Fall 11-15-2018

DEVELOPMENT OF COPPER-CATALYZED SUZUKI-MIYAURA COUPLING USING ALKYLBORON REAGENTS AND NICKELCATALYZED ALKENE DICARBOFUNCTIONALIZATION REACTIONS

Prakash Basnet

Follow this and additional works at: https://digitalrepository.unm.edu/chem_etds
Part of the Organic Chemistry Commons

Recommended Citation

Basnet, Prakash. "DEVELOPMENT OF COPPER-CATALYZED SUZUKI-MIYAURA COUPLING USING ALKYLBORON REAGENTS AND NICKEL-CATALYZED ALKENE DICARBOFUNCTIONALIZATION REACTIONS." (2018).
https://digitalrepository.unm.edu/chem_etds/146

Prakash Basnet
Candidate

Chemistry and Chemical Biology
Department

This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee:

Prof. Ramesh Giri, Chairperson

Prof. Yang Qin

Prof. Mark Chalfant Walker

Prof. Changjian Feng

DEVELOPMENT OF COPPER-CATALYZED SUZUKI-MIYAURA COUPLING USING ALKYLBORON REAGENTS

AND

NICKEL-CATALYZED ALKENE DICARBOFUNCTIONALIZATION REACTIONS

by

PRAKASH BASNET
M.S., Organic Chemistry, Tribhuvan University, 2009

DISSERTATION

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
Chemistry
The University of New Mexico
Albuquerque, New Mexico

December, 2018

DEDICATION

To my parents, my wife Sheela and my son Sameep

For their love, support and encouragement

ACKNOWLEDGEMENTS

There are several people who have helped and supported me in so may ways in my research careers to achieve this milestone.

First, I would like to express my sincere gratitude and appreciation to my advisor Professor Ramesh Giri for all his unprecedented support, motivation and guidance throughout the program. I am fortunate to understand and explore the beautiful chemistry under his supervision. Besides helping me in my research, he steered me in the right direction in every aspect of life whenever he thought I needed it. His lessons not only in science but in life will stay with me forever.

I would like to thank my graduate committee members Professor Yang Qin, Professor Mark C. Walker, Professor Changjian Feng and Professor Wei Wang for all their precious time and insightful comments.

I am also thankful to our previous post-doc Dr. Santosh K. Gurung and my fellow graduate students in the Giri group Surendra Thapa, Bijay Shrestha, Shekhar KC, Roshan K. Dhungana, Namrata Khanal, Ryan Pike, Robert W. Lebrun, Lucas J. Chesley for their help and support throughout my research.

I am also grateful to all the professors and staffs of the Department of Chemistry and Chemical Biology, UNM for their help and co-operation throughout my study at UNM.

I would like to thank my family, my father Naresh K. Basnet, my mother Bhagawati Devi Basnet for their continued unconditional support and encouragement throughout this journey, my brother Pradip and sister Preeti for their moral support.

Lastly, I would like to thank my wife Sheela and my son Sameep. I want to acknowledge them for all the sacrifices that you have made for me, all the motivations and supports that you have given while completing this work. There is nothing that I can write that can express all the love and appreciation that I have for you and everything you do.

DEVELOPMENT OF COPPER-CATALYZED SUZUKI-MIYAURA COUPLING USING ALKYLBORON REAGENTS
 AND

NICKEL-CATALYZED ALKENE DICARBOFUNCTIONALIZATION REACTIONS

by
Prakash Basnet
M.S., Organic Chemistry, Tribhuvan University, 2009
Ph.D. Chemistry, University of New Mexico, 2018

Abstract

This thesis is divided into two parts. The first part deals with the development of coppercatalyzed Suzuki-Miyaura coupling of alkylboron reagents for the first time. In the second part, we will discuss the development of novel nickel-catalyzed alkene dicarbofunctionalization reactions.

Part I. Cross-coupling reactions are versatile tools to form new carbon-carbon bonds and are widely used in the synthesis of various drug molecules, natural products and materials. However, these reactions are typically catalyzed by palladium, an expensive and rare metal which makes the reaction unsustainable in long-terms. Additionally, palladium-catalyzed cross-coupling reactions with alkylorganometallic reagents suffer from side reactions due to complications by β-hydride elimination and protodemetalation. The reactions also less

tolerate to heteroarenes as these substrates generally deactivate the catalysts. These problems are largely addressed by using sterically hindered, expensive and difficult-tomake ligands. Recently, copper, a cheap and highly abundant metal, has emerged as an alternative catalyst, and has been utilized increasingly in cross-coupling reactions. The rising use of copper in cross-coupling can be attributed to lower tendency of alkylcopper intermediates for β-hydride elimination than those of analogous alkylpalladium species. Additionally, copper catalysts are also known to tolerate heteroarenes much better than palladium catalysts. In this thesis, we present our results on the development of a coppercatalyzed Suzuki-Miyaura cross-coupling reaction of alkylboron reagents with aryl and heteroaryl iodides. This novel reaction works well with alkylboron reagents without any complication form β-hydride elimination and tolerates heteroarenes without requiring sterically hindered and expensive ligands. We also conducted mechanistic studies of this reaction through independent synthesis of pertinent reaction intermediates such as anionic dialkylborate complexes, radical clock experiment and a Hammett plot. The experimental results with discrete alkylboron intermediates indicate that anionic alkyl(alkoxy)borate complexes, which are generally accepted as active transmetalating species, undergo disproportionation into anionic dialkylborate intermediates prior to transmetalation to copper catalyst. Radical clock experiment and the Hammett plot indicate that the reaction proceeds through non-radical pathway.

Part II. In this part, we discuss the development of nickel-catalyzed regioselective alkene dicarbofunctionalization reactions by using the imines as a coordination group. These reactions that simultaneously form two carbon-carbon bonds across alkenes will offer a highly effective strategy for providing modular, convergent, and expedient routes to
generate complex bioactive molecules. However, the development of regioselective threecomponent dicarbofunctionalization of unactivated alkenes has remained a formidable challenge for more than three decades. These reactions are limited to difunctionalizing geometrically constrained norbornenes. Recent use of coordination approach brought some success in dicarbofunctionalization of unactivated alkenes. However, the current state of the coordination approach is also seriously limited as only alkenes proceeding via fivemembered metallacycles or via stable and mostly planar six-membered metallacycles with vinylarenes can be utilized as substrates. Aliphatic γ, δ-alkenyl carbonyl compounds, which generate more challenging and less stable six-membered metallacycles, cannot be used as substrates. The use of these alkenes suffers from two key limitations: (1) formation of cross-coupling products caused by slow migratory insertion of alkenes due to weak binding, and (2) formation of Heck products caused by faster $\beta-\mathrm{H}$ elimination from metallacycles than competing transmetalation with organometallic reagents. These side reactions have seriously limited the generality of the coordination approach and the scope of alkene dicarbofunctionalization reactions. In this thesis, we will implement two novel strategies to difunctionalize unactivated alkenes regioselectively using organic halides and organometallic reagents. First, we will introduce a strategy of cationic catalysis, where cationic $\mathrm{Ni}(\mathrm{II})$ catalysts are generated in situ to address the key issues identified above. This process will enable us to perform regioselective γ, δ-difunctionalization of unactivated alkenes located at the γ, δ-position of carbonyl compounds. It is our observation that cationic $\mathrm{Ni}(\mathrm{II})$ promotes transmetalation faster than β-H elimination. This is unprecedented and will be of paramount fundamental significance in catalysis. Since this new cationic catalysis concept addresses two major issues that are common in alkene
difunctionalization, we also anticipate that this discovery will be widely applicable for a general class of alkene substrates. In our second strategy, we introduce a novel concept of metallacycle contraction process, a reaction that harnesses the potential of alkylmetal intermediates to undergo β - H elimination to contract a six-membered metallacycle to a five-membered metallacycle, and difunctionalizes unactivated alkenes at the unusual 1,3position rather than the usual 1,2-position of alkenes. This unprecedented reaction allows us to create two new carbon-carbon bonds at the β - and δ-positions of carbonyl compounds containing γ, δ-alkenes.

Table of Contents

Dedication iii
Acknowledgement iv
Abstract vi
List of Schemes xiii
List of Tables xviii
List of Figures xxii
List Of Abbreviations xxiii
Chapter 1. Cross-Coupling Reaction 1
1.1. Introduction 1
1.2. Cross-Coupling Reaction with Alkyl Organometallic Reagents 3
1.3. Suzuki-Miyaura Cross-Coupling of Alkylboron Reagents 6
1.4. Conclusion 11
Chapter 2. Copper-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions. 13
2.1. Introduction 13
2.2. Copper-Catalyzed Suzuki-Miyaura Coupling. 17
2.3. Results and Discussion 19
2.4. Mechanistic Studies 24
2.5. Conclusion 33
Chapter 3. Dicarbofunctionalization of Alkenes 34
3.1. Introduction 34
3.2. Three-Component Dicarbofunctionalization of Alkenes 37
3.3. Conclusion 40
Chapter 4. Coordinating Group Approach for Dicarbofunctionalization of Alkene 42
4.1. Introduction 42
4.2. Nickel-catalyzed β, δ-Diarylation of Unactivated Alkene in Ketones 47
4.3. Conclusion 54
4.4. Nickel-catalyzed γ, δ-Diarylation of Unactivated Alkene in Ketimines 55
4.4. Conclusion 64
Chapter 5. Experimental 65
5.1. Copper-catalyzed Suzuki-Miyaura Coupling of Alkylboron reagents with Aryl
halides. 65
5.1.1. General Information 65
5.1.2. Experimental section 66
5.1.3. Characterization data for compounds 67
5.1.8. X-ray Crystallographic Data for Complex 45 98
5.1.9. X-ray Crystallographic Data for Complex 46 122
5.2. Nickel-catalyzed β, δ-Diarylation of Unactivated Alkene in Ketimines 140
5.2.1. General Information 140
5.2.2. Experimental Section 141
5.2.2. Characterization data for new compounds 154
5.2.3. Mechanistic investigation 184
5.2.4. X-ray Crystallographic Data for Compound 116 186
5.3. Nickel-catalyzed γ, δ-Diarylation of Unactivated Alkene in Ketones 198
5.3.1. General Information 198
5.3.2. Experimental Section 200
5.3.3. Mechanistic Investigations 206
5.3.4. Characterization Data for New Compounds 219
5.3.5. X-ray Crystallographic Data for Compound 158-DNP 249
References 265

List of Schemes

Chapter 1
Scheme 1.1. General cross-coupling reactions 1
Scheme 1.2. General catalytic cycle for cross-coupling reaction. 2
Scheme 1.3. Catalytic cycle for cross-coupling reaction with $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ organometallics 4
Scheme 1.4. Deactivation of palladium catalyst by heteroarenes 5
Scheme 1.5. Palladium catalyzed cross-coupling of secondary-alkylzinc with heteroaryl halides.. 6
Scheme 1.6. Palladium catalyzed coupling of primary alkyl-9-BBN with aryl iodides. 7
Scheme 1.7. Palladium catalyzed coupling of primary alkylboronic acid with aryl halides 8
Scheme 1.8. Palladium catalyzed cross-coupling with trifluoroboratohomoenolates 8
Scheme 1.9. Nickel catalyzed alkyl-alkyl Suzuki-Miyaura coupling 8
Scheme 1.10. Pd-catalyzed cross-coupling of trialkylboranes with iodobenzene 9
Scheme 1.11. Pd-catalyzed cross-coupling of cyclopentylboronic acid with 4-chlorotoluene 9
Scheme 1.12. Palladium catalyzed cross-coupling with cyclopropyl boronic acid 9
Scheme 1.13. Palladium catalyzed cross-coupling with cyclopentylboron reagent 9
Scheme 1.14. Palladium catalyzed cross-coupling between alkylboron with N, N-bis(2,6-
diisopropylphenyl)dihydroimidazolium chloride ligand 11
Scheme 1.15. Palladium catalyzed reaction between alkylboronic acid with bulkyferrocenylphosphine ligand.. 11

Scheme 1.16. Palladium catalyzed cross-coupling of primary alkylboranes with aryl bromides with bulky phosphine ligand
 11

Chapter 2

Scheme 2.1. Lower tendency of organocopper towards β-hydride elimination....................... 14

Scheme 2.2. Heteroarenes tolerance by copper catalyzed cross-coupling14

Scheme 2.3. Copper catalyzed cross-coupling of Grignard reagent with alkylhalides and
\qquad

Scheme 2.4. Copper catalyzed stille coupling with vinyl iodides.. 15

Scheme 2.5. Copper catalyzed aryl-aryl and aryl-heteroaryl Hiyama coupling........................ 16

Scheme 2.6. Copper catalyzed cross-coupling of organoindium with aryl iodides................... 16

Scheme 2.7. Copper catalyzed cross-coupling of arylzirconium with aryl iodides................... 17

Scheme 2.8. Copper catalyzed Negishi coupling with heteroaryl iodides............................... 17

Scheme 2.9. Copper catalyzed Suzuki-Miyaura coupling with aryl bromides and iodides......... 18

Scheme 2.10. Copper catalyzed Suzuki-Miyaura coupling with aryl and vinyl iodides............. 18

Scheme 2.11. Copper catalyzed aryl-aryl and aryl-heteroaryl Suzuki-Miyaura coupling............ 18

Scheme 2.12. Copper.xantphos catalyzed aryl-aryl Suzuki-Miyaura coupling........................ 19
Scheme 2.13. Copper catalyzed Suzuki-Miyaura coupling of aryl boron reagent and alkyl halidesand pseudohalides19
Scheme 2.14. Independent synthesis of organoboron complexes. 26
Scheme 2.15. Radical probe experiment 30
Scheme 2.16. Reaction of alkylboron reagent with electronically different aryl iodides 31
Scheme 2.17. Proposed catalytic cycle 32
Chapter 3
Scheme 3.1. General catalytic cycle for alkene difunctionalization through cross coupling with
fundamental issues 35
Scheme 3.2. Copper catalyzed cyclization/ cross-coupling of Arylzinc halides 36
Scheme 3.3. Cobalt catalyzed cyclization/ cross-coupling with Grignard reagents 36
Scheme 3.4. Palladium catalyzed diarylation of norbornadiene 37
Scheme 3.5. Cobalt catalyzed dicarbofunctionalization of dienes 38
Scheme 3.6. Palladium catalyzed arylvinylation of dienes 38
Scheme 3.7. Palladium catalyzed vinylarylation of styrenes 39
Scheme 3.8. Nickel catalyzed alkylarylation of styrenes 39
Scheme 3.9. Palladium catalyzed decarboxylation of unactivated alkenes 40
Scheme 3.10. Palladium catalyzed 1,1 difunctionalization of simple alkene 40

Chapter 4

Scheme 4.1. Coordinating group approach in difunctionalization of alkene 42
Scheme 4.2. Palladium catalyzed coordination assisted diarylation of vinyl ethers 43
Scheme 4.3. Nickel catalyzed difluoroalkylarylation of enamides 44
Scheme 4.4. Nickel catalyzed 1,2-diarylation of vinylarenes through cocordinating group assisted
formation of metallacycle 44
Scheme 4.5. Nickel catalyzed 1,2-diarylation of vinylsilanes through pyridine assisted formation of metallacycle. 45
Scheme 4.6. Nickel catalyzed alkylarylation of 8-aminoquinolinamide 45
Scheme 4.7. Nickel catalyzed difunctionalization of N-Allyl aminopyrimidines 46
Scheme 4.8. Nickel catalyzed carboacylation of alkene 46
Scheme 4.9. Nickel catalyzed reductive alkylarylation of alkenes 47
Scheme 4.10. Reaction of ketimine in previous conditions 47
Scheme 4.11. Contraction of transient nickellacycles and their stabilization by $(\mathrm{PhO})_{3} \mathrm{P}$ 48
Scheme 4.12. Deuterium labelling experiment 53
Scheme 4.13. Cross-over experiment 54
Scheme 4.14. Possible pathway for β, δ-diarylation 54
Scheme 4.15. Pathway for β, δ-diarylation and other side products. 55
Scheme 4.16. ${ }^{19}$ F-NMR monitoring of reaction between ArZnI and AgBF_{4} 62
Scheme 4.17. ${ }^{19} \mathrm{~F}$-NMR monitoring of reaction between ArZnI and CuI 62
Scheme 4.18. Formation of cationic palladium species by silver salts 63
Scheme 4.19. Formation of cationic palladium species by AgBF_{4} 63
Scheme 4.20. Possible pathway for γ, δ-diarylation of ketimine 64

List of Tables

Chapter 2

Table 2.1. Optimization of Reaction Conditions 21
Table 2.2. Substrate scope of different alkylboron reagent and aryl iodide 23
Table 2.3. Substrate scope of different alkylboron reagent and heteroaryl iodides 24
Table 2.4. Reactivity of n-Butyl-9-BBN Species 44-46 with 1-iodoisoquioline 27
Table 2.5. Values used to Obtain the Hammett Plot. 31
Chapter 4
Table 4.1. Optimization of reaction condition for β, δ-diarylation of alkene in ketones 49
Table 4.2. Scope with aryl iodides 50
Table 4.3. Substrate Scope of various ketone derivatives, aryl iodide and arylzinc reagents 52
Table 4.4. Optimization of reaction condition for γ, δ-diarylation. 56
Table 4.5. Substrate scope of arylzinc iodides 59
Table 4.6. Substrate scope with various ketimines, ArZnI and Aryl iodides 60
Chapter 5Table 5.1. Crystal data and structure refinement for complex 45.98
Table 5.2. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic DisplacementParameters $\left(\AA^{2} \times 10^{3}\right)$ for complex 45. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{\text {IJ }}$tensor100
Table 5.3. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for complex 45. The Anisotropic
displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathrm{U}_{11}+2 h k a * b * U_{12}+\ldots\right]$ 103
Table 5.4. Bond Lengths for complex 45 107
Table 5.5. Bond Angles for complex 45 109
Table 5.6. Torsion Angles for complex 45 113
Table 5.7. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$for complex 45116
Table 5.8. Atomic Occupancy for complex 45 121
Table 5.9. Sample and crystal data for complex 46 123
Table 5.10. Data collection and structure refinement for complex 46. 124
Table 5.11. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for
complex 46 126
Table 5.12. Bond lengths (\AA) for complex 46 128
Table 5.13. Bond angles $\left({ }^{\circ}\right)$ for complex 46 130
Table 5.14. Torsion angles $\left({ }^{\circ}\right)$ for complex 46 134
Table 5.15. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for complex 46 136
Table 5.16. Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for complex 46. 138
Table 5.17. Crystal data and structure refinement for compound 116............................ 188
Table 5.18. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for jsOp212121_a. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor. 190
Table 5.19. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 116. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b^{*} U_{12}+\ldots\right] \ldots \ldots \ldots \ldots \ldots$.
Table 5.20. Bond Lengths for compound 116.. 195
Table 5.21. Bond Angles for compound 116.. 196
Table 5.22. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters

Table 5.23. Yields of 137 in the experiments with and without co-catalysts at different time intervals... 209
Table 5.24. Yields of $\mathbf{1 3 7}$ and $\mathbf{1 2 7}$ in the experiment with and without AgBF_{4} at different time intervals
Table 5.25. Yields of $\mathbf{1 3 7}$ and $\mathbf{1 2 7}$ in the experiment with and without CuI at different time intervals... 213
Table 5.26. Sample and crystal data for Compound 158-DNP.. 251
Table 5.27. Data collection and structure refinement for Compound 158-DNP..................... 252
Table 5.28. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for Compound 158-DNP.. 253
Table 5.29. Bond lengths (\AA) for Compound 158-DNP... 256
Table 5.30. Bond angles $\left({ }^{\circ}\right)$ for Compound 158-DNP... 258
Table 5.31. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for Compound 158-DNP......... 260
Table 5.32. Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for Compound 158-DNP.. 263

List of Figures

Chapter 1

Figure 1.1. Different drug molecules and materials synthesized applying cross-coupling............ 3

Figure 1.2. Sterically bulky and difficult-to-make ligands .5

Chapter 2

Figure 2.1. ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{DMSO}-d_{6}$ of the reaction mixture overlaid with the standard

Figure 2.2. ${ }^{11} \mathrm{~B}$ NMR spectrum in $\mathrm{DMSO}-d_{6}$ of the reaction mixture overlaid with the standard samples of the borate complexes 45 and 46 .28

Figure 2.3. ${ }^{11}$ B NMR spectrum in HMPA of the reaction mixture overlaid with the standard samples of the borate complexes $\mathbf{4 5}$ and 4629

Figure 2.4. Hammett plot... 30

Chapter 4

Figure 4.1. In situ ${ }^{19} \mathrm{~F}$ NMR monitoring of reaction progress by generating cationic Ni-species for the reaction of alkenyl imine 57 with 4-FC ${ }_{6} \mathrm{H}_{4} \mathrm{ZnI}$ and $4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I} \ldots . . . \ldots$

Figure 4.2. ${ }^{19} \mathrm{~F}$-NMR monitoring of reaction between ArZnI and AgBF_{4}62

List of Abbreviations

Ac	acetyl, acetate
Aq.	Aqueous
Bn	benzyl
${ }^{13} \mathrm{C}$ NMR	carbon nuclear magnetic resonance
CDCl3	deuterated chloroform
cat.	catalyst
d	doublet
dd	doublet of doublet
dt	double of triplet
δ	chemical shift
dr	diastereomeric ratio
DCM	dichloromethane
DMA	dimethylacetamide
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
equiv	equivalents
EtOAc	ethyl acetate
Et2O	diethyl ether

GC	gas chromatography
GC-MS	gas chromatography mass spectrometry
g	gram
h	hours
HMPA	hexamethylphosphoramide
HOAc	acetic acid
1 H NMR	proton nuclear magnetic resonance
HRMS	high resolution mass spectra
Hz	hertz
ipr	isopropyl
IR	infrared
J	coupling constant
m	meta
MeCN	acetonitrile
mg	milligram
m	multiplet
MHz	megahertz
min	minute
ml	milliliter

mmol	millimole
mol	mole
MS	mass spectrometry
M	transition metal
NHC	N-heterocyclic carbene
NMR	nuclear magnetic resonance
NMP	N-Methyl-2-pyrrolidone
o	ortho
p	para
ppm	parts per million
pent	pentet
q	quartet
rt	room temperature
s	singlet
sept	septet
TBS	tert-butyldimethylsilyl
THF	tetrahydrofuran
triplet	
triplet of triplet	
m	

TEA triethylamine
UV ultraviolet

Chapter 1. Cross-Coupling Reaction

1.1. Introduction

Cross-coupling reactions are very efficient and powerful methods of forming new carboncarbon bonds. ${ }^{1,2}$ These reactions utilize organometallic reagent as a source of nucleophile and organic halide or pseudo-halide as a source of electrophile. Cross-coupling reactions are typically catalyzed by palladium. There are several named reactions for cross-coupling based on the types of organometallic reagents used. The commonly used organometallic reagents are organoboron (Suzuki-Miyaura), ${ }^{3,4}$ organozinc (Negishi), ${ }^{5,6}$ organosilicon (Hiyama), ${ }^{7}$ organomagnesium (Kumada) ${ }^{8,9}$ and organotin (stille). ${ }^{10}$ The importance and usefulness of this transformation was recognized by the Nobel prize in chemistry awarded to pioneer scientists Richard Heck, Akira Suzuki and Ei-chi Negishi in 2010. ${ }^{11}$

Scheme 1.1. General cross-coupling reactions

$$
\begin{aligned}
& \mathrm{R}^{2} \mathrm{M}+\mathrm{R}^{\prime}-\mathrm{X} \xrightarrow{\text { R- alkyl, aryl, vinyl, etc; } \mathrm{R}^{\prime}-\text { alkyl, aryl, vinyl, etc }} \begin{array}{l}
\text { M- B, Si, Sn, } \mathrm{Zn}, \mathrm{Mg} \text {, etc; } \mathrm{X}=\text { halides, pseudohalides } \\
\text { Catalyst- } \mathrm{Pd}, \mathrm{Ni}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Co}, \mathrm{Pt} \text {, etc }
\end{array} \\
& \mathrm{R}^{\prime}-\mathrm{R}^{\prime} \\
& \text { Transition metal catalyst }
\end{aligned}
$$

The history of cross-coupling dates back to the $18^{\text {th }}$ century when Glaser reported the first copper mediated homocoupling of phenylacetylene. ${ }^{12}$ However, the use of homocoupling reaction was limited due to the requirement for a super stochiometric amount of metal and their low level of selectivity. The reaction was later made catalytic by Cadiot and Chodkiewicz. ${ }^{13}$ Despite these early works, the field of cross-coupling only gained momentum after the discovery of palladium as a catalyst for the coupling of alkenes with
aryl halides by Mizoroki ${ }^{14}$ and Heck, ${ }^{15}$ a reaction now popularly known as Mizoroki-Heck reaction.

The general mechanism of transition metal-catalyzed cross-coupling reaction is represented by three elementary steps (Scheme 1.2). These steps are oxidative addition, transmetalation and reductive elimination. Generally, cross-coupling reaction with a palladium or nickel catalyst involves oxidative addition as the first step. In this step, an organic halide adds to a catalyst by a two-electron redox process. This step is followed by transmetalation, a process where ligand exchange takes place between the organometallic

Scheme 1.2. General catalytic cycle for cross-coupling reaction

reagent and oxidative addition intermediate $\mathbf{2}$ with the transfer of the organic component to the transition metal. The final step is reductive elimination by which the two carbon moieties on the catalyst $\mathbf{3}$ are released with the formation of new carbon-carbon bond, and with concomitant two-electron reduction of the metal, regenerates the active catalyst $1 .{ }^{16}$

Cross-coupling reactions are one of the most versatile reactions known in organic chemistry, and are widely used in the synthesis of various natural products, drug molecules
and materials. ${ }^{17}$ For example (Figure 1.1), Suzuki coupling was utilized for Merck's synthesis of Losartan, a drug for the treatment of high blood pressure. ${ }^{18}$ Recently, a large scale reaction to synthesize Crizotinib was also reported in which Suzuki coupling was implemented. ${ }^{19}$ Crizotinib, a potential drug for cancer treatment, and PDE472, a potential drug for the treatment of asthma, were also prepared using Corriu-Kumada and Negishi coupling. ${ }^{20}$ Likewise, materials like polyalkylthiophenes, a polymer used in organic solar cells, was prepared by Kumada coupling. ${ }^{21}$

Figure 1.1. Different drug molecules and materials synthesized applying cross-coupling

1.2. Cross-Coupling Reaction with Alkyl Organometallic Reagents

Alkyl organometallic reagents refer to compounds containing sp^{3} carbons bonded to a metal. The use of alkyl organometallic reagents in cross-coupling are still less common than aryl and vinyl organometallic reagents and remain underdeveloped. Synthetically, they are difficult to prepare and purify compared to aryl and vinyl organometallic reagents. They are also moisture sensitive and cannot be stored for long time. Therefore, they are generally generated in-situ prior to use. More critically, alkyl organometallic reagents are

Scheme 1.3. Catalytic cycle for cross-coupling reaction with $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ organometallics

prone to undergo β-H elimination and protodemetalation after they are transmetalated to transition metals (Scheme 1.3). ${ }^{22}$ It is also known that the alkyl organometallic reagent can also cause slow reductive elimination. ${ }^{23}$ By comparison, similar reactions that involve alkyl halides have largely been solved using nickel as a catalyst. Although the alkyl-metal species generated from alkyl halides also have issues similar to those generated after transmetalation with alkyl organometallic reagents, the use of alkyl halides as a carbon source is known to cause less problems then alkyl organometallic reagents when nickel catalysts are used. This is because nickel usually reduces alkyl halides by a single electron transfer (SET) process, and therefore, generates alkyl radicals that do not undergo $\beta-\mathrm{H}$ elimination. ${ }^{24,25}$ Recombination of these alkyl radicals with nickel and the subsequent reductive elimination are known to proceed fast with nickel catalysts. ${ }^{26,27}$

Cross-coupling of alkyl organometallic reagents with heteroaryl halides cause even further challenge in synthesis. ${ }^{28}$ This is due to deactivation of catalysts by binding of heteroarenes
to transition metals and displacing ligands that are typically required for cross-coupling. The catalyst deactivation eventually leads to termination of the reaction (Scheme 1.4). ${ }^{28,29}$

Scheme 1.4. Deactivation of palladium catalyst by heteroarenes

Both problems of $\beta-\mathrm{H}$ elimination with alkyl organometallic reagent and catalyst deactivation by heteroarenes are generally addressed in cross-coupling by the use of electron-rich and sterically hindered ligands (Figure 1.2). ${ }^{29-32}$ For example, Buchwald and coworkers recently employed a sterically hindered and complex biaryl phosphine ligand, CPhos, to carry out Negishi coupling of secondary alkylzinc reagents with heteroaryl halides (Scheme 1.5). ${ }^{33}$ These sterically hindered ligands prevent $\beta-\mathrm{H}$ elimination by forcing β-hydrogens out of syn co-planarity to transition metal catalysts. These ligands also prevent multiple coordination of heteroarenes that would generally displace the ligands. In addition, the sterically hindered ligands also help in promoting reductive elimination.

Figure 1.2. Sterically bulky and difficult-to-make ligands

Scheme 1.5. Palladium catalyzed cross-coupling of secondary-alkylzinc with heteroaryl halides

1.3. Suzuki-Miyaura Cross-Coupling of Alkylboron Reagents

The cross-coupling reaction that uses organoboron reagent as a nucleophilic coupling partner is called Suzuki-Miyaura coupling. Suzuki-Miyaura coupling is one of the most widely used cross-coupling reactions. ${ }^{34}$ The popularity of Suzuki-Miyaura coupling stems from several advantages of organoboron compounds over other organometallic reagents. Organoboron reagents can be easily prepared and are readily available. Unlike organozinc ${ }^{35}$ and organomagnesium ${ }^{36}$ reagents, organoboron reagents are less moisture sensitive and bench stable. Compared to organotin reagents, ${ }^{37}$ organoboron and its byproducts are also less toxic. ${ }^{38}$ In some reactions, water can also be used as a solvent. Moreover, Suzuki coupling shows higher tolerance of sensitive functional groups than organomagnesium and organozinc reagents. ${ }^{39}$ The high functional group tolerance and stability of organoboron reagents, however, come at the cost of their lower reactivity than organomagnesium and organozinc reagents. ${ }^{40}$ Use of organoboron reagents is a preferred compromise between their reactivity and stability over more reactive organomagnesium and organozinc reagents, and less reactive organosilicon reagents, which exhibit even more stability, and therefore less reactive, than organoboron reagents. Due to the preferred balance between reactivity and stability, organoboron reagents are more desired and
practical than other organometallic reagents. ${ }^{41}$ Therefore, the Suzuki-Miyaura coupling reaction remains one of the most useful reactions in the synthetic chemistry. ${ }^{42}$

The Suzuki-Miyaura coupling of alkylboron reagents with organic halides is highly desirable cross-coupling. However, this reaction still remains underdeveloped. Known examples typically use primary alkylboron reagents with limited reports on the coupling of secondary alkylboron reagents. For example, in 1989 Suzuki and co-workers developed the first cross-coupling between alkylboron reagents and aryl halides (Scheme 1.6). ${ }^{42}$ They also developed the cross-coupling between alkylboronic esters and aryl halides, but, the reaction requires toxic thallium hydroxide. ${ }^{43}$ In 2001, Falck and coworkers successfully developed the cross-coupling between primary alkylboronic acids with aryl halides in presence of a palladium catalyst (Scheme 1.7). The significance of this reaction is that it used the air and moisture stable alkylboronic acids and avoided the use of toxic thallium compounds. However, the reaction require stoichiometric amount of silver oxide. ${ }^{44}$ Similarly, Molander and coworkers also developed a palladium-catalyzed cross-coupling of potassium trifluoroboratohomoenolates with aryl halides (Scheme 1.8). ${ }^{45} \mathrm{Fu}$ and coworkers utilized a nickel catalyst, and developed alkyl-alkyl Suzuki-Miyaura coupling by using primary alkyl-9-BBN reagents in the presence of a diamine ligand (Scheme 1.9). ${ }^{46}$

Scheme 1.6. Palladium catalyzed coupling of primary alkyl-9-BBN with aryl iodides

Scheme 1.7. Palladium catalyzed coupling of primary alkylboronic acid with aryl halides

Scheme 1.8. Palladium catalyzed cross-coupling with trifluoroboratohomoenolates

Scheme 1.9. Nickel-catalyzed alkyl-alkyl Suzuki-Miyaura coupling

In 1989 Suzuki and coworkers were also successful in cross-coupling secondary alkylboron reagent particularly, cyclobutane and cyclohexane with iodobenzene in moderate yields (Scheme 1.10). ${ }^{42}$ In 2000, Fu and coworkers performed the palladium catalyzed crosscoupling between cyclopentylboronic acid and 4-chlorotoluene with 75% yield (Scheme 1.11). ${ }^{47}$ In 2002, Wallace and coworkers successfully utilized a cyclopropylboronic acid for the Suzuki-Miyaura coupling to afford higher yields. In this reaction, palladium in combination with tricyclohexylphosphine was used as a catalyst (Scheme 1.12). ${ }^{48}$ and they only used cyclopropylboronic acid. In 2008, Molander and coworkers developed a palladium-catalyzed Suzuki-Miyaura coupling using secondary alkylboron reagents
(Scheme 1.13). ${ }^{49}$ The reaction generally worked well with cyclic secondary alkylboron reagents. Reaction with iso-propylboron reagent however, formed the branched product with linear product via a β-H elimination and reinsertion pathway as a side reaction.

Scheme 1.10. Pd-catalyzed cross-coupling of trialkylboranes with iodobenzene

Scheme 1.11. Pd-catalyzed cross-coupling of cyclopentylboronic acid with 4chlorotoluene

Scheme 1.12. Palladium catalyzed cross-coupling with cyclopropyl boronic acid

Scheme 1.13. Palladium catalyzed cross-coupling with cyclopentylboron reagent.

Despite significant progress, the development of the Suzuki-Miyaura coupling with alkylboron reagents still remains a major challenge. The problem is mostly generic and is related to β-H elimination from alkylmetal species generated after transmetalation. The alkylboron reagents also show low tendency for transmetalation due to their relatively higher stability than alkylmagnesium and alkylzinc reagents. In many cases, the most reactive alkylboron reagents are alkyl-9-BBN (BBN: 9-borabicyclo(3.3.1)nonane), which are prone to undergo dehydroboration to generate alkenes. ${ }^{50,51}$

The use of sterically hindered and electron-rich ligands have been very successful in addressing the problems with coupling alkylboron reagents much like the cross-coupling with any other alkyl organometallic reagents. For example, In 2001, Andrus and coworkers developed the palladium catalyzed cross-coupling between aryldiazonium tetrafluoroborate and alkylcatecholborane using a N,N-bis(2,6diisopropylphenyl)dihydroimidazolium chloride as ligand (Scheme 1.14). ${ }^{52}$ The reaction works at room temperature and base is not required. In 2002, Hartwig and coworkers developed a palladium catalyst with ferrocenylphosphine ligand which was able to crosscouple alkylboronic acid with aryl bromides and chlorides (Scheme 1.15). ${ }^{53}$ Buchwald and coworkers developed in 2004 a highly efficient, electron-rich and sterically-hindered phosphine ligand for a palladium catalyst, and performed the Suzuki-Miyaura coupling between n-hexyl-9-BBN and aryl bromide, which furnished the coupling products in good yields (Scheme 1.16). ${ }^{54}$

Scheme 1.14. Palladium catalyzed cross-coupling between alkylboron with N,N-bis(2,6diisopropylphenyl)dihydroimidazolium chloride ligand

Scheme 1.15. Palladium catalyzed reaction between alkylboronic acid with bulky ferrocenylphosphine ligand

Scheme 1.16. Palladium catalyzed cross-coupling of primary alkylboranes with aryl bromides with bulky phosphine ligand

1.4. Conclusion

Cross-coupling reaction is a versatile tool to form new carbon-carbon bond. This reaction is typically catalyzed by palladium, but catalysts based on other metals (such as Ni, Fe and Co) are also on the rise. Among different cross-coupling reactions, the Suzuki-Miyaura coupling remains one of the most widely practiced in both small-scale and large-scale
synthesis of natural products, bioactive molecules, pharmaceuticals and materials. While well-developed for the coupling of aryl and vinyl electrophiles and nucleophiles, the Suzuki-Miyaura coupling of alkylboron reagents, and of any alkyl organometallic reagents in general, has still remained underdeveloped. Palladium-catalyzed, and in many cases Ni , Fe and Co-catalyzed, cross-coupling reactions are less tolerant of heteroarenes and alkyl organometallic reagents. The low tolerance arises mainly due to the high propensity of alkylmetal species of these metals to undergo facile $\beta-\mathrm{H}$ elimination and catalyst deactivation by heteroarenes by displacing critically-needed ligands from the metal catalysts. These problems have generally been addressed by implementing sterically hindered and electron-rich ligands. However, identification of a proper ligand that works the best for a particular set of reactions usually requires extensive screening of several exotic ligands, the preparation of which usually requires a cumbersome multistep synthetic endeavor. Even if they are commercially available, the cost of these ligands is forbiddingly expensive, and unaffordable. Therefore, there is a clear need for the development of new metal-based catalysts, which can address these problems at the fundamental level without requiring assistance from exotic and expensive ligands.

Chapter 2. Copper-Catalyzed Suzuki-Miyaura Cross-Coupling

Reactions

2.1. Introduction

Cross-coupling is very important tool in the synthesis of complex molecules to form new carbon-carbon bond. These transformations are typically catalyzed by palladium or nickel. Historically, copper was used prior to palladium or nickel in the formation of carboncarbon bond. After the discovery of palladium-catalyzed reactions, copper received less attention mainly due to the requirement for stoichiometric amounts of copper salts, and the formation of products in low yields. The inefficiency of the reaction was mainly ascribed to instability of organocopper species generated as reaction intermediates. In addition, organocopper also form less reactive aggregates, ${ }^{55,56}$ and undergo disproportionation by radical processes. ${ }^{57,58}$ Nevertheless, copper has gained significant attention in the last few years as an alternative to palladium in cross-coupling reactions. ${ }^{59,60}$ Copper is inexpensive, and also a sustainable metal, occurring naturally in higher abundance than palladium. More importantly, copper is known to be more tolerant of heteroatoms than palladium. In addition, alkylcopper species are also known to be less prone to undergo β-H elimination than analogous alkylpalladium species (Scheme 2.1). Examples from Cu-catalyzed conjugate addition, allylic substitution and cross-coupling have shown that alkylcopper species generally are reluctant to undergo $\beta-\mathrm{H}$ elimination. ${ }^{61-63}$ In addition, prior examples have also shown that Cu can tolerate $\mathrm{N}, \mathrm{O}, \mathrm{S}$-containing heteroarenes in copper-catalyzed cross-coupling reactions (Scheme 2.2). ${ }^{64}$

Scheme 2.1. Lower tendency of organocopper towards β-H elimination

No β-H elimination conjugate addition product

β-H elimination Heck product

Scheme 2.2. Heteroarenes tolerance by copper-catalyzed cross-coupling

The first copper-catalyzed cross-coupling was developed using various alkyl, aryl and vinyl Grignard reagents with alkyl halides and pseudohalides. Burns and coworkers were successful in developing a highly soluble copper catalyst comprising equimolar amounts of CuBr .DMS, LiSPh and Lithium bromide. Using this copper catalyst, they were able to develop a cross-coupling reaction in 1997 with organomagnesium reagents, and alkyl, aryl, allyl and vinyl halides, and pseudohalides (Scheme 2.3). ${ }^{65}$ Kang and coworkers also reported a copper-catalyzed cross-coupling reactions using organotin reagents with good to excellent yields. The reaction can be applied to the coupling of various organotin reagents like aryl, heteroaryl, vinyl and alkynyltin reagents with aryl and vinyl iodides (Scheme 2.4). ${ }^{66}$

Scheme 2.3. Copper-catalyzed cross-coupling of Grignard reagent with alkylhalides and pseudohalides

$$
\begin{aligned}
& \text { 53-94\% } \\
& X=\text { OTs, } I, B r, n=1,5,8 \\
& \text { Cu catalyst }=\mathrm{CuBr} . \mathrm{SMe}_{2} . \mathrm{LiBr} . \mathrm{LiSPh}
\end{aligned}
$$

Scheme 2.4. Copper-catalyzed Stille coupling with vinyl iodides

Our group has played a vital role in broadening the scope of copper-catalyzed crosscoupling reactions. Our group developed the first examples of copper-catalyzed Hiyama coupling of aryl or heteroaryltriethoxysilanes with aryl and heteroaryl halides. The reaction requires 2-(diphenylphosphino)- N, N-dimethylaniline as a ligand to promote the reaction. Interestingly, the reaction with heteroaryl iodides did not require any extra ligand (Scheme 2.5). ${ }^{67}$ Our group also developed a copper-catalyzed cross-coupling between trialkyl- or triarylindium reagents and aryl or heteroaryl iodides in the presence of 2-(tert-butyl-phosphino)- N, N-dimethylaniline as a ligand with moderate to excellent yields (Scheme 2.6). The reaction with heteroaryl iodides produced cross-coupled products without the use of a ligand. ${ }^{68}$ In the case of alkylindium reagents, the reaction gives products in good yields with primary, secondary and tertiary alkyl groups without any complications.

Scheme 2.5. Copper-catalyzed aryl-aryl and aryl-heteroaryl Hiyama coupling

Scheme 2.6. Copper-catalyzed cross-coupling of organoindium with aryl iodides

We also developed a copper-catalyzed cross-coupling reaction of arylzirconium reagents with aryl iodides in the presence of 2-(diphenylphosphino)- N, N-dimethylaniline as a ligand (Scheme 2.7). ${ }^{69}$ Copper-catalyzed Negishi coupling of alkylzinc and arylzinc reagents with aryl and heteroaryl iodides was also developed (Scheme 2.8). ${ }^{70}$ The reaction gave products in good yields with primary, secondary and tertiary alkylzinc reagents without any complications from $\beta-\mathrm{H}$ elimination. This reaction tolerated heteroaryl iodides without requiring a ligand. Similarly, our group developed the copper-catalyzed cross-coupling reaction using organoaluminium reagent and various electrophiles under otherwise similar reaction conditions. ${ }^{71}$ This reaction also furnished products in moderate yields with heteroaryl bromides and chlorides.

Scheme 2.7. Copper-catalyzed cross-coupling of arylzirconium with aryl iodides

Scheme 2.8. Copper-catalyzed Negishi coupling with heteroaryl iodides

2.2. Copper-Catalyzed Suzuki-Miyaura Coupling

In 2002, Rothenberg and coworkers reported the first example of Cu-catalyzed SuzukiMiyaura coupling of aryl boronic acids with aryl halides. ${ }^{72}$ They utilized copper/noble metal mixed nanoclusters as catalysts. A similar reaction was also developed by Ji and coworkers by utilizing a copper(0) catalyst in PEG 400 (Scheme 2.9). ${ }^{73} \mathrm{Hu}$ and coworkers developed a copper-catalyzed cross-coupling of arylboronic acids with aryl and vinyl halides using DABCO as a ligand (Scheme 2.10)..74 This reaction works well with various aryl iodides and bromides.

Scheme 2.9. Copper-catalyzed Suzuki-Miyaura coupling with aryl bromides and iodides

Scheme 2.10. Copper-catalyzed Suzuki-Miyaura coupling with aryl and vinyl iodides

Recently, we developed a copper-catalyzed Suzuki-Miyaura cross-coupling of aryl and heteroaryl boronic esters with aryl and heteroaryl iodides employing o-(di-tert-butylphosphino)- N, N-dimethylaniline as a ligand (Scheme 2.11). ${ }^{75}$ Interestingly, the reaction does not require any extra ligand with heteroaryl iodides. Brown and co-workers also developed a similar reaction using xantphos as a ligand for copper (Scheme 2.12). ${ }^{76,77}$

Scheme 2.11. Copper-catalyzed aryl-aryl and aryl-heteroaryl Suzuki-Miyaura coupling

Scheme 2.12. Copper.xantphos catalyzed aryl-aryl Suzuki-Miyaura coupling

Liu and coworkers developed copper-catalyzed cross-coupling using aryl boronic esters and alkyl halides and pseudohalides (Scheme 2.13). In this case, arylcopper intermediates formed after transmetalation react with alkyl halides through an $\mathrm{S}_{\mathrm{N}} 2$ process without requiring redox changes on copper. ${ }^{78,79}$

Scheme 2.13. Copper-catalyzed Suzuki-Miyaura coupling of aryl boron reagent and alkyl halides and pseudohalides

Although there has been a significant progress in developing Cu-catalyzed Suzuki-Miyaura coupling with aryl and vinylboron reagents, cross-coupling with alkylboron reagents still remains undeveloped. Development of such a reaction becomes formidably challenging due to the formation of alkylcopper intermediates that could undergo rapid β-H elimination. In addition, alkylcopper species can also undergo disproportionation reactions and derail the reaction to generate side products. Therefore, we show in the subsequent section our investigation and results on the development of Cu-catalyzed Suzuki-Miyaura coupling of alkylboron reagents.

2.3. Results and Discussion

We began our investigation by reacting n-butylboronic ester with 4 -iodotoluene in the presence of CuI as a catalyst. The reaction produced no cross-coupled product. From our previous studies on copper-catalyzed alkyl-aryl cross-coupling reactions with other organometallic reagents, it was evident that the reaction would furnish cross-coupling products with aryl halides if alkylcopper intermediates were generated after transmetalation. Therefore, we assumed that transmetalation could be the problem. It is also known that the trivalent organoboron reagents are less nucleophilic and typically do not undergo transmetalation. Therefore, we made the more nucleophilic tetravalent alkylboronic ester by treating it with 1 equiv of $n \mathrm{BuLi}$. Pleasingly, the alkylated
alkylboronic ester formed the cross-coupling product in 44% yield. We then examined the reaction using several bases and alkylboron reagents with different backbones. After examining various conditions, we found that the cross-coupled product was obtained in 90% GC yield when B-(2-phenylpropyl)- 9-BBN was treated with 4-iodo chlorobenzene in presence of $10 \mathrm{~mol} \% \mathrm{CuI}$ and 1.5 equivalent $\mathrm{LiO} t \mathrm{Bu}$ in HMPA at $80^{\circ} \mathrm{C}$ for 24 h (Table 2.1, entry 1). The alkyl-9-BBN reagent was prepared in-situ by the hydroboration of α methyl styrene. It was observed that both copper catalyst and base were indispensable for the reaction as there was no cross-coupled product formed in the absence of either of them. Other bases like $\mathrm{LiOMe}, \mathrm{K}_{3} \mathrm{PO}_{4}$ and CsF also also formed the desired product albeit in moderate yields. When DMSO, NMP, DMPU or DMF was used as a solvent instead of HMPA, the product was formed in low yields. Reactions in toluene, dioxane, acetonitrile or THF did not form any desired product. When n-octylboronic acid and n-octylboronic acid neopentyl glycol esters were used instead of $\mathbf{6}$, the reaction gave the product in 0% and 37% yields, respectively. 4-Bromobenzotrifluoride formed the product in 20% yield. The reaction can be run in a gram-scale (10 mmol) affording the expected product in 73% yield.

