0.3715	0.2461	0.0483	
25C	2.5339	0.7385	-0.9713	-2.1065	-0.0876	
26H	3.0370	1.5035	-0.3719	0.2461	0.0481	
27H	3.1957	0.5329	-1.8214	0.2514	0.0339	
28C	-2.9876	-2.2361	-1.0279	-0.5399	0.6465	
29C	-2.2214	-2.1283	-2.3669	-0.5181	-0.2496	
30H	-2.4974	-2.9812	-3.0015	0.2148	0.0363	
31H	-1.1385	-2.1567	-2.2144	0.2410	0.0472	
32H	-2.4593	-1.2152	-2.9221	0.2289	0.0405	
33C	-4.4995	-2.1622	-1.3144	-0.3649	-0.4076	
34H	-4.7599	-2.9205	-2.0660	0.2187	0.0745	
35H	-4.8072	-1.1890	-1.7146	0.2246	0.0702	
36H	-5.0988	-2.3733	-0.4237	0.2233	0.0756	
37C	-2.6440	-3.6037	-0.3997	-0.6350	-0.4220	
38H	-2.8970	-4.3995	-1.1141	0.2066	0.0719	
39H	-3.2052	-3.7967	0.5183	0.2139	0.0892	
40H	-1.5789	-3.6735	-0.1604	0.2647	0.0816	
41C	-3.4387	-0.5293	1.6198	-0.4376	0.5812	
42C	-3.6280	-1.8409	2.4080	-0.4836	-0.3063	
43H	-4.0792	-1.6106	3.3829	0.2139	0.0621	
44H	-2.6729	-2.3454	2.5891	0.2604	0.0543	
45H	-4.3007	-2.5366	1.8958	0.2176	0.0469	
46C	-4.8189	0.0843	1.3043	-0.3604	-0.4304	
47H	-5.3553	0.2555	2.2482	0.2187	0.0851	
48H	-5.4422	-0.5693	0.6892	0.2191	0.0851	
49H	-4.7412	1.0529	0.7993	0.2157	0.0706	
50C	-2.6467	0.4567	2.5078	-0.4349	-0.3179	
51H	-3.2330	0.6825	3.4093	0.2118	0.0496	

52H	-2.4439	1.4031	1.9964	0.2244	0.1083	
53H	-1.6874	0.0284	2.8165	0.2513	0.0525	
54C	2.9878	-2.2359	-1.0277	-0.5396	0.6442	
55C	2.2213	-2.1285	-2.3666	-0.5183	-0.2489	
56H	2.4972	-2.9816	-3.0011	0.2148	0.0362	
57H	2.4589	-1.2155	-2.9221	0.2289	0.0404	
58H	1.1384	-2.1569	-2.2138	0.2410	0.0471	
59C	2.6445	-3.6034	-0.3992	-0.6350	-0.4220	
60H	2.8974	-4.3993	-1.1134	0.2066	0.0721	
61H	1.5794	-3.6732	-0.1596	0.2647	0.0816	
62H	3.2059	-3.7961	0.5187	0.2139	0.0893	
63C	4.4996	-2.1620	-1.3147	-0.3650	-0.4067	
64H	4.7599	-2.9202	-2.0663	0.2187	0.0745	
65H	5.0992	-2.3730	-0.4241	0.2233	0.0753	
66H	4.8072	-1.1887	-1.7150	0.2246	0.0699	
67C	3.4391	-0.5285	1.6195	-0.4375	0.5799	
68C	2.6476	0.4584	2.5070	-0.4354	-0.3124	
69H	3.2338	0.6840	3.4086	0.2118	0.0483	
70H	1.6879	0.0308	2.8155	0.2512	0.0510	
71H	2.4457	1.4048	1.9953	0.2245	0.1064	
72C	4.8196	0.0845	1.3037	-0.3602	-0.4313	
73H	5.3559	0.2563	2.2474	0.2187	0.0854	
74H	4.7422	1.0526	0.7977	0.2157	0.0707	
75H	5.4428	-0.5700	0.6892	0.2191	0.0854	
76C	3.6280	-1.8398	2.4085	-0.4836	-0.3057	
77H	4.0793	-1.6091	3.3832	0.2139	0.0617	
78H	4.3003	-2.5359	1.8965	0.2176	0.0470	
79H	2.6727	-2.3438	2.5898	0.2604	0.0539	
80H	0.0002	-2.3358	1.4555	0.0086	-0.2893	

(PNP) palladium hydroperoxide 5

(see Figure 2-4, Figure 3-25, Figure 4-4)

Energy: -2030.12719742 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.0031	-1.0173	0.0322	-2.0101	0.0763		
2H	0.1438	-4.0198	-1.4760	0.4852	0.3965		
3N	-0.0512	1.0641	-0.0395	0.5000	-0.4878		
4C	3.6107	3.1135	0.7679	-0.1702	0.2011		
5C	3.5793	1.7775	0.3619	-0.1095	-0.3012		

1						
6C	2.3802	1.0948	0.1014	-0.5813	-0.1841	
7C	1.1250	1.7605	0.2198	0.4701	0.3368	
8C	1.1656	3.1006	0.6880	-0.0073	-0.2361	
9C	2.3681	3.7467	0.9450	-0.8740	-0.2310	
10H	4.5234	1.2446	0.2680	0.1690	0.1591	
11H	0.2380	3.6249	0.8868	0.1991	0.1405	
12H	2.3396	4.7710	1.3145	0.1739	0.1395	
13C	-3.8210	2.8419	-0.9859	-0.1310	0.2064	
14C	-2.6136	3.5167	-1.2403	-0.8455	-0.2341	
15C	-1.3763	2.9617	-0.9392	-0.0032	-0.2305	
16C	-1.2610	1.6761	-0.3462	0.6271	0.2742	
17C	-2.4809	0.9652	-0.1449	-0.6333	-0.0414	
18C	-3.7172	1.5561	-0.4510	0.0052	-0.3476	
19H	-2.6417	4.5005	-1.7071	0.1746	0.1408	
20H	-0.4791	3.5109	-1.2007	0.2008	0.1417	
21H	-4.6308	0.9872	-0.2884	0.1679	0.1673	
22P	-2.3029	-0.7640	0.4102	1.6395	0.2081	
23P	2.3061	-0.6930	-0.2700	2.0356	0.4140	
24C	-3.4835	-1.7985	-0.6080	-0.1550	0.4552	
25H	-4.4871	-1.3647	-0.4997	0.2149	-0.0757	
26C	-2.8885	-0.8957	2.1904	-0.3848	0.3189	
27H	-2.7206	-1.9518	2.4416	0.2349	-0.0425	
28C	2.9950	-0.9972	-1.9862	-0.4589	0.2598	
29H	2.8967	-2.0841	-2.1014	0.2522	-0.0146	
30C	3.4739	-1.5233	0.9377	-0.2741	0.3966	
31H	4.4387	-1.0037	0.8531	0.2131	-0.0770	
32C	4.4669	-0.5976	-2.1773	-0.6190	-0.2569	
33H	5.1350	-1.0891	-1.4612	0.2154	0.0381	
34H	4.7983	-0.8845	-3.1842	0.2111	0.0560	
35H	4.6003	0.4862	-2.0844	0.2336	0.0502	
36C	2.0943	-0.3222	-3.0343	-0.8163	-0.2320	
37H	2.1132	0.7695	-2.9328	0.2371	0.0453	
38H	2.4462	-0.5718	-4.0437	0.2062	0.0604	
39H	1.0548	-0.6529	-2.9422	0.2366	0.0139	
40C	3.6797	-3.0115	0.6062	-0.7382	-0.3155	
41H	2.7300	-3.5543	0.6075	0.2849	0.1168	
42H	4.1490	-3.1594	-0.3725	0.2101	0.0485	
43H	4.3397	-3.4608	1.3598	0.2037	0.0502	
44C	2.9477	-1.3450	2.3724	-0.7426	-0.3425	

45H	1.9914	-1.8645	2.4990	0.2489	0.0644	
46H	3.6650	-1.7743	3.0839	0.2043	0.0800	
47H	2.8062	-0.2902	2.6312	0.2314	0.0548	
48C	-3.5051	-3.2499	-0.0935	-0.7486	-0.3649	
49H	-3.9242	-3.3259	0.9159	0.2146	0.0647	
50H	-4.1287	-3.8663	-0.7540	0.2067	0.0690	
51H	-2.4940	-3.6728	-0.0738	0.2737	0.0989	
52C	-3.0891	-1.7367	-2.0934	-0.7629	-0.3826	
53H	-2.0945	-2.1687	-2.2530	0.2352	0.0993	
54H	-3.8090	-2.3102	-2.6917	0.2052	0.0801	
55H	-3.0770	-0.7094	-2.4719	0.2379	0.0635	
56C	-1.9912	-0.0395	3.1001	-0.7573	-0.2060	
57H	-0.9355	-0.3098	2.9973	0.2394	0.0243	
58H	-2.0920	1.0267	2.8658	0.2391	0.0346	
59H	-2.2816	-0.1827	4.1488	0.2079	0.0504	
60C	-4.3742	-0.5635	2.4041	-0.5814	-0.2506	
61H	-4.5835	0.4859	2.1679	0.2363	0.0471	
62H	-5.0397	-1.1912	1.8009	0.2139	0.0377	
63H	-4.6395	-0.7231	3.4575	0.2128	0.0533	
64C	4.9100	3.8403	1.0303	-0.6838	-0.1918	
65H	4.9069	4.3344	2.0106	0.2139	0.0522	
66H	5.7627	3.1522	1.0091	0.2000	0.0471	
67H	5.0984	4.6193	0.2787	0.2200	0.0513	
68C	-5.1582	3.4733	-1.2993	-0.6696	-0.1880	
69H	-5.9757	2.7528	-1.1824	0.1993	0.0464	
70H	-5.3717	4.3224	-0.6354	0.2204	0.0503	
71H	-5.1959	3.8537	-2.3285	0.2145	0.0521	
720	0.8264	-3.5941	-0.9296	-0.5612	-0.5022	
730	0.0059	-3.0456	0.1578	-0.1580	-0.3974	

*** *** ***

(PCP) palladium hydride 6

(see Figure 2-6, Figure 3-14)

Energy: -1985.77542003 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	0.0323	0.6843	0.6103	0.3729	0.0727		
2C	0.1256	2.9915	1.0602	-0.4342	-0.0173		
ЗH	-0.5208	3.6323	1.6657	0.2192	0.0380		
4H	0.5946	3.5494	0.2403	0.2882	0.0738		
5C	1.2136	2.2934	1.8582	-0.2619	0.0718		

6H	2.1919	2.7252	1.6275	0.3075	0.0664	
7H	1.0094	2.2855	2.9361	0.2009	0.0106	
8C	-1.9029	2.0967	-0.1188	0.3529	0.0319	
9C	-2.0838	3.3940	-0.6346	-0.1764	-0.1503	
10H	-1.2568	4.0930	-0.6214	0.2147	0.1334	
11C	-3.2944	3.7973	-1.1911	-0.4729	-0.0870	
12H	-3.3877	4.8044	-1.5879	0.1953	0.1261	
13C	-4.3681	2.9102	-1.2389	-0.6179	-0.1646	
14H	-5.3246	3.2109	-1.6570	0.1863	0.1250	
15C	-4.1931	1.6163	-0.7513	0.2925	-0.1008	
16H	-5.0329	0.9327	-0.8089	0.1763	0.0973	
17C	-2.9799	1.1701	-0.1969	-0.5616	0.0486	
18C	-3.3784	-0.6817	2.1083	-0.4520	0.1896	
19H	-3.3286	-1.7541	2.3386	0.2319	-0.0149	
20C	-2.4013	0.0448	3.0469	-0.7578	-0.0773	
21H	-2.3849	1.1231	2.8505	0.2353	0.0106	
22H	-1.3815	-0.3393	2.9485	0.2378	-0.0363	
23H	-2.7189	-0.0971	4.0875	0.2134	0.0378	
24C	-4.8197	-0.1936	2.3252	-0.6850	-0.1669	
25H	-5.0944	-0.3173	3.3805	0.2174	0.0472	
26H	-5.5495	-0.7536	1.7309	0.2154	0.0305	
27H	-4.9219	0.8695	2.0791	0.2431	0.0114	
28C	-4.1018	-1.5457	-0.6559	-0.0618	0.4329	
29H	-5.0732	-1.0674	-0.4813	0.2072	-0.0580	
30C	-4.1937	-2.9969	-0.1511	-0.7326	-0.3843	
31H	-4.9179	-3.5467	-0.7648	0.2154	0.0823	
32H	-4.5307	-3.0622	0.8891	0.2142	0.0794	
33H	-3.2263	-3.5040	-0.2351	0.2485	0.0916	
34C	-3.7935	-1.5127	-2.1625	-0.6935	-0.2519	
35H	-2.8361	-2.0020	-2.3704	0.2526	0.0617	
36H	-3.7472	-0.4935	-2.5589	0.2312	0.0355	
37H	-4.5788	-2.0509	-2.7083	0.2083	0.0484	
38C	2.2502	0.0298	1.5669	-0.1049	0.0336	
39C	3.0543	0.3451	2.6776	-0.0060	-0.2028	
40H	2.7810	1.1712	3.3211	0.1845	0.1386	
41C	4.2153	-0.3633	2.9704	-0.4759	-0.0409	
42H	4.8092	-0.0798	3.8348	0.1883	0.1127	
43C	4.6128	-1.4118	2.1448	-0.5730	-0.1958	
44H	5.5287	-1.9624	2.3389	0.1849	0.1243	

45C	3.8138	-1.7442	1.0533	0.2514	-0.0212	
46H	4.1359	-2.5624	0.4192	0.1763	0.1012	
47C	2.6248	-1.0631	0.7403	-0.4402	-0.0304	
48C	2.0135	-3.4888	-0.8426	-0.1214	0.3707	
49H	3.0945	-3.5641	-1.0215	0.2169	-0.0565	
50C	1.6498	-4.2589	0.4383	-0.7445	-0.1636	
51H	0.5706	-4.2029	0.6210	0.2429	0.0211	
52H	2.1651	-3.8777	1.3245	0.2323	-0.0082	
53H	1.9189	-5.3164	0.3208	0.2069	0.0425	
54C	1.2938	-4.1164	-2.0503	-0.7973	-0.4280	
55H	1.5395	-5.1848	-2.0971	0.2110	0.0971	
56H	1.5908	-3.6725	-3.0054	0.2072	0.0927	
57H	0.2075	-4.0213	-1.9498	0.2416	0.1080	
58C	2.2787	-0.8829	-2.2712	-0.4515	0.4145	
59H	2.1681	-1.7023	-2.9930	0.1970	-0.0697	
60C	3.7640	-0.4955	-2.1841	-0.8558	-0.3436	
61H	4.1108	-0.2028	-3.1831	0.2166	0.0796	
62H	4.3987	-1.3219	-1.8421	0.1982	0.0290	
63H	3.9069	0.3682	-1.5265	0.3049	0.1161	
64C	1.4198	0.2968	-2.7566	-0.6692	-0.2444	
65H	1.5541	1.1793	-2.1217	0.3042	0.0825	
66H	0.3573	0.0310	-2.8053	0.2024	-0.0054	
67H	1.7470	0.5816	-3.7649	0.2116	0.0512	
68N	-0.6570	1.8453	0.5199	0.1047	0.0176	
69N	1.1526	0.9050	1.3255	0.2302	0.0387	
70P	-2.8044	-0.5942	0.3144	1.3296	0.1288	
71P	1.6078	-1.6570	-0.6804	1.8654	0.1626	
72Pd	-0.5951	-1.1597	-0.1367	-2.0013	-0.1840	
73H	-1.0658	-2.5955	-0.6896	0.0327	-0.1549	
74Br	3.0070	3.2878	-0.9048	-0.5717	-0.7584	

(PNP) palladium hydride 7

(see Figure 2-8, Figure 3-15)

Energy: -1893.55689849 hartrees

Palladium-hydrogen bond length: 1.570 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.0344	-1.3047	0.1818	-1.5991	-0.1554		
2P	2.2350	-1.3076	-0.2492	1.8975	0.1174		
3P	-2.3316	-0.8515	0.1820	1.2469	0.1437		
4N	0.1081	0.8858	-0.0244	0.0392	0.2502		
5C	1.4666	1.3906	-0.1848	0.4163	-0.2196		

1			1	1		1	1
6C	2.5525	0.5092	-0.3386	-0.6552	0.2001		
7C	3.8551	1.0385	-0.4059	-0.0293	-0.4754		
8C	4.1071	2.4097	-0.3077	-0.1923	0.3667		
9C	3.0110	3.2617	-0.0998	-0.5917	-0.3831		
10C	1.7144	2.7622	-0.0250	-0.0304	0.1163		
11C	-0.9289	1.3051	-0.9601	0.1735	-0.0830		
12C	-2.1933	0.6714	-0.8689	-0.3738	0.0150		
13C	-3.2448	1.1345	-1.6704	0.1546	-0.3044		
14C	-3.0815	2.1696	-2.6011	-0.1703	0.2532		
15C	-1.8038	2.7249	-2.7252	-0.9341	-0.2672		
16C	-0.7457	2.3100	-1.9135	0.0562	-0.0721		
17C	5.5133	2.9586	-0.3863	-0.6928	-0.2414		
18C	-4.2399	2.6634	-3.4373	-0.7081	-0.2229		
19C	2.7588	-2.0808	-1.8796	-0.4694	0.2913		
20C	4.2541	-1.9767	-2.2204	-0.5847	-0.2076		
21C	1.8888	-1.5354	-3.0248	-0.7734	-0.2364		
22C	3.4090	-1.9447	1.0615	-0.1461	0.4337		
23C	3.3646	-3.4813	1.1262	-0.8018	-0.3217		
24C	3.0583	-1.3180	2.4224	-0.7274	-0.3108		
25C	-3.2027	-0.3357	1.7606	-0.2967	0.3862		
26C	-4.6987	-0.0363	1.5850	-0.5721	-0.3306		
27C	-3.4479	-2.0084	-0.7852	-0.0894	0.4331		
28C	-3.7060	-3.3063	0.0001	-0.7467	-0.4100		
29C	-2.8482	-2.3257	-2.1656	-0.7480	-0.2728		
30H	-0.1955	1.2250	0.9447	0.3216	0.1340		
31H	-0.1587	-2.8660	0.2898	0.1024	-0.1595		
32H	4.7013	0.3637	-0.5025	0.1762	0.1932		
33H	3.1767	4.3280	0.0383	0.1887	0.1709		
34H	0.8862	3.4247	0.2038	0.2513	0.0822		
35H	-4.2183	0.6550	-1.6004	0.1715	0.1676		
36H	-1.6253	3.5060	-3.4614	0.1806	0.1494		
37H	0.2243	2.7776	-2.0331	0.2018	0.0989		
38H	5.6549	3.5612	-1.2929	0.2276	0.0628		
39H	5.7355	3.6066	0.4702	0.2273	0.0785		
40H	6.2573	2.1551	-0.4020	0.2036	0.0585		
41H	-4.7229	3.5322	-2.9698	0.2318	0.0713		
42H	-5.0068	1.8903	-3.5592	0.2071	0.0541		
43H	-3.9110	2.9725	-4.4359	0.2106	0.0621		
44H	2.5057	-3.1400	-1.7368	0.2340	-0.0318		

45H	4.4633	-2.5612	-3.1256	0.2160	0.0485	
46H	4.5455	-0.9411	-2.4268	0.2306	0.0418	
47H	4.8993	-2.3643	-1.4243	0.2166	0.0302	
48H	2.1100	-2.0802	-3.9513	0.2124	0.0696	
49H	2.0910	-0.4732	-3.2062	0.2359	0.0321	
50H	0.8209	-1.6463	-2.8099	0.2372	0.0324	
51H	4.4224	-1.6294	0.7780	0.2185	-0.0755	
52H	4.0219	-3.8332	1.9310	0.2170	0.0688	
53H	3.7010	-3.9534	0.1963	0.2138	0.0624	
54H	2.3502	-3.8361	1.3420	0.2443	0.0740	
55H	3.7666	-1.6719	3.1821	0.2074	0.0733	
56H	3.1028	-0.2249	2.4027	0.2513	0.0559	
57H	2.0491	-1.6027	2.7407	0.2450	0.0698	
58H	-5.0892	0.3877	2.5185	0.2243	0.0799	
59H	-4.8820	0.7000	0.7945	0.2212	0.0505	
60H	-5.2849	-0.9371	1.3634	0.2155	0.0572	
61H	-4.4067	-1.4917	-0.9257	0.2227	-0.0717	
62H	-4.3172	-3.9857	-0.6076	0.2093	0.0864	
63H	-2.7653	-3.8185	0.2342	0.2411	0.0976	
64H	-4.2409	-3.1295	0.9374	0.2213	0.0971	
65H	-3.5389	-2.9684	-2.7270	0.2064	0.0543	
66H	-2.6685	-1.4241	-2.7593	0.2337	0.0413	
67H	-1.8975	-2.8611	-2.0615	0.2370	0.0594	
68C	-2.9241	-1.3057	2.9215	-0.8490	-0.2264	
69H	-3.3144	-0.8679	3.8481	0.2198	0.0680	
70H	-1.8491	-1.4564	3.0584	0.2388	0.0224	
71H	-3.4004	-2.2833	2.7848	0.1977	0.0263	
72H	-2.6819	0.6005	2.0077	0.2933	-0.0215	
73Br	-0.6389	2.1325	2.8431	-0.4661	-0.6889	

*** *** ***

(PPP) palladium hydride 8

(see Figure 2-9, Figure 3-16)

Energy: -2360.41287169 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-1.8637	-2.0759	0.2703	1.3122	-0.0578		
2C	-2.6841	-3.1187	0.7165	-0.2957	-0.1353		
3C	-3.6034	-3.7070	-0.1526	-0.0623	-0.1015		
4C	-3.6979	-3.2615	-1.4778	-0.3381	-0.1264		
5C	-2.8708	-2.2326	-1.9284	-0.1687	-0.2359		
6C	-1.9478	-1.6260	-1.0545	-1.8559	0.1519		
7H	-1.1410	-1.6420	0.9514	0.2555	0.1234		
8H	-2.5692	-3.4734	1.7362	0.2279	0.1545		

1						
9H	-4.2383	-4.5193	0.1924	0.1834	0.1158	
10H	-4.4077	-3.7221	-2.1608	0.1774	0.1175	
11H	-2.9476	-1.9126	-2.9654	0.1699	0.1380	
12P	-0.8115	-0.3016	-1.6344	1.1052	0.2519	
13C	-1.9196	0.8225	-2.6262	-0.5950	-0.1094	
14H	-1.2720	1.5521	-3.1310	0.2312	0.0332	
15H	-2.4126	0.2403	-3.4148	0.2280	0.0297	
16C	-2.9948	1.5519	-1.7916	-0.5938	0.1213	
17H	-3.7247	1.9773	-2.4934	0.2135	0.0032	
18H	-3.5527	0.8220	-1.1915	0.2439	-0.0346	
19C	-2.5042	2.7120	-0.8974	-0.7725	-0.2135	
20H	-1.9350	3.4292	-1.5046	0.2345	0.0678	
21H	-3.3815	3.2497	-0.5152	0.2312	0.0692	
22C	0.2232	-1.1427	-2.9315	-0.7866	-0.1367	
23H	0.5205	-0.3858	-3.6709	0.2182	0.0388	
24H	-0.4112	-1.8689	-3.4534	0.2450	0.0476	
25C	1.4720	-1.8484	-2.3562	-0.3978	0.0421	
26H	1.2305	-2.3729	-1.4241	0.2911	0.0343	
27H	1.7771	-2.6224	-3.0725	0.2074	0.0141	
28C	2.6829	-0.9171	-2.1481	-0.9859	-0.1311	
29H	3.5848	-1.5275	-2.0154	0.2454	0.0367	
30H	2.8402	-0.3167	-3.0552	0.2279	0.0667	
31P	-1.4187	2.2691	0.5531	1.3176	0.2648	
32P	2.6097	0.2653	-0.7005	1.9256	0.3341	
33C	-1.0266	3.9225	1.3116	-0.4890	0.1166	
34H	-0.4046	4.4450	0.5741	0.2366	-0.0265	
35H	-0.3625	3.7053	2.1557	0.2565	0.0180	
36C	-2.1985	4.8059	1.7595	-0.7718	-0.1479	
37H	-2.8084	4.3196	2.5285	0.2220	0.0333	
38H	-1.8156	5.7389	2.1904	0.2174	0.0397	
39H	-2.8568	5.0789	0.9271	0.2109	0.0317	
40C	-2.5737	1.4410	1.7480	-0.5454	0.2751	
41H	-3.4592	2.0793	1.8718	0.2228	-0.0528	
42H	-2.9113	0.5141	1.2701	0.2586	-0.0716	
43C	-1.9285	1.1184	3.1054	-0.8813	-0.2275	
44H	-1.0647	0.4563	2.9926	0.3013	0.0730	
45H	-1.6054	2.0270	3.6272	0.2069	0.0449	
46H	-2.6571	0.6118	3.7489	0.2174	0.0431	
47C	3.6970	1.6715	-1.2623	-0.6040	-0.0825	

48H	3.1570	2.1715	-2.0767	0.2255	-0.0034	
49H	3.7184	2.3870	-0.4327	0.2465	0.0378	
50C	5.1245	1.3157	-1.7027	-0.7190	0.0397	
51H	5.7038	0.8742	-0.8848	0.2225	-0.0045	
52H	5.1351	0.6103	-2.5414	0.2174	-0.0192	
53H	5.6529	2.2203	-2.0278	0.2118	0.0060	
54C	3.5670	-0.6046	0.6220	-0.5306	0.3742	
55H	3.0284	-1.5342	0.8260	0.3124	-0.0430	
56H	4.5409	-0.8754	0.1917	0.2154	-0.0898	
57C	3.7406	0.1909	1.9210	-0.9397	-0.2241	
58H	4.2659	1.1416	1.7627	0.1902	0.0168	
59H	2.7701	0.3922	2.3810	0.2726	0.0715	
60H	4.3221	-0.4054	2.6322	0.2314	0.0523	
61Pd	0.4673	1.0402	-0.1083	-1.1432	-0.2809	
62H	1.3160	2.0475	0.7902	0.0746	-0.1355	
63B	0.9569	-2.4675	2.3059	1.5599	0.8683	
64F	2.1376	-2.6104	3.0403	-0.5623	-0.4431	
65F	-0.0792	-3.2587	2.8192	-0.5903	-0.4476	
66F	1.1997	-2.8177	0.9406	-0.6037	-0.4369	
67F	0.5465	-1.0936	2.3237	-0.5899	-0.3798	

(PCP) palladium hydride 9

(see Figure 2-10, Figure 3-14)

Energy: -1593.32259113 hartree:	s
---------------------------------	---

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0600	-0.6576	-0.0598	-0.9702	-0.0623		
2H	0.0946	-2.3068	-0.0675	0.0053	-0.2923		
3C	-0.0377	4.2781	0.0345	-0.6548	-0.0302		
4C	-1.2043	3.5584	-0.2417	0.6877	-0.3292		
5C	-1.1728	2.1570	-0.2875	0.5951	0.2303		
6C	0.0263	1.4494	-0.0332	-0.7750	-0.3953		
7C	1.1954	2.1953	0.2460	0.5112	0.2282		
8C	1.1601	3.5985	0.2719	0.6340	-0.3027		
9H	-0.0620	5.3651	0.0626	0.1692	0.0961		
10H	-2.1332	4.0942	-0.4339	0.1616	0.1302		
11H	2.0652	4.1662	0.4853	0.1623	0.1153		
12C	-2.4195	1.3709	-0.6621	-1.2345	-0.1206		
13C	2.4925	1.4600	0.5500	-1.8389	-0.0152		
14H	-3.3425	1.8582	-0.3232	0.2265	0.0425		
15H	-2.4944	1.2923	-1.7565	0.2545	0.0599		

16H	3,3613	1,9397	0.0786	0.2427	0.0127	
17H	2.6883	1.4702	1.6317	0.2513	0.0155	
18P	-2.2432	-0.3780	-0.0241	0.8815	0.1406	
19P	2.3427	-0.3358	0.0301	1.0745	0.1276	
20C	3.3726	-1.2986	1.2692	-0.2129	0.3907	
21C	3.2970	-0.4336	-1.5811	-0.0727	0.3360	
22C	-2.8720	-0.3216	1.7473	-0.1667	0.4058	
23C	-3.4324	-1.4437	-1.0196	-0.2715	0.4217	
24C	2.6535	-1.3530	2.6286	-0.7268	-0.3035	
25H	2.5914	-0.3623	3.0962	0.2132	0.0670	
26H	1.6363	-1.7432	2.5221	0.2445	0.0529	
27H	3.2048	-2.0063	3.3173	0.2039	0.0647	
28C	4.8216	-0.8044	1.4147	-0.6026	-0.2693	
29H	5.3610	-1.4339	2.1347	0.2100	0.0545	
30H	5.3746	-0.8409	0.4696	0.2098	0.0430	
31H	4.8604	0.2259	1.7891	0.2241	0.0439	
32H	3.3855	-2.3192	0.8649	0.2240	-0.0511	
33H	-2.2216	0.4464	2.1886	0.2370	-0.0563	
34C	-2.5863	-1.6533	2.4646	-0.8507	-0.3847	
35H	-1.5368	-1.9458	2.3656	0.2464	0.0788	
36H	-2.8260	-1.5618	3.5320	0.2041	0.0898	
37H	-3.2015	-2.4679	2.0610	0.2090	0.0756	
38C	-4.3332	0.1093	1.9522	-0.6188	-0.2985	
39H	-5.0330	-0.6587	1.6026	0.2188	0.0582	
40H	-4.5239	0.2575	3.0233	0.2123	0.0601	
41H	-4.5747	1.0504	1.4461	0.2079	0.0592	
42H	-3.6820	-2.2724	-0.3417	0.2169	-0.0638	
43C	-2.7098	-2.0376	-2.2426	-0.7044	-0.3092	
44H	-1.8039	-2.5758	-1.9495	0.2527	0.0575	
45H	-3.3777	-2.7297	-2.7725	0.2004	0.0605	
46H	-2.4194	-1.2516	-2.9521	0.2153	0.0644	
47C	-4.7366	-0.7449	-1.4461	-0.6586	-0.3055	
48H	-5.3988	-1.4686	-1.9394	0.2096	0.0606	
49H	-5.2855	-0.3125	-0.6053	0.2075	0.0524	
50H	-4.5401	0.0571	-2.1673	0.2216	0.0551	
51C	3.4380	-1.8877	-2.0617	-0.8395	-0.2797	
52H	2.4544	-2.3525	-2.1954	0.2466	0.0547	
53H	3.9607	-1.9117	-3.0267	0.2058	0.0613	
54H	4.0115	-2.5063	-1.3624	0.2075	0.0504	

55C	2.6272	0.4386	-2.6569	-0.7889	-0.1801	
56H	1.6256	0.0640	-2.8953	0.2367	0.0326	
57H	2.5241	1.4827	-2.3438	0.2311	0.0293	
58H	3.2285	0.4187	-3.5754	0.2014	0.0308	
59H	4.2978	-0.0254	-1.3794	0.2119	-0.0611	

***	***	***

(PCP) palladium hydride 10

(see Figure 3-9, Figure 3-10, Figure 3-14, Figure 3-23)

Energy: -1121.52539922 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-1.3690	0.0001	0.0000	-0.6664	-0.1332		
2H	-3.0033	0.0003	0.0001	0.0226	-0.2755		
3C	3.5871	-0.0004	0.0001	-0.0117	-0.0054		
4C	2.8880	1.2034	-0.1196	-0.2604	-0.3296		
5C	1.4853	1.2065	-0.1317	-0.1743	0.2280		
6C	0.7582	-0.0001	-0.0001	0.9259	-0.4183		
7C	1.4850	-1.2068	0.1317	-0.1744	0.2290		
8C	2.8877	-1.2040	0.1196	-0.2602	-0.3291		
9H	4.6745	-0.0005	0.0001	0.1719	0.0937		
10H	3.4399	2.1374	-0.2149	0.1677	0.1389		
11H	3.4394	-2.1381	0.2150	0.1677	0.1387		
12C	0.7310	2.5131	-0.3258	-0.8465	-0.0075		
13C	0.7305	-2.5133	0.3257	-0.8465	-0.0084		
14H	1.2011	3.3559	0.1948	0.2360	0.0122		
15H	0.6901	2.7810	-1.3913	0.2478	0.0232		
16H	1.2004	-3.3561	-0.1951	0.2360	0.0122		
17H	0.6897	-2.7814	1.3911	0.2478	0.0234		
18P	-1.0355	2.2552	0.2224	0.3418	0.3655		
19P	-1.0360	-2.2550	-0.2223	0.3418	0.3654		
20H	-1.7444	-3.2972	0.4184	0.0294	-0.0334		
21H	-1.0582	-2.7721	-1.5374	0.0373	-0.0281		
22H	-1.0572	2.7720	1.5376	0.0373	-0.0282		
23H	-1.7437	3.2977	-0.4179	0.0294	-0.0335		

Palladium-hydrogen bond length: 1.634 Å

*** *** ***

(PCP) transition state 11

(see Figure 3-9, Figure 3-10)

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.8409	0.2522	0.0302	-0.6472		0.1608	-0.1787
2C	4.0193	-0.6401	-0.0517	0.0230		-0.0163	-0.0716
3C	3.1167	-1.6975	0.0904	-0.3457		0.0338	-0.0225
4C	1.7363	-1.4486	0.1284	-0.3642		-0.0714	-0.1130

1	1				1		
5C	1.2564	-0.1286	-0.0004	0.9504		0.3836	0.0571
6C	2.1720	0.9320	-0.1570	-0.0255		-0.0491	-0.0956
7C	3.5507	0.6710	-0.1696	-0.2734		0.0430	-0.0370
8H	5.0881	-0.8380	-0.0707	0.1756		0.0004	0.0104
9H	3.4914	-2.7158	0.1816	0.1721		0.0031	-0.0110
10H	4.2612	1.4884	-0.2820	0.1719		0.0031	-0.0119
11C	0.7559	-2.5910	0.3462	-0.7561		-0.0085	-0.0310
12C	1.6573	2.3494	-0.3521	-0.8458		-0.0131	-0.0285
13H	1.0624	-3.5098	-0.1671	0.2392		-0.0010	-0.0162
14H	0.6838	-2.8339	1.4158	0.2515		-0.0003	-0.0185
15H	2.2896	3.0978	0.1394	0.2388		-0.0010	-0.0211
16H	1.6340	2.6047	-1.4210	0.2507		-0.0003	-0.0225
17P	-0.9494	-2.0389	-0.1816	0.3323		0.0438	0.7450
18P	-0.1112	2.4383	0.2454	0.3289		0.0528	0.8145
19H	-0.6005	3.6129	-0.3731	0.0332		0.0072	-0.2013
20H	0.0148	2.9428	1.5598	0.0412		-0.0002	-0.1600
21H	-1.0799	-2.5610	-1.4876	0.0422		-0.0001	-0.1484
22H	-1.8126	-2.9331	0.4897	0.0416		0.0060	-0.1672
230	-4.4705	-0.6452	-0.1603	-0.2195		0.7874	-0.4362
240	-3.9568	0.5106	-0.0099	-0.0284		0.6663	0.3644
25H	-2.6108	0.4479	0.0271	0.2132		-0.0299	-0.1991

(PCP) palladium(I)/hydroperoxy radical pair intermediate 12

(see Figure 3-9, Figure 3-11)

Energy: -1271.84245371 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.7729	0.4519	-0.3667	-0.5495		0.4198	
2C	-3.8093	-1.1332	0.4915	-0.0513		-0.0137	
3C	-2.8075	-2.0469	0.1504	-0.2343		0.0037	
4C	-1.5012	-1.6007	-0.1017	-0.3215		0.0523	
5C	-1.2044	-0.2299	0.0101	1.0976		0.3121	
6C	-2.2069	0.6878	0.3717	-0.2659		-0.0188	
7C	-3.5138	0.2289	0.5983	-0.1747		-0.0217	
8H	-4.8217	-1.4837	0.6766	0.1751		0.0005	
9H	-3.0482	-3.1062	0.0729	0.1718		0.0041	
10H	-4.3010	0.9312	0.8686	0.1712		0.0041	
11C	-0.4129	-2.5743	-0.5265	-0.7851		-0.0005	
12C	-1.8599	2.1572	0.5551	-0.8724		0.0016	
13H	-0.5239	-3.5547	-0.0491	0.2362		-0.0013	
14H	-0.4529	-2.7419	-1.6122	0.2487		0.0001	
15H	-2.6733	2.8193	0.2372	0.2377		-0.0013	
16H	-1.6703	2.3728	1.6162	0.2506		-0.0002	
17P	1.2670	-1.8260	-0.1754	0.2717		0.0787	

18P	-0.2655	2.5510	-0.3445	0.2465	0.1091	
19H	0.0806	3.8027	0.2258	0.0285	0.0168	
20H	-0.7318	3.0400	-1.5880	0.0385	-0.0016	
21H	1.5540	-2.3111	1.1190	0.0514	0.0004	
22H	2.1316	-2.6755	-0.9064	0.0337	0.0126	
230	4.2072	-0.7837	0.9157	-0.1852	0.7194	
240	3.8943	0.5045	0.8649	-0.2887	0.3039	
25H	2.9644	0.5459	0.4708	0.4695	0.0200	

(PCP) minimum energy crossing point structure ${\bf 13}$

(see Figure 3-9, Figure 3-11)

Energy: -1271.84301549 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.9997	0.3825	-0.4104	-0.2960		0.7806	
2C	3.6524	-0.9571	0.5223	-0.0715		0.0008	
3C	3.3513	0.3926	0.3227	-0.2890		0.0357	
4C	2.0354	0.7903	0.0345	-0.9670		0.1131	
5C	1.0187	-0.1790	-0.0338	0.7609		0.3153	
6C	1.3207	-1.5392	0.1757	0.6267		-0.1572	
7C	2.6438	-1.9223	0.4421	-0.1156		-0.0323	
8H	4.6745	-1.2580	0.7380	0.1743		-0.0004	
9H	4.1451	1.1364	0.3829	0.1706		0.0044	
10H	2.8879	-2.9726	0.5975	0.1710		0.0044	
11C	1.7264	2.2542	-0.2415	-0.7257		-0.0191	
12C	0.2060	-2.5724	0.1471	-0.8863		0.0016	
13H	2.3186	2.9224	0.3941	0.2381		-0.0007	
14H	1.9788	2.5037	-1.2819	0.2472		0.0005	
15H	0.5690	-3.5640	-0.1443	0.2316		-0.0007	
16H	-0.2460	-2.6728	1.1441	0.2531		0.0010	
17P	-0.1048	2.5923	-0.0576	0.2211		0.1705	
18P	-1.1753	-1.9749	-0.9622	0.3058		0.1685	
19H	-2.1801	-2.9435	-0.7159	0.0319		0.0141	

20H	-0.7435	-2.4521	-2.2255	0.0286	0.0105	
21H	-0.2007	3.0110	1.2897	0.0426	-0.0071	
22H	-0.1946	3.8790	-0.6555	0.0215	0.0287	
230	-2.4500	0.5396	1.1881	-0.2049	0.4625	
240	-2.7093	-0.7180	1.7849	-0.4321	0.1081	
25H	-2.2782	-0.6225	2.6552	0.4633	-0.0027	

(PCP) palladium hydroperoxide 14

(see Figure 3-9, Figure 3-12, Figure 4-4, Figure 4-5, Figure 4-6, Figure 4-8,

Figure 4-9, Figure 4-10, Figure 4-11)

Energy: -1271.89717798 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.9243	0.2317	0.0385	-0.5307	0.0269		
2C	3.9121	-0.5988	-0.0763	0.0242	-0.0042		
3C	3.4205	0.7016	-0.2020	-0.4440	-0.3636		
4C	2.0400	0.9450	-0.1793	-0.1111	0.4069		
5C	1.1200	-0.1183	-0.0018	1.5276	-0.6559		
6C	1.6384	-1.4312	0.1340	-0.6102	0.4528		
7C	3.0207	-1.6611	0.0833	-0.4796	-0.3731		
8H	4.9831	-0.7831	-0.1036	0.1752	0.1023		
9H	4.1150	1.5305	-0.3288	0.1720	0.1477		
10H	3.4041	-2.6755	0.1804	0.1722	0.1531		
11C	1.5255	2.3598	-0.3838	-0.7266	-0.2170		
12C	0.6935	-2.5989	0.3674	-0.6208	-0.3478		
13H	2.1765	3.1153	0.0700	0.2388	0.0633		
14H	1.4587	2.5946	-1.4555	0.2528	0.0678		
15H	1.0225	-3.5123	-0.1411	0.2387	0.0899		

16H	0.6336	-2.8352	1.4392	0.2532	0.0937	
17P	-0.2089	2.4282	0.2772	0.3882	0.4678	
18P	-1.0078	-2.0622	-0.1515	0.3174	0.6060	
19H	-1.9028	-2.8628	0.5846	0.0534	-0.0299	
20H	-1.1931	-2.6206	-1.4345	0.0384	-0.0756	
21H	-0.0599	2.9313	1.5886	0.0430	-0.0352	
22H	-0.7865	3.5662	-0.3287	0.0381	-0.0339	
230	-2.9422	0.6143	0.1067	-0.3685	-0.4434	
240	-3.6887	-0.6066	-0.2588	-0.4970	-0.4741	
25H	-4.2620	-0.2500	-0.9582	0.4552	0.3753	

(PCP) triplet palladium hydroperoxide 15

(see Figure 3-9)

Energy: -1271.84323324 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-1.0051	0.3904	-0.4248	-0.2829		0.7817	
2C	3.6480	-0.9709	0.5065	-0.0721		-0.0012	
3C	3.3488	0.3806	0.3167	-0.2528		0.0349	
4C	2.0314	0.7837	0.0443	-0.9328		0.1095	
5C	1.0099	-0.1805	-0.0151	0.7530		0.3149	
6C	1.3102	-1.5423	0.1830	0.5594		-0.1483	
7C	2.6347	-1.9315	0.4327	-0.1294		-0.0303	
8H	4.6716	-1.2766	0.7087	0.1741		-0.0003	
9H	4.1456	1.1214	0.3699	0.1704		0.0043	
10H	2.8764	-2.9833	0.5786	0.1709		0.0043	
11C	1.7299	2.2494	-0.2333	-0.7141		-0.0212	
12C	0.1945	-2.5746	0.1519	-0.8888		0.0015	
13H	2.3251	2.9150	0.4021	0.2379		-0.0007	
14H	1.9864	2.4959	-1.2737	0.2467		0.0004	
15H	0.5595	-3.5655	-0.1400	0.2313		-0.0007	
16H	-0.2596	-2.6770	1.1477	0.2531		0.0010	
17P	-0.0991	2.6051	-0.0570	0.2215		0.1694	
18P	-1.1881	-1.9845	-0.9620	0.2993		0.1655	

19H	-2.1834	-2.9633	-0.7124	0.0321	0.0144	
20H	-0.7499	-2.4699	-2.2204	0.0287	0.0101	
21H	-0.1990	2.9956	1.2986	0.0438	-0.0072	
22H	-0.1572	3.9082	-0.6248	0.0212	0.0295	
230	-2.4091	0.5365	1.2213	-0.1990	0.4617	
240	-2.6764	-0.7141	1.8149	-0.4343	0.1096	
25H	-2.2360	-0.6319	2.6822	0.4627	-0.0028	

(PCP) palladium hydride 16

(see Figure 3-14, Figure 5-2, Figure 5-3, Figure 5-4)

Energy: -1278.82791142 hartrees

Palladium-hydrogen bond length: 1.645 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0000	-1.0592	0.0000	-0.7938	-0.3185		
2H	0.0000	-2.7039	0.0000	0.0024	-0.2926		
3C	0.0000	3.8847	0.0000	-0.2229	-0.0644		
4C	-1.1850	3.1853	-0.2471	-0.0610	-0.2824		
5C	-1.1867	1.7824	-0.2586	0.2464	0.1951		
6C	0.0000	1.0559	0.0000	0.1811	-0.3555		
7C	1.1867	1.7824	0.2586	0.2464	0.1951		
8C	1.1850	3.1853	0.2471	-0.0611	-0.2824		
9H	0.0000	4.9722	0.0000	0.1690	0.1000		
10H	-2.1035	3.7375	-0.4421	0.1639	0.1263		
11H	2.1035	3.7375	0.4421	0.1639	0.1263		
12C	-2.4561	1.0126	-0.5907	-1.0141	-0.1191		
13C	2.4561	1.0126	0.5907	-1.0141	-0.1191		
14H	-3.3606	1.4933	-0.1926	0.2237	0.0289		
15H	-2.5885	0.9480	-1.6812	0.2412	0.0385		
16H	3.3606	1.4933	0.1925	0.2237	0.0290		
17H	2.5885	0.9481	1.6811	0.2412	0.0386		
18P	-2.2791	-0.7411	0.0267	0.8244	0.6439		
19P	2.2791	-0.7411	-0.0267	0.8244	0.6439		
20C	-3.0544	-0.7170	1.7034	-0.8995	-0.2641		
21H	-4.1078	-0.4144	1.6555	0.2255	0.0696		
22H	-2.9855	-1.7124	2.1533	0.2441	0.0698		
23H	-2.5071	-0.0145	2.3392	0.2521	0.0582		
24C	-3.4845	-1.7184	-0.9736	-0.8248	-0.4099		
25H	-3.5089	-2.7483	-0.6035	0.2441	0.1142		
26H	-4.4943	-1.2927	-0.9230	0.2251	0.0960		
27H	-3.1568	-1.7426	-2.0178	0.2411	0.1004		
28C	3.4845	-1.7183	0.9737	-0.8247	-0.4099		
29H	3.5087	-2.7483	0.6037	0.2441	0.1142		
30H	4.4943	-1.2927	0.9229	0.2251	0.0960		
31H	3.1569	-1.7423	2.0178	0.2411	0.1004		
32C	3.0544	-0.7171	-1.7034	-0.8995	-0.2641		

33H	4.1077	-0.4143	-1.6555	0.2255	0.0696	
34H	2.9857	-1.7125	-2.1532	0.2441	0.0698	
35H	2.5070	-0.0147	-2.3393	0.2521	0.0582	

(PCP) palladium hydride 17

(see Figure 3-14, Figure 4-2)

Energy: -2060.26487525 hartrees

Palladium-hydrogen bond length: 1.650 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0000	-0.0008	-0.1048	-1.2923	-0.1150		
2H	-0.0001	0.0000	-1.7551	0.0103	-0.2608		
3C	0.0001	-0.0038	4.8296	-0.1324	-0.0264		
4C	1.1429	-0.4021	4.1295	-0.4699	-0.3040		
5C	1.1428	-0.4127	2.7263	0.1073	0.2027		
6C	0.0001	-0.0019	2.0003	1.0206	-0.3720		
7C	-1.1427	0.4080	2.7269	0.1054	0.2063		
8C	-1.1427	0.3955	4.1300	-0.4717	-0.3026		
9H	0.0001	-0.0045	5.9173	0.1671	0.0904		
10H	2.0287	-0.7147	4.6814	0.1600	0.1222		
11H	-2.0285	0.7074	4.6824	0.1599	0.1216		
12C	2.3581	-0.9103	1.9588	-1.1360	-0.1253		
13C	-2.3579	0.9068	1.9601	-1.1407	-0.1328		
14H	3.3018	-0.6514	2.4567	0.2349	0.0544		
15H	2.3347	-2.0079	1.8892	0.2513	0.0566		
16H	-3.3016	0.6471	2.4577	0.2350	0.0557		
17H	-2.3344	2.0044	1.8921	0.2513	0.0570		
18P	2.2809	-0.2656	0.2026	1.6744	0.2468		
19P	-2.2808	0.2645	0.2030	1.6743	0.2603		
20C	-3.2020	1.5438	-0.8150	-0.4508	0.0081		
21C	-3.3434	1.1280	-2.2943	-0.3026	-0.0344		
22C	-4.5436	2.0735	-0.2621	-0.0155	0.0503		
23H	-2.4834	2.3795	-0.7841	0.2232	0.0194		
24C	-3.8682	2.2958	-3.1481	-0.6942	0.0525		
25H	-4.0470	0.2863	-2.3727	0.2120	0.0170		
26H	-2.3781	0.7765	-2.6756	0.2482	0.0007		
27C	-5.0608	3.2457	-1.1183	-0.5403	0.0732		
28H	-5.2939	1.2733	-0.2667	0.2111	-0.0261		
29H	-4.4362	2.3992	0.7799	0.2053	-0.0343		
30C	-5.1902	2.8540	-2.5985	-0.4633	0.0479		
31H	-3.9965	1.9666	-4.1879	0.1965	-0.0187		
32H	-3.1128	3.0960	-3.1649	0.2019	-0.0137		
33H	-6.0284	3.5896	-0.7284	0.1955	-0.0327		
34H	-4.3666	4.0948	-1.0252	0.1993	-0.0264		

