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Abstract

Transition metal catalysis, being critical to nearly all aspects of the modern indus-

trial world, is the focus of a series of theoretical studies which seek to elucidate the

fundamental and electronic origins of enhanced chemical activity and selectivity. The

application of density functional theory on extended single metal and alloyed sur-

faces, supported single metal atoms, and gas phase cationic species illuminate various

aspects of transition metal catalysis in a wide range of enviornments. Adsorption,

reactivity, and other mechanistic details developed here suggest possible mechanisms

used to aid interpretation of experimental results and guide developement of future

catalysts.
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Chapter 1. Introduction

1.1 Introduction

One of the most critical technologies responsible for our modern industrial world

is the use of catalysts to accelerate reactions. A particularly potent example is

the Bosch-Haber process in which nitrogen from the atmosphere is converted to

ammonia over an iron based catalyst, allowing the a↵ordable production of fertilizer

and in turn the agricultural capacity to sustain much of the world’s population.

Automotive exhaust is cleansed of NOx, CO and uncombusted hydrocarbons through

a three way catalyst, reducing smog and air pollution. Furthermore, it has been

estimated that over 90% of industrial processes use catalysts, and the overall impact

of catalysts has been estimated to $10 trillion per year [1]. Industrial catalysts are

often heterogeneous and composed of transition metal particles dispersed over solid

supports, however, solid metal surfaces, ligated and solvated metal atoms, enzymes

and single gas phase metal containing molecules are all catalytically active systems.

However important, the catalysts that are used industrially are very complex

chemical materials, often using a great number of additives (promoters) in addition

to the main catalytic material, and dispersed over a porous and not always chemically

inert supporting material. The morphologies of the material are often complex and

di�cult to characterize. A further complication is that the active catalyst as found

under reaction conditions is typically not the the same as the as prepared catalyst.

Once exposed to the reaction conditions (pressure, temperature and the chemical

species present) a catalyst can undergo restructuring and activation, as evidenced by

the short period of time before reactions begin, known as the induction period. As

a result, it is often necessary to study a catalyst in situ.

As a result of such complex structure and function, a detailed and molecular un-

derstanding of catalytic processes is is still poor and development of catalysts con-

tinues to be done through expensive trial and error today. Important breakthroughs

2



Chapter 1. Introduction

in understanding catalysis have come historically, not from studying the most ac-

tive, and complex materials, but from simpler systems: clean, well defined surfaces,

with low concentrations of reactants for simple reactions or from studying isolated

molecular reactions. For example, the careful study of CO and O2 adsorption [2]

and reaction [3, 4] on various clean surfaces earned Gerhard Ertl a Nobel prize [5] in

2007. These simple systems guide development of fundamental models, trends and

“rules of thumb” which can then be used in designing new, better and more e�cient

catalysts. Furthermore, advancements in theoretical methods (in particular density

functional theory) have made possible the modeling of relatively large catalytic sys-

tems providing the molecular and electronic view that is so desperately needed to

understand more complex systems. In the following work, DFT has been used in a

number of model cases, ranging from perfectly clean and infinitely extended single

metal and alloy surfaces to single metal atoms embedded in a supporting material,

to gas phase transition metal catalysis.

1.2 General Concepts in Catalysis

A substance that is able to accelerate the rate of a reaction without itself being

consumed in the reaction is called a catalyst. This is achieved by providing some

alternative pathway to the products which avoids the uncatalyzed reaction barrier.

In Figure 1.1, we can see many important features in a chemical reaction, cat-

alyzed and not. In black we see the unperturbed pathway that represents the energet-

ics for an uncatalyzed chemical reaction. The reactant and product wells represent

the bound vibrational well of reactants A and B, and product C. Distorting the ge-

ometry along a particular mode, which can be a complicated set of internal motions

(here labeled simply “Reaction Coordinate”), will take the reactant up along the

black path (ie “minimum energy pathway” (MEP)) to the transition state, the high-

3



Chapter 1. Introduction

Figure 1.1: General reaction coordinate showing non-catalyzed reaction (black) and
catalyzed reaction (red).

est energy point in a reaction. The transition state is of particular interest because

of its intimate relationship with the rate of a reaction. According to Arrhenius, the

rate of a reaction is given by:

k = Ae�E‡/kBT (1.1)

Where A is a pre-exponential factor related how often the reactant attempts to

surmount the barrier, E‡ is the activation energy of the reaction and kBT is the

thermal energy available to the reactant at temperature T . Due to the exponential

dependence of the rate with the transition state, a small reduction in the height of

this barrier can significantly accelerate a reaction at a given temperature, or reduce

the required temperature for the reaction to proceed at an appreciable rate.