Table 2.1. Optimization of Reaction Conditions ${ }^{[a]}$

${ }^{\mathrm{a}} 0.1 \mathrm{mmol}$ scale reactions in 0.5 mL solvent. ${ }^{\mathrm{b}}$ GC yields with pyrene as a standard. Value in parenthesis is the isolated yield $\left(10.0 \mathrm{mmol}\right.$ scale reaction at $\left.120{ }^{\circ} \mathrm{C}\right) .{ }^{\mathrm{c}} 4$ Chlorophenyloctane as the product. ${ }^{\mathrm{d}}(\mathrm{OR}) 2=$ neopentylglycol ester. ${ }^{\mathrm{e}}$ 4-(2Phenylpropyl)benzotrifluoride as the product. $120^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

With the optimized condition in hand, we then studied the substrate scope of the reaction. It was found that the reaction condition was applicable with different alkylboron reagent and aryl iodides to afford the desired cross-coupled product in good to excellent yields. However, some reactions required moist $\mathrm{K}_{3} \mathrm{PO}_{4}$ and DMF instead of $\mathrm{LiO} t \mathrm{Bu}$ and HMPA to give the products in best yields. In some reactions elevated temperature $\left(100-120{ }^{\circ} \mathrm{C}\right)$ helped to produce best yields of the product. The reaction can be applied to variety of alkylboron reagents and aryl iodides (Table 2.2). The reaction was found to tolerate various functional groups like ketone, ester, nitrile, bromide, thioether and chloride with good to excellent yields. The reaction also tolerates ortho-substituents and sterically hindered groups. The reaction also works well with alkylboron reagent with β-branching.

To further broaden the substrate scope, the reaction condition was also investigated with nitrogen-containing heteroaryl iodides. The reaction gave products in good to excellent yields with different heteroaryl iodides (Table 2.3). Moist $\mathrm{K}_{3} \mathrm{PO}_{4}$ was required for the reaction to give best yield perhaps due to its solubility issue. Some reactions gave higher yield with the DMF instead of HMPA. The reaction was also found to tolerate β-branching in the alkylboron and functional groups like chlorides, bromides, olefins, monoprotected amines and thioethers.

Table 2.2. Substrate scope of different alkylboron reagent and aryl iodide

[a] Reactions were conducted in 1.0 mmol scale in 5 mL solvent. Values are isolated yields. [b] 2 equiv of alkyl-9-BBN was used. [c] $120{ }^{\circ} \mathrm{C}$. [d] 3 equiv of $\mathrm{K}_{3} \mathrm{PO}_{4}$ used instead of $\mathrm{LiO} t \mathrm{Bu} .[\mathrm{e}] 36 \mathrm{~h} .[\mathrm{f}] 100^{\circ} \mathrm{C} .[\mathrm{g}] 24 \mathrm{~h}$.

Table 2.3. Substrate scope of different alkylboron reagent and heteroaryl iodides

[a] Reactions were conducted in 1.0 mmol scale in 5 mL solvent. Values are isolated yields. [b] $100^{\circ} \mathrm{C}$. [c] 48 h. [d] DMF used instead of HMPA. [e] $60^{\circ} \mathrm{C}$. [f] 12 h.

2.4. Mechanistic Studies

The copper mediated cross-coupling were discovered before the palladium catalyzed crosscoupling. However, less attention was given due to various challenges like lack of understanding of mechanism, possible disproportionation of organocopper species, difficulty in characterization of intermediates and formation of aggregates. ${ }^{80}$ However,
mechanistic studies on copper-catalyzed coupling reaction have been done which were mainly focused on $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bond formation. ${ }^{21}$ In case of $\mathrm{C}-\mathrm{C}$ bond, our group had done some mechanistic works on aryl-aryl Suzuki-Miyaura cross-coupling.

Metal catalyzed cross-coupling involves three elementary steps which are oxidative addition, transmetalation and reductive elimination. Our previous study on coppercatalyzed Suzuki-Miyaura cross-coupling, transmetalation was found to be the initial step which follows oxidative addition and reductive elimination is the final step. So, we began our mechanistic investigation and first focused on transmetalation step. It is believed that more nucleophilic organometallic species undergo faster transmetalation. Organozinc and organomagnesium are nucleophilic enough to undergo transmetalation. However, organoboron are mildly nucleophilic and therefore require base to transmetalate which is believed to be due to the formation of more nucleophilic anionic borate species. The control reaction shows that reaction did not proceed without base. This indicates the potential role of base in the formation of anionic borate species. So, we assume the anionic boron intermediate formed by the reaction between alkylboron and base should be the transmetalating species. To probe further detail in the transmetalation step, we attempted to prepare the potential transmetalating species by treating B-OMe $9-\mathrm{BBN}$ with $n \mathrm{BuLi}$ in THF at room temperature. Generally, an anionic boron intermediate, (OMe) $n \mathrm{Bu}-9-\mathrm{BBN}$ (47) was expected to form. However, two anionic borate species 45 and 46 were observed. This was believed to occur due to the disproportionation of the anionic (OMe)nBu-9-BBN. Similar trend of disproportionation was also reported by Furstner and coworkers. ${ }^{81}$ We independently synthesized the two anionic borate species. The dibutyl anionic borate was prepared by reacting $\mathrm{Br}-9-\mathrm{BBN}$ with 2.0 equiv of $n \mathrm{BuLi}$ at room temperature in pentane
for 1 h while di-methoxy anionic borate was prepared by reacting 9-OMe-9-BBN with 1 equiv of lithium methoxide at room temperature in methanol for 2 h . We also obtained the crystal structure of these borate intermediates, $\mathbf{4 5}$ as a 12-crown- 4 complex and $\mathbf{4 6}$ as a THF dimer.

Scheme 2.14. Independent synthesis of organoboron complexes

With these boron intermediate in hand, we conducted the reactivity study. First, we performed the reaction between 0.5 equiv of complex 45 and 1 equiv of 1-iodoisoquinoline without any base. The reaction gave 48% yield while when 0.5 equiv of lithium methoxide was added as a base in the reaction, it gave 95% yield of the product. This shows that complex 45 is also capable of transmetalating butyl group but it can only transmetalate one butyl group in absence of base. In the presence of base, complex $\mathbf{4 5}$ can transmetalates both butyl group. We performed another reaction using 0.5 equiv each of complex 45 and 46 in the reaction without the use of base, the reaction gave 97% yield. From this result, it shows that complex 45 and 46 comproportionates to give anionic borate species 47 and the potential role of these complexes in the reaction. Complex 47 was also believed to form when complex 45 was treated with base and when a complex 44 was treated with base.

Table 2.4. Reactivity of n-Butyl-9-BBN Species 44-46 with 1-iodoisoquioline

Entry	n-Bu-9-BBN complexes	Base	Yield [\%]
1	n-Bu-9-BBN (1.0 equiv)	none	trace
2	n-Bu-9-BBN (1.0 equiv)	LiOMe (1 equiv)	94
3	Complex 45 (0.50 equiv)	none	48
4	Complex 45 (1.0 equiv)	none	95
5	Complex $\mathbf{4 5}$ (0.50 equiv)	LiOMe (0.5 equiv)	94
6	Complexes $\mathbf{4 5}+\mathbf{4 6}$ (0.50 equiv	none	97
	each)		

We also performed the experiment to show the disproportionation of the complex 47 through the proton and boron NMR spectroscopy. These NMR spectra also shows that the anionic borate intermediate 47 undergo disproportionation to give two anionic borate species $\mathbf{4 5}$ and 46 in the reactions (Tables 2.1, 2.2, 2.3).

Figure 2.1. ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6} of the reaction mixture overlaid with the standard samples of the borate complexes 45 and 46.

Figure 2.2. ${ }^{11} \mathrm{~B}$ NMR spectrum in DMSO- d_{6} of the reaction mixture overlaid with the standard samples of the borate complexes 45 and 46.

Figure 2.3. ${ }^{11}$ B NMR spectrum in HMPA of the reaction mixture overlaid with the standard samples of the borate complexes 45 and 46.

Radical probe experiment

Our next step was to examine the reaction of aryl halide with the transmetalated copper intermediate. Aryl halide is believed to react with two different routes. Either copper(I) intermediate undergo oxidative addition to aryl iodides to form a copper (III) complex or undergo single electron transfer (SET) or halogen atom transfer (HAT) to generate copper (II) complex and aryl radical. To probe the potential involvement of aryl radical in the reaction, we first conducted the radical probe experiment. In this experiment, oallyloxyiodobenzene was used as a radical probe. It is reported that o-allyloxyiodobenzene undergoes cyclization protonation at the rate constant of $9.8 \times 10^{9} \mathrm{~s}^{-1}$ in DMSO at room temperature ${ }^{82}$ when the corresponding aryl radical is generated by the cleavage of C-I bond

Scheme 2.15. Radical probe experiment

(Scheme 2.15). This radical probe has been widely used to test the involvement of radical in the reaction. ${ }^{83,84}$ The reaction gave the cross-coupled product 48 in 64% yield without any observance of cyclized product. This result indicates that no free aryl radical is involved in this reaction.

Hammett plot

We also obtained the Hammett plot to further confirm non-radical pathway. We investigated the change in the rate of reaction of alkylboron reagent and aryl iodide in the

Figure 2.4. Hammett plot

standard reaction when electron withdrawing and electron donating substituents were used in the aryl iodides (Scheme 2.16). A linear curve $\left(R^{2}=0.99\right)$ was obtained when the log value of the ratio of initial rate of substituted iodoarenes to initial rate of the iodoarene was plotted against substituent constant (σ). The reaction constant (ρ) equal to +1.33 was obtained (Figure 2.4). The result was consistent with the reaction of electron rich metals

Scheme 2.16. Reaction of alkylboron reagent with electronically different aryl iodides

Table 2.5. Values used to Obtain the Hammett Plot

iodoarenes	$k_{\mathrm{X} \text { (initial) }}\left(\mathrm{M} \mathrm{s}^{-1}\right)$	$\log \left[k_{\mathrm{X}(\text { initial })} / k_{\mathrm{H}(\text { initial })}\right]$	σ
$\mathrm{X}=\mathrm{H}$	1.34×10^{-5}	0.00	0.00
$\mathrm{X}=\mathrm{OMe}$	0.61×10^{-5}	-0.34	-0.27
$\mathrm{X}=\mathrm{Me}$	0.92×10^{-5}	-0.16	-0.17
$\mathrm{X}=\mathrm{F}$	1.68×10^{-5}	0.10	0.06
$\mathrm{X}=\mathrm{Cl}$	3.02×10^{-5}	0.35	0.23
$\mathrm{X}=\mathrm{CF}_{3}$	7.58×10^{-5}	0.75	0.54

and aryl halides which proceeds through oxidative addition mechanism. ${ }^{85,86}$ This result also rules out the possibility of involving free aryl radical in the reaction and indicates the oxidative addition-reductive elimination pathway.

We then proposed the possible catalytic cycle of our reaction. We believe that the anionic borate intermediate formed after complexation of alkylboron with base undergo disproportionation before transmetalation and forms the two anionic borate species. The two butyl containing borate species then undergo transmetalation with copper catalyst 49

Scheme 2.17. Proposed catalytic cycle

51
to form alkylcopper species $\mathbf{5 0}$. This species undergoes oxidative addition with aryl iodide and forms copper (III) intermediate 51. The copper (III) species gives the desired product with the regeneration of active catalyst after reductive elimination.

2.5. Conclusion

We developed a novel copper-catalyzed Suzuki-Miyaura cross-coupling with alkylboron reagent and aryl or heteroaryl iodides without the use of any complex ligands. The reaction condition is applicable to various alkylboron reagent and tolerates sensitive functional groups and heteroarenes. Mechanistic studies showed that the anionic alkylborate intermediate prepared from alkyllithium and alkoxyboron reagent disproportionates to anionic dialkylborates and dialkoxyborates before transmetalation to copper catalyst. Radical clock experiment and Hammett plot obtained indicated that the reaction proceeds through non-radical pathway.

Chapter 3. Dicarbofunctionalization of Alkenes

3.1. Introduction

Transition metal-catalyzed dicarbofunctionalization is a versatile reaction to generate two new carbon-carbon bonds across an alkene in a single step..87,88 The reaction is an extremely efficient process to build complex molecule since it reduces time and energy required for the isolation and purification of intermediates. In addition, this method utilizes highly abundant and inexpensive alkenes, which are usually generated as byproducts of petroleum industry. Sharpless' dihydroxylation is one of the early examples in which an alkene is difunctionalized and two new $\mathrm{C}-\mathrm{O}$ bonds are generated. ${ }^{89}$

Dicarbofunctionalization through cross-coupling is one of the most useful ways to perform dicarbofunctionalization of alkenes. Herein, an alkene, organic halide and an organometallic reagent are used as reagents in presence of a transition metal catalyst. This process combines the elementary steps of the Heck process and a cross-coupling reaction to form two new carbon-carbon bonds across an alkene. The reaction can be anticipated to proceed with four basic steps - oxidative addition, migratory insertion, transmetalation and reductive elimination (Scheme 3.1). Initially, an organic halide oxidatively adds to a catalyst generally bound to the substrate alkene 53. Upon migratory insertion of the bound alkene, a new alkylmetal species $\mathbf{5 4}$ is generated, which then undergoes transmetalation with nucleophilic organometallic reagents. The resulting intermediate $\mathbf{5 5}$ undergoes reductive elimination to form a dicarbofunctionalized product and regenerates the catalyst
56.

Scheme 3.1. General catalytic cycle for alkene difunctionalization through cross-coupling with fundamental issues

However, the development of alkene dicarbofunctionalization reactions by cross-coupling approach is not straightforward. The sequence of the four elementary steps required for dicarbofunctionalization is generally marred by two major side reactions -1) direct crosscoupling between an organic halide and an organometallic reagent prior to alkene insertion, and 2) β-H elimination from the alkylmetal species after the alkene insertion. ${ }^{90-92}$ Therefore, these two issues must be addressed in order to develop alkene dicarbofunctionalization reaction. Despite these two serious challenges, a few alkene dicarbofunctionalization reactions have been developed. Majority of these reactions, however, involve cyclization/coupling where an alkene is tethered either to organic halides or organometallic reagents. ${ }^{93,94,95,96}$ These two component reactions are generally favored by the intramolecular nature of the alkene, which enables efficient alkene binding and promote migratory insertion faster than direct cross-coupling. In addition, the formation of
alkylmetal intermediates on the exocyclic backbone of a ring could also slow down the process of $\beta-H$ elimination and promote the subsequent steps of transmetalation and reductive elimination. For example, our group developed copper-catalyzed cyclization cross- coupling using alkylzinc halides and arylzinc halides with aryl and heteroaryl iodides. The reaction involves the radical cyclization followed by interception of alkylcopper species by aryl and heteroaryl iodides (Scheme 3.2). ${ }^{97}$ Oshima and coworkers in 2001 reported the development of dicarbofunctionalization reaction in which they were successful in forming a cyclized product using alkene tethered to alkyl halide and Grignard reagent in presence of cobalt catalyst and dppe as ligand. The reaction was believed to occur through the formation of alkyl radicals (Scheme 3.3). ${ }^{98}$

Scheme 3.2. Copper-catalyzed cyclization/ cross-coupling of Arylzinc halides

Scheme 3.3. Cobalt catalyzed cyclization/ cross-coupling with Grignard reagents

3.2. Three-Component Dicarbofunctionalization of Alkenes

In a three-component alkene dicarbofunctionalization reactions, separate entities of alkenes, organic halides and organometallic reagents are employed. Transition metal catalyzed three-component dicarbofunctionalization of alkenes is a very efficient method to build molecular complexity rapidly from readily available starting materials. However, development of these three-component reactions remains a formidable challenge especially when alkenes are unactivated. The issues of cross-coupling and $\beta-\mathrm{H}$ elimination are generally more pronounced in three-component reactions than in cyclization/coupling because of inefficient alkene binding and the lack of any stabilizing factors in alkylmetal species. Traditionally, three strategies were generally implemented to dicarbofunctionalize alkenes - the use of geometrically constrained alkenes to prevent β - H elimination, the use of additional alkene component in dienes or styrenes to intercept alkylmetal species as p allyl and p-benzylmetal species, and the use of CO to intercept alkylmetal species as alkylacylmetal species.

As a first strategy of using geometrically restricted alkenes, Chiusoli and Catellani reported in 1982 the dicarbofunctionalization of norbornene with alkyl halides and alkynes catalyzed by palladium. ${ }^{99}$ In this reaction cis exocyclic products were formed without $\beta-\mathrm{H}$ elimination due to geometric restrictions. Dicarbofunctionalization of norbornadiene with aryl halides and Sodium tetraphenylborate was also successfully developed by Goodson and coworkers in presence of palladium catalyst (Scheme 3.4). ${ }^{100}$

Scheme 3.4. Palladium catalyzed diarylation of norbornadiene

Takai and coworkers reported the second strategy of using an additional alkene in dienes to stabilize alkylmetal species by developing difunctionalization of 1,3-dienes with alkyl halides and aldehydes in presence of chromium chlorides. ${ }^{101}$ This reaction required an excess amount of chromium salts to form products in good yields. In 2003, Oshima and coworkers reported the development of cobalt-catalyzed dicarbofunctionalization of 1,3dienes with alkyl halides and Grignard reagents (Scheme 3.5). ${ }^{102}$ In this case, $\beta-\mathrm{H}$ elimination was suppressed by the formation of π-allylcobalt intermediates. Sigman and coworkers also applied this strategy for palladium-catalyzed dicarbofunctionalization of dienes with arylboronic acids and vinyl triflates (Scheme 3.6). ${ }^{103}$ Similarly, Gong and coworkers used this approach for enantioselective dicarbofunctionalization of dienes with aryl halides and dialkyl malonates in presence of a palladium catalyst and a H_{8}-BINOL based phosphoramadite ligand. ${ }^{104,105}$

Scheme 3.5. Cobalt catalyzed dicarbofunctionalization of dienes

Scheme 3.6. Palladium catalyzed arylvinylation of dienes

Like dienes, styrene derivatives can also be used as a source of alkenes where the alkylmetal species is stabilized as π-benzylmetal intermediates. ${ }^{106}$ In 2010, Song and coworkers developed the vinylarylation of styrene derivatives using vinyl triflates and arylboronic acids in presence of palladium as a catalyst (Scheme 3.7). ${ }^{107}$ Recently, our group also successfully developed alkylarylation of styrenes using nickel as a catalyst (Scheme 3.8). ${ }^{108}$ The reaction condition are applicable to the use of various primary, secondary and tertiary alkyl halides. However, the reaction with tertiary alkyl halides required $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ as the nickel catalyst to get higher yield of the desired product.

Scheme 3.7. Palladium catalyzed vinylarylation of styrenes

Scheme 3.8. Nickel-catalyzed alkylarylation of styrenes

Stille and coworkers utilized the third approach in which CO molecules would intercept alkylmetal species by CO insertion to generate alkylacylmetal intermediates, which would not undergo $\beta-\mathrm{H}$ elimination. Herein, Stille and coworkers developed dicarbofunctionalization of various alkenes using carbon monoxide and methanol in presence of palladium chloride and copper chloride (Scheme 3.9). ${ }^{109}$ Although the reaction does not involve the pattern of cross-coupling approach for bond formation, the reaction
represents a powerful method to dicarbofunctionalize unactivated alkenes. In this method two alkoxy groups are simultaneously added to alkenes. Ishii and coworkers also developed later the dicarboalkoxylation of styrenes and unactivated alkenes using methanol in presence of palladium as a catalyst and molybdovanadophosphate as an oxidant. ${ }^{110}$ In this reaction, they observed the formation of 1,2- and 1,3-difunctionalized product.

Scheme 3.9. Palladium catalyzed decarboxylation of unactivated alkenes

The use of unbiased alkenes generally leads to the formation of Heck products during alkene difunctionalization reactions. However, Sigman and coworkers demonstrated in some instances that the alkene products after $\beta-H$ elimination could also undergo reinsertion of metal-hydrides ($\mathrm{Pd}-\mathrm{H}$) and furnish 1,1-dicarbofunctionalized products. For example, a Pd-catalyzed difunctionalization of unactivated alkenes with vinyl triflate and arylboronic acids formed 1,1-vinylarylated products (Scheme 3.10). ${ }^{104}$

Scheme 3.10. Palladium catalyzed 1,1-difunctionalization of simple alkene

3.3. Conclusion

Over the past few decades, significant progress has been made in the use of the combined alkyl-metal species and cross-coupling to difunctionalize unactivated alkenes with
organohalides and organometallic reagents. Several strategies have been executed since its discovery. However, the strategies require the special substrates. These substrates help to prevent the formation of heck product from $\beta-H$ elimination by the formation of geometrically constrained alkylmetal species, stable π-allyl metal, π-benzyl metal intermediates or intercepting the alkylmetal species with carbon monoxide. Using these strategies, various dicarbofunctionalization reactions involving three-component intermolecular and the two-component cyclization/cross-coupling processes were developed.

Chapter 4. Coordinating Group Approach for Dicarbofunctionalization of Alkene

4.1. Introduction

Heteroatom bearing groups such as pyridines and imines are among the best coordinating ligands for transition metals. Intramolecular chelation with these groups is thus utilized in organometallic chemistry to generate $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-M metallacycles ${ }^{111}$ that are stable towards β H elimination. ${ }^{112-117} \mathrm{C}\left(\mathrm{sp}^{3}\right)$-M metallacycles are also routinely generated in situ during catalytic $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bond functionalization directed by heteroatoms that resist $\beta-\mathrm{H}$ elimination. ${ }^{18,119}$ Metallacycles undergo decomposition by β-H elimination more slowly than their acyclic variants due to restricted rotations that prevent the attainment of favorable geometry for β-H elimination. ${ }^{112-117}$ Even in metallacycles that contain exocyclic alkyl groups with β-H's that have greater freedom of rotation, ${ }^{113} \beta-\mathrm{H}$ elimination proceeds almost four orders of magnitude more slowly than in their acyclic counterparts. ${ }^{112}$

Scheme 4.1. Coordinating group approach in difunctionalization of alkene

$\mathrm{M}=\mathrm{Pd}$, Ni etc; $\mathrm{M}^{\prime}=\mathrm{Zn}, \mathrm{Mg}$ etc; $\mathrm{X}=$ halides; $\mathrm{R}, \mathrm{R}^{\prime}=$ alkyl, aryl, $\mathrm{CG}=$ Coordinating group

In coordination-assisted alkene difunctionalization, it could be envisioned that the substrates could function as bidentate ligands due to the presence of the heteroatom and the alkene, which could intercept the initial oxidative addition intermediates, $\mathrm{R}-[\mathrm{M}]-\mathrm{X}$ (Scheme 4.1). ${ }^{120}$ This bidentate coordination could then enable the carbometalation of R-
[M]-X upon the coordinated alkene to proceed much faster than the direct cross-coupling between organohalides and organometallic reagents that usually operates as a serious side reaction.

In 2009, Larhed and co-workers successfully developed the oxidative diarylation of vinyl ethers in presence of palladium catalyst. In this reaction, they proposed that β-H elimination in the alkylpalladium intermediate was prevented by the formation of palladacycle with amine as coordinating group (Scheme 4.2). ${ }^{121}$ However, the alkene in this substrate is activated and same aryl groups are incorporated in the double bond.

Scheme 4.2. Palladium catalyzed coordination assisted diarylation of vinyl ethers

Zhang and coworkers in 2016 developed nickel-catalyzed difluoroalkylarylation of enamides where they showed the successful difluoroalkylarylation in the vinyl group of enamides using nickel catalyst. They proposed that nickellacyle formed between the oxygen in enamide as the coordinating group and alkene with catalyst is responsible to prevent the $\beta-H$ elimination (Scheme 4.3). ${ }^{122}$ Though, the reaction is a promising transformation, the difficulty in removal of coordinating group and activated alkene limits the scope.

Scheme 4.3. Nickel-catalyzed difluoroalkylarylation of enamides

Our group used the coordinating group strategy to regioselectively diarylate vinylarene derivatives in presence of nickel catalyst and easily removable imine as a coordinating group. This reaction is believed to undergo diarylation without β-H elimination due to the formation of 6-membered nickellacycle (Scheme 4.4). ${ }^{120}$ The reaction is highly promising as aryl iodide, bromides and triflates give the desired product in good yields. Similarly, our group also used pyridine as the coordinating group and developed the diarylation of pyridylvinyl silanes. In this reaction, the formation of 5-membered nickellacycle is believed to contribute in preventing β-H elimination (Scheme 4.5). ${ }^{123}$ The removal of coordinating group through oxidation of the difunctionalized product affords the alcohols.

Scheme 4.4. Nickel-catalyzed 1,2-diarylation of vinylarenes through cocordinating group assisted formation of metallacycle

Scheme 4.5. Nickel-catalyzed 1,2-diarylation of vinylsilanes through pyridine assisted formation of metallacycle

Engle and coworkers also developed the dicarbofunctionalization of alkene using 8aminoquinolinamide as the coordinating group. The reaction is proposed to proceed by the formation of transient metallacycle which prevent the $\beta-H$ elimination. Nevertheless, the coordination group require harsh condition to be removed (Scheme 4.6). ${ }^{124}$ To remove the coordinating group from the product, it has to be refluxed in ethanol in presence of sodium hydroxide. Zhao and coworkers did the nickel-catalyzed dicarbofunctionalization of alkene using aminopyrimidine as the coordinating group. The reaction forms 1,2 or 2,1 or 1,3 dicarbofunctionalized product depending on the use of various electrophiles. ${ }^{125}$ In this reaction as well the coordinating group is difficult to remove (Scheme 4.7).

Scheme 4.6. Nickel-catalyzed alkylarylation of 8-aminoquinolinamide

Scheme 4.7. Nickel-catalyzed difunctionalization of N-Allyl aminopyrimidines

Chu and coworkers recently developed the carboacylation of alkenes using nickel catalyst. The reaction is proposed to undergo through the assistance of oxygen as the coordinating group. The reaction involves the formation of acyl radical and addition to alkene which then radically recombined with the alkyl radical to form the difunctionalized product (Scheme 4.8). ${ }^{126}$ Similarly, Nevado and coworkers developed the reductive alkylarylation of alkenes using nickel catalyst. ${ }^{126,127}$ The reaction is believed to involve radical mechanism. In this reaction alkenes are mildly activated and in some cases the reaction is believed to involve the coordination assisted stabilization of the alkylmetal intermediate. In some particular substrates, it was observed that in the absence of coordinating groups the reaction did not afford any dicarbofunctionalized product (Scheme 4.9).

Scheme 4.8. Nickel-catalyzed carboacylation of alkene

Scheme 4.9. Nickel-catalyzed reductive alkylarylation of alkenes

4.2. Nickel-catalyzed $\boldsymbol{\beta}$, $\boldsymbol{\delta}$-Diarylation of Unactivated Alkene in Ketones

In our previous works on nickel-catalyzed diarylation of alkenes using a coordinating group strategy, we used the special substrates like N-phenyl-1-(2vinylphenyl)methanimine and pyridylvinylsilanes which are mildly activated alkenes. In addition, alkene and coordinating group remain in syn co-planar. This will facilitate strong binding of catalyst to alkene and helps in the formation of a stable metallacycle. This in turn helps to prevent β-H elimination and therefore undergo transmetalation and reductive elimination to give the desired product.

In our continuous effort to broaden the scope of dicarbofunctionalization of alkenes using coordinating group strategy, we decided to use an alkene with an aliphatic backbone and imine as a coordinating group. For this we chose hex-5-en-2-one as a substrate. It has an unactivated alkene and the keto group that can be converted into ketimine. We first subjected N-phenylhex-5-en-2-imine to our previous reaction conditions (Scheme 4.10).

Scheme 4.10. Reaction of ketimine in previous conditions.

Prior conditions:

$$
\begin{array}{lllc}
\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4} & \text { a) } 5 \mathrm{~mol} \% \mathrm{Ni}(\operatorname{cod})_{2}, \text { dioxane, } 80^{\circ} \mathrm{C}, 12 \mathrm{~h} & 0 & \text { traces } \\
\mathbf{A r}^{\prime}=4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} & \text { b) } 5 \mathrm{~mol} \% \mathrm{NiBr}_{2}, \mathrm{NMP}, 50^{\circ} \mathrm{C}, 24 \mathrm{~h} & 0 & 74 \%
\end{array}
$$

Unfortunately, we found that the reaction only afforded heck product without any
observance of diarylated product. ${ }^{128-130} \mathrm{We}$ assumed that due to its aliphatic backbone, the transient metallacycle formed after the binding of coordinating group and alkene to the catalyst will be 6 -membered which will be fluxional and unstable. Therefore, give a heck product by readily undergoing β-H elimination. ${ }^{92,128,131,132}$ To stabilize the fluxional and unstable 6-membered metallacycle we planned to use a ligand. The ligand was expected to Scheme 4.11. Contraction of transient nickellacycles and their stabilization by $(\mathrm{PhO})_{3} \mathrm{P}$

stabilize the metallacycle by occupying the coordination sites in the nickel catalyst. This in turn slows down the β-H elimination and forms heck product. As expected, we observed a formation of diarylated product when an electron deficient triphenylphospite was used as a ligand (Table 4.1). However, after a careful examination of the structure of product through the synthesis of 1,2-diarylated product and obtaining the x-ray crystal structure of the product, the product was found to be an unusual β, δ-diarylation instead of the regular γ, δ-diarylation of alkenyl ketones. We assumed that β, δ-diarylation product may be formed by the contraction of fluxional 6-membered nickellacycle to more stable 5membered nickellacycle through the $\beta-\mathrm{H}$ elimination and reinsertion of $\mathrm{Ni}-\mathrm{H}$ into the alkene (Scheme 4.11). ${ }^{133-135}$

During optimization of the reaction condition, it was found that the alkenyl ketimine when reacted with (4-(trifluoromethyl)phenyl)zinc iodide and 4-iodotoluene in presence of 5 mol $\% \mathrm{NiBr}_{2}$ and $5 \mathrm{~mol} \%$ triphenylphosphite in acetonitrile at $60^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, 71 \%$ yield of -

Table 4.1. Optimization of reaction condition for β, δ-diarylation of alkene in ketones

${ }^{\mathrm{a}} 0.1 \mathrm{mmol}$ scale reactions in 0.5 mL solvent. ${ }^{\mathrm{b}} 1 \mathrm{H}$ NMR yields using pyrene as an internal standard. Value in parenthesis is the isolated yield from $0.5 \mathrm{mmol} .{ }^{\mathrm{c}} \mathrm{Pd}(\mathrm{OAc}) 2, \mathrm{CoCl} 2$, FeCl 2 or CuI .
β, δ-diarylation product was formed (Table 4.1, entry 1) The reaction did not give any desired product in absence of either NiBr_{2} or triphenylphosphite. The yield of the desired product did not increase after using other substituted phosphites and phosphines. The ketimine formed from substituted aniline like 4-fluoroaniline, 4-methylaniline and butyl-

Table 4.2. Scope with aryl iodides ${ }^{\text {a }}$

${ }^{\text {a }}$ Isolated from $0.5 \mathrm{mmol} .5-10 \%$ Heck products observed.
amine also unable to increase the yield of product. The reaction also gave moderate yield with the use of DMF or DMSO as solvent instead of MeCN. Low yield was obtained with

THF and dioxane while no product was observed with toluene as solvent. The use of salts of common transition metal catalyst like $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{CoCl}_{2}, \mathrm{FeCl}_{2}$ or CuI instead of NiBr_{2} in the standard reaction did not form any difunctionalized products. No product was observed with the use of parent ketone in the presence and absence of triphenylphosphite in the standard reaction condition which shows the importance of imine as a coordinating group in the reaction.

With the optimized condition, we examined the substrate scope of the reaction condition. We first studied the substrate scope with respect to various electronically biased aryl iodides with ketimine 57 (Table 4.2). It was found that reaction works well with moderate to good yields of the desired product. The reaction also tolerates sensitive functional groups like fluorides, chlorides, methoxy, nitriles and esters and ortho-substituted aryl iodides with moderate to good yields.

For further scope of β, δ-diarylation reaction, we also examined the reaction condition with various ketimines, arylzinciodides and aryl iodides and observed that reaction gave moderate to good yields (Table 4.3). The reaction tolerates various important functional groups like nitriles, fluoride, chlorides, trifluomethyl and methoxy. The reaction with various alpha substituted ketimines furnished the diarylation product in moderate to good yield with nearly $1: 1$ diastereoselectivity.

Table 4.3. Substrate Scope of various ketone derivatives, aryl iodide and arylzinc reagents ${ }^{a}$

97, 55\%

111, 61\% (dr, 1:1.2)
112, 56\% (dr, 1:1.2)

113, 62\% (dr, 1:1)

$114,58 \%$, (dr, 1:1.5)

118, 61\% (dr, 1:1.3)

115, 43\%, (dr, 1:1.4)

116, 62\% (dr, 1:1)

117, 41\% (dr, 1:1.3)

119, 44\% (dr, 1:1.3)

X-ray
structure of compound 116
${ }^{\mathrm{a}}$ Isolated from $0.5 \mathrm{mmol} .5-10 \%$ Heck products observed.

Mechanistic Investigations

We also conducted experiments to know the actual pathway of reaction. At first, we performed the deuterium labelling experiment. We prepared the β-di-deuterium substituted ketimine $\mathbf{5 7}-\boldsymbol{d}_{\mathbf{2}}$ and subjected it to the standard reaction condition. The isolated product 59\boldsymbol{d}_{2} showed that one of the deuterium from β - position had quantitatively migrated to the γ position. This result supports the contraction of 6-membered metallacycle to more stable 5-membered metallacycle through $\beta-\mathrm{H}$ elimination and $\mathrm{Ni}-\mathrm{H}$ reinsertion before transmetalation and reductive elimination. We also performed the cross-over experiment adding $\mathbf{1 2 0}$ in the standard reaction condition. The product $\mathbf{1 2 1}$ was observed in a trace

Scheme 4.12. Deuterium labelling experiment

amount. This result indicates that nickel catalyst remained bound to alkene throughout the reaction.

Scheme 4.13. Cross-over experiment

Then, we proposed the possible pathway for β, δ-diarylation reaction. We believed that the metal catalyst first undergoes oxidative addition with aryl iodides. The resulting intermediate then migratory inserts into alkene and forms 6-membered nickellacycle $\mathbf{1 2 2}$. Due to the fluxional and unstable nature, it will readily undergo $\beta-H$ elimination. In the presence of ligand, Ni-H reinserts into alkene and forms a stable 5-membered nickellacycle 123. This nickellacycle undergo transmetalation with organozinc and the resulting intermediate will give the desired product after reductive elimination.

Scheme 4.14. Possible pathway for β, δ-diarylation

4.3. Conclusion

We developed a novel nickel-catalyzed regioselective β, δ-diarylation of unactivated alkene in ketimines with arylzinc reagents, aryliodides and $(\mathrm{PhO})_{3} \mathrm{P}$ as ligand through the formation of transient nickellacycle. The deuterium labelling experiment shows that the
fluxional and less stable 6-membered nickellacycle undergo contraction to more stable 5membered nickellacycle via $\beta-\mathrm{H}$ elimination followed by $\mathrm{Ni}-\mathrm{H}$ reinsertion. Cross-over experiment indicates that nickel catalyst remains bound to the alkene throughout the reaction.

4.4. Nickel-catalyzed γ, δ-Diarylation of Unactivated Alkene in Ketimines

 After the development of β, δ-diarylation of unactivated alkene in ketimine, we continued our efforts to develop γ, δ-diarylation reaction in ketimines. From the mechanistic works on β, δ-diarylation, we found that β-H elimination is faster than transmetalation in the fluxional and unstable nickellacycle 122. Therefore, the major challenge is β-H elimination due to which contraction of metallacycle took place.Scheme 4.15. Pathway for β, δ-diarylation and other side products

Therefore, we hypothesized that if we could promote transmetalation from 6-membered nickellacycle, there would be possibility of forming γ, δ-diarylation product. To promote transmetalation in the 6-membered nickellacycle, we planned to execute two ideas: Literature reports in the stille coupling reported that the rate of reaction is increased when a co-catalyst, usually copper salts are used. This is believed to be due to the faster
transmetalation of organocopper formed after transmetalation with organotin species with the palladium catalyst. ${ }^{136-138}$ Therefore, we believed that using a co-catalyst in our reaction like copper salts, could form a more nucleophilic organometal species through the transmetalation with organozinc. The more nucleophilic organometal then could transmetalate faster with the 6-membered nickellacycle and give the desired 1,2 diarylation after reductive elimination.

Secondly, we planned to generate a cationic nickel species in the reaction. It is believed that transmetalation undergo faster in the cationic nickel species than the neutral nickel species. ${ }^{139,140}$ We also assumed that the cationic nickel species will help to bind the alkene Table 4.4. Optimization of reaction condition for γ, δ-diarylation ${ }^{\text {a }}$

entry	reaction condition	\% yield of $\mathbf{1 2 5}$	\% yield of $\mathbf{1 2 6}$
1	$\mathrm{NiBr}_{2}, 15 \mathrm{~mol} \mathrm{\%} \mathrm{AgBF}_{4}$	7	39
2	$\mathrm{NiBr}_{2}, 15 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$	9	16
3	$\mathrm{Ni}(\operatorname{cod})_{2}, 15 \mathrm{~mol} \% \mathrm{AgBF}_{4}$	11	$80(76,72)^{\mathrm{b}}$
4	$\mathrm{Ni}(\operatorname{cod})_{2}, 15 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}$	20	65
5	$\mathrm{Ni}(\operatorname{cod})_{2}, 15 \mathrm{~mol} \% \mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{OTf}$	19	72
6	$\mathrm{Ni}(\operatorname{cod})_{2}, 15 \mathrm{~mol} \% \mathrm{CuI}$	15	$78(73)^{\mathrm{c}}$
7	$\mathrm{Ni}(\operatorname{cod})_{2}$	22	38

${ }^{a}$ Reactions run in 0.1 mmol scale. Yields determined by 1 H NMR with pyrene as a standard. Isolated yields in parenthesis. ${ }^{b}$ Isolated from $0.5 \mathrm{mmol}(76 \%)$ and 2.0 mmol (72\%). ${ }^{c}$ Isolated from $0.5 \mathrm{mmol}(73 \%)$.
tightly and facilitate the faster migratory insertion. This will help in the reduction of the rate of forming cross-coupled product. From literature reports, ${ }^{141}$ it was found that AgBF_{4} is considered as a good halide abstracting agent. Therefore, we first examined our previous reaction of ketimine in NMP by adding CuI or AgBF_{4} and indeed we found that 1,2 diarylation product was formed in significant amount when NiBr_{2} was used as a catalyst. when $\mathrm{Ni}(\operatorname{cod})_{2}$ was used as a catalyst instead of NiBr_{2}, the yield of the desired 1,2 diarylation increased upto 76%. We also performed the reaction with $15 \mathrm{~mol} \% \mathrm{CuI}$ and the reaction gave comparable yield. The yield of the product decreased to 38% when no additives were used (Table 4.4).

In-Situ Monitoring of the standard reaction

We also performed the reaction using 4-fluorophenylzinciodide and 4-iodo benzotrifluoride in presence of $15 \mathrm{~mol} \% \mathrm{AgBF}_{4}$ or CuI in standard condition and monitored it by ${ }^{19} \mathrm{~F}$-NMR. It was found that the rate of reaction on the addition of AgBF_{4} and CuI increased drastically with the significant reduction of cross-coupled product.

NMR yields (after hydrolysis): no additive, 137, 29\%; 127, 32\%; , 128, 37\% with $\mathrm{AgBF}_{4}, 137,68 \% ; 127,16 \% ; 128,14 \%$; with Cul, 137, $61 \% ; 127,25 \% ; 128,21 \%$

Figure 4.1. In situ ${ }^{19} \mathrm{~F}$ NMR monitoring of reaction progress by generating cationic $\mathrm{Ni}-$ species for the reaction of alkenyl imine 57 with $4-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}$ and $4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$. (a) Reaction profiles with and without AgBF_{4} and CuI . Blue: with AgBF_{4}; green: with CuI ; red: without AgBF_{4} or CuI. (b) Comparison of reaction rates for the formation of diarylation product 137 and biaryl side product 127 by cross-coupling in the presence and absence of AgBF_{4}. Blue: with AgBF_{4}; red: without AgBF_{4}; hollow square and circle: cross-coupling (127); solid square and circle: alkene diarylation (137)

With optimized condition in hand, we examined the substrate scope of this reaction condition. We examined the scope of electronically different arylzinc reagents with 4iodobenzotrifluoride as the aryl iodide with ketimine 57. The reaction gave moderate to good yields with the tolerance of various sensitive functional groups like esters, methoxy, trifluoromethane, fluorides, methyl and chlorides.

To further broaden the substrate scope of this reaction, we applied this reaction method to various ketimines, arylzinc reagents and aryl iodides. The reaction gave moderate to good yields. The reaction was also found to tolerate various sensitive and important functional
groups like esters, nitrile, ketone, fluorides, chorides and methoxy with moderate to good yields.

Table 4.5. Substrate scope of aryl zinciodides ${ }^{\text {a }}$

${ }^{\text {a }}$ Isolated from 0.5 mmol . ArZnI (1.5 equiv), ArI (1.5 equiv), NMP (2.5 mL). Yileds with CuI in parenthesis. ${ }^{\text {b }}$ Single diastereomer observed by GC of crude reaction mixture and by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ of isolated products.

It was found that the reaction works well with heterocycle substituted ketimine. The reaction condition was also applicable to the alpha substituted ketimines as they gave moderate yields with single diastereomer.

Table 4.6. Substrate scope with various ketimines, ArZnI and Aryl iodides ${ }^{\text {a }}$

${ }^{\text {a }}$ Isolated from 0.5 mmol . ArZnI (1.5 equiv), ArI (1.5 equiv), NMP (2.5 mL). Yields with CuI in parenthesis. ${ }^{\text {b }}$ Single diastereomer observed by GC of crude reaction mixture and by 1 H and ${ }^{13} \mathrm{C}$-NMR of isolated products.

Mechanistic Study

We hypothesized that a more nucleophilic organocopper species was formed by the transmetalation of organozinc with copper iodide. This organocopper undergo transmetalation with the alkene and coordinating group bound 6-membered nickellacycle. To test this hypothesis and know the actual role of AgBF_{4} and CuI in our reaction, we performed a reaction between p-fluorophenylzinciodide and AgBF_{4} which was monitored by ${ }^{19} \mathrm{~F}$-NMR. The reaction was monitored for 30 min . ${ }^{19} \mathrm{~F}$-NMR spectrum shows no any new peaks. Similarly, we also performed the reaction between p-fluorophenylzinciodide and CuI and monitored the reaction by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$. The ${ }^{19} \mathrm{~F}$-NMR spectrum shows no any new peak. So, these resulst indicate that there was no formation of any organocopper or organosilver species during our reaction and in fact, there was no reaction took place in

Scheme 4.16. ${ }^{19}$ F-NMR monitoring of reaction between ArZnI and AgBF_{4}

Figure 4.2. ${ }^{19} \mathrm{~F}$-NMR monitoring of reaction between ArZnI and AgBF_{4}

Scheme 4.17. ${ }^{19} \mathrm{~F}$-NMR monitoring of reaction between ArZnI and CuI

both reactions and hence rule out the possibility of forming any organosilver or organocopper in our reaction.

Figure 4.3. ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ monitoring of reaction between ArZnI and CuI

Literature reports by Overman and coworkers used AgBF_{4} in their reaction and proposed the formation of cationic palladium species which is believed to bind alkene strongly and helps in the migratory insertion of aryl group to alkenes. ${ }^{142}$ Similarly, Suzaki and coworkers proposed the formation of cationic palladium species when AgBF_{4} was used in their reaction. ${ }^{143}$

Scheme 4.18. Formation of cationic palladium species by silver salts

Scheme 4.19. Formation of cationic palladium species by AgBF_{4}

From these literature reports, we believe that AgBF_{4} was involved in the formation of cationic nickel species in the reaction which is responsible for increase in rate of transmetalation of organozinc reagent to nickel catalyst. The resulting intermediate then further undergo reductive elimination to give the desired 1,2-diarylation product.

Proposed Catalytic cycle

The nickel catalyst first undergo oxidative addition with aryl iodides and AgBF_{4} then abstracts halide from the resulting intermediate to form a cationic nickel species $\mathbf{1 6 4}$. This then migratory inserts into alkene to give 165. This intermediate undergo transmetalation
with organozinc and forms 166. The resulting intermediate then gives the desired product with the regeneration of catalyst after reductive elimination.

Scheme 4.20. Possible pathway for γ, δ-diarylation of ketimine.

4.4. Conclusion

We developed a novel nickel-catalyzed γ, δ-diarylation of unactivated alkene in ketimines with arylzinc reagents and aryl iodides. Reaction between arylzinc iodide and AgBF_{4} or CuI monitored by ${ }^{19} \mathrm{~F}$-NMR rules out the possibility of formation of organocopper or organosilver species and literature report supports the possibility of in-situ generation of cationic nickel species in the reaction which helped to promote transmetalation of organozinc with six-membered nickellacycle.

Chapter 5. Experimental

5.1. Copper-catalyzed Suzuki-Miyaura Coupling of Alkylboron reagents with Aryl halides.

5.1.1. General Information

Reactions were set up in a nitrogen-filled glovebox unless stated otherwise. All glassware were properly dried in an oven before use. Bulk solvents were obtained from EMD. Anhydrous solvents (DMF, DMSO, NMP, toluene, dioxane) were obtained from SigmaAldrich and were used directly without further purification. HMPA was dried over CaH_{2} followed by distillation and stored under N_{2} in $4 \AA$ molecular sieves. Deuterated solvents were purchased from Cambridge Isotope. 9-BBN (0.50 M solution in THF), B-methoxy-9-BBN (1.0 M solution in hexanes) and B-Br-9-BBN (1.0 M Solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were obtained in SureSeal bottles from Sigma-Aldrich. Aryl halides and olefins were purchased from Acros, Sigma-Aldrich, Oakwood, TCI-America, Matrix and Alfa-Aesar. CuI (99.999\%) was procured from Sigma-Aldrich. o-Allyloxyiodobenzene was synthesized following a literature procedure. ${ }^{144}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$ NMR spectra were recorded on a Bruker instrument (300, 75,282 , and 96 MHz , respectively) and internally referenced to the residual solvent signals of CDCl_{3} for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR at 7.26 and 77.16 ppm , respectively, $\mathrm{C}_{6} \mathrm{~F}_{6}$ for ${ }^{19} \mathrm{~F}$ NMR at -164.9 ppm , and boric acid for ${ }^{11} \mathrm{~B}$ NMR at 36.0 ppm . NMR chemical shifts and the coupling constants (J) for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$ NMR are reported in parts per million (ppm) and in Hertz, respectively. The following conventions are used for multiplicities: s, singlet; d, doublet; t, triplet; p, pentate; m, multiplet; dd, doublet of doublet. High resolution mass and NMR spectra of new compounds were recorded at the Mass Spectrometry and NMR Facilities, Department of Chemistry and

Chemical Biology, University of New Mexico (UNM). X-ray diffraction was performed on Bruker Kappa APEX II CCD diffractometer at the Department of Chemistry and Chemical Biology, UNM.

5.1.2. Experimental section

Generation of B-alkyl-9-BBN Reagents

In an oven-dried 15 mL pressure tube, olefin (1.5 mmol) was added to a solution of 9-BBN in THF ($3 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF). The pressure tube was tightly capped and heated at $60^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was then cooled to room temperature and the solvent was removed under vacuum. The B-alkyl-9-BBN generated in situ was directly used for subsequent reactions without further purification.