35H	-5.5154	3.7186	-3.1924	0.1946	-0.0277	
36H	-5.9762	2.0900	-2.7020	0.1946	-0.0268	
37C	-3.1809	-1.3823	0.2876	-0.4603	0.0991	
38C	-4.7023	-1.3492	0.5397	-0.1250	-0.0673	
39C	-2.8504	-2.2994	-0.9108	-0.3271	0.0436	
40H	-2.7022	-1.8262	1.1758	0.2359	-0.0031	
41C	-5.2537	-2.7691	0.7688	-0.8212	0.0650	
42H	-5.2069	-0.9119	-0.3323	0.2184	0.0271	
43H	-4.9469	-0.7133	1.3998	0.2090	-0.0019	
44C	-3.4070	-3.7165	-0.6909	-0.5848	0.0727	
45H	-3.2837	-1.8793	-1.8295	0.2105	-0.0225	
46H	-1.7664	-2.3311	-1.0659	0.2380	-0.0503	
47C	-4.9171	-3.7014	-0.4054	-0.4956	0.0212	
48H	-6.3406	-2.7240	0.9215	0.1949	-0.0241	
49H	-4.8233	-3.1782	1.6954	0.2015	-0.0182	
50H	-3.1921	-4.3393	-1.5695	0.1957	-0.0223	
51H	-2.8818	-4.1808	0.1578	0.2006	-0.0277	
52H	-5.2771	-4.7179	-0.1982	0.1946	-0.0195	
53H	-5.4519	-3.3568	-1.3040	0.1946	-0.0217	
54C	3.2034	-1.5427	-0.8169	-0.4510	0.0143	
55C	3.3442	-1.1251	-2.2957	-0.3024	-0.0337	
56C	4.5457	-2.0715	-0.2646	-0.0153	0.0494	
57H	2.4858	-2.3792	-0.7869	0.2231	0.0191	
58C	3.8704	-2.2912	-3.1508	-0.6941	0.0531	
59H	4.0467	-0.2824	-2.3733	0.2120	0.0161	
60H	2.3784	-0.7742	-2.6766	0.2482	0.0009	
61C	5.0643	-3.2421	-1.1222	-0.5404	0.0652	
62H	5.2949	-1.2704	-0.2681	0.2111	-0.0247	
63H	4.4384	-2.3986	0.7770	0.2054	-0.0345	
64C	5.1931	-2.8483	-2.6020	-0.4633	0.0474	
65H	3.9984	-1.9607	-4.1903	0.1965	-0.0189	
66H	3.1161	-3.0923	-3.1685	0.2019	-0.0142	
67H	6.0323	-3.5853	-0.7327	0.1955	-0.0300	
68H	4.3710	-4.0921	-1.0301	0.1993	-0.0237	
69H	5.5195	-3.7118	-3.1969	0.1946	-0.0272	
70H	5.9782	-2.0832	-2.7044	0.1946	-0.0260	
71C	3.1795	1.3819	0.2897	-0.4590	0.1059	
72C	4.7008	1.3499	0.5425	-0.1251	-0.0706	
73C	2.8487	2.3000	-0.9079	-0.3277	0.0450	
74H	2.6999	1.8243	1.1781	0.2359	-0.0031	
-----	--------	--------	---------	---------	---------	--
75C	5.2508	2.7700	0.7734	-0.8212	0.0632	
76H	5.2063	0.9139	-0.3297	0.2184	0.0276	
77H	4.9455	0.7133	1.4021	0.2090	-0.0012	
78C	3.4041	3.7174	-0.6862	-0.5848	0.0700	
79H	3.2828	1.8814	-1.8268	0.2105	-0.0223	
80H	1.7648	2.3310	-1.0634	0.2380	-0.0508	
81C	4.9140	3.7032	-0.4000	-0.4956	0.0213	
82H	6.3376	2.7257	0.9266	0.1949	-0.0233	
83H	4.8196	3.1777	1.7003	0.2015	-0.0177	
84H	3.1890	4.3410	-1.5642	0.1957	-0.0216	
85H	2.8781	4.1804	0.1627	0.2006	-0.0274	
86H	5.2731	4.7198	-0.1915	0.1946	-0.0191	
87H	5.4495	3.3600	-1.2987	0.1946	-0.0216	

(PCP) palladium hydride 18

(see Figure 3-14, Figure 3-23, Figure 3-24)

Energy: -1518.63906536 hartrees

Palladium-hydrogen bond length: 1.625 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0000	-1.1173	0.0000	-0.8792	-0.2595		
2H	0.0001	-2.7427	-0.0001	0.0575	-0.2107		
3C	-0.0001	3.8543	0.0000	-0.0016	-0.0693		
4C	1.1903	3.1568	0.2179	-0.3788	-0.2191		
5C	1.1923	1.7555	0.2302	-0.3168	0.1372		
6C	0.0000	1.0295	0.0000	1.3634	-0.3748		
7C	-1.1924	1.7554	-0.2302	-0.3167	0.1396		
8C	-1.1904	3.1568	-0.2179	-0.3788	-0.2185		
9H	-0.0001	4.9411	0.0000	0.1820	0.1140		
10H	2.1133	3.7076	0.3882	0.1784	0.1263		
11H	-2.1134	3.7076	-0.3882	0.1784	0.1258		
12C	2.4801	0.9976	0.5217	-1.0601	-0.0927		
13C	-2.4801	0.9975	-0.5217	-1.0601	-0.0958		
14H	3.3639	1.4319	0.0381	0.2602	0.0731		
15H	2.6862	0.9535	1.6014	0.2682	0.0557		
16H	-3.3640	1.4318	-0.0382	0.2602	0.0738		
17H	-2.6862	0.9534	-1.6015	0.2682	0.0564		

18P	2.2249	-0.7332	-0.0357	1.4448	0.8895	
19P	-2.2249	-0.7333	0.0357	1.4448	0.8896	
20F	-3.3386	-1.5378	-0.7999	-0.3830	-0.2877	
21F	-2.9455	-0.7518	1.4735	-0.3740	-0.2825	
22F	2.9456	-0.7518	-1.4734	-0.3740	-0.2825	
23F	3.3385	-1.5377	0.8000	-0.3830	-0.2879	

(PCP) palladium hydride 19

Energy: -2	2469.70807324	hartrees
------------	---------------	----------

Palladium-hydrogen bond length: 1.627 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0000	-0.5621	-0.0002	-0.8841	0.0091		
2H	0.0000	-2.1891	-0.0001	0.0664	-0.2269		
3C	-0.0001	4.3973	-0.0001	-0.2186	-0.0265		
4C	-1.1817	3.6994	-0.2601	0.3512	-0.2916		
5C	-1.1820	2.2978	-0.2711	1.1083	0.1817		
6C	0.0000	1.5715	-0.0002	-2.1734	-0.3228		
7C	1.1819	2.2979	0.2708	1.1082	0.1799		
8C	1.1815	3.6995	0.2598	0.3524	-0.2893		
9H	-0.0001	5.4841	-0.0001	0.1838	0.1150		
10H	-2.0979	4.2508	-0.4628	0.1779	0.1458		
11H	2.0977	4.2508	0.4626	0.1779	0.1451		
12C	-2.4631	1.5530	-0.6175	-1.3253	-0.0078		
13C	2.4630	1.5531	0.6171	-1.3257	-0.0070		
14H	-3.3578	1.9905	-0.1605	0.2779	0.0429		
15H	-2.6334	1.5449	-1.7033	0.2814	0.0609		
16H	3.3577	1.9906	0.1600	0.2779	0.0428		

17H	2.6335	1.5452	1.7029	0.2814	0.0608	
18P	-2.2463	-0.2235	-0.1101	1.0265	0.0677	
19P	2.2463	-0.2234	0.1100	1.0267	0.0677	
20C	3.4132	-1.1511	1.2915	0.6407	0.6984	
21C	3.2295	-0.3525	-1.5160	0.4417	0.6909	
22C	-3.2292	-0.3522	1.5161	0.4417	0.6907	
23C	-3.4134	-1.1514	-1.2912	0.6408	0.6987	
24F	2.8612	-1.1408	2.5255	-0.2655	-0.2240	
25F	4.6306	-0.5702	1.3914	-0.2236	-0.2440	
26F	3.5938	-2.4286	0.9194	-0.2552	-0.2164	
27F	-2.6064	0.3866	2.4579	-0.2403	-0.2294	
28F	-3.2983	-1.6219	1.9512	-0.2470	-0.2268	
29F	-4.4935	0.1159	1.4051	-0.2363	-0.2224	
30F	-3.5941	-2.4288	-0.9186	-0.2552	-0.2165	
31F	-2.8616	-1.1415	-2.5253	-0.2655	-0.2241	
32F	-4.6308	-0.5705	-1.3911	-0.2236	-0.2440	
33F	3.2988	-1.6223	-1.9508	-0.2470	-0.2269	
34F	2.6068	0.3860	-2.4581	-0.2403	-0.2295	
35F	4.4937	0.1158	-1.4048	-0.2363	-0.2225	

(PCP) palladium hydride 20

Energy: -4030.41990746 hartrees

Palladium-hydrogen bond length: 1.633 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0001	-0.0011	0.0814	-1.0259	-0.3074		
2H	0.0002	-0.0013	1.7146	0.0536	-0.2406		
3C	-0.0003	-0.0005	-4.8496	-0.0154	-0.0987		
4C	-1.0723	-0.5695	-4.1539	-0.2725	-0.2058		
5C	-1.0643	-0.5853	-2.7517	0.2793	0.0753		
6C	-0.0001	-0.0008	-2.0352	0.4867	-0.2434		
7C	1.0639	0.5840	-2.7517	0.2788	0.0762		
8C	1.0718	0.5684	-4.1539	-0.2722	-0.2059		
9H	-0.0004	-0.0004	-5.9366	0.1786	0.1150		
10H	-1.8989	-1.0124	-4.7068	0.1752	0.1256		
11H	1.8982	1.0115	-4.7069	0.1752	0.1256		
12C	-2.1679	-1.2670	-1.9598	-0.9763	-0.1892		

1	1					1
13C	2.1675	1.2659	-1.9600	-0.9754	-0.1910	
14H	-3.1331	-1.2887	-2.4729	0.2659	0.0876	
15H	-1.8906	-2.3032	-1.7370	0.2797	0.0964	
16H	3.1327	1.2877	-2.4731	0.2659	0.0881	
17H	1.8901	2.3021	-1.7373	0.2797	0.0970	
18P	-2.2335	-0.3768	-0.3140	0.7296	0.9386	
19P	2.2334	0.3760	-0.3140	0.7297	0.9384	
20C	-4.8942	3.3644	-1.2540	0.7083	0.1579	
21C	-3.5990	3.5349	-0.7733	-0.3576	0.1492	
22C	-2.8107	2.4199	-0.4881	-0.1493	0.2150	
23C	-3.2781	1.1122	-0.6729	0.4683	-0.4121	
24C	-4.5876	0.9843	-1.1560	0.3115	0.2279	
25C	-5.3954	2.0781	-1.4469	-0.0643	0.1235	
26F	-5.6539	4.4267	-1.5290	-0.3304	-0.1260	
27F	-3.1169	4.7696	-0.5857	-0.3291	-0.1396	
28F	-1.5800	2.6602	-0.0210	-0.2221	-0.1548	
29F	-5.1165	-0.2398	-1.3563	-0.2487	-0.1434	
30F	-6.6407	1.9056	-1.9086	-0.3293	-0.1429	
31C	-4.7885	-2.6350	2.8923	0.5670	0.1959	
32C	-4.3118	-1.3432	3.1082	0.0435	0.0934	
33C	-3.5907	-0.7061	2.1041	-1.0129	0.3120	
34C	-3.3218	-1.3045	0.8644	1.4771	-0.5658	
35C	-3.8245	-2.5971	0.6838	0.6477	0.3016	
36C	-4.5448	-3.2630	1.6739	0.0298	0.1032	
37F	-5.4814	-3.2631	3.8453	-0.3312	-0.1338	
38F	-4.5493	-0.7280	4.2730	-0.3288	-0.1382	
39F	-3.1525	0.5402	2.3494	-0.2505	-0.1519	
40F	-3.6374	-3.2605	-0.4728	-0.2906	-0.1724	
41F	-5.0082	-4.5006	1.4560	-0.3285	-0.1400	
42C	4.8966	-3.3637	-1.2527	0.7081	0.1577	
43C	3.6015	-3.5350	-0.7722	-0.3579	0.1494	
44C	2.8124	-2.4203	-0.4874	-0.1493	0.2144	
45C	3.2791	-1.1124	-0.6724	0.4683	-0.4115	
46C	4.5885	-0.9838	-1.1554	0.3116	0.2278	
47C	5.3971	-2.0772	-1.4459	-0.0641	0.1234	
48F	5.6571	-4.4256	-1.5273	-0.3304	-0.1260	
49F	3.1202	-4.7699	-0.5843	-0.3291	-0.1396	
50F	1.5818	-2.6613	-0.0204	-0.2221	-0.1545	
51F	5.1167	0.2406	-1.3558	-0.2487	-0.1436	

52F	6.6423	-1.9040	-1.9075	-0.3293	-0.1426	
53C	4.7862	2.6363	2.8926	0.5670	0.1966	
54C	4.3102	1.3443	3.1086	0.0429	0.0946	
55C	3.5898	0.7066	2.1045	-1.0140	0.3105	
56C	3.3209	1.3045	0.8645	1.4781	-0.5644	
57C	3.8228	2.5974	0.6838	0.6487	0.3008	
58C	4.5426	3.2640	1.6740	0.0294	0.1028	
59F	5.4785	3.2650	3.8456	-0.3312	-0.1342	
60F	4.5477	0.7294	4.2735	-0.3288	-0.1386	
61F	3.1522	-0.5399	2.3498	-0.2505	-0.1517	
62F	3.6358	3.2605	-0.4730	-0.2906	-0.1721	
63F	5.0053	4.5017	1.4559	-0.3285	-0.1399	

(PCP) palladium hydride 21

Energy: -2117.62108935 hartrees

Palladium-hydrogen bond length: 1.647 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0001	-0.0046	-0.3860	-1.3436	-0.1343		
2H	0.0003	-0.0034	-2.0326	0.0261	-0.2742		
3C	0.0016	-0.0053	4.4872	-0.0658	-0.0432		
4C	-1.2210	0.0219	3.8042	-0.5317	-0.3512		
5C	-1.1923	0.0189	2.4075	0.0282	0.4251		
6C	0.0008	-0.0054	1.6845	0.4936	-0.4591		
7C	1.1943	-0.0293	2.4068	0.0358	0.4211		
8C	1.2237	-0.0322	3.8034	-0.5310	-0.3499		
9H	0.0019	-0.0053	5.5742	0.1740	0.1147		
10H	-2.1656	0.0464	4.3389	0.1793	0.1567		
11H	2.1686	-0.0565	4.3377	0.1793	0.1565		
120	-2.4011	0.0375	1.7078	-0.4381	-0.4044		
130	2.4026	-0.0473	1.7064	-0.4357	-0.4014		

1	1			1		
14P	-2.2606	0.0443	0.0286	0.8782	0.6113	
15P	2.2608	-0.0482	0.0272	0.8726	0.6109	
16C	-4.6659	3.8208	-1.1506	-0.0717	-0.1468	
17C	-3.3247	3.6901	-1.5186	-0.3690	-0.0537	
18C	-2.6099	2.5423	-1.1622	0.3519	-0.1619	
19C	-3.2384	1.5183	-0.4387	-0.5205	0.0403	
20C	-4.5892	1.6519	-0.0756	-0.0148	-0.1799	
21C	-5.2971	2.8014	-0.4273	-0.2491	-0.0503	
22H	-5.2215	4.7134	-1.4272	0.1820	0.1173	
23H	-2.8326	4.4789	-2.0815	0.1850	0.1066	
24H	-1.5670	2.4321	-1.4483	0.2225	0.0990	
25H	-5.0855	0.8611	0.4803	0.1968	0.1236	
26H	-6.3412	2.9015	-0.1417	0.1828	0.0998	
27C	-4.9030	-3.5608	-1.1917	-0.2081	-0.1306	
28C	-4.1971	-2.8313	-2.1553	-0.3847	-0.0258	
29C	-3.4008	-1.7516	-1.7717	-0.9601	-0.2048	
30C	-3.3167	-1.3824	-0.4188	0.7103	-0.0335	
31C	-4.0186	-2.1198	0.5458	0.1263	-0.0536	
32C	-4.8094	-3.2057	0.1564	-0.1136	-0.1335	
33H	-5.5174	-4.4061	-1.4913	0.1811	0.1152	
34H	-4.2581	-3.1101	-3.2042	0.1833	0.0965	
35H	-2.8361	-1.2018	-2.5208	0.2048	0.1209	
36H	-3.9389	-1.8476	1.5935	0.2182	0.1007	
37H	-5.3490	-3.7746	0.9095	0.1831	0.1162	
38C	4.6814	-3.8110	-1.1643	-0.0724	-0.1442	
39C	3.3391	-3.6854	-1.5299	-0.3648	-0.0626	
40C	2.6199	-2.5415	-1.1700	0.3605	-0.1495	
41C	3.2449	-1.5164	-0.4451	-0.5321	0.0309	
42C	4.5969	-1.6448	-0.0846	-0.0066	-0.1735	
43C	5.3093	-2.7903	-0.4400	-0.2543	-0.0519	
44H	5.2405	-4.7005	-1.4438	0.1820	0.1175	
45H	2.8496	-4.4751	-2.0938	0.1850	0.1084	
46H	1.5760	-2.4353	-1.4543	0.2224	0.0963	
47H	5.0906	-0.8530	0.4722	0.1967	0.1217	
48H	6.3543	-2.8864	-0.1562	0.1828	0.0997	
49C	4.8856	3.5725	-1.1842	-0.2050	-0.1217	
50C	4.1647	2.8564	-2.1467	-0.3868	-0.0362	
51C	3.3731	1.7722	-1.7655	-0.9525	-0.1914	
52C	3.3091	1.3853	-0.4165	0.7130	-0.0451	

53C	4.0259	2.1094	0.5472	0.1168	-0.0440	
54C	4.8117	3.1999	0.1604	-0.1131	-0.1400	
55H	5.4962	4.4213	-1.4817	0.1811	0.1130	
56H	4.2102	3.1491	-3.1925	0.1834	0.0982	
57H	2.7959	1.2332	-2.5129	0.2054	0.1183	
58H	3.9609	1.8240	1.5924	0.2179	0.0990	
59H	5.3628	3.7586	0.9128	0.1831	0.1168	

(PCP) palladium hydride 22

|--|

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	2.4715	4.3364	-0.2654	-0.1773	-0.2151		
2C	3.6461	3.6326	-0.3805	-0.7421	-0.1419		
3C	3.6479	2.2073	-0.3264	0.2194	-0.0960		
4C	2.4661	1.5200	-0.1644	-0.1778	-0.1200		
5C	1.2100	2.2179	-0.0852	-0.2098	0.1250		
6C	0.0000	1.4919	-0.0010	0.2783	-0.3954		
7C	-1.2100	2.2181	0.0819	-0.2109	0.1213		
8C	-2.4661	1.5202	0.1621	-0.1747	-0.1168		
9C	-3.6480	2.2078	0.3230	0.2191	-0.1030		
10C	-3.6461	3.6332	0.3750	-0.7415	-0.1342		
11C	-2.4715	4.3368	0.2589	-0.1776	-0.2197		
12C	-1.2168	3.6647	0.1092	0.6350	0.2204		
13C	0.0000	4.3547	-0.0032	-0.2686	-0.4240		
14C	1.2168	3.6645	-0.1147	0.6351	0.2179		
15H	2.4800	5.4242	-0.2982	0.1805	0.1306		

1						
16H	4.5881	4.1600	-0.5087	0.1786	0.1188	
17H	4.5924	1.6764	-0.4151	0.1919	0.0958	
18H	-4.5925	1.6770	0.4125	0.1920	0.0971	
19H	-4.5881	4.1608	0.5024	0.1786	0.1171	
20H	-2.4800	5.4247	0.2900	0.1805	0.1314	
21H	0.0000	5.4434	-0.0041	0.1755	0.1699	
22P	2.2932	-0.3152	-0.0351	-0.1743	0.4935	
23P	-2.2932	-0.3151	0.0355	-0.1760	0.4975	
24Pd	0.0000	-0.5987	0.0005	-1.0870	-0.1219	
25H	0.0001	-2.2430	0.0017	0.0404	-0.2814	
26C	4.4178	-1.7477	3.8481	-0.2466	-0.1467	
27C	3.8265	-2.6581	2.9640	-0.5515	-0.0457	
28C	3.2027	-2.2032	1.8023	-0.9058	-0.1851	
29C	3.1790	-0.8303	1.4961	1.2883	0.0356	
30C	3.7651	0.0767	2.3905	0.4342	-0.1817	
31C	4.3801	-0.3819	3.5613	-0.5694	-0.0606	
32H	4.8973	-2.1026	4.7569	0.1797	0.1126	
33H	3.8414	-3.7224	3.1850	0.1828	0.0993	
34H	2.7208	-2.9134	1.1352	0.2084	0.1168	
35H	3.7398	1.1415	2.1813	0.2104	0.1212	
36H	4.8281	0.3334	4.2467	0.1813	0.0969	
37C	4.7437	-2.0275	-3.5934	-0.1335	-0.0998	
38C	5.4061	-1.6958	-2.4074	-0.2816	-0.1341	
39C	4.6874	-1.1941	-1.3190	-0.1333	-0.0998	
40C	3.2969	-1.0199	-1.4078	0.0616	-0.0148	
41C	2.6367	-1.3697	-2.5961	0.0065	-0.1406	
42C	3.3581	-1.8650	-3.6851	-0.3805	-0.0848	
43H	5.3040	-2.4202	-4.4383	0.1799	0.1063	
44H	6.4818	-1.8310	-2.3263	0.1807	0.1134	
45H	5.2098	-0.9554	-0.3963	0.1967	0.1013	
46H	1.5562	-1.2664	-2.6572	0.2145	0.0964	
47H	2.8357	-2.1342	-4.5996	0.1832	0.1117	
48C	-4.7439	-2.0221	3.5963	-0.1340	-0.0958	
49C	-5.4061	-1.6923	2.4097	-0.2802	-0.1368	
50C	-4.6874	-1.1923	1.3206	-0.1339	-0.0967	
51C	-3.2969	-1.0178	1.4092	0.0630	-0.0178	
52C	-2.6368	-1.3656	2.5982	0.0061	-0.1401	
53C	-3.3583	-1.8593	3.6879	-0.3808	-0.0882	
54H	-5.3041	-2.4135	4.4418	0.1799	0.1053	

55H	-6.4819	-1.8277	2.3288	0.1807	0.1138	
56H	-5.2097	-0.9551	0.3975	0.1967	0.1005	
57H	-1.5563	-1.2622	2.6591	0.2144	0.0974	
58H	-2.8359	-2.1270	4.6029	0.1832	0.1126	
59C	-4.4179	-1.7541	-3.8452	-0.2461	-0.1411	
60C	-3.8248	-2.6628	-2.9606	-0.5520	-0.0512	
61C	-3.2008	-2.2060	-1.7998	-0.9040	-0.1782	
62C	-3.1788	-0.8327	-1.4949	1.2865	0.0287	
63C	-3.7667	0.0727	-2.3899	0.4358	-0.1742	
64C	-4.3819	-0.3879	-3.5598	-0.5715	-0.0676	
65H	-4.8975	-2.1105	-4.7534	0.1797	0.1118	
66H	-3.8383	-3.7273	-3.1806	0.1828	0.1001	
67H	-2.7175	-2.9148	-1.1324	0.2085	0.1152	
68H	-3.7427	1.1377	-2.1817	0.2104	0.1194	
69H	-4.8313	0.3261	-4.2456	0.1813	0.0983	

(PCP) palladium hydride 23

Energy: -2053.00349139 hartrees

Palladium-hydrogen bond length: 1.640 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	0.0002	2.0952	0.9244	-0.9873	0.1025		
2C	0.0000	0.8659	-0.0106	1.5544	-0.0199		
3C	-1.2305	2.3333	-1.5968	-0.4322	-0.0061		
4C	0.0001	3.1792	-1.2863	1.1892	0.0728		
5C	0.0002	3.3329	0.2415	-0.8523	0.0429		
6H	0.0001	4.1404	-1.8091	0.1785	0.0615		
7C	1.2306	2.3331	-1.5970	-0.4322	-0.0073		
8C	1.2366	1.1164	-0.8868	-0.0132	-0.0293		
9C	-1.2366	1.1165	-0.8867	-0.0134	-0.0294		
10C	2.3651	0.2850	-0.9243	-0.7364	-0.0198		
11C	3.4642	0.6705	-1.7229	-0.0107	-0.1054		
12C	3.4265	1.8518	-2.4638	-0.6057	-0.1799		
13C	2.3080	2.6972	-2.3959	-0.0728	-0.1315		
14C	-2.3652	0.2853	-0.9242	-0.7371	-0.0202		

15C	-3.4643	0.6710	-1.7225	-0.0102	-0.1046	
16C	-3.4267	1.8523	-2.4634	-0.6054	-0.1781	
17C	-2.3080	2.6976	-2.3956	-0.0729	-0.1342	
18C	0.0003	2.0910	2.3174	-0.1302	-0.1102	
19C	0.0004	3.3036	3.0254	-0.0010	-0.2061	
20C	0.0004	4.5209	2.3419	-0.2311	-0.0855	
21C	0.0003	4.5368	0.9381	0.3971	-0.2431	
22H	0.0003	1.1438	2.8505	0.1834	0.1375	
23H	0.0005	3.2921	4.1130	0.1717	0.1216	
24H	0.0005	5.4574	2.8943	0.1721	0.1084	
25H	0.0004	5.4840	0.4014	0.1690	0.1222	
26H	4.3532	0.0511	-1.7729	0.1911	0.1232	
27H	4.2776	2.1277	-3.0817	0.1759	0.1198	
28H	2.2972	3.6364	-2.9460	0.1766	0.1066	
29H	-4.3534	0.0517	-1.7725	0.1911	0.1224	
30H	-4.2778	2.1283	-3.0811	0.1759	0.1193	
31H	-2.2972	3.6368	-2.9457	0.1766	0.1074	
32Pd	-0.0001	-1.1539	0.7518	-0.9331	-0.1121	
33H	-0.0002	-2.7101	1.2681	0.0112	-0.2705	
34P	2.2498	-1.1966	0.1762	1.0403	0.0561	
35P	-2.2499	-1.1964	0.1761	1.0402	0.0558	
36C	3.6168	-1.0697	1.4672	-0.2460	0.4152	
37H	3.5157	-2.0157	2.0161	0.2301	-0.0719	
38C	5.0601	-0.9581	0.9506	-0.6376	-0.2444	
39H	5.3405	-1.7877	0.2946	0.2116	0.0425	
40H	5.2187	-0.0198	0.4083	0.2310	0.0334	
41H	5.7539	-0.9645	1.8020	0.2105	0.0423	
42C	3.2956	0.0762	2.4415	-0.7336	-0.2344	
43H	3.3342	1.0511	1.9420	0.2401	0.0471	
44H	2.3002	-0.0360	2.8811	0.2289	0.0091	
45H	4.0311	0.0884	3.2566	0.2054	0.0499	
46C	2.5816	-2.7454	-0.8630	-0.2606	0.4387	
47H	1.5976	-2.8968	-1.3244	0.2310	-0.0567	
48C	3.6118	-2.6614	-2.0004	-0.6249	-0.2951	
49H	3.3687	-1.8714	-2.7162	0.2374	0.0343	
50H	4.6312	-2.4947	-1.6356	0.2117	0.0577	
51H	3.6160	-3.6137	-2.5478	0.2100	0.0603	
52C	2.8506	-3.9536	0.0512	-0.7791	-0.3044	
53H	3.8494	-3.9060	0.5018	0.2198	0.0506	

1	1 1					1	1 1
54H	2.1065	-4.0264	0.8511	0.2481	0.0757		
55H	2.8033	-4.8784	-0.5382	0.2078	0.0564		
56C	-2.5818	-2.7452	-0.8632	-0.2606	0.4366		
57H	-1.5978	-2.8966	-1.3246	0.2310	-0.0560		
58C	-2.8509	-3.9534	0.0509	-0.7790	-0.3043		
59H	-3.8497	-3.9057	0.5016	0.2198	0.0506		
60H	-2.8038	-4.8781	-0.5386	0.2078	0.0565		
61H	-2.1068	-4.0264	0.8508	0.2481	0.0757		
62C	-3.6119	-2.6609	-2.0007	-0.6250	-0.2926		
63H	-4.6312	-2.4941	-1.6359	0.2117	0.0573		
64H	-3.3686	-1.8709	-2.7164	0.2375	0.0336		
65H	-3.6162	-3.6132	-2.5481	0.2100	0.0598		
66C	-3.6167	-1.0696	1.4673	-0.2458	0.4152		
67H	-3.5154	-2.0156	2.0163	0.2301	-0.0719		
68C	-5.0601	-0.9583	0.9509	-0.6376	-0.2425		
69H	-5.2189	-0.0202	0.4084	0.2310	0.0331		
70H	-5.3407	-1.7881	0.2952	0.2116	0.0423		
71H	-5.7538	-0.9644	1.8024	0.2105	0.0415		
72C	-3.2956	0.0764	2.4415	-0.7338	-0.2343		
73H	-3.3345	1.0513	1.9420	0.2401	0.0469		
74H	-4.0308	0.0884	3.2568	0.2054	0.0500		
75H	-2.3000	-0.0355	2.8807	0.2289	0.0091		

(PNP) palladium hydride 24

Energy:	-1780.42590061	hartrees
---------	----------------	----------

Palladium-hydrogen bond length: 1.571 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.2286	-0.8285	-0.2833	-1.6979	-0.0420		
2H	0.3346	-1.8151	-1.5019	0.1092	-0.1691		
3C	-0.1597	2.2963	3.5022	-0.2393	0.0410		
4C	1.0950	1.8249	3.1119	-0.3310	-0.3147		
5C	1.1798	0.9209	2.0543	0.3341	0.2195		
6N	0.0664	0.5090	1.4031	0.6860	-0.1620		
7C	-1.1542	0.9744	1.7542	-0.2477	0.3616		
8C	-1.2931	1.8681	2.8216	-0.6941	-0.3313		
9H	-0.2468	3.0107	4.3161	0.1957	0.1251		
10H	1.9969	2.1547	3.6186	0.1887	0.1492		
11H	-2.2747	2.2559	3.0715	0.2023	0.1555		
12C	2.5115	0.3262	1.6369	-1.3476	-0.0654		
13C	-2.3358	0.6154	0.8930	-1.2441	-0.0181		
14H	3.3182	1.0504	1.7950	0.2678	0.0602		

15H	2.7301	-0.5231	2.2967	0.2650	0.0363	
16H	-3.2621	0.5991	1.4774	0.2445	0.0154	
17H	-2.4087	1.4705	0.1865	0.3225	0.0893	
18P	2.5132	-0.3569	-0.1161	1.8306	-0.0083	
19P	-2.1041	-0.9231	-0.1387	1.8543	-0.0480	
20C	-3.1279	-0.6058	-1.7148	-0.5235	0.6769	
21C	-2.7644	-2.3694	0.9224	-0.6348	0.5498	
22C	3.1144	1.0701	-1.2328	-0.6527	0.6136	
23C	3.7260	-1.8285	-0.0205	-0.6310	0.6110	
24C	-2.2682	0.3173	-2.6089	-0.4462	-0.3264	
25H	-2.0127	1.2677	-2.1253	0.2984	0.0922	
26H	-1.3408	-0.1797	-2.9131	0.2289	0.0523	
27H	-2.8430	0.5531	-3.5152	0.2119	0.0499	
28C	-4.4687	0.0989	-1.4144	-0.4978	-0.2863	
29H	-5.0039	0.2456	-2.3620	0.2223	0.0570	
30H	-5.1208	-0.4837	-0.7570	0.2126	0.0321	
31H	-4.3187	1.0900	-0.9760	0.2632	0.0349	
32C	-3.3805	-1.9255	-2.4711	-0.5399	-0.4288	
33H	-4.0716	-2.5918	-1.9448	0.2174	0.0743	
34H	-3.8332	-1.6883	-3.4425	0.2238	0.0817	
35H	-2.4491	-2.4689	-2.6671	0.2365	0.0848	
36C	2.3280	2.3374	-0.8257	-0.5892	-0.2601	
37H	1.2389	2.2295	-0.8724	0.3138	0.0861	
38H	2.5929	2.6885	0.1776	0.2207	0.0456	
39H	2.5897	3.1425	-1.5242	0.2299	0.0518	
40C	2.7579	0.7261	-2.6955	-0.6106	-0.4025	
41H	1.6835	0.5559	-2.8111	0.2565	0.0762	
42H	3.0345	1.5740	-3.3352	0.2233	0.0921	
43H	3.2888	-0.1563	-3.0662	0.2147	0.0780	
44C	4.6230	1.3586	-1.1125	-0.3959	-0.4483	
45H	5.2421	0.5413	-1.4957	0.2219	0.0925	
46H	4.8567	2.2507	-1.7082	0.2303	0.0945	
47H	4.9273	1.5717	-0.0809	0.2226	0.0763	
48C	4.0391	-2.3261	-1.4461	-0.5229	-0.3683	
49H	3.1244	-2.5231	-2.0157	0.2483	0.0846	
50H	4.6510	-1.6141	-2.0076	0.2302	0.0676	
51H	4.6036	-3.2658	-1.3835	0.2197	0.0750	
52C	2.9838	-2.9564	0.7332	-0.4818	-0.3137	
53H	2.0594	-3.2408	0.2214	0.2559	0.0475	

54H	3.6355	-3.8388	0.7868	0.2190	0.0636	
55H	2.7298	-2.6781	1.7629	0.2111	0.0699	
56C	5.0397	-1.5147	0.7267	-0.4244	-0.3787	
57H	5.6427	-2.4309	0.7852	0.2223	0.0733	
58H	5.6439	-0.7578	0.2218	0.2271	0.0792	
59H	4.8639	-1.1802	1.7552	0.2209	0.0586	
60C	-2.3216	-3.7093	0.2959	-0.6527	-0.3221	
61H	-1.2346	-3.7495	0.1707	0.2416	0.0477	
62H	-2.6198	-4.5324	0.9595	0.2137	0.0618	
63H	-2.7799	-3.8911	-0.6793	0.2254	0.0708	
64C	-2.0971	-2.2489	2.3110	-0.5355	-0.1474	
65H	-1.0047	-2.2217	2.2367	0.2380	-0.0249	
66H	-2.4255	-1.3581	2.8563	0.2377	-0.0171	
67H	-2.3720	-3.1245	2.9140	0.2185	0.0443	
68C	-4.2945	-2.3532	1.1065	-0.3875	-0.4085	
69H	-4.5807	-3.1571	1.7986	0.2205	0.0731	
70H	-4.6516	-1.4109	1.5375	0.2304	0.0957	
71H	-4.8300	-2.5247	0.1684	0.2324	0.0838	
72Br	-1.3890	3.5863	-0.6532	-0.5333	-0.7611	

(PNP) palladium hydride 25

Energy:	-1655.31201182 hartrees
---------	-------------------------

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.9827	-0.8496	0.1400	-1.5229	-0.1441		
2H	1.3742	-2.3538	0.4144	0.1103	-0.1899		
3C	-0.4372	3.7415	-0.6732	-0.6228	0.0941		
4C	0.9352	3.4529	-0.6155	-0.3711	-0.4359		
5C	1.3054	2.1287	-0.3874	-0.4560	0.3114		
6N	0.3823	1.1541	-0.2286	0.2879	-0.0818		
7C	-0.9480	1.4329	-0.2930	-0.6233	0.3154		
8C	-1.3950	2.7517	-0.5174	-0.3034	-0.3336		
9H	-0.7566	4.7659	-0.8461	0.1967	0.1108		
10H	1.6840	4.2287	-0.7389	0.1760	0.1718		
11H	-2.4628	2.9461	-0.5554	0.2602	0.1550		
12N	2.6413	1.7219	-0.3084	-0.9187	-0.4321		
13N	-1.8235	0.3910	-0.1378	-0.5275	-0.4815		
14P	3.1167	0.0811	-0.0139	2.4032	0.3169		

15P	-1.3096	-1.2281	0.1271	2.1624	0.3407	
16C	-1.9368	-2.2242	-1.3270	-0.2933	0.3166	
17C	-2.1006	-1.7896	1.7214	-0.2700	0.3195	
18C	4.2214	-0.3398	-1.4601	-0.2445	0.2444	
19C	4.2295	0.1703	1.4873	-0.3629	0.2420	
20H	-1.2554	-1.8916	-2.1227	0.2235	-0.0454	
21C	-3.3754	-1.9233	-1.7839	-0.6203	-0.1642	
22H	-3.5297	-2.3802	-2.7703	0.2061	0.0369	
23H	-4.1207	-2.3444	-1.1043	0.2233	0.0473	
24H	-3.5825	-0.8527	-1.8687	0.2809	0.0158	
25C	-1.6955	-3.7259	-1.0900	-0.7005	-0.3695	
26H	-2.3567	-4.1197	-0.3093	0.2283	0.0811	
27H	-1.9131	-4.2800	-2.0110	0.2175	0.0911	
28H	-0.6590	-3.9397	-0.8048	0.2272	0.0813	
29C	3.4007	-0.3399	-2.7608	-0.7915	-0.1889	
30H	2.6332	-1.1221	-2.7399	0.2379	0.0433	
31H	2.9022	0.6197	-2.9326	0.2320	0.0182	
32H	4.0609	-0.5342	-3.6149	0.2144	0.0603	
33C	4.9193	-1.6930	-1.2351	-0.6975	-0.2667	
34H	4.1871	-2.4951	-1.0855	0.2436	0.0629	
35H	5.5190	-1.9490	-2.1169	0.2200	0.0731	
36H	5.5938	-1.6807	-0.3720	0.2177	0.0607	
37H	4.9838	0.4496	-1.5256	0.2158	-0.0275	
38H	4.5752	-0.8648	1.6163	0.2301	-0.0258	
39C	3.4030	0.5570	2.7257	-0.7499	-0.2131	
40H	2.5544	-0.1193	2.8715	0.2345	0.0420	
41H	4.0335	0.5117	3.6220	0.2138	0.0636	
42H	3.0139	1.5783	2.6419	0.2358	0.0413	
43C	5.4531	1.0854	1.3145	-0.6576	-0.1796	
44H	6.0646	1.0610	2.2248	0.2246	0.0540	
45H	6.0960	0.7831	0.4808	0.2204	0.0338	
46H	5.1549	2.1301	1.1597	0.2154	0.0306	
47H	-1.6630	-2.7867	1.8769	0.2246	-0.0645	
48C	-1.6259	-0.8694	2.8616	-0.7717	-0.2147	
49H	-0.5333	-0.7911	2.9006	0.2124	0.0312	
50H	-2.0446	0.1367	2.7514	0.2561	0.0424	
51H	-1.9721	-1.2727	3.8209	0.2123	0.0566	
52C	-3.6357	-1.9028	1.7014	-0.7254	-0.2232	
53H	-3.9833	-2.1566	2.7114	0.2036	0.0453	

54H	-4.1177	-0.9637	1.4045	0.2988	0.0625	
55H	-3.9820	-2.6937	1.0298	0.2061	0.0451	
56Br	-4.8855	1.4175	-0.1383	-0.5209	-0.7181	
57H	-2.8479	0.6556	-0.1447	0.3324	0.3586	
58H	3.3288	2.4531	-0.4518	0.4457	0.2827	

(PNP) palladium hydride 26

Energy: -2304.28846645 hartrees

Palladium-hydrogen bond length: 1.561 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-2.4842	-1.7697	3.8703	0.1640	-0.2150		
2C	-3.6438	-1.5053	3.1877	-0.5480	-0.1078		
3C	-3.5993	-0.8699	1.9127	0.1155	-0.0805		
4C	-2.4076	-0.4941	1.3323	-0.1378	0.0335		
5C	-1.1766	-0.7964	2.0124	-1.6403	0.0871		
6N	-0.0006	-0.5117	1.4141	0.8599	-0.1074		
7C	1.1755	-0.8002	2.0105	-1.6165	0.0827		
8C	2.4064	-0.5004	1.3291	-0.1511	0.0379		
9C	3.5978	-0.8815	1.9066	0.1166	-0.0812		
10C	3.6422	-1.5193	3.1804	-0.5341	-0.1063		
11C	2.4831	-1.7800	3.8651	0.1653	-0.2195		
12C	1.2163	-1.4389	3.3001	0.6384	0.1527		
13C	-0.0005	-1.7386	3.9227	0.6665	-0.2380		
14C	-1.2173	-1.4341	3.3025	0.6358	0.1492		

1						
15H	-2.5082	-2.2599	4.8406	0.1933	0.1446	
16H	-4.6056	-1.7835	3.6090	0.1921	0.1242	
17H	-4.5332	-0.6906	1.3857	0.2113	0.0983	
18H	4.5313	-0.7043	1.3783	0.2114	0.0974	
19H	4.6038	-1.8020	3.5994	0.1921	0.1245	
20H	2.5071	-2.2713	4.8348	0.1933	0.1458	
21H	-0.0005	-2.2373	4.8900	0.1993	0.1611	
22P	-2.2827	0.3304	-0.3259	0.3723	0.2922	
23P	2.2813	0.3310	-0.3255	0.3608	0.2916	
24Pd	-0.0007	0.0657	-0.6756	-1.2449	-0.0173	
25H	-0.0008	0.5793	-2.1492	0.1304	-0.1534	
26C	-3.5542	4.7775	0.2191	-0.2311	-0.1021	
27C	-2.9405	4.3301	-0.9565	-0.5086	-0.0636	
28C	-2.5646	2.9930	-1.0863	-0.7933	-0.0959	
29C	-2.8173	2.0748	-0.0510	0.6338	-0.2121	
30C	-3.4303	2.5322	1.1249	0.5785	-0.0200	
31C	-3.7929	3.8772	1.2592	-0.4778	-0.1156	
32H	-3.8369	5.8218	0.3243	0.1817	0.1052	
33H	-2.7430	5.0256	-1.7683	0.1838	0.1000	
34H	-2.0621	2.6594	-1.9908	0.2052	0.1115	
35H	-3.6238	1.8467	1.9439	0.1992	0.0628	
36H	-4.2622	4.2167	2.1794	0.1810	0.1043	
37C	-5.6150	-1.6507	-2.8749	-0.1100	-0.1693	
38C	-5.8597	-0.4078	-2.2836	-0.0963	-0.0559	
39C	-4.8697	0.2087	-1.5128	0.0397	-0.3139	
40C	-3.6259	-0.4186	-1.3311	-0.5463	0.3474	
41C	-3.3772	-1.6638	-1.9353	0.1370	-0.4473	
42C	-4.3756	-2.2743	-2.6977	-0.2397	0.0578	
43H	-6.3853	-2.1280	-3.4760	0.1794	0.1159	
44H	-6.8184	0.0862	-2.4227	0.1778	0.0972	
45H	-5.0670	1.1793	-1.0667	0.2020	0.1683	
46H	-2.4127	-2.1536	-1.8031	0.2537	0.2354	
47H	-4.1753	-3.2377	-3.1594	0.1937	0.0822	
48C	3.5476	4.7769	0.2415	-0.2357	-0.0957	
49C	2.9210	4.3376	-0.9303	-0.4944	-0.0610	
50C	2.5464	3.0007	-1.0664	-0.7498	-0.1024	
51C	2.8133	2.0749	-0.0415	0.6197	-0.2102	
52C	3.4391	2.5242	1.1307	0.5600	-0.0226	
53C	3.8005	3.8689	1.2716	-0.4957	-0.1195	

54H	3.8294	5.8210	0.3518	0.1817	0.1019	
55H	2.7123	5.0393	-1.7339	0.1838	0.0995	
56H	2.0336	2.6730	-1.9671	0.2052	0.1125	
57H	3.6437	1.8326	1.9419	0.1994	0.0644	
58H	4.2799	4.2021	2.1888	0.1810	0.1058	
59C	5.6172	-1.6293	-2.8865	-0.1147	-0.1760	
60C	5.8575	-0.3869	-2.2924	-0.1270	-0.0521	
61C	4.8664	0.2228	-1.5175	0.0905	-0.3165	
62C	3.6259	-0.4108	-1.3344	-0.5099	0.3516	
63C	3.3817	-1.6555	-1.9414	0.1069	-0.4520	
64C	4.3812	-2.2592	-2.7079	-0.2496	0.0647	
65H	6.3883	-2.1013	-3.4907	0.1794	0.1169	
66H	6.8134	0.1121	-2.4323	0.1778	0.0966	
67H	5.0604	1.1930	-1.0692	0.2022	0.1691	
68H	2.4198	-2.1502	-1.8085	0.2534	0.2359	
69H	4.1842	-3.2222	-3.1718	0.1936	0.0808	
70Br	0.0080	-2.9940	-0.9885	-0.4467	-0.6804	

(PNP) palladium hydride 27

Energy:	-2113.23441993	hartrees
---------	----------------	----------

	Palladium-hvdro	baen bond	lenath: 1	1.588 Å
--	-----------------	-----------	-----------	---------

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1N	-0.1308	1.3607	-0.2159	0.4007	-0.3574		
2C	-4.0107	3.0485	-0.8478	-0.0610	0.2760		
3C	-3.8270	1.7276	-0.4348	0.0227	-0.4508		
4C	-2.5605	1.1839	-0.1630	-0.7659	0.1387		
5C	-1.3717	1.9521	-0.3895	0.8827	0.1370		
6C	-1.5835	3.3234	-0.7113	0.0149	-0.1851		
7C	-2.8529	3.8416	-0.9314	-1.1438	-0.2926		
8H	-4.7061	1.0991	-0.3105	0.1652	0.1770		
9H	-0.7361	3.9964	-0.7561	0.1948	0.1429		
10H	-2.9473	4.8999	-1.1727	0.1713	0.1466		
11C	3.6128	2.9303	-1.5640	-0.0153	0.2683		
12C	2.4059	3.3036	-2.1811	-0.9827	-0.2826		
13C	1.1797	2.7934	-1.7766	-0.0840	-0.1968		
14C	1.0644	1.8590	-0.7073	0.7320	0.1561		
15C	2.3056	1.3703	-0.1830	-0.9200	0.0994		

16C	3.5259	1.9401	-0.5839	0.0495	-0.4287	
17H	2.4261	4.0140	-3.0069	0.1710	0.1441	
18H	0.2909	3.0960	-2.3164	0.1955	0.1436	
19H	4.4460	1.5915	-0.1204	0.1649	0.1641	
20P	2.2214	-0.0738	0.9398	1.5240	0.1631	
21P	-2.3493	-0.4731	0.5860	2.0217	0.1363	
22C	3.0778	0.4145	2.5338	0.0119	0.3035	
23H	4.0963	0.7300	2.2672	0.2205	-0.0385	
24C	3.2359	-1.4770	0.2089	-0.5062	0.1183	
25H	3.0258	-2.3036	0.9049	0.2336	-0.0111	
26C	-3.3193	-0.5306	2.2003	-0.2964	0.3750	
27H	-3.0452	-1.5152	2.6030	0.2317	-0.0549	
28C	-3.1656	-1.7073	-0.5585	-0.3097	0.0786	
29H	-4.2149	-1.3950	-0.6755	0.2210	-0.0026	
30C	-4.8516	-0.4591	2.0985	-0.7182	-0.2445	
31H	-5.2681	-1.1952	1.4016	0.2183	0.0321	
32H	-5.2909	-0.6583	3.0850	0.2120	0.0462	
33H	-5.1868	0.5362	1.7891	0.2268	0.0518	
34C	-2.7791	0.5381	3.1656	-0.7636	-0.2488	
35H	-2.9830	1.5481	2.7917	0.2427	0.0396	
36H	-3.2641	0.4359	4.1452	0.2023	0.0537	
37H	-1.6975	0.4391	3.3068	0.2331	0.0337	
38C	-3.1372	-3.1359	0.0257	-0.3873	-0.0115	
39H	-2.0936	-3.4174	0.2243	0.2387	-0.0093	
40H	-3.6601	-3.1720	0.9897	0.2036	-0.0021	
41C	-2.4983	-1.6718	-1.9507	-0.2699	-0.0089	
42H	-1.4288	-1.9006	-1.8401	0.2280	-0.0024	
43H	-2.5610	-0.6622	-2.3727	0.2323	-0.0266	
44C	3.1619	-0.7718	3.5087	-0.8382	-0.2383	
45H	3.7487	-1.6053	3.1073	0.2181	0.0519	
46H	3.6408	-0.4519	4.4433	0.2094	0.0482	
47H	2.1618	-1.1487	3.7527	0.2422	0.0470	
48C	2.3540	1.6097	3.1763	-0.8753	-0.2934	
49H	1.3289	1.3417	3.4578	0.2303	0.0715	
50H	2.8854	1.9206	4.0851	0.2045	0.0717	
51H	2.3054	2.4694	2.5001	0.2392	0.0452	
52C	2.6685	-1.8813	-1.1692	-0.2455	0.0372	
53H	1.5861	-2.0411	-1.0912	0.2247	-0.0334	
54H	2.8168	-1.0543	-1.8776	0.2384	-0.0309	