This is one of the key roles of a catalyst, as is illustrated in the diagram in red. The

red curve here implies that the function of a catalyst is to introduce a new pathway

between the reactants an products, which circumvents the high barrier. Often, this

4



Chapter 1. Introduction

path will consist of new intermediate species stabilized with respect to the black

curve. It is important to note that the overall Gibbs free energy of the reaction is

unchanged, as this is a state function of the reaction and independent of the path

taken from reactants to products. As a result, a catalyst also cannot modify the

equilibrium of a reaction. It can be noted that in the framework of Transition State

Theory (TST) the reactants and transition state are viewed to be in equilibrium. A

reduction of the height of the barrier does in fact modify this pseudo-equilibrium in

favor of the TS.

1.2.1 Functions of catalyst

Catalysts can play two roles: accelerate reactions and increase the selectivity for one

possible product over other thermodynamically feasible ones. In 1948, Linus Pauling

first hypothesized that an enzyme achieves catalysis by binding to, and therefore

stabilizing the transition state. [6] This viewpoint has largely been supported by

the subsequent 7 decades of research. However, catalysts can also achieve reduced

transition states by stabilizing/destabilizing the product/reactant, as explored by

Brønsted, Evans, Polanyi, Marcus and others in the context of the crossing of reactant

and product potential energy surfaces. This will be discussed in further detail in

section 1.3.3

The transition state is, in some sense, the worst possible energetic case a molecule

will face. At this particular moment along a reaction coordinate there is a balance

between breaking and forming chemical bonds. The energetic cost of dissociating

the reactant molecule and forming the product meet at the same geometrical point.

Often, there can be a buildup of charge in localized regions of the molecule at this

point. Anything capable of stabilizing this charge buildup will reduce the activation

energy of the barrier. Active sites of enzymes often have an electrostatic profile which
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matches that of the transition state. Additionally, if the enzyme contains a metal

center in the active site, the metal atom can act as an electron bu↵er for the TS;

donating or accepting electron density as needed to o↵set the energetic penalty of

charge buildup. A transition metal surface or particle can play the same role.

Selective catalysts are highly desirable in the context of increased atom economy,

an important tenet of the green chemistry movement, but may also be important if

side products are toxic to humans or down-stream processes. Selectivity is achieved

by the modification of activation energies of the possible reactions with respect to

each other. Either favorable products have lower barriers, unfavorable products have

enhanced ones, or there can be a combination of both. This can either be a geo-

metrical e↵ect, ie. a particular isomer is blocked from forming by the geometric

conformation of the catalyst-reactant complex, or an electronic one where one par-

ticular bond in the molecule is activated more than another as a result of interacting

with the catalyst. The product which requires the lowest activation energy will

dominate the final composition.

1.2.2 Surfaces, particles and single atoms

While not all catalysts use transition metals (examples are metal free enzymes and

organocatalysis [7]), a great many do. Whether as surfaces, small particles, in metal

containing enzymes, or solubilized metals, transition metals show a strong ability

for catalysis. This is in part due to the fact that these atoms have a partially filled

valence d shell that can both donate or accept electron density from reactants. For

example, if in the transition state there is significant buildup of electron density, a

transition metal could alleviate such an unfavorable situation by being reduced and

accepting the excess density as needed. Alternatively, density can be donated, should

a transition state be electron deficient. Transition metals are able to donate/accept
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density because these primarily involve the valence d-orbitals of the metal, which

are well screened from the nucleus, and as such are loosely bound to the atom.

Furthermore, the near degeneracy of excited states can o↵er alternative reaction

pathways which utilize excited spin surfaces, as will be discussed in Chapter 7.

For heterogeneous catalysts, activity is a function of surface area: the more ex-

posed catalyst, the more places for reactions to take place. This basic principle has

meant that in practice heterogenous catalysts are usually composed of small parti-

cles dispersed on some support (for example ZnO or Al2O3). In fact, the chemists

and engineers designing catalysts were pioneers in nanoscience long before the term

gained wide popularity and specific focus over the last decade. However, due to

early challenges in characterizing and synthesizing uniform particles, many of the

early breakthroughs in understanding these systems were done on well defined metal

surfaces under ultra high vacuum conditions [2, 8]. While many of the key concepts

learned from these studies are relevant for small particles, these single crystal sys-

tems cannot capture all of the unique and important features of industrially relevant

small particles. For instance, a small particle can display multiple and/or high en-

ergy crystallographic surfaces, a high concentration of defects such as kinks or steps,

interactions with the support, and unique electronic structure from an extended sur-

face. All of these features have been found to impact catalysis [9] and some are

visible in Figure 1.2.