Procedure for Screening Reaction Conditions

B-(2-phenylpropyl)-9-BBN ($36.0 \mathrm{mg}, 0.15 \mathrm{mmol}$), 1-chloro-4-iodobenzene ($23.8 \mathrm{mg}, 0.10$ $\mathrm{mmol}), \mathrm{LiOtBu}(12 \mathrm{mg}, 0.15 \mathrm{mmol})$ or other bases $(0.15 \mathrm{mmol})$, and $\mathrm{CuI}(1.9 \mathrm{mg}, 0.010$ $\mathrm{mmol})$ were weighed in a 1-dram vial and dissolved in HMPA or other solvents (0.5 mL). The vial was then tightly capped and placed in a hotplate pre-heated to $80^{\circ} \mathrm{C}$ with vigorous stirring. After 48 h , the reaction mixture was cooled to room temperature, $20 \mu \mathrm{~L}$ of pyrene ($0.010 \mathrm{mmol}, 0.5 \mathrm{M}$ stock solution) as an internal standard was added, diluted with EtOAc $(1 \mathrm{~mL})$ and filtered through a short pad of silica gel in a pipette. The reaction mixture was then analyzed by GC.

General Procedure for Tables 2.2 and 2.3

In an oven-dried 15 mL pressure tube, B-alkyl-9-BBN reagent (1.5-2.0 mmol), aryl iodide $(1.0 \mathrm{mmol}), \mathrm{LiO} t \mathrm{Bu}(120.0 \mathrm{mg}, 1.5 \mathrm{mmol})$ or $\mathrm{K}_{3} \mathrm{PO}_{4}(636 \mathrm{mg}, 3 \mathrm{mmol})$ and $\mathrm{CuI}(19 \mathrm{mg}$,
0.10 mmol) were weighed and dissolved in HMPA or DMF (5 mL). The pressure vessel was then tightly capped and placed in an oil bath pre-heated to $60-120^{\circ} \mathrm{C}$ with vigorous stirring. After 12-48 h, the reaction mixture was cooled to room temperature, diluted with ethyl acetate $(15 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$. The aqueous fraction was extracted back with ethyl acetate $(5 \mathrm{~mL} \times 3)$ and combined with the first ethyl acetate fraction. The combined ethyl acetate fraction was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in a rotary evaporator. The non-heterocyclic products were purified by silica gel column chromatography using hexanes as an eluting solvent. Heterocyclic products were purified by silica gel column chromatography using 10-20\% ethyl acetate/hexanes.

5.1.3. Characterization data for compounds

1-Chloro-4-(2-phenylpropyl)benzene (8): ${ }^{145}$ Reaction was conducted in 10.0 mmol scale in HMPA at $120^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{LiO} t \mathrm{Bu}$ as a base. The title compound $\mathbf{8}$ was obtained as yellow oil ($1684 \mathrm{mg}, 73 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $2.76-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.89-3.06(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 5 \mathrm{H})$, 7.29-7.34 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.3,41.9,44.5,126.3,127.2,128.3$, 128.5, 130.6, 131.7, 139.3, 146.5; GCMS (m/z) 230.1.

1-Methyl-2-(2-phenylpropyl)benzene (9): Reaction was conducted in 5.0 mmol scale in HMPA at $120^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{LiO} t \mathrm{Bu}$ as a base. The title compound was 9 obtained as colorless oil ($747 \mathrm{mg}, 71 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.08(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 3 \mathrm{H})$, 7.31-7.35 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) δ 19.6, 21.2, 40.8, 42.5, 125.7, 126.1, $126.2,127.1,128.4,130.2,130.3,136.3,139.2,147.3$; IR (neat) $\mathrm{cm}^{-1} 2958,1510,1243$, 1035; HRMS (TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{18}\left(\mathrm{M}^{+}\right) 210.1409$, found 210.1416.

Propane-1,2-diyldibenzene (10): ${ }^{2}$ Reaction was conducted in 5.0 mmol scale in HMPA at $120^{\circ} \mathrm{C}$ for 24 h with 1.5 equiv of alkylboron reagent using $\mathrm{LiO} t \mathrm{Bu}$ as a base. The title compound was 10 obtained as yellow oil ($716 \mathrm{mg}, 73 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.78-$
$2.86(\mathrm{~m}, 1 \mathrm{H}), 2.97-3.09(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.35(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.3,42.0,45.2,126.0,126.1,127.2,128.2,128.4,129.3,140.9,147.1$; GCMS (m/z) 196.1.

1-Fluoro-4-(2-phenylpropyl)benzene (11): Reaction was conducted in 5.0 mmol scale in HMPA at $120^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{LiO} t \mathrm{Bu}$ as a base. The title compound was 11 obtained as yellow oil ($621 \mathrm{mg}, 58 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, 2.74-2.81 (m, 1H), 2.87-3.01 (m, 2H), 6.89-6.94 (m, 2H), 6.99-7.03 (m, 2H), 7.15-7.22 $(\mathrm{m}, 3 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.3,42.1,44.3,114.9\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$ $79.0 \mathrm{~Hz}), 126.2,127.2,128.5,130.6\left(\mathrm{~d}, J_{\mathrm{CF}}=28.2 \mathrm{~Hz}\right), 136.5\left(\mathrm{~d}, J_{\mathrm{CF}}=11.3 \mathrm{~Hz}\right), 146.7$, 159.8, 163.1; ${ }^{19}$ FNMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-116.1; IR (neat) $\mathrm{cm}^{-1} 2930,1602,1508,1452$, 1219, 1157, 1014; HRMS (TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}\left(\mathrm{M}^{+}\right)$214.1158, found 214.1148.

1-(2-Phenylpropyl)-4-(trifluoromethyl)benzene (12): Reaction was conducted in HMPA at $120^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{LiO} t \mathrm{Bu}$ as a base. The title compound was $\mathbf{1 2}$ obtained as colorless oil ($214 \mathrm{mg}, 81 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}$), 2.81$2.91(\mathrm{~m}, 1 \mathrm{H}), 2.95-3.06(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.4,41.8,44.9,125.1\left(\mathrm{q}, J_{\mathrm{CF}}=16.9 \mathrm{~Hz}\right), 126.4$, 127.1, 128.6, 129.5, 145.0, 146.3; ${ }^{19}$ FNMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-60.7; IR (neat) $\mathrm{cm}^{-1} 2948$, 1322, 1112, 1066; HRMS (TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3}\left(\mathrm{M}^{+}\right)$264.1126, found 264.1139.

1-Methyl-4-(2-phenylpropyl)benzene (13): Reaction was conducted in HMPA at $120{ }^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{LiO} t \mathrm{Bu}$ as a base. The title compound was 13 obtained as yellow oil ($164 \mathrm{mg}, 78 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, 2.71-2.81 (m, 1H), 2.92-3.07 (m, 2H), 7.00-7.09 (m, 4H), 7.18-7.24 (m, 3H), 7.28-7.34 ($\mathrm{m}, 2 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.2,21.3,42.0,44.7,126.1,127.2,128.4,128.9$, 129.2, 135.4, 137.9, 147.3; IR (neat) $\mathrm{cm}^{-1} 2921,1515,1451$; HRMS (TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{18}\left(\mathrm{M}^{+}\right)$210.1409, found 210.1408.

1-Methoxy-4-(2-phenylpropyl)benzene(14): ${ }^{146}$ Reaction was conducted in HMPA at 120 ${ }^{\circ} \mathrm{C}$ for 48 h with 2.0 equiv of alkylboron reagent using $\mathrm{LiO} t \mathrm{Bu}$ as a base. The title compound was 14 obtained as yellow oil ($179 \mathrm{mg}, 79 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.70-$ $2.77(\mathrm{~m}, 1 \mathrm{H}), 2.88-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.1(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, 2H), 7.18-7.22 (m, 3H), 7.27-7.33 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,42.2,44.3$, $55.3,113.6,126.1,127.2,128.4,130.2,133.0,147.2,157.9$; HRMS (APCI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}(\mathrm{MH})^{+}$227.1436, found 227.1431.

1-Methyl-4-phenethylbenzene (15): $:^{147}$ Reaction was conducted in HMPA at $120^{\circ} \mathrm{C}$ for 48 h with 2.0 equiv of alkylboron reagent using $\mathrm{LiO} t \mathrm{Bu}$ as a base. The title compound was $\mathbf{1 5}$ obtained as yellow oil ($100 \mathrm{mg}, 51 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.93$, (s, 4H), $7.13(\mathrm{~s}, 4 \mathrm{H})$,
7.21-7.25 (m, 3H), 7.30-7.35 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,37.7,38.2$, $126.0,128.4,128.6,129.2,135.5,138.9,142.1 ; \operatorname{GCMS}(\mathrm{m} / \mathrm{z}) 196.1$.

Methyl(4-(3-phenoxypropyl)phenyl)sulfane (16): Reaction was conducted in HMPA at $120{ }^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 16 was obtained as white solid ($173 \mathrm{mg}, 67 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.05-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$, $2.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.98(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.33(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.4,31.0,31.7,66.7,114.6,120.7,127.3,129.2,129.6,135.6$, 138.8, 159.1; IR (neat) $\mathrm{cm}^{-1} 2918,1489,1238,1174,1042$; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaOS}(\mathrm{MNa})^{+}$281.0976, found 281.0974.

1-Methoxy-4-(4-methylphenethyl)benzene (17): Reaction was conducted in HMPA at $120^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{LiO} t \mathrm{Bu}$ as a base. The title compound 17 was obtained as yellow oil ($104 \mathrm{mg}, 46 \%$) after purification by silica gel
column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 4 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 6.80-6.85(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 5 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2$, $37.3,37.9,55.4,113.9,128.5,129.1,129.5,134.2,135.4,138.9,157.9$; IR (neat) cm^{-1} 2918, 1509, 1241, 1030; HRMS (APCI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}(\mathrm{MH})^{+}$227.1436, found 227.1438.

Methyl(4-(4-methylphenethyl)phenyl)sulfane (18) : Reaction was conducted in HMPA at $120{ }^{\circ} \mathrm{C}$ for 48 h with 2.0 equiv of alkylboron reagent using LiOt Bu as a base. The title compound 18 was obtained as yellow oil ($172 \mathrm{mg}, 71 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}$, $4 \mathrm{H}), 7.13(\mathrm{~s}, 4 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $16.4,21.2,37.5,37.6,127.2,128.4,129.1,135.5,138.6,139.1$; IR (neat) $\mathrm{cm}^{-1} 2916,2850$, 1419, 1091; HRMS (APCI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~S}(\mathrm{MH})^{+}$243.1207, found 243.1212.

1-Isopropyl-2-(4-phenylbutyl)benzene (19) : Reaction was conducted in HMPA at $120{ }^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{LiO} t \mathrm{Bu}$ as a base. The title compound 19 was obtained as yellow oil ($103 \mathrm{mg}, 41 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.58-$ $1.76(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.09-3.19(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.30(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.2,28.7,31.5,31.6,33.0,36.0,125.4,125.6,125.8,126.3,128.4$, 128.6, 129.5, 139.4, 142.7, 146.6; IR (neat) $\mathrm{cm}^{-1} 2929,1489,1453,1032 ;$ HRMS (TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24}\left(\mathrm{M}^{+}\right) 252.1878$, found 252.1898 .

1-Butylnaphthalene (20): ${ }^{148}$ Reaction was conducted in HMPA at $120{ }^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound $\mathbf{2 0}$ was obtained as yellow oil ($108 \mathrm{mg}, 59 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.81(\mathrm{~m}, 2 \mathrm{H})$, $3.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.85-7.88 (m, 1H), 8.05-8.09 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.0,33.0,33.2$, 124.1, 125.5, 125.7, 125.8, 126.0, 126.5, 128.9, 132.1, 134.0, 139.1; HRMS (APPI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{16}(\mathrm{M})^{+}$184.1252, found 184.1259.

1-(3-Phenoxypropyl)-3,5-bis(trifluoromethyl)benzene (21): Reaction was conducted in HMPA at $80{ }^{\circ} \mathrm{C}$ for 36 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 21 was obtained as yellow oil ($281 \mathrm{mg}, 81 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.11-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 4.01(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.99(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 2 \mathrm{H}), 7.73$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.7,32.3,66.5,114.6,120.2\left(\mathrm{t}, J_{\mathrm{CF}}=14.1 \mathrm{~Hz}\right)$, 121.1, 121.8, 125.4, 128.8, 129.7, $131.6\left(\mathrm{q}, J_{\mathrm{CF}}=124.1 \mathrm{~Hz}\right), 144.2,158.9 ;{ }^{19}$ FNMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-61.3$; IR (neat) $\mathrm{cm}^{-1} 2925,1601,1275,1124$; HRMS (APPI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}(\mathrm{M})^{+} 348.0949$, found 348.0948.

1-(4-Phenylbutyl)-3,5-bis(trifluoromethyl)benzene (22): ${ }^{149}$ Reaction was conducted in HMPA at $80{ }^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 22 was obtained as yellow oil ($273 \mathrm{mg}, 79 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.70-1.75(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 2 \mathrm{H}), 7.73$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.7,31.0,35.6,35.8,120.0 \delta \mathrm{t}, J_{\mathrm{CF}}=14.1 \mathrm{~Hz}$), $121.8,125.4,126.0,128.5,128.6,131.5\left(\mathrm{q}, J_{\mathrm{CF}}=124.1 \mathrm{~Hz}\right), 142.2,145.0 ;{ }^{19}$ FNMR (282 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-61.3$; HRMS (APCI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{6}(\mathrm{M})^{+} 346.1156$, found 346.1157.

1-(3-(4-Methoxyphenoxy)propyl)-3,5-bis(trifluoromethyl)benzene (23): Reaction was conducted in HMPA at $80{ }^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 23 was obtained as colorless oil ($310 \mathrm{mg}, 82 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 2.08-2.17 $(\mathrm{m}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 4 \mathrm{H}), 7.67$ (s, 2H), $7.73(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.8,32.3,55.9,67.3,114.9,115.6$, $120.2\left(\mathrm{br} \mathrm{d}, J_{\mathrm{CF}}=16.9 \mathrm{~Hz}\right), 125.4,128.8,131.8\left(\mathrm{q}, J_{\mathrm{CF}}=126.9 \mathrm{~Hz}\right), 144.3,153.0,154.1$; ${ }^{19}$ FNMR (282 MHz, CDCl_{3}) $\delta-61.2$; IR (neat) $\mathrm{cm}^{-1} 2927,1508,1276,1126 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{O}_{2}(\mathrm{MH})^{+}$379.1133, found 379.1141.

1-(4-(4-Chlorophenethyl)phenyl)ethan-1-one (24): Reaction was conducted in HMPA at $100^{\circ} \mathrm{C}$ for 24 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 24 was obtained as light yellow solid ($111 \mathrm{mg}, 43 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.98(\mathrm{~m}$, $4 \mathrm{H}), 7.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.87(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.6,36.7,37.7,128.5,128.6,128.8,129.9,131.9,135.3,139.5,147.0$, 197.8; IR (neat) $\mathrm{cm}^{-1} 2916,1674,1360,1264,1090$; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{16}{ }^{35} \mathrm{ClO}$ $(\mathrm{MH})^{+} 259.0890$, found 259.0881 .

Methyl 4-(4-chlorophenethyl)benzoate (25): Reaction was conducted in HMPA at $100{ }^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound

25 was obtained as white solid ($140 \mathrm{mg}, 51 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.88-2.97(\mathrm{~m}, 4 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 7.05(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 36.9,37.9,52.2,128.2,128.6,128.7,129.9,130.0,132.0,139.6,146.8,167.2$; IR (neat) $\mathrm{cm}^{-1} 2922,1711,1507,1279,1096$; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{16}{ }^{35} \mathrm{ClO}_{2}(\mathrm{MH})^{+}$275.0839, found 275.0834 .

4-(4-Methoxyphenethyl)benzonitrile (26): ${ }^{150}$ Reaction was conducted in HMPA at $100{ }^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 26 was obtained as yellow oil ($182 \mathrm{mg}, 77 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.83-2.98(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.79-6.84$ $(\mathrm{m}, 2 \mathrm{H}), 7.01-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.5,38.3,55.4,109.9,113.9,119.2,129.5,132.2,132.8,147.4,158.1$; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}(M H)^{+}$238.1232, found 238.1227.

1-Bromo-3-phenethylbenzene (27): ${ }^{151}$ Reaction was conducted in HMPA at $100{ }^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound was 27 obtained as yellow oil ($184 \mathrm{mg}, 71 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.92(\mathrm{~s}, 4 \mathrm{H}), 7.09-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.37$ ($\mathrm{m}, 4 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 37.7,37.8,122.5,126.2,127.3,128.5,129.2,130.0$, 131.6, 141.3, 144.2; GCMS (m/z) 260.0.

4-(3-Phenoxypropyl)benzonitrile (28): Reaction was conducted in HMPA at $100^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound $\mathbf{2 8}$ was obtained as colorless oil ($211 \mathrm{mg}, 89 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.06-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.96(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.8(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.33$ $(\mathrm{m}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.5,32.6,66.4,110.0$, 114.6, 119.2, 120.9, 129.5, 129.6, 132.4, 147.4, 158.9; IR (neat) $\mathrm{cm}^{-1} 2928,2227,1733$,

1600, 1496, 1241, 1042; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}(\mathrm{MH})^{+}$238.1232, found 238.1226.

2-(2-Phenylpropyl)pyrazine (29): Reaction was conducted in DMF at $80^{\circ} \mathrm{C}$ for 24 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 29 was obtained as yellow oil ($137 \mathrm{mg}, 69 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.31(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.01-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.35(\mathrm{~m}, 1 \mathrm{H})$, 7.15-7.19 (m, 3H), 7.24-7.29 (m, 2H), $8.20(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{t}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.6,40.3,44.3,126.5,127.0,128.6,142.3$, 144.2, 145.3, 145.9, 156.4; IR (neat) $\mathrm{cm}^{-1} 2923,2854,1454,1403,1017$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{~N}_{2}(\mathrm{MH})^{+}$199.1235, found 199.1233.

2-Chloro-4-phenethylpyridine (30): Reaction was conducted in HMPA at $100^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound $\mathbf{3 0}$ was obtained as colorless solid ($172 \mathrm{mg}, 79 \%$) after purification by silica gel column
chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.92(\mathrm{~s}, 4 \mathrm{H}), 6.99(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.32(\mathrm{~m}, 3 \mathrm{H}), 8.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 36.5,36.9,122.9,124.4,126.6,128.5,128.7,140.3,149.6,151.8,154.0 ;$ IR (neat) $\mathrm{cm}^{-1} 2932,1591,1546,1385,1085$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{13}{ }^{35} \mathrm{ClN}(\mathrm{MH})^{+}$218.0737, found 218.0739.

2-Chloro-4-(3-phenylpropyl)pyridine (31): Reaction was conducted in HMPA at $80^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound $\mathbf{3 1}$ was obtained as yellow oil ($169 \mathrm{mg}, 73 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.91-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.69(\mathrm{~m}, 4 \mathrm{H})$, $7.03(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 31.6,34.4,35.3,122.8,124.3,126.2,128.5,128.6$, 141.4, 149.6, 151.7, 154.7; IR (neat) $\mathrm{cm}^{-1} 2931,1591,1545,1385,1085$; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{15}{ }^{35} \mathrm{ClN}(\mathrm{MH})^{+}$232.0893, found 232.0895.

7-Chloro-4-octylquinoline (32): ${ }^{71}$ Reaction was conducted in HMPA at $80^{\circ} \mathrm{C}$ for 24 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound $\mathbf{3 2}$ was obtained as yellow oil ($242 \mathrm{mg}, 88 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.43(\mathrm{~m}, 10 \mathrm{H}), 1.68-1.78(\mathrm{~m}$, $2 \mathrm{H}), 3.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,22.8,29.3,29.5,29.8,30.2,31.9,32.2,121.0,125.1,126.1,127.2,129.2,134.9$, 149.0, 151.3; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{23}{ }^{35} \mathrm{ClN}(\mathrm{MH})^{+} 276.1519$, found 276.1515 .

7-Chloro-4-(4-methylphenethyl)quinoline (33): Reaction was conducted in HMPA at 80 ${ }^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 33 was obtained as white solid ($188 \mathrm{mg}, 67 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.34$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,34.2,35.8,121.2,125.0,126.0,127.5,128.3,129.3,129.4$,
135.0, 136.1, 137.7, 147.8, 149.0, 151.4; IR (neat) $\mathrm{cm}^{-1} 2919,1598,1515,1417,1095$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{17}{ }^{35} \mathrm{ClN}(\mathrm{MH})^{+}$282.1050, found 282.1046.

1-Octylisoquinoline (34): ${ }^{9}$ Reaction was conducted in HMPA at $80^{\circ} \mathrm{C}$ for 24 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound $\mathbf{3 4}$ was obtained as yellow oil ($205 \mathrm{mg}, 85 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.32(\mathrm{~m}, 8 \mathrm{H}), 1.42-1.52(\mathrm{~m}, 2 \mathrm{H})$, $1.80-1.91(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.66(\mathrm{~m}, 2 \mathrm{H})$, $7.78(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,22.8,29.4,29.6,29.9,30.0,32.0,35.7,119.2,125.5,127.0$, 127.5, 129.8, 136.4, 142.0, 162.6; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}(\mathrm{MH})^{+} 242.1909$, found 242.1907.

N-(3-(isoquinolin-1-yl)propyl)aniline (35): Reaction was conducted in HMPA at $80^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 35 was obtained as white solid ($165 \mathrm{mg}, 63 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.18-2.28(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.7$, 32.7, 43.7, 112.9, 117.2, 119.5, 125.2, 127.1, 127.2, 127.5, 129.3, 130.0, 136.3, 141.9, 148.5, 161.3; IR (neat) $\mathrm{cm}^{-1} 3735,3628,2924,2308,1457,1010$; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{2}(\mathrm{MH})^{+}$263.1548, found 263.1547.

1-Phenethylisoquinoline (36): $:^{152}$ Reaction was conducted in HMPA at $80^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound $\mathbf{3 6}$ was obtained as yellow oil ($215 \mathrm{mg}, 92 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.19-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.64(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.54(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-$ $7.70(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 35.6,37.4,119.5,125.2,126.2,127.0,127.2,127.5,128.5$, found 234.1280.

1-(Hex-5-en-1-yl)isoquinoline (37): ${ }^{153}$ Reaction was conducted in HMPA at $80^{\circ} \mathrm{C}$ for 48 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 37 was obtained as yellow oil ($173 \mathrm{mg}, 82 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.53-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.94(\mathrm{~m}, 2 \mathrm{H})$, $2.14(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.92-5.05(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.89(\mathrm{~m}, 1 \mathrm{H})$, $7.49(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.2,29.3,33.8,35.5,114.6$, 119.3, 125.4, 127.0, 127.5, 129.9, 136.4, 138.9, 142.0, 162.3; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}(\mathrm{MH})^{+}$212.1439, found 212.1441.

2-Chloro-4-(4-phenylbutyl)pyridine (38): Reaction was conducted in HMPA at $80^{\circ} \mathrm{C}$ for 24 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound $\mathbf{3 8}$ was obtained as yellow oil ($174 \mathrm{mg}, 71 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.64-1.69(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.68(\mathrm{~m}, 4 \mathrm{H})$, $7.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.7,30.9,34.9,35.7,122.8,124.2,126.0,128.5,142.0$ 149.5, 151.7, 154.9; IR (neat) $\mathrm{cm}^{-1} 2932,1591,1545,1385,1085$; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{17}{ }^{35} \mathrm{ClN}(\mathrm{MH})^{+}$246.1050, found 246.1046.

2-Chloro-4-(2-phenylpropyl)pyridine (39): Reaction was conducted in HMPA at $100{ }^{\circ} \mathrm{C}$ for 24 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 39 was obtained as colorless oil ($164 \mathrm{mg}, 71 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.76-2.92(\mathrm{~m}$, $2 \mathrm{H}), 2.96-3.07(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 2 \mathrm{H})$, 7.17-7.23 (m, 1H), 7.25-7.31 (m, 2H), $8.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 21.6,41.1,44.0,123.4,124.9,126.7,127.0,128.7,145.3,149.3,151.5,153.2$; IR (neat) $\mathrm{cm}^{-1} 2963,1591,1385,1086$; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{15}{ }^{35} \mathrm{ClN}(\mathrm{MH})^{+} 232.0893$, found 232.0888.

5-Bromo-2-(4-phenylbutyl)pyrimidine (40): Reaction was conducted in DMF at $60^{\circ} \mathrm{C}$ for 24 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 40 was obtained as colorless oil (119 mg, 41\%) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.67-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.92(\mathrm{~m}, 2 \mathrm{H})$, $2.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 2 \mathrm{H})$, 8.69 (s, 2H) ; ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 28.3,31.2,35.8,38.7,117.7,125.8,128.4$, 128.5, 142.4, 157.7, 169.7; IR (neat) $\mathrm{cm}^{-1} 2930,1537,1421,1116,1010 ;$ HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrN}_{2}(\mathrm{MH})^{+}$291.0497, found 291.0500.

7-Chloro-4-(3-phenoxypropyl)quinoline (41): Reaction was conducted in DMF at $100^{\circ} \mathrm{C}$ for 24 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 41 was obtained as yellow oil ($199 \mathrm{mg}, 67 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.17-2.26(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.02(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-7.00(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{dd}, J=9.0 \mathrm{~Hz}$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 28.6,29.7,66.5,114.6,121.0,121.3,125.1,126.1,127.5$, 129.2, 129.6, 135.1, 147.9, 148.9, 151.3, 158.8; IR (neat) $\mathrm{cm}^{-1} 2930,1584,1496,1238$, 1055; HRMS (ESI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{17}{ }^{35} \mathrm{ClNO}(\mathrm{MH})^{+} 298.0999$, found 298.0993.

4-Butyl-7-chloroquinoline (42): Reaction was conducted in DMF at $100^{\circ} \mathrm{C}$ for 24 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound 42 was obtained as white solid ($156 \mathrm{mg}, 71 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.48(\mathrm{~m}$, $2 \mathrm{H}), 1.64-1.74(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=9.0$ $\mathrm{Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,22.8,31.9,32.2,121.0,125.1,126.1,127.2,129.2$, 134.8, 148.9, 151.3; IR (neat) $\mathrm{cm}^{-1} 2929 ; 1590,1458,1278,1091$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{15}{ }^{35} \mathrm{ClN}(\mathrm{MH})^{+} 220.0893$, found 220.0895 .

1-Butylisoquinoline (43): ${ }^{9}$ Reaction was conducted in DMF at $80^{\circ} \mathrm{C}$ for 12 h with 1.5 equiv of alkylboron reagent using $\mathrm{K}_{3} \mathrm{PO}_{4}$ as a base. The title compound $\mathbf{4 3}$ was obtained as yellow oil ($167 \mathrm{mg}, 90 \%$) after purification by silica gel column chromatography. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.43-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.90(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{t}, J$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,23.1$, $32.0,35.4,119.2,125.5,126.9,127.5,129.8,136.4,142.1,162.5$; HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}(\mathrm{MH})^{+}$186.1283, found 186.1281 .

Synthesis of Boron complexes

Synthesis of B-nButyl-9-BBN (44) ${ }^{153}$

n Butyllithium ($1.0 \mathrm{mmol}, 0.625 \mathrm{~mL}$ from a 1.6 M solution in hexanes) was added dropwise to a solution of $\mathrm{B}-\mathrm{Br}-9-\mathrm{BBN}\left(1.0 \mathrm{~mL}\right.$ from a 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) in pentane (1 mL) at room temperature. Immediately after the addition, lithium bromide precipitated as white solid. After stirring for 1 h , the reaction mixture was filtered through Celite. Solvent was removed under vacuum to obtain the title compound 44 as a colorless oil ($170 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.29-1.40(\mathrm{~m}$,
$4 \mathrm{H}), 1.43-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.72(\mathrm{~m}, 6 \mathrm{H}), 1.81-1.88(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.3,23.4,26.1,26.9,31.1,33.3 ;{ }^{11} \mathrm{BNMR}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 103.6$.

Synthesis of Lithium B-di-nbutyl-9-BBN (45) ${ }^{154}$

To a solution of B-nbutyl-9-BBN $44(178 \mathrm{mg}, 1.0 \mathrm{mmol})$ in pentane (3 mL), $n \mathrm{BuLi}(1.0$ $\mathrm{mmol}, 0.625 \mathrm{~mL}$ from a 1.6 M solution in hexanes) was added dropwise at room temperature. Immediately after the addition, a white solid precipitated out of the solution. After stirring for 1 h , the suspension was filtered through a frit funnel and the residue was washed with pentane $(2 \mathrm{~mL} \times 3)$. The residue was then dried under vacuum to obtain the title compound 45 as a white solid ($220 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 0.04-$ $0.10(\mathrm{~m}, 6 \mathrm{H}), 0.79(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.89-1.00(\mathrm{~m}, 4 \mathrm{H}), 1.08-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.41(\mathrm{~m}$, $6 \mathrm{H}), 1.57-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.92(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 14.9$, $23.9(\mathrm{q}$, $\left.J_{\mathrm{BC}}=52.8 \mathrm{~Hz}\right), 26.8\left(\mathrm{q}, J_{\mathrm{BC}}=49.0 \mathrm{~Hz}\right), 27.0,28.1\left(\right.$ apparent d, $\left.J_{\mathrm{BC}}=3.8 \mathrm{~Hz}\right), 29.2,32.9$; ${ }^{11}$ BNMR ($96 \mathrm{MHz}, \mathrm{DMSO}$) $\delta-2.50$.

Synthesis of Lithium B-di-nbutyl-9-BBN (45)•2(12-Crown-4) Complex

A solution of 12-Crown-4 ($0.32 \mathrm{~mL}, 2.0 \mathrm{mmol}$) in diethyl ether $(1 \mathrm{~mL})$ was added dropwise to a solution of lithium B-di-nbutyl-9-BBN $45(242 \mathrm{mg}, 1.0 \mathrm{mmol})$ in diethyl ether (2 mL) at room temperature. After stirring for 1 h , the solvent was removed under vacuum to obtain a white residue. The residue was washed with pentane $(2 \mathrm{~mL} \times 3)$ and dried under vacuum to obtain the title compound (45)•2(12-Crown-4) as a white solid ($540 \mathrm{mg}, 91 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO) $\delta 0.04-0.09(\mathrm{~m}, 6 \mathrm{H}), 0.79(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.90-1.00(\mathrm{~m}, 4 \mathrm{H}), 1.06-$ $1.21(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.41(\mathrm{~m}, 6 \mathrm{H}), 1.60-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.92(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 32 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}, \mathrm{DMSO}) \delta 14.8,23.8\left(\mathrm{q}, J_{\mathrm{BC}}=52.8 \mathrm{~Hz}\right), 26.7\left(\mathrm{q}, J_{\mathrm{BC}}=49.0 \mathrm{~Hz}\right), 27.0,28.1$ (apparent d, $\left.J_{\mathrm{BC}}=4.8 \mathrm{~Hz}\right), 29.2,32.9,69.9 ;{ }^{11} \mathrm{BNMR}(96 \mathrm{MHz}, \mathrm{DMSO}) \delta-2.50$. The title compound (45)•2(12-Crown-4) was crystallized by slow evaporation of a pentane/THF solution of (45)•2(12-Crown-4) under N_{2} atmosphere.

Synthesis of Lithium B-dimethoxy-9-BBN (46)

Route 1:

Route 2:

$n \mathrm{BuLi}(1.0 \mathrm{mmol}, 0.625 \mathrm{~mL}$ from a 1.6 M solution in hexanes) was added dropwise to a solution of B-methoxy-9-BBN ($1.0 \mathrm{mmol}, 1.0 \mathrm{~mL}$ from a 1.0 M solution in hexanes) in THF (2 mL). After stirring for 1 h , the solvent was removed under vacuum to obtain a white residue. ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR of the white solid in DMSO- d_{6} reveals the formation of three compounds $\mathbf{4 5 - 4 7}$ (see the overlaid ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectra below). The white residue was then dissolved in minimum toluene, layered with pentane and placed in a freeze at $-35^{\circ} \mathrm{C}$. Colorless crystals of the title compound $\mathbf{4 6}$ were formed in one week.

The title compound 46 was also synthesized independently as follows: B-methoxy-9-BBN ($1.0 \mathrm{mmol}, 1 \mathrm{~mL}$ from a 1.0 M solution in hexanes) was added dropwise to a solution of LiOMe ($38 \mathrm{mg}, 1.0 \mathrm{mmol}$) in methanol. After stirring the clear reaction solution for 1 h , the solvent was removed under vacuum to obtain a white residue. The residue was then dissolved in THF (2 mL) and precipitated with excess pentane. The precipitate was washed with pentane $(2 \mathrm{~mL} \times 5)$ and dried under vacuum to obtain the THF adduct of the title compound 46 as a white solid ($177 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 0.36(\mathrm{~s}, 2 \mathrm{H})$, $1.26-1.34(\mathrm{~m}, 6 \mathrm{H}), 1.65-1.77(\mathrm{~m}, 10 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}), 3.57-3.61(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO) $\delta 25.1,26.4,32.7,47.2,67.0 ;{ }^{11} \mathrm{BNMR}(96 \mathrm{MHz}, \mathrm{DMSO}) \delta-19.0$; IR (neat) $\mathrm{cm}^{-1} 2821,1202,1065,1043$.

Reaction in HMPA and in situ formation of compounds 45-47: $n \mathrm{BuLi}(0.10 \mathrm{mmol}$, 0.062 mL from a 1.6 M solution in hexanes) was added dropwise to a solution of B-methoxy-9-BBN ($0.10 \mathrm{mmol}, 0.10 \mathrm{~mL}$ from a 1.0 M solution in hexanes) in HMPA (1 $\mathrm{mL})$. After stirring for $0.5 \mathrm{~h},{ }^{11} \mathrm{~B}$ NMR was acquired which revealed the formation of three compounds 45-47 (see the overlaid ${ }^{11} \mathrm{~B}$ NMR spectra).

Mechanistic studies

Reactivity of n-Butyl-9-BBN Complexes with 1-Iodoisoquinoline

Reaction of n-butyl-9-BBN (44) with 1-iodoisoquinoline (Table 4, entry 1): n-butyl-9-BBN (44) ($17.8 \mathrm{mg}, 0.10 \mathrm{mmol}$), 1-iodoisoquinoline ($25.5 \mathrm{mg}, 0.10 \mathrm{mmol}$), and $\mathrm{CuI}(1.9 \mathrm{mg}$, 0.010 mmol) were dissolved with DMF in a 1 dram vial and heated at $100^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was cooled to room temperature, $20 \mu \mathrm{~L}$ of pyrene $(0.010 \mathrm{mmol}, 0.5$ M stock solution) as an internal standard was added, diluted with EtOAc (1 mL) and filtered through a short pad of silica gel in a pipette. The reaction mixture was then analyzed by GC. The butylated product 43 was formed only in trace amounts.

Reaction of n-butyl-9-BBN (44) with 1-iodoisoquinoline (Table 4, entry 2): n-butyl-9-BBN (44) ($17.8 \mathrm{mg}, 0.10 \mathrm{mmol}$), 1-iodoisoquinoline ($25.5 \mathrm{mg}, 0.10 \mathrm{mmol}$), LiOMe (3.8 mg , $0.10 \mathrm{mmol})$, and $\mathrm{CuI}(1.9 \mathrm{mg}, 0.010 \mathrm{mmol})$ were dissolved with DMF in a 1 dram vial and heated at $100^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was cooled to room temperature, $20 \mu \mathrm{~L}$ of pyrene ($0.010 \mathrm{mmol}, 0.5 \mathrm{M}$ stock solution) as an internal standard was added, diluted with EtOAc (1 mL) and filtered through a short pad of silica gel in a pipette. The reaction mixture was then analyzed by GC. The butylated product $\mathbf{4 3}$ was formed in 94% yield.

Reaction of the complex 45 with 1-iodoisoquinoline (Table 4, entry 3): complex 45 (12.1 $\mathrm{mg}, 0.050 \mathrm{mmol})$, - -iodoisoquinoline ($25.5 \mathrm{mg}, 0.10 \mathrm{mmol}$), and $\mathrm{CuI}(1.9 \mathrm{mg}, 0.010 \mathrm{mmol})$ were dissolved with DMF in a 1-dram vial and heated at $100{ }^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was cooled to room temperature, $20 \mu \mathrm{~L}$ of pyrene $(0.010 \mathrm{mmol}, 0.5 \mathrm{M}$ stock
solution) as an internal standard was added, diluted with EtOAc (1 mL) and filtered through a short pad of silica gel in a pipette. The reaction mixture was then analyzed by GC. The butylated product $\mathbf{4 3}$ was formed in 48% yield.

Reaction of the complex 45 with 1-iodoisoquinoline (Table 4, entry 4): complex 45 (24.2 $\mathrm{mg}, 0.10 \mathrm{mmol}$), 1-iodoisoquinoline ($25.5 \mathrm{mg}, 0.10 \mathrm{mmol}$), and $\mathrm{CuI}(1.9 \mathrm{mg}, 0.010 \mathrm{mmol})$ were dissolved with DMF in a 1-dram vial and heated at $100^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was cooled to room temperature, $20 \mu \mathrm{~L}$ of pyrene $(0.010 \mathrm{mmol}, 0.5 \mathrm{M}$ stock solution) as an internal standard was added, diluted with EtOAc (1 mL) and filtered through a short pad of silica gel in a pipette. The reaction mixture was then analyzed by GC. The butylated product $\mathbf{4 3}$ was formed in 95% yield.

Reaction of the complex 45 with 1-iodoisoquinoline (Table 4, entry 5): complex 45 (12.1 $\mathrm{mg}, 0.050 \mathrm{mmol}$), 1-iodoisoquinoline ($25.5 \mathrm{mg}, 0.10 \mathrm{mmol}$), LiOMe ($1.9 \mathrm{mg}, 0.050 \mathrm{mmol}$), and $\mathrm{CuI}(1.9 \mathrm{mg}, 0.010 \mathrm{mmol})$ were dissolved with DMF in a 1-dram vial and heated at $100^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was cooled to room temperature, $20 \mu \mathrm{~L}$ of pyrene ($0.010 \mathrm{mmol}, 0.5 \mathrm{M}$ stock solution) as an internal standard was added, diluted with EtOAc $(1 \mathrm{~mL})$ and filtered through a short pad of silica gel in a pipette. The reaction mixture was then analyzed by GC. The butylated product $\mathbf{4 3}$ was formed in 94% yield.

Reaction of the complexes 45 and 46 with 1-iodoisoquinoline (Table 4, entry 6): complex $45(12.1 \mathrm{mg}, 0.050 \mathrm{mmol})$, complex $46(9.5 \mathrm{mg}, 0.050 \mathrm{mmol})$, 1-iodoisoquinoline (25.5 $\mathrm{mg}, 0.10 \mathrm{mmol})$, and $\mathrm{CuI}(1.9 \mathrm{mg}, 0.010 \mathrm{mmol})$ were dissolved with DMF in a 1-dram vial and heated at $100^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was cooled to room temperature, 20 $\mu \mathrm{L}$ of pyrene ($0.010 \mathrm{mmol}, 0.5 \mathrm{M}$ stock solution) as an internal standard was added, diluted
with EtOAc (1 mL) and filtered through a short pad of silica gel in a pipette. The reaction mixture was then analyzed by GC. The butylated product $\mathbf{4 3}$ was formed in 97% yield.

Reaction of B-(2-Phenylpropyl)-9-BBN (1) with o-Allyloxyiodobenzene

o-Allyloxyiodobenzene ($260.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{LiO} t \mathrm{Bu}(120 \mathrm{mg}, 1.5 \mathrm{mmol})$, and $\mathrm{CuI}(19.0$ $\mathrm{mg}, 0.10 \mathrm{mmol}$) were weighed in a 15 mL pressure tube and dissolved in HMPA (5 mL). B-(2-Phenylpropyl)-9-BBN (1) ($360.0 \mathrm{mg}, 1.5 \mathrm{mmol}$) was then added to the reaction mixture and tightly capped. The reaction mixture was placed in an oil bath pre-heated to $120^{\circ} \mathrm{C}$ with vigorous stirring. After 24 h , reaction mixture was cooled to room temperature. An aliquot of the reaction mixture was analyzed by GC and GC-MS. Only the crosscoupled product 48 was formed. The cyclized product and the cyclized-coupled product were not detected.

The remainder of the reaction mixture was diluted with ethyl acetate (15 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$. The aqueous fraction was extracted back with ethyl acetate $(5 \mathrm{~mL} \times$ 3) and combined with the first ethyl acetate fraction. The combined ethyl acetate fraction was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in a rotary evaporator. The title compound (48) was obtained as yellow oil ($161 \mathrm{mg}, 64 \%$) after purification by silica gel column chromatography using 5% ethyl acetate in hexanes. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 1.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.81-3.15(\mathrm{~m}, 3 \mathrm{H}), 4.86(\mathrm{p}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{q}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.12-7.31 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.6,21.1,39.6,40.5,106.7,114.8,122.2$, $126.0,127.1,127.3,128.4,130.4,131.4,141.6,147.6,155.8 ; \operatorname{GCMS}(\mathrm{m} / \mathrm{z}) 252.2$.

Hammett Plot

α-Methylstyrene $(1.536 \mathrm{~g}, 13.0 \mathrm{mmol})$ and 9-BBN $(10 \mathrm{mmol}, 20 \mathrm{~mL}$ from a 0.5 M solution in THF) were mixed in a sealed tube, tightly capped and heated at $60^{\circ} \mathrm{C}$. After 4 h , the reaction mixture was transferred to a round-bottom flask, and subjected to high vacuum at room temperature until THF was removed and then at $40^{\circ} \mathrm{C}$ for 2 h to remove excess methylstyrene. The alkyl-9-BBN thus obtained was directly used for the following kinetic experiment.
$\mathrm{CuI}(38.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ was weighed in a 1.0 mL volumetric flask and dissolved with HMPA to obtain a stock solution (0.20 M).

Alkyl-9-BBN ($480.4 \mathrm{mg}, 2.0 \mathrm{mmol}$) was weighed in a 1.0 mL volumetric flask and dissolved with HMPA to obtain a stock solution (2.0 M).

LiOtBu ($300.2 \mathrm{mg}, 3.75 \mathrm{mmol}$) was weighed in a 5.0 mL volumetric flask and dissolved with HMPA by stirring with a magnetic stirrer for 8 h to obtain a stock solution (0.75 M).

ArI (5.0 mmol) was weighed in a 2.0 mL volumetric flask and dissolved with HMPA to obtain a stock solution (2.50 M).
$\mathrm{CuI}(50 \mu \mathrm{~L}, 0.010 \mathrm{mmol}), \mathrm{LiOtBu}(200 \mu \mathrm{~L}, 0.150 \mathrm{mmol})$, alkyl-9-BBN$(\mathbf{1})(50 \mu \mathrm{~L}, 0.10$ $\mathrm{mmol})$ and $p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{I}\left(\mathrm{X}=\mathrm{H}, \mathrm{OMe}, \mathrm{Me}, \mathrm{F}, \mathrm{Cl}, \mathrm{CF}_{3}\right)(200 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ were mixed in a

1-dram vial (total volume: 0.50 mL). The reaction mixture was then tightly capped and placed in a hotplate pre-heated to $100^{\circ} \mathrm{C}$. A total of 6 to 9 reactions were setup for each p $\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{I}$ and were stopped at 6-9 time intervals. At least a duplicate reaction was setup for each of the data point to take an average. Product yields at different time points for the reaction of $p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{I}$ with alkyl-9-BBN (1) were determined by GC using pyrene as a standard. The product yields were then plotted against the corresponding reaction times and the slope of the linear portion of the curve (for less than 30% yield) was used to determine the initial rates of the reactions.

The initial rates of the reactions $\left(\mathrm{kx}_{\mathrm{X} \text { (initial) }}\right), \log \left[k_{\mathrm{X} \text { (initial) }} / k_{\mathrm{H} \text { (initial) }}\right]$ and $\quad-$ values used to obtain the Hammett plot are given below:

Figure 5.1. The Hammett plot for the reaction of alkyl-9-BBN (1) with 5.0 equivalents of $p-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{I}\left(\mathrm{X}=\mathrm{H}, \mathrm{OMe}, \mathrm{Me}, \mathrm{F}, \mathrm{Cl}, \mathrm{CF}_{3}\right)$. The curve depicts the result of an unweighted least-square fit to $y=a^{*} x+b\left(a=+1.33, b=3.01 \times 10^{-2}, R^{2}=0.99\right)$. Substituent constants
(σ values) were adopted from C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 1991, 91, 165195.

5.1.8. X-ray Crystallographic Data for Complex 45

Table 5.1. Crystal data and structure refinement for complex 45.