55C	4.7656	-1.2962	0.1324	-0.0578	-0.0021	
56H	5.0054	-0.4721	-0.5513	0.2143	0.0025	
57H	5.1818	-1.0318	1.1127	0.2047	-0.0269	
58C	-5.3787	3.6060	-1.1676	-0.6211	-0.2135	
59H	-5.5261	3.7285	-2.2501	0.2190	0.0529	
60H	-6.1742	2.9452	-0.8037	0.1989	0.0529	
61H	-5.5312	4.5921	-0.7102	0.2096	0.0526	
62C	4.9314	3.5526	-1.9622	-0.6280	-0.2066	
63H	5.7773	3.0028	-1.5335	0.1989	0.0520	
64H	5.0617	3.5643	-3.0523	0.2110	0.0512	
65H	5.0107	4.5938	-1.6191	0.2193	0.0506	
66Pd	-0.0565	-0.4686	0.8871	-1.5983	-0.0346	
67C	5.4441	-2.5782	-0.3878	-0.7240	0.0561	
68H	5.2865	-3.3921	0.3363	0.1991	-0.0228	
69H	6.5293	-2.4214	-0.4514	0.1962	-0.0248	
70C	3.3549	-3.1496	-1.7061	-0.6281	0.0706	
71H	3.0961	-4.0011	-1.0583	0.1985	-0.0319	
72H	2.9636	-3.3862	-2.7045	0.1965	-0.0204	
73C	4.8829	-2.9968	-1.7554	-0.4819	0.0305	
74H	5.1472	-2.2331	-2.5027	0.1991	-0.0183	
75H	5.3494	-3.9341	-2.0866	0.1946	-0.0241	
76C	-3.1420	-2.6884	-2.9088	-0.7452	0.1032	
77H	-4.1844	-2.3943	-3.1064	0.1977	-0.0381	
78H	-2.6224	-2.6618	-3.8758	0.1981	-0.0283	
79C	-3.7726	-4.1534	-0.9394	-0.6607	0.0807	
80H	-3.6960	-5.1619	-0.5115	0.1968	-0.0272	
81H	-4.8475	-3.9373	-1.0392	0.1978	-0.0345	
82C	-3.1167	-4.1100	-2.3278	-0.4790	0.0282	
83H	-2.0728	-4.4491	-2.2454	0.1998	-0.0131	
84H	-3.6210	-4.8097	-3.0077	0.1936	-0.0291	
85H	0.0000	-1.8288	1.7040	0.0894	-0.2346	

(PNP) palladium hydride 28

Energy: -2113.23835223 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1N	0.0001	1.0268	0.0000	0.5690	-0.2682		
2C	-3.2163	2.8691	-2.1261	-0.0170	0.2428		
3C	-3.2755	1.5482	-1.6755	-0.0594	-0.3961		

1						
4C	-2.2216	0.9363	-0.9786	-0.7278	0.0754	
5C	-1.0282	1.6643	-0.6722	0.9142	0.1179	
6C	-0.9624	2.9910	-1.1816	-0.0906	-0.1887	
7C	-2.0196	3.5635	-1.8770	-0.9904	-0.2718	
8H	-4.1691	0.9681	-1.8978	0.1657	0.1596	
9H	-0.0469	3.5597	-1.0669	0.1956	0.1379	
10H	-1.9038	4.5788	-2.2550	0.1720	0.1445	
11C	3.2160	2.8683	2.1273	-0.0115	0.2414	
12C	2.0194	3.5628	1.8782	-0.9997	-0.2742	
13C	0.9622	2.9906	1.1824	-0.0935	-0.1867	
14C	1.0282	1.6642	0.6725	0.9127	0.1179	
15C	2.2215	0.9360	0.9788	-0.7264	0.0755	
16C	3.2753	1.5476	1.6762	-0.0513	-0.3959	
17H	1.9034	4.5779	2.2567	0.1720	0.1450	
18H	0.0468	3.5593	1.0679	0.1956	0.1375	
19H	4.1687	0.9674	1.8986	0.1657	0.1596	
20P	2.2430	-0.8393	0.5170	1.1811	0.1773	
21P	-2.2430	-0.8391	-0.5173	1.1822	0.1756	
22C	2.9667	-1.7556	1.9829	0.1574	0.3791	
23H	3.9383	-1.2989	2.2148	0.2152	-0.0562	
24C	3.4563	-1.0747	-0.8972	-0.6205	0.0263	
25H	3.4222	-2.1568	-1.0947	0.2287	-0.0025	
26C	-3.4562	-1.0750	0.8970	-0.6210	0.0313	
27H	-3.4218	-2.1571	1.0943	0.2287	-0.0035	
28C	-2.9668	-1.7550	-1.9834	0.1573	0.3840	
29H	-3.9384	-1.2983	-2.2150	0.2152	-0.0581	
30C	-4.9155	-0.6783	0.5951	-0.0679	0.0568	
31H	-5.2958	-1.2209	-0.2799	0.2059	-0.0300	
32H	-4.9554	0.3916	0.3501	0.2323	-0.0173	
33C	-2.9444	-0.3524	2.1623	-0.1215	0.0611	
34H	-2.8952	0.7278	1.9658	0.2375	-0.0289	
35H	-1.9214	-0.6763	2.3875	0.2294	-0.0339	
36H	-2.2485	-3.7159	-1.3437	0.2439	0.0914	
37H	-3.9221	-3.3880	-0.8534	0.2168	0.0777	
38H	-1.0668	-2.0408	-3.0178	0.2359	0.0494	
39H	-1.8990	-0.5393	-3.4675	0.2384	0.0362	
40C	3.1869	-3.2411	1.6512	-0.8972	-0.3739	
41H	3.9224	-3.3881	0.8526	0.2168	0.0789	
42H	3.5567	-3.7681	2.5402	0.2094	0.0779	

1						
43H	2.2486	-3.7163	1.3423	0.2439	0.0928	
44C	2.0489	-1.5931	3.2064	-0.8441	-0.2387	
45H	1.0667	-2.0418	3.0171	0.2359	0.0488	
46H	2.4929	-2.0985	4.0740	0.2028	0.0492	
47H	1.8987	-0.5404	3.4673	0.2384	0.0352	
48C	2.9445	-0.3521	-2.1625	-0.1215	0.0653	
49H	1.9216	-0.6761	-2.3879	0.2294	-0.0346	
50H	2.8950	0.7281	-1.9659	0.2375	-0.0297	
51C	4.9156	-0.6778	-0.5951	-0.0679	0.0591	
52H	4.9552	0.3921	-0.3499	0.2323	-0.0172	
53H	5.2959	-1.2204	0.2798	0.2059	-0.0300	
54C	-4.3664	3.5161	-2.8637	-0.6626	-0.1912	
55H	-4.0400	3.9662	-3.8106	0.2132	0.0481	
56H	-5.1500	2.7861	-3.0975	0.1979	0.0472	
57H	-4.8308	4.3170	-2.2715	0.2183	0.0489	
58C	4.3664	3.5153	2.8645	-0.6634	-0.1836	
59H	5.1445	2.7829	3.1088	0.1980	0.0444	
60H	4.8384	4.3080	2.2673	0.2183	0.0471	
61H	4.0380	3.9759	3.8055	0.2128	0.0466	
62Pd	0.0000	-1.1129	-0.0002	-1.2406	-0.0709	
63C	5.8295	-0.9481	-1.8053	-0.7876	0.0305	
64H	5.8741	-2.0322	-1.9914	0.1979	-0.0196	
65H	6.8541	-0.6289	-1.5716	0.1964	-0.0240	
66C	3.8632	-0.6123	-3.3687	-0.6365	0.0555	
67H	3.8122	-1.6783	-3.6390	0.1974	-0.0285	
68H	3.4961	-0.0518	-4.2386	0.1984	-0.0218	
69C	5.3220	-0.2358	-3.0681	-0.4760	0.0694	
70H	5.3935	0.8529	-2.9223	0.1994	-0.0240	
71H	5.9634	-0.4800	-3.9253	0.1940	-0.0350	
72C	-2.0490	-1.5920	-3.2069	-0.8443	-0.2426	
73H	-2.4931	-2.0972	-4.0746	0.2028	0.0499	
74C	-3.1869	-3.2407	-1.6522	-0.8972	-0.3704	
75H	-3.5568	-3.7674	-2.5412	0.2094	0.0767	
76C	-3.8630	-0.6130	3.3686	-0.6365	0.0575	
77H	-3.8116	-1.6790	3.6387	0.1974	-0.0287	
78H	-3.4959	-0.0525	4.2385	0.1984	-0.0218	
79C	-5.3218	-0.2368	3.0681	-0.4760	0.0658	
80H	-5.3936	0.8518	2.9225	0.1994	-0.0231	
81H	-5.9632	-0.4813	3.9253	0.1940	-0.0343	

82C	-5.8293	-0.9491	1.8052	-0.7877	0.0343	
83H	-5.8735	-2.0332	1.9912	0.1979	-0.0207	
84H	-6.8540	-0.6301	1.5718	0.1964	-0.0247	
85H	0.0000	-2.6995	-0.0003	0.0793	-0.2293	

(PNP) palladium hydride 29

(see Figure 3-15, Figure 3-23, Figure 3-25)

Energy: -1879.76399120 hartrees

Palladium-hydrogen bond length: 1.587 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0000	-1.2058	-0.0007	-1.5316	-0.0900		
2H	0.0001	-2.7929	-0.0010	0.0768	-0.2191		
3N	-0.0001	0.9328	-0.0004	0.3721	-0.1990		
4C	3.7736	2.7798	0.7861	-0.1327	0.2552		
5C	3.6635	1.4561	0.3543	-0.1059	-0.4462		
6C	2.4269	0.8414	0.0995	-0.6057	0.1461		
7C	1.2036	1.5704	0.2475	0.7664	0.0487		
8C	1.3300	2.8988	0.7406	-0.0525	-0.1506		
9C	2.5687	3.4736	0.9938	-0.9099	-0.2842		
10H	4.5773	0.8769	0.2352	0.1648	0.1844		
11H	0.4367	3.4680	0.9697	0.1947	0.1290		
12H	2.5997	4.4906	1.3836	0.1721	0.1442		
13C	-3.7741	2.7796	-0.7860	-0.1323	0.2551		
14C	-2.5693	3.4735	-0.9939	-0.9102	-0.2843		
15C	-1.3305	2.8988	-0.7409	-0.0528	-0.1506		
16C	-1.2039	1.5704	-0.2479	0.7672	0.0488		
17C	-2.4271	0.8413	-0.0997	-0.6067	0.1448		
18C	-3.6639	1.4558	-0.3543	-0.1043	-0.4451		
19H	-2.6005	4.4905	-1.3837	0.1721	0.1443		
20H	-0.4373	3.4681	-0.9702	0.1947	0.1290		
21H	-4.5776	0.8766	-0.2350	0.1648	0.1837		
22P	-2.2784	-0.9371	0.3217	1.3597	0.1175		
23P	2.2785	-0.9370	-0.3219	1.3597	0.1153		
24C	-3.4739	-1.8485	-0.7953	-0.0202	0.4031		
25H	-4.4653	-1.3966	-0.6583	0.2137	-0.0699		
26C	-2.9075	-1.1858	2.0767	-0.4048	0.3027		
27H	-2.7793	-2.2628	2.2497	0.2256	-0.0450		
28C	2.9091	-1.1860	-2.0763	-0.4047	0.3021		
29H	2.7810	-2.2631	-2.2492	0.2256	-0.0450		
30C	3.4729	-1.8482	0.7963	-0.0204	0.4039		
31H	4.4645	-1.3963	0.6601	0.2137	-0.0708		
32C	4.3861	-0.8221	-2.2956	-0.6085	-0.2047		

33H	5.0623	-1.3800	-1.6377	0.2116	0.0279	
34H	4.6728	-1.0523	-3.3303	0.2100	0.0440	
35H	4.5579	0.2483	-2.1375	0.2376	0.0380	
36C	2.0002	-0.4344	-3.0638	-0.7594	-0.2392	
37H	2.0651	0.6496	-2.9145	0.2403	0.0403	
38H	2.3093	-0.6520	-4.0945	0.2050	0.0594	
39H	0.9516	-0.7278	-2.9500	0.2351	0.0382	
40C	3.5524	-3.3379	0.4220	-0.8008	-0.3574	
41H	2.5637	-3.8082	0.4777	0.2442	0.0860	
42H	3.9495	-3.4973	-0.5867	0.2136	0.0746	
43H	4.2158	-3.8608	1.1228	0.2090	0.0705	
44C	3.0545	-1.6699	2.2655	-0.7706	-0.2204	
45H	2.0708	-2.1188	2.4461	0.2354	0.0419	
46H	3.7811	-2.1665	2.9216	0.2025	0.0437	
47H	3.0055	-0.6142	2.5514	0.2381	0.0267	
48C	-3.5530	-3.3381	-0.4204	-0.8008	-0.3618	
49H	-3.9494	-3.4972	0.5886	0.2136	0.0756	
50H	-4.2169	-3.8612	-1.1207	0.2090	0.0717	
51H	-2.5643	-3.8084	-0.4767	0.2442	0.0873	
52C	-3.0567	-1.6705	-2.2648	-0.7706	-0.2219	
53H	-2.0731	-2.1195	-2.4461	0.2354	0.0424	
54H	-3.7839	-2.1673	-2.9202	0.2025	0.0443	
55H	-3.0079	-0.6149	-2.5510	0.2381	0.0270	
56C	-1.9976	-0.4341	3.0634	-0.7595	-0.2387	
57H	-0.9492	-0.7276	2.9488	0.2352	0.0379	
58H	-2.0625	0.6499	2.9140	0.2403	0.0403	
59H	-2.3060	-0.6515	4.0943	0.2050	0.0593	
60C	-4.3842	-0.8216	2.2970	-0.6088	-0.2094	
61H	-4.5560	0.2488	2.1387	0.2376	0.0391	
62H	-5.0609	-1.3797	1.6399	0.2116	0.0294	
63H	-4.6701	-1.0514	3.3320	0.2100	0.0453	
64C	5.1140	3.4306	1.0412	-0.6971	-0.1853	
65H	5.1553	3.9001	2.0328	0.2128	0.0473	
66H	5.9284	2.6989	0.9877	0.1978	0.0424	
67H	5.3316	4.2170	0.3049	0.2187	0.0480	
68C	-5.1146	3.4303	-1.0408	-0.6969	-0.1854	
69H	-5.9289	2.6985	-0.9877	0.1979	0.0425	
70H	-5.3323	4.2163	-0.3041	0.2187	0.0480	
71H	-5.1560	3.9003	-2.0322	0.2128	0.0473	

(PNP) palladium hydride 30

(see Figure 3-15)

Palladium-hydrogen bond length: 1.596 Å
Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.3604	0.4522	-0.8842	-0.8767	-0.1046		
2H	-0.7417	1.1758	-2.2544	0.0721	-0.2322		
3N	0.2162	-0.4906	0.8851	0.5290	-0.4221		
4C	-2.7329	-1.8386	3.5768	-0.7747	-0.1978		
5C	-3.0701	-1.3397	2.3174	0.1670	-0.1331		
6C	-2.0933	-0.8304	1.4532	-0.1091	-0.0611		
7C	-0.7030	-0.8737	1.8143	-0.3031	0.1936		
8C	-0.3883	-1.3517	3.1179	0.0398	-0.2556		
9C	-1.3846	-1.8201	3.9672	-0.1857	-0.0734		
10H	-4.1135	-1.3307	2.0092	0.1850	0.1080		
11H	0.6488	-1.3850	3.4362	0.1885	0.1193		
12H	-1.1047	-2.1924	4.9507	0.1722	0.1075		
13C	1.6230	-0.2427	1.1629	-2.2760	0.3237		
14P	1.9575	0.7295	-0.4765	0.8360	0.2790		
15P	-2.4872	-0.0547	-0.1617	0.1684	0.3885		
16H	-3.5003	-2.2235	4.2422	0.1690	0.1088		
17C	-5.0906	3.7312	0.5588	-0.2099	-0.1387		
18C	-4.5629	3.0453	1.6543	-0.5491	-0.0686		
19C	-3.7963	1.8902	1.4618	0.3766	-0.1864		
20C	-3.5501	1.4125	0.1665	1.5839	0.0562		
21C	-4.0697	2.1191	-0.9330	-1.0273	-0.1766		
22C	-4.8418	3.2639	-0.7374	-0.6645	-0.0647		
23H	-5.6876	4.6271	0.7103	0.1789	0.1123		
24H	-4.7454	3.4047	2.6641	0.1815	0.1019		
25H	-3.3903	1.3640	2.3201	0.2217	0.1229		
26H	-3.8631	1.7764	-1.9438	0.2000	0.1169		
27H	-5.2411	3.7974	-1.5964	0.1813	0.1027		
28C	-5.1343	-3.1119	-2.4541	-0.0938	-0.1223		
29C	-3.7523	-3.0595	-2.6606	-0.3191	-0.0490		
30C	-2.9781	-2.1164	-1.9811	-0.1293	-0.2152		
31C	-3.5756	-1.2204	-1.0803	-0.0038	0.0483		
32C	-4.9649	-1.2739	-0.8838	-0.0182	-0.1195		
33C	-5.7387	-2.2155	-1.5678	-0.2528	-0.1160		
34H	-5.7383	-3.8420	-2.9869	0.1801	0.1107		
35H	-3.2777	-3.7458	-3.3573	0.1812	0.1050		
36H	-1.9062	-2.0631	-2.1548	0.2019	0.1266		

37H	-5.4482	-0.5743	-0.2073	0.1978	0.1078	
38H	-6.8138	-2.2461	-1.4085	0.1816	0.1114	
39C	4.1530	-3.6961	1.8495	-0.1205	-0.1337	
40C	4.4388	-2.4781	2.4733	-0.1770	-0.0879	
41C	3.6145	-1.3712	2.2539	0.0577	-0.2454	
42C	2.4984	-1.4584	1.4085	0.9206	0.1206	
43C	2.2165	-2.6869	0.7944	-0.0482	-0.0630	
44C	3.0364	-3.7960	1.0131	-0.6346	-0.1463	
45H	4.7882	-4.5615	2.0215	0.1751	0.1126	
46H	5.2954	-2.3919	3.1378	0.1741	0.1057	
47H	3.8323	-0.4325	2.7618	0.1684	0.1196	
48H	1.3382	-2.7669	0.1607	0.2140	0.0628	
49H	2.8001	-4.7428	0.5333	0.1767	0.1193	
50C	5.1015	-1.4698	-3.0903	-0.1082	-0.1300	
51C	3.7367	-1.5486	-3.3783	-0.4270	-0.0717	
52C	2.8126	-0.8717	-2.5776	-0.1828	-0.1605	
53C	3.2447	-0.1146	-1.4767	0.1050	0.0376	
54C	4.6191	-0.0357	-1.1978	0.1142	-0.1482	
55C	5.5407	-0.7102	-2.0006	-0.3899	-0.0695	
56H	5.8219	-1.9923	-3.7146	0.1807	0.1128	
57H	3.3897	-2.1295	-4.2291	0.1821	0.1087	
58H	1.7512	-0.9180	-2.8091	0.2149	0.1065	
59H	4.9761	0.5563	-0.3604	0.1947	0.1006	
60H	6.6020	-0.6425	-1.7753	0.1805	0.1011	
61C	3.6605	4.9263	0.5616	0.0235	-0.0891	
62C	4.0613	3.8257	1.3251	-0.7394	-0.1514	
63C	3.5638	2.5526	1.0350	0.5975	-0.0545	
64C	2.6556	2.3655	-0.0208	0.2817	-0.0337	
65C	2.2487	3.4799	-0.7735	-0.4405	-0.1210	
66C	2.7547	4.7506	-0.4884	-0.4748	-0.0992	
67H	4.0472	5.9164	0.7891	0.1822	0.1101	
68H	4.7601	3.9566	2.1477	0.1830	0.1169	
69H	3.8840	1.7085	1.6394	0.1869	0.0898	
70H	1.5264	3.3503	-1.5753	0.2117	0.1057	
71H	2.4310	5.6038	-1.0790	0.1855	0.1158	
72H	1.7718	0.4682	1.9952	0.2321	-0.0551	

(PNP) palladium hydride 31

(see Figure 3-15)

Energy: -2332.18586013 hartrees

Palladium-hydrogen bond length: 1.586 Å

Center				N As all its a se	ala alia ai	Mulliken	ADT
number				Mulliken	cheipg	atomic	APT
and				atomic	atomic	spin	atomic
element	x-coord.	y-coord.	z-coord.	charge	charge	density	charge

1Pd	-0.0363	-0.6839	0.4940	-1.0276	-0.1532	
2H	-0.2044	-2.0634	1.2588	0.0930	-0.2103	
3N	0.1444	1.1834	-0.5421	0.4605	-0.4897	
4C	-3.3405	2.6030	-2.5116	-0.8763	-0.1778	
5C	-3.4025	1.5687	-1.5795	0.0462	-0.1581	
6C	-2.2474	1.0565	-0.9742	0.0121	-0.0817	
7C	-0.9501	1.6225	-1.2378	-0.1600	0.2529	
8C	-0.9189	2.6483	-2.2329	0.0308	-0.2858	
9C	-2.0775	3.1171	-2.8398	-0.1762	-0.0739	
10H	-4.3684	1.1330	-1.3328	0.1791	0.1164	
11H	0.0267	3.0949	-2.5135	0.1858	0.1384	
12H	-1.9935	3.9073	-3.5836	0.1700	0.1032	
13C	1.4570	1.7590	-0.8318	-1.1863	0.3661	
14P	2.2602	-0.7348	0.2786	0.6537	0.4655	
15P	-2.2972	-0.3644	0.1653	0.3993	0.4590	
16H	-4.2426	2.9843	-2.9811	0.1678	0.1005	
17C	-4.3565	-3.9458	-1.9743	-0.2440	-0.1194	
18C	-3.8904	-2.8647	-2.7257	-0.2751	-0.0738	
19C	-3.3016	-1.7654	-2.0918	0.0219	-0.1740	
20C	-3.1724	-1.7374	-0.6949	1.5487	0.0065	
21C	-3.6314	-2.8359	0.0532	-0.9736	-0.1242	
22C	-4.2251	-3.9277	-0.5810	-0.6129	-0.1005	
23H	-4.8172	-4.7976	-2.4683	0.1784	0.1076	
24H	-3.9849	-2.8705	-3.8087	0.1809	0.1028	
25H	-2.9451	-0.9291	-2.6851	0.2219	0.1194	
26H	-3.5241	-2.8394	1.1349	0.1960	0.1031	
27H	-4.5803	-4.7668	0.0122	0.1797	0.1074	
28C	-4.9593	0.8535	3.7785	-0.1338	-0.1052	
29C	-3.5651	0.8646	3.8767	-0.2627	-0.0779	
30C	-2.7831	0.4704	2.7876	-0.3019	-0.1338	
31C	-3.3863	0.0680	1.5856	0.2620	-0.0224	
32C	-4.7881	0.0534	1.4977	0.0822	-0.1149	
33C	-5.5688	0.4447	2.5878	-0.4219	-0.1179	
34H	-5.5687	1.1555	4.6266	0.1800	0.1059	
35H	-3.0848	1.1723	4.8022	0.1816	0.1051	
36H	-1.6989	0.4644	2.8666	0.2060	0.0962	
37H	-5.2745	-0.2739	0.5830	0.1943	0.1100	
38H	-6.6529	0.4281	2.5073	0.1813	0.1106	
39C	1.9378	6.0114	-0.0241	-0.1124	-0.1102	

	•					
40C	2.6529	5.4034	-1.0598	-0.0793	-0.1291	
41C	2.4738	4.0426	-1.3278	0.1133	-0.2042	
42C	1.5834	3.2696	-0.5706	0.9233	0.1236	
43C	0.8700	3.8885	0.4642	-0.3467	-0.0707	
44C	1.0443	5.2480	0.7348	-0.6045	-0.1758	
45H	2.0692	7.0702	0.1847	0.1733	0.1074	
46H	3.3450	5.9871	-1.6624	0.1735	0.1137	
47H	3.0250	3.5786	-2.1451	0.1681	0.1033	
48H	0.1628	3.2992	1.0414	0.2086	0.0723	
49H	0.4744	5.7147	1.5350	0.1762	0.1244	
50C	2.5434	1.0855	0.0511	-1.3932	-0.0908	
51H	2.4770	1.4904	1.0683	0.2758	-0.0043	
52C	5.1262	-1.8816	3.7524	-0.1511	-0.1259	
53C	3.7440	-1.8341	3.9506	-0.4747	-0.0658	
54C	2.8939	-1.5080	2.8894	-0.1737	-0.1539	
55C	3.4213	-1.2187	1.6215	0.0826	0.0190	
56C	4.8117	-1.2767	1.4279	0.3207	-0.1552	
57C	5.6586	-1.6046	2.4885	-0.3651	-0.0883	
58H	5.7870	-2.1394	4.5762	0.1821	0.1129	
59H	3.3241	-2.0583	4.9280	0.1839	0.1060	
60H	1.8169	-1.4875	3.0352	0.2221	0.1050	
61H	5.2369	-1.0778	0.4475	0.1926	0.1066	
62H	6.7329	-1.6476	2.3274	0.1818	0.1080	
63C	3.7508	-3.0182	-3.4871	-0.1554	-0.0910	
64C	4.2351	-1.7318	-3.2375	-0.3784	-0.1466	
65C	3.8006	-1.0239	-2.1124	0.2400	-0.0876	
66C	2.8730	-1.5942	-1.2263	0.0029	-0.0302	
67C	2.3806	-2.8834	-1.4943	-0.1564	-0.1660	
68C	2.8229	-3.5928	-2.6122	-0.3631	-0.0688	
69H	4.0880	-3.5672	-4.3626	0.1820	0.1064	
70H	4.9495	-1.2750	-3.9179	0.1823	0.1172	
71H	4.1858	-0.0231	-1.9391	0.1750	0.1118	
72H	1.6405	-3.3234	-0.8309	0.2092	0.1093	
73H	2.4334	-4.5888	-2.8064	0.1853	0.1108	
74H	3.5476	1.3270	-0.3163	0.2315	-0.0004	
75H	1.7325	1.5864	-1.8896	0.2068	-0.0752	

(PNP) palladium hydride 32

(see Figure 3-15)

Palladium-hydrogen bond length: 1.581 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.0132	-0.8399	0.1498	-1.1413	-0.1569		
2H	-0.0849	-2.3436	0.6311	0.0968	-0.2070		
3N	0.0794	1.2222	-0.4581	0.3285	-0.1589		
4C	-3.5106	2.8777	-2.0183	-0.8360	-0.1543		
5C	-3.5118	1.6979	-1.2781	0.0235	-0.1623		
6C	-2.3210	1.1346	-0.7972	-0.0319	-0.0569		
7C	-1.0639	1.7879	-1.0039	-0.1134	0.1099		
8C	-1.0867	2.9525	-1.8190	-0.0672	-0.1600		
9C	-2.2782	3.4823	-2.3003	-0.4040	-0.0993		
10H	-4.4541	1.1876	-1.0938	0.1841	0.1219		
11H	-0.1567	3.4386	-2.0829	0.2033	0.1135		
12H	-2.2421	4.3774	-2.9175	0.1763	0.1059		
13C	1.3059	1.8246	-0.3352	-0.1503	0.0377		
14P	2.3067	-0.6986	0.0710	0.8419	0.5034		
15P	-2.2961	-0.4809	0.0710	0.4140	0.3852		
16H	-4.4394	3.2972	-2.3942	0.1734	0.1064		
17C	-4.7269	-3.5452	-2.4429	-0.2847	-0.1393		
18C	-4.1530	-2.4329	-3.0640	-0.2239	-0.0674		
19C	-3.4578	-1.4839	-2.3091	-0.2621	-0.2004		
20C	-3.3319	-1.6345	-0.9188	1.3284	0.0715		
21C	-3.9002	-2.7635	-0.3039	-0.7041	-0.1717		
22C	-4.5967	-3.7080	-1.0600	-0.2902	-0.0664		
23H	-5.2685	-4.2815	-3.0312	0.1801	0.1140		
24H	-4.2440	-2.2997	-4.1390	0.1819	0.1062		
25H	-3.0158	-0.6251	-2.8049	0.2114	0.1272		
26H	-3.7995	-2.9084	0.7683	0.1965	0.1169		
27H	-5.0340	-4.5731	-0.5678	0.1805	0.1006		
28C	-4.4690	0.1808	4.1297	-0.1197	-0.1178		
29C	-3.0785	0.0575	4.0701	-0.3127	-0.0731		
30C	-2.4472	-0.1679	2.8434	-0.1364	-0.1620		
31C	-3.1993	-0.2658	1.6625	0.1556	0.0342		
32C	-4.5974	-0.1456	1.7323	0.0322	-0.1382		
33C	-5.2273	0.0759	2.9587	-0.4661	-0.1030		
34H	-4.9615	0.3525	5.0835	0.1815	0.1114		
35H	-2.4835	0.1312	4.9769	0.1838	0.1095		
36H	-1.3664	-0.2738	2.7956	0.2128	0.1023		

37H	-5.2000	-0.2349	0.8327	0.1937	0.1065	
38H	-6.3100	0.1651	2.9996	0.1822	0.1103	
39C	1.8254	6.0974	0.0058	-0.2178	-0.1052	
40C	2.6016	5.3706	-0.9011	-0.3951	-0.1730	
41C	2.4243	3.9897	-1.0289	0.0358	-0.0953	
42C	1.4610	3.3171	-0.2616	0.3791	0.2012	
43C	0.6849	4.0567	0.6462	-0.2192	-0.1613	
44C	0.8691	5.4331	0.7818	-0.5108	-0.1179	
45H	1.9636	7.1708	0.1079	0.1763	0.1081	
46H	3.3467	5.8765	-1.5104	0.1768	0.1201	
47H	3.0269	3.4283	-1.7383	0.1925	0.0945	
48H	-0.0615	3.5459	1.2481	0.2020	0.1103	
49H	0.2640	5.9886	1.4942	0.1776	0.1123	
50C	2.4499	1.0781	-0.1295	-0.7765	-0.4310	
51H	3.3957	1.5786	0.0542	0.2125	0.1075	
52C	4.7412	-1.7729	3.8847	-0.1248	-0.0979	
53C	3.3698	-2.0317	3.8277	-0.4867	-0.0745	
54C	2.6434	-1.7201	2.6732	-0.4628	-0.2038	
55C	3.2837	-1.1468	1.5652	0.3002	0.0279	
56C	4.6657	-0.8966	1.6279	0.0696	-0.1042	
57C	5.3888	-1.2053	2.7810	-0.3519	-0.1368	
58H	5.3059	-2.0151	4.7816	0.1795	0.1063	
59H	2.8626	-2.4792	4.6790	0.1816	0.1032	
60H	1.5778	-1.9280	2.6226	0.2204	0.1426	
61H	5.1808	-0.4656	0.7727	0.1895	0.1159	
62H	6.4569	-1.0059	2.8181	0.1810	0.1127	
63C	4.4879	-2.8194	-3.4518	-0.1362	-0.1461	
64C	4.0912	-1.4852	-3.5726	-0.5679	-0.0697	
65C	3.4576	-0.8407	-2.5055	0.5051	-0.1550	
66C	3.2199	-1.5232	-1.3036	0.5823	0.0217	
67C	3.6143	-2.8670	-1.1920	-0.6670	-0.2422	
68C	4.2468	-3.5089	-2.2581	-0.2988	-0.0223	
69H	4.9805	-3.3206	-4.2813	0.1783	0.1092	
70H	4.2736	-0.9430	-4.4974	0.1791	0.0988	
71H	3.1483	0.1970	-2.6004	0.2069	0.1149	
72H	3,4311	-3,4133	-0.2700	0.1911	0.1367	
73H	4.5503	-4.5481	-2.1574	0.1797	0.0927	

(PPP) palladium hydride 33

(see Figure 3-16)

Energy: -2087.72430873 hartrees

Palladium-hydrogen bond length: 1.640 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0421	-1.0327	-0.2564	-1.8658	-0.0878		

1	1					1	1
2H	0.0531	-2.5718	0.3105	0.0069	-0.2776		
3P	0.0177	1.2128	-1.0782	0.5305	-0.3424		
4C	3.7139	3.0295	1.1605	-0.6119	-0.1167		
5C	3.6605	1.6793	0.8087	0.0988	-0.1857		
6C	2.5077	1.1234	0.2308	-0.1094	0.0607		
7C	1.3836	1.9495	-0.0535	0.2507	0.1291		
8C	1.4614	3.3072	0.3132	0.0155	-0.2421		
9C	2.5982	3.8378	0.9232	-0.7729	-0.1080		
10H	4.5191	1.0489	1.0243	0.1764	0.1178		
11H	0.6196	3.9647	0.1224	0.1633	0.1579		
12H	2.6153	4.8880	1.2063	0.1767	0.1132		
13C	-4.2650	2.8282	-0.1135	-0.5007	-0.0704		
14C	-3.2371	3.7234	-0.4284	-0.2309	-0.1322		
15C	-1.9425	3.2528	-0.6427	0.1049	-0.2030		
16C	-1.6147	1.8882	-0.4967	-0.5203	0.0945		
17C	-2.6587	0.9926	-0.1475	-0.1805	0.1165		
18C	-3.9726	1.4699	0.0093	0.0479	-0.2619		
19H	-3.4522	4.7833	-0.5425	0.1786	0.1178		
20H	-1.1815	3.9533	-0.9746	0.1739	0.1436		
21H	-4.7804	0.7787	0.2323	0.1773	0.1360		
22P	-2.2350	-0.7960	0.0775	1.5628	0.2677		
23P	2.3465	-0.6945	-0.0990	1.3777	0.1782		
24C	-3.4304	-1.7275	-1.0260	-0.0221	0.2912		
25H	-4.4446	-1.3956	-0.7644	0.2129	-0.0608		
26C	-2.6955	-1.2426	1.8490	-0.3992	0.2479		
27H	-2.3341	-2.2767	1.9211	0.2400	-0.0137		
28C	3.4325	-1.0954	-1.5876	-0.2771	0.3690		
29H	3.3331	-2.1847	-1.6852	0.2265	-0.0857		
30C	3.1986	-1.5299	1.3533	-0.0035	0.3591		
31H	4.2122	-1.1139	1.4227	0.2059	-0.0412		
32C	4.9200	-0.7487	-1.4163	-0.6167	-0.2395		
33H	5.3730	-1.2373	-0.5463	0.2113	0.0365		
34H	5.4780	-1.0763	-2.3032	0.2109	0.0486		
35H	5.0657	0.3328	-1.3173	0.2391	0.0298		
36C	2.8607	-0.4540	-2.8628	-0.8477	-0.1125		
37H	2.8902	0.6404	-2.8098	0.2417	0.0011		
38H	3.4576	-0.7637	-3.7307	0.2037	0.0195		
39H	1.8223	-0.7507	-3.0369	0.2408	-0.0085		
40C	3.3034	-3.0475	1.1278	-0.8770	-0.4042		

1	1					1 1
41H	2.3105	-3.4847	0.9721	0.2529	0.1040	
42H	3.9309	-3.3029	0.2666	0.2110	0.0846	
43H	3.7499	-3.5212	2.0116	0.2070	0.0843	
44C	2.4551	-1.2238	2.6635	-0.7778	-0.3094	
45H	1.4438	-1.6444	2.6378	0.2404	0.1025	
46H	2.9917	-1.6772	3.5072	0.2024	0.0610	
47H	2.3763	-0.1482	2.8533	0.2312	0.0413	
48C	-3.3265	-3.2449	-0.7968	-0.8107	-0.2167	
49H	-3.5894	-3.5346	0.2265	0.2142	0.0405	
50H	-4.0118	-3.7690	-1.4754	0.2075	0.0479	
51H	-2.3093	-3.6003	-0.9954	0.2490	0.0305	
52C	-3.1667	-1.3704	-2.4989	-0.8884	-0.2033	
53H	-2.1557	-1.6691	-2.7994	0.2365	0.0402	
54H	-3.8824	-1.8977	-3.1428	0.2051	0.0436	
55H	-3.2720	-0.2967	-2.6870	0.2339	0.0244	
56C	-1.8781	-0.3873	2.8318	-0.7739	-0.2371	
57H	-0.8071	-0.4406	2.6136	0.2380	0.0143	
58H	-2.1824	0.6651	2.7906	0.2349	0.0272	
59H	-2.0385	-0.7434	3.8577	0.2037	0.0721	
60C	-4.1887	-1.2190	2.2136	-0.5619	-0.2226	
61H	-4.5800	-0.1968	2.2516	0.2248	0.0503	
62H	-4.8086	-1.8008	1.5225	0.2143	0.0335	
63H	-4.3217	-1.6522	3.2138	0.2133	0.0440	
64H	4.6061	3.4385	1.6273	0.1762	0.1024	
65H	-5.2835	3.1823	0.0232	0.1777	0.0987	

(PPP) palladium hydride 34

(see Figure 3-16)

Energy: -2540.16774091 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0015	0.1430	0.6346	-1.5667	-0.1203		
2H	-0.0638	1.5659	1.4310	0.0397	-0.2541		
3P	0.0953	-1.9558	-0.5486	0.6040	-0.4010		
4C	-4.2141	-2.4815	-2.3133	-0.5941	-0.1125		
5C	-3.9508	-1.4661	-1.3958	-0.1408	-0.1528		
6C	-2.6422	-1.2315	-0.9391	-0.0263	-0.0620		

1	1 1	I				1	1
7C	-1.5722	-2.0511	-1.3707	-0.5779	0.2100		
8C	-1.8715	-3.0920	-2.2753	0.1916	-0.2267		
9C	-3.1635	-3.2927	-2.7584	-0.2186	-0.1026		
10H	-4.7686	-0.8442	-1.0409	0.1928	0.1210		
11H	-3.3583	-4.1009	-3.4597	0.1799	0.1116		
12C	3.4407	-0.8531	-3.6486	-0.6132	-0.0830		
13C	2.3721	-1.6549	-4.0597	-0.7712	-0.1373		
14C	1.3375	-1.9639	-3.1744	0.1804	-0.1706		
15C	1.3208	-1.4641	-1.8592	0.1825	0.1079		
16C	2.3995	-0.6266	-1.4618	-0.1631	-0.0234		
17C	3.4480	-0.3434	-2.3478	0.4159	-0.1982		
18H	2.3426	-2.0442	-5.0750	0.1766	0.1146		
19H	0.5257	-2.5964	-3.5199	0.1688	0.1341		
20H	4.2572	0.3118	-2.0366	0.2001	0.1203		
21P	2.2981	0.1301	0.2246	0.5248	0.3519		
22P	-2.2674	0.1267	0.2599	0.7507	0.4986		
23H	-5.2280	-2.6471	-2.6682	0.1799	0.1058		
24H	4.2471	-0.6095	-4.3351	0.1775	0.1002		
25H	-1.0857	-3.7812	-2.5728	0.1808	0.1513		
26C	-3.6403	4.1179	-1.7031	-0.2757	-0.0919		
27C	-3.5152	2.9730	-2.4921	-0.2761	-0.0951		
28C	-3.1324	1.7566	-1.9152	0.2326	-0.1341		
29C	-2.8699	1.6745	-0.5400	1.8951	-0.1216		
30C	-2.9762	2.8375	0.2434	-1.5843	0.0084		
31C	-3.3697	4.0458	-0.3313	-0.8002	-0.1460		
32H	-3.9406	5.0615	-2.1516	0.1800	0.1036		
33H	-3.7138	3.0201	-3.5599	0.1814	0.1071		
34H	-3.0380	0.8758	-2.5422	0.2117	0.1046		
35H	-2.7429	2.7992	1.3041	0.2053	0.0708		
36H	-3.4553	4.9339	0.2899	0.1821	0.1121		
37C	-5.0887	-0.7106	3.8620	-0.1078	-0.1306		
38C	-5.5843	-0.0038	2.7620	-0.4749	-0.0809		
39C	-4.7527	0.2764	1.6745	0.0397	-0.1859		
40C	-3.4143	-0.1480	1.6766	0.0471	0.0751		
41C	-2.9212	-0.8458	2.7907	-0.1319	-0.2319		
42C	-3.7552	-1.1299	3.8747	-0.2337	-0.0417		
43H	-5.7367	-0.9261	4.7078	0.1808	0.1115		
44H	-6.6179	0.3331	2.7499	0.1817	0.1044		
45H	-5.1468	0.8392	0.8328	0.1967	0.1203		

1	1 1					1
46H	-1.8792	-1.1557	2.8098	0.2096	0.1288	
47H	-3.3601	-1.6705	4.7310	0.1844	0.1037	
48C	4.5253	4.1973	-0.1509	-0.1371	-0.0972	
49C	3.1362	4.1239	-0.2928	-0.6028	-0.1118	
50C	2.4802	2.8980	-0.1573	0.0254	-0.1269	
51C	3.2093	1.7282	0.1062	-0.2880	-0.0020	
52C	4.6037	1.8099	0.2550	-0.0664	-0.0596	
53C	5.2569	3.0391	0.1284	-0.0873	-0.1425	
54H	5.0342	5.1532	-0.2472	0.1797	0.1073	
55H	2.5597	5.0229	-0.4960	0.1823	0.1176	
56H	1.3974	2.8451	-0.2328	0.2293	0.1120	
57H	5.1816	0.9181	0.4825	0.2033	0.0725	
58H	6.3360	3.0904	0.2513	0.1806	0.1127	
59C	4.8672	-2.4495	3.1200	-0.1793	-0.1957	
60C	4.1422	-1.3469	3.5872	-0.5126	0.0170	
61C	3.3829	-0.5818	2.7013	-0.6753	-0.3298	
62C	3.3507	-0.9000	1.3318	0.9234	0.2815	
63C	4.0733	-2.0100	0.8719	0.3837	-0.2972	
64C	4.8284	-2.7798	1.7638	-0.6356	-0.0364	
65H	5.4530	-3.0497	3.8117	0.1794	0.1227	
66H	4.1609	-1.0884	4.6430	0.1816	0.0971	
67H	2.8090	0.2635	3.0738	0.2000	0.1264	
68H	4.0465	-2.2793	-0.1799	0.2160	0.1570	
69H	5.3821	-3.6396	1.3946	0.1817	0.1016	

(PSiP) palladium hydride 35

(see Figure 3-16, Figure 3-33)

Energy: -2542.71411319 hartrees

Palladium-hydrogen bond length: 1.680 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0024	0.5090	0.5284	-1.7977	-0.0747		
2H	-0.1590	2.1319	0.9302	-0.0295	-0.2266		
3C	-4.2956	-3.0975	-1.1868	-0.7984	-0.0304		
4C	-4.0265	-1.9251	-0.4807	-0.1691	-0.2357		

1	1			1		1
5C	-2.7089	-1.4575	-0.3340	-0.2347	0.2174	
6C	-1.6260	-2.2212	-0.8325	-0.3818	-0.2300	
7C	-1.9261	-3.3946	-1.5519	0.2822	-0.0461	
8C	-3.2399	-3.8226	-1.7490	-0.6105	-0.1954	
9H	-4.8558	-1.3769	-0.0432	0.1789	0.1130	
10H	-1.1186	-4.0055	-1.9497	0.1664	0.1055	
11H	-3.4399	-4.7316	-2.3119	0.1781	0.1207	
12C	3.8475	-1.9030	-3.0927	-0.7935	-0.1057	
13C	2.8932	-2.9205	-3.1698	-0.6171	-0.1389	
14C	1.7816	-2.8859	-2.3259	0.4035	-0.1454	
15C	1.5776	-1.8421	-1.4034	-0.0051	-0.1218	
16C	2.5564	-0.8177	-1.3295	-0.3985	0.1294	
17C	3.6786	-0.8650	-2.1753	0.0236	-0.1236	
18H	3.0152	-3.7338	-3.8817	0.1784	0.1168	
19H	1.0552	-3.6927	-2.3943	0.1659	0.1307	
20H	4.4360	-0.0877	-2.1369	0.1776	0.0919	
21P	2.2631	0.5857	-0.1154	1.4686	-0.0416	
22P	-2.3094	0.1550	0.5158	1.4396	0.0717	
23H	3.9490	1.6912	-1.4014	0.1950	-0.0076	
24H	3.1475	1.3879	1.8801	0.2340	-0.0068	
25H	-2.6660	2.4063	0.1283	0.2473	0.0043	
26H	-4.3451	-0.1063	1.7670	0.2056	-0.0364	
27H	-5.3209	-3.4419	-1.2988	0.1800	0.0913	
28H	4.7188	-1.9143	-3.7432	0.1795	0.1044	
29C	-3.2920	0.9605	-2.9699	-0.3639	-0.0506	
30C	-2.5068	1.7097	-1.8826	-0.5406	0.0378	
31C	-3.0990	1.5845	-0.4545	-0.3535	0.0783	
32C	-4.6359	1.8039	-0.4666	-0.3625	0.0864	
33C	-5.4125	1.1326	-1.6147	-0.3286	-0.0424	
34C	-4.7653	1.3911	-2.9823	-0.6103	0.1315	
35H	-3.2285	-0.1231	-2.8069	0.2310	-0.0070	
36H	-2.8281	1.1581	-3.9455	0.1929	0.0025	
37H	-2.5009	2.7793	-2.1423	0.2066	-0.0037	
38H	-1.4588	1.3921	-1.8774	0.2215	-0.0422	
39H	-5.0854	1.5361	0.4975	0.2061	-0.0405	
40H	-4.7813	2.8912	-0.5635	0.2113	-0.0221	
41H	-5.4734	0.0507	-1.4584	0.1916	0.0062	
42H	-6.4458	1.5059	-1.6045	0.1935	-0.0156	
43H	-4.8306	2.4631	-3.2261	0.1946	-0.0380	

1	1 1	1	1			
44H	-5.3171	0.8561	-3.7665	0.1932	-0.0426	
45C	-1.6320	-0.9218	3.8047	-0.2541	0.3087	
46C	-2.9204	-1.1454	2.9960	-0.6003	-0.1950	
47C	-3.3150	0.0620	2.1099	-0.0833	0.2311	
48C	-3.3085	1.3668	2.9464	-0.3608	-0.0165	
49C	-2.0293	1.5762	3.7750	-0.3702	0.1991	
50C	-1.7181	0.3554	4.6530	-0.6553	-0.1217	
51H	-0.7746	-0.8447	3.1220	0.2349	-0.1000	
52H	-1.4500	-1.7965	4.4437	0.1893	-0.0655	
53H	-3.7499	-1.3148	3.7005	0.2059	0.0115	
54H	-2.8437	-2.0574	2.3919	0.2252	0.0175	
55H	-3.4923	2.2427	2.3130	0.2134	-0.0288	
56H	-4.1668	1.3048	3.6344	0.2059	-0.0217	
57H	-1.1844	1.7691	3.1020	0.2577	-0.0867	
58H	-2.1511	2.4727	4.3982	0.1873	-0.0485	
59H	-2.5057	0.2348	5.4141	0.1922	-0.0043	
60H	-0.7778	0.5126	5.1979	0.1952	-0.0031	
61C	0.9760	3.3404	-2.1277	-0.4674	0.1977	
62C	2.1744	2.4066	-2.3605	-0.4847	-0.0468	
63C	2.9712	2.0640	-1.0748	-0.2978	0.1930	
64C	3.2594	3.3516	-0.2567	-0.2870	-0.0127	
65C	2.0498	4.2756	-0.0496	-0.4257	0.1867	
66C	1.3826	4.6220	-1.3873	-0.5412	-0.0926	
67H	0.2171	2.8211	-1.5338	0.2365	-0.0453	
68H	0.5196	3.5833	-3.0973	0.1849	-0.0468	
69H	2.8753	2.9034	-3.0501	0.2040	-0.0230	
70H	1.8505	1.4897	-2.8680	0.2207	-0.0304	
71H	3.7209	3.1162	0.7081	0.2083	-0.0196	
72H	4.0246	3.9080	-0.8220	0.2068	-0.0263	
73H	1.3156	3.7870	0.6007	0.2419	-0.0685	
74H	2.3841	5.1894	0.4610	0.1843	-0.0540	
75H	2.0772	5.2095	-2.0098	0.1889	-0.0096	
76H	0.5010	5.2545	-1.2178	0.1925	-0.0077	
77C	3.8535	-2.0135	1.9820	-0.3191	0.1438	
78C	3.1436	-0.6956	2.3316	-0.5324	-0.0242	
79C	3.4567	0.4703	1.3618	-0.2024	0.1369	
80C	4.9856	0.5783	1.1180	-0.2789	0.0499	
81C	5.6978	-0.7531	0.8210	-0.3890	0.0895	
82C	5.3718	-1.8192	1.8750	-0.7628	-0.1169	