Identification code rgpb3_33_0m
Empirical formula $\quad \mathrm{C}_{32} \mathrm{H}_{64} \mathrm{BLiO}_{8}$

Formula weight 594.58

Temperature/K
99.51

Crystal system monoclinic

Space group
$\mathrm{P} 21 / \mathrm{n}$

a/Å	10.6109(3)
b/Å	22.4723(6)
c/Å	14.5753(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.6743(15)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	3471.71(17)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.138
μ / mm^{-1}	0.078
$F(000)$	1312.0
Crystal size/mm ${ }^{3}$	$0.841 \times 0.315 \times 0.216$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$

Radiation
$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 3.334$ to 55.016

Index ranges $-13 \leq h \leq 12,-29 \leq \mathrm{k} \leq 29,-18 \leq 1 \leq 18$

Reflections collected 33894

Independent reflections $\quad 7967\left[\mathrm{R}_{\text {int }}=0.0277, \mathrm{R}_{\text {sigma }}=0.0244\right]$

Data/restraints/parameters 7967/0/448

Goodness-of-fit on $\mathrm{F}^{2} \quad 1.065$

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0487, \mathrm{wR}_{2}=0.1242$

Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0610, \mathrm{wR}_{2}=0.1321$

Largest diff. peak/hole / e $\AA^{-3} 0.70 /-0.40$

Table 5.2. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic
Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for complex 45. $U_{\text {eq }}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{i J}$ tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	z	$\mathbf{U}(\mathbf{e q})$
O1	$1689.2(10)$	$6948.3(5)$	$9325.2(7)$	$22.16(19)$
O2	$4212.2(10)$	$6752.1(5)$	$9433.5(7)$	$23.4(2)$
O3	$3762.5(10)$	$5552.4(5)$	$9690.1(7)$	$25.3(2)$
O4	$1182.8(10)$	$5751.3(5)$	$9562.7(7)$	$25.8(2)$
O5	$900.4(10)$	$6225.2(5)$	$7605.0(7)$	$21.3(2)$
O6	$2498.6(10)$	$5263.7(5)$	$7817.5(7)$	$22.3(2)$

O7	4520.5(10)	6023.4(5)	7768.0(7)	21.6(2)
O8	2924.7(10)	6971.2(5)	7546.9(7)	20.1(2)
C1	2559.6(14)	7419.6(7)	9577.7(10)	22.16(19)
C2	3734.0(15)	7177.4(7)	10044.5(11)	24.9(3)
C3	5133.1(14)	6355.7(8)	9864.8(11)	28.5(4)
C4	4513.0(15)	5863.2(7)	10357.2(11)	27.1(3)
C5	2860.4(17)	5148.4(7)	10078.5(11)	29.0(4)
C6	1701.6(15)	5468.2(7)	10361.6(11)	25.9(3)
C7	276.4(13)	6211.1(7)	9751.8(11)	24.5(3)
C8	916.1(14)	6777.3(7)	10046.5(10)	24.0(3)
Li1	2715(2)	6215.9(11)	8566.6(17)	21.3(5)
C9	3690(5)	5064(2)	7535(3)	26.7(9)
C10	4384(3)	5561.0(14)	7087(2)	25.8(7)
C11	4895(3)	6586.6(18)	7361(3)	22.0(7)
C12	3811(3)	6904.2(13)	6882(2)	20.4(6)
C13	1647(3)	7121.6(14)	7129(2)	20.0(7)

C14	911(3)	6578.2(16)	6835(2)	20.3(6)
C15	453(3)	5614.9(13)	7419(2)	23.1(7)
C16	1532(5)	5242(2)	7099(3)	24.4(9)
C9A	3474(5)	5143(2)	7195(4)	23.2(10)
C10A	4672(3)	5391.5(15)	7610(3)	21.9(8)
C11A	4720(4)	6385.4(19)	7023(3)	22.3(8)
C12A	4285(4)	6994.6(15)	7285(3)	20.3(8)
C13A	2096(4)	7021.2(16)	6816(3)	19.4(8)
C14A	864(3)	6825.2(19)	7173(3)	19.0(8)
C15A	869(3)	5773.8(15)	6924(3)	24.3(9)
C16A	1246(5)	5223(2)	7429(4)	25.4(11)
C17	2953.3(12)	6624.7(6)	4370.5(9)	15.1(3)
C18	2704.6(13)	7300.2(6)	4416.6(10)	18.8(3)
C19	3022.2(13)	7658.0(6)	3553.4(10)	19.3(3)
C20	2675.5(13)	7352.5(6)	2628.1(9)	16.1(3)
C21	2971.9(11)	6683.3(6)	2604.5(9)	12.0(2)

C22	$4399.5(12)$	$6554.4(6)$	$2650.9(9)$	$14.2(3)$
C23	$5089.1(12)$	$6670.4(6)$	$3588.1(9)$	$16.7(3)$
C24	$4369.4(13)$	$6473.3(6)$	$4428.9(9)$	$17.6(3)$
C25	$2511.3(12)$	$5610.6(6)$	$3370.8(9)$	$14.8(3)$
C26	$2026.1(14)$	$5229.3(6)$	$4151.9(10)$	$19.1(3)$
C27	$2492.0(14)$	$4588.0(7)$	$4167.6(11)$	$22.8(3)$
C28	$1931.9(19)$	$4207.3(8)$	$4907.8(12)$	$35.3(4)$
C29	$732.0(12)$	$6468.8(6)$	$3413.7(9)$	$14.2(3)$
C30	$-17.6(12)$	$6329.4(6)$	$2515.8(9)$	$14.7(3)$
C31	$-1435.2(12)$	$6433.8(6)$	$2560.9(9)$	$15.0(3)$
C32	$-2194.8(13)$	$6287.8(7)$	$1677.7(10)$	$19.9(3)$
B1	$2263.4(13)$	$6334.7(7)$	$3435.2(10)$	$12.4(3)$

Table 5.3. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for complex 45. The Anisotropic displacement factor exponent takes the form: -
$2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}_{11}+\mathbf{2 h k a}{ }^{*} b^{*} \mathbf{U}_{12}+\ldots\right]$.
Atom $\quad \mathbf{U}_{11}$
\mathbf{U}_{22}
\mathbf{U}_{33}
\mathbf{U}_{23}
\mathbf{U}_{13}
\mathbf{U}_{12}

O1	29.6(4)	23.1(4)	13.8(4)	-0.5(3)	1.7(3)	3.0 (3)
O2	26.9(5)	30.2(6)	12.8(5)	-1.1(4)	-1.3(4)	1.2(4)
O3	31.2(6)	30.0(6)	14.6(5)	-3.3(4)	1.0(4)	6.4(5)
O4	29.1(6)	32.1(6)	16.1(5)	0.5(4)	0.9(4)	0.6(5)
O5	27.1(5)	20.8(5)	15.9(5)	-1.5(4)	-1.2(4)	1.8(4)
O6	25.7(5)	24.5(5)	16.7(5)	0.4(4)	1.6(4)	2.8(4)
O7	28.8(5)	20.2(5)	16.4(5)	-0.3(4)	5.8(4)	0.6(4)
O8	26.8(5)	21.9(5)	11.8(5)	-0.1(4)	4.5(4)	1.9(4)
C1	29.6(4)	23.1(4)	13.8(4)	-0.5(3)	1.7(3)	3.0(3)
C2	30.7(8)	24.9(8)	18.8(7)	-3.5(6)	-0.7(6)	-3.5(6)
C3	17.6(7)	48.5(10)	19.1(7)	-1.1(7)	-3.8(6)	5.6(7)
C4	28.7(8)	33.2(9)	18.9(7)	-1.7(6)	-5.5(6)	9.4(7)
C5	49.4(10)	16.8(7)	20.7(8)	2.2(6)	1.0(7)	6.6(7)
C6	34.4(8)	24.6(8)	18.8(7)	4.5(6)	2.2(6)	-1.1(6)
C7	16.6(7)	37.2(9)	20.2(7)	1.7(6)	4.5(5)	1.8(6)
C8	25.3(7)	30.1(8)	17.1(7)	1.7(6)	5.2(6)	8.7(6)

Li1	23.3(12)	23.3(12)	17.4(12)	0.4(10)	2.2(9)	1.4(10)
C9	36(2)	20.1(18)	25(2)	1.1(18)	5.7(19)	10.9(14)
C10	29.2(15)	27.7(16)	21.1(17)	-4.4(13)	7.9(12)	8.1(12)
C11	22.5(15)	26(2)	18.1(17)	0.0(13)	7.8(13)	-6.3(14)
C12	26.4(16)	22.8(15)	12.4(14)	1.4(11)	5.4(12)	-4.3(12)
C13	24.1(17)	20.2(15)	15.7(16)	3.3(12)	0.3(12)	8.2(13)
C14	23.1(14)	22.6(17)	15.0(15)	2.8(13)	-1.7(11)	2.7(12)
C15	23.7(14)	24.2(15)	21.2(16)	0.2(12)	-2.0(12)	-9.1(12)
C16	34(2)	20.7(16)	18(2)	-6.5(17)	-2.6(16)	-2.3(15)
C9A	34(3)	15(2)	20(3)	-3.3(19)	6(2)	4.9(16)
C10A	28.2(17)	19.1(16)	18.8(19)	1.7(13)	5.2(14)	11.2(13)
C11A	29(2)	18(2)	21(2)	1.6(15)	13.0(16)	1.8(15)
C12A	22.1(18)	18.5(17)	21(2)	$1.9(14)$	9.4(15)	-4.5(14)
C13A	27(2)	17.6(17)	13.3(18)	3.1(13)	1.4(15)	2.0(14)
C14A	23.1(17)	18.4(18)	14.9(18)	-0.4(14)	-3.7(13)	5.9(15)
C15A	27.0(17)	22.6(17)	22.7(19)	-3.8(14)	-6.5(15)	-4.3(14)

C16A	28(3)	20.2(19)	28(3)	-6(2)	-1(2)	-4.7(17)
C17	15.9(6)	20.3(7)	9.3(6)	-0.9(5)	2.2(5)	-3.9(5)
C18	18.6(6)	22.5(7)	15.4(7)	-8.0(5)	2.5(5)	-3.8(5)
C19	21.8(7)	15.9(7)	20.4(7)	-4.5(5)	1.2(5)	-2.0(5)
C20	17.0(6)	16.5(6)	14.9(6)	0.7(5)	1.1(5)	-1.5(5)
C21	11.8(6)	14.9(6)	9.4(6)	-0.9(5)	0.4(4)	-1.4(5)
C22	12.5(6)	19.1(6)	11.0(6)	-0.1(5)	2.4(5)	-1.6(5)
C23	11.9(6)	24.1(7)	14.1(6)	-0.1(5)	-1.2(5)	-2.4(5)
C24	17.7(6)	23.8(7)	11.0(6)	0.4(5)	-2.2(5)	-3.1(5)
C25	16.1(6)	16.6(6)	11.7(6)	0.4(5)	1.7(5)	-1.3(5)
C26	23.9(7)	17.9(7)	15.9(7)	1.7(5)	4.0(5)	-2.4(5)
C27	26.2(7)	19.8(7)	22.5(7)	5.6(6)	2.3(6)	0.1(6)
C28	56.6(11)	23.4(8)	26.4(9)	9.1(7)	7.4(8)	-3.4(8)
C29	13.9(6)	16.7(6)	12.3(6)	-2.1(5)	3.0(5)	-1.9(5)
C30	12.1(6)	17.8(6)	14.3(6)	-2.3(5)	2.8(5)	-1.6(5)
C31	12.9(6)	16.3(6)	15.9(6)	-0.4(5)	2.5(5)	0.6(5)

C32	$13.9(6)$	$24.7(7)$	$20.9(7)$	$-1.8(6)$	$-0.8(5)$	$-0.2(5)$
B1	$12.8(6)$	$15.0(7)$	$9.6(6)$	$-1.0(5)$	$2.0(5)$	$-1.3(5)$

Table 5.4. Bond Lengths for complex 45.

Atom Atom	Length/A	Atom Atom	Length/Å		
O1	C1	$1.4416(19)$		O8	C13A

O4	Li1	2.462(3)	C13AC14A		$1.495(5)$
O5	Li1	2.328(3)	C15A	C16A	1.486(7)
O5	C14	1.375(3)	C17	C18	1.543(2)
O5	C15	1.472(3)	C17	C24	1.5391(18)
O5	C14A	1.488(4)	C17	B1	1.6510(19)
O5	C15A	1.418(3)	C18	C19	1.544(2)
06	Li1	2.408(3)	C19	C20	1.5425(19)
O6	C9	1.421(5)	C20	C21	1.5371(18)
O6	C16	1.432(5)	C21	C 22	1.5406(17)
O6	C9A	1.434(6)	C21	B1	1.6522(19)
O6	C16A	1.423(6)	C22	C 23	1.5415(18)
O7	Li1	2.328(3)	C23	C24	1.5390(19)
O7	C10	1.440(3)	C25	C26	1.5331(18)
O7	C11	1.461(4)	C25	B1	1.652(2)
O7	C10A	1.449(3)	C26	C27	1.523(2)
O7	C11A	1.381(4)	C27	C28	1.520(2)

O8	Li1	$2.274(3)$	C29	C30	$1.5319(18)$
O8	C12	$1.390(3)$	C29	B1	$1.6515(19)$
O8	C13	$1.499(3)$	C30	C31	$1.5268(17)$
O8	C12A	$1.511(4)$	C31	C32	$1.5224(19)$

Table 5.5. Bond Angles for complex 45.

| Atom Atom Atom | Angle ${ }^{\circ}$ | Atom Atom Atom | Angle ${ }^{\circ}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

C6	O4	C7	$113.63(12)$	O8	Li1	O1	$80.91(9)$
C6	O4	Li1	$115.69(11)$	O8	Li1	O2	$83.28(9)$
C7	O4	Li1	$105.82(10)$	O8	Li1	O3	$146.96(12)$
C14	O5	Li1	$117.27(15)$	O8	Li1	O4	$142.13(12)$
C14	O5	C15	$113.7(2)$	O8	Li1	O5	
C15	O5	Li1	$110.67(14)$	O8	Li1	O6	$112.16(11)$
C14A O5	Li1	$105.49(17)$	O8	Li1	O7		
C15A O5	Li1	$113.98(16)$	O6	C9	C10	$72.79(8)$	
C15A O5	C14A	$110.6(2)$	O7	C10	C9	$110.6(3)$	
C10							$105.8(3)$
C9	O6	Li1	$110.2(2)$	O7	C11	C12	$112.6(3)$
C16A	O6	Li1		$113.85(15)$	O6	C9A	C10A

C10	O7	C11	$111.4(2)$	O7	C10AC9A	$109.5(3)$
C11	O7	Li1	$106.74(16)$	O7	C11AC12A	$106.1(3)$
C10AO7	Li1	$111.20(16)$	C11AC12AO8	$110.0(3)$		
C11AO7	Li1	$116.35(18)$	O8	C13AC14A	$104.4(3)$	
C11AO7	C10A	$115.5(2)$	O5	C14AC13A	$114.1(3)$	
C12	O8	Li1	$117.71(15)$	O5	C15AC16A	$104.7(3)$
C12	O8	C13	$111.7(2)$	O6	C16AC15A	$111.6(4)$
C13	O8	Li1	$108.66(16)$	C18	C17	B1

O4	C6	C5	106.36(13)	C21	C22	C23	115.61(11)
O4	C7	C8	111.43(12)	C24	C23	C22	115.11(11)
O1	C8	C7	106.77(12)	C17	C24	C23	114.32(11)
O1	Li1	O 2	72.07(8)	C26	C25	B1	116.65(11)
O1	Li1	O3	109.09(10)	C27	C26	C25	114.82(12)
O1	Li1	O4	71.20(8)	C28	C27	C26	113.95(13)
O1	Li1	O5	83.43(9)	C30	C29	B1	116.74(10)
O1	Li1	O6	145.21(12)	C31	C30	C29	113.89(11)
O1	Li1	O7	142.83(13)	C32	C31	C30	114.47(11)
O2	Li1	O3	70.94(8)	C17	B1	C21	102.62(10)
O2	Li1	O4	110.68(10)	C17	B1	C25	111.72(11)
O2	Li1	O5	148.11(13)	C17	B1	C29	109.97(10)
O2	Li1	O6	139.17(12)	C25	B1	C21	110.27(10)
O2	Li1	O7	79.07(9)	C25	B1	C29	109.75(10)
O3	Li1	O4	68.79(8)	C29	B1	C21	112.37(10)

Table 5.6. Torsion Angles for complex 45.

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle $/^{\circ}$
O1	C1	C2	O 2	55.27(15)	C12	O8	C13	C14	85.5(3)
O 2	C3	C4	O3	60.07(16)	C13	O8	C12	C11	-163.8(3)
O3	C5	C6	O4	58.32(16)	C14	O5	C15	C16	83.3(3)
O4	C7	C8	O1	58.47(15)	C15	O5	C14	C13	-168.0(3)
O5	C15	C16	O6	58.5(4)	C16	O6	C9	C10	84.5(4)
O5	C15A	C16A	O6	-63.0(5)	C9A		C16A	C15A	-81.4(5)
O6	C9	C10	O7	59.2(4)	C10A	07	C11A	C12A	169.8(3)
O6	C9A	C10A	A 7	-58.2(4)	C11A	07	C10A	C9A	-84.5(4)
O7	C11	C12	O8	56.4(4)	C12A	O8	C13A	C14A	165.1(3)
O7	C11A	C12A	O8	-56.6(5)	C13A	O8	C12A	C11A	-85.9(4)
O8	C13	C14	O5	54.4(4)	C14A	O5	C15A	C16A	165.6(3)
O8	C13A	C14A	A 05	-54.6(4)	C15A	O5	C14A	C13A	-77.6(4)
C1	O1	C8	C7	-168.26(11)	C16A	O6	C9A	C10A	162.0(4)
C2	O2	C3	C4	81.59(16)	C17	C18	C19	C20	39.64(17)

C3	O 2	C2	C1	-163.60(12)	C18	C17C24	C23	-68.08(15)
C4	O3	C5	C6	81.06(16)	C18	C17B1	C21	62.07(13)
C5	O3	C4	C3	-166.03(12)	C18	C17B1	C25	-179.81(10)
C6	O4	C7	C8	79.58(16)	C18	C17B1	C29	-57.68(14)
C7	O4	C6	C5	-163.59(13)	C18	C19C20	C21	-41.45(16)
C8	O1	C1	C2	84.67(15)	C19	C20C21	C 22	-68.49(14)
Li1	O1	C1	C2	-49.59(15)	C19	C20C21	B1	56.17(14)
Li1	O1	C8	C7	-37.99(15)	C20	C21 C22	C23	71.62(14)
Li1	O 2	C2	C1	-34.35(16)	C20	C21 B1	C17	-64.29(12)
Li1	O 2	C3	C4	-50.39(15)	C20	C21 B1	C25	176.57(10)
Li1	O3	C4	C3	-39.02(15)	C20	C21B1	C29	53.79(14)
Li1	O3	C5	C6	-46.88(15)	C21	C 22 C 23	C24	40.84(16)
Li1	O4	C6	C5	-40.86(16)	C22	C21 B1	C17	61.29(13)
Li1	O 4	C7	C8	-48.42(14)	C22	C21 B1	C25	-57.85(13)
Li1	O5	C14	C13	-36.6(3)	C22	C21 B1	C29	179.36(10)
Li1	O5	C15	C16	-51.2(3)	C22	C23C24	C17	-42.51(17)

Li1 O5	C14AC13A	46.2(4)	C24	C17C18	C19	72.13(15)
Li1 O5	C15AC16A	46.9(4)	C24	C17B1	C21	-63.45(13)
Li1 O6	C9 C10	-44.9(4)	C24	C17B1	C25	54.67(14)
Li1 O6	C16 C15	-37.7(4)	C24	C17 B1	C29	176.80(11)
Li1 O6	C9A C10A	37.1(4)	C25	C26C27	C28	-176.15(13)
Li1 O6	C16AC15A	46.4(4)	C26	C25 B1	C17	60.62(15)
Li1 O7	C10 C9	-44.3(3)	C26	C25 B1	C21	174.07(11)
Li1 07	C11 C12	-47.4(3)	C26	C25 B1	C29	-61.63(14)
Li1 O7	C10AC9A	50.9(4)	C29	C30C31	C32	-179.09(11)
Li1 07	C11AC12A	36.7(4)	C30	C29 B1	C17	169.42(11)
Li1 O8	C12 C11	-37.1(3)	C30	C29 B1	C21	55.78(15)
Li1 O8	C13 C14	-46.0(3)	C30	C29B1	C25	-67.29(14)
Li1 O8	C12AC11A	49.3(4)	B1	C17C18	C19	-52.31(15)
Li1 O8	C13AC14A	35.6(4)	B1	C17C24	C23	56.41(15)
C9 O6	C16 C15	-164.9(3)	B1	C21-22	C23	-52.64(15)
C1007	C11 C12	78.7(3)	B1	C25C26	C27	-168.62(12)

C11O7 C10 C9 \quad-165.9(3) B1 C29C30 C31 177.02(11)

Table 5.7. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for complex 45.

Atom		y	z	U(eq)
H1A	2152	7701	9994	27
H1B	2780	7641	9020	27
H2A	4356	7499	10167	30
H2B	3541	6988	10635	30
H3A	5685	6583	10305	34
H3B	5668	6187	9391	34
H4A	5154	5595	10649	33
H4B	3983	6024	10840	33
H5A	3263	4946	10620	35
H5B	2616	4840	9619	35
H6A	1089	5183	10606	31

H6B	1922	5766	10843	31
H7A	-270	6074	10242	29
H7B	-267	6286	9193	29
H8A	283	7090	10156	29
H8B	1434	6714	10621	29
H9A	3568	4730	7096	32
H9B	4199	4917	8075	32
H10A	5221	5424	6900	31
H10B	3898	5707	6536	31
H11A	5552	6509	6915	26
H11B	5269	6847	7849	26
H12A	4080	7297	6652	24
H12B	3461	6666	6358	24
H13A	1748	7382	6589	24
H13B	1167	7346	7581	24
H14A	42	6687	6623	24

H14B	1324	6370	6331	24
H15A	-240	5621	6941	28
H15B	124	5440	7984	28
H16A	1254	4827	6988	29
H16B	1847	5405	6522	29
H9AA	3271	5332	6593	28
H9AB	3557	4709	7101	28
H10C	4890	5188	8198	26
H10D	5367	5325	7191	26
H11C	4232	6241	6472	27
H11D	5626	6392	6888	27
H12C	4368	7271	6762	24
H12D	4820	7145	7810	24
H13C	2345	6762	6306	23
H13D	2046	7438	6596	23
H14C	596	7119	7631	23

H14D	221	6824	6659	23
H15C	1468	5864	6442	29
H15D	11	5733	6635	29
H16C	656	5152	7924	30
H16D	1187	4880	7003	30
H17	2564	6438	4912	18
H18A	3203	7465	4949	23
H18B	1802	7362	4532	23
H19A	2577	8045	3569	23
H19B	3939	7742	3582	23
H20A	1762	7409	2484	19
H20B	3137	7553	2140	19
H21	2616	6523	2007	14
H22A	4798	6802	2183	17
H22B	4527	6132	2484	17
H23A	5910	6461	3601	20

H23B	5266	7102	3643	20
H24A	4466	6038	4504	21
H24B	4761	6665	4984	21
H25A	2113	5465	2785	18
H25B	3431	5544	3343	18
H26A	2284	5419	4744	23
H26B	1092	5227	4102	23
H27A	2285	4405	3561	27
H27B	3422	4589	4263	27
H28A	1012	4197	4813	53
H28B	2156	4377	5513	53
H28C	2267	3802	4875	53
H29A	364	6235	3911	17
H29B	610	6895	3557	17
H30A	308	6580	2020	18
H30B	127	5908	2351	18

H31A	-1756	6189	3064	18
H31B	-1579	6857	2717	18
H32A	-1936	6552	1185	30
H32B	-3095	6344	1773	30
H32C	-2042	5873	1506	30

Table 5.8. Atomic Occupancy for complex 45.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
C9	0.541(4)	H9A	0.541(4)	H9B	0.541(4)
C10	0.541(4)	H10A	0.541(4)	H10B	0.541(4)
C11	0.541(4)	H11A	0.541(4)	H11B	0.541(4)
C12	0.541(4)	H12A	0.541(4)	H12B	0.541(4)
C13	0.541(4)	H13A	0.541(4)	H13B	0.541(4)
C14	0.541(4)	H14A	0.541(4)	H14B	0.541(4)
C15	0.541(4)	H15A	0.541(4)	H15B	0.541(4)
C16	0.541(4)	H16A	0.541(4)	H16B	0.541(4)

C9A	$0.459(4)$	H9AA	$0.459(4)$	H9AB	$0.459(4)$
C10A	$0.459(4)$	H10C	$0.459(4)$	H10D	$0.459(4)$
C11A	$0.459(4)$	H11C	$0.459(4)$	H11D	$0.459(4)$
C12A	$0.459(4)$	H12C	$0.459(4)$	H12D	$0.459(4)$
C13A	$0.459(4)$	H13C	$0.459(4)$	H13D	$0.459(4)$
C14A	$0.459(4)$	H14C	$0.459(4)$	H14D	$0.459(4)$
C15A	$0.459(4)$	H15C	$0.459(4)$	H15D	$0.459(4)$
C16A	$0.459(4)$	H16C	$0.459(4)$	H16D	$0.459(4)$

5.1.9. X-ray Crystallographic Data for Complex 46

Table 5.9. Sample and crystal data for complex 46.

Identification code rgpb2_287

Chemical formula $\quad \mathrm{C}_{28} \mathrm{H}_{56} \mathrm{~B}_{2} \mathrm{Li}_{2} \mathrm{O}_{6}$

Formula weight $\quad 524.22 \mathrm{~g} / \mathrm{mol}$

Temperature
101(2) K

Wavelength
$0.71073 \AA$

Crystal size
$0.429 \times 0.482 \times 0.536 \mathrm{~mm}$

Crystal habit
colorless block

Crystal system
triclinic

Space group
P-1

Unit cell dimensions $\quad a=8.3308(4) \AA \quad \alpha=98.430(2)^{\circ}$
$b=9.3831(5) \AA \quad \beta=106.326(2)^{\circ}$
$\mathrm{c}=10.3351(5) \AA \quad \gamma=90.671(2)^{\circ}$

Volume
765.74(7) \AA^{3}

Z
1

Density (calculated) $\quad 1.137 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient
$0.074 \mathrm{~mm}^{-1}$
F(000)
288

Table 5.10. Data collection and structure refinement for complex 46.
Diffractometer Bruker Kappa APEX II CCD

Radiation source fine-focus tube, Mo K α

Theta range for data
2.20 to 26.42°
collection

Index ranges $-10<=\mathrm{h}<=10,-11<=\mathrm{k}<=11,-8<=\mathrm{l}<=12$

Reflections collected 16573

Independent reflections $3134[\mathrm{R}(\mathrm{int})=0.0187]$

Coverage of 99.6\%
independent reflections

Absorption correction Multi-Scan

Max. and min.
0.9690 and 0.9610
transmission

Structure solution

technique
Structure solution
XT, VERSION 2014/4
program
direct methods

XT, VERSION $2014 / 4$

Refinement method Full-matrix least-squares on F^{2}

Refinement program SHELXL-2014/7 (Sheldrick, 2014)

Function minimized $\quad \Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$

Data / restraints /
parameters

Goodness-of-fit on $\mathbf{F}^{\mathbf{2}} \quad 1.032$
$\Delta / \sigma_{\text {max }}$
0.001

2814 data;
Final R indices
3134 / 4 / 184
$\mathrm{I}>2 \sigma(\mathrm{I})$
all data

$$
\mathrm{R} 1=0.0576, \mathrm{wR} 2=0.1492
$$

$$
\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}^{2}\right)+(0.0745 \mathrm{P})^{2}+0.5935 \mathrm{P}\right]
$$

Weighting scheme

$$
\text { where } \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3
$$

Absolute structure
parameter

Largest diff. peak and 0.561 and $-0.448 \mathrm{e}^{-3}$ hole
R.M.S. deviation from

$$
0.053 \mathrm{e}^{-3}
$$

mean

Table 5.11. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for complex 46.
$U(e q)$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.
$\mathbf{x} / \mathbf{a} \quad \mathbf{y} / \mathbf{b} \quad \mathrm{z} / \mathbf{c} \quad \mathbf{U}(\mathbf{e q})$

B1 0.47622(19) 0.57092(17) 0.30244(16) 0.0138(3)

O1 $0.65189(12) \quad 0.59106(11) \quad 0.39875(10) \quad 0.0172(3)$

O2
$0.41479(13) \quad 0.41488(10) \quad 0.28563(10) \quad 0.0169(3)$

O3 $0.86952(15) \quad 0.77137(14) \quad 0.66953(11) \quad 0.0300(3)$

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U (e q)}$
C13A	$0.1092(7)$	$0.9063(6)$	$0.6775(6)$	$0.0386(8)$
C14	$0.9392(3)$	$0.8682(2)$	$0.6011(2)$	$0.0412(5)$

Table 5.12. Bond lengths ((\AA) for complex 46.

B1-O1	1.5125(18)	B1-O2	$1.5145(18)$
B1-C5	$1.622(2)$	B1-C1	$1.624(2)$
O1-C9	$1.4104(18)$	O1-Li1	$1.854(3)$
O2-C10	$1.4112(18)$	O2-Li1	$1.853(3)$
O3-C11	$1.431(2)$	O3-C14	$1.438(2)$
O3-Li1	$1.924(3)$	Li1-O2	$1.853(3)$
C1-C2	$1.5391(19)$	C1-C8	$1.540(2)$
C1-H1A	1.0	C2-C3	$1.536(2)$
C2-H2A	0.99	C2-H2B	0.99
C3-C4	$1.538(2)$	C3-H3A	0.99

C3-H3B	0.99	C4-C5	1.5399(19)
C4-H4A	0.99	C4-H4B	0.99
C5-C6	1.541(2)	C5-H5A	1.0
C6-C7	1.537(2)	C6-H6A	0.99
C6-H6B	0.99	C7-C8	1.538(2)
C7-H7A	0.99	C7-H7B	0.99
C8-H8A	0.99	C8-H8B	0.99
C9-H9A	0.98	C9-H9B	0.98
C9-H9C	0.98	C10-H10A	0.98
C10-H10B	0.98	C10-H10C	0.98
C11-C12	1.484(3)	C11-H11A	0.99
C11-H11B	0.99	C12-C13	1.406(5)
C12-C13A	1.598(6)	C12-H12A	0.99
C12-H12B	0.99	C12-H13D	1.17(3)
C13-C14	1.480(5)	C13-H13A	0.99

C13-H13B	0.99	C13A-C14	$1.426(5)$
C13A-H13C	$1.006(19)$	C13A-H13D	$0.722(15)$
C14-H14A	0.99	C14-H14B	0.99

Table 5.13. Bond angles $\left({ }^{\circ}\right)$ for complex 46.

O1-B1-O2	$108.83(11)$	O1-B1-C5	$113.52(11)$
O2-B1-C5	$113.42(11)$	O1-B1-C1	$106.97(11)$
O2-B1-C1	$107.74(11)$	C5-B1-C1	$105.97(11)$
C9-O1-B1	$119.30(11)$	C9-O1-Li1	$119.11(13)$
B1-O1-Li1	$118.84(12)$	C10-O2-B1	$120.54(11)$
C10-O2-Li1	$120.42(13)$	B1-O2-Li1	$117.63(12)$
C11-O3-C14	$108.64(14)$	C11-O3-Li1	$126.03(13)$
C14-O3-Li1	$125.29(13)$	O2-Li1-O1	$138.60(16)$
O2-Li1-O3	$110.51(14)$	O1-Li1-O3	$110.78(13)$
C2-C1-C8	$112.99(12)$	C2-C1-B1	$109.34(11)$

C8-C1-B1	$109.66(11)$	C2-C1-H1A	108.2
C8-C1-H1A	108.2	B1-C1-H1A	108.2
C3-C2-C1	$115.15(12)$	C3-C2-H2A	108.5
C1-C2-H2A	108.5	C3-C2-H2B	108.5
C1-C2-H2B	108.5	H2A-C2-H2B	107.5
C2-C3-C4	$114.39(12)$	C2-C3-H3A	108.7
C4-C3-H3A	108.7	C2-C3-H3B	108.7
C4-C3-H3B	108.7	H3A-C3-H3B	107.6
C3-C4-C5	$115.45(12)$	C3-C4-H4A	108.4
C5-C4-H4A	108.4	C3-C4-H4B	108.4
C5-C4-H4B	108.4	C4-B1	$108.72(11)$

C5-C6-H6A	108.4	C7-C6-H6B	108.4
C5-C6-H6B	108.4	H6A-C6-H6B	107.5
C6-C7-C8	114.42(12)	C6-C7-H7A	108.7
C8-C7-H7A	108.7	C6-C7-H7B	108.7
C8-C7-H7B	108.7	H7A-C7-H7B	107.6
C7-C8-C1	115.31(12)	C7-C8-H8A	108.4
C1-C8-H8A	108.4	C7-C8-H8B	108.4
C1-C8-H8B	108.4	H8A-C8-H8B	107.5
O1-C9-H9A	109.5	O1-C9-H9B	109.5
H9A-C9-H9B	109.5	O1-C9-H9C	109.5
H9A-C9-H9C	109.5	H9B-C9-H9C	109.5
O2-C10-H10A	109.5	O2-C10-H10B	109.5
H10A-C10-H10B	109.5	O2-C10-H10C	109.5
H10A-C10-H10C	109.5	H10B-C10-H10C	109.5
O3-C11-C12	107.55(16)	O3-C11-H11A	110.2

C12-C11-H11A	110.2	O3-C11-H11B	110.2
C12-C11-H11B	110.2	H11A-C11-H11B	108.5
C13-C12-C11	106.1(2)	C11-C12-C13A	103.6(2)
C13-C12-H12A	110.5	C11-C12-H12A	110.5
C13-C12-H12B	110.5	C11-C12-H12B	110.5
H12A-C12-H12B	108.7	C11-C12-H13D	121.5(11)
C13A-C12-H13D	24.5(9)	C12-C13-C14	108.5(3)
C12-C13-H13A	110.0	C14-C13-H13A	110.0
C12-C13-H13B	110.0	C14-C13-H13B	110.0
H13A-C13-H13B	108.4	C14-C13A-C12	101.4(3)
C14-C13A-H13C	111.(3)	C12-C13A-H13C	108.(3)
C14-C13A-H13D	142.(2)	C12-C13A-H13D	42.(3)
H13C-C13A-H13D	94.(4)	C13A-C14-O3	108.7(3)
O3-C14-C13	106.0(2)	O3-C14-H14A	110.5
C13-C14-H14A	110.5	O3-C14-H14B	110.5

C13-C14-H14B $110.5 \quad$ H14A-C14-H14B 108.7

Table 5.14. Torsion angles $\left({ }^{\circ}\right)$ for complex 46.

O2-B1-O1-C9	$72.71(16)$	C5-B1-O1-C9	$-54.62(17)$
C1-B1-O1-C9	$-171.15(13)$	O2-B1-O1-Li1	$-88.38(15)$
C5-B1-O1-Li1	$144.29(14)$	C1-B1-O1-Li1	$27.76(17)$
O1-B1-O2-C10	$-81.95(16)$	C5-B1-O2-C10	$45.44(18)$
C1-B1-O2-C10	$162.40(13)$	O1-B1-O2-Li1	$84.54(15)$
C5-B1-O2-Li1	$-148.08(13)$	C1-B1-O2-Li1	$-31.11(16)$
C9-O1-Li1-O2	$-119.3(2)$	B1-O1-Li1-O2	$41.8(3)$
C9-O1-Li1-O3	$56.3(2)$	B1-O1-Li1-O3	$-142.55(13)$
O1-B1-C1-C2	$59.08(14)$	O2-B1-C1-C2	$175.95(11)$
C5-B1-C1-C2	$-62.34(14)$	O1-B1-C1-C8	$-176.52(11)$
O2-B1-C1-C8	$-59.65(14)$	C5-B1-C1-C8	$62.06(14)$
C8-C1-C2-C3	$-68.54(16)$	B1-C1-C2-C3	$53.88(17)$

C1-C2-C3-C4	-43.17(19)	C2-C3-C4-C5	43.47(19)
C3-C4-C5-C6	67.38(17)	C3-C4-C5-B1	-54.17(17)
O1-B1-C5-C4	-54.87(15)	O2-B1-C5-C4	-179.77(11)
C1-B1-C5-C4	62.24(14)	O1-B1-C5-C6	-179.54(11)
O2-B1-C5-C6	55.56(15)	C1-B1-C5-C6	-62.43(14)
C4-C5-C6-C7	-67.07(17)	B1-C5-C6-C7	54.59(16)
C5-C6-C7-C8	-43.35(19)	C6-C7-C8-C1	42.28(19)
C2-C1-C8-C7	69.26(16)	B1-C1-C8-C7	-52.99(16)
C14-O3-C11-C12	-4.8(3)	Li1-O3-C11-C12	177.24(18)
O3-C11-C12-C13	14.5(3)	O3-C11-C12-C13A	-14.2(3)
C11-C12-C13-C14	-18.4(4)	$\begin{aligned} & \mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13 \mathrm{~A}- \\ & \mathrm{C} 14 \end{aligned}$	27.9(4)
C12-C13A-C14-O3	-31.9(4)	C11-O3-C14-C13A	24.7(3)
Li1-O3-C14-C13A	-157.2(3)	C11-O3-C14-C13	-6.3(3)
Li1-O3-C14-C13	171.8(2)	C12-C13-C14-O3	15.7(4)

Table 5.15. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for complex 46.

The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2}\right.$ $\left.\mathrm{U}_{11}+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}_{12}\right]$

	$\mathbf{U l 1}_{11}$	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	U_{13}	\mathbf{U}_{12}
B1	0.0142(7)	0.0138(7)	0.0141(7)	0.0018(6)	0.0052(6)	$-0.0003(6)$
O1	0.0130(5)	0.0235(5)	0.0155(5)	0.0024(4)	0.0050(4)	0.0015(4)
O2	0.0213(5)	0.0128(5)	$0.0186(5)$	0.0010(4)	0.0100(4)	0.0004(4)
O3	0.0275(6)	0.0410(7)	0.0180(6)	0.0084(5)	-0.0004(5)	$-0.0167(5)$
Li1	0.0230(13)	0.0300(14)	0.0170(12)	0.0039(10)	0.0055(10)	$-0.0072(11)$
C1	0.0179(7)	0.0151(7)	0.0152(7)	0.0022(5)	0.0067(5)	0.0002(5)
C2	0.0251(8)	0.0151(7)	0.0200(7)	-0.0024(5)	0.0093(6)	0.0003(6)
C3	0.0326(9)	0.0141(7)	0.0253(8)	0.0014(6)	0.0115(7)	-0.0019(6)
C4	0.0290(8)	0.0170(7)	0.0196(7)	0.0027(6)	0.0110(6)	$-0.0038(6)$
C5	0.0171(7)	0.0143(7)	0.0141(7)	0.0003(5)	0.0057(5)	$-0.0006(5)$
C6	0.0209(8)	0.0251(8)	0.0157(7)	0.0015(6)	0.0024(6)	0.0007(6)
C7	0.0172(7)	0.0294(8)	0.0229(8)	0.0040(6)	0.0021(6)	0.0033(6)

	$\mathbf{U 1 1}_{11}$	\mathbf{U}_{22}	$\mathbf{U 3 3}^{\text {a }}$	\mathbf{U}_{23}	U_{13}	U_{12}
C8	0.0156(7)	0.0202(7)	0.0247(8)	0.0026(6)	0.0085(6)	0.0023(5)
C9	0.0166(8)	0.0447(10)	0.0282(9)	0.0003(7)	0.0084(7)	0.0067(7)
C10	0.0402(10)	0.0153(7)	0.0428(10)	-0.0022(7)	0.0279(8)	0.0011(7)
C11	0.0395(11)	0.0719(15)	0.0212(9)	0.0113(9)	-0.0054(8)	-0.0242(10)
C12	0.0451(12)	0.0393(11)	0.0417(12)	0.0010(9)	-0.0114(9)	$-0.0113(9)$
C13	0.0336(19)	0.029(2)	0.051(2)	0.0086(17)	0.0088(13)	-0.0103(14)
C13A	0.0336(19)	0.029(2)	0.051(2)	0.0086(17)	0.0088(13)	-0.0103(14)
C14	0.0390(11)	0.0512(12)	0.0331(10)	0.0150(9)	0.0068(8)	-0.0212(9)

Table 5.16. Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for complex 46.

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U}(\mathbf{e q})$
H1A	0.3653	0.6375	0.4652	0.019
H2A	0.3464	0.8883	0.4422	0.024
H2B	0.5341	0.8379	0.4749	0.024

		y/b	z/c	$\mathbf{U}(\mathrm{eq})$
H3A	0.5166	0.9801	0.3118	0.028
H3B	0.3348	0.9126	0.2241	0.028
H4A	0.6482	0.7905	0.2316	0.025
H4B	0.5076	0.8225	0.0998	0.025
H5A	0.5308	0.5693	0.1102	0.018
H6A	0.2645	0.6433	-0.0149	0.026
H6B	0.2492	0.4975	0.0443	0.026
H7A	0.0328	0.6249	0.0836	0.029
H7B	0.1442	0.7732	0.1332	0.029
H8A	0.1339	0.5477	0.2879	0.024
H8B	0.1065	0.7146	0.3286	0.024
H9A	0.7778	0.5585	0.2630	0.045
H9B	0.7806	0.4285	0.3479	0.045
H9C	0.8923	0.5743	0.4178	0.045

	\mathbf{x} / \mathbf{a}	y/b	z/c	$\mathbf{U}(\mathbf{e q})$
H10A	0.5268	0.2378	0.2435	0.045
H10B	0.5274	0.3538	0.1445	0.045
H10C	0.3594	0.2594	0.1275	0.045
H11A	1.0049	0.7036	0.8399	0.056
H11B	0.8875	0.8325	0.8672	0.056
H12A	1.1102	0.9766	0.9099	0.057
H12B	1.2090	0.8538	0.8433	0.057
H13A	1.1685	0.9756	0.6816	0.046
H13B	1.0211	1.0604	0.7256	0.046
H13C	1.142(6)	1.008(3)	0.672(5)	0.046
H13D	1.167(3)	0.907(3)	0.744(2)	0.046
H14A	0.8507	0.9251	0.5501	0.049
H14B	0.9924	0.8136	0.5362	0.049

5.2. Nickel-catalyzed $\boldsymbol{\beta}, \boldsymbol{\delta}$-Diarylation of Unactivated Alkene in Ketimines

5.2.1. General Information

All the reactions were set up inside a nitrogen-filled glovebox and all the chemicals were handled under nitrogen atmosphere unless stated otherwise. All the glassware including the 4 -dram and 1-dram borosilicate (Kimble-Chase) vials, and pressure vessels were properly dried in an oven before use. Bulk solvents were obtained from EMD and anhydrous solvents (DMF, DMA, DMSO, NMP, dioxane, toluene, MeCN) were obtained from Sigma-Aldrich, and were used directly without further purification. Deuterated solvents were purchased from Sigma-Aldrich. NiBr_{2} was purchased from Alfa-Aesar. Aryl halides were purchased from Acros, Sigma-Aldrich, Oakwood, TCI-America, Matrix and Alfa-Aesar. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker instrument (500 or 300,75 or 126,282 and 121.5 MHz respectively) and internally referenced to the residual solvent signals of CDCl_{3} for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{31} \mathrm{P}$ NMR at 7.26 $\mathrm{ppm}, 77.16 \mathrm{ppm},-164.9 \mathrm{ppm}$ and 0 respectively. The chemical shifts of NMR and the coupling constants (J) for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR and ${ }^{31} \mathrm{P}$ NMR are reported in δ parts per millions (ppm) and in Hertz, respectively. The following conventions are used for multiplicities: s, singlet; d, doublet; t , triplet; q , quartet; m , multiplet; dd, doublet of doublet. High resolution mass of new compounds were recorded at the Mass Spectrometry, Department of Chemistry and Chemical Biology, University of New Mexico (UNM) and University of Texas at Austin. All NMR spectra were collected at Department of Chemistry and Chemical Biology, University of New Mexico (UNM). X-ray diffraction was performed on Bruker Kappa APEX II CCD diffractometer at the Department of Chemistry and Chemical Biology, UNM. Infrared (IR) spectra were recorded on Bruker Alpha-P ATR-IR at UNM and $v_{\text {max }}$ is reported in cm^{-1}.

Note for Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

5.2.2. Experimental Section

Ligand Preparation

Tris(2,6-dimethylphenyl) phosphite , ${ }^{155}$ tris(4-methoxyphenyl) phosphite , ${ }^{156}$ tris(4(trifluoromethyl)phenyl) phosphite ${ }^{157}$ and tri(1H-pyrrol-1-yl)phosphane ${ }^{158}$ were prepared following the literature procedure.

Tris(2,6-dimethoxyphenyl) phosphite : To a well stirred solution of 2,6 dimethoxyphenol (16.0 mmol) in THF (100 ml) under nitrogen at $0{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$ (20.0 mmol) was added dropwise freshly distilled $\mathrm{PCl}_{3}(5.0 \mathrm{mmol})$. The reaction mixture was stirred for 16 h at room temperature. After the reaction was complete, the reaction mixture was filtered through fret funnel and the filtrate obtained was concentrated on rotavapor. The crude reaction mixture obtained was then purified by flash chromatography on a silica-gel column to obtain white solid (71% yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z , ~ C D C l} 3\right): \delta 3.62(\mathrm{~s}, 18 \mathrm{H}), 6.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 6 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 3H) ; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 56.4,105.8,122.8,132.6,152.3 ;{ }^{\mathbf{3 1} \mathbf{P}} \mathbf{~ N M R (1 2 1 . 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) δ 146.6.

Tris(2-methoxyphenyl) phosphite : Prepared following the same procedure as for the synthesis of tris(2,6-dimethoxyphenyl) phosphite (colorless liquid, 81% yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 2.27(\mathrm{~s}, 9 \mathrm{H}), 7.08(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}),(\mathrm{d}, J=9.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): 16.7, 120.4, 124.2, 126.9, 130.0, 131.4, $150.4 ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\left.\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 131.3$

Tris(2-methoxyphenyl) phosphite : Prepared following the same procedure as for the synthesis of tris(2,6-dimethoxyphenyl) phosphite. (colorless liquid, 84% yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 3.73(\mathrm{~s}, 9 \mathrm{H}), 6.86-6.93(\mathrm{~m}, 6 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $7.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($7 \mathbf{5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 56.0,112.6,120.9,122.6,122.7$, 124.5, 141.7, 151.2; ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR ($\mathbf{1 2 1 . 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 134.9$.

Tris(2-isopropylphenyl) phosphite : Prepared following the same procedure as for the synthesis of tris(2,6-dimethoxyphenyl) phosphite (colorless liquid, 76% yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.17(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 18 \mathrm{H}), 3.26-3.35(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.16$ $(\mathrm{m}, 6 \mathrm{H}), 7.21-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 3 \mathrm{H}){ }^{\mathbf{1 3}}{ }^{\mathbf{3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 23.1,27.0$, $120.3,120.5,124.4,126.6,126.9,140.2,149.3 ;{ }^{31} \mathbf{P}$ NMR (121.5 MHz, CDCl3) $\delta 131.5$.

Tris(3,4-dimethylphenyl) phosphite : Prepared following procedure reported in literature. ${ }^{159}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 2.23$ ($\mathrm{s}, 9 \mathrm{H}$), $2.25(\mathrm{~s}, 9 \mathrm{H}), 6.89-6.96(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 19.2, 20.0, 118.0, 118.1, 122.0, 122.1, 130.6, 132.3, 138.1, 149.7, 149.7; ${ }^{31} \mathbf{P}$ NMR (121.5 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 129.2$.

General Procedure for the Preparation of Ketimine

To a mixture of ketone (1.0 equiv) and aniline (2.0 equiv) in anhydrous toluene under nitrogen, molecular sieves $4 \AA(1.0 \mathrm{gm} / \mathrm{mmol})$ was added and heated at $80-120^{\circ} \mathrm{C}$ for $24-$ 36h. After the reaction was complete, the reaction mixture was filtered through a filter paper. Solvent was removed from the filtrate using rotavapor. The residue obtained was then purified by distillation or flash chromatography on a silica-gel column (deactivated by 10% TEA in hexanes).

Hex-5-en-2-one was prepared following literature procedure. ${ }^{160}$ N-Phenylhex-5-en-2imine was then prepared following the general procedure using hex-5-en-2-one and aniline at $80^{\circ} \mathrm{C}$ for 24 h . The crude was purified by flash chromatography on a silica-gel column (deactivated by 10% TEA in hexanes) using hexanes as an eluent to get a yellow liquid (72\% yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.78(\mathrm{~s}, 0.80 \times 3 \mathrm{H}), 2.17(\mathrm{~s}, 0.20 \times 3 \mathrm{H}), 2.23-2.24(\mathrm{~m}$, $0.20 \times 4 \mathrm{H}), 2.43-2.55(\mathrm{~m}, 0.80 \times 4 \mathrm{H}), 4.94-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.61-5.70(\mathrm{~m}, 0.20 \times 1 \mathrm{H}), 5.85-5.99$ $(\mathrm{m}, 0.80 \times 1 \mathrm{H}), 6.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz, CDCl3): $\delta 19.8,26.1,30.4,31.0,33.4,40.7,115.2,115.6,119.5,123.1$, 128.9, 136.9, 137.7, 151.0, 151.6, 171.1, 171.7 ; IR (neat): 3004, 2926, 1715, 1323, 1110, 1016.

N -(4-Fluorophenyl) hex-5-en-2-imine was prepared following the general procedure using hex-5-en-2-one and 4 -fluoroaniline at $80{ }^{\circ} \mathrm{C}$ for 24 h . The crude was purified by flash chromatography on a silica-gel column (deactivated by 10% TEA in hexanes) using hexanes as an eluent to get a yellow liquid (75\% yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.77(\mathrm{~s}, 0.80 \times 3 \mathrm{H}), 2.15(\mathrm{~s}, 0.20 \times 3 \mathrm{H}), 2.21-2.22(\mathrm{~m}$, $0.20 \times 4 \mathrm{H}), 2.41-2.52(\mathrm{~m}, 0.80 \times 4 \mathrm{H}), 4.94-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.58-5.70(\mathrm{~m}, 0.20 \times 1 \mathrm{H}), 5.83-5.96$ $(\mathrm{m}, 0.80 \times 1 \mathrm{H}), 6.60-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.99(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 19.8$, $26.1,30.4,30.9,33.3,40.7,115.2,115.5,115.8,120.7,120.8,120.9,136.7,137.6,147.6$, $159.3(\mathrm{~d}, J=239.3 \mathrm{~Hz}), 172.1,172.7$; ${ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-121.6$; IR (neat): 2968, 1658, 1593, 1484, 1363.