1	1					1 1
83H	3.4775	-2.4062	1.0285	0.2330	-0.0123	
84H	3.6168	-2.7651	2.7469	0.1986	-0.0311	
85H	3.4805	-0.3835	3.3327	0.2049	-0.0131	
86H	2.0599	-0.8426	2.4068	0.2322	-0.0105	
87H	5.2156	1.3076	0.3334	0.2128	-0.0462	
88H	5.4188	0.9929	2.0422	0.2107	-0.0173	
89H	5.4029	-1.1302	-0.1653	0.2208	-0.0340	
90H	6.7809	-0.5743	0.7779	0.1931	-0.0281	
91H	5.7737	-1.5095	2.8524	0.1952	0.0152	
92H	5.8619	-2.7678	1.6190	0.1958	0.0070	
93Si	0.1177	-1.7624	-0.1569	1.8753	0.2593	
94C	0.4052	-3.2195	1.0593	-1.0765	-0.0958	
95H	0.4283	-4.1761	0.5180	0.2255	0.0021	
96H	1.3456	-3.1281	1.6110	0.2328	-0.0161	
97H	-0.4106	-3.2765	1.7903	0.2308	0.0031	

(PSiP) palladium hydride 36

(see Figure 3-16, Figure 3-33)

36

Energy:	-2332	.18586013	hartrees
---------	-------	-----------	----------

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.0175	0.3061	0.5738	-1.8118	-0.2271		
2H	-0.0974	1.8364	1.2502	0.0095	-0.2700		
3C	-4.2995	-2.4606	-2.3053	-0.6637	-0.0618		
4C	-4.0182	-1.4053	-1.4380	-0.2545	-0.1577		
5C	-2.7077	-1.1935	-0.9758	-0.1803	-0.0167		
6C	-1.6572	-2.0548	-1.3650	-0.5027	-0.0078		
7C	-1.9728	-3.1172	-2.2353	0.2393	-0.1683		
8C	-3.2701	-3.3180	-2.7094	-0.3397	-0.1290		
9H	-4.8239	-0.7466	-1.1253	0.1913	0.1104		
10H	-1.1942	-3.8140	-2.5399	0.1699	0.1511		
11H	-3.4830	-4.1457	-3.3822	0.1783	0.1063		
12C	3.7540	-1.1868	-3.4514	-0.6736	-0.0713		
13C	2.7755	-2.1170	-3.8120	-0.6672	-0.1475		
14C	1.6742	-2.3284	-2.9771	0.3388	-0.1009		
15C	1.5116	-1.6185	-1.7745	0.0037	-0.0321		

16C	2.5167	-0.6826	-1.4229	-0.3884	-0.0413	
17C	3.6255	-0.4730	-2.2571	0.4131	-0.1535	
18H	2.8658	-2.6699	-4.7444	0.1776	0.1133	
19H	0.9206	-3.0514	-3.2819	0.1680	0.1005	
20H	4.3808	0.2618	-1.9927	0.2021	0.1055	
21P	2.2683	0.2518	0.1675	0.4079	0.3577	
22P	-2.2897	0.1946	0.1920	0.8839	0.3883	
23H	-5.3154	-2.6163	-2.6600	0.1804	0.0937	
24H	4.6086	-1.0087	-4.0997	0.1799	0.0980	
25Si	0.0590	-1.8195	-0.5295	1.7205	0.0549	
26C	4.7729	-1.8999	3.4513	-0.1377	-0.1129	
27C	3.8969	-0.8567	3.7729	-0.5151	-0.0800	
28C	3.1582	-0.2269	2.7702	-0.1899	-0.2172	
29C	3.2962	-0.6223	1.4275	0.3160	0.1273	
30C	4.1728	-1.6710	1.1134	0.1846	-0.0605	
31C	4.9066	-2.3063	2.1218	-0.3737	-0.1427	
32H	5.3427	-2.3949	4.2337	0.1798	0.1095	
33H	3.7825	-0.5387	4.8062	0.1827	0.1133	
34H	2.4666	0.5720	3.0274	0.2100	0.1102	
35H	4.2830	-1.9985	0.0838	0.2116	0.0833	
36H	5.5803	-3.1199	1.8641	0.1809	0.1085	
37C	4.4411	4.3108	-0.5363	-0.1523	-0.1155	
38C	3.0570	4.1982	-0.6994	-0.7111	-0.0949	
39C	2.4183	2.9783	-0.4624	-0.1932	-0.1645	
40C	3.1604	1.8516	-0.0774	0.1495	0.0195	
41C	4.5491	1.9743	0.0952	-0.0366	-0.0546	
42C	5.1850	3.1981	-0.1323	-0.1152	-0.1321	
43H	4.9361	5.2630	-0.7108	0.1785	0.1116	
44H	2.4697	5.0636	-0.9961	0.1820	0.1132	
45H	1.3374	2.9001	-0.5439	0.2339	0.1301	
46H	5.1372	1.1208	0.4220	0.2002	0.0493	
47H	6.2595	3.2816	0.0116	0.1788	0.1119	
48C	-4.9923	-0.5671	3.9057	-0.1285	-0.1316	
49C	-3.6352	-0.9008	3.9186	-0.2174	-0.0640	
50C	-2.8403	-0.6444	2.7983	0.0591	-0.1913	
51C	-3.3948	-0.0609	1.6485	-0.0501	0.0734	
52C	-4.7570	0.2799	1.6477	-0.2139	-0.1705	
53C	-5.5503	0.0279	2.7697	-0.4187	-0.0944	
54H	-5.6104	-0.7602	4.7789	0.1801	0.1140	

55H	-3.1912	-1.3512	4.8027	0.1826	0.1067	
56H	-1.7794	-0.8823	2.8174	0.2094	0.1275	
57H	-5.1994	0.7613	0.7800	0.1935	0.1122	
58H	-6.6026	0.3011	2.7573	0.1805	0.1093	
59C	-3.8049	4.1193	-1.8091	-0.2240	-0.1379	
60C	-3.6411	2.9720	-2.5872	-0.3942	-0.0574	
61C	-3.2169	1.7750	-1.9985	0.4277	-0.2238	
62C	-2.9511	1.7139	-0.6227	2.0965	0.0486	
63C	-3.0946	2.8809	0.1485	-1.7300	-0.0764	
64C	-3.5299	4.0693	-0.4372	-0.8525	-0.1136	
65H	-4.1374	5.0480	-2.2662	0.1784	0.1139	
66H	-3.8414	3.0019	-3.6554	0.1795	0.0998	
67H	-3.0932	0.8931	-2.6189	0.2065	0.1267	
68H	-2.8528	2.8620	1.2075	0.2079	0.0836	
69H	-3.6429	4.9603	0.1754	0.1814	0.1123	
70C	0.3747	-3.4600	0.4025	-1.0799	-0.0996	
71H	-0.4169	-3.6464	1.1390	0.2238	0.0111	
72H	0.4005	-4.3187	-0.2832	0.2218	0.0176	
73H	1.3319	-3.4303	0.9370	0.2348	-0.0038	

(PCN) palladium hydride 37

(see Figure 3-16)

Energy:	-1443	.44536066	hartrees
---------	-------	-----------	----------

|--|

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	1.6057	-0.0464	0.8929	0.1070	-0.3494		
2C	2.9847	-0.0449	1.0376	0.2801	0.1968		
3C	3.6052	-0.0194	2.2950	-0.2433	-0.2798		
4C	2.7754	0.0018	3.4214	-0.5155	-0.0844		
5C	1.3756	-0.0048	3.3124	-0.5344	-0.3004		
6C	0.7973	-0.0283	2.0350	0.1129	0.3140		
7H	4.6852	-0.0095	2.4126	0.1619	0.1375		
8H	3.2271	0.0229	4.4097	0.1730	0.1145		
9H	0.7632	0.0054	4.2118	0.1648	0.1397		
10N	3.7006	-0.0528	-0.2025	0.2492	0.1338		
11C	5.0271	-0.0774	-0.4815	-0.0648	-0.1801		
12C	5.1680	-0.0758	-1.8615	-0.1396	-0.1807		
13C	3.8515	-0.0488	-2.3605	-0.3683	-0.1346		
14N	2.9695	-0.0352	-1.3598	0.0386	0.0298		

15N	-0.5940	-0.0576	1.7834	-0.7228	-0.4380	
16H	-1.2278	0.2103	2.5288	0.4237	0.2579	
17P	-1.0933	-0.0003	0.1236	0.6429	0.4446	
18Pd	0.8427	-0.0044	-1.0031	-0.6454	-0.0098	
19H	0.2133	0.0644	-2.5308	0.0140	-0.2907	
20H	6.0904	-0.0926	-2.4236	0.1978	0.1500	
21H	3.4955	-0.0389	-3.3808	0.2137	0.1663	
22H	5.7654	-0.0959	0.3064	0.2055	0.1823	
23C	-3.7786	3.7799	-0.0730	-0.0698	-0.1060	
24C	-4.2647	2.6240	0.5473	-0.3516	-0.1312	
25C	-3.4798	1.4694	0.5887	0.3356	-0.1149	
26C	-2.1970	1.4643	0.0149	-0.5060	0.0348	
27C	-1.7195	2.6242	-0.6141	-0.2624	-0.1566	
28C	-2.5078	3.7774	-0.6555	-0.1223	-0.0730	
29H	-4.3927	4.6762	-0.1093	0.1825	0.1103	
30H	-5.2570	2.6185	0.9913	0.1832	0.1171	
31H	-3.8744	0.5692	1.0539	0.1964	0.1029	
32H	-0.7376	2.6101	-1.0801	0.2218	0.1018	
33H	-2.1314	4.6698	-1.1488	0.1860	0.1103	
34C	-3.8992	-3.6518	-0.4545	-0.2449	-0.1335	
35C	-3.8176	-2.6528	-1.4320	-0.3271	-0.0518	
36C	-2.9836	-1.5512	-1.2408	-0.8042	-0.2076	
37C	-2.2280	-1.4314	-0.0620	0.6584	0.0443	
38C	-2.3032	-2.4401	0.9084	0.1375	-0.1109	
39C	-3.1395	-3.5447	0.7126	-0.1275	-0.1092	
40H	-4.5469	-4.5114	-0.6071	0.1811	0.1155	
41H	-4.3985	-2.7360	-2.3469	0.1838	0.1033	
42H	-2.9122	-0.7889	-2.0126	0.2028	0.1341	
43H	-1.7006	-2.3638	1.8087	0.2137	0.0885	
44H	-3.1908	-4.3216	1.4714	0.1817	0.1125	

(PCO) palladium hydride 38

(see Figure 3-16, Figure 3-23, Figure 3-28, Figure 3-33)

Energy: -1208.59726383 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.5366	-1.0856	-0.0429	-0.7862	0.1690		
2H	-0.2550	-2.5503	0.0346	-0.0232	-0.2996		
3C	2.9182	3.1392	-0.3700	-0.5418	-0.0464		
4C	3.6042	1.9339	-0.1827	0.2423	-0.2662		
5C	2.8861	0.7358	-0.0681	0.3524	0.1381		

Palladium-hydrogen bond length: 1.667 Å

1						
6C	1.4834	0.7340	-0.1556	-1.0744	-0.3878	
7C	0.8036	1.9499	-0.3594	0.3277	0.2646	
8C	1.5209	3.1513	-0.4572	0.7945	-0.3074	
9H	3.4740	4.0699	-0.4553	0.1712	0.0998	
10H	4.6925	1.9382	-0.1249	0.1633	0.1182	
11H	1.0022	4.0967	-0.6119	0.1638	0.1181	
12C	3.5939	-0.5738	0.1982	-0.3880	0.1058	
13C	-0.7070	1.8940	-0.5112	-1.2702	-0.0709	
14H	4.5001	-0.6848	-0.4158	0.1941	0.0360	
15H	3.8927	-0.6521	1.2563	0.2017	0.0439	
16H	-1.2219	2.6672	0.0740	0.2483	0.0396	
17H	-0.9880	2.0711	-1.5568	0.2451	0.0428	
180	2.7100	-1.6780	-0.0967	-0.2687	-0.1784	
19P	-1.3114	0.1658	-0.0412	0.8839	-0.0733	
20C	-2.5958	-0.2768	-1.3826	-0.3548	0.6335	
21C	-2.0601	0.3542	1.7080	-0.3481	0.5754	
22C	-1.7737	-0.5695	-2.6602	-0.5813	-0.1726	
23H	-1.1768	0.2913	-2.9830	0.2215	0.0184	
24H	-1.0948	-1.4142	-2.5085	0.2640	-0.0193	
25H	-2.4640	-0.8189	-3.4775	0.2117	0.0353	
26C	-3.6002	0.8561	-1.6853	-0.4122	-0.3801	
27H	-4.2326	0.5479	-2.5288	0.2190	0.0650	
28H	-4.2646	1.0699	-0.8444	0.2162	0.0714	
29H	-3.1086	1.7901	-1.9773	0.2177	0.0595	
30C	-3.3634	-1.5569	-0.9970	-0.6249	-0.3428	
31H	-4.0714	-1.3819	-0.1803	0.2145	0.0557	
32H	-3.9450	-1.8983	-1.8639	0.2123	0.0562	
33H	-2.6801	-2.3613	-0.7066	0.2653	0.0805	
34C	-2.3473	-1.0383	2.3090	-0.6638	-0.2692	
35H	-1.4547	-1.6702	2.2943	0.2651	0.0086	
36H	-2.6724	-0.9140	3.3512	0.2077	0.0504	
37H	-3.1409	-1.5697	1.7770	0.2149	0.0562	
38C	-0.9806	1.0378	2.5790	-0.6358	-0.1569	
39H	-0.0401	0.4786	2.5686	0.2527	0.0158	
40H	-0.7664	2.0630	2.2607	0.2323	0.0178	
41H	-1.3427	1.0817	3.6149	0.2134	0.0210	
42C	-3.3436	1.2067	1.7388	-0.3798	-0.4064	
43H	-3.6248	1.3905	2.7846	0.2193	0.0722	
44H	-3.2136	2.1846	1.2610	0.2235	0.0790	

45H	-4.1874	0.6987	1.2622	0.2233	0.0782	
46C	3.2322	-2.9486	0.2852	-0.3479	0.0159	
47H	3.3773	-2.9975	1.3735	0.1971	0.0402	
48H	2.4981	-3.6934	-0.0217	0.2324	0.0664	
49H	4.1899	-3.1304	-0.2221	0.1890	0.0289	

*** *** ***

(OCO) palladium hydride 39

(see Figure 3-16, Figure 3-33, Figure 5-9)

Energy: -666.60917298 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0000	-1.2022	0.0000	-0.1377	0.2306		
2H	0.0001	-2.8849	-0.0001	-0.0613	-0.3455		
3C	-0.0001	3.5815	0.0000	-0.0798	-0.0540		
4C	-1.2199	2.8906	-0.0080	-0.5606	-0.2573		
5C	-1.2167	1.4894	-0.0178	-0.0527	0.1473		
6C	0.0000	0.8025	0.0000	0.6044	-0.3320		
7C	1.2166	1.4894	0.0178	-0.0527	0.1474		
8C	1.2198	2.8907	0.0080	-0.5606	-0.2573		
9H	-0.0001	4.6685	0.0000	0.1741	0.1019		
10H	-2.1539	3.4513	-0.0135	0.1706	0.1213		
11H	2.1538	3.4513	0.0135	0.1706	0.1213		
12C	-2.4645	0.6430	-0.0889	-0.2420	0.1132		
13C	2.4645	0.6431	0.0890	-0.2420	0.1131		
14H	-3.2383	0.9613	0.6244	0.2007	0.0407		
15H	-2.9024	0.6588	-1.0990	0.2054	0.0463		
16H	3.2383	0.9614	-0.6242	0.2007	0.0407		
17H	2.9023	0.6589	1.0991	0.2054	0.0464		
18C	-3.1734	-1.6674	-0.0229	-0.3191	0.0395		
19H	-2.8116	-2.6410	0.3042	0.2414	0.0684		
20H	-4.0612	-1.3749	0.5533	0.1898	0.0280		
21H	-3.4161	-1.6992	-1.0933	0.2006	0.0370		
22C	3.1735	-1.6673	0.0231	-0.3191	0.0394		
23H	2.8116	-2.6410	-0.3039	0.2414	0.0684		
24H	4.0612	-1.3749	-0.5532	0.1898	0.0280		
25H	3.4162	-1.6989	1.0934	0.2006	0.0370		
260	2.1159	-0.7354	-0.2228	-0.2840	-0.1850		
270	-2.1158	-0.7355	0.2228	-0.2840	-0.1851		

Palladium-hydrogen bond length: 1.683 Å

*** *** ***

(SCS) palladium hydride 40

(see Figure 3-16, Figure 5-8)

Energy: -1312.61879843 hartree	s
--------------------------------	---

Palladium-hydrogen bond length: 1.652 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0000	-1.1035	0.0000	-0.7421	0.1191		
2H	0.0000	-2.7555	0.0000	-0.0132	-0.2607		
3C	0.0000	3.7851	0.0000	-0.1489	0.0060		
4C	-1.2131	3.0883	0.0082	-0.1990	-0.2963		
5C	-1.2126	1.6858	-0.0108	0.4970	0.0917		
6C	0.0000	0.9704	0.0000	-0.1017	-0.2604		
7C	1.2126	1.6858	0.0108	0.4969	0.0917		

8C	1.2131	3.0883	-0.0082	-0.1991	-0.2963	
9H	0.0000	4.8723	0.0000	0.1729	0.0878	
10H	-2.1505	3.6427	0.0143	0.1688	0.1243	
11H	2.1505	3.6427	-0.0143	0.1688	0.1243	
12C	-2.5046	0.9047	-0.0980	-1.1381	0.2296	
13C	2.5045	0.9047	0.0980	-1.1381	0.2296	
14H	-3.3263	1.3732	0.4551	0.2377	0.0017	
15H	-2.8226	0.7812	-1.1406	0.2482	0.0047	
16H	3.3263	1.3732	-0.4550	0.2377	0.0017	
17H	2.8225	0.7811	1.1406	0.2482	0.0047	
18C	-3.3381	-1.7896	-0.5210	-0.8709	0.1267	
19H	-3.2010	-2.8379	-0.2479	0.2584	0.0401	
20H	-4.3798	-1.4980	-0.3564	0.2336	0.0008	
21H	-3.0605	-1.6501	-1.5682	0.2522	0.0000	
22C	3.3381	-1.7896	0.5212	-0.8709	0.1266	
23H	3.2012	-2.8379	0.2480	0.2584	0.0401	
24H	4.3798	-1.4979	0.3565	0.2336	0.0008	
25H	3.0604	-1.6500	1.5683	0.2522	0.0000	
26S	2.2443	-0.8183	-0.5780	0.7286	-0.1692	
27S	-2.2443	-0.8182	0.5781	0.7286	-0.1692	

(CCC) palladium hydride 41

(see Figure 3-17, Figure 3-23, Figure 3-27, Figure 3-33, Figure 5-6)

Energy: -887.64208132 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	1.2316	3.0935	0.0002	-0.6711	-0.2562		
2C	1.1994	1.6959	0.0002	0.7245	0.1626		
3C	0.0000	1.0026	0.0002	0.0886	-0.2310		
4C	-1.1994	1.6959	0.0000	0.7245	0.1625		
5C	-1.2316	3.0935	-0.0001	-0.6711	-0.2561		
6C	0.0000	3.7726	0.0000	-0.7743	-0.0980		
7H	2.1604	3.6593	0.0002	0.1677	0.1354		
8Pd	0.0000	-1.0147	0.0001	-0.9565	-0.0284		
9H	-2.1604	3.6593	-0.0002	0.1677	0.1354		
10H	0.0000	4.8592	0.0000	0.1728	0.1087		
11N	2.3087	0.7878	0.0003	-0.0736	0.2128		
12C	2.0180	-0.5670	0.0004	0.1141	-0.2140		
13N	3.2330	-1.1655	-0.0004	-0.1444	0.2962		
14C	4.2602	-0.2255	-0.0008	-0.0761	-0.2568		
15C	3.6744	1.0050	-0.0005	0.0482	-0.2583		
16H	5.3020	-0.5088	-0.0012	0.2041	0.1861		

17H	4.1135	1.9907	-0.0009	0.2042	0.1981	
18N	-2.3087	0.7878	-0.0002	-0.0736	0.2130	
19C	-3.6744	1.0050	0.0002	0.0482	-0.2589	
20C	-4.2602	-0.2255	0.0001	-0.0761	-0.2557	
21N	-3.2330	-1.1655	-0.0001	-0.1444	0.2951	
22C	-2.0180	-0.5669	-0.0003	0.1141	-0.2136	
23H	-4.1136	1.9907	0.0003	0.2042	0.1982	
24H	-5.3020	-0.5087	0.0003	0.2041	0.1858	
25H	0.0001	-2.6857	-0.0003	-0.0624	-0.2887	
26C	3.4212	-2.6125	0.0006	-0.4368	-0.1708	
27H	3.9765	-2.9203	-0.8914	0.2164	0.0674	
28H	3.9697	-2.9201	0.8969	0.2168	0.0675	
29H	2.4294	-3.0689	-0.0029	0.2719	0.0987	
30C	-3.4212	-2.6125	-0.0004	-0.4368	-0.1704	
31H	-2.4294	-3.0689	0.0000	0.2719	0.0986	
32H	-3.9737	-2.9203	0.8934	0.2166	0.0675	
33H	-3.9727	-2.9200	-0.8949	0.2166	0.0674	

(CCC) palladium hydride 42

(see Figure 3-17)

Energy: -966.27904548 hartrees

Palladium-hydrogen bond length: 1.649 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-1.0157	3.4225	-0.6470	-0.6304	-0.3200		
2C	-1.0085	2.0197	-0.6479	1.1644	0.1718		
3C	0.0000	1.2800	0.0000	-0.6534	-0.2768		
4C	1.0084	2.0197	0.6479	1.1644	0.1717		
5C	1.0156	3.4225	0.6470	-0.6303	-0.3198		
6C	0.0000	4.1305	0.0000	0.0533	-0.0244		
7H	-1.8126	3.9677	-1.1529	0.1573	0.1290		
8Pd	0.0000	-0.8405	0.0000	-0.7941	-0.0033		
9H	1.8125	3.9677	1.1529	0.1573	0.1289		
10H	-0.0001	5.2178	0.0000	0.1671	0.0913		
11N	-2.7411	0.2216	-0.6155	-0.0256	0.2222		
12C	-2.0401	-0.7683	0.0024	-0.0050	-0.2299		
13N	-2.9957	-1.5336	0.6040	-0.0432	0.2561		
14C	-4.2659	-1.0256	0.3653	-0.0656	-0.2275		
15C	-4.1039	0.0818	-0.4083	-0.0420	-0.3024		

1						1
16H	-5.1575	-1.4862	0.7635	0.2000	0.1787	
17H	-4.8284	0.7654	-0.8248	0.2019	0.1962	
18N	2.7411	0.2217	0.6156	-0.0256	0.2222	
19C	4.1039	0.0819	0.4084	-0.0420	-0.3023	
20C	4.2660	-1.0255	-0.3652	-0.0656	-0.2275	
21N	2.9958	-1.5335	-0.6040	-0.0432	0.2562	
22C	2.0401	-0.7683	-0.0024	-0.0050	-0.2299	
23H	4.8284	0.7655	0.8249	0.2019	0.1961	
24H	5.1575	-1.4861	-0.7634	0.2000	0.1787	
25H	0.0001	-2.4896	0.0000	-0.0573	-0.2392	
26C	-2.7224	-2.7051	1.4272	-0.4850	-0.1163	
27H	-2.8195	-2.4586	2.4904	0.2203	0.0545	
28H	-3.4266	-3.5038	1.1734	0.2038	0.0541	
29H	-1.7000	-3.0248	1.2174	0.2605	0.0728	
30C	2.7225	-2.7050	-1.4273	-0.4850	-0.1163	
31H	1.7000	-3.0247	-1.2175	0.2605	0.0728	
32H	2.8197	-2.4586	-2.4904	0.2203	0.0545	
33H	3.4267	-3.5037	-1.1733	0.2038	0.0541	
34C	2.1020	1.2857	1.4062	-0.8978	0.0226	
35C	-2.1020	1.2857	-1.4062	-0.8978	0.0227	
36H	-2.8949	1.9736	-1.7152	0.1878	0.0491	
37H	-1.6908	0.8208	-2.3100	0.2407	0.0151	
38H	2.8948	1.9737	1.7152	0.1878	0.0491	
39H	1.6907	0.8208	2.3100	0.2407	0.0151	

(CCC) palladium hydride 43

(see Figure 3-17)

Energy: -1352.21929817 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-1.0047	3.7319	-0.6691	-0.9421	-0.3214		
2C	-0.9971	2.3294	-0.6702	1.4829	0.1944		
3C	-0.0009	1.5942	-0.0014	-0.1551	-0.3243		

4C	0.9945	2.3298	0.6680	1.4815	0.1964	
5C	1.0009	3.7324	0.6676	-0.9440	-0.3233	
6C	-0.0021	4.4391	-0.0006	-0.1543	-0.0196	
7H	-1.7911	4.2777	-1.1902	0.1578	0.1287	
8Pd	0.0002	-0.5217	-0.0028	-1.3964	0.0278	
9H	1.7868	4.2786	1.1891	0.1578	0.1295	
10H	-0.0026	5.5263	-0.0004	0.1691	0.0924	
11N	-2.7287	0.5296	-0.6604	0.0704	0.0589	
12C	-2.0376	-0.4479	-0.0092	0.0165	-0.1006	
13N	-2.9746	-1.2203	0.6141	-0.0354	-0.1297	
14C	-4.2585	-0.7406	0.3599	0.7765	0.1895	
15N	2.7275	0.5311	0.6595	0.0707	0.0605	
16C	4.2598	-0.7392	-0.3571	0.7778	0.1875	
17N	2.9766	-1.2190	-0.6142	-0.0354	-0.1289	
18C	2.0380	-0.4466	0.0069	0.0180	-0.1004	
19H	0.0007	-2.1687	-0.0040	-0.0366	-0.2058	
20C	-2.6747	-2.4070	1.4193	-0.2900	0.3834	
21H	-3.2862	-2.3561	2.3282	0.1992	-0.0644	
22H	-1.6243	-2.3261	1.7028	0.2542	-0.0603	
23C	2.6787	-2.4056	-1.4203	-0.2898	0.3829	
24H	1.6288	-2.3250	-1.7059	0.2541	-0.0607	
25H	3.2920	-2.3544	-2.3279	0.1992	-0.0636	
26C	2.0703	1.5887	1.4446	-0.9361	0.0121	
27C	-2.0729	1.5876	-1.4463	-0.9375	0.0164	
28H	-2.8544	2.2752	-1.7789	0.1844	0.0653	
29H	-1.6439	1.1169	-2.3389	0.2412	0.0174	
30H	2.8511	2.2770	1.7776	0.1844	0.0664	
31H	1.6410	1.1180	2.3370	0.2412	0.0184	
32C	4.1002	0.3910	0.4665	0.4471	0.0592	
33C	5.2035	1.1233	0.9107	-0.3127	-0.2245	
34C	5.5235	-1.1660	-0.7708	-0.5511	-0.2318	
35C	6.4680	0.6946	0.5000	-0.4025	-0.1045	
36H	5.0926	1.9948	1.5482	0.1869	0.1464	
37C	6.6263	-0.4310	-0.3289	-0.3230	-0.1403	
38H	5.6499	-2.0351	-1.4090	0.1917	0.1588	
39H	7.3463	1.2439	0.8273	0.1799	0.1152	
40H	7.6245	-0.7358	-0.6306	0.1802	0.1180	
41C	-4.1009	0.3895	-0.4642	0.4482	0.0605	
42C	-5.2052	1.1217	-0.9059	-0.3121	-0.2267	

43C	-6.4688	0.6928	-0.4923	-0.4022	-0.1030	
44H	-5.0959	1.9931	-1.5438	0.1869	0.1472	
45C	-5.5213	-1.1676	0.7764	-0.5482	-0.2323	
46C	-6.6251	-0.4327	0.3369	-0.3229	-0.1435	
47H	-7.3479	1.2420	-0.8177	0.1799	0.1150	
48H	-5.6461	-2.0367	1.4149	0.1917	0.1597	
49H	-7.6225	-0.7376	0.6409	0.1801	0.1193	
50C	-2.9175	-3.7117	0.6580	-0.6420	-0.0934	
51H	-2.7057	-4.5657	1.3124	0.2036	0.0139	
52H	-3.9531	-3.7973	0.3098	0.2085	0.0018	
53H	-2.2498	-3.7677	-0.2076	0.2391	0.0189	
54C	2.9204	-3.7105	-0.6587	-0.6423	-0.0931	
55H	2.7101	-4.5643	-1.3138	0.2036	0.0136	
56H	3.9552	-3.7957	-0.3083	0.2085	0.0022	
57H	2.2508	-3.7668	0.2054	0.2391	0.0187	

(CCC) palladium hydride 44

(see Figure 3-17, Figure 3-33)

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	0.0000	0.8659	-0.0003	0.6829	-0.2231		
2C	1.2116	1.5424	0.0215	0.1254	0.2380		
3C	1.2324	2.9432	0.0135	-0.4988	-0.2785		
4C	0.0000	3.6174	0.0001	-0.8989	-0.1368		
5C	-1.2324	2.9432	-0.0135	-0.4986	-0.2784		
6C	-1.2116	1.5424	-0.0219	0.1249	0.2378		
7H	2.1457	3.5276	0.0162	0.1656	0.1677		
8H	0.0000	4.7042	0.0002	0.1723	0.1184		
9H	-2.1458	3.5276	-0.0159	0.1656	0.1677		
10N	2.3202	0.6085	0.0466	0.4345	-0.2393		
11C	3.7863	0.9570	0.0442	-0.2162	0.7902		
12C	4.4357	-0.4495	0.1698	-0.4123	-0.5254		
13C	3.2991	-1.5003	0.0009	0.6873	0.7303		
14C	2.0241	-0.6926	0.0301	-0.1077	-0.1205		
15H	5.2272	-0.5796	-0.5762	0.2205	0.0696		

1						
16N	-2.3202	0.6085	-0.0470	0.4344	-0.2386	
17C	-3.7863	0.9570	-0.0442	-0.2164	0.7893	
18C	-4.4356	-0.4495	-0.1701	-0.4122	-0.5252	
19C	-3.2991	-1.5003	-0.0007	0.6871	0.7291	
20C	-2.0241	-0.6926	-0.0304	-0.1077	-0.1203	
21H	-5.2276	-0.5796	0.5753	0.2205	0.0697	
22H	-4.9034	-0.5548	-1.1554	0.2181	0.0812	
23H	4.9041	-0.5548	1.1547	0.2182	0.0811	
24Pd	0.0000	-1.1299	-0.0003	-1.2051	-0.0607	
25H	0.0001	-2.8041	-0.0001	-0.0459	-0.2843	
26C	-3.2904	-2.5422	-1.1370	-0.7791	-0.2989	
27H	-2.4340	-3.2143	-1.0279	0.2589	0.0565	
28H	-4.2171	-3.1303	-1.1117	0.2061	0.0440	
29H	-3.2192	-2.0594	-2.1193	0.2122	0.0371	
30C	-3.3695	-2.2340	1.3595	-0.7653	-0.2617	
31H	-2.4975	-2.8829	1.4852	0.2569	0.0384	
32H	-3.3946	-1.5297	2.1996	0.2132	0.0334	
33H	-4.2791	-2.8469	1.4006	0.2100	0.0394	
34C	-4.1534	1.8346	-1.2533	-0.5839	-0.3224	
35H	-5.2447	1.9267	-1.3076	0.2242	0.0583	
36H	-3.7385	2.8438	-1.1934	0.2137	0.0495	
37H	-3.8047	1.3755	-2.1848	0.2356	0.0621	
38C	-4.1613	1.6436	1.2814	-0.5501	-0.3428	
39H	-5.2394	1.8424	1.2971	0.2213	0.0582	
40H	-3.9207	1.0005	2.1346	0.2342	0.0776	
41H	-3.6411	2.5962	1.4178	0.2237	0.0522	
42C	3.2901	-2.5414	1.1379	-0.7792	-0.3000	
43H	2.4337	-3.2136	1.0291	0.2589	0.0567	
44H	4.2168	-3.1296	1.1131	0.2061	0.0443	
45H	3.2189	-2.0580	2.1198	0.2122	0.0373	
46C	3.3696	-2.2349	-1.3588	-0.7654	-0.2616	
47H	2.4976	-2.8839	-1.4842	0.2569	0.0384	
48H	3.3948	-1.5311	-2.1994	0.2132	0.0333	
49H	4.2793	-2.8478	-1.3994	0.2100	0.0394	
50C	4.1616	1.6441	-1.2811	-0.5501	-0.3433	
51H	5.2398	1.8427	-1.2965	0.2213	0.0583	
52H	3.9211	1.0012	-2.1345	0.2342	0.0778	
53H	3.6417	2.5968	-1.4173	0.2237	0.0523	
54C	4.1531	1.8342	1.2537	-0.5840	-0.3227	

55H	3.8045	1.3747	2.1851	0.2356	0.0621	
56H	5.2443	1.9267	1.3082	0.2242	0.0584	
57H	3.7378	2.8433	1.1943	0.2137	0.0495	

(CNC) palladium hydride 45

Energy: -917.49380162 hartrees

Palladium-hydrogen bond length: 1.578 Å

Center number and element	x-coord.	v-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-1.2177	3.1296	-0.2588	0.5829	-0.5068		
20	-1.1639	1.7482	-0.4390	0.0600	0.5384		
3N	0.0070	1,1219	-0.5371	-0.1633	-0.3869		
4C	1.1776	1.7467	-0.4291	0.0629	0.5369		
5C	1.2319	3.1280	-0.2478	0.5785	-0.5099		
6C	0.0071	3.8039	-0.1683	-1.4976	0.1705		
7H	-2.1565	3.6644	-0.1717	0.1906	0.2085		
8H	2.1706	3.6615	-0.1522	0.1905	0.2100		
9H	0.0072	4.8795	-0.0190	0.1972	0.0962		
10N	-2.2417	0.8446	-0.5126	-0.1753	0.0999		
11C	-1.9918	-0.5267	-0.6328	-0.0681	-0.2614		
12N	-3.2127	-1.0883	-0.5436	-0.0959	0.3280		
13C	-4.2074	-0.1269	-0.3588	-0.0546	-0.2381		
14C	-3.6019	1.0858	-0.3376	0.0272	-0.2197		
15H	-5.2493	-0.3904	-0.2568	0.2115	0.1893		
16H	-4.0144	2.0739	-0.2082	0.2075	0.1912		
17N	2.2550	0.8415	-0.4943	-0.1758	0.1004		
18C	3.6146	1.0815	-0.3129	0.0292	-0.2240		
19C	4.2192	-0.1317	-0.3321	-0.0555	-0.2306		
20N	3.2245	-1.0921	-0.5220	-0.0959	0.3182		
21C	2.0044	-0.5293	-0.6171	-0.0720	-0.2521		
22H	4.0274	2.0691	-0.1812	0.2076	0.1921		
23H	5.2604	-0.3962	-0.2254	0.2116	0.1874		
24C	-3.4393	-2.5300	-0.5450	-0.4314	-0.0890		
25H	-3.7258	-2.8629	0.4574	0.2398	0.0820		
26H	-4.2269	-2.7824	-1.2616	0.2116	0.0184		
27H	-2.5035	-3.0116	-0.8300	0.2569	0.0821		
28C	3.4505	-2.5340	-0.5274	-0.4305	-0.0868		
29H	2.5134	-3.0144	-0.8102	0.2573	0.0807		
30H	4.2353	-2.7854	-1.2475	0.2121	0.0190		
31H	3.7408	-2.8694	0.4731	0.2391	0.0816		
32Pd	0.0063	-0.9538	-0.6350	-0.4487	0.0229		
33H	0.0066	-2.5083	-0.9077	0.0372	-0.1567		
34Br	-0.0315	-0.3518	2.4017	-0.4464	-0.5915		

(CNC) palladium hydride 46

Energy: -996.14606055 hartrees

Palladium-hydrogen bond length: 1.561 Å

Center number and element	x-coord.	v-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	0.8339	3.4536	0.6743	-0.4484	-0.3500		
2C	0.9151	2.0761	0.4424	0.4978	0.1758		
3N	0.0686	1.4583	-0.4029	0.1573	-0.0686		
4C	-0.8869	2.1690	-1.0318	0.5098	0.2357		
5C	-1.0324	3.5421	-0.8322	-0.0307	-0.3181		
6C	-0.1535	4.1957	0.0326	-0.3857	0.0823		
7H	1.5282	3.9267	1.3618	0.1937	0.1818		
8Pd	0.1858	-0.7641	-0.6882	-1.0907	0.0447		
9H	-1.8206	4.0868	-1.3435	0.1887	0.1465		
10H	-0.2420	5.2647	0.2055	0.1965	0.1037		
11N	2.7147	0.3348	0.3905	0.0605	0.2077		
12C	2.2084	-0.6339	-0.4229	0.1794	-0.2933		
13N	3.3038	-1.2707	-0.9185	-0.0996	0.2243		
14C	4.4733	-0.7143	-0.4164	-0.1477	-0.1428		
15C	4.1011	0.2993	0.4101	0.0991	-0.3466		
16H	5.4513	-1.0842	-0.6848	0.2050	0.1557		
17H	4.6914	0.9746	1.0107	0.2072	0.2194		
18N	-2.4949	0.2982	-1.3890	0.0229	0.1411		
19C	-3.8657	0.1960	-1.1820	-0.0649	-0.2033		
20C	-4.0605	-0.9908	-0.5466	-0.0493	-0.3362		
21N	-2.8146	-1.5779	-0.3841	-0.0246	0.3515		
22C	-1.8397	-0.7856	-0.8860	0.1175	-0.2284		
23H	-4.5651	0.9521	-1.5050	0.2017	0.1712		
24H	-4.9663	-1.4591	-0.1932	0.2058	0.2234		
25H	0.2631	-2.2872	-1.0199	0.0615	-0.1202		
26C	3.2682	-2.3856	-1.8576	-0.5506	-0.0368		
27H	3.7321	-2.0970	-2.8068	0.2200	0.0206		
28H	3.8010	-3.2445	-1.4373	0.2217	0.0685		
29H	2.2238	-2.6487	-2.0242	0.2552	0.0361		
30C	-2.5542	-2.7986	0.3813	-0.5385	-0.1787		
31H	-1.8747	-3.4376	-0.1861	0.2232	0.0594		
32H	-2.0902	-2.5196	1.3340	0.2922	0.1585		
33H	-3.5027	-3.3155	0.5454	0.1847	0.0469		
34C	-1.7867	1.4187	-2.0009	-0.9667	0.0641		

35C	1.8816	1.2140	1.2193	-0.5403	0.0745	
36H	2.5523	1.8409	1.8106	0.1849	0.0210	
37H	1.2708	0.5878	1.9012	0.2973	0.1129	
38H	-2.5302	2.1000	-2.4216	0.2032	0.0787	
39H	-1.1760	1.0258	-2.8224	0.2593	-0.0518	
40Br	-0.7357	-0.5644	2.7131	-0.5087	-0.7310	

(NNN) palladium hydride 47

Energy: -913.34604436 hartrees

Palladium-hydrogen bond length: 1.609 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0000	-1.3712	0.0000	-0.1743	-0.2198		
2N	0.0000	0.6748	0.0000	-0.2595	-0.4573		
ЗH	0.0000	-2.9798	0.0000	0.0271	-0.2379		
4C	-3.9570	2.1526	-0.2208	-0.3497	-0.1814		
5C	-2.8904	3.0351	-0.4084	-0.4757	-0.0990		
6C	-1.5708	2.5933	-0.3455	0.0373	-0.2599		
7C	-1.2511	1.2334	-0.0860	0.3349	0.3072		
8C	-2.3597	0.3382	0.0374	-0.4250	-0.1616		
9C	-3.6725	0.8001	-0.0082	-0.1197	-0.1618		
10H	-4.9857	2.4983	-0.2580	0.1724	0.1159		
11H	-3.0834	4.0854	-0.6151	0.1731	0.1151		
12H	-0.7781	3.3009	-0.5445	0.1710	0.1391		
13H	-4.4959	0.1012	0.1120	0.1730	0.1288		
14C	3.9570	2.1526	0.2208	-0.3497	-0.1813		

15C	2.8904	3.0351	0.4084	-0.4757	-0.0990	
16C	1.5708	2.5933	0.3455	0.0373	-0.2599	
17C	1.2511	1.2334	0.0860	0.3349	0.3072	
18C	2.3597	0.3382	-0.0374	-0.4250	-0.1616	
19C	3.6725	0.8001	0.0082	-0.1197	-0.1618	
20H	4.9857	2.4983	0.2580	0.1724	0.1159	
21H	3.0835	4.0854	0.6151	0.1731	0.1151	
22H	0.7781	3.3009	0.5445	0.1710	0.1391	
23H	4.4959	0.1011	-0.1120	0.1730	0.1288	
24N	2.0949	-1.1192	-0.2183	-0.2059	0.6203	
25N	-2.0949	-1.1192	0.2183	-0.2059	0.6203	
26C	-2.8045	-1.9340	-0.8086	-0.3308	-0.2148	
27H	-2.5051	-1.5941	-1.8012	0.2406	0.0482	
28H	-2.5148	-2.9781	-0.6822	0.2397	0.0697	
29H	-3.8941	-1.8413	-0.7066	0.2057	0.0459	
30C	-2.5045	-1.5620	1.5822	-0.3307	-0.2071	
31H	-3.5861	-1.4280	1.7237	0.2150	0.0421	
32H	-2.2461	-2.6154	1.7053	0.2361	0.0558	
33H	-1.9692	-0.9675	2.3243	0.2420	0.0550	
34C	2.5045	-1.5620	-1.5822	-0.3307	-0.2071	
35H	1.9693	-0.9675	-2.3243	0.2420	0.0550	
36H	3.5861	-1.4281	-1.7237	0.2150	0.0421	
37H	2.2460	-2.6154	-1.7053	0.2361	0.0558	
38C	2.8045	-1.9340	0.8086	-0.3308	-0.2148	
39H	3.8941	-1.8413	0.7066	0.2057	0.0459	
40H	2.5050	-1.5941	1.8012	0.2406	0.0482	
41H	2.5148	-2.9781	0.6822	0.2397	0.0697	

(NNN) palladium hydride 48

Energy: -2677.51075044 hartrees

Palladium-hydrogen bond length: 1.550 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1N	-0.4980	1.2906	0.3637	-0.2632	-0.3308		
2C	-1.3671	2.1802	-0.2130	0.4963	0.3462		
3C	-2.6860	1.8610	-0.4308	-0.8124	-0.6596		
4P	-3.4997	0.4138	0.1977	0.9814	0.5792		

5N	-2.7083	-0.9688	-0.2266	0.0019	-0.4537	
6Pd	-0.6085	-0.7924	-0.3901	0.0438	0.1355	
7H	-3.2864	2.4957	-1.0742	0.2145	0.1974	
8C	0.4220	1.6966	1.2998	0.5465	0.3826	
9N	1.4475	-0.6596	-0.7358	-0.0444	-0.4811	
10P	2.3667	-0.3162	0.5525	-0.3963	0.7038	
11C	1.6231	0.9707	1.5910	0.3550	-0.2881	
12C	2.4080	1.3267	2.7076	-0.2415	-0.1026	
13C	2.1031	2.4128	3.5176	-0.8060	-0.1631	
14C	0.9695	3.1761	3.2012	-0.6614	-0.1006	
15C	0.1591	2.8246	2.1347	-0.1895	-0.2275	
16H	3.2975	0.7456	2.9363	0.1933	0.1028	
17H	2.7294	2.6599	4.3695	0.1753	0.1081	
18H	0.7034	4.0380	3.8095	0.1783	0.1129	
19H	-0.7403	3.4000	1.9435	0.1853	0.1157	
20H	-0.5809	-2.2573	-0.8973	0.1004	-0.1167	
21C	-4.7349	-4.6906	-0.6759	-0.1079	-0.0942	
22C	-3.8327	-4.2278	-1.6439	-0.5213	-0.2489	
23C	-3.1760	-3.0104	-1.4825	-0.0532	0.0213	
24C	-3.3893	-2.2072	-0.3410	-0.4717	0.1723	
25C	-4.2919	-2.6912	0.6285	0.5095	-0.1294	
26C	-4.9580	-3.9112	0.4592	-0.7453	-0.1848	
27H	-5.2457	-5.6413	-0.8043	0.1684	0.1028	
28H	-3.6422	-4.8201	-2.5363	0.1726	0.1366	
29H	-2.4722	-2.6606	-2.2308	0.2014	0.0617	
30H	-4.4631	-2.1250	1.5392	0.1685	0.0981	
31H	-5.6435	-4.2533	1.2318	0.1692	0.1147	
32H	-4.7322	0.0507	2.2266	0.2288	-0.1079	
33C	0.1273	5.8831	-1.8598	-0.2966	-0.1067	
34C	-1.1317	5.8495	-1.2529	-0.3400	-0.1556	
35C	-1.6160	4.6580	-0.7076	-0.2292	-0.0622	
36C	-0.8493	3.4821	-0.7533	0.4559	-0.0171	
37C	0.4172	3.5295	-1.3602	0.0124	-0.0710	
38C	0.8983	4.7170	-1.9134	-0.3863	-0.1311	
39H	0.5049	6.8093	-2.2859	0.1764	0.1078	
40H	-1.7351	6.7525	-1.1980	0.1770	0.1170	
41H	-2.5881	4.6426	-0.2213	0.1891	0.0770	
42H	1.0105	2.6211	-1.4087	0.2140	0.0615	
43H	1.8751	4.7316	-2.3910	0.1789	0.1192	

1						
44C	6.4190	1.2746	-1.0654	-0.0677	-0.0710	
45C	6.1656	-0.0996	-1.0374	-0.3283	-0.1872	
46C	4.9656	-0.5810	-0.5096	0.2534	0.0292	
47C	4.0037	0.3091	-0.0007	-0.0695	-0.0710	
48C	4.2627	1.6889	-0.0414	-0.1102	-0.1077	
49C	5.4654	2.1669	-0.5676	-0.3660	-0.1290	
50H	7.3542	1.6481	-1.4749	0.1828	0.1105	
51H	6.8982	-0.7997	-1.4302	0.1853	0.1282	
52H	4.7804	-1.6505	-0.5028	0.2138	0.0405	
53H	3.5307	2.3912	0.3450	0.2256	0.1184	
54H	5.6555	3.2370	-0.5859	0.1840	0.1137	
55C	3.1342	-3.9416	3.3721	-0.1518	-0.0801	
56C	4.1420	-2.9880	3.2053	-0.6032	-0.1731	
57C	3.9422	-1.8981	2.3530	0.2065	-0.0448	
58C	2.7304	-1.7514	1.6583	-0.1028	-0.0656	
59C	1.7221	-2.7154	1.8307	0.0651	-0.0311	
60C	1.9247	-3.8023	2.6836	-0.0667	-0.1441	
61H	3.2911	-4.7901	4.0334	0.1824	0.1120	
62H	5.0861	-3.0913	3.7344	0.1823	0.1245	
63H	4.7393	-1.1712	2.2267	0.2034	0.0713	
64H	0.7812	-2.6119	1.2940	0.2546	0.0568	
65H	1.1369	-4.5411	2.8067	0.1900	0.1253	
66C	2.9918	-2.4565	-4.2631	-0.1533	-0.2158	
67C	2.8391	-3.2225	-3.1023	-0.3335	-0.0831	
68C	2.3358	-2.6449	-1.9345	-0.2945	-0.1870	
69C	1.9821	-1.2850	-1.9031	0.1735	0.4217	
70C	2.1311	-0.5258	-3.0744	-0.0039	-0.3760	
71C	2.6310	-1.1058	-4.2430	-0.6078	-0.0057	
72H	3.3784	-2.9089	-5.1729	0.1705	0.1227	
73H	3.1037	-4.2776	-3.1070	0.1729	0.1004	
74H	2.1910	-3.2514	-1.0453	0.2027	0.0976	
75H	1.8409	0.5208	-3.0560	0.1839	0.1635	
76H	2.7368	-0.4996	-5.1398	0.1726	0.0934	
77C	-5.1974	0.4162	-0.5856	-0.2202	0.3539	
78H	-5.6402	-0.5320	-0.2568	0.2482	-0.0786	
79C	-5.0790	0.3689	-2.1206	-0.7423	-0.1666	
80H	-4.6669	1.3004	-2.5250	0.2245	0.0269	
81H	-4.4436	-0.4559	-2.4537	0.2561	0.0053	
82H	-6.0761	0.2279	-2.5567	0.2089	0.0397	

83C	-3.7702	0.5599	2.0627	-0.1239	0.4569	
84C	-2.6871	-0.1877	2.8610	-0.6438	-0.2267	
85H	-1.7126	0.2971	2.7533	0.2601	0.0300	
86H	-2.9542	-0.1838	3.9260	0.2037	0.0421	
87H	-2.5752	-1.2256	2.5372	0.2411	0.0096	
88C	-3.8998	2.0109	2.5587	-0.7668	-0.3855	
89H	-4.1962	2.0109	3.6160	0.2105	0.0730	
90H	-2.9415	2.5319	2.4797	0.2439	0.0820	
91H	-4.6407	2.5923	2.0029	0.2145	0.0696	
92C	-6.1216	1.5572	-0.1269	-0.7596	-0.3247	
93H	-5.7071	2.5446	-0.3622	0.2301	0.0644	
94H	-7.0829	1.4728	-0.6495	0.2161	0.0696	
95H	-6.3304	1.5211	0.9467	0.2245	0.0602	

(NNN) palladium hydride 49

Energy: -883.04876431 hartrees

Palladium-hydrogen bond length: 1.582 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	0.7338	-0.3847	0.0086	0.4955	0.1289		
2C	1.4798	-1.5732	0.0111	-0.7139	-0.1125		
3C	0.7690	-2.7780	0.0107	-0.7501	-0.0137		
4C	-0.6305	-2.8056	0.0083	-0.5388	-0.1818		
5C	-1.3140	-1.5840	0.0053	0.6986	0.0944		
6N	-0.6065	-0.4452	0.0056	-0.1157	-0.0440		
7H	2.5780	-1.5735	0.0107	0.2307	0.1434		
8H	1.3275	-3.7100	0.0121	0.2251	0.1200		
9H	-1.1598	-3.7526	0.0081	0.1960	0.1405		
10C	2.1042	3.6323	0.0021	-0.2001	-0.1141		
11C	0.7503	3.2909	-0.0019	-0.0395	-0.0665		
12N	0.3356	2.0157	0.0007	0.1723	0.0230		
13C	1.2678	1.0025	0.0075	-0.2898	0.1037		
14C	2.6351	1.2789	0.0131	0.2578	-0.1216		
15C	3.0528	2.6128	0.0098	-0.3668	-0.0008		
16H	2.3906	4.6793	-0.0006	0.2035	0.1248		

17H	-0.0300	4.0423	-0.0073	0.2168	0.1379	
18H	3.3746	0.4684	0.0194	0.2310	0.1526	
19H	4.1163	2.8343	0.0133	0.2267	0.1135	
20C	-5.4952	-0.7953	-0.0066	-0.2792	-0.0889	
21C	-4.5258	0.2068	-0.0064	-0.0300	-0.0639	
22N	-3.2106	-0.0609	-0.0027	0.1478	0.0441	
23C	-2.7845	-1.3657	0.0011	0.0049	0.1239	
24C	-3.7130	-2.4099	0.0011	0.1529	-0.1613	
25C	-5.0783	-2.1256	-0.0028	-0.4614	-0.0524	
26H	-6.5466	-0.5279	-0.0096	0.2103	0.1258	
27H	-4.7911	1.2574	-0.0093	0.2275	0.1434	
28H	-3.3692	-3.4384	0.0041	0.2023	0.1463	
29H	-5.8031	-2.9344	-0.0029	0.2106	0.1290	
30Pd	-1.6271	1.3198	-0.0025	-0.0711	-0.0739	
31H	-2.4112	2.6943	-0.0093	0.0795	-0.1478	
32Br	4.9724	-1.3866	-0.0087	-0.5332	-0.7519	

(NNN) palladium hydride 50

Energy: -1502.78231421 hartrees

Palladium-hydrogen bond length: 1.585 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.1366	-1.0663	-0.7230	-0.3367	-0.0300		
2H	-0.1805	-1.9215	-2.0567	0.0936	-0.1674		
3C	-0.1060	1.4699	3.3288	-0.3140	0.0602		
4C	0.8619	0.4816	3.1223	-0.1810	-0.2209		
5C	0.8193	-0.2390	1.9310	0.2157	0.0747		
6N	-0.1304	0.0053	1.0259	0.3512	-0.2393		
7C	-1.0385	0.9723	1.1803	0.1220	0.2818		
8C	-1.0669	1.7296	2.3504	-0.4356	-0.2810		
9H	-0.0930	2.0561	4.2431	0.2001	0.1083		
10H	1.6418	0.2948	3.8532	0.2084	0.1415		
11H	-1.8008	2.5184	2.4753	0.2125	0.1623		
12C	-1.9745	1.2016	0.0091	-0.2038	0.5049		
13N	-1.8349	0.1871	-1.1446	-0.0079	0.1974		
14C	1.8520	-1.2854	1.5469	-0.2727	0.4973		
15N	1.6279	-1.9577	0.1783	0.1624	0.0583		
16C	-1.5207	0.9264	-2.4124	-0.3785	-0.1323		
17H	-1.4025	0.1970	-3.2143	0.2330	0.0552		

18H	-2 3280	1 6280	-2 6633	0 2224	0 0224	
19H	-0.5900	1.4841	-2.2657	0.3133	0.0668	
20C	1.3585	-3.4093	0.3784	-0.4133	-0.1598	
21H	1,1855	-3.8720	-0.5934	0.2511	0.0790	
22H	2.2015	-3.9069	0.8800	0.2292	0.0472	
23H	0.4586	-3.5304	0.9864	0.2390	0.0403	
24C	-3.1968	-0.4649	-1.2277	-0.3263	-0.0016	
25C	-4.1052	0.6444	-0.6314	-0.5851	0.3474	
260	-3.3148	1.1132	0.4643	-0.1934	-0.6028	
27H	-1.7632	2.1927	-0.4102	0.2888	-0.0162	
28H	-4.2097	1.4535	-1.3714	0.2003	-0.0114	
29H	-3.4157	-0.6240	-2.2873	0.2143	0.0201	
30C	-8.0625	-0.5764	0.5972	-0.1934	-0.1122	
31C	-7.0481	-0.4534	1.5507	-0.4045	-0.1554	
32C	-5.7638	-0.0535	1.1693	-0.3229	-0.0848	
33C	-5.4829	0.2312	-0.1728	0.6815	0.0848	
34C	-6.5087	0.1211	-1.1229	-0.1160	-0.2095	
35C	-7.7893	-0.2871	-0.7434	-0.1362	-0.0850	
36H	-9.0603	-0.8862	0.8968	0.1809	0.1129	
37H	-7.2560	-0.6650	2.5965	0.1817	0.1215	
38H	-4.9794	0.0516	1.9116	0.2093	0.1105	
39H	-6.3082	0.3618	-2.1655	0.1754	0.1088	
40H	-8.5739	-0.3683	-1.4913	0.1827	0.1112	
41C	-3.2752	-1.7947	-0.4840	-0.7644	-0.0843	
42H	-4.2669	-2.2398	-0.6182	0.2315	0.0458	
43H	-2.5217	-2.4821	-0.8799	0.2489	-0.0001	
44H	-3.1018	-1.6688	0.5894	0.2402	-0.0120	
450	3.0973	-0.6503	1.4903	-0.0976	-0.4110	
46H	1.8730	-2.0963	2.2948	0.2028	-0.0467	
47C	3.9278	-1.3854	0.5822	-0.4649	-0.0729	
48C	2.9446	-1.7528	-0.5694	-0.5890	0.4402	
49H	4.2539	-2.3162	1.0758	0.1762	0.0542	
50H	3.2240	-2.7272	-0.9840	0.2076	-0.0711	
51C	2.8423	-0.7364	-1.6995	-0.7834	-0.3728	
52H	2.1186	-1.0885	-2.4408	0.2331	0.0619	
53H	2.5243	0.2541	-1.3556	0.3155	0.1536	
54H	3.8172	-0.6386	-2.1892	0.2282	0.0667	
55C	7.4295	0.9068	-0.4620	-0.1035	-0.1606	
56C	7.5214	-0.4746	-0.2714	-0.1920	-0.0707	

57C	6.3824	-1.2047	0.0804	-0.1799	-0.2572	
58C	5.1446	-0.5655	0.2308	0.6221	0.2499	
59C	5.0558	0.8229	0.0421	-0.0017	-0.2048	
60C	6.1975	1.5502	-0.3015	-0.5290	-0.0552	
61H	8.3136	1.4798	-0.7306	0.1776	0.1171	
62H	8.4759	-0.9822	-0.3856	0.1765	0.1046	
63H	6.4604	-2.2784	0.2442	0.1645	0.1127	
64H	4.1033	1.3347	0.1551	0.2685	0.1610	
65H	6.1174	2.6240	-0.4482	0.1950	0.1060	
66Br	1.2308	2.7377	-0.6987	-0.5300	-0.7590	

(NNN) palladium hydride 51

Energy: -1192.91563621 hartrees

Palladium-hydrogen bond length: 1.561 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.9354	0.2182	1.2715	-0.1024	-0.0840		
2N	-0.0292	0.1174	-0.7183	-0.1457	0.1377		
ЗH	-1.6054	0.2977	2.6787	0.0937	-0.1078		
4C	-0.5684	-4.5560	0.6805	-0.4234	0.0023		
5C	-0.8988	-4.0955	1.9570	-0.2039	-0.1706		
6C	-1.0058	-2.7254	2.1657	-0.0820	-0.0047		
7N	-0.8029	-1.8333	1.1769	0.4290	-0.0585		
8C	-0.4879	-2.2689	-0.0681	0.0512	0.1787		
9C	-0.3608	-3.6319	-0.3411	-0.5010	-0.2128		
10H	-0.4825	-5.6206	0.4818	0.2023	0.1137		
11H	-1.0781	-4.7802	2.7796	0.1995	0.1379		
12H	-1.2625	-2.3088	3.1318	0.2160	0.1282		
13C	-0.3837	-1.2459	-1.2004	-0.0145	0.5480		
14H	-0.1100	-3.9443	-1.3485	0.2253	0.1490		
15C	-1.1037	4.8224	-0.1589	-0.3647	0.0305		
16C	-1.2764	4.5847	1.2068	-0.2497	-0.1888		

17C	-1.2304	3.2725	1.6656	-0.0525	0.0013	
18N	-1.0303	2.2306	0.8379	0.3662	-0.0568	
19C	-0.8652	2.4440	-0.4972	0.1440	0.2734	
20C	-0.8914	3.7426	-1.0139	-0.2947	-0.2972	
21H	-1.1344	5.8346	-0.5523	0.2020	0.1128	
22H	-1.4482	5.3951	1.9077	0.2002	0.1410	
23H	-1.3615	3.0249	2.7122	0.2178	0.1253	
24C	-0.7733	1.2318	-1.3876	-0.1532	0.0139	
25H	-0.7612	3.8934	-2.0811	0.1996	0.1567	
26C	1.4517	0.2166	-0.9390	-0.9552	-0.1336	
27C	1.6104	-0.6016	-2.2308	-0.3096	0.2652	
280	0.6400	-1.6481	-2.1183	-0.2138	-0.5626	
29H	1.9107	0.1520	1.1602	0.2453	-0.0864	
30Br	-3.7874	-0.4552	-1.3351	-0.4987	-0.7203	
31H	-0.3295	1.4957	-2.3560	0.2075	0.0255	
32H	1.4003	0.0044	-3.1232	0.2038	-0.0045	
33H	-1.8096	0.8649	-1.5613	0.2751	0.0435	
34H	1.7005	1.2703	-1.0930	0.2204	0.0061	
35H	2.5984	-1.0556	-2.3387	0.2187	0.0270	
36H	-1.3702	-1.2032	-1.6875	0.2856	-0.0445	
37C	2.2814	-0.3252	0.2451	-0.8084	0.1532	
38H	2.1072	-1.4010	0.3566	0.2277	-0.0385	
39C	6.5217	0.4473	-0.2401	-0.1089	-0.0966	
40C	6.0173	-0.8411	-0.4339	-0.3469	-0.1025	
41C	4.6505	-1.0912	-0.2740	-0.2775	-0.2234	
42C	3.7652	-0.0626	0.0799	0.9704	0.1241	
43C	4.2872	1.2262	0.2778	-0.0563	-0.1505	
44C	5.6512	1.4817	0.1189	-0.3409	-0.1490	
45H	7.5839	0.6434	-0.3611	0.1813	0.1099	
46H	6.6863	-1.6540	-0.7053	0.1829	0.1124	
47H	4.2687	-2.1002	-0.4170	0.1800	0.1405	
48H	3.6207	2.0356	0.5712	0.1770	0.1129	
49H	6.0353	2.4856	0.2815	0.1816	0.1227	

(NNN) palladium hydride 52

Energy: -1040.48423702 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.3209	0.0122	1.3082	-0.0975	-0.1261		
2N	-0.3097	0.5350	-0.8201	-0.1125	0.0903		

1						
ЗH	-0.3303	-0.4254	2.8070	0.0886	-0.1121	
4C	4.4260	0.3916	0.6563	-0.3437	-0.0081	
5C	3.9645	0.3395	1.9739	-0.1444	-0.1564	
6C	2.5947	0.3224	2.2014	-0.1479	-0.0254	
7N	1.6995	0.3744	1.1936	0.3896	0.0224	
8C	2.1369	0.4303	-0.0866	1.6078	0.1222	
9C	3.5012	0.4336	-0.3814	-0.9202	-0.1930	
10H	5.4908	0.3844	0.4418	0.2008	0.1218	
11H	4.6491	0.2937	2.8146	0.1976	0.1348	
12H	2.1789	0.2578	3.1989	0.2124	0.1238	
13C	1.1383	0.5018	-1.2379	-1.4077	0.6351	
14H	3.8170	0.4520	-1.4186	0.2175	0.1454	
15C	-4.5963	-1.6457	-0.1809	-0.3453	-0.0018	
16C	-4.4674	-1.4159	1.1912	-0.2174	-0.1730	
17C	-3.2631	-0.9114	1.6712	-0.1117	-0.0298	
18N	-2.2261	-0.6400	0.8585	0.2876	0.0247	
19C	-2.3344	-0.8578	-0.4818	0.2496	0.1913	
20C	-3.5228	-1.3584	-1.0218	-0.2210	-0.2510	
21H	-5.5210	-2.0428	-0.5901	0.2025	0.1209	
22H	-5.2772	-1.6274	1.8816	0.2008	0.1412	
23H	-3.0995	-0.7209	2.7253	0.2175	0.1281	
24C	-1.1036	-0.6328	-1.3210	-0.4317	0.0933	
25H	-3.5899	-1.5315	-2.0915	0.2020	0.1502	
26C	-0.8693	1.8413	-1.3359	-0.3880	-0.3186	
27C	0.1307	2.1683	-2.4548	-0.3806	0.3536	
280	1.3787	1.7233	-1.9355	-0.1952	-0.5972	
29C	-1.0832	2.9527	-0.2798	0.2304	0.6335	
30H	-1.5910	2.4675	0.5653	0.2092	-0.1575	
31C	-2.0389	4.0165	-0.8529	-0.7358	-0.3049	
32H	-1.5980	4.5367	-1.7137	0.2118	0.0427	
33H	-2.9911	3.5776	-1.1777	0.2036	0.0450	
34H	-2.2635	4.7759	-0.0954	0.2147	0.0622	
35C	0.1929	3.6162	0.2618	-0.6864	-0.3572	
36H	0.7561	4.1267	-0.5280	0.2205	0.0879	
37H	-0.0783	4.3673	1.0136	0.2037	0.0636	
38H	0.8608	2.8962	0.7400	0.2416	0.0191	
39Br	1.4745	-2.9497	-1.0995	-0.5154	-0.7338	
40H	-1.3773	-0.5078	-2.3778	0.2113	0.0142	
41H	-0.1158	1.6302	-3.3831	0.2004	-0.0313	

42H	-0.4477	-1.5303	-1.2514	0.2822	0.0070	
43H	-1.8538	1.6132	-1.7568	0.1961	0.0380	
44H	0.2244	3.2332	-2.6787	0.2132	0.0261	
45H	1.3023	-0.3708	-1.8822	0.2893	-0.0613	

(NNN) palladium hydride 53

Energy: -1192.91764688 hartrees

Palladium-hydrogen bond length: 1.562 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-1.4979	0.2429	-1.2965	-0.1154	-0.0868		
2N	-0.0147	-0.4501	0.1519	-0.1684	0.0242		
ЗH	-2.5857	0.7404	-2.3014	0.0925	-0.1105		
4C	1.1001	4.2633	-0.7038	-0.3488	-0.0152		
5C	0.1895	4.2423	-1.7631	-0.2141	-0.1488		
6C	-0.5609	3.0921	-1.9750	-0.0893	-0.0047		
7N	-0.4333	1.9998	-1.1955	0.4010	-0.0601		
8C	0.4487	2.0076	-0.1657	0.2401	0.1529		
9C	1.2287	3.1349	0.1018	-0.3973	-0.1928		
10H	1.6939	5.1505	-0.5025	0.2027	0.1174		
11H	0.0510	5.1017	-2.4110	0.2005	0.1315		
12H	-1.2890	3.0193	-2.7734	0.2163	0.1259		
13C	0.5079	0.8029	0.7703	-0.3618	0.5955		
14H	1.9130	3.1134	0.9428	0.2246	0.1535		
15C	-3.3065	-4.0280	0.0201	-0.2958	0.0189		
16C	-3.8141	-3.4695	-1.1558	-0.2643	-0.1744		
17C	-3.3146	-2.2426	-1.5790	-0.0516	0.0032		
18N	-2.3659	-1.5794	-0.8920	0.3025	-0.0578		
19C	-1.8616	-2.1083	0.2573	0.2673	0.2537		
20C	-2.3202	-3.3434	0.7263	-0.2417	-0.2807		
21H	-3.6748	-4.9840	0.3818	0.2021	0.1146		
22H	-4.5847	-3.9670	-1.7354	0.2007	0.1361		
23H	-3.6712	-1.7567	-2.4792	0.2175	0.1236		
24C	-0.8939	-1.2676	1.0474	-0.3192	0.0358		
25H	-1.9119	-3.7476	1.6475	0.2005	0.1569		
26C	1.2156	-1.1949	-0.2784	-0.7444	0.1135		
27C	2.1950	-0.8105	0.8681	-0.3913	0.2644		
28O	1.8737	0.5586	1.1300	-0.2458	-0.5878		
29H	0.8928	-0.9973	-2.4071	0.2375	-0.0210		
30Br	-2.3615	1.4028	2.6827	-0.5038	-0.7223		
31H	-0.3088	-1.8967	1.7302	0.2072	0.0076		
32H	1.9404	-1.4086	1.7569	0.1944	-0.0019		

33H	-1.4828	-0.5527	1.6675	0.2692	0.0524	
34H	0.9856	-2.2642	-0.2503	0.2151	-0.0368	
35H	-0.1058	1.0432	1.6553	0.2797	-0.0579	
36C	1.6916	-0.8193	-1.6806	-0.7396	-0.0762	
37H	2.5591	-1.4287	-1.9534	0.2353	0.0343	
38H	1.9883	0.2313	-1.7485	0.2450	-0.0007	
39C	6.3921	-1.4088	0.0195	-0.1925	-0.1383	
40C	5.8301	-0.1372	-0.1242	-0.5871	-0.1059	
41C	4.4766	0.0733	0.1551	-0.3567	-0.1594	
42C	3.6695	-0.9873	0.5848	0.8979	0.1654	
43C	4.2434	-2.2573	0.7429	0.0464	-0.2462	
44C	5.5934	-2.4708	0.4555	-0.0903	-0.0658	
45H	7.4451	-1.5697	-0.1965	0.1811	0.1162	
46H	6.4473	0.6964	-0.4499	0.1812	0.1118	
47H	4.0444	1.0635	0.0567	0.2082	0.1178	
48H	3.6331	-3.0849	1.1009	0.1717	0.1172	
49H	6.0228	-3.4612	0.5831	0.1814	0.1075	

(NCN) palladium hydride 54

(see Figure 3-18, Figure 3-33, Figure 5-7)

Energy: -705.53965417 hartrees

Palladium-hydrogen bond length: 1.694 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0000	-1.0734	0.0000	-0.2998	-0.1584		
2H	0.0000	-2.7671	0.0001	-0.0640	-0.3665		
3C	0.0000	3.6935	0.0000	-0.0479	-0.0534		
4C	1.2060	3.0048	0.2112	-0.1822	-0.3178		
5C	1.1989	1.6038	0.2221	0.3423	0.2763		
6C	0.0000	0.9234	-0.0001	-0.5458	-0.4263		
7C	-1.1989	1.6038	-0.2222	0.3428	0.2762		
8C	-1.2059	3.0048	-0.2112	-0.1825	-0.3178		
9H	0.0000	4.7809	0.0001	0.1705	0.1031		
10H	2.1240	3.5688	0.3735	0.1684	0.1366		
11H	-2.1239	3.5689	-0.3734	0.1684	0.1366		
12C	2.3686	0.6945	0.5370	-0.6025	-0.1775		
13C	-2.3686	0.6945	-0.5371	-0.6025	-0.1774		
14H	3.3376	1.0783	0.1796	0.2043	0.0407		
15H	2.4518	0.5685	1.6232	0.2196	0.0575		
16H	-3.3376	1.0784	-0.1798	0.2043	0.0406		
17H	-2.4517	0.5684	-1.6233	0.2196	0.0576		

18C	2.5495	-0.7126	-1.4609	-0.4501	-0.0858	
19H	3.6324	-0.5257	-1.5509	0.2020	0.0081	
20H	2.3106	-1.6886	-1.8877	0.2408	0.0301	
21H	2.0031	0.0596	-2.0049	0.2441	0.0256	
22C	2.9364	-1.6866	0.7182	-0.4483	-0.1362	
23H	2.7774	-2.6713	0.2771	0.2443	0.0606	
24H	4.0088	-1.4316	0.6885	0.2018	0.0125	
25H	2.5961	-1.7132	1.7555	0.2264	0.0333	
26C	-2.9366	-1.6867	-0.7182	-0.4484	-0.1376	
27H	-2.7780	-2.6713	-0.2767	0.2443	0.0609	
28H	-4.0090	-1.4315	-0.6888	0.2018	0.0130	
29H	-2.5961	-1.7136	-1.7554	0.2264	0.0335	
30C	-2.5494	-0.7124	1.4611	-0.4503	-0.0860	
31H	-3.6324	-0.5260	1.5511	0.2020	0.0081	
32H	-2.3101	-1.6882	1.8881	0.2408	0.0301	
33H	-2.0034	0.0602	2.0049	0.2441	0.0257	
34N	2.1409	-0.6913	-0.0342	-0.2173	0.4866	
35N	-2.1410	-0.6913	0.0342	-0.2173	0.4872	

*** *** ***

(NCN) palladium hydride 55

Energy: -1241.23468085 hartrees

Palladium-hydrogen bond length: 1.636 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	2.3174	1.1026	-0.0520	-0.0111	-0.0157		
2H	3.6972	1.9781	0.0222	-0.0001	-0.2246		
3C	-0.3421	2.1472	-0.3670	-0.5264	0.2404		
4C	1.1530	3.9355	-0.1839	-0.2401	-0.0158		
5C	-1.4379	3.0062	-0.3145	0.7268	-0.1516		
6C	0.1122	4.8542	-0.1607	-0.2272	-0.1553		
7H	2.1935	4.2272	-0.1193	0.2246	0.1346		
8C	-1.1977	4.3747	-0.2142	-0.6002	-0.0175		
9H	-2.4418	2.6067	-0.3107	0.2719	0.1936		
10H	0.3296	5.9145	-0.0860	0.2015	0.1341		
11H	-2.0401	5.0583	-0.1670	0.2103	0.1167		
12C	2.1206	-1.7656	0.0436	-0.3544	0.3983		
13C	4.3785	-1.1672	0.1671	-0.2088	-0.0300		
14C	2.4572	-3.1191	-0.0405	0.2831	-0.2834		

1		1	1			1	1
15C	4.7825	-2.4946	0.1209	-0.2561	-0.1941		
16H	5.0804	-0.3455	0.2343	0.2328	0.1479		
17C	3.8003	-3.4803	0.0022	-0.2880	0.0483		
18H	1.6872	-3.8732	-0.1247	0.2241	0.1715		
19H	5.8376	-2.7423	0.1652	0.2073	0.1483		
20H	4.0736	-4.5297	-0.0567	0.2091	0.1134		
21N	0.9297	2.6097	-0.2852	0.1458	-0.0459		
22N	3.0792	-0.8098	0.1282	0.1621	-0.0264		
23C	0.6329	0.0369	-0.1867	0.0613	0.1634		
24C	-0.2834	-2.2062	0.5027	-0.7394	0.7514		
25C	-1.6984	0.1979	-1.1293	-0.0421	0.5139		
26N	0.7580	-1.3114	-0.0345	-0.0107	-0.4263		
27N	-0.4904	0.7080	-0.4448	-0.1400	-0.1049		
280	-2.1469	0.9135	-2.0027	-0.3118	-0.5045		
290	0.0524	-2.9691	1.3832	-0.3321	-0.4654		
30C	-1.6094	-2.2172	-0.1349	0.7241	-0.2893		
31C	-2.1940	-1.1892	-0.9074	1.0313	0.1805		
32C	-3.4187	-1.4486	-1.5494	-0.0697	-0.2326		
33H	-3.8611	-0.6541	-2.1377	0.2291	0.1716		
34C	-2.3117	-3.4247	0.0502	-0.4631	-0.0107		
35C	-3.5350	-3.6511	-0.5674	-0.2270	-0.1284		
36C	-4.0803	-2.6597	-1.3893	-0.2825	-0.0040		
37H	-5.0322	-2.8205	-1.8875	0.1930	0.1021		
38H	-1.8622	-4.1855	0.6783	0.2182	0.1060		
39H	-4.0545	-4.5925	-0.4141	0.1930	0.1149		
40Br	-3.0674	0.6552	1.5302	-0.4184	-0.6242		

(NCN) palladium hydride 56

(see Figure 3-18, Figure 3-33, Figure 5-7)

Energy: -939.57806527 hartrees

Palladium-hydrogen bond length: 1.625 Å

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-1.3092	1.0816	-0.0793	-0.4582	-0.0041		
2H	-2.0261	2.5377	-0.1545	-0.0069	-0.2239		
3C	0.7222	3.1909	0.5073	-0.0428	0.0007		
4C	1.7375	1.2637	-0.3319	0.1548	0.2694		
5C	1.9538	3.7670	0.8006	-0.1484	-0.1926		

1	•					
6H	-0.2085	3.7054	0.7055	0.2186	0.1283	
7C	3.0037	1.7758	-0.0322	0.0635	-0.2664	
8C	3.1161	3.0423	0.5390	-0.4959	0.0484	
9H	1.9852	4.7607	1.2366	0.1978	0.1340	
10H	3.8713	1.1447	-0.2227	0.2709	0.1779	
11H	4.0948	3.4491	0.7782	0.2089	0.1101	
12C	-3.3177	-1.1825	0.4612	0.1320	0.1386	
13C	-4.1961	0.6469	-0.6873	-0.0224	0.0152	
14C	-4.5245	-1.8698	0.3030	0.1430	-0.2168	
15C	-5.4205	0.0120	-0.8751	-0.1862	-0.1506	
16H	-4.0128	1.6491	-1.0520	0.2359	0.1299	
17C	-5.5900	-1.2749	-0.3716	-0.3065	0.0128	
18H	-4.6221	-2.8718	0.7092	0.1998	0.1417	
19H	-6.2141	0.5275	-1.4060	0.2095	0.1356	
20H	-6.5281	-1.8077	-0.4981	0.2087	0.1154	
21C	-0.4104	-0.7484	0.0482	-0.1436	-0.1640	
22C	1.1745	-2.3504	0.0471	0.0095	-0.1974	
23C	0.0631	-2.8673	0.6469	-0.1637	-0.2592	
24H	2.1754	-2.7364	-0.1183	0.2841	0.2140	
25H	-0.1145	-3.8371	1.0866	0.2086	0.1923	
26C	1.6639	-0.0738	-1.0394	-0.6307	0.0026	
27H	1.2348	0.0602	-2.0399	0.2399	0.0092	
28H	2.6748	-0.4942	-1.1206	0.2574	0.0772	
29C	-2.2113	-1.8369	1.2799	-0.7557	0.0140	
30H	-2.1193	-1.3055	2.2368	0.2617	0.0571	
31H	-2.4995	-2.8668	1.5007	0.2141	0.0799	
32N	-3.1609	0.0719	-0.0373	0.1265	-0.0231	
33N	0.6043	1.9604	-0.0419	0.1803	-0.0797	
34N	0.8420	-1.0494	-0.3169	-0.0483	0.2099	
35N	-0.9082	-1.8583	0.6250	-0.0477	0.1396	
36Br	4.6944	-1.5574	-0.2106	-0.5687	-0.7760	

(PCP) transition state 57

(see Figure 3-24)

Energy: -1668.93946480

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.6378	0.3636	0.0226	-0.9370		0.1342	-0.2667
2H	2.2632	1.1068	0.0188	0.2338		-0.0688	-0.2592
3C	-3.8395	-1.7872	-0.0541	0.0409		-0.0175	-0.0610
4C	-2.6933	-2.5567	-0.2673	-0.4286		0.0432	-0.0260
5C	-1.4269	-1.9549	-0.2465	-0.3375		-0.0705	-0.1218

6C	-1.3077	-0.5727	0.0053	1.4164	0.3677	0.0696
7C	-2.4698	0.1943	0.2301	-0.2999	-0.0637	-0.1111
8C	-3.7314	-0.4158	0.1895	-0.4743	0.0443	-0.0354
9H	-4.8191	-2.2571	-0.0782	0.1845	0.0008	0.0219
10H	-2.7880	-3.6240	-0.4575	0.1817	0.0025	-0.0004
11H	-4.6299	0.1750	0.3559	0.1816	0.0026	-0.0007
12C	-0.1797	-2.7775	-0.5339	-0.9758	0.0082	-0.1390
13C	-2.3397	1.6770	0.5456	-0.9783	0.0048	-0.1431
14H	-0.1980	-3.7721	-0.0713	0.2621	-0.0009	0.0095
15H	-0.0370	-2.9222	-1.6150	0.2701	-0.0005	0.0126
16H	-3.1244	2.2910	0.0869	0.2614	-0.0010	0.0077
17H	-2.3716	1.8600	1.6299	0.2696	-0.0005	0.0117
18P	1.2739	-1.8234	0.0588	1.4154	0.0658	1.8125
19P	-0.6820	2.2224	-0.0263	1.3641	0.0720	1.9215
20F	-0.4854	3.6012	0.7843	-0.3715	-0.0033	-0.7439
21F	-1.0077	2.8386	-1.4777	-0.3606	-0.0032	-0.6709
22F	1.5455	-2.4743	1.5054	-0.3626	-0.0037	-0.6549
23F	2.4777	-2.5173	-0.7524	-0.3694	-0.0040	-0.6822
240	3.4431	1.7000	0.0059	-0.0075	0.6619	0.5102
250	4.3876	0.8703	-0.1492	-0.1783	0.8295	-0.4612

(PCP) palladium hydroperoxide 58

(see Figure 3-24, Figure 4-4)

Energy: -1669.00494162 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.3195	-0.7391	0.0244	-0.5687	-0.0842		
2H	2.6753	-2.9886	-1.0602	0.4669	0.3792		
3C	-1.9666	3.6340	-0.0947	-0.0021	-0.0163		
4C	-0.5978	3.5650	0.1674	-0.4960	-0.3085		
5C	0.0534	2.3254	0.2234	-1.0018	0.4054		
6C	-0.6608	1.1254	-0.0099	2.1163	-0.6600		
7C	-2.0460	1.2168	-0.2870	-0.3189	0.3709		
8C	-2.6895	2.4611	-0.3154	-0.4052	-0.3104		
9H	-2.4677	4.5976	-0.1266	0.1848	0.1115		
10H	-0.0352	4.4797	0.3415	0.1819	0.1462		
11H	-3.7564	2.5149	-0.5220	0.1819	0.1462		
12C	1.5356	2.2774	0.5627	-0.8359	-0.4162		
13C	-2.8433	-0.0448	-0.5808	-0.9890	-0.3253		
14H	2.1111	3.0930	0.1091	0.2614	0.1444		
15H	1.6990	2.3214	1.6497	0.2734	0.1187		
16H	-3.8497	-0.0359	-0.1454	0.2628	0.1284		
17H	-2.9507	-0.2113	-1.6629	0.2717	0.1027		
18P	2.1438	0.6440	0.0127	1.3156	1.0874		

19P	-1.8559	-1.4363	0.0691	1.4153	0.9850	
20F	-2.4346	-2.7086	-0.7183	-0.3729	-0.2851	
21F	-2.5211	-1.7158	1.5042	-0.3545	-0.2838	
22F	2.8456	0.9629	-1.3959	-0.3686	-0.3218	
23F	3.4541	0.4203	0.8999	-0.3651	-0.2751	
240	2.6303	-2.4211	-0.2712	-0.4990	-0.4422	
250	1.2139	-2.5639	0.0795	-0.3542	-0.3971	

(PCP) triplet palladium hydroperoxide 59

(see Figure 3-24)

Energy: -1668.95786962 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.1936	-0.8087	-0.0075	-0.5774		0.4622	
2H	-2.6228	-2.3373	-0.1085	0.4602		0.0145	
3C	1.2996	3.8681	-0.0295	0.0356		0.0126	
4C	-0.0275	3.5575	-0.3319	-0.4946		-0.0444	
5C	-0.4584	2.2237	-0.3287	0.0489		0.1153	
6C	0.4358	1.1841	0.0082	1.3731		0.0590	
7C	1.7726	1.5141	0.3252	-0.2108		0.0496	
8C	2.1987	2.8492	0.2909	-0.5866		-0.0335	
9H	1.6327	4.9026	-0.0434	0.1821		0.0003	
10H	-0.7263	4.3534	-0.5813	0.1795		0.0016	
11H	3.2322	3.0942	0.5269	0.1794		0.0016	
12C	-1.8876	1.8880	-0.7030	-1.0515		-0.0008	
13C	2.7447	0.4192	0.7234	-1.0994		0.0106	
14H	-2.6075	2.6515	-0.3831	0.2580		-0.0012	
15H	-2.0035	1.7683	-1.7909	0.2630		0.0007	
16H	3.7802	0.6374	0.4353	0.2550		-0.0018	
17H	2.7337	0.2507	1.8106	0.2641		0.0002	
18P	-2.3568	0.2756	0.0410	1.0376	0.2474		
-----	---------	---------	---------	---------	---------	--	
19P	2.1944	-1.1563	-0.0440	1.2503	0.1960		
20F	3.2666	-2.1797	0.6362	-0.3686	-0.0050		
21F	2.8803	-1.0273	-1.5070	-0.3674	-0.0034		
22F	-2.6818	0.7225	1.5641	-0.3485	-0.0067		
23F	-3.9153	0.2242	-0.5061	-0.3577	-0.0106		
240	-2.1861	-3.2293	-0.0851	-0.3304	0.2818		
250	-0.8754	-2.9692	-0.0257	0.0063	0.6541		

(PCP) palladium(I)/hydroperoxy radical pair intermediate 60

(see Figure 3-24)

Energy: -1668.95302824 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.5451	0.4428	0.0373	-0.8583		0.3185	
2H	-2.7640	1.4930	0.0295	0.4670		0.0106	
3C	3.6403	-2.1765	-0.0783	0.0375		-0.0260	
4C	2.4251	-2.8181	0.1735	-0.4447		0.0572	
5C	1.2338	-2.0794	0.2209	-0.3507		-0.0486	
6C	1.2716	-0.6920	-0.0127	1.4344		0.4229	
7C	2.4936	-0.0475	-0.2806	-0.2213		-0.0718	
8C	3.6786	-0.7974	-0.2982	-0.4014		0.0538	
9H	4.5609	-2.7535	-0.1035	0.1853		0.0012	
10H	2.4064	-3.8928	0.3435	0.1829		0.0035	
11H	4.6301	-0.3075	-0.4949	0.1828		0.0035	
12C	-0.0862	-2.7563	0.5554	-1.0042		0.0002	
13C	2.5131	1.4427	-0.5830	-1.0535		-0.0017	
14H	-0.1869	-3.7512	0.1046	0.2619		-0.0012	
15H	-0.2051	-2.8769	1.6423	0.2697		-0.0006	
16H	3.3823	1.9586	-0.1567	0.2617		-0.0013	
17H	2.5231	1.6267	-1.6675	0.2696		-0.0006	

18P	-1.4640	-1.6696	0.0033	1.3480	0.1139	
19P	0.9582	2.1895	0.0538	1.3512	0.1562	
20F	0.9521	3.6017	-0.7356	-0.3677	-0.0088	
21F	1.4262	2.7251	1.5029	-0.3664	-0.0072	
22F	-1.8017	-2.2857	-1.4479	-0.3630	-0.0061	
23F	-2.6969	-2.2995	0.8341	-0.3634	-0.0069	
240	-3.6454	1.9702	0.0388	-0.2828	0.2963	
250	-4.5574	1.0556	-0.2678	-0.1744	0.7430	

(PCP) minimum energy crossing point 61

(see Figure 3-24)

Energy: -1668.95769677 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.1969	-0.8103	-0.0021	-0.5738		0.4730	
2H	-2.6185	-2.3639	-0.1178	0.4626		0.0133	
3C	1.2963	3.8704	-0.0319	0.0303		0.0151	
4C	-0.0305	3.5584	-0.3343	-0.4875		-0.0464	
5C	-0.4601	2.2244	-0.3318	0.0218		0.1032	
6C	0.4343	1.1845	0.0067	1.3895		0.0566	
7C	1.7711	1.5166	0.3228	-0.2115		0.0634	
8C	2.1964	2.8517	0.2886	-0.5762		-0.0314	
9H	1.6280	4.9054	-0.0436	0.1822		0.0002	
10H	-0.7309	4.3539	-0.5818	0.1795		0.0016	
11H	3.2293	3.0979	0.5271	0.1795		0.0016	
12C	-1.8903	1.8885	-0.7056	-1.0510		0.0008	
13C	2.7440	0.4211	0.7207	-1.0985		0.0095	
14H	-2.6093	2.6535	-0.3871	0.2577		-0.0013	
15H	-2.0070	1.7644	-1.7929	0.2629		0.0008	
16H	3.7799	0.6390	0.4337	0.2548		-0.0018	
17H	2.7301	0.2503	1.8074	0.2640		0.0002	

18P	-2.3523	0.2771	0.0437	1.0338	0.2501	
19P	2.1886	-1.1506	-0.0506	1.2519	0.1977	
20F	3.2475	-2.1855	0.6298	-0.3682	-0.0054	
21F	2.8785	-1.0224	-1.5110	-0.3668	-0.0036	
22F	-2.6872	0.7262	1.5633	-0.3489	-0.0067	
23F	-3.9059	0.2004	-0.5076	-0.3558	-0.0118	
240	-2.1574	-3.2411	-0.1024	-0.3381	0.2744	
250	-0.8489	-2.9449	-0.0007	0.0057	0.6470	

(PNP) transition state 62

(see Figure 3-25)

Energy: -2030.05990829 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.0035	-0.9857	0.0514	-1.5769		0.2600	0.0373
2H	-0.0080	-2.7693	0.1088	0.2617		-0.0210	-0.1349
3N	0.0265	1.1652	-0.0173	0.4128		0.1749	-1.1710
4C	-3.7034	3.0475	-0.8896	-0.1517		0.0001	-0.1709
5C	-3.6235	1.7419	-0.3997	-0.1183		-0.0011	0.0646
6C	-2.4016	1.1101	-0.1166	-0.6012		0.0169	-0.4659
7C	-1.1667	1.8063	-0.2973	0.7270		-0.0136	0.6989
8C	-1.2590	3.1131	-0.8504	-0.0895		0.0114	-0.2423
9C	-2.4840	3.7052	-1.1278	-0.8649		-0.0003	0.1532
10H	-4.5506	1.1914	-0.2547	0.1654		0.0001	0.0135
11H	-0.3508	3.6505	-1.0977	0.1975		-0.0004	0.0318
12H	-2.4926	4.7050	-1.5602	0.1739		0.0007	0.0011
13C	3.8081	2.9894	0.7533	-0.1567		-0.0014	-0.1779
14C	2.6074	3.6948	0.9467	-0.8589		0.0004	0.1537
15C	1.3663	3.1232	0.6996	-0.0814		0.0106	-0.2448
16C	1.2369	1.7882	0.2265	0.7935		-0.0115	0.7148
17C	2.4523	1.0481	0.0919	-0.5574		0.0114	-0.4789
18C	3.6916	1.6601	0.3414	-0.1226		-0.0006	0.0719

19H	2.6437	4.7179	1.3191	0.1740	0.0007	0.0007
20H	0.4736	3.7007	0.9102	0.1976	-0.0004	0.0322
21H	4.6024	1.0751	0.2318	0.1655	0.0001	0.0134
22P	2.2959	-0.7348	-0.3038	1.1870	0.0977	0.9505
23P	-2.2974	-0.6524	0.3814	1.3027	0.0510	0.9300
24C	3.5283	-1.6162	0.8013	-0.1700	-0.0463	-0.1278
25H	4.5035	-1.1331	0.6542	0.2146	0.0016	-0.0613
26C	2.8960	-0.9973	-2.0678	-0.3537	0.0151	-0.1245
27H	2.7859	-2.0789	-2.2254	0.2282	0.0001	-0.0382
28C	-2.9017	-0.7914	2.1584	-0.3712	0.0140	-0.1156
29H	-2.8252	-1.8651	2.3783	0.2271	0.0002	-0.0403
30C	-3.5636	-1.5504	-0.6705	-0.1256	-0.0285	-0.1260
31H	-4.5176	-1.0191	-0.5537	0.2131	0.0012	-0.0568
32C	-4.3543	-0.3440	2.3862	-0.6113	0.0038	0.0386
33H	-5.0690	-0.8924	1.7623	0.2144	0.0000	-0.0097
34H	-4.6332	-0.5177	3.4338	0.2117	0.0002	-0.0536
35H	-4.4744	0.7264	2.1865	0.2393	0.0000	0.0090
36C	-1.9383	-0.0432	3.0956	-0.7466	-0.0074	0.0319
37H	-1.9504	1.0347	2.8971	0.2407	0.0000	0.0051
38H	-2.2403	-0.1969	4.1397	0.2073	-0.0001	-0.0461
39H	-0.9074	-0.3942	2.9811	0.2330	0.0003	0.0045
40C	-3.7532	-3.0065	-0.2125	-0.7172	0.0205	0.0399
41H	-2.8194	-3.5730	-0.2933	0.2511	0.0000	0.0224
42H	-4.1149	-3.0815	0.8189	0.2138	0.0001	-0.0114
43H	-4.4941	-3.4981	-0.8559	0.2122	-0.0002	-0.0388
44C	-3.1511	-1.4886	-2.1513	-0.7214	0.0088	0.0340
45H	-2.2045	-2.0169	-2.3148	0.2395	0.0007	0.0078
46H	-3.9181	-1.9722	-2.7698	0.2057	-0.0001	-0.0441
47H	-3.0342	-0.4580	-2.5020	0.2365	0.0000	0.0067
48C	3.6578	-3.1034	0.4295	-0.6887	0.0214	0.0412
49H	4.0364	-3.2512	-0.5878	0.2159	0.0000	-0.0110
50H	4.3612	-3.5930	1.1151	0.2122	0.0000	-0.0410
51H	2.6963	-3.6223	0.5129	0.2484	0.0012	0.0210
52C	3.1235	-1.4474	2.2756	-0.6975	0.0117	0.0353
53H	2.1569	-1.9258	2.4736	0.2344	0.0006	0.0080
54H	3.8731	-1.9206	2.9229	0.2064	-0.0001	-0.0461
55H	3.0466	-0.3932	2.5611	0.2383	0.0000	0.0074
56C	1.9573	-0.2752	-3.0496	-0.7583	-0.0064	0.0317
57H	0.9160	-0.5871	-2.9182	0.2344	0.0003	0.0032

1	1		1		1		
58H	2.0032	0.8117	-2.9144	0.2402		0.0000	0.0054
59H	2.2553	-0.4993	-4.0819	0.2080		-0.0001	-0.0452
60C	4.3620	-0.6084	-2.3157	-0.6075		0.0046	0.0428
61H	4.5152	0.4670	-2.1739	0.2394		0.0000	0.0090
62H	5.0591	-1.1445	-1.6617	0.2134		0.0000	-0.0110
63H	4.6363	-0.8471	-3.3517	0.2122		0.0003	-0.0536
64C	-5.0292	3.7163	-1.1725	-0.6942		0.0000	0.1502
65H	-5.0610	4.1420	-2.1840	0.2140		0.0001	-0.0525
66H	-5.8598	3.0066	-1.0859	0.1989		0.0000	-0.0228
67H	-5.2267	4.5394	-0.4718	0.2198		0.0002	-0.0672
68C	5.1516	3.6354	1.0040	-0.6910		0.0001	0.1524
69H	5.9633	2.9011	0.9471	0.1987		0.0000	-0.0229
70H	5.3684	4.4216	0.2676	0.2197		0.0001	-0.0667
71H	5.1978	4.1038	1.9959	0.2144		0.0000	-0.0539
720	0.1115	-4.0242	0.2358	-0.0468		0.6046	0.3252
730	-0.5367	-4.6503	-0.6735	-0.1349		0.7917	-0.4255

(PNP) triplet palladium hydroperoxide 63

(see Figure 3-25)

Energy: -2030.07405482 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.0173	-1.1535	0.0337	-1.3529		0.7671	
2H	0.5681	-4.6281	-1.3786	0.4957		-0.0019	
3N	-0.0491	1.0101	-0.0034	0.3797		0.2901	
4C	3.5541	3.1249	0.8270	-0.1054		0.0649	
5C	3.5585	1.7854	0.4219	0.0517		-0.0123	
6C	2.3865	1.0694	0.1367	-0.6685		0.0721	
7C	1.1194	1.7245	0.2318	0.5057		-0.0410	
8C	1.1204	3.0691	0.6876	0.0073		0.0744	
9C	2.3009	3.7422	0.9731	-0.9220		-0.0367	
10H	4.5185	1.2805	0.3428	0.1692		0.0015	
11H	0.1739	3.5726	0.8514	0.2006		-0.0031	
12H	2.2471	4.7696	1.3303	0.1756		0.0020	
13C	-3.7231	2.7434	-1.2821	-0.0662		0.0884	
14C	-2.4973	3.3755	-1.5485	-0.8258		-0.0511	
15C	-1.2904	2.8319	-1.1279	-0.1133		0.0905	
16C	-1.2350	1.6121	-0.4038	0.7908		-0.0369	
17C	-2.4746	0.9350	-0.1758	-0.7469		0.0956	