N -(p-Tolyl)hex-5-en-2-imine was prepared following the general procedure using hex-5-en-2-one and p-toluidine at $80^{\circ} \mathrm{C}$ for 24 h . The crude was purified by flash chromatography on a silica-gel column (deactivated by 10% TEA in hexanes) using hexanes as an eluent to get a yellow liquid (64% yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.78(\mathrm{~s}, 0.80 \times 3 \mathrm{H}), 2.15(\mathrm{~s}, 0.20 \times 3 \mathrm{H}), 2.23-2.31(\mathrm{~m}$, $0.20 \times 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.52(\mathrm{~m}, 0.80 \times 4 \mathrm{H}), 4.94-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.57-5.72(\mathrm{~m}$, $0.20 \times 1 \mathrm{H}), 5.85-5.98(\mathrm{~m}, 0.80 \times 1 \mathrm{H}), 6.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl3): δ 19.7, 20.9, 26.1, 30.5, 31.0, 33.2, 40.8, 115.1, 115.2, 119.4, $119.5,129.5,132.3,136.9,137.8,148.4,149.0,171.1,171.7$; IR (neat): 3026, 1654, 1593, 1495, 1483.

N-Butylhex-5-en-2-imine was prepared following the general procedure using hex-5-en-2one and n-butylamine at $80^{\circ} \mathrm{C}$ for 24 h . The crude was purified by flash chromatography on a silica-gel column (deactivated by 10% TEA in hexanes) using hexanes as an eluent to get a yellow liquid (61% yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 0.90(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.62(\mathrm{~m}$, $2 \mathrm{H}), 1.78(\mathrm{~s}, 0.80 \times 3 \mathrm{H}), 1.97(\mathrm{~s}, 0.20 \times 3 \mathrm{H}), 2.20-2.34(\mathrm{~m}, 4 \mathrm{H}), 3.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.90-$ $5.06(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.87(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz, CDCl3$): ~ \delta 14.1,17.2,20.8,27.1$, $30.5,31.0,31.5,33.1,33.4,42.0,50.1,51.2,114.8,115.4,137.3,138.1,168.8,169.3$; IR (neat): 2956, 2928, 1661, 1640, 1434, 1364.

Oct-7-en-4-one was prepared following a procedure described in the literature. ${ }^{161} \mathrm{~N}$ -Phenyloct-7-en-4-imine was then prepared using the general procedure using oct-7-en-4one and aniline at $120{ }^{\circ} \mathrm{C}$ for 24 h . The crude was purified by distillation under vacuum at $90^{\circ} \mathrm{C}$ (0.3 torr) in which impurities were distilled out. The remaining light reddish liquid was the desired imine. (74\% yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 0.81(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.6 \times 3 \mathrm{H}), 1.01(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.4 \times 3 \mathrm{H})$, $1.44-1.52(\mathrm{~m}, 0.6 \times 2 \mathrm{H}), 2.10(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.6 \times 2 \mathrm{H}), 2.17-2.22(\mathrm{~m}, 0.4 \times 4 \mathrm{H}), 2.39(\mathrm{t}, J=9.0$ $\mathrm{Hz}, 0.40 \times 2 \mathrm{H}), 2.43-2.51(\mathrm{~m}, 0.60 \times 4 \mathrm{H}), 4.91-5.13(\mathrm{~m}, 2 \mathrm{H}), 5.57-5.71(\mathrm{~m}, 0.40 \times 1 \mathrm{H}), 5.85-$ $5.99(\mathrm{~m}, 0.60 \times 1 \mathrm{H}), 6.63-6.68(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$

NMR (75 MHz, CDCl3): $\delta 14.0,14.3,19.8,20.4,30.5,31.1,32.4,35.4,37.5,40.7,115.0$, $115.5,119.5,122.8,122.9,128.9,137.1,138.1,151.5,174.3$; IR (neat): 2960, 1654, 1593, 1447, 1166.

1-Phenylhept-6-en-3-one was prepared following a literature procedure. ${ }^{162} \mathrm{~N}, 1-$ Diphenylhept-6-en-3-imine was then prepared following the general procedure using 1-phenylhept-6-en-3-one and aniline at $120^{\circ} \mathrm{C}$ for 36 h . The crude was purified by distillation under vacuum at $120^{\circ} \mathrm{C}$ (0.3 torr) in which impurities were distilled out. The remaining light reddish liquid was the desired imine (68% yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta \quad 2.19-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.61(\mathrm{~m}$, $0.50 \times 2 \mathrm{H}), 2.74-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.04-3.09(\mathrm{~m}, 0.50 \times 2 \mathrm{H}), 4.94-5.19(\mathrm{~m}, 2 \mathrm{H}), 5.59-5.72(\mathrm{~m}$, $0.50 \times 1 \mathrm{H}), 5.90-6.04(\mathrm{~m}, 0.50 \times 1 \mathrm{H}), 6.61(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.50 \times 2 \mathrm{H}), 6.70(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $0.50 \times 2 \mathrm{H}), 7.01-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.37(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 30.4$, $30.9,32.4,32.9,33.1,35.3,37.9,40.0,115.2,115.6,119.3,119.3,122.9,126.0,126.3$, $128.2,128.4,128.5,128.6,128.6,128.9,128.9,136.9,137.9,140.6,141.9,151.2,173.1$;

IR (neat): 3026, 1654, 1593, 1483, 1452, 1070.

2-Methylhept-6-en-3-one was prepared following a literature procedure. ${ }^{163}$ 2-Methyl-N-phenylhept-6-en-3-imine was then prepared following general procedure using 2-
methylhept-6-en-3-one and aniline at $80{ }^{\circ} \mathrm{C}$ for 24 h . The crude was purified by flash chromatography on a silica-gel column (deactivated by 10% TEA in hexanes) using hexanes as an eluent to get a yellow liquid (74\% yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.40 \times 6 \mathrm{H}), 1.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $0.60 \times 6 \mathrm{H}), 2.10-2.18(\mathrm{~m}, 0.60 \times 2 \mathrm{H}), 2.22-2.29(\mathrm{~m}, 0.40 \times 2 \mathrm{H}), 2.62-2.81(\mathrm{~m}, 1 \mathrm{H}), 4.88-5.13$ $(\mathrm{m}, 2 \mathrm{H}), 5.55-5.69(\mathrm{~m}, 0.60 \times 1 \mathrm{H}), 5.87-5.98(\mathrm{~m}, 0.40 \times 1 \mathrm{H}), 6.63-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 20.1,20.5,30.5$, $31.2,31.3,31.6,32.0,36.1,114.8,115.3,119.1,119.2,122.6,122.7,128.8,128.9,137.2$, 138.5, 151.5, 177.6, 178.5 ; IR (neat): 2965, 1653, 1576, 1465, 1203.

3-Methylhex-5-en-2-one was prepared following a literature procedure. ${ }^{164}$ 3-Methyl-N-phenylhex-5-en-2-imine was then prepared following the general procedure using 3-methylhex-5-en-2-one and aniline at $80{ }^{\circ} \mathrm{C}$ for 24 h . The crude was purified by flash chromatography on a silica-gel column (deactivated by 10% TEA in hexanes) using hexanes as an eluent to get a yellow liquid (63\% yield).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.05(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.15 \times 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $0.85 \times 3 \mathrm{H}), 1.74(\mathrm{~s}, 0.85 \times 3 \mathrm{H}), 2.08(\mathrm{~s}, 0.15 \times 3 \mathrm{H}), 2.19-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.52(\mathrm{~m}, 1 \mathrm{H})$, 2.55-2.64 (m, 1H), 4.99-5.14 (m, 2H), 5.51-5.65 (m, 0.15×1H), 5.80-5.94 (m, $0.85 \times 1 \mathrm{H})$, $6.68(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 17.6,17.8,18.3,21.1,37.3,38.8,38.8,44.3,116.3,116.7,119.4,122.8$, 123.0, 128.9, 135.8, 136.6, 151.7, 175.0, 175.2 ; IR (neat): 2968, 1658, 1593, 1484, 1363.

2-Allylcyclohexan-1-one was prepared following a literature procedure. ${ }^{165}$ 2-Allyl-N-phenylcyclohexan-1-imine was then prepared following the general procedure using 2-allylcyclohexan-1-one and aniline at $120^{\circ} \mathrm{C}$ for 24 h . The crude was purified by distillation under vacuum at $100{ }^{\circ} \mathrm{C}(.3$ torr $)$ in which impurities were distilled out. The remaining yellow liquid was the desired imine (71% yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.47-2.76(\mathrm{~m}, 11 \mathrm{H}), 4.97-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.43-5.57(\mathrm{~m}$, $0.15 \times 1 \mathrm{H}), 5.85-5.99(\mathrm{~m}, 0.85 \times 1 \mathrm{H}), 6.59-6.75(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.85 \times 1 \mathrm{H}), 7.17$ (t, $J=7.5 \mathrm{~Hz}, 0.85 \times 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 20.2$, $24.5,28.4,30.9,31.0,33.5,35.6,35.8,38.9,40.4,46.9,115.9,116.7,119.7,119.7,122.9$, 122.9, 128.9, 135.8, 137.5, 151.4, 176.1, 177.5 ; IR (neat): 2968, 1658, 1593, 1484, 1363.

(E)-6-Phenylhex-5-en-2-one was prepared following a literature procedure. ${ }^{166}$ (5E)-N,6-Diphenylhex-5-en-2-imine was then prepared following the general procedure using (E)-6-phenylhex-5-en-2-one and aniline at $80^{\circ} \mathrm{C}$ for 24 h . The crude was purified by distillation under vacuum at $100{ }^{\circ} \mathrm{C}$ (. 3 torr) in which impurities were distilled out. The remaining yellow liquid was the desired imine (66% yield).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 1.82(\mathrm{~s}, 0.80 \times 3 \mathrm{H}), 2.22(\mathrm{~s}, 0.20 \times 3 \mathrm{H}), 2.33-2.43(\mathrm{~m}$, $0.20 \times 4 \mathrm{H}), 2.59-2.65(\mathrm{~m}, 0.80 \times 4 \mathrm{H}), 6.00-6.06(\mathrm{~m}, 0.20 \times 1 \mathrm{H}), 6.29-6.38(\mathrm{~m}, 0.80 \times 1 \mathrm{H}), 6.50$ (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 7 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl 3): $\delta 20.0,26.2,29.7,30.3,33.8,41.1,119.6,123.1,126.1$, 127.1, 127.3, 128.6, 129.0, 129.7, 130.7, 130.9, 137.7, 151.6, 171.0.

General Procedure for the preparation of organozinc reagents (Knochel's Method) ${ }^{167}$

Under nitrogen, anhydrous LiCl (1.0 equiv) and zinc powder (1.5 equiv) were transferred to a Schlenk flask and dried under high vacuum at $150^{\circ} \mathrm{C}$ to $170^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to room temperature and then taken to a glovebox. Anhydrous THF $(1 \mathrm{ml} / \mathrm{mmol})$ was added and stirred at room temperature. The reaction mixture was stirred for 5 min after the zinc was activated by adding $5 \mathrm{~mol} \%$ of 1,2 dibromoethane and $3 \mathrm{~mol} \%$ of TMSCl to the zinc/THF suspension. To this stirred solution was added corresponding aryl iodides (neat) dropwise and the reaction mixture was refluxed for 24 h . The final concentration of the arylzinc reagent was determined by titration with molecular iodine in THF. ${ }^{168}$

General procedure for screening reaction conditions

In a glovebox, 4-(trifluoromethyl) phenyl)zinc iodide solution in THF (0.12 mmol) was taken in a 1-dram vial and the solvent was removed under vacuum. To the residue, NiBr_{2} ($1.1 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$), triphenyl phosphite ($1.6 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%$), 4iodotoluene ($32.7 \mathrm{mg}, 0.15 \mathrm{mmol}$) and N -phenylhex-5-en-2-imine ($17.6 \mathrm{mg}, 0.10 \mathrm{mmol}$) were added. The mixture was then dissolved in 0.5 ml of MeCN . The vial was capped
tightly and placed in a hotplate preheated to $60^{\circ} \mathrm{C}$ with vigorous stirring. After 2 h , the reaction mixture was cooled to room temperature. 1 mL of 6 N HCl was added and shaken for about 2 minutes to hydrolyze the imines to ketones. The reaction mixture was then extracted with EtOAc $(1 \mathrm{~mL} \times 3), 50 \mu \mathrm{~L}$ of pyrene ($0.010 \mathrm{mmol}, 0.20 \mathrm{M}$ stock solution) as an internal standard was added and the solvent was removed in a rotary evaporator. The residue was dissolved in CDCl_{3} and NMR spectrum was acquired. The yield was determined by integrating a product peak at 3.25 ppm against the pyrene peak at 8.06 ppm .

General procedure for large scale reactions

In a glovebox, stock solution of arylzinc in THF (0.60 mmol) was taken in a 15 mL sealed tube and the solvent was removed under vacuum. To the residue of arylzinc, NiBr_{2} (5.5 $\mathrm{mg}, 0.025 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$, triphenyl phosphite ($7.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), aryl iodides $(0.75 \mathrm{mmol})$ and ketimine $(0.5 \mathrm{mmol})$ were added. The mixture was then dissolved in MeCN (2.5 mL). The sealed tube was capped tightly, and placed in an oil-bath preheated to $60^{\circ} \mathrm{C}$ with vigorous stirring. After 2-14h, the reaction mixture was cooled to room temperature, 5 mL of 6 N HCl was added and shaken for about 2 minutes to hydrolyze the imines to ketones. The reaction mixture was then extracted with EtOAc ($3 \mathrm{~mL} \times 4$) and the combined ethyl acetate fraction was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed in a rotary evaporator. The product was purified by silica gel column chromatography using diethyl ether/hexanes as eluent.

Preparation of deuterated imine

Ethyl 3-(2-methyl-1,3-dioxolan-2-yl) propanoate \mathbf{b} was prepared following a literature procedure. ${ }^{169}$

Deuterium labelling performed according to a literature procedure. ${ }^{170}$ Sodium methoxide ($324 \mathrm{mg}, 6.0 \mathrm{mmol}$) was added to a MeOD $(16 \mathrm{ml})$ solution of $\mathbf{b}(752.8 \mathrm{mg}, 4.0 \mathrm{mmol})$ under nitrogen and the mixture was refluxed at $80^{\circ} \mathrm{C}$ for 24 h . After the reaction was complete, reaction mixture was cooled to room temperature and $\mathrm{D}_{2} \mathrm{O}(8 \mathrm{ml})$ was added. The mixture was then extracted with dichloromethane. Organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum to get (methyl 3-(2-methyl-1,3-dioxolan-2-yl) propanoate-2,2- d_{2} as a colorless liquid (61 \% yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 1.31 ($\left.\mathrm{s}, 3 \mathrm{H}\right), 2.01$ ($\mathrm{s}, 2 \mathrm{H}$), $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.92-3.94(\mathrm{~m}, 4 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 24.1,28.7,34.0,51.7,64.9,109.3,174.2$.

3-(2-Methyl-1,3-dioxolan-2-yl) propanal-2,2- $d_{2} \mathbf{d}$ was prepared from (methyl 3-(2-methyl-1,3-dioxolan-2-yl) propanoate-2,2- d_{2} following literature procedure. ${ }^{169}$ The crude product obtained was used without further purification in the next step. To a well stirred solution
of $\mathrm{CH}_{3} \mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{Br}^{-}(785.8 \mathrm{mg}, 2.2 \mathrm{mmol})$ and $\mathrm{KO} t \mathrm{Bu}(224 \mathrm{mg}, 2.0 \mathrm{mmol})$ in THF (5 ml), d was added dropwise at $0^{\circ} \mathrm{C}$. After 3 h the reaction mixture was filtered through a short pad of silica and the filtrate was concentrated carefully in rotavapor. The crude mixture was then partially purified by flash column chromatography using hexanes. The olefin \mathbf{e} obtained as a colorless liquid was used in the next step without further purification. ${ }^{170}$

To a well- stirred solution of $p \mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}(14.2 \mathrm{mg}, 5 \mathrm{~mol} \%)$ in acetone (2 ml), 2-(but-3-en-1-yl-2,2- d_{2})-2-methyl-1,3-dioxolane \mathbf{e} was added at room temperature and the reaction mixture was left stirring for 4 h . The reaction mixture was then distilled to get hex-5-en-2-one-4,4- $d_{2}(\mathbf{f})^{171}$ as a colorless liquid (65% yield).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 2.15 ($\mathrm{s}, 3 \mathrm{H}$), 2.52 ($\mathrm{s}, 2 \mathrm{H}$), 4.94-5.04 (m, 2H), 5.74-5.82 (m,1H).

N-phenylhex-5-en-2-imine-4,4- $\boldsymbol{d}_{2} \mathbf{5 7}-\boldsymbol{d}_{\mathbf{2}}$ was prepared following the general procedure for the preparation of imine using aniline and hex-5-en-2-one-4,4- d_{2} at $80^{\circ} \mathrm{C}$ for 24 h . Then the reaction mixture was cooled to room temperature and filtered through a filter paper. Filtrate was concentrated in vacuum and the residue was purified by flash chromatography on a silica-gel column (deactivated by 10% TEA in hexanes) using hexanes as an eluent to get a yellow liquid with 86% deuterium incorporated in the imine.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 1.78(\mathrm{~s}, 0.80 \times 3 \mathrm{H}), 2.17(\mathrm{~s}, 0.20 \times 3 \mathrm{H}), 2.23(\mathrm{~m}, 0.20 \times 2 \mathrm{H})$, $2.50(\mathrm{~s}, 0.80 \times 2 \mathrm{H}), 4.94-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.61-5.69(\mathrm{~m}, 0.20 \times 1 \mathrm{H}), 5.90-5.96(\mathrm{~m}, 0.80 \times 1 \mathrm{H})$, $6.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$.

5.2.2. Characterization data for new compounds

6-(p-Tolyl)hex-5-en-2-one (58): The title compound $\mathbf{5 8}$ was obtained as a colorless oil ($69.6 \mathrm{mg}, 74 \%$ yield) in 2 h after purification by silica gel column chromatography (Hex : $\left.\mathrm{Et}_{2} \mathrm{O}=20: 1\right)$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.09-6.19(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{~d},, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$) ; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($7 \mathbf{5} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 21.3,27.3,30.2,43.4,126.0,127.9$, 129.3, 130.7, 134.8, 137.0, 208.2 ; IR (neat): 2920, 1713, 1512, 1360, 1159 ; HRMS (ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$189.1279, found 189.1272.

6-(p-Tolyl)-4-(4-(trifluoromethyl)phenyl)hexan-2-one (59): The title compound 59 was obtained as a yellow oil ($117 \mathrm{mg}, 70 \%$ yield) in 2 h after purification by silica gel column chromatography (Hex : Ether = 10:1).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 1.82-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22-3.32(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 2 6} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 21.1,30.7,33.2,38.0,40.6,50.6,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.8\right.$ $\mathrm{Hz}), 128.1,128.3,128.9\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 129.2,135.5,138.5,148.5,207.0 ;{ }^{19} \mathbf{F}$ NMR (282 MHz, CDCl $\mathbf{3}$) δ-62.6; IR (neat): 3004, 2926, 1715, 1323, 1110, 1016; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$357.1442, found 357.1432.

6-(p-Tolyl)-4-(4-(trifluoromethyl)phenyl)hexan-2-one-4,5-d $\boldsymbol{d}_{2}\left(\mathbf{5 9 -} \boldsymbol{d}_{2}\right)$: The title compound $\mathbf{5 9}-\boldsymbol{d}_{\mathbf{2}}$ was obtained as a yellow oil ($45.6 \mathrm{mg}, 68 \%$ yield) in 2 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=20: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.93-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~d}$, $J=9.0 \mathrm{~Hz} 2 \mathrm{H}), 2.75(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57$ (d, J=6.0 Hz, 2H).

6-(4-Methoxyphenyl)-4-(4-(trifluoromethyl)phenyl)hexan-2-one (82): The title compound $\mathbf{8 2}$ was obtained as a yellow oil ($120.9 \mathrm{mg}, 69 \%$ yield) in 2 h after purification by silica gel column chromatography $($ Hex $:$ Ether $=10: 1)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.83-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.39$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.0(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl 3): $\delta 30.7,32.7,38.1,40.5,50.6,55.3,113.9,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=272.2\right.$ $\mathrm{Hz}), 125.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.1,128.9\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 129.3,133.6,148.5,158.0$, $207.0 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl3) δ-62.4; IR (neat): 2934, 1715, 1616, 1322, 1244, 1111 ; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 373.1391$, found 373.1380.

6-(3-Methoxyphenyl)-4-(4-(trifluoromethyl)phenyl)hexan-2-one (83): The title compound $\mathbf{8 3}$ was obtained as a yellow oil ($136.6 \mathrm{mg}, 78 \%$ yield $)$ in 2 h after purification by silica gel column chromatography $($ Hex : Ether = 10:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.85-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.63-6.74(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $30.7,33.7,37.7,40.5,50.6,55.2,111.3,114.3,120.8,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=270.0 \mathrm{~Hz}\right), 125.7(\mathrm{q}$, $\left.J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.1,128.9\left(\mathrm{q}, J_{\mathrm{CF}}=32.3 \mathrm{~Hz}\right), 129.5,143.2,148.4,159.8,206.9 ;{ }^{19}$ F NMR (282 MHz, $\mathbf{C D C l}_{3}$) $\delta-60.5$; IR (neat): 3004, 2926, 1715, 1323, 1110, 1016; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 373.1391$, found 373.1380.

6-(4-(tert-Butyl)phenyl)-4-(4-(trifluoromethyl)phenyl)hexan-2-one (84): The title compound $\mathbf{8 4}$ was obtained as a yellow oil ($86.6 \mathrm{mg}, 46 \%$ yield) in 2 h after purification by silica gel column chromatography $($ Hex $:$ Ether $=20: 1)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.29$ (s, 9 H), 1.87-2.07 (m, 2H), $2.02(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.44$ $(\mathrm{m}, 2 \mathrm{H}), 2.76(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22-3.32(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta 30.7,31.5,33.1,34.5,37.9,40.7,50.7,124.3\left(\mathrm{q}, J_{\mathrm{CF}}=252.0 \mathrm{~Hz}\right), 125.4,125.6\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ 3.8 Hz), 128.0, 128.1, 128.9 (q, $J_{\mathrm{CF}}=31.5 \mathrm{~Hz}$), 138.5, 148.5, 148.9, $207.0 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl 3) δ-61.2; IR (neat): 2962, 1716, 1618, 1323, 1161, 1117 ; HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$399.1912, found 399.1904.

6-(3-(Trifluoromethyl)phenyl)-4-(4-(trifluoromethyl)phenyl)hexan-2-one (85): The title compound $\mathbf{8 5}$ was obtained as a yellow oil ($102.9 \mathrm{mg}, 53 \%$ yield) in 2 h after purification by silica gel column chromatography $($ Hex : Ether $=20: 1)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.83-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.78$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.21-3.30(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.37$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 30.6,33.5,37.4,40.5,50.6,123.0\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=270.0 \mathrm{~Hz}\right)$, $125.1\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 125.8\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.1,128.9,129.1\left(\mathrm{q}, J_{\mathrm{CF}}=30.8 \mathrm{~Hz}\right), 130.8$ $\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), \quad 131.9,142.5,148.1,206.7 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-62.7,-$
62.8 ; IR (neat): 2928, 1716, 1618, 1322, 1110 ; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{NaO}$ $(\mathrm{M}+\mathrm{Na})^{+} 411.1160$, found 411.1147 .

6-(o-Tolyl)-4-(4-(trifluoromethyl)phenyl)hexan-2-one (86): The title compound 86 was obtained as a colorless oil ($75.2 \mathrm{mg}, 45 \%$ yield) in 2 h after purification by silica gel column chromatography $($ Hex : Ether $=10: 1)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.79-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.53$ $(\mathrm{m}, 2 \mathrm{H}), 2.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.27-3.37(\mathrm{~m}, 1 \mathrm{H}), 7.02-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.14(\mathrm{~m}, 3 \mathrm{H})$, $7.36(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl $\left.{ }^{2}\right): \delta 19.2$, $30.8,31.3,36.8,41.0,50.6,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.7\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.1,126.2$, 128.1, 128.8, $129.0\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 130.4,135.8,139.9,148.5,206.9 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 $\mathbf{M H z}, \mathbf{C D C l} 3) \delta-61.0 ;$ IR (neat): 3016, 1716, 1322, 1113, 1067, 1016 ; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 357.1442$, found 357.1431.

$$
\mathrm{H}_{\mathrm{c}} 2.2 \% \quad \mathrm{H}_{\mathrm{a}} 0.9 \%
$$

$\mathrm{H}_{\mathrm{j}} 2.9$ \%
$\mathrm{H}_{\mathrm{c}} 1.3$ \%

6-Phenyl-4-(4-(trifluoromethyl)phenyl)hexan-2-one (87): The title compound 87 was obtained as a colorless oil ($96.1 \mathrm{mg}, 60 \%$ yield) in 2 h after purification by silica gel column chromatography (Hex : Ether = 20:1).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.85-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22-3.31(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.20(\mathrm{~m}, 1 \mathrm{H})$, $7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 30.7,33.6,37.9,40.6,50.6,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.7\left(\mathrm{q}, J_{\mathrm{CF}}=3.8\right.$ $\mathrm{Hz}), 126.1,128.1,128.4,128.5,128.9\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 141.6,148.5,206.9 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl3) δ-62.6 ; IR (neat): 2927, 1715, 1322, 1160, 1109, 1067 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 343.1286$, found 343.1276.

6-(4-Chlorophenyl)-4-(4-(trifluoromethyl)phenyl)hexan-2-one (88): The title compound $\mathbf{8 8}$ was obtained as a yellow oil ($124.2 \mathrm{mg}, 70 \%$ yield) in 2 h after purification by silica gel column chromatography $($ Hex $:$ Ether $=10: 1)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.81-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.76(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.19-3.28(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 30.7$, $33.0,37.6,40.4,50.6,124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.7\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.1,128.6$,, $129.1\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 129.8,131.8,140.0,148.2,206.8 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ δ-62.5 ; IR (neat): 2928, 1715, 1322, 1160, 1110, 1068 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 377.0896$, found 377.0882.

H_{e} NOE correlations
H_{g} NOE correlations $\quad \mathrm{H}_{\mathrm{a}}$ NOE correlations
$\mathrm{H}_{\mathrm{f}} 4.9$ \%
$\mathrm{H}_{\mathrm{d}} 0.93$ \%
$\mathrm{H}_{\mathrm{a}} 1.0 \%$
$\mathrm{H}_{\mathrm{h}} 3.6 \%$
$\mathrm{H}_{\mathrm{b}} 1.7$ \%
$\mathrm{H}_{\mathrm{d}} 0.4$ \%
$\mathrm{H}_{\mathrm{c}} 0.64 \%$
$\mathrm{H}_{\mathrm{c}} 1.4$ \%
$\mathrm{H}_{\mathrm{d}} 0.5 \%$
$\mathrm{H}_{\mathrm{i}} 0.9$ \%
$\mathrm{H}_{\mathrm{c}} 1.5 \%$
$\mathrm{H}_{\mathrm{g}} 1.2 \%$

6-(3-Chlorophenyl)-4-(4-(trifluoromethyl)phenyl)hexan-2-one (89): The title compound $\mathbf{8 9}$ was obtained as a yellow oil ($106.2 \mathrm{mg}, 60 \%$ yield) in 2 h after purification by silica gel column chromatography $\left(\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.80-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.77$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.20-3.30(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $30.7,33.4,37.5,40.5,50.6,124.3\left(\mathrm{q}, J_{\mathrm{CF}}=270.0 \mathrm{~Hz}\right), 125.7\left(\mathrm{q}, J_{\mathrm{CF}}=4.5 \mathrm{~Hz}\right), 126.3,126.6$, 128.1, 128.5, 128.9, 129.1(q, $\left.J_{\mathrm{CF}}=32.3 \mathrm{~Hz}\right), 134.3,143.7,148.2,206.7 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl ${ }_{3}$) $\delta-60.9$; IR (neat): 2928, 1771, 1322, 1160, 1110, 1068 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 377.0896$, found 377.0884.

Methyl 4-(5-oxo-3-(4-(trifluoromethyl)phenyl)hexyl)benzoate (90): The title compound 90 was obtained as a yellow oil ($113.5 \mathrm{mg}, 60 \%$ yield) in 2 h after purification by silica gel column chromatography ($\mathrm{Hex}_{\mathrm{e}}: \mathrm{Et}_{2} \mathrm{O}=5: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.85-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.20-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 2 6} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 30.7,33.7,37.3,40.5,50.6,52.1,124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.7\left(\mathrm{q}, J_{\mathrm{CF}}=3.8\right.$ $\mathrm{Hz})$, 128.1, $128.5,129.1\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 129.9,147.1,148.2,167.2,206.7 ;{ }^{19}$ F NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-61.2; IR (neat): 2920, 1713, 1512, 1409, 1159 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$379.1521, found 379.1515.

6-(4-Fluorophenyl)-4-(4-(trifluoromethyl)phenyl)hexan-2-one (91): The title compound 91 was obtained as a yellow oil ($93.0 \mathrm{mg}, 55 \%$ yield) in 2 h after purification by silica gel column chromatography (Hex : Ether = 20:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3\right): \delta 1.84-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.19-3.28(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.99-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.32$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 30.7,32.8$, $37.9,40.4,50.6,115.2\left(\mathrm{~d}, J_{\mathrm{CF}}=21.4 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.7\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right)$, $128.1,129.3\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{CF}}=7.6 \mathrm{~Hz}\right), 137.2\left(\mathrm{~d}, J_{\mathrm{CF}}=2.5 \mathrm{~Hz} 148.3,161.4\right.$ $\left(\mathrm{d}, \boldsymbol{J}_{\mathrm{CF}}=243.2 \mathrm{~Hz}\right), 206.9 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-116.3,-61.2$; IR (neat): 2928, 1715, 1652, 1508, 1322, 1110 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{4} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 361.1191$ found 361.1197.

6-(Naphthalen-1-yl)-4-(4-(trifluoromethyl)phenyl)hexan-2-one (92): The title compound 92 was obtained as a yellow oil ($75.9 \mathrm{mg}, 41 \%$ yield) in 2 h after purification by silica gel column chromatography $($ Hex : Ether $=20: 1)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.96-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.85-2.98(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.45(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63((\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 30.7,31.0,37.4,41.1,50.6,123.6,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=270.9 \mathrm{~Hz}\right), 125.6$, 125.6, $125.7\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.0,126.0,126.9,128.2,128.9\left(\mathrm{q}, J_{\mathrm{CF}}=28.9 \mathrm{~Hz}\right), 129.0$, 131.7, 134.0, 137.9, 148.5, 206.9 ; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-62.6; IR (neat): 3046, 2935, 1714, 1261, 1066, 1015; HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$393.1442, found 393.1436.

6-(4-(tert-Butyl)phenyl)-4-(3,4-dichlorophenyl)hexan-2-one (93): The title compound 93 was obtained as a colorless oil ($98.1 \mathrm{mg}, 52 \%$ yield) in 4 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.78-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{t}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.21(\mathrm{~m}, 1 \mathrm{H}), 7.00-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 30.8,31.5,33.1$, $34.5,37.8,40.1,50.6,125.4,127.4,128.1,129.7,130.6,132.7,138.4,144.8,148.9,206.8$; IR (neat): 2960, 1716, 1470, 1361, 1109, 1029 ; HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{NaO}$ $(\mathrm{M}+\mathrm{Na})^{+} 399.1258$, found 399.1258 .

H_{c} NOE correlations

$\mathrm{H}_{\mathrm{b}} 2.1$ \%
$\mathrm{H}_{\mathrm{e}} 0.9 \%$
$\mathrm{H}_{\mathrm{d}} 1.5 \%$
$\mathrm{H}_{\mathrm{j}} 1.3$ \%
$\mathrm{H}_{\mathrm{h}} 1.5 \%$

4-(4-Chlorophenyl)-6-(4-isopropylphenyl)hexan-2-one (94): The title compound 94 was obtained as a yellow oil ($83.6 \mathrm{mg}, 51 \%$ yield $)$ in 4 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.79-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$, $2.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.91(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.21(\mathrm{~m}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 24.2,30.8,33.2,33.8,38.1,40.4,50.9,126.5,128.3,128.8,129.1,132.2$, 139.1, 142.8, 146.6, 207.4; IR (neat): 2958, 1714, 1491, 1359, 1061, 1013 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClNaO}(\mathrm{M}+\mathrm{Na})^{+} 351.1492$, found 351.1473.

6-Phenyl-4-(p-tolyl) hexan-2-one (95): The title compound was obtained as a yellow oil $(55.9 \mathrm{mg}, 42 \%$ yield) in 2 h after purification by silica gel column chromatography (Hex: $\left.\mathrm{Et}_{2} \mathrm{O}=10: 1\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.81-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{t}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-3.19(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.24-7.29$ ($\mathrm{m}, 2 \mathrm{H}$) ; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 21.2,30.7,33.8,38.2,40.7,51.2,125.9,127.6$, 128.4, 128.5, 129.4, 136.1, 141.0, 142.2, 207.9 ; IR (neat): 2928, 1771, 1652, 1540, 1507 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$267.1749, found 267.1726.

4-(4-Fluorophenyl)-6-(m-tolyl)hexan-2-one (96): The title compound 96 was obtained as a yellow oil ($86.7 \mathrm{mg}, 61 \%$ yield) in 4 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=20: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.79-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{t}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.12-3.22(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-$ $7.04(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl 3): $\delta 21.5,30.8,33.6,38.3$, $40.3,51.1,115.5\left(\mathrm{~d}, J_{\mathrm{CF}}=20.3 \mathrm{~Hz}\right), 125.4,126.7,129.1,129.2\left(\mathrm{~d}, J_{\mathrm{CF}}=6.0 \mathrm{~Hz}\right), 138.0$, $139.9,141.9,161.6\left(\mathrm{~d}, J_{\mathrm{CF}}=243.0 \mathrm{~Hz}\right), 207.6 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-115.1 ; \mathbf{I R}$ (neat): 2922, 1715, 1604, 1508, 1221, 1158 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FNaO}$ $(\mathrm{M}+\mathrm{Na})^{+} 307.1474$, found 307.1461 .

4-Phenyl-6-(4-(trifluoromethyl)phenyl)hexan-2-one (97): The title compound 97 was obtained as a yellow oil ($81.7 \mathrm{mg}, 51 \%$ yield) in 4h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=20: 1$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 1.84-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.68-2.82(m, , 2H), 3.12-3.21(m, 1H), 7.18-7.26(m, 5H), 7.30-7.36(m, 2H), $7.50(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}$) : $\delta 30.8,33.6,37.7,40.9,51.0,124.5(\mathrm{q}$, $\left.J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.3\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.8,127.7,128.3\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 128.8,128.8$, 143.8, 146.2, 207.6; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, $\mathbf{C D C l}_{3}$) δ-62.3;IR (neat): 2928, 1714, 1617, 1322, 1108 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 343.1286$, found 343.1275 .

4-(3-(3,5-Difluorophenyl)-5-oxohexyl)benzonitrile (98): The title compound was obtained as a yellow oil ($75.2 \mathrm{mg}, 48 \%$ yield) in 4 h after purification by silica gel column chromatography (Hex: DCM = 3:2).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.74-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.50$ $(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.12-3.21(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.74(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 30.7,33.8,36.9$, $40.3,50.3,102.4\left(\mathrm{t}, J_{\mathrm{CF}}=25.1 \mathrm{~Hz}\right), 110.1,110.5\left(\mathrm{dd}, J_{\mathrm{CF}}=7.5,16.5 \mathrm{~Hz}\right), 119.1,129.2$, $132.3,147.1,148.0\left(\mathrm{t}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 163.3\left(\mathrm{dd}, J_{\mathrm{CF}}=13.1,247.5 \mathrm{~Hz}\right), 206.3 ; ;{ }^{\mathbf{1}} \mathbf{F}$ NMR (282 MHz, CDCl3) δ-107.9 ; IR (neat): 2929, 1714, 1594, 1416, 1115 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+} 314.1356$, found 314.1361.

5-(3,4-Dichlorophenyl)-1-phenyl-7-(m-tolyl)heptan-3-one (99): The title compound was obtained as a yellow oil ($137.8 \mathrm{mg}, 65 \%$ yield) in 6 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.73-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.49-2.63 (m, 2H), $2.67(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.21(\mathrm{~m}, 1 \mathrm{H}), 6.89$ $(\mathrm{s}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 21.5,29.7,33.6,37.8$, $40.0,45.0,50.0,125.4,126.3,126.8,127.3,128.4,128.4,128.6,129.2,129.7,130.5,130.6$, 132.6, 138.0, 140.9, 141.4, 144.7, 208.0 ; IR (neat): 2924, 1712, 1468, 1363, 1092 ; HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{ONa}(\mathrm{M}+\mathrm{Na})^{+} 447.1258$, found 447.1252 .

5-(3-Chlorophenyl)-1-phenyl-7-(p-tolyl)heptan-3-one (100): The title compound $\mathbf{1 0 0}$ was obtained as a yellow oil $(158.0 \mathrm{mg}, 81 \%$ yield $)$ in 6 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.79-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.50-2.67 (m, 2H), 2.71 (d, J=6.0 Hz, 2H), 2.81-2.86 (m, 2H), 3.16-3.25 (m, 1H), $7.01(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.31(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $21.1,29.6,33.2,37.9,40.5,45.0,50.1,126.1,126.2,126.8,127.7,128.3,128.4,128.6$, 129.1, 129.9, 134.5, 135.4, 138.6, 141.0, 146.5, 208.2 ; IR (neat): 2922, 1712, 1453, 1080, 1030 ; HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClO}(\mathrm{M}+\mathrm{H})^{+} 391.1829$, found 391.1830.

5-(3,5-Difluorophenyl)-7-(4-fluorophenyl)-1-phenylheptan-3-one (101): The title compound 101 as obtained as a yellow oil ($120.8 \mathrm{mg}, 61 \%$ yield) in 6 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=20: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.74-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.75(\mathrm{~m}$, $4 \mathrm{H}), 2.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.16-3.25(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.77(\mathrm{~m}, 3 \mathrm{H}), 6.95-7.08(\mathrm{~m}, 4 \mathrm{H})$, $7.14(\mathrm{~d}, J=9.0 \mathrm{~Hz} 2 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 29.7,32.8$, $37.7,40.4,45.0,49.8,102.2\left(\mathrm{t}, J_{\mathrm{CF}}=25.1 \mathrm{~Hz}\right), 110.5\left(\mathrm{dd}, J_{\mathrm{CF}}=7.5,16.5 \mathrm{~Hz}\right), 115.3\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$ $21.0 \mathrm{~Hz}), 126.3,128.5\left(\mathrm{~d}, J_{\mathrm{CF}}=18.8 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 137.1\left(\mathrm{~d}, J_{\mathrm{CF}}=3.0 \mathrm{~Hz}\right)$, $140.8,148.4\left(\mathrm{t}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 159.8,163.2\left(\mathrm{dd}, J_{\mathrm{CF}}=12.8,247.5 \mathrm{~Hz}\right), 163.0,207.8 ; ;{ }^{19} \mathbf{F}$ NMR (282 MHz, CDCl3) δ-116.0, 108.2; IR (neat): 2928, 1714, 1594, 1508, 1115 ; HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$397.1779, found 397.1785

5-(4-Chlorophenyl)-7-(4-methoxyphenyl)-1-phenylheptan-3-one (102): The title compound $\mathbf{1 0 2}$ was obtained as a yellow oil ($126.2 \mathrm{mg}, 62 \%$ yield) in 6h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.76-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.48-2.63(\mathrm{~m}$, $2 \mathrm{H}), 2.68(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 6.81$ (d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.29(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$): $\delta 29.6,32.7,38.1,40.2,45.1,50.3,55.4,113.9,126.2,128.4$, 128.6, 128.8, 129.1, 129.3, 132.2, 133.8, 141.0, 142.7, 157.9, 208.5 ; IR (neat): 2930, 1734, 1511, 1242, 1034 ; HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClNaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$429.1597, found 429.1590.

6-(3,5-Difluorophenyl)-8-(p-tolyl) octan-4-one (103): The title compound 103 was obtained as a yellow oil ($125.6 \mathrm{mg}, 76 \%$ yield) in 6 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 0.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.99(\mathrm{~m}$, $2 \mathrm{H}), \quad 2.16-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.16-3.25(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 13.7,17.2,21.1,33.2,37.9,40.6,45.5,49.6,102.0\left(\mathrm{t}, J_{\mathrm{CF}}=\right.$ $25.5 \mathrm{~Hz}), 110.6\left(\mathrm{dd}, J_{\mathrm{CF}}=7.5,16.5 \mathrm{~Hz}\right), 128.3,129.2,135.6,138.5,148.7\left(\mathrm{t}, J_{\mathrm{CF}}=7.9 \mathrm{~Hz}\right)$, $163.2\left(\mathrm{dd}, J_{\mathrm{CF}}=13.1,246.0 \mathrm{~Hz}\right), 209.0 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-108.4$ IR (neat): 2931, 1712, 1622, 1594, 1115 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$331.1873, found 331.1869.

8-(3-Methoxyphenyl)-6-(3-(trifluoromethyl)phenyl)octan-4-one (104): The title compound 104 was obtained as a yellow oil ($140.0 \mathrm{mg}, 74 \%$ yield) in 6 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 0.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.44-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.85-2.07(\mathrm{~m}$, $2 \mathrm{H}), 2.14-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.33(\mathrm{~m}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 6.62-6.74(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.50(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 13.7,17.2,33.7,37.7,40.6,45.5,49.8,55.2,111.4,114.2,120.8$, $123.5\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 124.4\left(\mathrm{q}, J_{\mathrm{CF}}=269.3 \mathrm{~Hz}\right), 129.1,129.5$, $130.8\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 131.4,143.3,145.4,159.8,209.2, ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$
$\delta-61.0$; IR (neat): 2935, 1712, 1325, 1120, 1043 ; HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{H})^{+} 379.1885$, found 379.1887
H_{b} NOE correlations H_{e} NOE correlations

$\mathrm{H}_{\mathrm{c}} 1.4 \%$	$\mathrm{H}_{\mathrm{c}} 1.3 \%$
$\mathrm{H}_{\mathrm{e}} 0.5 \%$	$\mathrm{H}_{\mathrm{b}} 0.6 \%$
$\mathrm{H}_{\mathrm{a}} 1.4 \%$	$\mathrm{H}_{\mathrm{d}} 1.8 \%$
$\mathrm{H}_{\mathrm{d}} 2.0 \%$	$\mathrm{H}_{\mathrm{i}} 1.0 \%$

$$
\mathrm{H}_{\mathrm{f}} 1.0 \%
$$

6, 8-Diphenyloctan-4-one (105): The title compound $\mathbf{1 0 5}$ was obtained as a yellow oil (72.8 $\mathrm{mg}, 52 \%$ yield) in 6h after purification by silica gel column chromatography (Hex: DCM $=4: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 0.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-2.00$ (m, 2H), 2.18-2.27 (m, 2H), $2.46(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.78(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.25(\mathrm{~m}, 1 \mathrm{H})$, $7.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.35(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 13.8,17.1$, $33.8,38.1,41.1,45.6,50.3,125.9,126.6,127.8,128.4,128.5,128.7,142.2,144.3,210.0$; IR (neat): 2930, 1710, 1453, 1369, 1123; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$ 281.1905, found 281.1907.

2-Methyl-7-(p-tolyl)-6-(3-(trifluoromethyl)phenyl)heptan-3-one (106): The title compound $\mathbf{1 0 6}$ was obtained as a yellow oil ($112.2 \mathrm{mg}, 62 \%$ yield) in 2 h after purification by silica gel column chromatography $\left(\mathrm{Hex}^{:} \mathrm{Et}_{2} \mathrm{O}=20: 1\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~ C D C l} 3$) : $\delta 0.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) 1.81-2.03$ (m, 2H), 2.36-2.49 (m, 3H), 2.77 (d, J=6.0 Hz, 2H), 3.24-3.33 (m, 1H), 3.78 (s, 3H), 6.81 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.49(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 17.8,18.0,32.8,37.9,40.3,41.3,47.5,55.2,113.9,122.5,123.4\left(\mathrm{q}, J_{\mathrm{CF}}=3.8\right.$ $\mathrm{Hz}), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=270.0 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.1,129.0,129.3,130.9\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ $31.5 \mathrm{~Hz}), 131.5,133.7,145.7,157.9,212.7$; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-61.0$; IR (neat): 2934, 1709, 1511, 1325, 1120 ; HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$ 401.1704, found 401.1691.

5-(3-Chlorophenyl)-7-(3-methoxyphenyl)-2-methylheptan-3-one (107): The title compound 107 was obtained as a colorless oil ($108.4 \mathrm{mg}, 63 \%$ yield) in 2 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=20: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$): $\delta 0.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}) 1.78-2.02$ (m, 2H), 2.39-2.48 (m, 3H), 2.74 (dd, J=3.0 Hz, $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.16-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 6.63-6.73(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.27(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 17.9,18.0$, $33.8,37.6,40.4,41.5,47.6,55.2,111.3,114.2,120.8,126.2,126.7,127.8,129.4,129.9$, 134.4, 143.5, 146.7, 159.7, 212.8 ; IR (neat): 2934, 1708, 1595, 1456, 1259, 1043 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClO}_{2}(\mathrm{M}+\mathrm{H})^{+} 345.1621$, found 345.1631.

2-Methyl-7-(p-tolyl)-5-(3-(trifluoromethyl)phenyl)heptan-3-one (108): The title compound $\mathbf{1 0 8}$ was obtained as a yellow oil ($99.6 \mathrm{mg}, 55 \%$ yield) in 2 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 0.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.89-$ $2.09(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.52(\mathrm{~m}, 3 \mathrm{H}), 2.81(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.29-3.39(\mathrm{~m}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.51(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{7 5} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 17.8,18.0,21.0,33.3,37.9,40.4,41.3,47.6,123.4\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 124.3(\mathrm{q}$, $\left.J_{\mathrm{CF}}=270.0 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.3,129.0,129.2,130.8\left(\mathrm{q}, J_{\mathrm{CF}}=32.3 \mathrm{~Hz}\right)$, 131.5, 135.4, 138.6, 145.7, 212.6; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-61.0; IR (neat): 2970, 1710, 1325, 1121, 1072 ; HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 385.1755$, found 385.1747.

6-(3-Methoxyphenyl)-3-methyl-4-(4-(trifluoromethyl)phenyl)hexan-2-one (109): The title compound 109 was obtained as a yellow oil ($81.9 \mathrm{mg}, 45 \%$ yield) in 14 h after purification by silica gel column chromatography $\left(\mathrm{Hex}^{:} \mathrm{Et}_{2} \mathrm{O}=20: 1\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 0.80(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.5 \times 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.5 \times 3 \mathrm{H}$), $1.85(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 1.86-1.94(\mathrm{~m}, 0.5 \times 2 \mathrm{H}), 2.04-2.09(\mathrm{~m}, 0.5 \times 2 \mathrm{H}), 2.16(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 2.28-$ $2.35(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.98(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.57-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.74(\mathrm{~m}, 1 \mathrm{H})$, 7.12-7.23 (m, 2H), $7.30(\mathrm{t}, \quad J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.62(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathbf{C D C l}_{3}\right): ~ \delta 14.4,15.9,29.3,29.6,33.3,33.4,33.8,36.1,47.3,47.9,53.0,53.1,55.2,111.2$, 111.3, 114.2, 114.3, 114.8, 120.8, $123.3\left(\mathrm{q}, J_{\mathrm{CF}}=274.5 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=270.0 \mathrm{~Hz}\right)$, $125.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.3,128.7,128.9,129.1\left(\mathrm{q}, J_{\mathrm{CF}}=35.2 \mathrm{~Hz}\right), 129.4,129.5,143.2$, $143.3,146.5,147.3,159.8,211.5,212.1 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-60.9,-60.9$;IR (neat): 2935, 1711, 1325, 1115, 1066 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 365.1728, found 365.1723.