1	1 1	1			
18C	-3.6735	1.5176	-0.6060	0.1770	-0.0395
19H	-2.4860	4.3076	-2.1117	0.1766	0.0022
20H	-0.3658	3.3349	-1.3896	0.2026	-0.0040
21H	-4.6101	0.9943	-0.4275	0.1700	0.0019
22P	-2.3873	-0.7503	0.5672	1.2177	0.0908
23P	2.3879	-0.7349	-0.2385	1.2628	0.1131
24C	-3.7699	-1.7308	-0.2410	-0.1368	0.0098
25H	-4.7186	-1.1925	-0.1144	0.2069	0.0037
26C	-2.9104	-0.5397	2.3702	-0.3453	-0.0061
27H	-2.8704	-1.5622	2.7700	0.2240	0.0003
28C	3.0139	-0.9185	-2.0061	-0.3144	-0.0055
29H	3.0235	-2.0070	-2.1509	0.2419	0.0007
30C	3.7441	-1.4505	0.8505	-0.1251	0.0035
31H	4.6627	-0.8671	0.7019	0.2067	0.0060
32C	4.4212	-0.3634	-2.2722	-0.6255	0.0040
33H	5.1789	-0.7975	-1.6098	0.2118	-0.0001
34H	4.7211	-0.5892	-3.3046	0.2076	0.0013
35H	4.4472	0.7259	-2.1529	0.2350	-0.0001
36C	1.9896	-0.3256	-2.9881	-0.8488	-0.0017
37H	1.9050	0.7613	-2.8679	0.2317	0.0000
38H	2.3051	-0.5234	-4.0210	0.2046	-0.0003
39H	0.9958	-0.7619	-2.8443	0.2420	0.0002
40C	4.0256	-2.9155	0.4714	-0.7313	0.0052
41H	3.1117	-3.5182	0.5075	0.2644	0.0004
42H	4.4486	-3.0104	-0.5348	0.2122	0.0000
43H	4.7506	-3.3447	1.1755	0.2035	0.0001
44C	3.3288	-1.3381	2.3277	-0.7107	0.0009
45H	2.4183	-1.9177	2.5212	0.2336	0.0007
46H	4.1255	-1.7351	2.9706	0.2029	-0.0002
47H	3.1413	-0.3010	2.6256	0.2313	-0.0001
48C	-3.8924	-3.1101	0.4337	-0.7134	-0.0005
49H	-4.1792	-3.0381	1.4889	0.2106	0.0000
50H	-4.6631	-3.7030	-0.0759	0.2061	0.0001
51H	-2.9461	-3.6602	0.3699	0.2593	0.0005
52C	-3.4858	-1.8893	-1.7453	-0.6793	-0.0097
53H	-2.5466	-2.4311	-1.9050	0.2569	0.0002
54H	-4.2957	-2.4617	-2.2168	0.1994	-0.0002
55H	-3.4165	-0.9230	-2.2557	0.2305	0.0000
56C	-1.8691	0.3013	3.1274	-0.7490	0.0076

57H	-0.8609	-0.1129	3.0257	0.2329	0.0005
58H	-1.8476	1.3332	2.7577	0.2363	0.0000
59H	-2.1217	0.3337	4.1953	0.2051	-0.0003
60C	-4.3272	0.0158	2.5779	-0.6759	0.0077
61H	-4.4139	1.0362	2.1871	0.2374	-0.0002
62H	-5.0955	-0.6010	2.0981	0.2113	0.0000
63H	-4.5591	0.0520	3.6511	0.2084	0.0024
64C	4.8364	3.8746	1.1053	-0.7035	-0.0054
65H	4.7934	4.4047	2.0653	0.2147	0.0020
66H	5.6967	3.1968	1.1368	0.2024	0.0002
67H	5.0396	4.6279	0.3313	0.2224	0.0036
68C	-5.0335	3.3550	-1.7197	-0.6954	-0.0087
69H	-5.8677	2.6608	-1.5698	0.2026	0.0002
70H	-5.2604	4.2698	-1.1549	0.2228	0.0046
71H	-5.0153	3.6306	-2.7820	0.2169	0.0030
720	0.9504	-3.8517	-0.9318	-0.5841	0.0819
730	-0.2386	-3.1877	-0.4737	-0.0798	0.3598

(PNP) minimum energy crossing point structure 64

(see Figure 3-25)

Energy: -2030.06267809 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.0118	-1.1556	0.1756	-1.3190		0.6652	
2H	0.0613	-4.9699	-1.7567	0.4912		-0.0057	
3N	-0.0265	1.0851	-0.0470	0.2994		0.2284	
4C	3.6408	3.1232	0.6866	-0.1272		0.0343	
5C	3.5968	1.7622	0.3682	0.0324		0.0041	
6C	2.4023	1.0708	0.1156	-0.7164		0.0486	
7C	1.1523	1.7727	0.1525	0.7828		-0.0243	
8C	1.2072	3.1472	0.5192	-0.1178		0.0509	
9C	2.4087	3.7933	0.7736	-0.9216		-0.0201	
10H	4.5387	1.2195	0.3317	0.1635		0.0008	
11H	0.2799	3.6955	0.6450	0.1978		-0.0019	
12H	2.3892	4.8440	1.0605	0.1733		0.0014	
13C	-3.7347	2.7496	-1.3074	-0.1017		0.0500	
14C	-2.5202	3.3928	-1.6013	-0.8514		-0.0283	
15C	-1.3005	2.8699	-1.1944	-0.1946		0.0622	
16C	-1.2114	1.6594	-0.4510	1.0182		-0.0284	

17C	-2.4444	0.9698	-0.1989	-0.7624	0.0618	
18C	-3.6568	1.5331	-0.6191	0.1215	-0.0128	
19H	-2.5298	4.3194	-2.1739	0.1739	0.0016	
20H	-0.3878	3.3817	-1.4793	0.1991	-0.0025	
21H	-4.5857	1.0042	-0.4173	0.1647	0.0012	
22P	-2.3479	-0.6896	0.6017	1.2241	0.1096	
23P	2.3631	-0.7472	-0.1758	1.0692	0.0738	
24C	-3.7624	-1.6757	-0.1498	-0.1171	0.0014	
25H	-4.6989	-1.1187	-0.0178	0.2088	0.0030	
26C	-2.8561	-0.4083	2.4005	-0.3381	-0.0039	
27H	-2.8222	-1.4146	2.8407	0.2198	0.0003	
28C	2.9403	-0.9841	-1.9605	-0.2931	-0.0078	
29H	2.9437	-2.0752	-2.0891	0.2310	0.0004	
30C	3.7568	-1.4481	0.8756	-0.0915	0.0086	
31H	4.6850	-0.9038	0.6572	0.2093	0.0041	
32C	4.3414	-0.4420	-2.2789	-0.6183	0.0038	
33H	5.1178	-0.8744	-1.6370	0.2092	0.0000	
34H	4.6059	-0.6787	-3.3185	0.2074	0.0007	
35H	4.3778	0.6478	-2.1696	0.2405	-0.0001	
36C	1.8951	-0.4007	-2.9268	-0.7940	-0.0014	
37H	1.8238	0.6883	-2.8224	0.2384	0.0000	
38H	2.1809	-0.6197	-3.9642	0.2032	-0.0002	
39H	0.8991	-0.8195	-2.7487	0.2404	0.0005	
40C	3.9790	-2.9351	0.5453	-0.7286	-0.0010	
41H	3.0592	-3.5152	0.6890	0.2441	0.0005	
42H	4.3154	-3.0893	-0.4860	0.2161	0.0000	
43H	4.7477	-3.3528	1.2088	0.2073	-0.0001	
44C	3.4241	-1.2664	2.3664	-0.7046	0.0055	
45H	2.5084	-1.8100	2.6299	0.2286	0.0005	
46H	4.2415	-1.6610	2.9844	0.2029	-0.0001	
47H	3.2788	-0.2134	2.6293	0.2366	0.0000	
48C	-3.9004	-3.0320	0.5651	-0.7163	-0.0036	
49H	-4.1688	-2.9248	1.6220	0.2127	0.0000	
50H	-4.6881	-3.6273	0.0845	0.2062	0.0000	
51H	-2.9655	-3.6022	0.5061	0.2481	0.0004	
52C	-3.5243	-1.8821	-1.6562	-0.6887	-0.0082	
53H	-2.6031	-2.4503	-1.8285	0.2480	0.0001	
54H	-4.3593	-2.4485	-2.0902	0.1989	-0.0002	
55H	-3.4452	-0.9327	-2.1955	0.2360	0.0000	

56C	-1.7976	0.4522	3.1113	-0.7663	0.0096
57H	-0.7943	0.0259	3.0104	0.2326	0.0005
58H	-1.7713	1.4676	2.6992	0.2404	0.0000
59H	-2.0355	0.5293	4.1804	0.2037	-0.0003
60C	-4.2631	0.1709	2.6054	-0.6668	0.0069
61H	-4.3446	1.1743	2.1723	0.2412	-0.0001
62H	-5.0465	-0.4564	2.1645	0.2097	0.0000
63H	-4.4775	0.2555	3.6794	0.2083	0.0014
64C	4.9478	3.8394	0.9385	-0.7083	-0.0025
65H	4.9347	4.3850	1.8912	0.2142	0.0011
66H	5.7874	3.1359	0.9714	0.1994	0.0001
67H	5.1659	4.5745	0.1513	0.2196	0.0018
68C	-5.0610	3.3404	-1.7263	-0.7060	-0.0046
69H	-5.8843	2.6427	-1.5363	0.1996	0.0001
70H	-5.2826	4.2676	-1.1795	0.2200	0.0026
71H	-5.0747	3.5885	-2.7957	0.2147	0.0018
720	0.6078	-4.2964	-1.2989	-0.4868	0.1978
730	-0.2868	-3.4801	-0.6961	-0.0713	0.5108

(PNP) palladium(I)/hydroperoxy radical pair intermediate 65

(see Figure 3-25)

Energy: -2030.06866670 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0013	-0.9972	0.2927	-1.6761		0.4192	
2H	0.0240	-2.8302	-1.0529	0.4757		0.0128	
3N	0.0171	1.1423	-0.0431	0.3544		0.2261	
4C	-3.7076	2.8567	-1.2183	-0.1233		0.0070	
5C	-3.6285	1.6288	-0.5566	-0.0081		-0.0002	
6C	-2.4093	1.0500	-0.1689	-0.6898		0.0320	
7C	-1.1750	1.7265	-0.4245	1.0272		-0.0054	
8C	-1.2653	2.9494	-1.1445	-0.1166		0.0209	
9C	-2.4888	3.4896	-1.5182	-0.8949		-0.0049	
10H	-4.5546	1.0943	-0.3554	0.1668		0.0002	
11H	-0.3553	3.4579	-1.4419	0.1969		-0.0007	
12H	-2.4962	4.4244	-2.0776	0.1741		0.0009	
13C	3.7913	3.0428	0.5452	-0.1280		-0.0048	
14C	2.5888	3.7656	0.6391	-0.9277		0.0000	
15C	1.3508	3.1684	0.4431	-0.0355		0.0132	
16C	1.2268	1.7872	0.1267	0.7138		-0.0173	
17C	2.4441	1.0377	0.0834	-0.6790		0.0107	

18C	3.6796	1.6762	0.2803	-0.0635	0.0012
19H	2.6214	4.8249	0.8913	0.1743	0.0009
20H	0.4547	3.7646	0.5731	0.1972	-0.0004
21H	4.5912	1.0833	0.2454	0.1652	0.0001
22P	2.3047	-0.7749	-0.1501	1.0227	0.1458
23P	-2.3136	-0.6229	0.5800	1.4012	0.1187
24C	3.5665	-1.5559	0.9976	-0.0205	-0.0330
25H	4.5464	-1.1143	0.7731	0.2142	0.0020
26C	2.8954	-1.1587	-1.9000	-0.3459	0.0047
27H	2.7705	-2.2460	-1.9936	0.2374	-0.0001
28C	-2.8966	-0.4706	2.3675	-0.3913	0.0022
29H	-2.8193	-1.4945	2.7586	0.2211	0.0005
30C	-3.6166	-1.6607	-0.2845	-0.1584	-0.0404
31H	-4.5839	-1.1599	-0.1462	0.2123	0.0024
32C	-4.3441	0.0141	2.5402	-0.6487	0.0040
33H	-5.0697	-0.6356	2.0383	0.2114	0.0000
34H	-4.6026	0.0303	3.6072	0.2106	0.0003
35H	-4.4699	1.0323	2.1549	0.2403	0.0000
36C	-1.9195	0.4153	3.1591	-0.7516	-0.0074
37H	-1.9303	1.4462	2.7871	0.2421	0.0000
38H	-2.2096	0.4359	4.2176	0.2066	-0.0002
39H	-0.8907	0.0460	3.0931	0.2298	0.0003
40C	-3.6963	-3.0627	0.3453	-0.6988	0.0230
41H	-2.7374	-3.5886	0.2666	0.2501	0.0007
42H	-3.9839	-3.0318	1.4022	0.2122	0.0002
43H	-4.4487	-3.6626	-0.1824	0.2121	0.0000
44C	-3.3320	-1.7470	-1.7934	-0.6537	0.0240
45H	-2.3819	-2.2556	-1.9910	0.2316	0.0006
46H	-4.1251	-2.3246	-2.2855	0.2067	-0.0001
47H	-3.2932	-0.7581	-2.2607	0.2407	0.0000
48C	3.6473	-3.0745	0.7622	-0.7610	0.0110
49H	3.9772	-3.3265	-0.2513	0.2206	0.0000
50H	4.3642	-3.5209	1.4630	0.2128	0.0000
51H	2.6753	-3.5544	0.9295	0.2361	0.0005
52C	3.2165	-1.2430	2.4622	-0.7278	-0.0017
53H	2.2435	-1.6712	2.7322	0.2265	0.0004
54H	3.9728	-1.6806	3.1266	0.2060	-0.0001
55H	3.1790	-0.1660	2.6544	0.2397	0.0000
56C	1.9671	-0.4823	-2.9235	-0.6849	0.0021

1					
57H	0.9178	-0.7544	-2.7696	0.2372	0.0005
58H	2.0419	0.6096	-2.8629	0.2419	0.0000
59H	2.2518	-0.7850	-3.9391	0.2100	-0.0001
60C	4.3651	-0.8045	-2.1751	-0.6338	0.0074
61H	4.5330	0.2753	-2.0973	0.2393	0.0000
62H	5.0579	-1.3106	-1.4936	0.2120	0.0000
63H	4.6316	-1.1074	-3.1962	0.2127	0.0005
64C	-5.0326	3.4688	-1.6117	-0.7015	-0.0009
65H	-5.0524	3.7458	-2.6738	0.2143	0.0002
66H	-5.8605	2.7723	-1.4359	0.1991	0.0000
67H	-5.2448	4.3819	-1.0383	0.2198	0.0005
68C	5.1317	3.7130	0.7433	-0.6940	0.0007
69H	5.9463	2.9797	0.7474	0.1987	0.0000
70H	5.3460	4.4370	-0.0550	0.2196	0.0000
71H	5.1754	4.2615	1.6935	0.2152	0.0000
720	0.0950	-3.6445	-1.6502	-0.2414	0.2888
730	-0.3965	-4.6634	-0.9528	-0.1544	0.7311

(NCN) transition state 66

(see Figure 3-26)

Energy: -1089.87880403 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-1.1945	0.6508	0.0081	-0.6674		0.3700	0.3744
2H	-2.1926	2.1402	-0.0334	0.2128		-0.0079	0.0077
3C	0.5452	3.0263	0.6234	-0.0108		0.0324	0.0252
4C	1.7975	1.2811	-0.2879	0.1124		-0.0078	0.1402
5C	1.6912	3.7552	0.9240	-0.1036		-0.0457	-0.0782
6H	-0.4387	3.4179	0.8523	0.2160		-0.0006	0.0625
7C	2.9874	1.9500	0.0146	0.1148		-0.0059	-0.2032
8C	2.9360	3.2019	0.6261	-0.5820		0.0042	0.1325
9H	1.5946	4.7299	1.3921	0.2018		0.0001	0.0419
10H	3.9301	1.4503	-0.2072	0.2713		-0.0001	0.1652
11H	3.8542	3.7298	0.8684	0.2114		0.0001	0.0485
12C	-2.8547	-1.9064	0.4797	0.0156		-0.0137	0.1344
13C	-4.0193	-0.1745	-0.5636	-0.0039		0.0228	0.0314
14C	-3.9337	-2.7686	0.2723	0.1906		-0.0045	-0.1300
15C	-5.1268	-0.9873	-0.7957	-0.1141		-0.0469	-0.0569
16H	-4.0233	0.8687	-0.8631	0.2477		-0.0028	0.0913
17C	-5.0833	-2.3129	-0.3744	-0.3551		0.0038	0.0937

1					1		
18H	-3.8685	-3.7955	0.6182	0.1998		0.0002	0.0481
19H	-5.9960	-0.5733	-1.2962	0.2137		0.0000	0.0586
20H	-5.9230	-2.9817	-0.5404	0.2102		0.0001	0.0521
21C	-0.0456	-1.0437	0.0498	-0.0688		0.2294	0.2881
22C	1.7591	-2.3840	-0.0031	0.0081		-0.0036	-0.0607
23C	0.7442	-3.0757	0.5923	-0.1788		0.0020	-0.0455
24H	2.8049	-2.6112	-0.1867	0.2839		0.0007	0.2326
25H	0.7192	-4.0716	1.0081	0.2110		0.0014	0.0822
26C	1.8894	-0.0322	-1.0389	-0.5492		0.0003	0.2081
27H	1.4144	0.0708	-2.0218	0.2414		-0.0004	-0.0307
28H	2.9458	-0.3051	-1.1600	0.2588		-0.0002	0.1996
29C	-1.6549	-2.4152	1.2690	-0.6763		-0.0031	0.3812
30H	-1.6273	-1.9059	2.2415	0.2616		-0.0003	-0.0243
31H	-1.7842	-3.4828	1.4582	0.2156		-0.0001	0.0049
32N	-2.9033	-0.6159	0.0550	0.1092		0.0447	-0.1316
33N	0.5852	1.8103	0.0344	0.1768		0.0306	-0.1479
34N	1.2326	-1.1382	-0.3322	-0.0446		-0.0066	-0.4034
35N	-0.3687	-2.2251	0.6034	-0.0380		-0.0080	-0.4235
36Br	5.1043	-1.1176	-0.2927	-0.5627		0.0039	-0.8949
370	-3.9988	3.1094	-0.6080	-0.1372		0.7860	-0.4512
380	-2.8420	3.2655	-0.0807	-0.0918		0.6255	0.1774

(NCN) palladium(I)/hydroperoxy radical pair intermediate 67

(see Figure 3-26)

Energy: -1089.89338089 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	1.1497	1.0238	-0.3100	-0.4688		0.5824	
2H	1.5153	0.3837	1.8992	0.5188		-0.0130	
3C	-0.9895	3.1502	-0.8213	-0.0076		0.0264	
4C	-1.9198	1.2681	0.1872	-0.0119		-0.0030	
5C	-2.2433	3.6800	-1.1112	-0.0755		0.0046	
6H	-0.0832	3.6812	-1.0968	0.1902		-0.0002	
7C	-3.2106	1.7264	-0.0968	0.1165		0.0037	
8C	-3.3746	2.9467	-0.7520	-0.5977		-0.0028	
9H	-2.3191	4.6381	-1.6164	0.1968		0.0005	
10H	-4.0562	1.0928	0.1707	0.2690		0.0002	
11H	-4.3717	3.3124	-0.9813	0.2101		0.0002	
12C	3.1403	-1.3245	-0.8156	-0.0802		0.0125	
13C	4.1916	0.6203	-0.0875	-0.1053		0.0343	
14C	4.2984	-2.0610	-0.5594	0.2271		-0.0023	
15C	5.3806	-0.0541	0.1830	-0.0426		-0.0012	
16H	4.1044	1.6855	0.0963	0.2140		-0.0006	
17C	5.4338	-1.4250	-0.0523	-0.3947		0.0116	
18H	4.3084	-3.1285	-0.7570	0.1992		0.0007	

19H	6.2313	0.4916	0.5779	0.2090	0.0008
20H	6.3366	-1.9929	0.1530	0.2091	-0.0007
21C	0.2955	-0.8314	-0.0586	-0.4242	0.2502
22C	-1.4083	-2.3091	-0.0901	0.1332	0.0091
23C	-0.3443	-2.8871	-0.7173	-0.3334	0.0056
24H	-2.4323	-2.6290	0.0856	0.2819	0.0009
25H	-0.2410	-3.8596	-1.1748	0.2108	0.0017
26C	-1.7697	-0.0134	0.9906	-0.3679	0.0043
27H	-1.2842	0.2073	1.9481	0.2458	-0.0009
28H	-2.7654	-0.4373	1.1711	0.2676	-0.0003
29C	1.9456	-2.0169	-1.4538	-0.5856	-0.0231
30H	1.7598	-1.5680	-2.4387	0.2555	0.0012
31H	2.1910	-3.0697	-1.6111	0.2138	0.0000
32N	3.0920	0.0121	-0.5743	0.0995	0.0425
33N	-0.8194	1.9695	-0.1904	0.2367	0.0449
34N	-0.9799	-1.0456	0.3061	-0.0004	0.0053
35N	0.7032	-1.9596	-0.6777	-0.0568	-0.0094
36Br	-4.8680	-1.5273	0.3294	-0.5601	0.0028
370	2.9054	1.1513	2.8829	-0.1001	0.7103
38O	1.8538	0.3370	2.8409	-0.2923	0.3011

(NCN) minimum energy crossing point structure 68

(see Figure 3-26)

Energy: -1089.90819125 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-1.1527	0.7466	-0.1682	-0.4998		0.0464	
2H	-3.7981	3.1229	0.9848	0.4637		-0.0244	
3C	0.6268	3.0443	0.4294	0.0322		0.0092	
4C	1.8680	1.2361	-0.3814	0.1437		0.0083	
5C	1.7825	3.7718	0.6940	-0.1940		-0.0017	
6H	-0.3627	3.4462	0.6193	0.2425		-0.0020	
7C	3.0650	1.9024	-0.1087	0.0877		-0.0063	
8C	3.0220	3.1863	0.4343	-0.5741		0.0017	
9H	1.6987	4.7707	1.1100	0.2037		0.0001	
10H	4.0012	1.3780	-0.2943	0.2726		0.0000	
11H	3.9445	3.7155	0.6566	0.2119		0.0001	
12C	-2.9849	-1.6508	0.4089	0.1215		0.0061	
13C	-3.9411	0.0448	-0.8764	-0.0224		0.0123	
14C	-4.1514	-2.4093	0.3058	0.0097		-0.0024	
15C	-5.1302	-0.6659	-1.0174	-0.0881		0.0075	
16H	-3.8167	1.0321	-1.2989	0.2463		-0.0010	

1	1				1 1 1
17C	-5.2388	-1.9163	-0.4173	-0.3573	0.0075
18H	-4.2037	-3.3783	0.7923	0.1981	0.0001
19H	-5.9473	-0.2305	-1.5827	0.2101	0.0001
20H	-6.1498	-2.5013	-0.5053	0.2082	0.0000
21C	-0.1199	-0.9289	0.0369	-0.1244	-0.0406
22C	1.5925	-2.3824	0.0958	0.0427	0.0018
23C	0.5218	-2.9739	0.7000	-0.1622	0.0036
24H	2.6260	-2.6837	-0.0473	0.2867	-0.0002
25H	0.4212	-3.9411	1.1685	0.2157	-0.0004
26C	1.9202	-0.1170	-1.0524	-0.5140	0.0001
27H	1.5041	-0.0480	-2.0650	0.2449	0.0004
28H	2.9624	-0.4635	-1.0967	0.2546	0.0000
29C	-1.8445	-2.1579	1.2760	-0.6358	-0.0031
30H	-1.8308	-1.5881	2.2146	0.2735	0.0004
31H	-2.0199	-3.2062	1.5248	0.2190	0.0000
32N	-2.8900	-0.4393	-0.1872	0.2471	-0.0118
33N	0.6676	1.8004	-0.0922	0.2261	0.0019
34N	1.1585	-1.1269	-0.3113	0.0223	0.0046
35N	-0.5314	-2.0570	0.6456	0.0152	0.0058
36Br	5.0133	-1.3158	-0.1133	-0.5598	0.0009
370	-2.1591	2.4746	-0.3202	-0.2828	1.2230
38O	-3.6198	2.1686	1.0666	-0.6853	0.7520

(NCN) palladium hydroperoxide 69

(see Figure 3-26, Figure 4-4)

Energy: -1089.96278644 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-1.1682	0.7372	-0.0913	-0.4325	0.2540		
2H	-2.9631	3.1405	1.4051	0.4862	0.3822		
3C	0.6140	3.0718	0.3662	0.0450	-0.0120		
4C	1.8501	1.2326	-0.3761	0.1102	0.2785		

5C	1.7712	3.8105	0.5927	-0.2511	-0.2117	
6H	-0.3806	3.4748	0.5208	0.2465	0.1673	
7C	3.0487	1.9082	-0.1333	0.0833	-0.2634	
8C	3.0096	3.2125	0.3589	-0.5849	0.0589	
9H	1.6898	4.8293	0.9586	0.1996	0.1388	
10H	3.9837	1.3783	-0.3082	0.2724	0.1804	
11H	3.9335	3.7490	0.5564	0.2100	0.1095	
12C	-3.0057	-1.6879	0.4028	0.1162	0.1683	
13C	-3.9607	0.0726	-0.7989	-0.0918	0.0528	
14C	-4.1619	-2.4520	0.2358	0.0421	-0.2280	
15C	-5.1412	-0.6398	-0.9954	-0.0146	-0.1503	
16H	-3.8203	1.0839	-1.1647	0.2702	0.1486	
17C	-5.2438	-1.9264	-0.4726	-0.3864	0.0020	
18H	-4.2101	-3.4506	0.6590	0.1981	0.1473	
19H	-5.9548	-0.1826	-1.5487	0.2109	0.1369	
20H	-6.1464	-2.5148	-0.6108	0.2079	0.1190	
21C	-0.1357	-0.9469	0.0549	-0.0740	-0.3952	
22C	1.5724	-2.4122	0.0654	0.0135	-0.1742	
23C	0.5010	-3.0199	0.6488	-0.1598	-0.2812	
24H	2.6044	-2.7121	-0.0885	0.2861	0.2020	
25H	0.3968	-4.0014	1.0855	0.2128	0.1983	
26C	1.9075	-0.1283	-1.0297	-0.5253	-0.0920	
27H	1.5055	-0.0635	-2.0487	0.2432	0.0417	
28H	2.9510	-0.4724	-1.0627	0.2525	0.0921	
29C	-1.8634	-2.2280	1.2478	-0.6444	-0.0552	
30H	-1.8521	-1.7007	2.2112	0.2647	0.0819	
31H	-2.0359	-3.2868	1.4512	0.2180	0.0847	
32N	-2.9183	-0.4416	-0.1167	0.1987	-0.0389	
33N	0.6507	1.8044	-0.0965	0.2256	-0.0758	
34N	1.1424	-1.1411	-0.2986	0.0031	0.3174	
35N	-0.5504	-2.0973	0.6235	0.0171	0.2559	
36Br	5.0112	-1.3314	-0.1182	-0.5646	-0.7711	
370	-2.2464	2.4749	-0.2377	-0.3640	-0.4094	
38O	-3.2781	2.4433	0.8047	-0.5407	-0.4602	

(NCN) triplet palladium hydroperoxide 70

(see Figure 3-26)

Energy: -1089.90825018 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-1.1513	0.7471	-0.1699	-0.5007		0.0476	
2H	-3.7979	3.1219	0.9854	0.4625		-0.0244	
3C	0.6269	3.0440	0.4297	0.0338		0.0095	
4C	1.8682	1.2358	-0.3810	0.1431		0.0080	

5C	1.7824	3.7715	0.6944	-0.1956	-0.0010
6H	-0.3623	3.4466	0.6196	0.2420	-0.0021
7C	3.0650	1.9021	-0.1083	0.0885	-0.0058
8C	3.0219	3.1860	0.4347	-0.5733	0.0016
9H	1.6985	4.7704	1.1104	0.2038	0.0001
10H	4.0011	1.3777	-0.2940	0.2726	0.0000
11H	3.9443	3.7152	0.6569	0.2119	0.0001
12C	-2.9851	-1.6506	0.4092	0.1229	0.0060
13C	-3.9414	0.0449	-0.8757	-0.0238	0.0123
14C	-4.1516	-2.4091	0.3062	0.0111	-0.0025
15C	-5.1305	-0.6658	-1.0170	-0.0895	0.0073
16H	-3.8176	1.0322	-1.2986	0.2460	-0.0010
17C	-5.2390	-1.9162	-0.4169	-0.3579	0.0071
18H	-4.2040	-3.3781	0.7927	0.1981	0.0001
19H	-5.9475	-0.2303	-1.5824	0.2101	0.0001
20H	-6.1501	-2.5012	-0.5050	0.2082	0.0000
21C	-0.1202	-0.9292	0.0379	-0.1247	-0.0409
22C	1.5922	-2.3826	0.0962	0.0434	0.0018
23C	0.5214	-2.9743	0.7004	-0.1628	0.0039
24H	2.6257	-2.6838	-0.0470	0.2867	-0.0002
25H	0.4209	-3.9414	1.1689	0.2158	-0.0004
26C	1.9200	-0.1173	-1.0520	-0.5129	-0.0001
27H	1.5039	-0.0482	-2.0645	0.2450	0.0004
28H	2.9622	-0.4639	-1.0962	0.2545	0.0000
29C	-1.8449	-2.1580	1.2765	-0.6380	-0.0026
30H	-1.8312	-1.5881	2.2150	0.2736	0.0004
31H	-2.0203	-3.2063	1.5253	0.2190	0.0000
32N	-2.8899	-0.4390	-0.1870	0.2508	-0.0117
33N	0.6680	1.8001	-0.0920	0.2259	0.0014
34N	1.1582	-1.1272	-0.3107	0.0232	0.0048
35N	-0.5316	-2.0573	0.6464	0.0146	0.0061
36Br	5.0127	-1.3160	-0.1129	-0.5597	0.0009
370	-2.1496	2.4771	-0.3301	-0.2876	1.2203
38O	-3.6325	2.1661	1.0774	-0.6805	0.7529

(CCC) transition state 71

(see Figure 3-27)

Energy: -1037.94556348 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	1.6930	3.2769	-0.0063	-0.6844		0.0176	-0.0750
2C	1.4853	1.8940	-0.0006	0.7495		-0.0324	0.3221

3C	0.2055	1.3713	0.0024	0.1754	0.4847	-0.2180
4C	-0.9009	2.2003	-0.0004	0.7652	-0.0365	0.3117
5C	-0.7511	3.5907	-0.0067	-0.6802	0.0225	-0.0722
6C	0.5574	4.1059	-0.0090	-0.7929	-0.0330	-0.0936
7H	2.6859	3.7200	-0.0090	0.1712	0.0035	0.0081
8Pd	-0.0523	-0.6332	0.0017	-0.8522	0.3558	0.0287
9H	-1.5992	4.2712	-0.0096	0.1715	0.0035	0.0090
10H	0.6956	5.1835	-0.0136	0.1768	0.0005	0.0162
11N	2.4701	0.8542	0.0011	-0.0884	0.0244	-0.4006
12C	2.0240	-0.4581	0.0002	0.0191	-0.0678	0.4103
13N	3.1643	-1.1904	0.0020	-0.1625	-0.0228	-0.4328
14C	4.2921	-0.3742	0.0058	-0.1111	0.0009	-0.0897
15C	3.8516	0.9142	0.0045	0.1024	-0.0122	0.0756
16H	5.2944	-0.7756	0.0079	0.2077	0.0008	0.0818
17H	4.4006	1.8432	0.0047	0.2069	-0.0001	0.0908
18N	-2.1159	1.4438	0.0014	-0.0773	0.0247	-0.3965
19C	-3.4372	1.8512	0.0021	0.0863	-0.0186	0.0754
20C	-4.1881	0.7153	0.0039	-0.0984	0.0056	-0.0830
21N	-3.3043	-0.3599	0.0045	-0.1742	-0.0206	-0.4193
22C	-2.0169	0.0603	0.0028	-0.0203	-0.0740	0.3999
23H	-3.7334	2.8888	0.0014	0.2060	-0.0001	0.0906
24H	-5.2593	0.5798	0.0050	0.2077	0.0007	0.0819
25H	-0.2676	-2.4892	-0.0075	0.2185	0.0863	0.0686
26C	3.2076	-2.6502	0.0069	-0.4122	-0.0082	0.3135
27H	3.7630	-3.0098	-0.8649	0.2239	0.0001	-0.0203
28H	3.6909	-3.0083	0.9215	0.2266	0.0001	-0.0203
29H	2.1850	-3.0246	-0.0339	0.2796	0.0009	0.0613
30C	-3.7190	-1.7614	0.0065	-0.4272	-0.0110	0.2922
31H	-2.8307	-2.3957	0.0092	0.2846	0.0017	0.0722
32H	-4.3168	-1.9698	0.8995	0.2215	0.0000	-0.0196
33H	-4.3140	-1.9733	-0.8875	0.2217	0.0000	-0.0190
340	-0.2338	-3.7732	-0.0293	-0.1143	0.5599	-0.0097
35O	-1.4298	-4.2721	-0.0002	-0.2265	0.7430	Т

(CCC) palladium(I)/hydroperoxy radical pair intermediate 72

(see Figure 3-27)

Energy: -1037.94943914 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-1.7377	-3.2640	-0.0078	-0.6873		0.0233	
2C	-1.5115	-1.8836	-0.0019	0.6939		-0.0218	
3C	-0.2259	-1.3808	0.0019	0.2782		0.5408	
4C	0.8703	-2.2204	-0.0016	0.7115		-0.0294	
5C	0.7033	-3.6091	-0.0074	-0.6760		0.0285	
6C	-0.6121	-4.1072	-0.0102	-0.7821		-0.0411	

7H	-2.7357	-3.6960	-0.0107	0.1695	0.0046
8Pd	0.0590	0.6298	0.0046	-0.8369	0.5048
9H	1.5418	-4.3019	-0.0101	0.1698	0.0046
10H	-0.7641	-5.1831	-0.0146	0.1753	0.0008
11N	-2.4846	-0.8309	0.0001	-0.0994	0.0330
12C	-2.0338	0.4818	0.0029	-0.0069	-0.0461
13N	-3.1782	1.2126	0.0044	-0.1624	-0.0309
14C	-4.3068	0.3978	0.0026	-0.1304	0.0132
15C	-3.8659	-0.8899	-0.0003	0.1057	-0.0194
16H	-5.3093	0.7991	0.0034	0.2065	0.0013
17H	-4.4147	-1.8190	-0.0023	0.2059	-0.0001
18N	2.0968	-1.4793	0.0007	-0.0923	0.0328
19C	3.4076	-1.9188	0.0003	0.0914	-0.0243
20C	4.1871	-0.8030	0.0030	-0.1167	0.0174
21N	3.3292	0.2930	0.0047	-0.1679	-0.0272
22C	2.0283	-0.0924	0.0033	-0.0605	-0.0551
23H	3.6773	-2.9636	-0.0018	0.2052	-0.0001
24H	5.2614	-0.6944	0.0037	0.2064	0.0012
25H	0.3260	2.8652	-0.0124	0.4125	0.1049
26C	-3.2292	2.6707	0.0077	-0.3805	-0.0289
27H	-3.7508	3.0309	-0.8847	0.2254	0.0002
28H	-3.7483	3.0271	0.9031	0.2255	0.0002
29H	-2.2076	3.0502	0.0070	0.2604	0.0018
30C	3.7841	1.6806	0.0088	-0.3982	-0.0272
31H	2.9136	2.3381	0.0022	0.2700	0.0014
32H	4.3790	1.8755	0.9070	0.2220	0.0002
33H	4.3927	1.8759	-0.8800	0.2215	0.0002
340	0.2900	3.9101	-0.0203	-0.2695	0.3038
35O	1.5397	4.3509	-0.0172	-0.1896	0.7326

(CCC) minimum energy crossing point structure 73

(see Figure 3-27)

Energy: -1037.97748962 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-0.9502	3.4449	0.1354	-0.6752		-0.0048	
2C	-1.0242	2.0531	0.0415	0.7893		0.0053	
3C	0.1260	1.2732	0.0159	0.3175		-0.0617	
4C	1.3745	1.8791	0.0839	0.8075		0.0064	
5C	1.5011	3.2668	0.1827	-0.6472		-0.0041	

6C	0.3238	4.0327	0.2065	-0.8233	0.0059
7H	-1.8375	4.0719	0.1560	0.1759	-0.0001
8Pd	-0.0150	-0.6951	-0.1362	-0.7921	0.0597
9H	2.4682	3.7581	0.2416	0.1751	-0.0001
10H	0.4011	5.1136	0.2840	0.1801	-0.0002
11N	-2.1976	1.2429	-0.0340	0.0043	-0.0028
12C	-2.0061	-0.1210	-0.1121	-0.0818	0.0161
13N	-3.2469	-0.6468	-0.1383	-0.1750	0.0008
14C	-4.2072	0.3589	-0.0874	-0.0377	-0.0001
15C	-3.5469	1.5498	-0.0185	0.0341	0.0008
16H	-5.2649	0.1419	-0.0996	0.2100	0.0001
17H	-3.9234	2.5592	0.0452	0.2079	0.0000
18N	2.4206	0.9061	0.0378	-0.0002	-0.0031
19C	3.8002	1.0131	0.0725	0.1217	0.0019
20C	4.2844	-0.2583	-0.0146	-0.1047	0.0011
21N	3.1871	-1.1113	-0.1013	-0.1634	0.0005
22C	2.0336	-0.4123	-0.0699	-0.1136	0.0218
23H	4.3176	1.9567	0.1530	0.2098	0.0000
24H	5.3004	-0.6239	-0.0238	0.2114	0.0001
25H	-0.6510	-2.7157	1.8022	0.4253	-0.0203
26C	-3.5264	-2.0839	-0.2498	-0.4020	0.0115
27H	-4.4506	-2.3039	0.2915	0.2010	0.0002
28H	-3.6454	-2.3557	-1.3035	0.2298	0.0001
29H	-2.6938	-2.6449	0.1891	0.3403	-0.0031
30C	3.2504	-2.5693	-0.2143	-0.4742	0.0099
31H	2.2316	-2.9455	-0.3300	0.2934	-0.0009
32H	3.8493	-2.8455	-1.0875	0.2221	-0.0002
33H	3.6974	-2.9962	0.6887	0.2299	-0.0001
340	-0.9382	-3.4819	1.2711	-0.6738	0.6966
35O	-0.1679	-2.7047	-0.3862	-0.2221	1.2628

(CCC) palladium hydroperoxide 74

(see Figure 3-27, Figure 4-4)

Energy: -1038.02826307 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-1.4188	3.3066	0.0670	-0.6956	-0.3425		
2C	-1.3228	1.9139	0.0257	0.8802	0.2971		
3C	-0.0888	1.2702	0.0155	0.2701	-0.4659		
4C	1.0739	2.0291	0.0489	0.7670	0.3708		

5C	1.0330	3.4254	0.0919	-0.6405	-0.3590	
6C	-0.2259	4.0471	0.1003	-0.8078	-0.0257	
7H	-2.3771	3.8197	0.0743	0.1721	0.1565	
8Pd	-0.0040	-0.7025	-0.0083	-0.4907	0.1759	
9H	1.9361	4.0296	0.1175	0.1709	0.1585	
10H	-0.2787	5.1316	0.1329	0.1765	0.1059	
11N	-2.3935	0.9723	-0.0113	-0.0147	0.1895	
12C	-2.0405	-0.3599	-0.0392	-0.1611	-0.2178	
13N	-3.2144	-1.0256	-0.0775	-0.1820	0.2475	
14C	-4.2877	-0.1386	-0.0738	-0.0767	-0.2340	
15C	-3.7695	1.1213	-0.0316	0.0766	-0.2468	
16H	-5.3127	-0.4770	-0.1016	0.2071	0.1773	
17H	-4.2595	2.0825	-0.0148	0.2061	0.1929	
18N	2.2321	1.2002	0.0202	-0.0313	0.0921	
19C	3.5769	1.5194	-0.0317	0.0825	-0.2174	
20C	4.2437	0.3352	-0.1062	-0.0887	-0.2744	
21N	3.2885	-0.6767	-0.0963	-0.1769	0.3449	
22C	2.0356	-0.1686	-0.0170	-0.0903	-0.1953	
23H	3.9435	2.5339	-0.0126	0.2053	0.1898	
24H	5.3011	0.1244	-0.1639	0.2066	0.1969	
25H	0.6504	-3.7945	1.3274	0.4535	0.3682	
26C	-3.3208	-2.4847	-0.1328	-0.5379	-0.0097	
27H	-3.9228	-2.8405	0.7095	0.2141	0.0326	
28H	-3.7956	-2.7847	-1.0724	0.2208	0.0361	
29H	-2.3092	-2.9008	-0.0752	0.3261	0.0353	
30C	3.6075	-2.0992	-0.2149	-0.4803	-0.3384	
31H	2.6953	-2.6763	-0.0459	0.3347	0.2432	
32H	4.0026	-2.3065	-1.2151	0.2234	0.1029	
33H	4.3602	-2.3659	0.5341	0.2088	0.0809	
340	0.9224	-3.5805	0.4192	-0.5317	-0.5442	
350	-0.2241	-2.7765	-0.0279	-0.3961	-0.3236	

(CCC) triplet palladium hydroperoxide 75

(see Figure 3-27)

Energy: -1037.97910993 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-0.9186	3.4539	0.1408	-0.6722		-0.0047	
2C	-1.0037	2.0631	0.0414	0.7844		0.0038	
3C	0.1398	1.2730	0.0178	0.3244		-0.0642	
4C	1.3928	1.8683	0.0918	0.8030		0.0048	
5C	1.5315	3.2547	0.1937	-0.6473		-0.0038	
6C	0.3605	4.0301	0.2166	-0.8186		0.0053	
7H	-1.8012	4.0878	0.1606	0.1761	-0.0002		
-----	---------	---------	---------	---------	---------		
8Pd	-0.0192	-0.6950	-0.1574	-0.8062	0.0679		
9H	2.5035	3.7374	0.2535	0.1752	-0.0001		
10H	0.4467	5.1101	0.2943	0.1801	-0.0001		
11N	-2.1830	1.2630	-0.0428	0.0089	-0.0034		
12C	-2.0012	-0.1010	-0.1330	-0.0660	0.0245		
13N	-3.2446	-0.6203	-0.1465	-0.1737	0.0004		
14C	-4.1983	0.3907	-0.0770	-0.0310	0.0007		
15C	-3.5306	1.5774	-0.0082	0.0320	0.0003		
16H	-5.2570	0.1794	-0.0761	0.2101	0.0001		
17H	-3.8994	2.5884	0.0685	0.2078	0.0000		
18N	2.4304	0.8864	0.0452	0.0023	-0.0034		
19C	3.8106	0.9810	0.0838	0.1217	0.0017		
20C	4.2840	-0.2941	-0.0079	-0.1038	0.0011		
21N	3.1792	-1.1369	-0.1013	-0.1653	-0.0005		
22C	2.0319	-0.4274	-0.0692	-0.1100	0.0270		
23H	4.3356	1.9197	0.1704	0.2099	0.0000		
24H	5.2963	-0.6694	-0.0142	0.2115	0.0001		
25H	-0.6530	-2.7400	1.8472	0.4257	-0.0219		
26C	-3.5332	-2.0569	-0.2452	-0.4096	0.0099		
27H	-4.4614	-2.2633	0.2940	0.2002	0.0003		
28H	-3.6493	-2.3401	-1.2961	0.2293	0.0000		
29H	-2.7090	-2.6190	0.2099	0.3428	-0.0026		
30C	3.2331	-2.5949	-0.2119	-0.4750	0.0093		
31H	2.2139	-2.9658	-0.3379	0.2918	-0.0011		
32H	3.8376	-2.8776	-1.0788	0.2226	-0.0002		
33H	3.6687	-3.0233	0.6958	0.2303	-0.0001		
340	-1.0495	-3.4934	1.3708	-0.6559	0.7133		
350	-0.1827	-2.6826	-0.4249	-0.2555	1.2357		

*** *** ***

(PCO) transition state 76

(see Figure 3-28)

Energy: -1358.90161470 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.5527	0.7739	-0.0608	-0.8047	0.1728	0.0846	
2H	-0.3132	2.3770	0.0194	0.2138	0.0384	-0.0028	
3C	3.0147	-3.3949	-0.3240	-0.5495	-0.0199	-0.0865	
4C	3.6824	-2.1758	-0.1620	0.3145	0.0507	-0.0142	
5C	2.9467	-0.9851	-0.0756	0.2587	-0.0450	-0.1243	

6C	1.5499	-1.0273	-0.1658	-0.9589	0.3106	0.0441	
7C	0.8776	-2.2456	-0.3470	0.3815	0.0139	-0.0737	
8C	1.6180	-3.4351	-0.4166	0.7520	0.0335	-0.0165	
9H	3.5861	-4.3178	-0.3858	0.1754	0.0005	0.0059	
10H	4.7703	-2.1618	-0.1010	0.1680	0.0034	-0.0200	
11H	1.1165	-4.3924	-0.5528	0.1674	0.0032	-0.0101	
12C	3.6294	0.3464	0.1540	-0.4349	-0.0046	0.4806	
13C	-0.6324	-2.2115	-0.5152	-1.2367	0.0178	-0.1063	
14H	3.9840	0.4311	1.1939	0.2048	-0.0008	-0.0622	
15H	4.4974	0.4783	-0.5089	0.1994	-0.0008	-0.0598	
16H	-0.8890	-2.3790	-1.5686	0.2488	-0.0009	-0.0254	
17H	-1.1385	-3.0056	0.0488	0.2518	-0.0013	-0.0265	
180	2.7039	1.4244	-0.0908	-0.2781	0.0015	-0.7158	
19P	-1.3008	-0.5063	-0.0445	0.9432	0.0837	0.9314	
20C	-2.0287	-0.7167	1.7119	-0.3740	-0.0666	-0.0633	
21C	-2.6206	-0.1367	-1.3769	-0.6160	-0.0068	-0.0743	
22C	-0.9288	-1.3778	2.5739	-0.6179	-0.0078	-0.0045	
23H	-0.6953	-2.3979	2.2524	0.2326	0.0000	0.0024	
24H	-0.0003	-0.7987	2.5596	0.2521	-0.0001	0.0165	
25H	-1.2823	-1.4312	3.6122	0.2162	0.0002	-0.0395	
26C	-3.2949	-1.5932	1.7559	-0.3776	-0.0028	0.0306	
27H	-3.5681	-1.7741	2.8042	0.2211	0.0005	-0.0487	
28H	-4.1511	-1.1070	1.2786	0.2257	0.0000	-0.0095	
29H	-3.1457	-2.5719	1.2856	0.2243	0.0000	-0.0022	
30C	-2.3358	0.6722	2.3119	-0.6446	0.0401	0.0160	
31H	-3.1306	1.1981	1.7765	0.2236	0.0000	0.0010	
32H	-2.6648	0.5459	3.3524	0.2130	0.0008	-0.0372	
33H	-1.4490	1.3136	2.3093	0.2560	-0.0005	0.0133	
34C	-3.4595	1.0958	-0.9825	-0.5060	0.0019	0.0156	
35H	-2.8333	1.9526	-0.7141	0.2611	0.0004	0.0237	
36H	-4.0799	1.3927	-1.8386	0.2176	-0.0001	-0.0352	
37H	-4.1378	0.8838	-0.1497	0.2194	0.0001	-0.0138	
38C	-1.8296	0.2022	-2.6628	-0.5701	0.0033	-0.0087	
39H	-1.1973	1.0848	-2.5242	0.2575	0.0004	0.0198	
40H	-1.1878	-0.6231	-2.9919	0.2218	0.0000	0.0004	
41H	-2.5406	0.4120	-3.4732	0.2164	-0.0002	-0.0393	
42C	-3.5619	-1.3242	-1.6730	-0.4233	0.0042	0.0219	
43H	-4.2280	-1.0459	-2.5008	0.2211	0.0012	-0.0502	
44H	-3.0202	-2.2231	-1.9850	0.2186	0.0000	0.0017	

45H	-4.1953	-1.5867	-0.8222	0.2187	0.0000	-0.0033	
46C	3.2176	2.7185	0.2360	-0.3679	0.0072	0.4512	
47H	4.0977	2.9379	-0.3836	0.1935	0.0021	-0.0496	
48H	2.4217	3.4364	0.0316	0.2584	-0.0010	0.0529	
49H	3.4950	2.7632	1.2984	0.1946	0.0003	-0.0440	
50O	0.1825	4.4786	0.0228	-0.1724	0.7547	-0.4407	
510	-0.7734	3.6139	0.0538	-0.1100	0.6117	0.0941	

(PCO) palladium(I)/hydroperoxy radical pair intermediate 77

(see Figure 3-28)