3-Methyl-6-(p-tolyl)-4-(4-(trifluoromethyl) phenyl)hexan-2-one (110): The title compound 110 was obtained as a yellow oil ($88.8 \mathrm{mg}, 51 \%$ yield) in 14 h after purification by silica gel column chromatography $\left(\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=20: 1\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathbf{C D C l} 3$): $\delta 0.80(\mathrm{~d}, \quad J=6.0 \mathrm{~Hz}, 0.55 \times 3 \mathrm{H}), 1.16(\mathrm{~d}, \quad J=6.0 \mathrm{~Hz}$, $0.45 \times 3 \mathrm{H}), 1.85(\mathrm{~s}, 0.55 \times 3 \mathrm{H}), 1.86-1.93(\mathrm{~m}, 0.55 \times 2 \mathrm{H}), 2.04-2.14(\mathrm{~m}, 0.45 \times 2 \mathrm{H}), 2.16(\mathrm{~s}$, $0.45 \times 3 \mathrm{H}), 2.27-2.37(\mathrm{~m}, 5 \mathrm{H}), 2.74-2.99(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.09(\mathrm{~m}$, $2 \mathrm{H}), 7.30(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) 7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 14.4$, $15.9,21.1,29.3,29.6,32.9,33.2,33.6,36.4,47.3,47.9,53.0,53.1,124.3$ (q, $J_{\mathrm{CF}}=272.2$ $\mathrm{Hz}), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.3,128.7,128.9\left(\mathrm{q}, J_{\mathrm{CF}}=25.2\right.$ $\mathrm{Hz})$, , 129.2, 129.2, 135.5, 135.6, 138.4, 138.6, 146.5, 147.4, 211.6, 212.2 ; ${ }^{\mathbf{1 9} \text { F NMR (282 }}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) δ-62.6, -62.6;IR (neat): 2926, 1712, 1323, 1161, 1116 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 371.1599$, found 371.1589.

2-(3-(3-Methoxyphenyl)-1-(3-(trifluoromethyl)phenyl)propyl)cyclohexan-1-one
(111):

The title compound 111 was obtained as a colorless oil ($123.0 \mathrm{mg}, 63 \%$ yield) in 14h after purification by silica gel column chromatography $\left(\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.13-2.17(\mathrm{~m}, 9 \mathrm{H}), 2.32-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.48-2.62(\mathrm{~m}, 1 \mathrm{H})$, $3.08-3.16(\mathrm{~m}, 0.55 \times 1 \mathrm{H}), 3.30-3.37(\mathrm{~m}, 0.45 \times 1 \mathrm{H}), 3.77(\mathrm{~s}, 0.55 \times 3 \mathrm{H}), 3.78(\mathrm{~s}, 0.45 \times 3 \mathrm{H})$, 6.60-6.73 (m, 3H), 7.13-7.20 (m, 1H), 7.34-7.52 (m, 4H), ; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$):
$\delta 24.5,25.0,27.8,28.7,29.3,32.3,32.6,33.8,34.0,36.1,42.5,43.5,44.4,55.2,56.6,56.8$, $111.3,111.5,114.0,114.2,120.8,120.9,123.3\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 123.5\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right)$, $124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.3\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 125.4\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.9,129.1,129.4$, $129.4,130.8\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 130.9\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 132.2,132.2,143.4,143.7,143.7$, 144.8, 159.7, 211.3, $212.8 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-62.7, -62.; IR (neat): 2936, 1706, 1325, 1260, 1119 ; HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$413.1704, found 413.1687.

2-(3-(4-Isopropylphenyl)-1-(3-(trifluoromethyl) phenyl)propyl)cyclohexan-1-one (112): The title compound $\mathbf{1 1 2}$ was obtained as a yellow oil ($112.7 \mathrm{mg}, 56 \%$ yield) in 14 h after purification by silica gel column chromatography $\left(\mathrm{Hex}_{\mathrm{E}} \mathrm{Et}_{2} \mathrm{O}=10: 1\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.23-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.54-2.18(\mathrm{~m}, 9 \mathrm{H}), 2.35-2.42(\mathrm{~m}, 3 \mathrm{H})$, 2.52-2.64 (m, 1H), 2.84-2.93 (m, 1H), 3.13-3.21 (m, 0.45×1H), 3.33-3.40 (m, $0.55 \times 1 \mathrm{H})$, $7.02(\mathrm{t}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) 7.38-7.53(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right): \delta 24.2,24.4,25.0,27.8,28.6,29.3,29.8,32.5,33.4,33.6,33.8,36.3,42.5,43.6$, $44.6,56.6,56.8,122.6,123.2\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 123.4\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 124.4\left(\mathrm{q}, J_{\mathrm{CF}}=270.7\right.$ $\mathrm{Hz}), 124.4\left(\mathrm{q}, J_{\mathrm{CF}}=271.5 \mathrm{~Hz}\right), 125.3\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 125.4\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.4,126.5$, $126.6,128.3,128.4,128.9,129.0,130.5,130.7\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 130.8\left(\mathrm{q}, J_{\mathrm{CF}}=32.3 \mathrm{~Hz}\right)$,

CDCl3) δ-61.0, -61.0; IR (neat): 2957, 1707, 1324, 1120, 1072 ; HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 425.2068$, found 425.2065.

2-(1-(3,5-Difluorophenyl)-3-phenylpropyl) cyclohexan-1-one (113): The title compound 113 was obtained as a yellow oil ($101.8 \mathrm{mg}, 62 \%$ yield) in 14 h after purification by silica gel column chromatography $\left(\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=20: 1\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.16-2.12(\mathrm{~m}, 9 \mathrm{H}), 2.30-2.55(\mathrm{~m}, 4 \mathrm{H}), 3.01-3.09(\mathrm{~m}$, $0.5 \times 1 \mathrm{H}), 3.21-3.29(\mathrm{~m}, 0.5 \times 1 \mathrm{H}), 6.63-6.81(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.29$ ($\mathrm{m}, 3 \mathrm{H}$) ; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 24.6,25.0,27.8,28.7,29.5,32.5,32.7,33.8$, $33.9,36.2,42.5,43.6,44.6,56.5,56.6,101.9\left(\mathrm{t}, J_{\mathrm{CF}}=25.5 \mathrm{~Hz}\right), 102.1$ (t, $J_{\mathrm{CF}}=25.5 \mathrm{~Hz}$), $111.3\left(\mathrm{~d}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 111.5,111.6\left(\mathrm{~d}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 126.0,128.4,141.8\left(\mathrm{~d}, J_{\mathrm{CF}}=19.5\right.$ $\mathrm{Hz}), 147.0\left(\mathrm{t}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 148.2\left(\mathrm{t}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 163.2\left(\mathrm{dd}, J_{\mathrm{CF}}=7.5,240.0 \mathrm{~Hz}\right), 163.3$ $\left(\mathrm{dd}, \boldsymbol{J}_{\mathrm{CF}}=8.3,240.0 \mathrm{~Hz}\right), 211.1,212.5 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-108.8,-108.5 ; \mathbf{I R}$ (neat): 2935, 1735, 1622, 1593, 1449 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$ 351.1536, found 351.1524 .

2-(1-(3,5-Difluorophenyl)-3-(4-(trifluoromethyl) phenyl)propyl)cyclohexan-1-one (114): The title compound $\mathbf{1 1 4}$ was obtained as a colorless oil ($114.9 \mathrm{mg}, 58 \%$ yield) in 14 h after purification by silica gel column chromatography ($\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=20: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta \quad 1.12-2.18(\mathrm{~m}, 9 \mathrm{H}), 2.32-2.52(\mathrm{~m}, 4 \mathrm{H}), 2.96-3.04(\mathrm{~m}$, $0.60 \times 1 \mathrm{H}), 3.21-3.28(\mathrm{~m}, 0.40 \times 1 \mathrm{H}), 6.67-6.77(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.52$ ($\mathrm{m}, 2 \mathrm{H}$) ; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 24.9,25.1,27.8,28.8,29.3,31.9,33.0,33.7$, $33.9,35.9,42.5,42.8,43.5,44.7,56.4,56.5,102.1\left(\mathrm{t}, J_{\mathrm{CF}}=25.1 \mathrm{~Hz}\right), 102.3\left(\mathrm{t}, J_{\mathrm{CF}}=25.1\right.$ $\mathrm{Hz}), 111.3\left(\mathrm{~d}, J_{\mathrm{CF}}=24.0 \mathrm{~Hz}\right), 124.5\left(\mathrm{q}, J_{\mathrm{CF}}=269.3 \mathrm{~Hz}\right), 122.7,125.4\left(\mathrm{t}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.3$ $\left(\mathrm{q}, J_{\mathrm{CF}}=30.8 \mathrm{~Hz}\right), 128.8,145.8,146.0,146.8\left(\mathrm{t}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 147.8163 .2\left(\mathrm{dd}, J_{\mathrm{CF}}=12.0\right.$, $240.0 \mathrm{~Hz}), 211.0,212.5 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-108.5, $-108.2,-60.8 ;$ IR (neat): 2936, 1707, 1594, 1322, 1112 ; HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{5} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 419.1410$, found 419.1404.

2-(1-(3,5-Difluorophenyl)-3-(4-isopropylphenyl)propyl)cyclohexan-1-one (115): The title compound $\mathbf{1 1 5}$ was obtained as a colorless oil ($80.0 \mathrm{mg}, 43 \%$ yield) in 14 h after purification by silica gel column chromatography ($\mathrm{Hex}^{:} \mathrm{Et}_{2} \mathrm{O}=10: 1$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 1.24(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.54-2.12(\mathrm{~m}, 9 \mathrm{H}), 2.36-2.54(\mathrm{~m}$, $4 H), 2.85-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.12(\mathrm{~m}, 0.58 \times 1 \mathrm{H}), 3.23-3.30(\mathrm{~m}, 0.42 \times 1 \mathrm{H}), 6.64-6.80(\mathrm{~m}$, 3H), 7.01-7.15 (m, 4H) ; ${ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl3): $\delta 24.2,24.6,25.0,27.8,28.7$, $29.5,32.6,33.4,33.5,33.8,36.3,42.5,43.7,44.7,56.5,56.6,101.8\left(\mathrm{t}, J_{\mathrm{CF}}=25.5 \mathrm{~Hz}\right), 102.0$ $\left(\mathrm{t}, J_{\mathrm{CF}}=25.5 \mathrm{~Hz}\right), 111.3\left(\mathrm{~d}, J_{\mathrm{CF}}=9.0 \mathrm{~Hz}\right), 111.4,111.6\left(\mathrm{~d}, J_{\mathrm{CF}}=9.0 \mathrm{~Hz}\right), 126.4,126.5,128.3$, $146.5,146.5,147.1\left(\mathrm{t}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 148.3\left(\mathrm{t}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right), 161\left(\mathrm{~d}, J_{\mathrm{CF}}=3.0 \mathrm{~Hz}\right), 140.8$, 148.4 (t, $J_{\mathrm{CF}}=8.3 \mathrm{~Hz}$), 163.1 (dd, $\left.J_{\mathrm{CF}}=7.9,247.5 \mathrm{~Hz}\right), 163.3$ (dd, $J_{\mathrm{CF}}=7.5,247.5 \mathrm{~Hz}$), 211.1, 212.5 ; ${ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-108.8,-108.5$; IR (neat): 2956, 1707, 1622, 1593, 1448 ; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 393.2006$, found 393.2009.

2-(1-(3,5-Bis(trifluoromethyl)phenyl)-3-(4-methoxyphenyl)propyl)cyclohexan-1-one (116)
: The title compound $\mathbf{1 1 6}$ was obtained as a yellow oil ($142.0 \mathrm{mg}, 62 \%$ yield) in 14 h after purification by silica gel column chromatography $\left(\mathrm{Hex}_{\mathrm{E}} \mathrm{Et}_{2} \mathrm{O}=10: 1\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.07-2.17(\mathrm{~m}, 9 \mathrm{H}), 2.32-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.51-2.64(\mathrm{~m}, 1 \mathrm{H})$, $3.18-3.27(\mathrm{~m}, 0.5 \times 1 \mathrm{H}), 3.30-3.37(\mathrm{~m}, 0.5 \times 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 6.77-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.98$ $(\mathrm{m}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 0.5 \times 1 \mathrm{H}), 7.75(\mathrm{~s}, 0.5 \times 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 24.8,25.2,27.8,28.5,29.8,32.4,32.6,32.8,32.9,36.0,42.6,43.7,44.2$, $55.4,56.1,56.5,113.9,114.0,120.4\left(\mathrm{q}, J_{\mathrm{CF}}=3.5 \mathrm{~Hz}\right), 120.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 123.5(\mathrm{q}$, $\left.J_{\mathrm{CF}}=270.8 \mathrm{~Hz}\right), 123.6\left(\mathrm{q}, J_{\mathrm{CF}}=270.8 \mathrm{~Hz}\right), 129.0,129.1,129.4,131.6\left(\mathrm{q}, J_{\mathrm{CF}}=33.0 \mathrm{~Hz}\right), 131.7$ $\left(\mathrm{q}, \boldsymbol{J}_{\mathrm{CF}}=32.3 \mathrm{~Hz}\right), 133.1,133.4,145.5,146.8,158.0,210.8,211.9 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{~ N M R}(\mathbf{2 8 2} \mathbf{~ M H z}$,

CDCl3) δ-61.2 ; IR (neat): 2928, 1771, 1652, 1540, 1507 ; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 481.1578$, found 481.1580.

2-(3-(3-Methoxyphenyl)-1-(3-(trifluoromethyl)phenyl)propyl)cyclohexan-1-one
The title compound $\mathbf{1 1 7}$ was obtained as a yellow oil ($74.1 \mathrm{mg}, 41 \%$ yield) in 14 h after purification by silica gel column chromatography $\left(\mathrm{Hex}_{\mathrm{E}} \mathrm{Et}_{2} \mathrm{O}=10: 1\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.11-2.15(\mathrm{~m}, 9 \mathrm{H}), 2.30-2.56(\mathrm{~m}, 4 \mathrm{H}), 2.99-3.07(\mathrm{~m}$, $0.43 \times 1 \mathrm{H}), 3.17-3.24(\mathrm{~m}, 0.57 \times 1 \mathrm{H}), 7.00-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.35(\mathrm{~m}$, 3H), 7.37-7.55 (m, 2H) ; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathbf{~ M H z , ~ C D C l 3}$): $\delta 24.5,25.0,27.8,28.6,29.5,32.5$, $33.8,36.1,42.5,43.1,43.9,56.4,56.6,126.0,127.0,128.2,128.2,128.4,128.9,130.2$, $130.3,130.4,130.5,130.6,132.4,132.6,141.7,141.9,143.1,144.3,211.2,212.5$; IR (neat): 2936, 1705, 1470, 1129, 1029 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$ 383.0945, found 383.0930.

2-(3-(3-Chlorophenyl)-1-(4-(trifluoromethyl) phenyl)propyl)cyclohexan-1-one (118): The title compound 118 was obtained as a yellow oil ($120.4 \mathrm{mg}, 61 \%$ yield) in 14 h after purification by silica gel column chromatography $\left(\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1\right)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$): $\delta 1.12-2.02(\mathrm{~m}, 9 \mathrm{H}), 2.30-2.44(\mathrm{~m}, 3 \mathrm{H}), 2.49-2.62(\mathrm{~m}, 1 \mathrm{H})$, $3.06-3.14(\mathrm{~m}, 0.60 \times 1 \mathrm{H}), 3.28-3.35(\mathrm{~m}, 0.40 \times 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.20(\mathrm{~m}$, $3 \mathrm{H}), 7.28(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.60 \times 2 \mathrm{H}), 7.34(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.40 \times 2 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl3): $\delta 24.7,25.0,27.8,28.7,29.4,32.1,32.8,33.6,33.7,36.0,42.5$, $42.6,43.6,44.6,56.5,56.7,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=270.0 \mathrm{~Hz}\right), 125.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.2,126.7$, 128.6, 128.9,129.0 (q, $\left.J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 129.1,129.7,134.1,143.9,144.1,146.7,147.8,211.3$, 212.7 ; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl $\mathbf{3}$) $\delta-60.8,-60.8$; IR (neat): 2935, 1734, 1323, 1112, 1066 ; HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClF}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 417.1209$, found 417.1201.

2-(1-Phenyl-3-(p-tolyl) propyl)cyclohexan-1-one (119): The title compound 119 was obtained as a colorless oil ($67.4 \mathrm{mg}, 44 \%$ yield) in 14 h after purification by silica gel column chromatography $\left(\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=10: 1\right)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.21-2.13(\mathrm{~m}, 9 \mathrm{H}), 2.27-2.46(\mathrm{~m}, 6 \mathrm{H}), 2.52-2.62(\mathrm{~m}, 1 \mathrm{H})$, $3.01-3.09(\mathrm{~m}, 0.57 \times 1 \mathrm{H}), 3.29-3.36(\mathrm{~m}, 0.43 \times 1 \mathrm{H}), 6.98-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.38(\mathrm{~m}, 6 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.1,24.0,24.7,27.7,28.8,28.9,32.5,32.7,33.3,33.7$,
$36.6,42.2,42.3,43.4,44.6,56.9,57.0,125.7,126.3,126.5,128.3,128.4,128.6,128.7$, 129.0, 129.0, 135.1, 135.1, 139.2, 139.5, 142.5, 143.6, 211.8, 213.7 ; IR (neat): 2929, 1733, 1705, 1493, 1126; HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 329.1881$, found 329.1872.

5.2.3. Mechanistic investigation

Deuterium labelling experiment

In a glovebox, stock solution of (4-(trifluoromethyl) phenyl)zinc iodide in THF (0.24 mmol) was taken in a 15 mL sealed tube and the solvent was removed under vacuum. To the residue of aryl zinc iodide, $\mathrm{NiBr}_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol})$, triphenyl phosphite (3.1 mg , $0.01 \mathrm{mmol}), 4$-iodotoluene (0.3 mmol) and N -phenylhex-5-en-2-imine-4,4- $d_{2}(0.2 \mathrm{mmol})$ was added. The mixture was then dissolved in $\mathrm{MeCN}(1.0 \mathrm{~mL})$. The sealed tube was capped tightly, and placed in an oil-bath preheated to $60^{\circ} \mathrm{C}$ with vigorous stirring. After 2h, the reaction mixture was cooled to room temperature, 2 mL of 6 N HCl was added and shaken for about 2 minutes to hydrolyze the imines to ketones. The reaction mixture was then extracted with EtOAc ($3 \mathrm{~mL} \times 4$) and the combined ethyl acetate fraction was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in a rotavapor. The crude was purified by silica gel column chromatography using diethyl ether/hexane (1:10) as an eluent to get the desired product as a colorless liquid (68% yield). The ${ }^{1} \mathrm{H}$ NMR of the 1,3-diarylated product shows the quantitative migration of one deuterium atom to the - position of the carbonyl group.

Cross-Over experiment

In a glovebox, stock solution of (4-(trifluoromethyl) phenyl)zinc iodide in THF (0.12 mmol) was taken in an oven dried 4-dram vial and THF was removed under vacuum. To this residue, $\mathrm{NiBr}_{2}(1.2 \mathrm{mg}, 0.05 \mathrm{mmol}),(\mathrm{PhO})_{3} \mathrm{P}(1.6 \mathrm{mg}, 0.05 \mathrm{mmol})$, Methyl 4iodobenzoate (0.15 mmol), $\mathrm{N}, 6$-diphenylhex-5-en-2-imine (0.2 mmol), N-phenylhex-5-en-2-imine (0.1 mmol) were added. 0.5 ml of MeCN was transferred to the vial and was tightly capped, taken outside the glovebox and placed in a hotplate preheated at $60^{\circ} \mathrm{C}$ with well stirring. After reaction was complete, reaction mixture was cooled to room temperature and $50 \mu \mathrm{l}$ of internal standard (0.2 M stock solution of pyrene in dioxane), 2 ml of ethyl acetate and 1 ml of 6 N HCl were added. The mixture was well shaken for 2 minutes. Then, 1 ml of the organic layer was taken and filtered through the short pad of silica to get a clear solution which was analyzed in the GC. The product peaks were compared to the retention time of the pure compound. The analysis of the GC peaks of products with pyrene (internal standard) shows the formation of 2% of product $\mathbf{3 2}$ and 30% of product $\mathbf{3 5}$ in the reaction.

5.2.4. X-ray Crystallographic Data for Compound 61

A colorless plate-like specimen of $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{O}_{2}$, approximate dimensions $0.228 \mathrm{~mm} \times 0.157$ $\mathrm{mm} \times 0.112 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured on a Bruker APEX II Ultra system equipped with a Double Bounce Multilayer Mirrors monochromator and a $\mathrm{MoK} \alpha$ Micro Focus Rotating Anode ($\lambda=$ $0.71073 \AA$).

The frames were integrated with the Bruker SAINT software package using a narrowframe algorithm. The integration of the data using a orthorhombic unit cell yielded a total of 10554 reflections to a maximum θ angle of $25.34^{\circ}(0.83 \AA$ resolution), of which 3994 were independent (average redundancy 2.642 , completeness $=99.9 \%, \mathrm{R}_{\text {int }}=15.80 \%, \mathrm{R}_{\text {sig }}$ $=27.01 \%)$ and $1802(45.12 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\mathrm{a}=$ $9.5667(13) \AA, b=9.7395(11) \AA, c=23.460(3) \AA$, volume $=2185.9(5) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 519 reflections above 20σ (I) with $4.528^{\circ}<2 \theta<$
50.688°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.806 . The final anisotropic full-matrix least-squares refinement on F^{2} with 284 variables converged at R1 $=8.92 \%$, for the observed data and $w R 2=17.51 \%$ for all data. The goodness-of-fit was 0.977 . The largest peak in the final difference electron density synthesis was 0.595 e$/ \AA^{3}$ and the largest hole was $-0.304 \mathrm{e}-/ \AA^{3}$ with an RMS deviation of $0.072 \mathrm{e}-/ \mathrm{A}^{3}$. On the basis of the final model, the calculated density was $1.390 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 948 \mathrm{e}-$.

Table 5.17. Crystal data and structure refinement for compound 116.

Identification code	jsOp212121_a
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{O}_{2}$
Formula weight	457.42
Temperature/K	99.51
Crystal system	orthorhombic
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
a/A	$9.5667(13)$
b/A	$9.7395(11)$
c/ \AA	$23.460(3)$

$\alpha /{ }^{\circ}$ 90
$\beta /{ }^{\circ}$ 90
$\gamma /{ }^{\circ}$ 90
Volume/A ${ }^{3}$ 2185.9(5)
Z$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$1.390
μ / mm^{-1} 0.122
F(000) 948.0
Crystal size $/ \mathrm{mm}^{3}$ $0.228 \times 0.157 \times 0.112$
Radiation $\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ}$ 4.528 to 50.688
Index ranges $-11 \leq \mathrm{h} \leq 11,-9 \leq \mathrm{k} \leq 11,-28 \leq 1 \leq 17$
Reflections collected 10554
Independent reflections $3994\left[\mathrm{R}_{\text {int }}=0.1580, \mathrm{R}_{\text {sigma }}=0.2701\right]$
Data/restraints/parameters 3994/0/284
Goodness-of-fit on F^{2} 0.977

Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0892, w R_{2}=0.1357$

Final R indexes [all data] $\quad \mathrm{R}_{1}=0.2225, \mathrm{wR}_{2}=0.1751$

Largest diff. peak/hole / e $\AA^{-3} \quad 0.59 /-0.30$

Flack parameter $\quad-1.4(10)$

Table 5.18. Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{\mathbf{2}} \times 10^{\mathbf{3}}\right)$ for jsOp212121_a. Ueq is defined as $\mathbf{1 / 3}$ of of the trace of the orthogonalised $U_{\text {IJ }}$ tensor.

Atom		y	z	U(eq)
F80	9891(7)	1671(7)	6187(3)	66(2)
F81	10099(6)	2724(6)	5411(3)	57(2)
F82	9041(7)	820(7)	5440(4)	93(3)
F90	3768(7)	1409(7)	6531(3)	66(2)
F91	4132(6)	677(6)	5694(3)	54(2)
F92	2991(6)	2507(6)	5818(4)	75(3)
O11	6465(8)	8980(6)	6587(3)	45(2)

O21	7880(6)	8957(6)	3025(3)	28.8(17)
C1	6628(10)	6349(7)	6116(4)	19(2)
C2	6601(10)	4804(8)	6038(3)	12(2)
C3	7845(10)	4102(8)	5918(3)	16.4(15)
C4	7875(9)	2698(9)	5835(4)	16(2)
C5	6637(10)	1948(9)	5862(4)	20(2)
C6	5400(9)	2615(8)	5979(4)	16(2)
C7	5393(9)	4040(8)	6075(4)	16.4(15)
C8	9213(11)	1980(10)	5723(4)	28(3)
C9	4062(11)	1804(9)	6009(5)	33(3)
C10	7720(9)	6845(8)	6541(4)	18(2)
C11	7518(10)	8322(8)	6710(4)	16(2)
C12	8664(10)	8908(9)	7064(4)	27(3)
C13	8760(10)	8090(8)	7621(4)	27(3)
C14	8873(10)	6545(8)	7506(4)	25(2)
C15	7690(10)	6024(9)	7114(4)	27(3)

C16	$6887(9)$	$7029(8)$	$5540(4)$	$19(2)$
C17	$5688(10)$	$6922(9)$	$5116(4)$	$27(2)$
C18	$6157(9)$	$7443(9)$	$4533(4)$	$18(2)$
C19	$6709(9)$	$6550(9)$	$4134(4)$	$26(3)$
C20	$7271(9)$	$6988(9)$	$3621(4)$	$23(2)$
C21	$7306(9)$	$8384(9)$	$3506(4)$	$19(2)$
C22	$6741(9)$	$9300(8)$	$3892(4)$	$19(2)$
C23	$6197(9)$	$8827(8)$	$4399(4)$	$21(2)$
C24				

Table 5.19. Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 116. The Anisotropic displacement factor exponent takes the form: -
$2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b^{*} U_{12}+\ldots\right]$.

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	$\mathbf{U} 13$	\mathbf{U}_{12}
F80	$50(4)$	$111(5)$	$37(4)$	$15(4)$	$-5(4)$	$45(4)$
F81	$36(4)$	$70(4)$	$66(5)$	$16(4)$	$27(4)$	$17(4)$

F82	33(4)	74(5)	173(9)	-93(5)	-7(5)	13(4)
F90	53(5)	90(5)	54(5)	-3(4)	27(4)	-40(4)
F91	39(4)	37(4)	87(6)	-22(4)	20(4)	-22(3)
F92	25(4)	34(4)	165(8)	12(4)	-21(5)	-8(3)
O11	54(6)	26(4)	55(5)	-4(4)	-7(4)	3(4)
O21	30(5)	30(4)	26(4)	-5(3)	0(4)	-1(3)
C1	21(6)	13(5)	23(6)	1(4)	5(5)	7(4)
C2	14(6)	18(5)	4(5)	4(4)	4(4)	-1(4)
C3	22(4)	21(3)	6(3)	2(3)	0(3)	-1(3)
C4	15(6)	20(5)	12(5)	-4(4)	0(5)	0(4)
C5	30(6)	22(5)	7(5)	-6(4)	1(5)	-4(5)
C6	21(6)	16(5)	11(5)	-4(4)	0(4)	-6(5)
C7	22(4)	21(3)	6(3)	2(3)	0(3)	-1(3)
C8	25(7)	36(7)	23(6)	-10(5)	-2(5)	10(5)
C9	39(8)	13(5)	46(8)	-8(6)	7(6)	-3(5)
C10	26(6)	11(5)	17(5)	-7(4)	-2(5)	0(4)

C11	21(6)	13(5)	13(5)	4(4)	1(5)	3(5)
C12	27(7)	23(5)	31(7)	-5(5)	5(5)	0 (5)
C13	38(7)	22(5)	21(6)	-12(5)	-6(5)	1(5)
C14	26(6)	24(6)	23(6)	0(4)	-8(5)	2(5)
C15	42(7)	24(5)	15(6)	-10(4)	-6(5)	12(5)
C16	25(6)	11(5)	21(6)	-6(4)	-5(5)	-6(4)
C17	26(7)	24(5)	29(6)	-4(5)	-12(5)	-1(5)
C18	12(6)	23(5)	21(6)	3(5)	-10(5)	-2(5)
C19	18(6)	14(5)	47(8)	3(5)	-19(5)	-7(4)
C20	29(7)	16(5)	23(6)	-3(5)	-3(5)	1(4)
C21	20(6)	22(5)	17(6)	4(5)	-11(5)	8(5)
C22	27(6)	15(5)	16(6)	5(4)	-3(5)	6(5)
C23	15(6)	22(6)	26(6)	3(5)	-6(5)	3(4)
C24	34(7)	50(7)	29(7)	-4(6)	8(6)	-2(6)

Table 5.20. Bond Lengths for compound 116.

Atom Atom	Length/A	Atom Atom	Length/Å	
F80	C8	$1.302(11)$	C5	C6

C3	C4	$1.381(11)$	C20	C21	$1.386(11)$
C4	C5	$1.393(11)$	C21	C22	$1.382(11)$
C4	C8	$1.482(12)$	C22	C23	$1.377(12)$

Table 5.21. Bond Angles for compound 116.

Atom	Atom	Atom	Angle $/{ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C21	O 21	C24	117.4(7)	F92	C9	F90	107.7(9)
C2	C1	C10	114.0(7)	F92	C9	F91	106.3(9)
C2	C1	C16	109.0(7)	F92	C9	C6	112.0(8)
C10	C1	C16	109.3(7)	C1	C10	C15	112.8(7)
C3	C2	C1	119.7(8)	C11	C10	C1	112.9(7)
C7	C2	C1	122.8(8)	C11	C10	C15	105.1(7)
C7	C2	C3	117.5(7)	O11	C11	C10	122.8(9)
C4	C3	C2	122.0(9)	O11	C11	C12	122.3(8)
C3	C4	C5	119.6(9)	C12	C11	C10	114.8(8)
C3	C4	C8	120.7(9)	C11	C12	C13	108.7(8)

C5	C4	C8	119.7(8)	C14	C13	C12	111.4(7)
C6	C5	C4	119.5(8)	C13	C14	C15	112.1(8)
C5	C6	C7	120.1(9)	C14	C15	C10	109.3(8)
C5	C6	C9	119.5(8)	C17	C16	C1	115.2(8)
C7	C6	C9	120.4(8)	C16	C17	C18	109.9(7)
C2	C7	C6	121.3(9)	C19	C18	C17	120.7(8)
F80	C8	F81	105.5(9)	C19	C18	C23	116.5(9)
F80	C8	F82	106.5(8)	C23	C18	C17	122.4(9)
F80	C8	C4	113.1(8)	C18	C19	C20	122.9(8)
F81	C8	C4	112.9(8)	C19	C20	C21	118.8(9)
F82	C8	F81	105.5(9)	O21	C21	C20	124.7(8)
F82	C8	C4	112.6(9)	O21	C21	C22	115.6(8)
F90	C9	F91	106.8(8)	C22	C21	C20	119.7(9)
F90	C9	C6	112.3(9)	C23	C22	C21	119.8(8)
F91	C9	C6	111.4(8)	C22	C23	C18	122.2(9)

Table 5.22. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 116.

Atom		y	z	U(eq)
H1	5687.35	6645.6	6256.15	23
H3	8692.29	4606.11	5892.89	20
H5	6644.81	984.53	5799.22	24
H7	4538.8	4484.78	6167.36	20
H12A	8468.79	9885.69	7147.56	32
H12B	9560.97	8852.41	6854.57	32
H13A	9589.23	8397.45	7838.47	32
H13B	7920.28	8272.95	7855.05	32
H14A	8834.53	6043.79	7872.46	30
H14B	9786.65	6346.58	7325.61	30
H15A	6775.23	6150.32	7303.55	32
H15B	7818.57	5032.79	7036.2	32
H16A	7093.56	8012.85	5603.99	23

H16B	7727.93	6608.83	5366.24	23
H17A	4885.77	7473.9	5252.68	32
H17B	5382.24	5954.05	5084.94	32
H19	6701.06	5594.45	4214.43	31
H20	7627.46	6344.37	3353.92	27
H22	6728.99	10254.22	3808.29	23
H23	5836.6	9471.42	4664.63	25
H24A	8927.58	8579.8	2314.79	56
H24B	7700.71	7504.24	2439.88	56
H24C	9125.57	7431.51	2795.99	56

5.3. Nickel-catalyzed $\boldsymbol{\gamma}, \boldsymbol{\delta}$-Diarylation of Unactivated Alkene in Ketones

5.3.1. General Information

All the reactions were set up inside a nitrogen-filled glovebox and all the chemicals were handled under nitrogen atmosphere unless stated otherwise. All the glassware including the 4-dram and 1-dram borosilicate (Kimble-Chase) vials, and pressure vessels were properly dried in an oven before use. Bulk solvents were obtained from EMD and
anhydrous solvents (DMF, DMA, DMSO, NMP, dioxane, toluene, MeCN) were obtained from Sigma-Aldrich, and were used directly without further purification. Deuterated solvents were purchased from Sigma-Aldrich. NiBr_{2} was purchased from Alfa Aesar. $\mathrm{Ni}(\operatorname{cod})_{2}$ was purchased from Strem chemicals. Aryl halides were purchased from Acros, Sigma-Aldrich, Oakwood, TCI-America, Matrix and Alfa-Aesar. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ spectra were recorded on a Bruker instrument (500 or 300,75 or 126,282 and 121.5 MHz respectively) and internally referenced to the residual solvent signals of CDCl_{3} for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR at $7.26 \mathrm{ppm}, 77.16 \mathrm{ppm}$ and -164.9 ppm respectively, and $\mathrm{C}_{6} \mathrm{~F}_{6}$ at -164.9 ppm for and ${ }^{19} \mathrm{~F}$ NMR. The chemical shifts of NMR and the coupling constants (J) for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR reported in δ parts per millions (ppm) and in Hertz, respectively. The following conventions are used for multiplicities: s , singlet; d , doublet; t , triplet; q, quartet; m , multiplet; dd, doublet of doublet. High resolution mass of new compounds was recorded at the Mass Spectrometry, University of Texas at Austin. All NMR spectra were collected at the Department of Chemistry and Chemical Biology, University of New Mexico (UNM). Infrared (IR) spectra were recorded on Bruker Alpha-P ATR-IR at UNM and $v_{\max }$ is reported in cm^{-1}.

Note from Acknowledgement: The X-ray crystallographic work (by Timothy J. Boyle) was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

5.3.2. Experimental Section
 General Procedure for the Preparation of Ketimines

All the ketimines used for the reactions are prepared in accordance with our prior work. ${ }^{172}$ $4 \AA$ molecular sieve ($1.0 \mathrm{~g} / \mathrm{mmol}$) was added to the mixture of ketone (1.0 equiv) and aniline (2.0 equiv) in anhydrous toluene under nitrogen and the mixture was heated at 80 ${ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was then filtered through the filter paper. The filtrate obtained was concentrated in vacuum. Crude was then purified by distillation under vacuum or flash column chromatography on a silica gel column deactivated by 10% TEA in hexane solution.

1-Phenylpent-4-en-1-one was prepared following general procedure. ${ }^{173} \mathrm{~N}, 1$-diphenylpent-4-en-1-imine was then prepared following general procedure using 1-phenylpent-4-en-1one and aniline at $80^{\circ} \mathrm{C}$ for 24 h . The crude was purified by distillation under vacuum at $110{ }^{\circ} \mathrm{C}(0.3$ torr $)$ in which the impurities were distilled out. The remaining reddish liquid was the desired imine (62\%).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 2.24(\mathrm{q}, J=7.8 \mathrm{~Hz}, 0.84 \times 2 \mathrm{H}), 2.47(\mathrm{q}, J=7.8 \mathrm{~Hz}$, $0.16 \times 2 \mathrm{H}), 2.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.84 \times 2 \mathrm{H}) 2.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.16 \times 2 \mathrm{H}), 4.89-5.13(\mathrm{~m}$, $2 H), 5.61-5.74(\mathrm{~m}, 0.84 \times 1 \mathrm{H}), 5.89-6.00(\mathrm{~m}, 0.16 \times 1 \mathrm{H}), 6.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.16 \times 2 \mathrm{H}), 6.81$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 0.84 \times 2 \mathrm{H}), 6.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.16 \times 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.84 \times 1 \mathrm{H})$, $7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.92(\mathrm{dd}, J=3.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75

MHz, CDCl3): δ 29.7, 30.6, 32.1, 40.5, 115.5, 119.2, 120.9, 123.2, 127.7, 127.9, 128.1, 128.6, 129.0, 130.5, 136.9, 138.4, 151.5, 169.1.

1-(4-methoxyphenyl)hex-5-en-2-one was prepared following general procedure. ${ }^{174}$ 1-(4-methoxyphenyl)-N-phenylhex-5-en-2-imine was then prepared following general procedure using 1-phenylhex-5-en-2-one and aniline at $80{ }^{\circ} \mathrm{C}$ for 24 h . The crude was purified by distillation under vacuum at $120^{\circ} \mathrm{C}$ (0.3 torr) in which the impurities were distilled out. The remaining reddish liquid was the desired imine (57\%).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 2.17(\mathrm{~s}, 0.35 \times 4 \mathrm{H}), 2.41(\mathrm{~s}, 0.65 \times 4 \mathrm{H}), 3.44(\mathrm{~s}, 0.65 \times$ $2 \mathrm{H}), 3.69(\mathrm{~s}, 0.35 \times 2 \mathrm{H}), 3.78(\mathrm{~s}, 0.65 \times 3 \mathrm{H}), 3.81(\mathrm{~s}, 0.35 \times 3 \mathrm{H}), 4.89-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.55-$ $5.64(\mathrm{~m}, 0.35 \times 1 \mathrm{H}), 5.78-5.91(\mathrm{~m}, 0.65 \times 1 \mathrm{H}), 6.70-6.91(\mathrm{~m}, 4 \mathrm{H}), 6.98-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.34(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl 3): δ 30.5, 31.0, 37.2, 38.9, 45.1, 55.4, 114.2, $115.1,115.6,119.5,119.6,123.2,128.7,129.0,129.1,130.1,130.2,130.5,137.0,137.9$, $150.9,151.2,158.4,171.9,173.5$.

1-(Furan-3-yl)pent-4-en-1-one was prepared following general procedure. ${ }^{175}$ 1-(Furan-3-yl)-N-phenylpent-4-en-1-imine was then prepared following general procedure using 1-phenylhex-5-en-2-one and aniline at $80^{\circ} \mathrm{C}$ for 24 h . The crude was purified by distillation
under vacuum at $120^{\circ} \mathrm{C}(0.3$ torr $)$ in which the impurities were distilled out. The remaining reddish liquid was the desired imine (64\%).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 2.13-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 0.35 \times 1 \mathrm{H}), 2.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.65 \times 1 \mathrm{H}), 4.87-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.60-5.74(\mathrm{~m}, 0.65$ $\times 1 \mathrm{H}), 5.92-6.01(\mathrm{~m}, 0.35 \times 1 \mathrm{H}), 6.72-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 0.35 \times 1 \mathrm{H}), 6.89(\mathrm{~s}, 0.65 \times$ $1 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.65 \times 1 \mathrm{H}), 7.24(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.35 \times$ $1 \mathrm{H}), 7.29-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 0.65 \times 1 \mathrm{H}), 8.45(\mathrm{~s}, 0.35 \times 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}(75 \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right): \delta 31.2,32.6,34.6,38.9,107.8,109.2,115.5,115.7,119.5,121.0,123.3,126.6$, $129.0,129.1,129.3,129.5,136.9,137.2,143.9,144.0,150.9,154.9,163.0$.

2-Allylcyclopentan-1-one was prepared following general procedure. ${ }^{176}$ 2-Allyl-N-phenylcyclopentan-1-imine was then prepared following general procedure using 1-phenylhex-5-en-2-one and aniline at $80^{\circ} \mathrm{C}$ for 24 h . The crude was purified by distillation under vacuum at $80^{\circ} \mathrm{C}$ (0.3 torr) in which the impurities were distilled out. The remaining reddish liquid was the desired imine (67\%).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 1.44-1.91(\mathrm{~m}, 3 \mathrm{H}), 2.02-2.28(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.74(\mathrm{~m}, 2 \mathrm{H})$, $5.03-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.83-5.97(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29 ($\mathrm{t}, \quad J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), ; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($7 \mathbf{5} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 22.7,30.1,31.1,36.7,46.1$, $103.5,116.2,119.5,123.3,129.0,136.8,152.7,183.5$.

General Procedure for the Preparation of Organozinc Reagents ${ }^{167}$

Under nitrogen, anhydrous LiCl (1.0 equiv) and zinc powder (1.5 equiv) were transferred to a Schlenk flask and dried under high vacuum at $150^{\circ} \mathrm{C}$ to $170^{\circ} \mathrm{C}$ for 2 h . The mixture was cooled to room temperature and then taken to a glovebox. Anhydrous THF $(1 \mathrm{ml} / \mathrm{mmol})$ was added and stirred at room temperature. The reaction mixture was stirred for 5 min after the zinc was activated by adding $5 \mathrm{~mol} \%$ of 1,2 dibromoethane and $3 \mathrm{~mol} \%$ of TMSCl to the zinc/THF suspension. To this stirred solution was added corresponding aryl iodides (neat) dropwise and the reaction mixture was refluxed for 24 h . The final concentration of the arylzinc reagent was determined by titration with molecular iodine in THF. ${ }^{168}$

General Procedure for Screening Reaction Conditions

In a glovebox, phenylzinc iodide solution in THF (0.15 mmol) was taken in a 1-dram vial and the solvent was removed under vacuum. To the residue, $\mathrm{Ni}(\operatorname{cod})_{2}(1.37 \mathrm{mg}, 0.005$ mmol, $5 \mathrm{~mol} \%$), co-catalyst $\left(\mathrm{AgBF}_{4}, \mathrm{CuI}, \mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{BF}_{4}\right.$ or $\left.\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{OTf}\right)(0.015$ $\mathrm{mmol}, 15 \mathrm{~mol} \%), 4$-iodobenzotrifluoride ($40.8 \mathrm{mg}, 0.15 \mathrm{mmol}$) and N-phenylhex-5-en-2imine ($17.3 \mathrm{mg}, 0.10 \mathrm{mmol}$) were added. The mixture was then dissolved in 0.5 ml of NMP. The vial was capped tightly and placed in a stir-plate at room temperature with vigorous stirring. After $1 \mathrm{~h}, 1 \mathrm{~mL}$ of 6 N HCl was added to the reaction mixture and shaken for about 2 minutes to hydrolyze the imines to ketones. The reaction mixture was then extracted with EtOAc $(1 \mathrm{~mL} \times 3), 50 \mu \mathrm{~L}$ of pyrene $(0.010 \mathrm{mmol}, 0.20 \mathrm{M}$ stock solution) as an internal standard was added and the solvent was removed in a rotary evaporator. The
residue was dissolved in CDCl_{3} and NMR spectrum was acquired. The yield was determined by integrating a product peak at 2.9 ppm against the pyrene peak at 8.06 ppm .

General procedure for reaction outside the Glovebox

In a clean and dry 25 ml Schlenk tube, $\mathrm{Ni}(\operatorname{cod})_{2}(1.37 \mathrm{mg}, 0.005 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{AgBF}_{4}$ $(2.8 \mathrm{mg}, 0.015 \mathrm{mmol}, 15 \mathrm{~mol} \%), 4$-iodobenzotrifluoride ($40.8 \mathrm{mg}, 0.15 \mathrm{mmol}$) and N -phenylhex-5-en-2-imine ($17.3 \mathrm{mg}, 0.10 \mathrm{mmol}$) were weighed. To this mixture, stock solution of phenylzinc iodide (0.15 mmol) in NMP stored under nitrogen was added. Schlenk tube was then connected to vacuum through Schlenk line and then filled with nitrogen by three cycles of vacuum and nitrogen. Under nitrogen condition, the tube was tightly capped and stirred at room temperature for 1 h . After the reaction was complete, 1 mL of 6 N HCl was added to the reaction mixture and shaken for about 2 minutes to hydrolyze the imines to ketones. The reaction mixture was then extracted with EtOAc (1 $\mathrm{mL} \times 3$), $50 \mu \mathrm{~L}$ of pyrene ($0.010 \mathrm{mmol}, 0.20 \mathrm{M}$ stock solution) as an internal standard was added and the solvent was removed in a rotary evaporator. The residue was dissolved in CDCl_{3}
and NMR spectrum was acquired. The yield was determined by integrating a product peak at 2.9 ppm against the pyrene peak at 8.06 ppm .

General Procedure for $\mathbf{0 . 5} \mathbf{~ m m o l}$ reactions

In a glovebox, stock solution of arylzinc iodide in THF (0.75 mmol) was taken in a 15 mL sealed tube and the solvent was removed under vacuum. To the residue of arylzinc, $\mathrm{Ni}(\operatorname{cod})_{2}(6.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$, silver tetrafluoroborate $(14.5 \mathrm{mg}, 0.075 \mathrm{mmol}$,
$15.0 \mathrm{~mol} \%)$ or $\mathrm{CuI}(14.3 \mathrm{mg}, 0.075 \mathrm{mmol}, 15.0 \mathrm{~mol} \%)$, aryl iodides $(0.75 \mathrm{mmol})$ and ketimine (0.5 mmol) was added. The mixture was then dissolved in NMP (2.5 mL). The sealed tube was capped tightly and stirred in the stir-plate with vigorous stirring. After 1 h , 5 mL of 6 N HCl was added to the reaction mixture and shaken for about 2 minutes to hydrolyze the imines to ketones. The reaction mixture was then extracted with EtOAc (3 $\mathrm{mL} \times 4)$ and the combined ethyl acetate fraction was washed with water $(2 \mathrm{ml} \times 3)$. The organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed in a rotary evaporator. The product was purified by silica gel column chromatography using diethyl ether/hexanes or dichloromethane/hexanes as eluent.

General procedure for the large-scale reaction

In a glovebox, stock solution of arylzinc iodide in THF (3.0 mmol) was taken in a 48 mL sealed tube and the solvent was removed under vacuum. To the residue of arylzinc, $\mathrm{Ni}(\operatorname{cod})_{2}(27.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$, silver tetrafluoroborate $(58.4 \mathrm{mg}, 0.3 \mathrm{mmol}, 15.0$ $\mathrm{mol} \%$), aryl iodides ($816 \mathrm{mg}, 3.0 \mathrm{mmol}$) and ketimine ($346 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added. The mixture was then dissolved in NMP (10 mL). The sealed tube was capped tightly and stirred in the stir-plate at room temperature with vigorous stirring. After $1 \mathrm{~h}, 10 \mathrm{~mL}$ of 6 N HCl was added to the reaction mixture and shaken for about 2 minutes to hydrolyze the imines to ketones. The reaction mixture was then extracted with EtOAc $(10 \mathrm{~mL} \times 3)$ and the combined ethyl acetate fraction was washed with water $(5 \mathrm{ml} \times 3)$. The ethyl acetate layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was removed in a rotary evaporator. The product was purified by silica gel column chromatography (hexanes : ether $=10: 1$).