Energy: -1358.90955424 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.5812	0.7850	-0.0738	-0.7384		0.3305	
2H	-0.5357	2.7868	0.0331	0.4454		0.0618	
3C	2.9893	-3.4205	-0.3436	-0.5364		-0.0242	
4C	3.6867	-2.2191	-0.1740	0.2949		0.0631	
5C	2.9792	-1.0105	-0.0897	0.1487		-0.0176	
6C	1.5853	-1.0215	-0.1903	-0.7221		0.3795	
7C	0.8811	-2.2182	-0.3812	0.2904		-0.0001	
8C	1.5920	-3.4257	-0.4475	0.7462		0.0300	
9H	3.5375	-4.3576	-0.4027	0.1737		0.0006	
10H	4.7744	-2.2329	-0.1048	0.1660		0.0048	
11H	1.0683	-4.3705	-0.5896	0.1655		0.0042	
12C	3.6943	0.3039	0.1490	-0.4013		-0.0222	
13C	-0.6271	-2.1501	-0.5706	-1.2721		-0.0003	
14H	4.0574	0.3674	1.1878	0.2023		-0.0011	
15H	4.5637	0.4158	-0.5165	0.1969		-0.0011	
16H	-0.8589	-2.2629	-1.6369	0.2481		-0.0010	
17H	-1.1498	-2.9691	-0.0595	0.2499		-0.0017	

18O	2.8020	1.4117	-0.0799	-0.2754	0.0008
19P	-1.3185	-0.4660	-0.0468	0.7430	0.2135
20C	-2.0126	-0.7540	1.7176	-0.3716	-0.0972
21C	-2.7028	-0.1488	-1.3382	-0.6536	0.0061
22C	-0.8885	-1.4265	2.5377	-0.6049	-0.0043
23H	-0.6536	-2.4350	2.1826	0.2348	0.0000
24H	0.0347	-0.8391	2.5167	0.2515	-0.0001
25H	-1.2171	-1.5112	3.5825	0.2140	0.0004
26C	-3.2657	-1.6484	1.7635	-0.4033	0.0006
27H	-3.5151	-1.8629	2.8118	0.2194	0.0012
28H	-4.1389	-1.1630	1.3171	0.2241	0.0000
29H	-3.1112	-2.6108	1.2629	0.2251	0.0000
30C	-2.3252	0.6102	2.3688	-0.6209	0.0446
31H	-3.1185	1.1566	1.8510	0.2235	-0.0001
32H	-2.6566	0.4478	3.4037	0.2139	0.0011
33H	-1.4362	1.2489	2.3953	0.2435	-0.0003
34C	-3.6068	1.0167	-0.8885	-0.4475	-0.0170
35H	-3.0304	1.9132	-0.6355	0.2424	0.0004
36H	-4.2841	1.2832	-1.7109	0.2180	-0.0002
37H	-4.2303	0.7519	-0.0285	0.2215	0.0002
38C	-1.9732	0.2754	-2.6338	-0.5220	-0.0022
39H	-1.3753	1.1800	-2.4815	0.2465	0.0006
40H	-1.3050	-0.5058	-3.0139	0.2228	0.0001
41H	-2.7175	0.4827	-3.4146	0.2157	-0.0004
42C	-3.5794	-1.3818	-1.6474	-0.4289	0.0047
43H	-4.2928	-1.1183	-2.4405	0.2186	0.0025
44H	-2.9935	-2.2316	-2.0119	0.2200	-0.0001
45H	-4.1614	-1.7157	-0.7851	0.2187	0.0000
46C	3.3751	2.6788	0.2404	-0.3595	0.0073
47H	4.2590	2.8649	-0.3857	0.1934	0.0021
48H	2.6120	3.4325	0.0411	0.2427	-0.0006
49H	3.6643	2.7161	1.3004	0.1950	0.0003
50O	0.1515	4.5528	0.0051	-0.1538	0.7284
510	-0.8981	3.7429	0.0744	-0.2645	0.3025

(PCO) minimum energy crossing point structure 78

Energy: -1358.92448548 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.6887	-0.8709	0.2371	-0.6012		1.0143	
2H	1.7112	-3.5302	-1.7072	0.4628		-0.0004	
3C	2.2157	3.5924	-1.0354	-0.5159		0.0092	

4C	3.1470	2.6244	-0.6473	0.0160	0.0279
5C	2.7314	1.3086	-0.3997	0.5130	0.0395
6C	1.3740	0.9618	-0.5185	-0.3128	0.2297
7C	0.4370	1.9405	-0.9009	0.3607	-0.0518
8C	0.8660	3.2525	-1.1606	0.4359	0.0094
9H	2.5395	4.6133	-1.2239	0.1736	-0.0009
10H	4.1953	2.8975	-0.5311	0.1670	0.0049
11H	0.1454	4.0160	-1.4535	0.1639	0.0043
12C	3.7524	0.2527	-0.0390	-0.5395	0.0456
13C	-1.0351	1.5813	-1.0636	-1.7438	-0.0277
14H	4.0151	-0.3428	-0.9302	0.1982	0.0015
15H	4.6789	0.7167	0.3354	0.1780	-0.0003
16H	-1.6778	2.4528	-0.8864	0.2457	0.0007
17H	-1.2158	1.2794	-2.1029	0.2543	-0.0004
180	3.2209	-0.6273	0.9546	-0.2385	-0.0144
19P	-1.5523	0.1203	-0.0010	1.3719	0.2144
20C	-2.9150	-0.7231	-1.0523	-0.6373	0.0285
21C	-2.2319	0.9005	1.6148	-0.5055	-0.0026
22C	-2.1716	-1.4219	-2.2158	-0.5426	-0.0189
23H	-1.6565	-0.7084	-2.8699	0.2118	0.0000
24H	-1.4318	-2.1428	-1.8556	0.2775	-0.0001
25H	-2.9067	-1.9560	-2.8335	0.2114	-0.0005
26C	-3.9644	0.2403	-1.6445	-0.4569	-0.0001
27H	-4.6488	-0.3308	-2.2873	0.2169	0.0043
28H	-4.5700	0.7309	-0.8783	0.2142	-0.0002
29H	-3.5093	1.0175	-2.2683	0.2232	-0.0002
30C	-3.6245	-1.8067	-0.2159	-0.4688	-0.0082
31H	-4.2590	-1.3764	0.5656	0.2183	0.0001
32H	-4.2747	-2.3995	-0.8739	0.2168	-0.0003
33H	-2.9112	-2.4944	0.2522	0.2477	0.0001
34C	-2.3746	-0.2135	2.6756	-0.6205	0.0160
35H	-1.4268	-0.7389	2.8367	0.2354	0.0002
36H	-2.6783	0.2347	3.6318	0.2143	0.0001
37H	-3.1304	-0.9564	2.4053	0.2184	0.0000
38C	-1.1610	1.8997	2.1095	-0.6025	0.0103
39H	-0.1744	1.4345	2.2082	0.2473	-0.0006
40H	-1.0571	2.7632	1.4453	0.2396	0.0001
41H	-1.4571	2.2746	3.0987	0.2147	0.0003
42C	-3.5715	1.6458	1.4701	-0.4203	0.0104

43H	-3.8064	2.1511	2.4176	0.2182	0.0046	
44H	-3.5400	2.4151	0.6896	0.2247	-0.0002	
45H	-4.4013	0.9663	1.2519	0.2225	-0.0002	
46C	4.0686	-1.7327	1.2342	-0.3420	-0.0050	
47H	5.0345	-1.3941	1.6390	0.1793	0.0011	
48H	3.5555	-2.3438	1.9801	0.2089	0.0006	
49H	4.2391	-2.3380	0.3327	0.2056	0.0003	
50O	0.4412	-2.7845	-0.5317	-0.2086	0.3673	
510	1.7088	-3.3968	-0.7406	-0.4512	0.0873	

(PCO) palladium hydroperoxide 79

(see Figure 3-28, Figure 4-4)

Energy: -1358.98236696 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.5532	-0.7804	-0.0731	0.3174	0.3174		
2H	0.1389	-3.8247	1.2833	0.3765	0.3765		
3C	-2.8521	3.4613	0.0248	-0.0102	-0.0102		
4C	-3.5541	2.2529	0.0353	-0.3143	-0.3143		
5C	-2.8621	1.0349	0.0097	0.3000	0.3000		
6C	-1.4544	1.0167	-0.0300	-0.6104	-0.6104		
7C	-0.7550	2.2418	-0.0532	0.4171	0.4171		
8C	-1.4551	3.4561	-0.0211	-0.3676	-0.3676		
9H	-3.3929	4.4042	0.0462	0.0999	0.0999		
10H	-4.6433	2.2631	0.0618	0.1326	0.1326		
11H	-0.9132	4.4007	-0.0367	0.1302	0.1302		
12C	-3.6312	-0.2661	0.0328	-0.0863	-0.0863		
13C	0.7602	2.2130	-0.1353	-0.1529	-0.1529		
14H	-4.1483	-0.4063	0.9963	0.0785	0.0785		
15H	-4.3946	-0.2899	-0.7607	0.0743	0.0743		

16H	1.1079	2.6465	-1.0811	0.0500	0.0500	
17H	1.2224	2.8142	0.6571	0.0600	0.0600	
18O	-2.7318	-1.3627	-0.1635	-0.0178	-0.0178	
19P	1.3459	0.4326	-0.0280	0.0172	0.0172	
20C	2.2585	0.2966	1.6433	0.5259	0.5259	
21C	2.4398	0.1495	-1.5633	0.5886	0.5886	
22C	1.2059	0.6464	2.7221	-0.0975	-0.0975	
23H	0.8143	1.6644	2.6219	0.0051	0.0051	
24H	0.3575	-0.0445	2.6920	-0.0181	-0.0181	
25H	1.6779	0.5689	3.7105	0.0188	0.0188	
26C	3.4581	1.2544	1.7810	-0.3305	-0.3305	
27H	3.8434	1.1951	2.8079	0.0669	0.0669	
28H	4.2798	0.9859	1.1118	0.0646	0.0646	
29H	3.1920	2.3015	1.5954	0.0534	0.0534	
30C	2.7209	-1.1589	1.8714	-0.5013	-0.5013	
31H	3.6145	-1.4020	1.2896	0.1127	0.1127	
32H	2.9747	-1.2904	2.9318	0.1018	0.1018	
33H	1.9392	-1.8767	1.6022	0.1326	0.1326	
34C	3.0252	-1.2792	-1.5384	-0.1832	-0.1832	
35H	2.2643	-2.0358	-1.3174	0.0176	0.0176	
36H	3.4541	-1.5004	-2.5252	0.0253	0.0253	
37H	3.8333	-1.3756	-0.8067	0.0151	0.0151	
38C	1.4887	0.2617	-2.7790	-0.1259	-0.1259	
39H	0.6959	-0.4912	-2.7362	-0.0308	-0.0308	
40H	1.0190	1.2481	-2.8634	0.0092	0.0092	
41H	2.0712	0.0952	-3.6948	0.0301	0.0301	
42C	3.5765	1.1805	-1.7200	-0.4780	-0.4780	
43H	4.0670	1.0187	-2.6893	0.0874	0.0874	
44H	3.2175	2.2161	-1.7081	0.0915	0.0915	
45H	4.3452	1.0767	-0.9496	0.0985	0.0985	
46C	-3.3597	-2.6450	-0.1889	-0.1578	-0.1578	
47H	-4.0537	-2.7015	-1.0390	0.0534	0.0534	
48H	-2.5628	-3.3803	-0.2851	0.1643	0.1643	
49H	-3.9091	-2.8161	0.7475	0.0650	0.0650	
50O	0.3495	-2.6578	-0.2185	-0.3838	-0.3838	
510	-0.4820	-3.5740	0.5786	-0.5148	-0.5148	

(PCO) triplet palladium hydroperoxide 80

(see Figure 3-28)

Energy: -1358.92488357 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.6898	-0.8705	0.1825	-0.6232		1.0151	
2H	1.6665	-3.6790	-1.6056	0.4638		-0.0003	

3C	2.2303	3.6047	-1.0093	-0.5091	0.0158	
4C	3.1531	2.6282	-0.6217	0.0254	0.0208	
5C	2.7265	1.3152	-0.3799	0.4653	0.0483	
6C	1.3664	0.9804	-0.5048	-0.2726	0.2314	
7C	0.4381	1.9676	-0.8856	0.3651	-0.0596	
8C	0.8779	3.2763	-1.1397	0.4475	0.0054	
9H	2.5624	4.6232	-1.1956	0.1737	-0.0011	
10H	4.2031	2.8933	-0.5028	0.1667	0.0049	
11H	0.1641	4.0454	-1.4335	0.1640	0.0043	
12C	3.7343	0.2466	-0.0188	-0.5333	0.0507	
13C	-1.0345	1.6143	-1.0465	-1.7302	-0.0354	
14H	4.0223	-0.3263	-0.9171	0.1990	0.0018	
15H	4.6499	0.6945	0.3982	0.1786	-0.0002	
16H	-1.6767	2.4816	-0.8480	0.2456	0.0007	
17H	-1.2243	1.3281	-2.0888	0.2543	-0.0002	
180	3.1701	-0.6576	0.9345	-0.2361	-0.0148	
19P	-1.5363	0.1368	-0.0008	1.3476	0.2137	
20C	-2.9015	-0.7048	-1.0499	-0.6378	0.0282	
21C	-2.2096	0.8953	1.6283	-0.5017	-0.0008	
22C	-2.1591	-1.4009	-2.2156	-0.5421	-0.0188	
23H	-1.6358	-0.6871	-2.8627	0.2126	0.0000	
24H	-1.4261	-2.1289	-1.8555	0.2761	-0.0001	
25H	-2.8951	-1.9269	-2.8392	0.2109	-0.0006	
26C	-3.9521	0.2600	-1.6381	-0.4503	-0.0004	
27H	-4.6382	-0.3091	-2.2814	0.2163	0.0043	
28H	-4.5567	0.7504	-0.8712	0.2142	-0.0002	
29H	-3.4979	1.0374	-2.2619	0.2224	-0.0002	
30C	-3.6041	-1.7915	-0.2120	-0.4784	-0.0085	
31H	-4.2361	-1.3648	0.5735	0.2179	0.0000	
32H	-4.2550	-2.3871	-0.8663	0.2163	-0.0003	
33H	-2.8844	-2.4756	0.2513	0.2486	0.0001	
34C	-2.3485	-0.2302	2.6768	-0.6216	0.0151	
35H	-1.3988	-0.7548	2.8280	0.2360	0.0002	
36H	-2.6491	0.2071	3.6389	0.2139	0.0001	
37H	-3.1038	-0.9717	2.4017	0.2178	0.0000	
38C	-1.1385	1.8882	2.1346	-0.6042	0.0085	
39H	-0.1539	1.4191	2.2317	0.2477	-0.0005	
40H	-1.0305	2.7584	1.4797	0.2392	0.0001	
41H	-1.4376	2.2535	3.1265	0.2143	0.0003	

42C	-3.5496	1.6414	1.4884	-0.4222	0.0099	
43H	-3.7849	2.1424	2.4382	0.2177	0.0048	
44H	-3.5179	2.4146	0.7121	0.2242	-0.0002	
45H	-4.3795	0.9638	1.2663	0.2228	-0.0002	
46C	4.0181	-1.7603	1.2259	-0.3398	-0.0043	
47H	4.9715	-1.4152	1.6542	0.1791	0.0012	
48H	3.4935	-2.3802	1.9558	0.2110	0.0006	
49H	4.2134	-2.3566	0.3239	0.2049	0.0003	
50O	0.4005	-2.8114	-0.5084	-0.2035	0.3722	
510	1.6630	-3.4616	-0.6545	-0.4545	0.0878	

*** ***

Propene (81)

(see Figure 4-5, Figure 4-6, Figure 4-7)

81

Energy: -117.91392362 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-1.2858	0.2207	-0.0001	-0.4602			
2H	-1.3097	1.3095	0.0000	0.1759			
ЗH	-2.2466	-0.2880	0.0007	0.1803			
4C	-0.1327	-0.4558	-0.0003	0.1923			
5H	-0.1642	-1.5469	0.0004	0.1753			
6C	1.2370	0.1633	0.0000	-0.8820			
7H	1.8123	-0.1504	0.8819	0.2084			

8H	1.8136	-0.1515	-0.8806	0.2084		
9H	1.1835	1.2578	-0.0005	0.2016		

(PCP) transition state 82

(see Figure 4-5, Figure 4-6)

Energy: -1389.77117467 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.3139	0.0163	-0.0103	-0.9258			0.0038
2C	-4.5595	-0.1251	-0.0037	-0.3889			-0.0720
3C	-3.8282	-1.2951	-0.2123	0.0782			-0.0217
4C	-2.4259	-1.2678	-0.2228	-0.8109			-0.1032
5C	-1.7349	-0.0517	0.0006	2.0288			0.0322
6C	-2.4881	1.1296	0.2233	-0.8382			-0.0809
7C	-3.8897	1.0811	0.2075	0.0374			-0.0302
8H	-5.6462	-0.1529	-0.0056	0.1773			0.0114
9H	-4.3514	-2.2352	-0.3779	0.1709			-0.0013
10H	-4.4613	1.9928	0.3719	0.1711			-0.0020
11C	-1.6519	-2.5411	-0.5090	-0.6416			-0.0676
12C	-1.7883	2.4466	0.5172	-0.6754			-0.0704
13H	-2.1074	-3.4221	-0.0417	0.2392			-0.0180
14H	-1.6211	-2.7359	-1.5907	0.2502			-0.0207
15H	-2.3133	3.3016	0.0757	0.2369			-0.0219
16H	-1.7550	2.6225	1.6021	0.2517			-0.0184

17P	0.1121	-2.2743	0.0384	0.4155	0.9423
18P	-0.0222	2.3037	-0.0546	0.4819	0.8740
19H	0.6958	3.2419	0.7094	0.0541	-0.1583
20H	-0.0071	2.9361	-1.3130	0.0422	-0.1500
21H	0.1807	-2.9236	1.2890	0.0423	-0.1574
22H	0.8421	-3.1988	-0.7372	0.0369	-0.1859
230	2.4732	0.4486	-0.1282	-0.0043	0.0768
240	2.6860	2.0160	-0.6683	-0.6978	-0.8537
25H	2.9576	1.7851	-1.5732	0.4500	0.1741
26H	2.5783	-1.7532	1.8579	0.1841	0.0292
27C	3.0560	-1.5787	0.8996	-0.4152	-0.4799
28H	3.1664	-2.4207	0.2215	0.1713	0.0219
29C	3.7026	-0.3536	0.6238	-0.1091	0.3619
30H	3.8656	0.3000	1.4834	0.1798	-0.0483
31C	4.8525	-0.3242	-0.3653	-0.8127	0.0751
32H	5.0426	0.6945	-0.7200	0.2137	-0.0017
33H	5.7684	-0.6928	0.1137	0.2053	-0.0241
34H	4.6367	-0.9651	-1.2289	0.2009	-0.0153

(PCP) palladium hydroxide 83

(see Figure 4-5, Figure 4-6, Figure 4-8, Figure 4-9, Figure 4-10, Figure 4-11)

Energy: -1196.75917942 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-1.1560	0.0391	-0.0027	-0.3433			
2C	3.7528	-0.0995	-0.0109	-0.0097			
3C	3.0154	-1.2753	0.1409	-0.4063			
4C	1.6140	-1.2402	0.1611	-0.5658			
5C	0.9188	-0.0142	0.0027	1.6062			
6C	1.6859	1.1655	-0.1618	-0.2990			
7C	3.0870	1.1189	-0.1556	-0.3558			
8H	4.8393	-0.1328	-0.0164	0.1749			
9H	3.5348	-2.2253	0.2547	0.1721			
10H	3.6613	2.0361	-0.2749	0.1718			
11C	0.8334	-2.5251	0.3841	-0.7413			
12C	0.9765	2.4908	-0.3764	-0.7704			
13H	1.3154	-3.3959	-0.0742	0.2374			
14H	0.7394	-2.7377	1.4584	0.2528			
15H	1.5044	3.3343	0.0824	0.2379			
16H	0.8826	2.7127	-1.4489	0.2529			
17P	-0.8894	-2.2414	-0.2499	0.3802			
18P	-0.7527	2.2986	0.2748	0.2884			
19H	-1.4725	3.3718	-0.3012	0.0308			
20H	-0.6750	2.7870	1.5985	0.0417			

21H	-0.8740	-2.7738	-1.5578	0.0389	
22H	-1.6968	-3.2107	0.3827	0.0419	
230	-3.2051	-0.1140	-0.0292	-0.8572	
24H	-3.6119	0.7655	-0.0232	0.4209	

Epoxide 84

(see Figure 4-5, Figure 4-6)

Energy: -193.11813086 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
10	0.8298	-0.7907	-0.2422	-0.3428			
2C	-0.1537	-0.0354	0.4882	0.1629			
3C	1.0453	0.6184	-0.0593	-0.2394			
4H	-0.1542	-0.2596	1.5574	0.1829			
5H	1.8777	0.8763	0.5957	0.1880			
6H	0.9614	1.2170	-0.9671	0.1853			
7C	-1.5136	0.0995	-0.1489	-0.7646			
8H	-2.0803	-0.8343	-0.0509	0.2134			
9H	-2.0889	0.8975	0.3376	0.2067			
10H	-1.4224	0.3340	-1.2149	0.2076			

Methoxyethene (85)

(see Figure 4-7, Figure 4-8)

85

Energy: -193.12441604 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-1.3875	0.4763	-0.0001	-0.4206			
2H	-2.4299	0.1531	-0.0011	0.2049			
ЗH	-1.1861	1.0758	0.8973	0.1991			
4H	-1.1846	1.0763	-0.8968	0.1991			
50	-0.6061	-0.7130	0.0002	-0.3217			
6C	0.7443	-0.5664	-0.0001	0.0367			
7H	1.2189	-1.5438	-0.0003	0.1825			
8C	1.4562	0.5696	0.0000	-0.4488			
9H	1.0137	1.5595	0.0004	0.1802			
10H	2.5387	0.5061	-0.0002	0.1887			

*** *** ***

Styrene (86)

(see Figure 4-7, Figure 4-9)

Energy: -309.66127429 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-2.2687	0.2620	0.0001	-0.2061			
2C	-1.3644	1.3310	0.0000	-0.2903			
3C	0.0086	1.0934	-0.0002	-0.4898			
4C	0.5158	-0.2204	-0.0001	0.7822			
5C	-0.4066	-1.2825	0.0000	-0.2295			
6C	-1.7830	-1.0475	0.0001	-0.2201			
7H	-3.3392	0.4505	0.0001	0.1791			
8H	-1.7324	2.3541	-0.0002	0.1793			
9H	0.6923	1.9377	-0.0005	0.1691			
10H	-0.0360	-2.3057	0.0000	0.1768			
11H	-2.4740	-1.8868	0.0003	0.1801			
12C	1.9567	-0.5297	-0.0003	-0.2869			
13H	2.1889	-1.5953	-0.0006	0.1740			
14C	2.9823	0.3356	0.0003	-0.4868			
15H	2.8469	1.4143	0.0010	0.1805			
16H	4.0087	-0.0196	0.0002	0.1886			

*** *** ***

Methylacrylate (87)

(see Figure 4-7, Figure 4-10)

Energy: -306.48183062 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	2.2046	-0.7731	0.0479	-0.4605			
2H	1.6648	-1.6824	-0.1156	0.2256			
ЗH	3.2666	-0.7991	0.1758	0.1998			
4C	1.5478	0.4115	0.0935	0.0269			
5H	2.0876	1.3208	0.2570	0.2132			
6C	0.0193	0.4490	-0.0907	0.3420			
70	-0.5970	1.5453	-0.0495	-0.4516			
80	-0.7022	-0.7662	-0.3091	-0.3596			
9C	-2.0291	-0.6329	0.2068	-0.3694			
10H	-2.5869	0.0380	-0.4125	0.2258			
11H	-2.5064	-1.5906	0.2155	0.2025			
12H	-1.9871	-0.2464	1.2037	0.2054			

*** *** ***

Acrylonitrile (88)

(see Figure 4-7, Figure 4-11)

Energy: -170.84030224 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	0.7838	0.0884	0.0000	0.0938			
2N	1.9051	-0.2240	0.0000	-0.4902			
3C	-0.5863	0.5056	0.0000	0.1504			
4C	-1.6121	-0.3578	0.0000	-0.4051			
5H	-0.7538	1.5804	0.0000	0.2272			
6H	-2.6361	0.0032	0.0000	0.2072			
7H	-1.4579	-1.4327	0.0000	0.2167			

*** *** ***

(PCP) transition state 89

(see Figure 4-8)

Energy: -1646.98063737 hartrees

1Pd	-0.1017	0.0403	-0.1230	-0.9358	-0.0177
2C	4.7411	-0.2236	0.2862	-0.3667	-0.0705
3C	3.9731	-1.3879	0.3100	0.1674	-0.0191
4C	2.5759	-1.3263	0.1996	-0.8166	-0.1105
5C	1.9302	-0.0749	0.0425	2.2200	0.0505
6C	2.7209	1.1024	0.0049	-1.1280	-0.0813
7C	4.1143	1.0141	0.1384	0.0451	-0.0316
8H	5.8225	-0.2805	0.3808	0.1782	0.0119
9H	4.4620	-2.3535	0.4249	0.1717	-0.0007
10H	4.7140	1.9222	0.1153	0.1720	-0.0019
11C	1.7674	-2.6069	0.2852	-0.6744	-0.0777
12C	2.0860	2.4638	-0.2252	-0.6402	-0.0593
13H	2.2224	-3.4236	-0.2880	0.2428	-0.0174
14H	1.7058	-2.9510	1.3274	0.2508	-0.0210
15H	2.5565	3.2441	0.3840	0.2407	-0.0202
16H	2.2150	2.7656	-1.2742	0.2528	-0.0185
17P	0.0204	-2.2434	-0.2723	0.4107	0.9968
18P	0.2535	2.3328	0.0731	0.4694	0.8457
19H	-0.3242	3.3128	-0.7541	0.0643	-0.1487
20H	0.0493	2.9199	1.3376	0.0444	-0.1497
21H	-0.0674	-2.8403	-1.5473	0.0438	-0.1601
22H	-0.7422	-3.1701	0.4664	0.0354	-0.1877
230	-2.2703	0.5751	-0.2649	0.0664	0.0776
240	-2.5816	2.2147	0.0098	-0.7507	-0.8927
25H	-3.3782	2.0627	0.5519	0.4828	0.2122
26H	-5.1517	-0.2731	2.1465	0.1917	-0.0182
27C	-4.3978	-0.6990	1.4793	-0.3814	0.4225
28H	-4.6227	-1.7631	1.3256	0.1876	-0.0318
29H	-3.4058	-0.5949	1.9376	0.2049	-0.0299
30O	-4.4910	0.0311	0.2631	-0.3528	-0.7337
31C	-3.4834	-0.1923	-0.7010	-0.2983	0.7906
32H	-3.8342	0.3128	-1.6033	0.1846	-0.0409
33C	-2.9034	-1.4984	-0.8789	-0.3583	-0.5357
34H	-2.9957	-2.2537	-0.1090	0.1812	0.0527
35H	-2.6581	-1.8214	-1.8841	0.1946	0.0157

Epoxide 90

(see Figure 4-8)

Energy: -268.32762264 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	1.9405	0.2053	-0.0437	-0.3789			
2H	2.7614	-0.3297	-0.5249	0.2035			
ЗH	1.7828	1.1689	-0.5427	0.2124			
4H	2.1863	0.3743	1.0148	0.1840			
50	0.7856	-0.6271	-0.1715	-0.3472			
6C	-0.3253	-0.1230	0.4661	0.1512			
7H	-0.1873	0.0572	1.5360	0.1780			
8C	-1.6390	-0.4203	-0.0951	-0.2495			
9H	-2.5139	-0.4934	0.5501	0.1921			
10H	-1.6845	-0.9698	-1.0338	0.2072			
110	-1.0608	0.9047	-0.1989	-0.3530			

*** *** ***

(PCP) transition state 91

(see Figure 4-9)

Energy: -1581.52328823 hartrees

Center						Mulliken	
number				Mulliken	chelpg	atomic	APT
and				atomic	atomic	spin	atomic
element	x-coord.	y-coord.	z-coord.	charge	charge	density	charge

1Pd	-0.6826	-0.5763	-0.1102	-0.9375	0.0696
2C	-4.4804	2.4890	0.0603	-0.4568	-0.0703
3C	-4.6911	1.1092	0.0634	0.1009	-0.0450
4C	-3.6066	0.2223	0.0002	-0.6548	-0.0715
5C	-2.2817	0.7193	-0.0450	1.5739	-0.0454
6C	-2.0803	2.1208	-0.0363	-0.4849	-0.1504
7C	-3.1793	2.9910	0.0054	0.1605	-0.0041
8H	-5.3265	3.1700	0.1011	0.1800	0.0117
9H	-5.7062	0.7188	0.1063	0.1725	-0.0103
10H	-3.0159	4.0670	0.0035	0.1740	0.0000
11C	-3.8582	-1.2739	-0.0500	-0.6970	-0.0317
12C	-0.6710	2.6805	-0.0428	-0.7591	-0.0272
13H	-4.7450	-1.5694	0.5213	0.2389	-0.0203
14H	-4.0172	-1.6035	-1.0863	0.2553	-0.0145
15H	-0.5884	3.6093	-0.6183	0.2420	-0.0116
16H	-0.3404	2.9080	0.9803	0.2574	-0.0032
17P	-2.3120	-2.1224	0.5375	0.4475	0.8804
18P	0.4607	1.3503	-0.6764	0.4082	0.7141
19H	1.7581	1.7212	-0.2608	0.0681	-0.0411
20H	0.5571	1.6153	-2.0607	0.0343	-0.1417
21H	-2.5537	-2.3327	1.9142	0.0378	-0.2108
22H	-2.4229	-3.4521	0.0774	0.0499	-0.2151
230	0.9850	-2.0133	-0.3466	-0.0099	0.1739
240	0.5248	-3.3302	-1.0025	-0.5930	-0.8060
25H	1.0574	-3.2902	-1.8167	0.4570	0.1677
26H	6.3608	2.2347	-0.7897	0.1644	0.0099
27C	5.5690	1.6056	-0.3920	-0.2601	-0.2907
28C	5.2363	0.3923	-1.0137	-0.3419	0.1270
29C	4.8541	1.9871	0.7490	-0.2308	0.1861
30C	4.2217	-0.4186	-0.5130	-0.6305	-0.2135
31H	5.7732	0.0786	-1.9071	0.1640	-0.0002
32C	3.8393	1.1763	1.2584	-0.1568	-0.3089
33H	5.0925	2.9222	1.2524	0.1647	0.0009
34C	3.4934	-0.0669	0.6583	0.6204	0.5315
35H	3.9797	-1.3413	-1.0344	0.1562	0.0272
36H	3.3145	1.4813	2.1628	0.1608	0.0167
37C	2.4545	-0.8802	1.2329	0.2381	-0.6013
38H	1.9410	-0.4779	2.1041	0.1585	0.0125
39C	2.1026	-2.1939	0.8107	-0.8515	0.4593

40H	2.8604	-2.7704	0.2757	0.1878		-0.0221
41H	1.5770	-2.8066	1.5449	0.1914		-0.0315

Epoxide 92

(see Figure 4-9)

|--|

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	2.6153	0.1873	0.1572	-0.1638			
2C	2.0685	-1.0954	0.0492	-0.1254			
3C	0.6960	-1.2545	-0.1460	0.0292			
4C	-0.1529	-0.1391	-0.2264	0.3530			
5C	0.4067	1.1421	-0.1255	-0.5499			

6C	1.7815	1.3047	0.0667	-0.2453		
7H	3.6846	0.3145	0.3056	0.1805		
8H	2.7108	-1.9699	0.1155	0.1824		
9H	0.2732	-2.2535	-0.2300	0.1829		
10H	-0.2286	2.0198	-0.2049	0.1707		
11H	2.2008	2.3049	0.1405	0.1809		
12C	-1.6180	-0.3683	-0.4238	-0.2036		
13C	-2.6650	0.6218	-0.1266	-0.2556		
14H	-1.8585	-1.1313	-1.1667	0.1955		
15H	-2.4019	1.5950	0.2857	0.1870		
16H	-3.6036	0.5906	-0.6811	0.1904		
170	-2.4462	-0.4827	0.7609	-0.3090		

(PCP) transition state 93

(see Figure 4-10)

Energy: -1578.35690345 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.2671	-0.3473	0.0275	-0.9451			0.1932
2C	4.7906	1.4304	0.0148	-0.4635			-0.0597
3C	3.7011	2.2987	-0.0662	0.1128			-0.0264
4C	2.3905	1.8004	-0.0784	-0.3015			-0.0856
5C	2.1615	0.4057	0.0084	1.5931			0.1051
6C	3.2735	-0.4661	0.1078	-0.6312			-0.0777
7C	4.5754	0.0539	0.0982	0.0339			-0.0275
8H	5.8033	1.8250	0.0156	0.1815			0.0177
9H	3.8690	3.3722	-0.1257	0.1753			0.0079
10H	5.4252	-0.6223	0.1661	0.1749			0.0065
11C	1.2157	2.7520	-0.1998	-0.7598			-0.0329
12C	3.0478	-1.9590	0.2515	-0.7630			-0.0407
13H	1.4014	3.7148	0.2883	0.2415			-0.0087
14H	0.9908	2.9625	-1.2545	0.2605			-0.0070
15H	3.8580	-2.5523	-0.1858	0.2361			-0.0125

1	1			1	1 1	1 1
16H	2.9710	-2.2382	1.3112	0.2651		0.0014
17P	-0.2654	1.8711	0.4887	0.4703		0.6778
18P	1.3891	-2.3217	-0.4992	0.4519		0.7517
19H	0.9928	-3.5886	-0.0378	0.0804		-0.1072
20H	1.7039	-2.6091	-1.8478	0.0276		-0.1776
21H	-0.3160	2.2734	1.8412	0.0392		-0.1448
22H	-1.4084	2.5245	-0.0174	0.0890		-0.0748
230	-1.7450	-1.1881	0.2382	-0.1367		0.1959
240	-1.0405	-2.6794	1.2269	-0.7872		-1.0077
25H	-1.6572	-2.5345	1.9648	0.4528		0.1561
26H	-6.2058	1.4708	0.1235	0.2109		-0.0360
27C	-5.6296	0.8862	0.8470	-0.3356		0.5566
280	-4.6837	0.0425	0.1818	-0.3119		-0.8937
29H	-6.2838	0.2095	1.3996	0.1939		-0.0163
30H	-5.1232	1.5720	1.5340	0.2043		-0.0400
31C	-3.7504	0.6802	-0.5845	0.2689		1.4192
32C	-2.8027	-0.2104	-1.2080	-0.0110		-0.6323
330	-3.7491	1.9077	-0.7189	-0.4945		-0.9214
34C	-2.6027	-1.6075	-0.8316	-0.4168		0.3553
35H	-2.0953	0.2601	-1.8809	0.2045		0.0322
36H	-3.4703	-2.1267	-0.4198	0.2117		-0.0162
37H	-2.0741	-2.2291	-1.5616	0.1777		-0.0297

Epoxide 94

(see Figure 4-10)

Energy: -381.67951181 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-0.3287	0.1740	0.0423	0.1921			
20	-0.5785	1.3790	-0.2204	-0.3736			
30	-1.3429	-0.8186	-0.1334	-0.2973			
4C	-2.6297	-0.2257	0.0599	-0.3609			
5H	-2.8500	0.4241	-0.7610	0.2284			
6H	-3.3720	-0.9945	0.1154	0.2060			
7H	-2.6302	0.3368	0.9701	0.2073			
8C	1.0656	-0.2353	0.5523	0.0021			
9C	2.0754	-0.7686	-0.3580	-0.1437			
100	2.1572	0.6033	0.0640	-0.2868			
11H	1.1035	-0.4495	1.6365	0.2229			
12H	1.8643	-0.8922	-1.4364	0.2048			
13H	2.9033	-1.4002	0.0140	0.1987			

*** *** ***

Epoxide 95

(see Figure 4-11)

0 **∭**_№ 95

Energy: -246.03417421 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	0.2511	-0.1686	0.5353	0.0870			
2C	1.3215	0.6736	-0.0407	-0.2432			
30	1.1700	-0.6942	-0.4298	-0.2910			
4H	0.3672	-0.5636	1.5436	0.2335			
5H	2.1963	0.8913	0.5703	0.2089			
6H	1.0677	1.4041	-0.8066	0.2179			
7C	-1.1279	-0.0103	0.1066	0.2783			
8N	-2.2371	0.1219	-0.2108	-0.4913			

*** *** ***

(PCP) palladium hydroxide 96

(see Figure 5-2, Figure 5-3, Figure 5-4, Figure 5-5)

Energy: -1354.06564195 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.0617	-0.8806	-0.0196	-0.6503			
2C	-0.2642	4.0019	-0.0022	-0.5221			
3C	-1.3948	3.2262	-0.2682	0.2939			
4C	-1.3078	1.8269	-0.2835	-0.1132			
5C	-0.0817	1.1732	-0.0065	1.4633			
6C	1.0547	1.9777	0.2694	-0.7791			
7C	0.9572	3.3766	0.2592	0.1884			
8H	-0.3340	5.0870	-0.0001	0.1724			
9H	-2.3461	3.7138	-0.4764	0.1652			
10H	1.8378	3.9828	0.4666	0.1657			
11C	-2.5249	0.9890	-0.6350	-1.0021			
12C	2.3796	1.3103	0.6102	-0.9672			
13H	-3.4625	1.4352	-0.2767	0.2251			
14H	-2.6168	0.8883	-1.7267	0.2443			
15H	3.2419	1.8682	0.2216	0.2266			
16H	2.5069	1.2483	1.7010	0.2447			
17P	-2.2651	-0.7258	0.0342	0.7758			

18P	2.3156	-0.4355	-0.0217	0.9395		
19C	-3.0237	-0.6921	1.7180	-0.8889		
20H	-4.0946	-0.4585	1.6750	0.2260		
21H	-2.8865	-1.6645	2.2019	0.2451		
22H	-2.5137	0.0638	2.3228	0.2548		
23C	-3.4242	-1.8016	-0.9211	-0.8460		
24H	-3.3991	-2.8191	-0.5164	0.2407		
25H	-4.4546	-1.4284	-0.8732	0.2301		
26H	-3.1062	-1.8450	-1.9675	0.2456		
27C	3.4066	-1.4795	1.0233	-0.8552		
28H	3.2342	-2.5215	0.7342	0.2873		
29H	4.4666	-1.2242	0.9078	0.2208		
30H	3.1161	-1.3726	2.0729	0.2388		
31C	3.1445	-0.4160	-1.6671	-0.9464		
32H	4.1976	-0.1199	-1.5863	0.2279		
33H	3.0818	-1.4176	-2.1043	0.2587		
34H	2.6214	0.2825	-2.3272	0.2486		
350	0.5086	-2.9101	-0.0187	-0.8951		
36H	-0.2850	-3.4450	-0.1663	0.4364		

(PCP) octahedral palladium intermediate 97

(see Figure 5-3, Figure 5-4)

Energy: -1355.19054674 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-0.1332	3.9304	0.1312	-0.5056	Ŭ		
2C	-1.2911	3.2246	-0.2079	0.3753			
3C	-1.2536	1.8262	-0.3197	0.8760			
4C	-0.0564	1.1290	-0.0762	-1.7519			
5C	1.0985	1.8444	0.2927	0.9622			
6C	1.0591	3.2435	0.3817	0.7403			
7H	-0.1613	5.0147	0.2078	0.1711			
8H	-2.2183	3.7658	-0.3908	0.1640			
9H	1.9519	3.8002	0.6627	0.1648			
10C	-2.4836	1.0275	-0.7147	-1.3114			
11C	2.3465	1.0594	0.6524	-1.4043			
12H	-3.4194	1.4802	-0.3603	0.2272			
13H	-2.5580	0.9457	-1.8095	0.2455			
14H	3.2768	1.5985	0.4284	0.2179			
15H	2.3357	0.8243	1.7246	0.2855			
16P	-2.2807	-0.7072	-0.0727	1.0653			
17P	2.2912	-0.5875	-0.2057	1.4668			
18C	-2.9051	-0.7014	1.6525	-0.9189			
19H	-3.8941	-0.2324	1.7176	0.2235			

20H	-2.9653	-1.7316	2.0174	0.2432		
21H	-2.1780	-0.1725	2.2747	0.3097		
22C	-3.4775	-1.7369	-1.0189	-0.8391		
23H	-3.4373	-2.7675	-0.6528	0.2458		
24H	-4.5012	-1.3581	-0.9133	0.2307		
25H	-3.1998	-1.7397	-2.0772	0.2464		
26C	3.4031	-1.6971	0.7425	-0.8615		
27H	3.4881	-2.6620	0.2328	0.2377		
28H	4.4014	-1.2568	0.8529	0.2254		
29H	2.9539	-1.8510	1.7274	0.2825		
30C	3.1339	-0.3368	-1.8247	-0.9777		
31H	4.1740	-0.0182	-1.6857	0.2288		
32H	3.1152	-1.2682	-2.3994	0.2437		
33H	2.5950	0.4289	-2.3906	0.2578		
34Pd	0.0158	-1.0035	-0.1873	-1.3101		
35H	-0.1076	-1.0013	-1.7550	0.1893		
36H	0.0680	-2.6256	-0.3567	0.0999		
370	0.3106	-1.0587	1.9285	-0.8047		
38H	0.2681	-1.9988	2.1626	0.4586		

(PCP) transition state 98

(see Figure 5-3, Figure 5-4)

Energy: -1355.20030490 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.0648	-0.8587	0.1510	-0.8877			0.0109
2C	0.4136	3.9661	-0.2913	-0.4499			-0.0895
3C	1.5068	3.1905	0.1012	-0.0272			-0.0180
4C	1.3769	1.8031	0.2568	0.6536			-0.0615
5C	0.1364	1.1710	0.0024	0.5820			0.1416
6C	-0.9596	1.9637	-0.4182	-0.3402			-0.0674
7C	-0.8142	3.3522	-0.5484	0.3138			-0.0102
8H	0.5197	5.0423	-0.4015	0.1756			0.0098
9H	2.4655	3.6680	0.2958	0.1697			0.0007
10H	-1.6630	3.9555	-0.8655	0.1704			0.0026
11C	2.5518	0.9568	0.7055	-1.2100			-0.1035
12C	-2.2716	1.2821	-0.7547	-1.1112			-0.1172
13H	3.5172	1.3700	0.3848	0.2257			-0.0278
14H	2.5781	0.8823	1.8024	0.2485			-0.0212
15H	-3.1442	1.9185	-0.5571	0.2250			-0.0264
16H	-2.3007	1.0107	-1.8196	0.2608			-0.0102
17P	2.2594	-0.7616	0.0651	0.9108			0.9617

1	1					
18P	-2.3182	-0.3113	0.1947	1.0733	0.9	9601
19C	3.0252	-0.7843	-1.6127	-0.8847	-0.2	2377
20H	4.1017	-0.5797	-1.5676	0.2274	-0.0	0272
21H	2.8629	-1.7634	-2.0743	0.2478	0.0	0308
22H	2.5381	-0.0293	-2.2368	0.2569	0.0	0351
23C	3.3490	-1.8719	1.0551	-0.8359	-0.2	2494
24H	3.2669	-2.8951	0.6746	0.2492	0.0	0264
25H	4.3978	-1.5548	1.0050	0.2291	-0.0	0354
26H	3.0203	-1.8721	2.0988	0.2487	0.0	0340
27C	-3.5079	-1.4357	-0.6296	-0.8962	-0.2	2743
28H	-3.8388	-2.1960	0.0855	0.2411	0.0	0182
29H	-4.3804	-0.8915	-1.0107	0.2175	-0.0	0296
30H	-2.9598	-1.9555	-1.4245	0.3367	0.1	1138
31C	-3.0889	0.1309	1.8119	-0.9441	-0.2	2405
32H	-4.1209	0.4774	1.6772	0.2313	-0.0	0278
33H	-3.0897	-0.7460	2.4672	0.2455	0.0	0282
34H	-2.5021	0.9201	2.2918	0.2515	0.0	0293
350	-0.8586	-2.8297	-1.1723	-0.9070	-0.8	3782
36H	-0.2094	-3.2259	-1.7768	0.4273	0.4	1221
37H	-0.2107	-2.7266	1.1112	-0.0658	-0.3	3025
38H	-0.4227	-2.9232	0.3062	0.1409	0.3	3300

(CCC) palladium hydroxide 99

(see Figure 5-5, Figure 5-6)

Energy: -1041.52492167 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	0.8836	3.5352	0.6353	-0.1018			
2C	0.9238	2.1334	0.6471	0.6193			
3C	-0.0534	1.3586	-0.0136	0.2896			
4C	-1.0797	2.0660	-0.6793	0.6913			
5C	-1.1226	3.4675	-0.6849	-0.1893			
6C	-0.1398	4.2109	-0.0302	-0.3613			
7H	1.6570	4.1036	1.1508	0.1600			
8Pd	0.0177	-0.6951	-0.0510	-0.5111			
9H	-1.9296	3.9830	-1.2044	0.1594			
10H	-0.1720	5.2973	-0.0372	0.1713			
11N	2.7348	0.4309	0.6277	-0.0357			
12C	2.0767	-0.5615	-0.0259	0.0288			
13N	3.0604	-1.3256	-0.5691	-0.0514			
14C	4.3124	-0.8119	-0.2634	-0.0397			
15C	4.1077	0.2971	0.4990	-0.0517			
16H	5.2244	-1.2745	-0.6096	0.2011			
17H	4.8052	0.9828	0.9560	0.2016			
18N	-2.7771	0.2602	-0.6109	-0.0095			
19C	-4.1256	0.0847	-0.3448	0.0004			

		l I			1	1 1
20C	-4.2155	-0.9993	0.4748	-0.1254		
21N	-2.9199	-1.4553	0.6812	-0.0887		
22C	-2.0247	-0.6773	0.0161	-0.1500		
23H	-4.8896	0.7258	-0.7583	0.2038		
24H	-5.0735	-1.4781	0.9222	0.2028		
25C	2.8282	-2.5174	-1.3877	-0.5217		
26H	2.9154	-2.2654	-2.4510	0.2120		
27H	3.5766	-3.2738	-1.1324	0.1964		
28H	1.8217	-2.8837	-1.1465	0.3556		
29C	-2.5529	-2.5658	1.5622	-0.4889		
30H	-1.5173	-2.8421	1.3344	0.3353		
31H	-2.6523	-2.2607	2.6099	0.2189		
32H	-3.2150	-3.4157	1.3686	0.2045		
33C	-2.1656	1.3153	-1.4303	-1.0020		
34C	2.0391	1.4550	1.4181	-1.0358		
35H	2.7901	2.1842	1.7355	0.1897		
36H	1.6433	0.9680	2.3177	0.2424		
37H	-2.9660	1.9932	-1.7403	0.1913		
38H	-1.7574	0.8410	-2.3307	0.2438		
390	0.0860	-2.8068	-0.1401	-1.0181		
40H	-0.5999	-3.0727	-0.7733	0.4629		

(NCN) palladium hydroxide 100

(see Figure 5-5, Figure 5-7)

Energy: -780.79497494 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	3.1114	-2.2615	-0.0189	-0.4119			
2C	1.8421	-2.8279	0.1803	0.1243			
3C	0.7128	-2.0002	0.2015	0.1245			
4C	0.8758	-0.6245	0.0023	-0.1559			
5C	2.1347	-0.0560	-0.2145	0.1145			
6C	3.2668	-0.8797	-0.2125	0.1256			
7H	3.9883	-2.9041	-0.0256	0.1736			
8H	1.7519	-3.9036	0.3252	0.1690			
9H	4.2626	-0.4674	-0.3701	0.1683			
10C	-0.7094	-2.4271	0.4996	-0.7069			
11C	2.0989	1.4254	-0.5196	-0.6461			
12H	-0.9652	-3.4156	0.0882	0.2055			
13H	-0.8557	-2.4827	1.5848	0.2194			
14H	2.9779	1.9747	-0.1471	0.2065			
15H	2.0583	1.5761	-1.6052	0.2215			
16C	-2.0449	-1.6776	-1.4277	-0.4559			
17H	-2.5856	-2.6352	-1.5002	0.2030			
18H	-2.6787	-0.8682	-1.7953	0.2604			