5.3.3. Mechanistic Investigations

In situ monitoring of reaction progress

Preparation of stock solutions

$\mathrm{Ni}(\operatorname{cod})_{2}(0.025 \mathrm{M})$: Stock solution of $\mathrm{Ni}(\operatorname{cod})_{2}$ was prepared by dissolving 13.7 mg $\mathrm{Ni}(\operatorname{cod})_{2}$ in NMP in a 2.0 mL volumetric flask.
$p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}(0.5 \mathrm{M}): 500 \mu \mathrm{~L}$ of the $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}$ solution (1.0 M) in THF was transferred to the 1.0 ml volumetric flask and THF was removed under vacuum. The remaining residue was then dissolved in NMP to make the volume 1.0 mL .
$\mathrm{CuI} / p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}(0.05 \mathrm{M} / 0.5 \mathrm{M}): 500 \mu \mathrm{~L}$ of the $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}$ solution (1.0 M) in THF was transferred to the 1.0 mL volumetric flask and the THF was removed under vacuum. To this volumetric flask, 9.5 mg CuI was weighed. The mixture was then dissolved in NMP to make the volume to 1.0 mL .
$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}(0.75 \mathrm{M}): 204 \mathrm{mg} p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$ was weighed in a 1.0 mL volumetric flask and was dissolved in NMP to make the volume to 1.0 mL .
N-Phenylhex-5-en-2-imine (1.0 M): 173.2 mg ketimine was weighed in a 1.0 ml volumetric flask and was dissolved in NMP to make the volume to 1.0 mL .

Benzotrifluoride, Internal standard (0.2 M): 29.2 mg benzotrifluoride was weighed in a 1.0 mL volumetric flask and was dissolved in NMP to make the volume to 1.0 mL .
$\mathrm{AgBF}_{4}(0.75 \mathrm{M}): 29.2 \mathrm{mg} \mathrm{AgBF} 4$ was weighed in a 1.0 mL volumetric flask and was dissolved in NMP to make the volume to 1.0 mL .

Reaction of ketimine 57 with $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$ and $\boldsymbol{p}-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}$ without additives

In a glovebox, $300 \mu 1 p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}(0.15 \mathrm{mmol}), 200 \mu 1 p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}(0.15 \mathrm{mmol}), 100 \mu \mathrm{~L}$ N-Phenylhex-5-en-2-imine (0.1 mmol), $100 \mu \mathrm{~L}$ internal standard and $100 \mu \mathrm{l}$ NMP were added to screw cap NMR tube from their stock solutions. NMR tube was tightly capped and taken outside the glovebox. ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ was acquired. $200 \mu \mathrm{l}$ of $\mathrm{Ni}(\operatorname{cod})_{2}(0.005 \mathrm{mmol})$ was added to the reaction mixture in the NMR tube. The NMR tube was quickly mixed by shaking and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ was acquired in an array setup. After the reaction was complete, NMR tube was ejected from NMR probe and immediately quenched with 1 mL of 6 N HCl solution. The reaction mixture was then transferred to a vial and extracted with EtOAc (1 $m L \times 3)$. EtOAc extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. EtOAc was removed and $50 \mu \mathrm{l}$ freshly prepared pyrene solution (0.2 M in CDCl_{3}) as an internal standard was added to the residue. NMR sample was prepared in CDCl_{3} and proton NMR spectrum was acquired. The yield was determined by integrating a product peak at 2.9 ppm and direct cross-coupled product at 7.7 ppm against the pyrene peak at 8.06 ppm .

Reaction of ketimine 57 with $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$ and $\boldsymbol{p}-\mathrm{FC}_{6} \mathrm{H}_{4} \mathbf{Z n I}$ in the presence of AgBF_{4}

The procedure for this experiment is same as above but $100 \mu 1 \mathrm{AgBF}_{4}$ solution (0.015 mmol) was added from the stock solution instead of adding $100 \mu \mathrm{l}$ NMP.

Reaction of ketimine 57 with $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}$ and $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}$ in the presence of CuI

The procedure for this experiment is same as above but $300 \mu \mathrm{CuI} / p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}$ solution ($0.015 \mathrm{mmol} / 0.15 \mathrm{mmol}$) was added from the stock solution instead of adding $300 \mu \mathrm{p}$ $\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}$.

Table 5.23. Yields of $\mathbf{1 3 7}$ in the experiments with and without co-catalysts at different time intervals

	\% yield of	\% yield of	\% yield of
Time (s)	$\mathbf{1 3 7}$	$\mathbf{1 3 7}$	$\mathbf{1 3 7}$

	(no $\mathrm{Ag} / \mathrm{Cu}$)	(AgBF_{4})	(CuI)
0.0000	0.0000	0.0000	0.0000
180.00	3.3824	16.032	6.1010
360.00	6.7824	33.635	12.515
540.00	9.6755	49.341	26.920
720.00	12.312	58.225	40.124
900.00	14.766	62.692	49.104
1080.0	16.855	64.550	54.731
1260.0	18.727	65.531	57.909
1440.0	20.475	65.968	59.613
1620.0	22.073	66.347	60.431
1800.0	23.316	67.288	61.010
1980.0	24.539	68.000	61.000
2160.0	25.268		
2340.0	26.255		
2520.0	26.843		
2700.0	27.376		
2880.0	27.920		
3060.0	28.245		

$$
\begin{array}{cc}
3240.0 & 28.615 \\
3420.0 & 28.920 \\
3600.0 & 29.000
\end{array}
$$

Figure (a): Reaction profiles with and without AgBF_{4} and CuI. Blue: with AgBF_{4}; green: with CuI ; red: without AgBF_{4} or CuI

Table 5.24. Yields of $\mathbf{1 3 7}$ and $\mathbf{1 2 7}$ in the experiment with and without AgBF_{4} at different time intervals

	\% yield of	$\%$ yield of	\% yield of	$\%$ yield of
	$\mathbf{1 3 7}$	$\mathbf{1 3 7}$	$\mathbf{1 2 7}$	$\mathbf{1 2 7}$
Time (s)	$\left(\right.$ no $\left.\mathrm{AgBF}_{4}\right)$	$\left(\mathrm{AgBF}_{4}\right)$	$\left(\right.$ no $\left.\mathrm{AgBF}_{4}\right)$	$\left(\mathrm{AgBF}_{4}\right)$
0.0000	0.0000	0.0000	0.0000	0.0000
180.00	3.3824	16.032	3.4840	3.6478

360.00	6.7824	33.635	7.4840	7.9141
540.00	9.6755	49.341	10.676	11.610
720.00	12.312	58.225	13.585	13.700
900.00	14.766	62.692	16.294	14.751
1080.0	16.855	64.550	18.599	15.188
1260.0	18.727	65.531	20.664	15.419
1440.0	20.475	65.968	22.593	15.522
1620.0	22.073	66.347	24.357	15.611
1800.0	23.316	67.288	25.728	15.832
1980.0	24.539	68.000	27.078	16.000
2160.0	25.268		27.882	
2340.0	26.255		28.971	
2520.0	26.843		29.619	
2700.0	27.376		30.208	
2880.0	27.920		30.809	
3060.0	28.245		31.167	
3240.0	28.615		31.575	
3420.0	28.920		31.911	
3600.0	29.000		32.000	

Figure (b). Comparison of reaction rates for the formation of diarylation product 137 and biaryl side product $\mathbf{1 2 7}$ by cross-coupling in the presence and absence of AgBF_{4}. Blue: with AgBF_{4}; red: without AgBF_{4}; hollow square and circle: cross-coupling (127); solid square and circle: alkene diarylation (137).

Table 5.25. Yields of $\mathbf{1 3 7}$ and $\mathbf{1 3 7}$ in the experiment with and without CuI at different time intervals

	\% yield of	\% yield of	\% yield of	\% yield of
	$\mathbf{1 3 7}$	$\mathbf{1 3 7}$	$\mathbf{1 2 7}$	$\mathbf{1 2 7}$
Time (s)	(no CuI)	(CuI)	(no CuI)	(CuI)
0.0000	0.0000	0.0000	0.0000	0.0000
180.00	3.3824	6.1010	3.4840	2.5004
360.00	6.7824	12.515	7.4840	5.1291

540.00	9.6755	26.920	10.676	11.033
720.00	12.312	40.124	13.585	16.444
900.00	14.766	49.104	16.294	20.125
1080.0	16.855	54.731	18.599	22.431
1260.0	18.727	57.909	20.664	23.733
1440.0	20.475	59.613	22.593	24.432
1620.0	22.073	60.431	24.357	24.767
1800.0	23.316	61.010	25.728	25.004
1980.0	24.539	61.000	27.078	25.000
2160.0	25.268		27.882	
2340.0	26.255		28.971	
2520.0	26.843		29.619	
2700.0	27.376		30.208	
2880.0	27.920		30.809	
3060.0	28.245		31.167	
3240.0	28.615		31.575	
3420.0	28.920		31.911	
3600.0	29.000		32.000	

Figure (c): Comparison of reaction rates for the formation of diarylation product 137 and biaryl side product $\mathbf{1 2 7}$ by cross-coupling in the presence and absence of CuI . Blue: with CuI; red: without CuI; hollow square and circle: cross-coupling (127); solid square and circle: alkene diarylation (137).

Reactions between $\boldsymbol{p}-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}$ and AgBF_{4}

In a glovebox, $50 \mu \mathrm{l} \mathrm{AgBF} 4$ (1.0 M solution in NMP) and $20 \mu \mathrm{l}$ benzotrifluoride (1.0 M solution in NMP), as an internal standard was taken in a NMR tube with septum screw cap. $830 \mu 1$ NMP was added and thoroughly mixed. The NMR tube was tightly capped and taken outside the glovebox. ${ }^{19}$ F-NMR was acquired. NMR sample was then ejected and $100 \mu \mathrm{l} p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}(0.5 \mathrm{M}$ in NMP) was added quickly using nitrogen flushed microliter syringe from the stock solution in the 1-dram vial capped airtightly. The reaction was mixed and immediately injected to the NMR probe and obtain the ${ }^{19} \mathrm{~F}$-NMR spectrum. ${ }^{19} \mathrm{~F}$ NMR spectrum was also obtained after 30 min .

Reactions between $\boldsymbol{p}-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ZnI}$ and CuI

The procedure for this experiment is same as above but, 9.5 mg CuI was weighed in the vial and transferred to the NMR tube as a suspension in NMP instead of $50 \mu \mathrm{l} \mathrm{AgBF}_{4}$ solution.

Synthesis of standard Product 129 and conformation of regioselectivity

A was synthesized following literature procedure as follows. ${ }^{177}$ The mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(1.1 \mathrm{~g}, 10 \mathrm{mmol})$ and piperidine $(7 \mathrm{ml})$ in a 25 ml R.B flask was cooled in an ice-bath with
stirring for 15 minutes. Phenylacetaldehyde was then added dropwise into the cooled mixture. The reaction was left stirring at room temperature for 8 h . The reaction mixture was filtered and excess piperidine was removed by using rotavapor at higher temperature below the boiling point of piperidine resulting yellow liquid ($1.6 \mathrm{~g}, 85 \%$) which was used in the next step. ${ }^{1} \mathrm{H}$ NMR spectra was consistent with the literature. ${ }^{177}$

The enamine was used to prepare B following literature procedure. ${ }^{178}$ In a 100 ml sealed tube, $\mathbf{A}(936 \mathrm{mg}, 5 \mathrm{mmol})$ was dissolved in $\mathrm{MeCN}(50 \mathrm{ml})$ together with 1-(bromomethyl)-4-(trifluoromethyl) benzene ($1434 \mathrm{mg}, 6 \mathrm{mmol}$) under nitrogen atmosphere. The sealed tube was capped tightly, and the mixture was heated at $85^{\circ} \mathrm{C}$ for 12 h . Then it was cooled at room temperature. 10 ml 1 M HCl was added to the reaction mixture and stirred for 1 h . The mixture was then extracted with DCM $(15 \mathrm{ml} \times 3)$. DCM extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum in rotavapor and the crude was purified by column chromatography to get colorless liquid ($946 \mathrm{mg}, 68 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~ C D C l 3}$): $\delta 3.01(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=6.3 \mathrm{~Hz}$, $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-2.16(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, \mathbf{1 H}) ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-61.0$.

C
\mathbf{C} was prepared following literature procedure using B. ${ }^{179}$ LDA was prepared by adding $n \operatorname{BuLi}(1.56 \mathrm{ml}, 2.5 \mathrm{mmol})$ in Diisoproyl amine (0.38 ml , 2.5 mmol) solution in THF (5 mL) at $0^{\circ} \mathrm{C}$ and stirred the mixture for 30 minutes. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and to this solution, acetone $(0.18 \mathrm{ml}, 2.5 \mathrm{mmol})$ was added dropwise and was stirred for 20 minutes. The enolate solution formed was then treated with \mathbf{B} and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Then, solvent was removed by rotavapor and the remaining was dissolved in ether and was treated with 0.5 ml conc. HCl . The mixture was then extracted with ether $(5 \mathrm{ml} \times 3)$. The ether extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was removed, and the crude $(681 \mathrm{mg}, 81 \%)$ was used for the next step without further purification.

D

D was prepared following literature procedure. ${ }^{180}$ The equal volume of water with β-Ketol $\mathbf{C}(672 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added to the substrate and the resulting emulsion was treated with conc. HCl to pH 1 . The mixture was then stirred vigorously at $70^{\circ} \mathrm{C}$ for 5 h . The
reaction mixture was extracted with diethyl ether $(10 \mathrm{ml} \times 3)$ and the extract was washed with water $(10 \mathrm{ml})$, saturated $\mathrm{NaHCO}_{3}(10 \mathrm{ml})$. The ether layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum to get $\mathbf{D}(503 \mathrm{mg}, 79 \%)$ which was used in the next step without further purification.

11 was prepared by reducing \mathbf{D} following literature procedure. ${ }^{181}$ In a 25 ml R.B flask, $10 \% \mathrm{Pd} / \mathrm{C}(40.5 \mathrm{mg}, 0.0375 \mathrm{mmol}), \mathbf{D}(477 \mathrm{mg}, 1.5 \mathrm{mmol})$ and toluene $(7 \mathrm{ml})$ were added and the mixture was stirred at room temperature. To the reaction mixture, acetic acid (0.16 $\mathrm{ml}, 3 \mathrm{mmol}$) was added in one portion. Powder of $\mathrm{NaBH}_{4}(225 \mathrm{mg}, 6 \mathrm{mmol})$ was also added in one portion and the reaction mixture was left stirring at room temperature for 1 h . The mixture was quenched with 0.1 M of HCl until the hydrogen gas evolution stops. The reaction mixture was treated with NaHCO_{3} to make the solution basic. Then, the mixture was extracted with diethyl ether $(5 \mathrm{ml} \times 3)$. The ether layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by column chromatography to get the desired product $\mathbf{1 2 6}$ as a colorless oil in (360.4 mg, 75\%) yield.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.86-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.01-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.24-$ $2.28(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.92-3.00(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl3): $\delta 29.4,30.1,41.6,43.8,47.2,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=270.9 \mathrm{~Hz}\right)$, $125.1\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.8,127.8,128.3\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 128.7,129.5,143.3,144.5$, 208.7 ; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl3) δ-60.9 ; IR (neat): 3028, 1713, 1321, 1159, 1107, 1065 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 343.1286$ found 343.1289.

5.3.4. Characterization Data for New Compounds

5-(3-Chlorophenyl)-6-(4-(trifluoromethyl)phenyl)hexan-2-one (126):The title compound 126 was obtained as a colorless oil ($121.7 \mathrm{mg}, 76 \%$ in 0.5 mmol scale) and ($461.3 \mathrm{mg}, 72 \%$ in 2.0 mmol scale) after purification by silica gel column chromatography (hexanes : ether $=10: 1) . \mathrm{R}_{\mathrm{f}}=0.41$ (hexanes : ether $=3: 2$). This product was also isolated using $15 \mathrm{~mol} \%$ CuI instead of AgBF_{4} (117 mg, 73\%). The characterization data is consistent with the independently synthesized compound above.

5-(m-Tolyl)-6-(4-(trifluoromethyl)phenyl)hexan-2-one (129) : The title compound 129 was obtained as a yellow oil ($110.3 \mathrm{mg}, 66 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.38$ (hexanes : ether $=1: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.78-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.25$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.88$ $(\mathrm{m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): 21.6, 29.3, 30.1, 41.7, $43.8,47.1,124.5\left(\mathrm{q}, J_{\mathrm{CF}}=270.0 \mathrm{~Hz}\right.$), $124.8,125.1\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 127.5,128.5,129.1\left(\mathrm{q}, J_{\mathrm{CF}}=30.0 \mathrm{~Hz}\right), 129.5,138.2,143.4$, 144.6, 208.8 ; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-60.7 ; IR (neat): 2926, 1714, 1321, 1159, 1108, 1065 ; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$357.1442, found 357.1450.

5-(p-Tolyl)-6-(4-(trifluoromethyl)phenyl)hexan-2-one (130): The title compound $\mathbf{1 3 0}$ was obtained as a yellow oil ($101.9 \mathrm{mg}, 61 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.42$ (hexanes : ether $=1: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.81-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.24$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ $21.2,29.5,30.1,41.7,43.9,46.7,124.5\left(\mathrm{q}, J_{\mathrm{CF}}=273.8 \mathrm{~Hz}\right), 125.2\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 127.8$, $128.8\left(\mathrm{q}, J_{\mathrm{CF}}=39.0 \mathrm{~Hz}\right), 129.4,129.5,136.3,140.3,144.6,208.8 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{~ N M R}(\mathbf{2 8 2} \mathbf{~ M H z}$, CDCl $_{3}$) δ-62.3 ; IR (neat): 2923, 1714, 1495, 1323, 1120, 1066 ; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 357.1442$, found 357.1442.

5-(3-Methoxyphenyl)-6-(4-(trifluoromethyl)phenyl)hexan-2-one (131): The title compound $\mathbf{1 3 1}$ was obtained as a colorless oil ($105.1 \mathrm{mg}, 60 \%$ yield) after purification by silica gel column chromatography(hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.55$ (hexanes : ether 1:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.82-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.26$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $6.59(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}(75 \mathrm{MHz}$,

CDCl3 $_{3}$: δ 29.3, 30.1, 41.6, 43.8, 47.2, 55.3, 111.7, 113.8, 120.2, $124.5\left(\mathrm{q}, J_{\mathrm{CF}}=272.2\right.$ $\mathrm{Hz}), 125.2\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.4\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 129.5,129.7,144.4,145.1,159.9$, 208.7 ; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl3) δ-61.1; IR (neat): 2938, 1713, 1321, 1257, 1108, 1065 ; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 373.1391$, found 373.1400.

5-(4-Methoxyphenyl)-6-(4-(trifluoromethyl)phenyl)hexan-2-one (132): The title compound 132 was obtained as a yellow oil ($98.1 \mathrm{mg}, 56 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.56$ (hexanes : ether 1:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.78-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.22-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.96(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.96(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl3): $\delta 29.6,30.1,41.7,44.0,46.4,55.3,114.0,124.5\left(\mathrm{q}, J_{\mathrm{CF}}=272.2\right.$ $\mathrm{Hz}), 125.1\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.3\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 128.7,129.5,135.2,144.6,158.3$, $208.8 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl $\mathbf{3}$) δ-61.1; IR (neat): 2933, 1713, 1611, 1510, 1322, 1245 ; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$373.1391, found 373.1402.

5-(4-Chlorophenyl)-6-(4-(trifluoromethyl)phenyl)hexan-2-one (133): The title compound 133 was obtained as a yellow oil ($131.2 \mathrm{mg}, 74 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.42$ (hexanes : ether $=7: 3$). This product was also isolated using $15 \mathrm{~mol} \% \mathrm{CuI}$ instead of AgBF_{4} ($122.4 \mathrm{mg}, 69 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.79-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.22-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.98(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J$ $=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): 29.4,30.2,41.5,43.8,46.6,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.3\left(\mathrm{q}, J_{\mathrm{CF}}=3.8\right.$ $\mathrm{Hz}), 128.5\left(\mathrm{q}, J_{\mathrm{CF}}=29.0 \mathrm{~Hz}\right), 128.9,129.2,129.5,132.5,141.8,144.0,208.5 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl3) δ-62.3 ; IR (neat): 2931, 1714, 1322, 1160, 1118, 1065 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 377.0896$, found 377.0886.

5-(3-Chlorophenyl)-6-(4-(trifluoromethyl)phenyl)hexan-2-one (134): The title compound 134 was obtained as a yellow oil ($120.6 \mathrm{mg}, 68 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.39$ (hexanes : ether $=7: 3$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (300 MHz, CDCl3): $\delta 1.76-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.25$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.90-3.00(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz, CDCl $_{3}$): $\delta 29.3,30.1,41.4,43.6,47.0,124.3\left(\mathrm{q}, J_{\mathrm{CF}}=259.5 \mathrm{~Hz}\right.$), $125.3\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.2,127.1,127.8,128.6\left(\mathrm{q}, J_{\mathrm{CF}}=32.3 \mathrm{~Hz}\right), 129.5,130.0,134.6$, 143.9, 145.6, 208.2; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-61.2; IR (neat): 2929, 1713, 1322, 1160, 1109, 1065; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$377.0896, found 377.0897.

5-(3,4-Dichlorophenyl)-6-(4-(trifluoromethyl)phenyl)hexan-2-one (135): The title compound $\mathbf{1 3 5}$ was obtained as a yellow oil ($118.7 \mathrm{mg}, 61 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=8: 1$). $\mathrm{R}_{\mathrm{f}}=0.39$ (hexanes : ether $=7: 3$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.77-1.84(\mathrm{~m}, 1 \mathrm{H}), 2.0-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.25$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81-2.98(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{dd}, J=10.0 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}$ ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 29.2,30.1,41.3,43.5,46.4,124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.4(\mathrm{q}$, $\left.J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 127.3,128.7\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 129.4,129.6,130.7,130.7,132.8,143.6$, 143.8, $208.0 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-61.2; IR (neat): 2932, 1714, 1321, 1160, 1107, 1065 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$411.0506, found 411.0502 .

5-(3,5-Difluorophenyl)-6-(4-(trifluoromethyl)phenyl)hexan-2-one (136): The title compound $\mathbf{1 3 6}$ was obtained as a colorless oil ($126.5 \mathrm{mg}, 71 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.35$ (hexanes : ether $=$ 7:3).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.74-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.26$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.83-2.97(\mathrm{~m}, 3 \mathrm{H}), 6.57-6.68(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 29.3, 30.1, 41.2, 43.4, 47.0, 102.3 $\left(\mathrm{t}, J_{\mathrm{CF}}=24.8 \mathrm{~Hz}\right), 110.6\left(\mathrm{dd}, J_{\mathrm{CF}}=7.5,16.5 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=270.8\right), 125.4\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$
$3.8 \mathrm{~Hz}), 128.8\left(\mathrm{q}, J_{\mathrm{CF}}=32.3 \mathrm{~Hz}\right), 129.4,143.5,147.7,163.3\left(\mathrm{dd}, J_{\mathrm{CF}}=12.8,247.5 \mathrm{~Hz}\right)$, $208.0 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl3) δ-109.5, -62.4; IR (neat): 2927, 1713, 1493, 1323, 1120, 1068 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{5} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$379.1097, found 379.1099.

5-(4-Fluorophenyl)-6-(4-(trifluoromethyl)phenyl)hexan-2-one (137): The title compound 137 was obtained as a colorless oil ($110.0 \mathrm{mg}, 65 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.39$ (hexanes : ether $=7: 3$). This product was also isolated using $15 \mathrm{~mol} \% \mathrm{CuI}$ instead of $\mathrm{AgBF}_{4}(96.4 \mathrm{mg}, 57 \%)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.79-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.22-$ $2.27(\mathrm{~m}, 2 \mathrm{H}), 2.78-3.00(\mathrm{~m}, 3 \mathrm{H}), 6.92-7.02(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathbf{C D C l}_{3}\right): 29.6,30.1,41.5,43.9,46.5,115.5\left(\mathrm{~d}, J_{\mathrm{CF}}=\right.$ $21.0 \mathrm{~Hz}), 124.4\left(J_{\mathrm{CF}}=267.0 \mathrm{~Hz}\right), 125.2\left(\mathrm{q}, J_{\mathrm{CF}}=3.0 \mathrm{~Hz}\right), 128.5\left(\mathrm{q}, J_{\mathrm{CF}}=33.0 \mathrm{~Hz}\right), 129.1$, $\left(\mathrm{d}, J_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right), 129.5,138.9,144.2161 .7\left(\mathrm{~d}, J_{\mathrm{CF}}=243.0 \mathrm{~Hz}\right), 208.4 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}(\mathbf{2 8 2}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) δ-115.03, -61.1; IR (neat): 2930, 1714, 1508, 1322, 1158, 1109 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{4} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$361.1191, found 361.1198.

Methyl 4-(5-oxo-1-(4-(trifluoromethyl)phenyl)hexan-2-yl)benzoate (138): The title compound 138 was obtained as a yellow oil ($92.7 \mathrm{mg}, 49 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=5: 1$). $\mathrm{R}_{\mathrm{f}}=0.43$ (hexanes : ether $=1: 1$)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.84-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.99-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.20-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.87-3.01(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 7.07(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ $29.3,30.1,41.3,43.5,47.2,52.1,124.3\left(\mathrm{q}, J_{\mathrm{CF}}=270.0 \mathrm{~Hz}\right), 125.2\left(\mathrm{q}, J_{\mathrm{CF}}=4.5 \mathrm{~Hz}\right), 127.9$, $128.5\left(\mathrm{q}, J_{\mathrm{CF}}=32.3 \mathrm{~Hz}\right), 128.8,129.4,130.0,143.8,148.8,167.0,208.2 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}(282$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) δ-61.0 ; IR (neat): 2950, 1714, 1322, 1277, 1102, 1065 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+}$401.1340, found 401.1348.

6-(4-Fluorophenyl)-5-phenylhexan-2-one (139): The title compound 139 was obtained as a colorless oil ($71.6 \mathrm{mg}, 53 \%$ yield) after purification by silica gel column chromatography (hexanes: ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.42$ (hexanes : ether $=1: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.82-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.22-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.90(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.96$ $(\mathrm{m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$): 29.3, 30.1, 41.8, 43.2, 47.6, $114.9\left(\mathrm{~d}, J_{\mathrm{CF}}=21.4 \mathrm{~Hz}\right), 126.6$, $127.9,128.6,130.5,130.6,143.8,161.4\left(\mathrm{~d}, J_{\mathrm{CF}}=243.2 \mathrm{~Hz}\right), 208.8 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{~ N M R}(\mathbf{2 8 2} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) δ-117.5 ; IR (neat): 2924, 1712, 1508, 1416, 1218, 1124 ; HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FNaO}(\mathrm{M}+\mathrm{Na})^{+}$293.1318, found 293.1320.

6-(3,4-Dichlorophenyl)-5-phenylhexan-2-one (140): The title compound $\mathbf{1 4 0}$ was obtained as a yellow oil ($107.6 \mathrm{mg}, 67 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.30$ (hexanes : ether $=7: 3$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.78-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.22-$ $2.27(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.88(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.06(\mathrm{~m}, 2 \mathrm{H})$, $\left.7.09(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.28(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (7 5 ~ M H z}, \mathbf{C D C l}_{3}\right): 29.3,30.1$,
41.6, 43.1, 47.1, 126.8, 127.8, 128.6, 128.7, 129.9, 130.0, 131.0, 132.0, 140.6, 143.1, 208.6 ; IR (neat): 2927, 1712, 1493, 1395, 1131, 1029 ; HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{C}_{12} \mathrm{O}$ $(\mathrm{M}+\mathrm{H})^{+} 321.0813$, found 321.0808 .

6-(3,5-Difluorophenyl)-5-phenylhexan-2-one (141): The title compound 141 was obtained as a colorless oil ($93.7 \mathrm{mg}, 65 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.40$ (hexanes : ether $=1: 1$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.81-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.22-$ $2.27(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.91(\mathrm{~m}, 3 \mathrm{H}), 6.50-6.61(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.30$ (m, 3H); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz, CDCl $)^{2}$: $\delta 29.4,30.1,41.6,43.8,47.0,101.6\left(\mathrm{~d}, J_{\mathrm{CF}}=31.5\right.$ $\mathrm{Hz}), 111.9\left(\mathrm{dd}, J_{\mathrm{CF}}=7.1 \mathrm{~Hz}, 16.5 \mathrm{~Hz}\right), 126.9,127.8,128.7,143.1,144.3\left(\mathrm{t}, J_{\mathrm{CF}}=9.0 \mathrm{~Hz}\right)$, $162.9\left(\mathrm{dd}, J_{\mathrm{CF}}=12.8 \mathrm{~Hz}, 246.0 \mathrm{~Hz}\right), 208.6 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-110.9$; IR (neat): 2930, 1713, 1593, 1452, 1321,1114; HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NaO}$ $(\mathrm{M}+\mathrm{Na})^{+} 311.1223$, found 311.1227.

4-(5-Oxo-2-(4-(trifluoromethyl)phenyl)hexyl)benzonitrile (142): The title compound 142 was obtained as a yellow oil ($96.7 \mathrm{mg}, 56 \%$ yield) after purification by silica gel column chromatography (hexanes: ether $=4: 1$). $\mathrm{R}_{\mathrm{f}}=0.38$ (hexanes: ether $=1: 1$). This product was also isolated using $15 \mathrm{~mol} \% \mathrm{CuI}$ instead of AgBF_{4} ($103.6 \mathrm{mg}, 60 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.83-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.22-$ $2.27(\mathrm{~m}, 2 \mathrm{H}), 2.86-3.06(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-$ 7.53 (m, 4H),; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}$, CDCl $_{3}$): 29.3, 30.2, 41.2, 43.8, 46.9, 110.3, 119.0, $124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.7\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.1,129.3\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 129.9$, 132.2, 145.3, 147.2, 208.1; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, $\mathbf{C D C l}_{3}$) δ-62.7 ; IR (neat): 2927, 2227, 1713, 1617, 1322, 1109 ; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NNaO}(\mathrm{M}+\mathrm{Na})^{+}$368.1238, found 368.1247.

6-(4-Acetylphenyl)-5-(4-(trifluoromethyl)phenyl)hexan-2-one (143): The title compound 143 was obtained as a yellow oil ($94.2 \mathrm{mg}, 52 \%$ yield) after purification by silica gel column chromatography (hexanes $:$ ether $=5: 1$). $\mathrm{R}_{\mathrm{f}}=0.56$ (hexanes $:$ ether $=1: 4$) This product was also isolated using $15 \mathrm{~mol} \% \mathrm{CuI}$ instead of AgBF_{4} ($105.1 \mathrm{mg}, 58 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.86-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.21-$ $2.27(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.90-3.02(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) 7.79(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ 26.7, 29.3, 30.1, 41.4, 43.7, 47.0, $124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.2$, $128.5,129.1\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 129.5,135.4,145.4,147.7,197.9,208.2 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{~ N M R}(\mathbf{2 8 2}$ MHz, CDCl3) δ-62.4 ; IR (neat): 2931, 1715, 1681, 1325, 1162, 1069 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 363.1572$ found 363.1562 .

7-(4-Chlorophenyl)-1-phenyl-6-(m-tolyl)heptan-3-one (144): The title compound 144 was obtained as a colorless oil ($127.1 \mathrm{mg}, 65 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.63$ (hexanes : ether $=7: 3$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.76-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.89(\mathrm{~m}, 4 \mathrm{H}), 6.83$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.20(\mathrm{~m}, 6 \mathrm{H})$, 7.22-7.28 (m, 2H) ; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz, CDCl 3): 21.6, 29.2, 29.8, 41.0, 43.3, 44.4, 47.2, $124.9,126.2,127.4,128.3,128.4,128.5,128.6,130.6,131.7,138.1,138.9,141.2,143.6$, 209.9 ; IR (neat): 2923, 1711, 1490, 1370, 1091, 1014 ; HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClNaO}(\mathrm{M}+\mathrm{Na})^{+} 413.1648$, found 413.1658.

7-(4-Chlorophenyl)-6-(3-methoxyphenyl)-1-phenylheptan-3-one (145): The title compound $\mathbf{1 4 5}$ was obtained as a white solid $(136.3 \mathrm{mg}, 67 \%$ yield after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.60$ (hexanes : ether $=$ 1:1). This product was also isolated using $15 \mathrm{~mol} \% \mathrm{CuI}$ instead of AgBF_{4} (144.5 mg , $71 \%)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.76-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.86(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.59$ $(\mathrm{s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd} J=3.0 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 2H), 7.11-7.29 (m, 8H) ; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): 29.3, 29.8, 40.9, 43.3, 44.4, 47.4, $55.2,111.6,113.8,120.3,126.2,128.3,128.4,128.6,129.6,130.5,131.8,138.7,141.2$, 145.3, 159.8, 209.8 ; IR (neat): 2972, 1712, 1579, 1152, 1042, 1012 ; HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClNaO}_{2}(\mathrm{M}+\mathrm{Na})^{+} 429.1597$, found 429.1604.

6-(3-Chlorophenyl)-7-(4-fluorophenyl)-1-phenylheptan-3-one (146): The title compound 146 was obtained as a colorless oil ($120.4 \mathrm{mg}, 61 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.69$ (hexanes : ether $=7: 3$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.79-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{t}, J=10.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.89(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 6.94-6.97(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 3 \mathrm{H})$, 7.26-7.29 (m, 2H) ; ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (7 5 ~ M H z , ~ C D C l 3) : ~ 2 9 . 1 , ~ 2 9 . 8 , ~ 4 0 . 8 , ~ 4 3 . 0 , ~ 4 4 . 4 , ~ 4 7 . 3 , ~} 115.1$ $\left(\mathrm{d}, J_{\mathrm{CF}}=21.4 \mathrm{~Hz}\right), 126.2,126.2,126.9,127.9,128.4,128.6,129.9,130.5\left(\mathrm{~d}, J_{\mathrm{CF}}=7.6 \mathrm{~Hz}\right)$, $134.4,135.4\left(\mathrm{~d}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 141.1,146.0,161.5\left(\mathrm{~d}, J_{\mathrm{CF}}=243.2 \mathrm{~Hz}\right), 209.6 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR
(282 MHz, CDCl3) δ-117.2; IR (neat): 2926, 1711, 1508, 1219, 1079, 1015 ; HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClFNaO}(\mathrm{M}+\mathrm{Na})^{+}$417.1397, found 417.1413.

1-Phenyl-6-(p-tolyl)-7-(3-(trifluoromethyl)phenyl)heptan-3-one (147): The title compound 147 was obtained as a colorless oil ($152.8 \mathrm{mg}, 72 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.42$ (hexanes : ether $=7: 3$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.78-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.85(\mathrm{~m}, 3 \mathrm{H}), 2.91(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.32(\mathrm{~m}, 10 \mathrm{H}), 7.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathbf{M H z}, \mathbf{C D C l}_{3}$): 21.1, 29.3, 29.8, 41.0, 43.9, 44.4, 46.8, $122.9\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 124.1$ $\left(\mathrm{q}, J_{\mathrm{CF}}=273.4 \mathrm{~Hz}\right), 126.0\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.2,127.7,128.4,128.6,129.3,130.4(\mathrm{q}$, $\left.J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 132.6,136.3,140.1,141.2,141.3,209.9 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{~ N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta$ -62.6 ; IR (neat): 2926, 1714, 1372, 1162, 1123, 1073 ; HRMS (ESI): Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$447.1912, found 447.1924.

7-(3,5-Difluorophenyl)-1,6-diphenylheptan-3-one (148): The title compound 148 was obtained as a yellow oil ($105.9 \mathrm{mg}, 56 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.56$ (hexanes : ether $=7: 3$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.83-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.94(\mathrm{~m}, 5 \mathrm{H}), 6.53-6.61(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl3): 29.4, $29.8,40.8,43.7,44.4,47.0,101.6\left(\mathrm{t}, J_{\mathrm{CF}}=25.5 \mathrm{~Hz}\right), 111.9\left(\mathrm{dd}, J_{\mathrm{CF}}=7.5 \mathrm{~Hz}, 16.5 \mathrm{~Hz}\right)$, $126.2,126.9,127.8,128.4,128.6,128.7,141.2,143.1,144.25\left(\mathrm{t}, J_{\mathrm{CF}}=9.4 \mathrm{~Hz}\right), 162.8(\mathrm{dd}$, $J_{\mathrm{CF}}=13.1 \mathrm{~Hz}, 246.8 \mathrm{~Hz}$), 209.7; ${ }^{\mathbf{1 9}} \mathbf{F} \mathbf{~ N M R ~ (2 8 2 ~ M H z , ~ C D C l} 3$) δ-110.9; IR (neat): 2927, 1711, 1593, 1452, 1139, 1029 ; HRMS (ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$401.1693, found 401.1701.

7-Phenyl-8-(m-tolyl)octan-4-one (149): The title compound 149 was obtained as a colorless oil ($70.6 \mathrm{mg}, 48 \%$ yield) after purification by silica gel column chromatography (hexanes: ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.70$ (hexanes : ether $=7: 3$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.97-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.90(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=$ $10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\mathbf{3}$): 13.9, 17.3, 21.5, 29.2, 40.9, 44.1, 44.8, 47.5, 126.3, 126.5, 126.8, 127.9, 128.1, 128.5, 130.1, 137.7, 140.4, 144.4, 211.2 ; IR (neat): 2927, 1710, 1605, 1452, 1409, 1124 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$317.1881, found 317.1879.

7-(p-Tolyl)-8-(3-(trifluoromethyl)phenyl)octan-4-one (150): The title compound $\mathbf{1 5 0}$ was obtained as a colorless oil ($117.8 \mathrm{mg}, 65 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.50$ (hexanes : ether $=4: 1$).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l} 3\right): \delta 0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.96-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.87-$ $2.96(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$,
7.22-7.30 (m, 2H), $7.39(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): 13.8,17.3$, 21.1, 29.3, 40.8, 44.0, 44.9, 46.9, $122.9\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=273.4 \mathrm{~Hz}\right), 125.9$ $\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 127.7,128.6,129.3,130.4\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 132.6,136.2,140.2,141.4$, $211.1 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta-62.6$; IR (neat): 2926, 1711, 1327, 1200, 1120, 1072 ; HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$385.1755, found 385.1757.

5-(4-Chlorophenyl)-1-phenyl-4-(3-(trifluoromethyl)phenyl)pentan-1-one (151): The title compound 151 was obtained as a yellow oil $(116.7 \mathrm{mg}, 56 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=8: 1$). $\mathrm{R}_{\mathrm{f}}=0.40$ (hexanes : ether $=7: 3$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 2.01-2.11 (m, 1H), 2.19-2.30(m, 1H), 2.74-3.05 (m, $5 \mathrm{H}), 6.92(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.52(\mathrm{~m}$, $6 \mathrm{H}), 7.79(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl3): 29.8, 36.4, 43.3, 47.4, 123.7 $\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=270.0 \mathrm{~Hz}\right) 124.5\left(\mathrm{q}, J_{\mathrm{CF}}=2.3 \mathrm{~Hz}\right), 128.0,128.5,128.7$, $129.1,130.5,130.9\left(\mathrm{q}, J_{\mathrm{CF}}=32.3 \mathrm{~Hz}\right)$, 131.5 132.1, 133.2, 136.9, 138.1, 144.8, $199.8 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl \mathbf{H}_{3}) δ-63.2 ; IR (neat): 2927, 1715, 1683, 1325, 1161, 1120 ; HRMS (ESI): Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+} 439.1052$, found 439.1062.

6-(4-Methoxyphenyl)-2-methyl-7-(4-(trifluoromethyl)phenyl)heptan-3-one (152): The title compound $\mathbf{1 5 2}$ was obtained as a colorless oil ($121 \mathrm{mg}, 64 \%$ yield) after purification by silica gel column chromatography (hexanes : dichloromethane $=4: 1$). $\mathrm{R}_{\mathrm{f}}=0.56$ (hexanes : ether $=7: 3$). This product was also isolated using $15 \mathrm{~mol} \% \mathrm{CuI}$ instead of AgBF_{4} (115.4 $\mathrm{mg}, 61 \%)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $0.98(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.76-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $2.07(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.98(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.80$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 2H) ; ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 18.3,18.5,29.6,38.3,41.0,44.2,46.3,55.3,114.0$, $124.5\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.1\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.3\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 128.8,129.5$, 135.3, 144.6, 158.3, 214.7; ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl3) δ-62.5; IR (neat): 2934, 1708, 1511, 1322, 1246, 1117 ;HRMS (ESI): Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 379.1885$, found 379.1876.

2-Methyl-7-phenyl-6-(p-tolyl)heptan-3-one (153): The title compound was $\mathbf{1 5 3}$ obtained as a colorless oil ($100.1 \mathrm{mg}, 68 \%$ yield) after purification by silica gel column chromatography (hexanes : dichloromethane $=4: 1$). $\mathrm{R}_{\mathrm{f}}=0.73$ (hexanes : ether $=7: 3$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $0.97(\mathrm{dd}, J=4.5 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.80-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.96-$ $2.06(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.91(\mathrm{~m}, 3 \mathrm{H}), 6.99$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.13-7.23(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 2 6} \mathbf{~ M H z}$, CDCl3 $_{3}: ~ \delta 18.2,18.4,21.2,29.3,38.5,40.8,44.3,47.0,125.9,127.7,128.2,129.2,129.3$, 135.8, 140.6, 141.2, 214.8 ; IR (neat): 2967, 1708, 1513, 1465, 1382, 1364 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}(\mathrm{M}+\mathrm{Na})^{+}$295.2062, found 295.2061.

7-(4-Chlorophenyl)-2-methyl-6-(p-tolyl)heptan-3-one (154 : The title compound $\mathbf{1 5 4}$ was obtained as a yellow oil ($116.7 \mathrm{mg}, 71 \%$ yield) after purification by silica gel column chromatography (hexanes : dichloromethane $=4: 1$). $\mathrm{R}_{\mathrm{f}}=0.45$ (hexanes : ether $=7: 3$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $0.96(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.93-$ $2.02(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.80-$ $2.84(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 9.0$ $\mathrm{Hz}, 2 \mathrm{H}) 7.26(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 18.3,18.5,21.2,29.4$, $38.4,40.9,43.6,46.9,127.7,128.3,129.3,130.6,131.7,136.0,139.0,140.6,214.7$; IR (neat): 2925, 1708, 1513, 1490, 1091, 1015 ; $\mathbf{H R M S}(\mathbf{E S I}):$ Calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClO}(\mathrm{M}+\mathrm{H})^{+}$ 329.1672, found 329.1667.

6-(3-Chlorophenyl)-7-(4-fluorophenyl)-2-methylheptan-3-one (155): The title compound 155 was obtained as a colorless oil ($109.8 \mathrm{mg}, 66 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.50($ hexanes $:$ ether $=7: 3$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $0.98(\mathrm{dd}, J=3.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.74-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $2.08(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.89(\mathrm{~m}, 3 \mathrm{H}), 6.87-6.94(\mathrm{~m}, 5 \mathrm{H})$, $7.05(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.18(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 18.2, 18.4, 29.1, 38.1,
$40.9,43.1,47.3,115.1\left(\mathrm{~d}, J_{\mathrm{CF}}=21.4 \mathrm{~Hz}\right), 126.2,126.8,127.9,129.8,130.5\left(\mathrm{~d}, J_{\mathrm{CF}}=7.6\right.$ $\mathrm{Hz}), 134.4,135.5\left(\mathrm{~d}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 146.1,161.5\left(\mathrm{~d}, J_{\mathrm{CF}}=244.4 \mathrm{~Hz}\right), 214.4 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR (282 MHz, CDCl3) δ-115.7 ; IR (neat): 2969, 1707, 1508, 1219, 1157, 1079 ; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClFNaO}(\mathrm{M}+\mathrm{Na})^{+}$355.1241, found 355.1252.

Methyl 3-(6-methyl-5-oxo-2-(3-(trifluoromethyl)phenyl)heptyl)benzoate (156): The title compound $\mathbf{1 5 6}$ was obtained as a colorless oil ($130.1 \mathrm{mg}, 64 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=4: 1$). $\mathrm{R}_{\mathrm{f}}=0.35$ (hexanes : ether $=7: 3$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 0.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) 1.84-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.11(\mathrm{~m}$, $1 \mathrm{H}), 2.22-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.87-3.00(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}$, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=9.01 \mathrm{~Hz}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ 18.2, 18.4, 29.0, 38.0, 40.9, $43.7,47.1,52.1,124.2\left(\mathrm{q}, J_{\mathrm{CF}}=270.8 \mathrm{~Hz}\right), 123.5\left(\mathrm{q}, J_{\mathrm{CF}}=4.5 \mathrm{~Hz}\right), 124.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right)$, $127.6,128.4,129.1,130.2,130.8\left(\mathrm{q}, J_{\mathrm{CF}}=31.5 \mathrm{~Hz}\right), 131.3,133.8,140.0,144.7,167.2$, $214.1 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-62.6; IR (neat): 2969, 1715, 1446, 1324, 1280, 1120 ; HRMS (ESI): Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na})^{+} 429.1653$, found 429.1664.

$(\pm)-(R, R)-6-(4-C h l o r o p h e n y l)-3-m e t h y l-5-(4-(t r i f l u o r o m e t h y l) p h e n y l) h e x a n-2-o n e ~(157): ~$
The title compound 157 was obtained as a colorless oil ($94 \mathrm{mg}, 51 \%$ yield) after purification by silica gel column chromatography (hexanes : dichloromethane $=4: 1$). $\mathrm{R}_{\mathrm{f}}=$ 0.63 (hexanes : ether $=1: 1$). Single diastereomer was observed by GC of the crude reaction mixture and by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of the isolated product.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.02(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H})$, 2.09-2.28 (m, 2H), 2.75-2.92(m, 3H), $6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H})$, $\left.7.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 6 ~ M H z , ~ C D C l} 3\right): 18.2$, $28.6,38.8,43.4,44.8,45.8,124.3\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.6\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128,2$, 128.5, $129.0\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 130.4,132.0,137.9,148.1,212.3 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}(\mathbf{2 8 2} \mathbf{~ M H z}$, CDCl3) δ-62.32 ; IR (neat): 2932, 1711, 1322, 1161, 1116, 1065 ; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClF}_{3} \mathrm{NaO}(\mathrm{M}+\mathrm{Na})^{+}$391.1052, found 391.1052.

Model for predicting the diastereoselectivity

$(\pm)-(R, R)$-2-(2-Phenyl-3-(4-(trifluoromethyl)phenyl)propyl)cyclopentan-1-one (158): The title compound 158 was obtained as a colorless oil ($72.7 \mathrm{mg}, 42 \%$ yield) after purification by silica gel column chromatography (hexanes : dichloromethane $=4: 1$). $\mathrm{R}_{\mathrm{f}}=0.34$ (hexanes : ether $=7: 3$). Single diastereomer was observed by GC of the crude reaction mixture and by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of the isolated product.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.29-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.88-2.31(\mathrm{~m}, 5 \mathrm{H})$, 2.84-2.97 (m, 3H), 7.09-7.14 (m, 4H), 7.21 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 20.7, 29.6, 35.6, 38.1, 44.5, 46.0, $47.2,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.2\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.9,127.8,128.4\left(\mathrm{q}, J_{\mathrm{CF}}=32.8\right.$ $\mathrm{Hz}), 128.8,129.5,142.9,144.5,221.5 ;{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($282 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-60.8$; IR (neat): 2969, 1721, 1467, 1405, 1127, 1107 ; HRMS (ESI): Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$ 347.1623, found 347.1612.