19H	-1.1353	-1.7291	-2.0297	0.2357	
20C	-2.9247	-1.3513	0.8018	-0.4455	
21H	-3.5201	-0.4988	0.4649	0.3006	
22H	-3.4877	-2.2930	0.7048	0.1980	
23H	-2.6584	-1.1922	1.8492	0.2148	
24C	0.4950	3.2761	-0.7031	-0.4658	
25H	-0.3959	3.7239	-0.2576	0.2354	
26H	1.3210	4.0045	-0.6670	0.2108	
27H	0.2802	3.0210	-1.7432	0.2319	
28C	1.0462	2.3873	1.4765	-0.4441	
29H	1.8151	3.1704	1.5789	0.2045	
30H	0.1042	2.7421	1.9001	0.2474	
31H	1.3650	1.4940	2.0159	0.2462	
32N	-1.6893	-1.3969	-0.0148	-0.1423	
33N	0.8417	2.0496	0.0450	-0.2251	
34Pd	-0.7026	0.5143	-0.0084	-0.0026	
350	-2.5368	1.5183	-0.0236	-0.9771	
36H	-2.5226	2.4092	-0.4029	0.4375	

*** *** ***

(OCO) palladium hydroxide 101

(see Figure 5-5, Figure 5-9)

Energy: -741.86344253 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.9662	-0.0061	-0.0296	0.1456			
2C	3.7516	0.0130	-0.0090	-0.4665			
3C	3.0568	1.2307	0.0004	-0.1889			
4C	1.6564	1.2272	-0.0027	-0.4868			
5C	0.9806	0.0022	0.0028	1.1637			
6C	1.6657	-1.2172	0.0028	-0.4011			
7C	3.0663	-1.2099	-0.0129	-0.2108			
8H	4.8383	0.0173	-0.0132	0.1782			
9H	3.6136	2.1666	0.0040	0.1720			
10H	3.6301	-2.1414	-0.0207	0.1722			
11C	0.7983	2.4702	-0.0544	-0.2214			
12C	0.8189	-2.4665	0.0682	-0.2673			
13H	1.1058	3.2327	0.6749	0.2045			
14H	0.8107	2.9262	-1.0563	0.2079			
15H	1.1348	-3.2375	-0.6481	0.2056			
16H	0.8365	-2.9056	1.0770	0.2075			
17C	-1.5649	3.0919	0.0340	-0.3750			
18H	-2.5194	2.6180	0.2699	0.2772			

19H	-1.3728	3.9426	0.6998	0.1947	
20H	-1.5537	3.4222	-1.0131	0.1940	
21C	-1.5461	-3.0725	0.1559	-0.3603	
22H	-2.5132	-2.5959	-0.0127	0.2758	
23H	-1.4329	-3.9780	-0.4532	0.1941	
24H	-1.4350	-3.3154	1.2203	0.1965	
250	-0.5580	-2.1073	-0.2362	-0.2310	
260	-0.5683	2.0854	0.2480	-0.2293	
270	-3.0454	-0.0167	0.0356	-0.9814	
28H	-3.4263	0.0234	-0.8564	0.4302	

(SCS) palladium hydroxide 102

(see Figure 5-5, Figure 5-8)

Energy: -1387.86163226 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.8882	0.1002	-0.0234	-0.5383			
2C	-3.9088	-0.4224	-0.0020	-0.0655			
3C	-3.0833	-1.5512	-0.0024	-0.3841			
4C	-1.6897	-1.4020	-0.0243	0.6729			
5C	-1.1119	-0.1156	-0.0042	0.0546			
6C	-1.9542	1.0149	0.0150	0.5149			
7C	-3.3474	0.8583	-0.0042	-0.3817			
8H	-4.9893	-0.5407	-0.0007	0.1757			
9H	-3.5294	-2.5444	0.0009	0.1734			
10H	-3.9986	1.7309	-0.0067	0.1732			
11C	-0.7754	-2.6037	-0.1216	-1.1040			
12C	-1.3268	2.3879	0.1074	-1.0758			
13H	-1.1748	-3.4836	0.3937	0.2394			
14H	-0.5895	-2.8750	-1.1680	0.2498			
15H	-1.8957	3.1517	-0.4329	0.2408			
16H	-1.2314	2.7099	1.1514	0.2501			
17C	2.0693	-3.0171	-0.4794	-0.9385			
18H	3.0277	-2.5259	-0.2900	0.2976			

19H	2.1221	-4.0796	-0.2259	0.2344		
20H	1.7967	-2.8829	-1.5291	0.2429		
21C	1.3617	3.3220	0.6296	-0.8505		
22H	2.4006	3.0019	0.5143	0.2985		
23H	1.2538	4.3883	0.4131	0.2346		
24H	1.0364	3.0980	1.6483	0.2455		
25S	0.4067	2.3330	-0.5786	0.6868		
26S	0.8779	-2.1651	0.6114	0.8503		
270	2.9599	0.2813	0.0327	-0.9244		
28H	3.2810	0.4806	-0.8620	0.4274		

(CCC) transition state 103

(see Figure 5-6)

Energy: -1042.65599017 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	1.0802	3.4934	0.5671	-0.1908			0.0181
2C	1.0411	2.0952	0.6586	0.6607			-0.1436
3C	0.0547	1.3502	-0.0174	0.1440			0.1744
4C	-0.8864	2.0591	-0.7888	0.6704			-0.1450
5C	-0.8449	3.4577	-0.8760	-0.0690			0.0164
6C	0.1372	4.1818	-0.1983	-0.3588			-0.1132
7H	1.8536	4.0483	1.0964	0.1634			-0.0043
8Pd	-0.0085	-0.6805	0.1108	-0.8737			0.1752
9H	-1.5841	3.9844	-1.4780	0.1633			-0.0042
10H	0.1691	5.2659	-0.2677	0.1744			0.0129
11N	2.7463	0.3183	0.7227	-0.0384			-0.4244
12C	2.0468	-0.6263	0.0425	0.0843			0.3894
13N	2.9921	-1.3904	-0.5637	-0.0722			-0.3829
14C	4.2646	-0.9275	-0.2577	-0.0758			-0.0459
15C	4.1111	0.1536	0.5542	0.0024			0.0102
16H	5.1541	-1.4003	-0.6461	0.2036			0.0789
17H	4.8382	0.8023	1.0190	0.2034			0.0754
18N	-2.6961	0.3861	-0.6608	0.0246			-0.4211

1	1 1				
19C	-4.0718	0.3092	-0.5234	0.0504	0.0206
20C	-4.3097	-0.6627	0.3979	-0.1315	-0.0516
21N	-3.0708	-1.1502	0.7958	-0.1143	-0.4002
22C	-2.0637	-0.5066	0.1426	-0.1516	0.3924
23H	-4.7490	0.9366	-1.0831	0.2065	0.0779
24H	-5.2351	-1.0418	0.8049	0.2055	0.0804
25C	2.7354	-2.5247	-1.4569	-0.4878	0.2594
26H	3.0801	-2.2739	-2.4661	0.2116	-0.0319
27H	3.2863	-3.3981	-1.0932	0.2082	-0.0273
28H	1.6612	-2.7457	-1.4687	0.3691	0.1714
29C	-2.9031	-2.1910	1.8062	-0.5264	0.3025
30H	-3.3079	-1.8476	2.7640	0.2181	-0.0259
31H	-3.4259	-3.1005	1.4938	0.2233	-0.0180
32H	-1.8396	-2.4044	1.9093	0.2588	0.0846
33C	-1.9592	1.3022	-1.5444	-0.7920	0.4001
34C	2.0814	1.3769	1.4938	-1.0549	0.4035
35H	2.8557	2.0682	1.8384	0.1922	-0.0226
36H	1.6208	0.9134	2.3740	0.2460	-0.0261
37H	-2.6888	1.9875	-1.9850	0.1921	-0.0225
38H	-1.5199	0.7052	-2.3518	0.2529	-0.0214
390	-0.1986	-2.9871	-0.9985	-0.8555	-0.9329
40H	-1.1164	-3.1636	-1.2634	0.4442	0.1342
41H	-0.0577	-2.8211	0.4080	0.1238	0.3746
42H	0.1036	-2.5038	1.2272	-0.1046	-0.3875

(CCC) octahedral palladium intermediate 104

(see Figure 5-6)

Energy: -1042.64397144 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	0.8492	3.4372	0.7506	-0.1927			
2C	0.8942	2.0379	0.6783	0.9838			
3C	-0.0640	1.3207	-0.0538	0.4109			
4C	-1.0717	2.0428	-0.7103	0.8637			
5C	-1.1265	3.4430	-0.6340	-0.2215			

1	1					
6C	-0.1627	4.1437	0.0946	-0.3894		
7H	1.6001	3.9790	1.3249	0.1602		
8H	-1.9202	3.9892	-1.1431	0.1577		
9H	-0.2016	5.2286	0.1541	0.1699		
10N	2.6831	0.3165	0.5773	0.1501		
11C	2.0623	-0.6443	-0.1470	-0.0607		
12N	3.0578	-1.3128	-0.7863	-0.0640		
13C	4.2945	-0.7691	-0.4611	-0.1436		
14C	4.0545	0.2581	0.3992	0.1359		
15H	5.2181	-1.1563	-0.8640	0.2038		
16H	4.7311	0.9343	0.8994	0.2065		
17N	-2.7334	0.1979	-0.7808	-0.0633		
18C	-4.0881	0.0439	-0.5272	-0.0981		
19C	-4.2078	-1.0458	0.2801	0.0749		
20N	-2.9246	-1.5231	0.5050	0.0702		
21C	-2.0165	-0.7634	-0.1493	0.7364		
22H	-4.8327	0.7134	-0.9300	0.2043		
23H	-5.0783	-1.5090	0.7191	0.2033		
24C	2.8628	-2.4135	-1.7225	-0.6151		
25H	2.9756	-2.0625	-2.7539	0.2258		
26H	3.5985	-3.1982	-1.5218	0.2103		
27H	1.8544	-2.8033	-1.5802	0.2628		
28C	-2.5736	-2.6536	1.3654	-0.4452		
29H	-2.3736	-3.5414	0.7573	0.2214		
30H	-1.6785	-2.3660	1.9273	0.3231		
31H	-3.4103	-2.8490	2.0409	0.1894		
32C	-2.1088	1.2975	-1.5330	-1.6000		
33C	1.9560	1.2701	1.4413	-0.9365		
34H	2.7028	1.9381	1.8796	0.1781		
35H	1.4690	0.6714	2.2203	0.3292		
36H	-2.9129	1.9638	-1.8579	0.1916		
37H	-1.6443	0.8617	-2.4258	0.2464		
38Pd	0.0220	-0.8143	-0.1336	-2.1887		
39H	0.0583	-2.4326	-0.3308	0.0832		
40H	0.0037	-0.7509	-1.6966	0.1915		
410	0.0408	-1.0171	2.0151	-0.8256		
42H	0.5999	-1.7946	2.1735	0.4599		

(NCN) octahedral palladium intermediate 105

(see Figure 5-7)

Energy: -781.89925185 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1H	0.1331	-2.6680	-0.3467	0.0548			
2C	-0.2238	3.7433	0.1262	-0.3978			
3C	1.0110	3.1071	0.3392	0.0932			
4C	1.0845	1.7113	0.2475	0.7674			
5C	-0.0694	1.0090	-0.0761	-1.1001			

6C	-1.2985	1.6171	-0.2896	0.5061		
7C	-1.3832	3.0121	-0.1781	0.2031		
8H	-0.2839	4.8259	0.2049	0.1743		
9H	1.8876	3.7043	0.5859	0.1712		
10H	-2.3258	3.5361	-0.3291	0.1696		
11C	2.2603	0.8140	0.5508	-0.5658		
12C	-2.3864	0.6465	-0.6790	-1.1981		
13H	3.2422	1.2638	0.3419	0.2031		
14H	2.2157	0.5190	1.6029	0.2862		
15H	-3.3965	0.9626	-0.3794	0.2108		
16H	-2.3883	0.5093	-1.7668	0.2276		
17C	2.5846	-0.2659	-1.6385	-0.4373		
18H	3.6492	0.0120	-1.6517	0.2088		
19H	2.4387	-1.1870	-2.2045	0.2363		
20H	1.9930	0.5321	-2.0882	0.2495		
21C	2.9804	-1.5252	0.3995	-0.5126		
22H	2.9131	-2.4412	-0.1899	0.2302		
23H	4.0272	-1.1881	0.4432	0.2058		
24H	2.5905	-1.7021	1.4024	0.2715		
25C	-2.8510	-1.7614	-0.8278	-0.4217		
26H	-2.6447	-2.7343	-0.3805	0.2419		
27H	-3.9313	-1.5555	-0.7867	0.2103		
28H	-2.5142	-1.7749	-1.8652	0.2333		
29C	-2.5332	-0.7371	1.3457	-0.4890		
30H	-3.6103	-0.5181	1.3998	0.2007		
31H	-2.3300	-1.7211	1.7668	0.2375		
32H	-1.9544	-0.0086	1.9105	0.2907		
33N	2.1429	-0.4808	-0.2376	0.0922		
34N	-2.1070	-0.7212	-0.0792	-0.0771		
35Pd	0.0485	-1.0095	-0.1615	-0.5240		
36H	-0.0803	-1.0628	-1.7267	0.1736		
370	0.3196	-1.0822	1.9487	-0.9000		
38H	0.2811	-2.0184	2.1960	0.4740		

(NCN) transition state 106

(see Figure 5-7)

Energy: -781.93338006 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	3.3870	-1.8659	-0.2007	-0.3991			-0.1237
2C	2.2141	-2.5797	0.0898	0.2071			0.0310
3C	0.9954	-1.8988	0.1939	0.1952			-0.0893
4C	0.9818	-0.5157	-0.0162	-0.4998			0.1247
5C	2.1395	0.2066	-0.3208	0.2452			-0.0932

	i				i	
6C	3.3580	-0.4780	-0.4026	0.1530		0.0221
7H	4.3324	-2.3972	-0.2726	0.1776		0.0162
8H	2.2630	-3.6569	0.2395	0.1746		0.0065
9H	4.2807	0.0532	-0.6304	0.1729		0.0053
10C	-0.3419	-2.4852	0.5792	-0.6341		0.2701
11C	1.9070	1.6712	-0.6039	-0.6367		0.2891
12H	-0.4965	-3.5093	0.2068	0.2098		-0.0451
13H	-0.4302	-2.5174	1.6720	0.2239		-0.0285
14H	2.7500	2.3160	-0.3118	0.2086		-0.0485
15H	1.7410	1.8170	-1.6779	0.2275		-0.0282
16C	-1.7552	-1.8847	-1.3478	-0.5030		0.1831
17H	-2.1983	-2.8898	-1.4300	0.1979		-0.0584
18H	-2.4541	-1.1194	-1.6961	0.3126		0.0923
19H	-0.8341	-1.8464	-1.9332	0.2253		0.0069
20C	-2.6801	-1.7424	0.8820	-0.4561		0.2209
21H	-3.4290	-1.0572	0.4787	0.3025		0.0718
22H	-3.0438	-2.7808	0.8285	0.2023		-0.0627
23H	-2.4714	-1.4809	1.9221	0.2205		0.0048
24C	0.0614	3.2990	-0.6027	-0.4709		0.2493
25H	-0.8428	3.6060	-0.0734	0.2526		0.0208
26H	0.7740	4.1385	-0.6292	0.2114		-0.0594
27H	-0.2083	3.0156	-1.6223	0.2375		0.0146
28C	0.9572	2.4983	1.4998	-0.4680		0.2288
29H	1.6290	3.3712	1.5277	0.2064		-0.0570
30H	0.0265	2.7333	2.0199	0.2509		0.0313
31H	1.4388	1.6539	1.9958	0.2444		0.0213
32N	-1.4447	-1.5900	0.0781	-0.1850		-0.4406
33N	0.6497	2.1337	0.0937	-0.2356		-0.4853
34Pd	-0.6985	0.4301	0.1320	-0.0771		0.5371
350	-3.0449	0.8831	-0.8251	-0.9618		-0.9551
36H	-3.2741	1.6196	-1.4155	0.4544		0.1356
37H	-2.1998	1.5475	1.2010	-0.1173		-0.4270
38H	-2.6422	1.3792	0.4282	0.1305		0.4186

(SCS) octahedral palladium intermediate 107

(see Figure 5-8)

Energy: -1388.96887741 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	-0.5253	3.8195	0.0673	-0.3612			
2C	0.7664	3.2789	0.0488	0.3102			
3C	0.9390	1.8897	-0.0098	0.1216			
4C	-0.1799	1.0511	-0.0885	-0.8102			
5C	-1.4700	1.5923	-0.0716	1.2135			
6C	-1.6443	2.9821	0.0227	-0.1141			
7H	-0.6590	4.8966	0.1256	0.1755			
8H	1.6282	3.9422	0.0999	0.1706			
9H	-2.6428	3.4151	0.0527	0.1699			

1						
10C	2.2923	1.2329	0.1049	-1.1673		
11C	-2.6372	0.6417	-0.1854	-1.5262		
12H	3.1158	1.8422	-0.2829	0.2332		
13H	2.4878	0.9589	1.1470	0.3031		
14H	-3.5279	0.9814	0.3542	0.2437		
15H	-2.9101	0.4610	-1.2326	0.2551		
16C	3.4098	-1.3567	0.2224	-0.9520		
17H	3.4976	-2.3474	-0.2289	0.2456		
18H	4.3886	-0.8675	0.2401	0.2297		
19H	2.9524	-1.4163	1.2157	0.3320		
20C	-3.1051	-2.1392	-0.5500	-0.9688		
21H	-2.8208	-3.1577	-0.2780	0.2613		
22H	-4.1718	-1.9900	-0.3566	0.2379		
23H	-2.8705	-1.9642	-1.6018	0.2603		
24S	-2.1400	-1.0162	0.5201	1.2578		
25S	2.2794	-0.3836	-0.8286	1.0349		
26Pd	0.1086	-1.0264	-0.1482	-1.0567		
27H	-0.3310	-1.1279	-1.6558	0.1925		
28H	0.2998	-2.6503	-0.2775	0.0864		
290	0.8284	-0.9402	1.8512	-0.8440		
30H	0.6357	-1.7980	2.2592	0.4658		

(SCS) transition state 108

(see Figure 5-8)

Energy: -1388.99362340 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	0.7661	0.3658	0.1004	-0.6305			0.3541
2C	-3.6372	-1.5705	-0.1349	-0.1294			-0.1061
3C	-2.5109	-2.3968	-0.1123	-0.3550			0.0169
4C	-1.2241	-1.8425	-0.0709	0.0798			-0.1102
5C	-1.0623	-0.4425	-0.0108	0.4988			0.1356
6C	-2.2045	0.3848	-0.0092	0.6340			-0.1104
7C	-3.4833	-0.1826	-0.0934	-0.2870			0.0123
8H	-4.6313	-2.0066	-0.1841	0.1797			0.0183
9H	-2.6344	-3.4778	-0.1401	0.1773			0.0083
10H	-4.3622	0.4591	-0.1122	0.1767			0.0079
11C	0.0010	-2.7178	-0.1373	-1.1449			0.1443
12C	-2.0236	1.8742	0.1337	-1.1573			0.1550
13H	-0.1445	-3.6877	0.3495	0.2420			-0.0099
14H	0.3004	-2.8968	-1.1767	0.2537			-0.0353
15H	-2.8021	2.4495	-0.3778	0.2419			-0.0124
16H	-2.0106	2.1702	1.1895	0.2586			-0.0353

17C	2.8368	-2.2601	-0.3951	-0.9079	0.0019
18H	3.5021	-1.3900	-0.3748	0.3504	0.1188
19H	3.3165	-3.1644	-0.0112	0.2310	-0.0150
20H	2.4991	-2.4032	-1.4241	0.2363	0.0004
21C	0.1245	3.7004	0.5583	-0.9042	0.0183
22H	1.1405	3.9856	0.2783	0.2659	0.0399
23H	-0.5514	4.5487	0.4138	0.2351	-0.0091
24H	0.1238	3.3650	1.5971	0.2686	0.0180
25S	-0.3653	2.3373	-0.5587	0.7450	0.0782
26S	1.4151	-1.8305	0.6742	0.8171	0.0778
270	3.1305	0.7184	-0.6660	-0.8508	-0.8939
28H	3.3008	1.4216	-1.3151	0.4391	0.1531
29H	2.7356	1.2330	0.5021	0.1366	0.4079
30H	2.2377	1.4294	1.2781	-0.1007	-0.4294

(OC) palladium hydride 109

(see Figure 5-9)

Energy: -743.08072474 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1Pd	-0.8510	-0.9029	-0.0737	-0.5424			
2C	1.8331	3.0930	-0.0935	-0.5105			
3C	0.4568	3.0783	0.1337	-0.1469			
4C	-0.2410	1.8649	0.1594	0.7092			
5C	0.4218	0.6332	-0.0665	1.2974			
6C	1.8094	0.6598	-0.3190	-0.9475			
7C	2.4941	1.8875	-0.3207	-0.2000			
8H	2.3784	4.0332	-0.1102	0.1728			
9H	-0.0782	4.0141	0.2906	0.1642			
10H	3.5660	1.8893	-0.5087	0.1737			
11C	-1.7174	1.8935	0.4704	-0.2939			
12C	2.6276	-0.5800	-0.5887	-0.7004			
13H	-1.8985	1.7908	1.5528	0.2048			
14H	-2.1793	2.8331	0.1353	0.1871			
15H	1.9998	-1.3678	-1.0240	0.1837			
16H	3.4369	-0.3478	-1.3024	0.1651			
17C	-3.7461	0.6621	0.1346	-0.2935			
18H	-4.1232	-0.2079	-0.4060	0.2182			

19H	-3.8804	0.5108	1.2152	0.1970		
20H	-4.2957	1.5601	-0.1793	0.1921		
21C	3.9822	-2.2118	0.4471	-0.3594		
22H	4.3846	-2.4891	1.4255	0.1908		
23H	3.3719	-3.0441	0.0589	0.1756		
24H	4.8197	-2.0382	-0.2500	0.1716		
250	3.2092	-1.0446	0.6307	-0.2828		
260	-2.3669	0.7935	-0.1950	-0.3033		
270	-2.3541	-2.6567	-0.0807	-0.9437		
28H	-2.0662	-3.1647	-0.8576	0.5309		
29H	0.3289	-1.8930	0.0842	0.0573		
30H	-2.0467	-3.1674	0.6870	0.5328		

(OCO) octahedral palladium intermediate 110

(see Figure 5-9)

Energy: -742.94864249 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1C	3.5477	-0.9428	0.0626	-0.2199			
2C	2.5580	-1.9380	0.0594	-0.3328			
3C	1.2099	-1.5635	-0.0026	0.5768			
4C	0.9132	-0.2123	-0.0963	-0.3559			
5C	1.8670	0.7929	-0.0844	0.7329			
6C	3.2160	0.4180	0.0041	-0.6436			
7H	4.5933	-1.2328	0.1221	0.1794			
8H	2.8467	-2.9855	0.1223	0.1763			
9H	4.0060	1.1667	0.0233	0.1760			
10C	0.0126	-2.4631	0.1047	-0.4676			
11C	1.3334	2.1922	-0.2037	-0.8152			
12H	0.1340	-3.4408	-0.3776	0.1984			
13H	-0.2790	-2.5850	1.1537	0.2675			
14H	1.8488	2.9165	0.4394	0.2096			
15H	1.3640	2.5520	-1.2427	0.2174			
16C	-2.3725	-2.4238	-0.3002	-0.3344			

17H	-3.1171	-1.9062	-0.9033	0.2320		
18H	-2.2983	-3.4754	-0.6022	0.1901		
19H	-2.6034	-2.3302	0.7649	0.2493		
20C	-0.7695	3.3963	-0.0300	-0.2513		
21H	-1.7656	3.2772	0.3929	0.2420		
22H	-0.2338	4.2092	0.4742	0.1974		
23H	-0.8372	3.5872	-1.1072	0.2135		
240	-0.0702	2.1671	0.2187	-0.1240		
250	-1.1079	-1.7878	-0.5777	-0.0937		
26Pd	-1.0415	0.3082	-0.1829	-0.2825		
27H	-2.6391	0.7742	-0.3458	0.0599		
28H	-1.1187	0.6695	-1.7206	0.2017		
290	-1.2028	-0.2540	1.8515	-0.8643		
30H	-2.0394	0.0895	2.1982	0.4649		

Hydrogen

н——н

Energy: -1.17548239 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
1H	0.0000	0.0000	0.3714	0.0000			
2H	0.0000	0.0000	-0.3714	0.0000			

*** *** ***

Water

H_O_H

Energy: -76.42257235 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
10	0.0000	0.1173	0.0000	-0.9276			
2H	0.7713	-0.4692	0.0000	0.4638			
3H	-0.7713	-0.4692	0.0000	0.4638			

*** *** ***

Triplet oxygen

o==0

Energy: -150.32757696 hartrees

Center number and element	x-coord.	y-coord.	z-coord.	Mulliken atomic charge	chelpg atomic charge	Mulliken atomic spin density	APT atomic charge
10	0.0000	0.0000	0.6077	0.0000		1.0000	
20	0.0000	0.0000	-0.6077	0.0000		1.0000	

*** *** ***

References

- 1. Stahl, Shanon S. Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover. *Angewandte Chemie International Edition* **2004**, *43*, 3400-3420.
- 2. Sheldon, Roger A.; Kochi, Jay K., *Metal-Catalyzed Oxidations of Organic Compounds*. Academic Press: New York, 1981.
- Gates, Bruce C.; Katzer, James R.; Schuit, G. C. A., *Chemistry of Catalytic Processes*. McGraw-Hill Book Company: New York, NY, 1979; p 464.
- 4. Xia, Q.-H.; Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X. Advances in Homogeneous and Heterogeneous Catalytic Asymmetric Epoxidation. *Chemical Reviews* **2005**, *105*, 1603-1662.
- 5. Punniyamurthy, T.; Velusamy, Subbarayan; Iqbal, J. Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. *Chemical Reviews* **2005**, *105*, 2329-2363.
- 6. Jørgensen, Karl Anker. Transition-Metal-Catalyzed Epoxidations. *Chemical Reviews* **1989**, *89*, (3), 431-458.
- 7. Monnier, John R. The Direct Epoxidation of Higher Olefins Using Molecular Oxygen. *Applied Catalysis A: General* **2001**, *221*, 73-91.
- 8. Matar, Sami; Hatch, Lewis F., *Chemistry of Petrochemical Processes*. Second Edition ed.; Gulf Professional Publishing: Boston, MA, 2001; p 392.
- 9. *Catalytic Oxidations with Hydrogen Peroxide as Oxidant*. Kluwer Academic Publishers: Dordrecht, 1992.
- 10. *The Chemistry of Peroxides, Part* 2. John Wiley & Sons Ltd.: Chichester, 2006; Vol. 2.
- 11. Organic Peroxides. John Wiley & Sons: Chichester, 1992.

- 12. Mimoun, Hubert. The Role of Peroxymetallation in Selective Oxidative Processes. *Journal of Molecular Catalysis* **1980**, *7*, 1-29.
- 13. Vijayakumar, M.; Gopinathan, M. S. Spin-Orbit Coupling Constants of Transition Metal Atoms and Ions in Density Functional Theory. *Journal of Molecular Structure (Theochem)* **1996**, *361*, 15-19.
- Xiao, Jianliang; Santarsiero, Bernard D.; Vaartstra, Brian A.; Cowie, Martin. Structure and Reactivity Studies of the Unusual Peroxo-Bridged Complex, [Ir₂I₂(CO)₂(μ-O₂)(Ph₂PCH₂PPh₂)₂]: The First Compound Having a Peroxide Moiety Bridging a Metal-Metal Bond. *Journal of the American Chemical Society* **1993**, *115*, 3212-3220.
- 15. Vaska, Lauri. Dixoygen-Metal Complexes: Toward a Unified View. *Accounts of Chemical Research* **1976**, *9*, 175-183.
- 16. Dickman, Michael H.; Pope, Michael T. Peroxo and Superoxo Complexes of Chromium, Molybdenum, and Tungsten. *Chemical Reviews* **1994**, *94*, 569-584.
- 17. Conte, Valeria; Floris, Barbara. Vanadium and Molybdenum Peroxides: Synthesis and Catalytic Activity in Oxidation Reactions. *Dalton Transactions* **2011**, *40*, 1419-1436.
- Pecoraro, Vincent L.; Baldwin, Michael J.; Gelasco, Andrew. Interaction of Manganese with Dioxygen and Its Reduced Derivatives. *Chemical Reviews* 1994, 94, 807-826.
- 19. Akita, Munetaka; Fujisawa, Kiyoshi; Hikichi, Shiro; Moro-oka, Yoshihiko. Chemistry of μ - η^2 : η^2 -Peroxo Dimetal Complexes: A Bioinorganic Model Triggers a New Trend of Transition Metal Peroxo Species. *Research on Chemical Intermediates* **1998**, *24*, (3), 291-307.
- 20. Siegbahn, Per E. M. Binding in Second-Row Transition Metal Dioxides, Trioxides, Tetraoxides, Peroxides, and Superoxides. *Journal of Physical Chemistry* **1993**, *97*, 9096-9102.
- 21. Lane, Benjamin S.; Burgess, Kevin. Metal-Catalyzed Epoxidations of Alkenes with Hydrogen Peroxide. *Chemical Reviews* **2003**, *103*, (7), 2457-2473.
- 22. Crabtree, Robert H., *The Organometallic Chemistry of the Transition Metals*. Third ed.; John Wiley & Sons, Inc.: New York, 2001.

- 23. Bosnich, B.; Jackson, W. G.; Lo, S. T. D.; McLaren, J. W. Dissymmetric Arsine Complexes. Monomeric and Dimeric Dioxygen Complexes of Cobalt. *Inorganic Chemistry* **1974**, *13*, (11), 2605-2611.
- 24. Vedejs, E. A Method for Direct Hydroxylation of Enolates. Transition Metal Peroxide Reactions. *Journal of the American Chemical Society* **1974**, *96*, (18), 5944-5946.
- 25. Campestrini, S.; Conte, V.; Di Furia, F.; Modena, G.; Bortolini, O. Metal Catalysis in Oxidation by Peroxides. 30. Electrophilic Oxygen Transfer from Anionic, Coordinatively Saturated Molybdenum Peroxo Complexes. *Journal of Organic Chemistry* **1988**, *5*3, 5721-5724.
- 26. Porter, Michael J.; Skidmore, John. Asymmetric Epoxidation of Electron-Deficient Olefins. *Chemical Communications* **2000**, 1215-1225.
- Møller, Eval Rud; Jørgensen, Karl Anker. Chemistry of Molybdenaoxaziridines. A Study of Oxo(*N*-phenylhydroxylamido-*O*,*N*)(pyridine-2,6dicarboxylato)(hexamethylphosphortriamide)molybdenum(VI) and Its Catalytic Properties. *Journal of the American Chemical Society* **1993**, *115*, 11814-11822.
- 28. Dagonneau, M.; Fauvarque, J. F. Oxidation of Dienes by Triphenylphosphine Peroxopalladium. *Journal of Organometallic Chemistry* **1983**, *241*, 113-118.
- 29. Katsuki, Tsutomu; Sharpless, K. Barry. The First Practical Method for Asymmetric Epoxidation. *Journal of the American Chemical Society* **1980**, *102*, 5974-5976.
- 30. Burns, Christopher J.; Martin, Cheryl A.; Sharpless, K. Barry. Tartrate-Like Ligands in the Asymmetric Epoxidation. *Journal of Organic Chemistry* **1989**, *54*, 2826-2834.
- 31. Chong, A. O.; Sharpless, K. Barry. On the Mechanism of the Molybdenum and Vanadium Catalyzed Epoxidation of Olefins by Alkyl Hydroperoxides. *Journal of Organic Chemistry* **1977**, *42*, (9), 1587-1590.
- 32. Mimoun, Hubert. Oxygen Transfer from Inorganic and Organic Peroxides to Organic Substrates: A Common Mechanism? *Angewandte Chemie International Edition in English* **1982**, *21*, 734-750.

- Deubel, Dirk V.; Sundermeyer, Jörg; Frenking, Gernot. Mechanism of the Olefin Epoxidation Catalyzed by Molybdenum Diperoxo Complexes: Quantum-Chemical Calculations Give an Answer to a Long-Standing Question. *Journal of the American Chemical Society* 2000, *122*, 10101-10108.
- Makita, Naoya; Hoshino, Yujiro; Yamamoto, Hisashi. Asymmetric Epoxidation of Homoallylic Alcohols and Application in a Concise Total Synthesis of (-)-α-Bisabolol and (-)-8-*epi*-α-Bisabolol. *Angewandte Chemie International Edition* **2003**, *42*, (8), 941-943.
- 35. Mukhopadhyay, Sudip; Bell, Alexis T. Direct Liquid-Phase Sulfonation of Methane to Methanesulfonic Acid by SO₃ in the Presence of a Metal Peroxide. *Angewandte Chemie* **2003**, *115*, (9), 1049-1051.
- Denney, Melanie C.; Smythe, Nichole A.; Cetto, Kara L.; Kemp, Richard A.; Goldberg, Karen I. Insertion of Molecular Oxygen into a Palladium(II) Hydride Bond. *Journal of the American Chemical Society* 2006, 128, 2508-2509.
- Keith, Jason M.; Nielsen, Robert J.; Oxgaard, Jonas; Goddard, William A.,
 III. Pd-Mediated Activation of Molecular Oxygen in a Nonpolar Medium.
 Journal of the American Chemical Society 2005, *1*27, 13172-13179.
- Keith, Jason M.; Muller, Richard P.; Kemp, Richard A.; Goldberg, Karen I.; Goddard, William A., III; Oxgaard, Jonas. Mechanism of Direct Molecular Oxygen Insertion in a Palladium(II)-Hydride Bond. *Inorganic Chemistry* 2006, 45, 9631-9633.
- 39. Boro, Brian Joseph. Investigations of Pincer-Ligated Transition Metal Complexes for the Activation of Molecular Oxygen. Dissertation, The University of New Mexico, Albuquerque, NM, 2009.
- 40. Fulmer, Gregory R.; Muller, Richard P.; Kemp, Richard A.; Goldberg, Karen I. Hydrogenolysis of Palladium(II) Hydroxide and Methoxide Pincer Complexes. *Journal of the American Chemical Society* **2009**, *131*, 1346-1347.
- 41. Becke, Axel D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. *Journal of Chemical Physics* **1993**, *98*, (7), 5648-5652.
- 42. Becke, Axel D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. *Journal of Chemical Physics* **1993**, *98*, (2), 1372-1377.

- 43. Lee, Chengteh; Yang, Weitao; Parr, Robert G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Physical Review B* **1988**, *37*, (2), 785-789.
- 44. Niu, Shuqiang; Hall, Michael B. Theoretical Studies on Reactions of Transition-Metal Complexes. *Chemical Reviews* **2000**, *100*, 353-405.
- 45. Johnson, Benny G.; Gill, Peter M. W.; Pople, John A. The Performance of a Family of Density Functional Methods. *Journal of Chemical Physics* **1993,** *98*, (7), 5612-5626.
- 46. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, J.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, J. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pompelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Maklick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
- 47. Hay, P. Jeffrey; Wadt, Willard R. Ab initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. *Journal of Chemical Physics* **1985**, *82*, (1), 299-310.
- 48. Wadt, Willard R.; Hay, P. Jeffrey. *Ab initio* Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. *Journal of Chemical Physics* **1985**, *82*, (1), 284-298.
- 49. Francl, Michelle M.; Pietro, William J.; Hehre, Warren J.; Binkley, J. Stephen; Gordon, Mark S.; DeFrees, Douglas J.; Pople, John A. Self-Consistent Molecular Orbital Methods. XXIII. A Polarization-Type Basis Set for Second-Row Elements. *Journal of Chemical Physics* **1982**, *77*, (7), 3654-3665.

- 50. Hehre, Warren J.; Ditchfield, R.; Pople, John A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. *Journal of Chemical Physics* **1972**, *56*, (5), 2257-2261.
- 51. Hariharan, P. C.; Pople, John A. The Effect of d-Functions on Molecular Orbital Energies for Hydrocarbons. *Chemical Physics Letters* **1972**, *16*, (2), 217-219.
- 52. Mulliken, R. S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. *Journal of Chemical Physics* **1955**, *23*, (10), 1833-1840.
- 53. Mulliken, R. S. Criteria for the Construction of Good Self-Consistent-Field Molecular Orbital Wave Functions, and the Significance of LCAO-MO Population Analysis. *Journal of Chemical Physics* **1962**, *36*, (12), 3428-3439.
- 54. Breneman, Curt M.; Wiberg, Kenneth B. Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. *Journal of Computational Chemistry* **1990**, *11*, (3), 361-373.
- 55. Wiberg, Kenneth B.; Rablen, Paul R. Comparison of Atomic Charges Derived via Different Procedures. *Journal of Computational Chemistry* **1993**, *14*, (12), 1504-1518.
- 56. Heinz, Hendrik; Suter, Ulrich W. Atomic Charges for Classical Simulations of Polar Systems. *Journal of Physical Chemistry B* **2004**, *108*, 18341-18352.
- 57. Mullay, John. A Simple Method for Calculating Atomic Charge in Molecules. *Journal of the American Chemical Society* **1986**, *108*, 1770-1775.
- 58. Gonzalez, Carlos; Schlegel, H. Bernhard. An Improved Algorithm for Reaction Path Following. *Journal of Chemical Physics* **1989**, *90*, (4), 2154-2161.
- 59. Fukui, Kenichi. A Formulation of the Reaction Coordinate. *Journal of Physical Chemistry* **1970**, *74*, (23), 4161-4163.
- 60. Gonzalez, Carlos; Schlegel, H. Bernhard. Reaction Path Following in Mass-Weighted Internal Coordinates. *Journal of Physical Chemistry* **1990**, *94*, 5523-5527.

- 61. Poli, Rinaldo; Harvey, Jeremy N. Spin Forbidden Chemical Reactions of Transition Metal Compounds. New Ideas and New Computational Challenges. *Chemical Society Reviews* **2003**, *32*, 1-8.
- 62. Harvey, Jeremy N.; Aschi, Massimiliano; Schwarz, Helmut; Koch, Wolfram. The Singlet and Triplet States of Phenyl Cation. A Hybrid Approach for Locating Minimum Energy Crossing Points Between Non-Interacting Potential Energy Surfaces. *Theoretical Chemistry Accounts* **1998**, *99*, 95-99.
- 63. Harvey, Jeremy N.; Aschi, Massimiliano. Spin-Forbidden Dehydrogenation of Methoxy Cation: A Statistical View. *Physical Chemistry Chemical Physics* **1999**, *1*, 5555-5563.
- 64. Bruno, Ian J.; Cole, Jason C.; Edgington, Paul R.; Kessler, Magnus; Macrae, Clare F.; McCabe, Patrick; Pearson, Jonathan; Taylor, Robin. New Software for Searching the Cambridge Structural Database and Visualizing Crystal Structures. *Acta Crystallographica Section B* **2002**, *B58*, 389-397.
- 65. Macrae, Clare F.; Bruno, Ian J.; Chisholm, James A.; Edgington, Paul R.; McCabe, Patrick; Pidcock, Elna; Rodriguez-Monge, Lucia; Taylor, Robin; Van de Streek, Jacco; Wood, Peter A. *Mercury CSD 2.0* -- New Features for the Visualization and Inestigation of Crystal Structures. *Journal of Applied Crystallography* **2008**, *41*, 466-470.
- 66. Taylor, Robin; Macrae, Clare F. Rules Governing the Crystal Packing on Mono- and Dialcohols. *Acta Crystallographica Section B* **2001**, *B*57, 815-827.
- 67. Macrae, Clare F.; Edgington, Paul R.; McCabe, Patrick; Pidcock, Elna; Shields, Greg P.; Taylor, Robin; Towler, Matthew; van de Streek, Jacco. *Mercury*: Visualization and Analysis of Crystal Structures. *Journal of Applied Crystallography* **2006**, *39*, 453-457.
- 68. Ozerov, Oleg V.; Guo, Chengyun; Fan, Lei; Foxman, Bruce M. Oxidative Addition of N-C and N-H Bonds to Zerovalent Nickel, Palladium, and Platinum. *Organometallics* **2004**, *23*, 5573-5580.
- 69. Koridze, A. A.; Kuklin, S. A.; Sheloumov, A. M.; Kondrashov, M. V.; Dolgushin, F. M.; Peregudov, A. S.; Petrovskii, P. V. Synthesis and Structure of Palladium P,C,P Pincer Complexes Based on Ferrocene. *Russian Chemical Bulletin, International Edition* **2003**, *52*, (12), 2754-2756.
- 70. Lansing, Raymond B., Jr. Investigations into Late Transition Metal Pincer Complexes as Possible Direct Partial Oxidation Catalysts. Dissertation, The University of New Mexico, Albuquerque, NM, 2010.
- 71. Johansson, Roger; Wendt, Ola F. Synthesis and Reactivity of (PCP) Palladium Hydroxy Carbonyl and Related Complexes toward CO₂ and Phenylacetylene. *Organometallics* **2007**, *26*, (9), 2426-2430.
- 72. Steinke, Tobias; Shaw, Bryan K.; Jong, Howard; Patrick, Brian O.; Fryzuk, Michael D. Synthesis and Coordination Chemistry of a Tridentate *o*-Phenylene-Bridged Diphosphine-NHC System. *Organometallics* **2009**, *28*, 2830-2836.
- 73. Allen, Frank H. The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising. *Acta Crystallographica Section B* **2002**, *B58*, 380-388.
- 74. Gregor, Lauren C.; Chen, Chung-Hsing; Fafard, Claudia M.; Fan, Lei; Guo, Chengyun; Foxman, Bruce M.; Gusev, Dmitry G.; Ozerov, Oleg V. Heterolytic Splitting of H-X Bonds at a Cationic (PNP)Pd Center. *Dalton Transactions* **2010**, *39*, 3195-3202.
- 75. Wander, Sheryl A.; Miedaner, Alex; Noll, Bruce C.; Barkley, Robert M.; DuBois, Daniel L. Chelate Bite Effects for [Pd(triphosphine)(solvent)](BF₄)₂ Complexes in Electrochemical CO₂ Reduction and the Heterolytic Cleavage of Molecular Hydrogen. *Organometallics* **1996**, *15*, 3360-3373.
- 76. Boro, Brian J.; Duesler, Eileen N.; Goldberg, Karen I.; Kemp, Richard A. An Unprecedented Bonding Mode for Potassium within a PCP-Pincer Palladium Hydride-K-Selectride Complex. *Inorganic Chemistry Communications* **2008**, *11*, 1426-1429.
- 77. Chowdhury, Sugata; Rivalta, Ivan; Russo, Nino; Sicilia, Emilia. The Recognition of a New Pathway for the Reaction of Molecular Oxygen with a Pd(II)-Hydride to Produce a Pd(II)-Hydroperoxide. *Chemical Physics Letters* **2008**, *456*, 41-46.
- 78. Chowdhury, Sugata; Rivalta, Ivan; Russo, Nino; Sicilia, Emilia. On the Insertion Mechanism of Molecular Oxygen into a Pd(II)-H Bond. Something to Add. *Chemical Physics Letters* **2007**, *443*, 183-189.

- Konnick, Michael M.; Decharin, Nattawan; Popp, Brian V.; Stahl, Shanon S. O₂ Insertion into a Palladium(II)-Hydride bond: Observation of MNechanistic Crossover between HX-Reductive-Elimination and Hydrogen-Atom-Abstraction Pathways. *Chemical Science* 2011, 2, 326-330.
- 80. Chowdhury, Sugata; Rivalta, Ivan; Russo, Nino; Sicilia, Emilia. Theoretical Investigation of the Mechanism of Acid-Catalyzed Oxygenation of a Pd(II)-Hydride to Produce a Pd(II)-Hydroperoxide. *Journal of Chemical Theory and Computation* **2008**, *4*, 1283-1292.
- Keith, Jason M.; Goddard, William A., III. Mechanism for Activation of Molecular Oxygen by *cis*- and *trans*-(Pyridine)₂Pd(OAc)H: Pd⁰ versus Direct Insertion. *Journal of the American Chemical Society* 2009, 131, 1416-1425.
- Konnick, Michael M.; Gandhi, Bhavesh A.; Guzei, Ilia, A.; Stahl, Shanon S. Reaction of Molecular Oxygen with a Pd^{II}-Hydride to Produce a Pd^{II}-Hydroperoxide: Acid Catalysis and Implications for Pd-Catalyzed Aerobic Oxidation Reactions. *Angewandte Chemie International Edition* **2006**, *45*, 2904-2907.
- Popp, Brian V.; Stahl, Shanon S. Mechanism of Pd(OAc)₂/Pyridine Catalyst Reoxidation by O₂: Influence of Labile Monodentate Ligands and Identification of a Biomimetic Mechanism for O₂ Oxidation. *Chemistry: A European Journal* 2009, *15*, 2915-2922.
- 84. Popp, Brian V.; Stahl, Shanon S. Insertion of Molecular Oxygen into a Palladium-Hydride Bond: Computational Evidence for Two Nearly Isoenergetic Pathways. *Journal of the American Chemical Society* **2007**, *129*, 4410-4422.
- 85. Konnick, Michael M.; Stahl, Shanon S. Reaction of Molecular Oxygen with a Pd^{II}-Hydride to Produce a Pd^{II}-Hydroperoxide: Experimental Evidence for an HX-Reductive-Elimination Pathway. *Journal of the American Chemical Society* **2008**, *130*, 5753-5762.
- 86. Keith, Jason M.; Goddard, William A., III; Oxgaard, Jonas. Pd-Mediated Activation of Molecular Oxygen: Pd(0) versus Direct Insertion. *Journal of the American Chemical Society* **2007**, *129*, 10361-10369.
- 87. Decharin, Nattawan; Popp, Brian V.; Stahl, Shanon S. Reaction of O₂ with [(-)-Sparteine]Pd(H)CI: Evidence for an Intramolecular [H-L]⁺ "Reductive Elimination" Pathway. *Journal of the American Chemical Society* **2011**, *133*, 13268-13271.

- 88. *Jaguar, version 7.0*, New York, NY, 2007.
- 89. Pauling, Linus, *The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry.* Second Edition ed.; Cornell University Press: Ithaca, NY, 1944; p 450.
- 90. Gibbs, G. V.; Hill, F. C.; Boisen, M. B.; Downs, R. T. Power Law Relationship between Bond Length, Bond Strength and Electron Density Distributions. *Physics and Chemistry of Minerals* **1998**, *25*, 585-590.
- 91. Goldberg, Karen I.; Smythe, Nichole A., personal communication from K.I.G. regarding the oxidation of triphenylphosphine from ^{tBu}PCPPdOOH performed by N.A.S.; 25 Jan 2012.
- 92. Bach, Robert D.; Wolber, Gregory J.; Coddens, Barry A. On the Mechanism of Metal-Catalyzed Epoxidation: A Model for the Bonding in Peroxo-Metal Complexes. *Journal of the American Chemical Society* **1984**, *106*, 6098-6099.
- Deubel, Dirk V.; Frenking, Gernot; Gisdakis, Philip; Herrmann, Wolfgang A.; Rösch, Notker; Sundermeyer, Jörg. Olefin Epoxidation with Inorganic Peroxides. Solutions to Four Long-Standing Controversies on the Mechanism of Oxygen Transfer. *Accounts of Chemical Research* 2004, 37, 645-652.
- 94. Oxgaard, Jonas; Tenn, William J., III; Nielsen, Robert J.; Periana, Roy A.; Goddard, William A., III. Mechanistic Analysis of Iridium Heteroatom C-H Activation: Evidence for an Internal Electrophilic Substitution Mechanism. *Organometallics* **2007**, *26*, 1565-1567.
- 95. Cundari, Thomas R.; Grimes, Thomas V.; Gunnoe, T. Brent. Activation of Carbon-Hydrogen Bonds via 1,2-Addition across M-X (X = OH or NH₂) Bonds of d⁶ Transition Metals as a Potential Key Step in Hydrocarbon Functionalization: A Computational Study. *Journal of the American Chemical Society* **2007**, *129*, 13172-13182.
- 96. Bader, Armin; Lindner, Ekkehard. Coordination Chemistry and Catalysis with Hemilabile Oxygen-Phosphorus Ligands. *Coordination Chemistry Reviews* **1991**, *108*, 27-110.
- 97. Slone, Caroline S.; Weinberger, Dana A.; Mirkin, Chad A. The Transition Metal Coordination Chemistry of Hemilabile Ligands. *Progress in Inorganic Chemistry* **1999**, *48*, 233-350.

98. Fulmer, Gregory R.; Kaminsky, Werner; Kemp, Richard A.; Goldberg, Karen I. Syntheses and Characterization of Palladium Complexes with a Hemilabile "PCO" Pincer Ligand. *Organometallics* **2011**, *30*, 1627-1636.