Model for predicting the diastereoselectivity

$(\pm)-(R, R)-1-(2,4-D i n i t r o p h e n y l)-2-(2-(2-p h e n y l-3-(4-$
trifluoromethyl)phenyl)propyl)cyclopentyli-dene)hydrazine (158-DNP): The title compound $\mathbf{1 5 8}$-DNP was prepared following literature procedure using 0.2 mmol and obtained as a yellow solid ($80 \mathrm{mg}, 76 \%$ yield) after purification by recrystallization in ethanol. ${ }^{182}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.22-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.15(\mathrm{~m}, 2 \mathrm{H})$, 2.26-2.55 (m, 4H), 2.96-3.03 (m, 3H), 7.13-7.26 (m, 5H), $7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{dd}, J=3.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.10(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.76(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 22.7, 28.5, 31.4, 37.9, 43.0, $44.5,46.0,116.4,123.7,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=270.9 \mathrm{~Hz}\right), 125.2\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.9,127.8$, $128.4\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 128.8,128.9,129.5,130.0,137.6,143.2,144.5,145.2,170.1$; ${ }^{19} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-60.8$.

6-(4-Methoxyphenyl)-5-phenylhexan-2-one (159): The title compound 159 was obtained as a colorless oil ($67.8 \mathrm{mg}, 48 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=10: 1$). $\mathrm{R}_{\mathrm{f}}=0.43$ (hexanes : ether $=2: 1$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.77-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.20-$ $2.26(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.85(\mathrm{~m}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 6.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl3): $\delta 29.3,30.0,41.9,43.1,47.6,55.3,113.6,126.5,127.9,128.5$, 130.1, 132.4, 144.3, 157.9, 208.9 ; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$283.1698, found 283.1670.

6-(3-Methoxyphenyl)-5-(4-(trifluoromethyl)phenyl)hexan-2-one (160): The title compound $\mathbf{1 6 0}$ was obtained as a colorless oil ($91.1 \mathrm{mg}, 52 \%$ yield) after purification by
silica gel column chromatography (hexanes : ether $=10: 1$) $\mathrm{R}_{\mathrm{f}}=0.46$ (hexanes : ether $=$ 2:1).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.84-1.93(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.07(\mathrm{~m}, 1 \mathrm{H}), 2.20-$ $2.27(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.96(\mathrm{~m}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69$ $(\mathrm{dd}, J=3.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) 7.52(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 29.2, 30.1, 41.6, 43.8, 47.2, 55.2, 111.7, 114.8, $121.6,124.4\left(J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.5\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 128.2,128.9\left(\mathrm{q}, J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right)$, 129.3, (d, $\left.J_{\mathrm{CF}}=7.5 \mathrm{~Hz}\right), 141.2,148.4,159.6,208.4 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{~ N M R}\left(\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-60.9$; HRMS (ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$351.1572, found 351.1571.

1-(4-Methoxyphenyl)-5-phenyl-6-(4-(trifluoromethyl)phenyl)hexan-2-one (161): The title compound $\mathbf{1 6 1}$ was obtained as a yellow oil ($115.1 \mathrm{mg}, 54 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=8: 1) . \mathrm{R}_{\mathrm{f}}=0.34($ Hexanes $:$ Ether $=$ 7:3).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.79-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.75-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.42$
(d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 29.5,39.7,43.7,46.9,49.3,55.3$, $114.2,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=272.2 \mathrm{~Hz}\right), 125.1\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.2,126.7,127.8,128.3(\mathrm{q}$, $\left.J_{\mathrm{CF}}=32.8 \mathrm{~Hz}\right), 128.6,129.5,130.4,143.3,144.4,158.7,208.5 ;{ }^{\mathbf{1}} \mathbf{F} \mathbf{~ N M R}(\mathbf{2 8 2} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta-62.3$; $\mathbf{H R M S}(\mathbf{E S I}):$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 427.1885$, found 427.1899 .

6-(4-Chlorophenyl)-1-(4-methoxyphenyl)-5-(3-(trifluoromethyl)phenyl)hexan-2-one (162): The title compound 162 was obtained as a yellow oil ($140.5 \mathrm{mg}, 61 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=8: 1$). $\mathrm{R}_{\mathrm{f}}=0.35$ $($ Hexanes : Ether $=7: 3)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 1.78-1.88(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.29(\mathrm{~m}$, $2 \mathrm{H}), 2.76-2.92(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.80-6.85(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{dd}, J=3.0$, $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (126 MHz, CDCl3): $\delta 29.1,39.4,43.1,46.9,49.4,55.4,114.3,120.1,123.6$ (q, J_{CF} $=3.8 \mathrm{~Hz}), 124.0\left(\mathrm{q}, J_{\mathrm{CF}}=252.0 \mathrm{~Hz}\right), 124.4\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 126.1,129.1,130.4,130.7$ $\left(\mathrm{q}, \boldsymbol{J}_{\mathrm{CF}}=24.8 \mathrm{~Hz}\right), 130.9,131.4,138.6,144.6,158.8,208.5 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{~ N M R}(282 \mathbf{~ M H z}, \mathbf{C D C l} 3)$ δ-61.0.

4-(4-Fluorophenyl)-1-(furan-3-yl)-5-(4-(trifluoromethyl)phenyl)pentan-1-one (163): The title compound 163 was obtained as a yellow oil ($109.3 \mathrm{mg}, 56 \%$ yield) after purification by silica gel column chromatography (hexanes : ether $=3: 1) . \mathrm{R}_{\mathrm{f}}=0.42($ Hexanes $:$ Ether $=$ 7:3).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 1.93-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.88-3.02(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) 6.95-7.03(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 30.1,38.1,44.0,46.5,108.6,115.5\left(\mathrm{~d}, J_{\mathrm{CF}}=21.0 \mathrm{~Hz}\right), 124.4\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ $270.0 \mathrm{~Hz}), 125.4\left(\mathrm{q}, J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 127.7,128.5\left(\mathrm{q}, J_{\mathrm{CF}}=33.0 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{CF}}=8.3 \mathrm{~Hz}\right)$, $129.5,138.9,144.1,144.3,147.1,161.7\left(\mathrm{~d}, J_{\mathrm{CF}}=243.0 \mathrm{~Hz}\right), 194.6 ;{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}(\mathbf{2 8 2} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta-114.6,-60.8 ; \mathbf{H R M S}(\mathbf{E S I}):$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{4} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$391.1321, found 391.1309.

5.3.5. X-ray Crystallographic Data for Compound 158-DNP

A specimen of $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{4}$, approximate dimensions $0.194 \mathrm{~mm} \times 0.240 \mathrm{~mm} \times 0.570$ mm , was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The integration of the data using a monoclinic unit cell yielded a total of 35109 reflections to a maximum θ angle of $25.51^{\circ}(0.83 \AA$ resolution $)$, of which 4549 were independent (average redundancy 7.718, completeness $\left.=100.0 \%, \mathrm{R}_{\text {int }}=17.11 \%, \mathrm{R}_{\text {sig }}=14.59 \%\right)$ and $1940(42.65 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{\mathrm{a}}=15.571(3) \AA, \underline{\mathrm{b}}=$ $9.728(2) \AA, \underline{c}=16.373(4) \AA, \beta=100.123(8)^{\circ}$, volume $=2441.5(9) \AA^{3}$, are based upon the refinement of the XYZ-centroids of reflections above $20 \sigma(\mathrm{I})$. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9390 and 0.9780 .

The final anisotropic full-matrix least-squares refinement on F^{2} with 343 variables
converged at $\mathrm{R} 1=6.97 \%$, for the observed data and $\mathrm{wR} 2=21.88 \%$ for all data. The goodness-of-fit was 0.941 . The largest peak in the final difference electron density synthesis was $0.548 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.298 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.077 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.430 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 1092 \mathrm{e}^{-}$.

Table 5.26. Sample and crystal data for Compound 158-DNP.

Identification code

Chemical formula

Formula weight

Temperature

Wavelength
$0.71073 \AA$

Crystal size $\quad 0.194 \times 0.240 \times 0.570 \mathrm{~mm}$

Crystal system monoclinic

Space group \quad P $121 / \mathrm{n} 1$

Unit cell dimensions $\quad a=15.571(3) \AA \quad \alpha=90^{\circ}$

$$
\mathrm{b}=9.728(2) \AA \quad \beta=100.123(8)^{\circ}
$$

$$
\mathrm{c}=16.373(4) \AA \quad \gamma=90^{\circ}
$$

Volume
2441.5(9) \AA^{3}
Z
Density (calculated) $\quad 1.430 \mathrm{~g} / \mathrm{cm}^{3}$

Absorption coefficient	$0.113 \mathrm{~mm}^{-1}$
F(000)	1092

Table 5.27. Data collection and structure refinement for Compound 158-DNP

Theta range for data collection 1.67 to 25.51°

Index ranges

$$
-18<=\mathrm{h}<=18,-11<=\mathrm{k}<=11,-19<=1<=16
$$

Reflections collected 35109

Independent reflections $\quad 4549[R($ int $)=0.1711]$

Max. and min. transmission $\quad 0.9780$ and 0.9390

Refinement method Full-matrix least-squares on F^{2}

Refinement program
SHELXL-2013 (Sheldrick, 2013)
Function minimized $\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters 4549 / 0 / 343
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$ 0.941
1940
Final R indices
data; $\quad \mathrm{R} 1=0.0697, \mathrm{wR} 2=0.1630$
$\mathrm{I}>2 \sigma(\mathrm{I})$
all data $R 1=0.1836, w R 2=0.2188$

$$
\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}^{2}\right)+(0.1016 \mathrm{P})^{2}\right]
$$

Weighting scheme

$$
\text { where } \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3
$$

Largest diff. peak and hole 0.548 and $-0.298 \mathrm{e}^{-3}{ }^{-3}$
R.M.S. deviation from mean $0.077 \mathrm{e}^{-3}$

Table 5.28. Atomic coordinates and equivalent isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for Compound $158-D N P$.
$U(e q)$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

$$
\begin{array}{llll}
\mathbf{x} / \mathbf{a} & \mathbf{y} / \mathbf{b} & \mathbf{z} / \mathbf{c} & \mathbf{U}(\mathbf{e q})
\end{array}
$$

$$
\text { C11 } 0.0127(3) \quad 0.1420(4) 0.1128(3) \quad 0.0371(12)
$$

$$
\begin{array}{llll}
\mathbf{x} / \mathbf{a} & \mathbf{y} / \mathrm{b} & \mathrm{z} / \mathbf{c} & \mathbf{U}(\mathbf{e q})
\end{array}
$$

C 12	$0.0929(3)$	$0.1347(5) 0.1645(3)$	$0.0409(12)$
C 13	$0.1267(3)$	$0.0085(5) 0.1964(3)$	$0.0444(13)$
C14	$0.0787(3)$	$0.8895(4) 0.1780(3)$	$0.0378(12)$
C141	$0.1109(3)$	$0.7555(5) 0.2149(3)$	$0.0495(13)$

F141 0.19711(19) 0.7443(3) 0.22950(18) 0.0655(9)

F142 0.0871(2) $0.7349(3) 0.2897(2) \quad 0.0729(10)$

F143 0.0803(2) 0.6472(3) 0.16776(19) 0.0762(11)

C15 $0.9978(3) \quad 0.8967(5) 0.1270(3) \quad 0.0415(12)$

C16 $0.9656(3) \quad 0.0205(4) 0.0941(3) \quad 0.0401(12)$
$\mathrm{C} 21 \quad 0.8407(3) \quad 0.4222(4) 0.0414(3) \quad 0.0363(11)$

C111 0.9760(3) $\quad 0.2760(4) 0.0771(3) \quad 0.0418(12)$

C121 0.8870(3) $0.3126(4) 0.0990(3) \quad 0.0349(11)$

C131 0.8956(3) 0.3494(4) 0.1906(3) 0.0381(12)

C22 0.7687(3) 0.3908(5) 0.9827(3) 0.0533(14)

	\mathbf{x} / \mathbf{a}	y/b z/c	U(eq)
C23	0.7269(3)	0.4898(6) 0.9287(3)	0.0579(15)
C24	0.7568(3)	$0.6226(5) 0.9346(3)$	0.0512(14)
C25	0.8278(3)	0.6560(5) 0.9911(3)	0.0432(12)
C26	0.8706(3)	0.5572(4) 0.0449(3)	0.0408(12)
C31	0.8087(3)	0.3707(4) 0.2194(3)	0.0341 (11)
C32	0.7467(3)	0.2468(4) 0.2067(3)	0.0398(12)
C33	0.6828(3)	0.2715(5) 0.2653(3)	0.0387(12)
C34	0.7401(3)	$0.3357(4) 0.3426(3)$	0.0408(12)
C35	0.8134(3)	0.4029(4) 0.3095(3)	0.0321 (11)
C41	0.9130(3)	0.6017(4) 0.4759(3)	0.0343(11)
C42	0.9073(3)	0.6292(4) 0.5593(3)	0.0362(11)
N421	0.8480(3)	0.5541(4) 0.6033(3)	0.0437(10)
O421	0.7984(2)	0.4683(3) 0.5648(2)	0.0562(10)
O422	0.8494(2)	0.5788(4) 0.6770(2)	0.0593(10)

	x/a	y/b z/c	$\mathbf{U}(\mathrm{eq})$
C43	0.9555(3)	0.7341(4) 0.6034(3)	0.0368(11)
C44	0.0126(3)	0.8079(4) 0.5664(3)	$0.0377(12)$
N441	0.0634(3)	0.9169(4) 0.6139(3)	0.0467(11)
O441	0.1216(2)	0.9699(4) 0.5841(2)	0.0632(11)
O442	0.0460(3)	0.9469(3) 0.6817(2)	0.0659(11)
C45	0.0217(3)	0.7829(4) 0.4849(3)	0.0394(12)
C46	0.9730(3)	0.6825(4) 0.4406(3)	0.0390(12)
N461	0.8642(2)	0.5021(3) 0.4315(2)	0.0371(10)
N462	0.8726(2)	0.4812(3) 0.3485(2)	0.0348(9)

Table 5.29. Bond lengths (i̊) for Compound 158-DNP

C11-C12 1.382(6) C11-C16 1.396(6)

C11-C111 1.500(6) C12-C13 1.400(6)

C13-C14 1.383(6) C14-C15 1.385(6)
C14-C141 1.486(6) C141-F141 1.325(5)
C141-F143 1.343(5) C141-F142 1.356(6)
C15-C16 1.378(6) C21-C22 1.378(6)
C21-C26 1.391(6) C21-C121 1.519(6)
C111-C121 1.533(6) C121-C131 1.525(6)
C131-C31 1.523(6) C22-C23 1.389(6)
C23-C24 1.371(7) C24-C25 1.351(6)
C25-C26 1.392(6) C31-C35 1.497(6)
C31-C32 1.535(6) C32-C33 1.517(6)
C33-C34 1.546(6) C34-C35 1.498(6)
C35-N462 1.276(5) C41-N461 1.361(5)
C41-C42 1.409(6) C41-C46 1.420(6)
C42-C43 1.391(6) C42-N421 1.462(6)
N421-O422 1.226(4) N421-O421 1.233(5)
C43-C44 1.364(6) C44-C45 1.389(6)

```
C44-N441 1.463(6) N441-O441 1.216(5)
N441-O442 1.223(5) C45-C46 1.364(6)
N461-N462 1.404(5)
```

Table 5.30. Bond angles $\left({ }^{\circ}\right)$ for Compound 158-DNP.

C12-C11-C16	$118.3(4) \mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 111$	$121.6(4)$
C16-C11-C111	$120.1(4) \mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$120.9(4)$
C14-C13-C12	$120.0(4) \mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$119.2(4)$
C13-C14-C141	$121.0(4) \mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 141$	$119.7(4)$
F141-C141-	F141-C141-	
F143	$106.6(4)$	
F142	$104.7(4)$	

F143-C141-
106.0(4) F141-C141-C14 113.9(4)
F142
F143-C141-C14 113.2(4) F142-C141-C14 111.7(4)
C16-C15-C14 120.6(4) C15-C16-C11 120.9(4)
C22-C21-C26 117.6(4) C22-C21-C121 121.1(4)

| C26-C21-C121 | $121.3(4) \mathrm{C} 11-\mathrm{C} 111-\mathrm{C} 121$ | $114.1(4)$ |
| :--- | :--- | :--- | :--- |
| C21-C121-C131 | $113.3(4) \mathrm{C} 21-\mathrm{C} 121-\mathrm{C} 111$ | $111.6(4)$ |
| C131-C121- | | |
| C111 | $110.9(3) \mathrm{C} 31-\mathrm{C} 131-\mathrm{C} 121$ | $114.0(3)$ |
| C21-C22-C23 | $121.5(5) \mathrm{C} 24-\mathrm{C} 23-\mathrm{C} 22$ | $119.5(5)$ |
| C25-C24-C23 | $120.1(5) \mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$ | $120.7(5)$ |
| C21-C26-C25 | $120.5(4) \mathrm{C} 35-\mathrm{C} 31-\mathrm{C} 131$ | $116.2(4)$ |
| C35-C31-C32 | $102.6(4) \mathrm{C} 131-\mathrm{C} 31-\mathrm{C} 32$ | $115.1(3)$ |
| C33-C32-C31 | $104.9(3) \mathrm{C} 32-\mathrm{C} 33-\mathrm{C} 34$ | $103.6(3)$ |
| O421 | | |
| C35-C34-C33 | $104.2(4) \mathrm{N} 462-\mathrm{C} 35-\mathrm{C} 31$ | $121.6(4)$ |
| C42-C41-C46 | $116.6(4) \mathrm{C} 43-\mathrm{C} 42-\mathrm{C} 41$ | $121.4(4)$ |
| N462-C35-C34 | $127.5(4) \mathrm{C} 31-\mathrm{C} 35-\mathrm{C} 34$ | $111.0(4)$ |

O421-N421-C42	118.6(4) C44-C43-C42	119.4(4)
C43-C44-C45	121.3(4) C43-C44-N441	118.7(4)
	O441-N441-	
C45-C44-N441	$\begin{array}{r} 120.1(4) \\ \mathrm{O} 442 \end{array}$	124.2(4)
O441-N441-C44	117.7(4) O442-N441-C44	118.0(5)
C46-C45-C44	119.7(5) C45-C46-C41	121.6(4)
C41-N461-N462	118.8(4) C35-N462-N461	112.9(4)

Table 5.31. Anisotropic atomic displacement parameters ($\AA^{\mathbf{A}}$) for Compound 158DNP.

The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\right.$ $\left.\ldots+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}_{12}\right]$
$\begin{array}{llllll}\mathbf{U}_{11} & \mathbf{U}_{22} & \mathbf{U}_{33} & \mathbf{U}_{23} & \mathbf{U}_{13} & \mathbf{U}_{12}\end{array}$

C11 0.039(3) 0.036(3) 0.038(3) -0.005(2) 0.012(2) 0.002(2)

C12 0.041(3) 0.040(3) 0.042(3) 0.000(2) $0.007(2) \quad-0.004(2)$

C13 0.040(3) 0.049(3) 0.042(3) -0.003(2) $0.000(2) \quad-0.001(2)$

\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	\mathbf{U}_{12}

C14	$0.039(3) 0.035(3)$	$0.038(3)$	$0.003(2)$	$0.004(2)$
		$0.000(2)$		
C141 $0.048(3) 0.046(3)$	$0.053(4) 0.003(3)$	$0.004(3)$	$0.002(3)$	

F141 0.054(2) 0.0543(19) 0.085(2) 0.0118(16) 0.0031(17) 0.0132(15)

F142 0.087(2) 0.068(2) $\quad 0.067(2) 0.0249(17) 0.0227(18) 0.0113(18)$

F143 0.089(2) 0.0390(18) 0.088(2) $0.0020(17)^{-0.020(2) ~} 0.0042(17)$

C15 0.043(3) 0.035(3) 0.046(3) -0.007(2) 0.004(2) $\quad-0.004(2)$

C16 0.043(3) 0.036(3) 0.041(3) -0.003(2) 0.008(2) 0.005(2)

C21 0.033(3) 0.034(3) 0.044(3) -0.004(2) 0.013(2) 0.000(2)

C111 0.044(3) 0.038(3) $0.044(3)-0.002(2) \quad 0.010(2) \quad-0.001(2)$

C121 0.033(3) 0.030(3) 0.042(3) 0.000(2) 0.009(2) -0.002(2)

C131 0.043(3) 0.030(2) 0.042(3) 0.003(2) 0.008(2) 0.001(2)

C22 0.058(3) 0.045(3) 0.054(3) 0.001(3) 0.001(3) -0.010(3)

C23 0.056(4) 0.063(4) 0.049(3) 0.009(3) $-0.005(3) \quad-0.010(3)$

C24 0.051(3) 0.053(3) 0.052(3) 0.013(3) 0.014(3) 0.005(3)

	$\mathrm{U}_{11} \quad \mathbf{U}_{22}$	$\mathbf{U}_{33} \quad \mathbf{U}_{23}$	U_{13}	U_{12}
C25	0.050(3) 0.032(3)	0.049(3) 0.002(2)	0.015(3)	0.002(2)
C26	0.044(3) 0.033(3)	0.044(3) -0.004(2)	0.004(2)	-0.003(2)
C31	0.038(3) 0.025(2)	0.040(3) 0.000(2)	0.010(2)	0.002(2)
C32	0.044(3) 0.036(3)	0.039(3) -0.003(2)	0.008(2)	0.001(2)
C33	0.036(3) 0.034(3)	0.047(3) -0.001(2)	0.009(2)	-0.004(2)
C34	0.044(3) 0.035(3)	0.045(3) -0.001(2)	0.011(2)	0.000(2)
C35	0.036(3) 0.022(2)	0.039(3) -0.001(2)	0.007(2)	0.003(2)
C41	0.035(3) 0.033(3)	0.034(3) 0.005(2)	0.002(2)	0.009(2)
C42	0.039(3) 0.035(3)	0.036(3) 0.006(2)	0.011(2)	0.005(2)
N421	0.051(3) 0.043(3)	0.037(3) -0.001(2)	0.011(2)	0.004(2)
O421	0.066(2) 0.052(2)	0.052(2) 0.0075(18)	0.0126(19	0.0209(19
O422	0.076(3) 0.061(2)	0.045(2) 0.0061(18)	0.022(2)	-0.010(2)
C43	0.039(3) 0.037(3)	0.032(3) 0.001(2)	0.001(2)	0.009(2)
C44	0.037(3) 0.034(3)	0.038(3) -0.004(2)	-0.003(2)	0.004(2)

$\mathbf{U}_{11} \quad \mathbf{U}_{22}$	$\mathbf{U}_{33} \quad \mathbf{U}_{23}$	$\mathbf{U 1 3}_{13}$	U_{12}
N441 0.057(3) 0.035(2)	0.045(3) -0.001(2)	0.001(2)	-0.003(2)
O441 0.064(3) 0.057(2)	0.070(3) 0.0184(19)	0.017(2)	-0.020(2)
O442 0.101(3) 0.048(2)	0.049(2) 0.0130(18)	0.015(2)	-0.018(2)
C45 0.040(3) 0.032(3)	0.045(3) 0.004(2)	0.005(2)	-0.001(2)
C46 0.042(3) 0.040(3)	0.034(3) 0.000(2)	0.003(2)	0.004(2)
N461 0.042(2) 0.031(2)	0.035(2) 0.0015(17)	0.0016(19)	0.0057(17)
N462 0.039(2) 0.030(2)	0.036(2) 0.0008(17)	0.0076(19)	0.0013(18)

Table 5.32. Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for Compound 158-DNP

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U}(\mathbf{e q})$
H12	1.1256	0.2164	0.1785	0.049
H13	1.1826	0.0047	0.2307	0.053
H15	0.9641	-0.1845	0.1147	0.05
H16	0.9106	0.0233	0.0582	0.048

	\mathbf{x} / \mathbf{a}	y/b	z/c	U(eq)
H11A	0.9703	0.2722	0.0160	0.05
H11B	1.0178	0.3503	0.0974	0.05
H121	0.8503	0.2278	0.0899	0.042
H13A	0.9280	0.2751	0.2241	0.046
H13B	0.9305	0.4347	0.2013	0.046
H22	0.7471	0.2992	-0.0210	0.064
H23	0.6780	0.4656	-0.1121	0.069
H24	0.7274	0.6912	-0.1011	0.061
H25	0.8487	0.7479	-0.0058	0.052
H26	0.9206	0.5821	0.0842	0.049
H31	0.7785	0.4491	0.1869	0.041
H32A	0.7158	0.2421	0.1485	0.048
H32B	0.7791	0.1600	0.2206	0.048
H33A	0.6563	0.1842	0.2795	0.046

```
        x/a y/b z/c U(eq)
H33B 0.6359 0.3354 0.2406 0.046
H34A 0.7066 0.4043 0.3690}00.04
H34B 0.7623 0.2641 0.3839 0.049
H43 0.9487 0.7541 0.6586 0.044
H45 1.0616 0.8355 0.4600
H46 0.9794 0.6662 0.3848
```


References

(1) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
(2) Corbet, J.-P.; Mignani, G. Chemical Reviews 2006, 106, 2651.
(3) Miyaura, N.; Suzuki, A. Journal of the Chemical Society, Chemical Communications 1979, 866.
(4) Miyaura, N.; Suzuki, A. Chemical Reviews 1995, 95, 2457.
(5) Baba, S.; Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729.
(6) Negishi, E.-i.; Baba, S. Journal of the Chemical Society, Chemical Communications 1976, 596b.
(7) Hatanaka, Y.; Hiyama, T. The Journal of Organic Chemistry 1988, 53, 918.
(8) Kohei, T.; Koji, S.; Yoshihisa, K.; Michio, Z.; Akira, F.; Shun-ichi, K.; Isao, N.; Akio, M.; Makoto, K. Bulletin of the Chemical Society of Japan 1976, 49, 1958.
(9) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374.
(10) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636.
(11) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062.
(12) Glaser, C. Berichte der deutschen chemischen Gesellschaft 1869, 2, 422.
(13) Li, J. J. In Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications Fifth Edition; Springer International Publishing: Cham, 2014, p 100.
(14) Tsutomu, M.; Kunio, M.; Atsumu, O. Bulletin of the Chemical Society of Japan 1971, 44, 581.
(15) Heck, R. F.; Nolley, J. P. The Journal of Organic Chemistry 1972, 37, 2320.
(16) Straub, B. F. Angewandte Chemie International Edition 2010, 49, 7622.
(17) Torborg, C.; Beller, M. Advanced Synthesis \& Catalysis 2009, 351, 3027.
(18) Larsen, R. D.; King, A. O.; Chen, C. Y.; Corley, E. G.; Foster, B. S.; Roberts, F. E.; Yang, C.; Lieberman, D. R.; Reamer, R. A.; Tschaen, D. M.; Verhoeven, T. R.; Reider, P. J.; Lo, Y. S.; Rossano, L. T.; Brookes, A. S.; Meloni, D.; Moore, J. R.; Arnett, J. F. The Journal of Organic Chemistry 1994, 59, 6391.
(19) de Koning, P. D.; McAndrew, D.; Moore, R.; Moses, I. B.; Boyles, D. C.; Kissick, K.; Stanchina, C. L.; Cuthbertson, T.; Kamatani, A.; Rahman, L.; Rodriguez, R.; Urbina, A.; Sandoval, A.; Rose, P. R. Organic Process Research \& Development 2011, 15, 1018.
(20) Manley, P. W.; Acemoglu, M.; Marterer, W.; Pachinger, W. Organic Process Research \& Development 2003, 7, 436.
(21) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chemical Reviews 2002, 102, 1359.
(22) Cárdenas, D. J. Angewandte Chemie International Edition 2003, 42, 384.
(23) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
(24) Ananikov, V. P. ACS Catalysis 2015, 5, 1964.
(25) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
(26) Csok, Z.; Vechorkin, O.; Harkins, S. B.; Scopelliti, R.; Hu, X. J. Am. Chem. Soc. 2008, 130, 8156.
(27) Vechorkin, O.; Hu, X. Angewandte Chemie International Edition 2009, 48, 2937.
(28) Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358.
(29) Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M. Organic Process Research \& Development 2010, 14, 30.
(30) Lu, Z.; Fu, G. C. Angewandte Chemie International Edition 2010, 49, 6676.
(31) Owston, N. A.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 11908.
(32) Lu, Z.; Wilsily, A.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 8154.
(33) Yang, Y.; Niedermann, K.; Han, C.; Buchwald, S. L. Organic Letters 2014, 16, 4638.
(34) Miyaura, N.; Ishiyama, T.; Ishikawa, M.; Suzuki, A. Tetrahedron Letters 1986, 27, 6369
(35) Sase, S.; Jaric, M.; Metzger, A.; Malakhov, V.; Knochel, P. The Journal of Organic Chemistry 2008, 73, 7380.
(36) Hedström, A.; Lindstedt, E.; Norrby, P.-O. Journal of Organometallic Chemistry 2013, 748, 51.
(37) In Organic Reactions.
(38) Fyfe, J. W. B.; Watson, A. J. B. Chem 2017, 3, 31.
(39) Adrio, J.; Carretero, J. C. ChemCatChem 2010, 2, 1384.
(40) Denmark, S. E.; Ambrosi, A. Organic Process Research \& Development 2015, 19, 982.
(41) Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A. ChemSusChem 2010, 3, 502.
(42) Miyaura, N.; Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Sato, M.; Suzuki, A. J. Am. Chem. Soc. 1989, 111, 314.
(43) Sato, M.; Miyaura, N.; Suzuki, A. Chemistry Letters 1989, 18, 1405.
(44) Zou, G.; Reddy, Y. K.; Falck, J. R. Tetrahedron Letters 2001, 42, 7213.
(45) Molander, G. A.; Petrillo, D. E. Organic Letters 2008, 10, 1795.
(46) Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 9602.
(47) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020.
(48) Wallace, D. J.; Chen, C.-y. Tetrahedron Letters 2002, 43, 6987.
(49) Dreher, S. D.; Dormer, P. G.; Sandrock, D. L.; Molander, G. A. J. Am. Chem. Soc. 2008, 130, 9257.
(50) Brown, H. C.; Racherla, U. S. J. Am. Chem. Soc. 1983, 105, 6506.
(51) Brown, H. C.; Zweifel, G. J. Am. Chem. Soc. 1960, 82, 1504.
(52) Andrus, M. B.; Song, C. Organic Letters 2001, 3, 3761.
(53) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. The Journal of Organic Chemistry 2002, 67, 5553.
(54) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angewandte Chemie International Edition 2004, 43, 1871.
(55) Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1990, 112, 8008.
(56) Hofstee, H. K.; Boersma, J.; Van Der Kerk, G. J. M. Journal of Organometallic Chemistry 1978, 144, 255.
(57) Kochi, J. K. Journal of Organometallic Chemistry 2002, 653, 11.
(58) Ribas, X.; Jackson, D. A.; Donnadieu, B.; Mahía, J.; Parella, T.; Xifra, R.; Hedman, B.; Hodgson, K. O.; Llobet, A.; Stack, T. D. P. Angewandte Chemie International Edition 2002, 41, 2991.
(59) Thapa, S.; Shrestha, B.; Gurung, S. K.; Giri, R. Organic \& Biomolecular Chemistry 2015, 13, 4816.
(60) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337.
(61) Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chemical Reviews 2008, 108, 2796.
(62) Kim, J.; Park, S.; Park, J.; Cho, S. H. Angewandte Chemie 2016, 128, 1520.
(63) Terao, J.; Todo, H.; Begum, S. A.; Kuniyasu, H.; Kambe, N. Angewandte Chemie International Edition 2007, 46, 2086.
(64) Hintermann, L.; Xiao, L.; Labonne, A. Angewandte Chemie International Edition 2008, 47, 8246.
(65) Burns, D. H.; Miller, J. D.; Chan, H.-K.; Delaney, M. O. J. Am. Chem. Soc. 1997, 119, 2125.
(66) Kang, S.-K.; Kim, J.-S.; Choi, S.-C. The Journal of Organic Chemistry 1997, 62, 4208.
(67) Gurung, S. K.; Thapa, S.; Vangala, A. S.; Giri, R. Org. Lett. 2013, 15, 5378.
(68) Thapa, S.; Gurung, S. K.; Dickie, D. A.; Giri, R. Angew. Chem. Int. Ed. 2014, 53, 11620.
(69) Thapa, S.; Basnet, P.; Gurung, S. K.; Giri, R. Chem. Commun. 2015, 51, 4009.
(70) Thapa, S.; Kafle, A.; Gurung, S. K.; Montoya, A.; Riedel, P.; Giri, R. Angewandte Chemie International Edition 2015, 54, 8236.
(71) Shrestha, B.; Thapa, S.; Gurung, S. K.; Pike, R. A. S.; Giri, R. The Journal of Organic Chemistry 2016, 81, 787.
(72) Thathagar, M. B.; Beckers, J.; Rothenberg, G. J. Am. Chem. Soc. 2002, 124, 11858.
(73) Mao, J.; Guo, J.; Fang, F.; Ji, S.-J. Tetrahedron 2008, 64, 3905.
(74) Li, J.-H.; Li, J.-L.; Wang, D.-P.; Pi, S.-F.; Xie, Y.-X.; Zhang, M.-B.; Hu, X.-C. The Journal of Organic Chemistry 2007, 72, 2053.
(75) Gurung, S. K.; Thapa, S.; Kafle, A.; Dickie, D. A.; Giri, R. Org. Lett. 2014, 16, 1264.
(76) Zhou, Y.; You, W.; Smith, K. B.; Brown, M. K. Angewandte Chemie International Edition 2014, 53, 3475.
(77) Bergmann, A. M.; Oldham, A. M.; You, W.; Brown, M. K. Chemical Communications 2018, 54, 5381.
(78) Sun, Y.-Y.; Yi, J.; Lu, X.; Zhang, Z.-Q.; Xiao, B.; Fu, Y. Chemical Communications 2014, 50, 11060.
(79) Yang, C.-T.; Zhang, Z.-Q.; Liu, Y.-C.; Liu, L. Angew. Chem. Int. Ed. 2011, 50, 3904.
(80) Beletskaya, I. P.; Cheprakov, A. V. Coordination Chemistry Reviews 2004, 248, 2337.
(81) Fürstner, A.; Seidel, G. Synlett 1998, 1998, 161.
(82) Annunziata, A.; Galli, C.; Marinelli, M.; Pau, T. European Journal of Organic Chemistry 2001, 2001, 1323.
(83) Giri, R.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 15860.
(84) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012, 338, 647.
(85) Amatore, C.; Pfluger, F. Organometallics 1990, 9, 2276.
(86)Fauvarque, J.-F.; Pflüger, F.; Troupel, M. Journal of Organometallic Chemistry 1981, 208, 419.
(87) Lan, X.-W.; Wang, N.-X.; Xing, Y. European Journal of Organic Chemistry 2017, 2017, 5821.
(88) Guo, H.-C.; Ma, J.-A. Angewandte Chemie International Edition 2006, 45, 354.
(89) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chemical Reviews 1994, 94, 2483.
(90) Beletskaya, I. P.; Cheprakov, A. V. Chemical Reviews 2000, 100, 3009.
(91) Bloome, K. S.; McMahen, R. L.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 20146.
(92) Maity, S.; Dolui, P.; Kancherla, R.; Maiti, D. Chemical Science 2017, 8, 5181.
(93) Bovino, M. T.; Liwosz, T. W.; Kendel, N. E.; Miller, Y.; Tyminska, N.; Zurek, E.; Chemler, S. R. Angewandte Chemie International Edition 2014, 53, 6383.
(94) Miller, Y.; Miao, L.; Hosseini, A. S.; Chemler, S. R. J. Am. Chem. Soc. 2012, 134, 12149.
(95) Hay, M. B.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 16468.
(96) Hu, N.; Li, K.; Wang, Z.; Tang, W. Angewandte Chemie International Edition 2016, 55, 5044.
(97) Thapa, S.; Basnet, P.; Giri, R. J. Am. Chem. Soc. 2017, 139, 5700.
(98) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2001, 123, 5374.
(99) Catellani, M.; Paolo Chiusoli, G. Tetrahedron Letters 1982, 23, 4517.
(100) Shaulis, K. M.; Hoskin, B. L.; Townsend, J. R.; Goodson, F. E.; Incarvito, C. D.; Rheingold, A. L. The Journal of Organic Chemistry 2002, 67, 5860.
(101) Takai, K.; Matsukawa, N.; Takahashi, A.; Fujii, T. Angewandte Chemie 1998, 110, 160.
(102) Mizutani, K.; Shinokubo, H.; Oshima, K. Organic Letters 2003, 5, 3959.
(103) Liao, L.; Jana, R.; Urkalan, K. B.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 5784.
(104) Wu, X.; Lin, H.-C.; Li, M.-L.; Li, L.-L.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2015, 137, 13476.
(105) Stokes, B. J.; Liao, L.; de Andrade, A. M.; Wang, Q.; Sigman, M. S. Organic Letters 2014, 16, 4666.
(106) Gao, P.; Chen, L.-A.; Brown, M. K. J. Am. Chem. Soc. 2018, 140, 10653.
(107) Kuang, Z.; Yang, K.; Song, Q. Organic Letters 2017, 19, 2702.
(108) Kc, S.; Dhungana, R. K.; Shrestha, B.; Thapa, S.; Khanal, N.; Basnet, P.; Lebrun, R. W.; Giri, R. J. Am. Chem. Soc. 2018, 140, 9801.
(109) James, D. E.; Stille, J. K. J. Am. Chem. Soc. 1976, 98, 1810.
(110) Yokota, T.; Sakaguchi, S.; Ishii, Y. The Journal of Organic Chemistry 2002, 67, 5005.
(111) Albrecht, M. Chem. Rev. 2010, 110, 576.
(112) McDermott, J. X.; White, J. F.; Whitesides, G. M. J. Am. Chem. Soc. 1976, 98, 6521.
(113)Burke, B. J.; Overman, L. E. J. Am. Chem. Soc. 2004, 126, 16820.
(114) Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323.
(115) Hoberg, H.; Peres, Y.; Krüger, C.; Tsay, Y.-H. Angewandte Chemie International Edition in English 1987, 26, 771.
(116) Hoberg, H.; Jenni, K.; Angermund, K.; Krüger, C. Angew. Chem. Int. Ed. 1987, 26, 153.
(117) Cohen, S. A.; Bercaw, J. E. Organometallics 1985, 4, 1006.
(118) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
(119) Lyons, T. W.; Sanford, M. S. Chemical Reviews 2010, 110, 1147.
(120) Shrestha, B.; Basnet, P.; Dhungana, R. K.; Kc, S.; Thapa, S.; Sears, J. M.; Giri, R. J. Am. Chem. Soc. 2017, 139, 10653.
(121) Trejos, A.; Fardost, A.; Yahiaoui, S.; Larhed, M. Chemical Communications 2009, 7587.
(122) Gu, J.-W.; Min, Q.-Q.; Yu, L.-C.; Zhang, X. Angewandte Chemie International Edition 2016, 55, 12270.
(123) Thapa, S.; Dhungana, R. K.; Magar, R. T.; Shrestha, B.; Kc, S.; Giri, R. Chemical Science 2018, 9, 904.
(124) Derosa, J.; Tran, V. T.; Boulous, M. N.; Chen, J. S.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 10657.
(125) Li, W.; Boon, J. K.; Zhao, Y. Chemical Science 2018, 9, 600.
(126) Zhao, X.; Tu, H.-Y.; Guo, L.; Zhu, S.; Qing, F.-L.; Chu, L. Nature Communications 2018, 9, 3488.
(127) García-Domínguez, A.; Li, Z.; Nevado, C. J. Am. Chem. Soc. 2017, 139, 6835.
(128) Harris, M. R.; Konev, M. O.; Jarvo, E. R. J. Am. Chem. Soc. 2014, 136, 7825.
(129) Huihui, K. M. M.; Shrestha, R.; Weix, D. J. Organic Letters 2017, 19, 340.
(130) Desrosiers, J.-N.; Hie, L.; Biswas, S.; Zatolochnaya, O. V.; Rodriguez, S.; Lee, H.; Grinberg, N.; Haddad, N.; Yee, N. K.; Garg, N. K.; Senanayake, C. H. Angewandte Chemie International Edition 2016, 55, 11921.
(131) Matsubara, R.; Gutierrez, A. C.; Jamison, T. F. J. Am. Chem. Soc. 2011, 133, 19020.
(132) Tasker, S. Z.; Gutierrez, A. C.; Jamison, T. F. Angewandte Chemie International Edition 2014, 53, 1858.
(133) Kocen, A. L.; Klimovica, K.; Brookhart, M.; Daugulis, O. Organometallics 2017, 36, 787.
(134) Kita, M. R.; Miller, A. J. M. Angewandte Chemie International Edition 2017, 56, 5498.
(135) Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788.
(136) Mee, S. P. H.; Lee, V.; Baldwin, J. E. Chemistry - A European Journal 2005, 11, 3294.
(137) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. The Journal of Organic Chemistry 1994, 59, 5905.
(138) Fürstner, A.; Funel, J.-A.; Tremblay, M.; Bouchez, L. C.; Nevado, C.; Waser, M.; Ackerstaff, J.; Stimson, C. C. Chemical Communications 2008, 2873.
(139) Chen, L.; Sanchez, D. R.; Zhang, B.; Carrow, B. P. J. Am. Chem. Soc. 2017, 139, 12418.
(140) Nishikata, T.; Abela, A. R.; Huang, S.; Lipshutz, B. H. J. Am. Chem. Soc. 2010, 132, 4978.
(141) Mattson, B. M.; Graham, W. A. G. Inorganic Chemistry 1981, 20, 3186.
(142) Ashimori, A.; Bachand, B.; Overman, L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6477.
(143) Suzaki, Y.; Osakada, K. Organometallics 2003, 22, 2193.
(144) Molander, G. A.; Harring, L. S. The Journal of Organic Chemistry 1990, 55, 6171.
(145) Kita, Y.; Hida, S.; Higashihara, K.; Jena, H. S.; Higashida, K.; Mashima, K. Angewandte Chemie International Edition 2016, 55, 8299.
(146) Too, P. C.; Chan, G. H.; Tnay, Y. L.; Hirao, H.; Chiba, S. Angewandte Chemie International Edition 2016, 55, 3719.
(147) Kantam, M. L.; Chakravarti, R.; Pal, U.; Sreedhar, B.; Bhargava, S. Advanced Synthesis \& Catalysis 2008, 350, 822.
(148) Agrawal, T.; Cook, S. P. Organic Letters 2013, 15, 96.
(149) Bair, J. S.; Schramm, Y.; Sergeev, A. G.; Clot, E.; Eisenstein, O.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 13098.
(150) Molander, G. A.; Sandrock, D. L. Organic Letters 2009, 11, 2369.
(151) Gole, B.; Sanyal, U.; Banerjee, R.; Mukherjee, P. S. Inorganic Chemistry 2016, 55, 2345.
(152) Tang, R.-J.; Kang, L.; Yang, L. Advanced Synthesis \& Catalysis 2015, 357, 2055.
(153) Gisby, G. P.; Sammes, P. G.; Watt, R. A. Journal of the Chemical Society, Perkin Transactions l 1982, 249.
(154) Kramer, G. W.; Brown, H. C. J. Am. Chem. Soc. 1976, 98, 1964.
(155) Burton, S. D.; Swamy, K. C. K.; Holmes, J. M.; Day, R. O.; Holmes, R. R. J. Am. Chem. Soc. 1990, 112, 6104.
(156) Scotson, J. L.; Andrews, B. I.; Laws, A. P.; Page, M. I. Organic \& Biomolecular Chemistry 2016, 14, 10840.
(157) Sawamura, Y.; Nakatsuji, H.; Sakakura, A.; Ishihara, K. Chemical Science 2013, 4, 4181.
(158) Jackstell, R.; Klein, H.; Beller, M.; Wiese, K.-D.; Röttger, D. European Journal of Organic Chemistry 2001, 2001, 3871.
(159) Pietrusewicz, E.; Sieñczyk, M.; Oleksys, J. Journal of Enzyme Inhibition \& Medicinal Chemistry 2009, 24, 1229.
(160) Storcken, R. P. M.; Panella, L.; van Delft, F. L.; Kaptein, B.; Broxterman, Q. B.; Schoemaker, H. E.; Rutjes, F. P. J. T. Advanced Synthesis \& Catalysis 2007, 349, 161.
(161) Šmit, B. M.; Pavlović, R. Z. Tetrahedron 2015, 71, 1101.
(162) Davies, J.; Booth, S. G.; Essafi, S.; Dryfe, R. A. W.; Leonori, D. Angewandte Chemie International Edition 2015, 54, 14017.
(163) Zabawa, T. P.; Chemler, S. R. Organic Letters 2007, 9, 2035.
(164) White, D. R.; Wolfe, J. P. Chemistry - A European Journal 2017, 23, 5419.
(165) Portela-Cubillo, F.; Lymer, J.; Scanlan, E. M.; Scott, J. S.; Walton, J. C. Tetrahedron 2008, 64, 11908.
(166) Ondet, P.; Lempenauer, L.; Dunach, E.; Lemiere, G. Organic Chemistry Frontiers 2016, 3, 999.
(167) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 6040.
(168) Krasovskiy, A.; Knochel, P. Synthesis 2006, 2006, 0890.
(169) Ogura, T.; Usuki, T. Tetrahedron 2013, 69, 2807.
(170) Matsumori, N.; Yasuda, T.; Okazaki, H.; Suzuki, T.; Yamaguchi, T.; Tsuchikawa, H.; Doi, M.; Oishi, T.; Murata, M. Biochemistry 2012, 51, 8363
(171) Pan, S.; Jang, S.-Y.; Wang, D.; Liew, S. S.; Li, Z.; Lee, J.-S.; Yao, S. Q. Angewandte Chemie International Edition 2017, 56, 11816.
(172) Basnet, P.; Dhungana, R. K.; Thapa, S.; Shrestha, B.; Kc, S.; Sears, J. M.; Giri, R. J. Am. Chem. Soc. 2018, 140, 7782.
(173) Faulkner, A.; Scott, J. S.; Bower, J. F. J. Am. Chem. Soc. 2015, 137, 7224.
(174) Samadi, S.; Orellana, A. ChemCatChem 2016, 8, 2472.
(175) Tollefson, E. J.; Dawson, D. D.; Osborne, C. A.; Jarvo, E. R. Journal of the American Chemical Society 2014, 136, 14951.
(176) Posner, G. H.; Lentz, C. M. Journal of the American Chemical Society 1979, 101, 934.
(177) Xie, S.; Lopez, S. A.; Ramström, O.; Yan, M.; Houk, K. N. Journal of the American Chemical Society 2015, 137, 2958.
(178) Volkov, A.; Tinnis, F.; Adolfsson, H. Organic Letters 2014, 16, 680.
(179) Börner, C.; Dennis, Michael R.; Sinn, E.; Woodward, S. Eur. J. Org. Chem. 2001, 2001, 2435.
(180) Kourouli, T.; Kefalas, P.; Ragoussis, N.; Ragoussis, V. The Journal of Organic Chemistry 2002, 67, 4615.
(181) Russo, A. T.; Amezcua, K. L.; Huynh, V. A.; Rousslang, Z. M.; Cordes, D. B. Tetrahedron Letters 2011, 52, 6823.
(182) Behforouz, M.; Bolan, J. L.; Flynt, M. S. The Journal of Organic Chemistry 1985, 50, 1186.