For many reactions, the state-of-the-art catalyst is comprised of rare and expen-

sive transition metals such as Pt, Pd or Ru. As such, it is desirable to use as little

metal as possible. In the far most extreme case it would be advantageous to use only

a single metal atom per active site. To this end a few papers [10–12] have recently

been published which use single metals atoms anchored on supporting material and

even find enhanced catalytic activity per atom. For example, in 2011 a Pt/FeO cat-

alyst was found to have a turn over frequency for CO oxidation of 13.6 ⇥ 102(s�1),
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Figure 1.2: TEM image of Cerium oxide CeOx displaying (100) and (111) surfaces as
well as defects and other heterogeneous morphologies. Image compliments of Andrew
DeLaRiva.

2.9 times higher than that of Au/Fe2O3, a highly active catalyst [11]. Single atom

catalysis is the focus of Chapter 6, in which single Pd atoms are incorporated into

defects on a �-Al2O3 surface. Developments in characterization methods such as

tunnelling electron microscopy (TEM) and xray photoelectric spectroscopy (XPS)

along with advancements in the controlled synthesis of nano-scaled systems have

made the realization of single atom catalysts possible. These systems are also useful

models for the study of fundamental processes which may be important in industri-

ally relevant catalysts which may be di�cult to isolate and examine systematically.

For example, how a support modifies the electronic structure of an adsorbed metal

is a key question and has been shown to be an important consideration in a number

of systems [13, 14]. At the other end of large metal surfaces or nano-particles is

the case of gas phase transition metal catalysis. Although not particularly relevant
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for commercial processes the, small and isolated nature of such systems allow more

detailed theoretical treatment. There is an important di↵erence between atomic or

molecular systems and extended systems like surfaces. The electronic states for iso-

lated atoms/molecules are discrete, quantized states. In surfaces and bulk materials

these electronic states are smeared out and described with band structures. It ap-

pears that some of the most interesting catalytic systems fall into an intermediary

range between these two electronic models.

1.3 The d-band Model

A very powerful model for understanding and predicting the general reactivity of

transition metals has been developed by Nørskov and Hammer [15–17] over the last

decade, building on the foundational work of Newns and Andersen [18, 19]. This

model identifies the d-band center as the most important descriptor for reactivity

and o↵ers insight into the mechanisms of adsorption and reactivity.

When discussing the d-band of a metal, there are a few interrelated quantities of

interest: the metal-metal d orbital overlap between adjacent atoms (Vab), the d-band

width and the d-band center (Ed). Vab largely determines the width; greater overlap

and greater coupling between the atoms results in a more narrow d-band width and

the center and width of the d band are interrelated via the electron occupation the

bands. An increase in the overlap (eg. through compressive strain), causes the d-

band width to increase. Since metals tend to conserve the number of occupied bands

(those that fall below the Fermi level) the d-band center will shift down relative to the

Fermi level thereby restoring the occupation of the band. As a result of the correlated

behavior of these factors, only one needs to be chosen to characterize the interaction

of an atomic of molecular adsorbate, and the d-band center has been found to be

such a descriptor. The mechanism of adsorption is easiest to understand in terms
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Figure 1.3: Model illustrating the transition from discrete energy levels in atoms and
molecules, to broadened band structure in extended materials.

of an atomic adsorbate as discussed below, but the arguments can be extended to

molecular systems and is elaborated in Chapter 5 for the adsorption of CH2O.

1.3.1 Electronic Structure of Metals

A key qualitative di↵erence between solid materials and molecules is the fact that

the atomic orbitals which contribute to the structure are so numerous that they do

not form discrete energy levels as in atoms and molecules, but rather bands, in which

the eigenvalues form a continuum, or a band. This is illustrated in Figure 1.3.

For metal surfaces there are two distinct bands that form. The s-band and d-

band from the overlap of s+p and d orbitals respectively. The s orbitals, largely

delocalized across all atoms in the material, have a relatively large coupling element
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Figure 1.4: Cartoon model of the electronic structure in metals. The s-band is di↵use
and half full. The d-band is more discrete and located near the Fermi level (EFermi).

between themselves, and as a result is very broad and half way filled. The d-band,

conversely, is composed of the fairly localized d-orbitals which are less coupled to each

other resulting a narrow band. The energy which divides the bands into occupied

and unoccupied (also called the “valence“ and “conduction” bands) regions is called

the Fermi energy (EFermi). Electronic states that lay below the EFermi are occupied,

and those above it are not. The Fermi level is analogous to the HOMO-LUMO gap

in molecules.

The localization of d-orbitals and their resulting narrow d-band has profound

implications in the bonding of adsorbates to the surface. The well quantized atomic

and molecular eigenstates can interact with the relatively narrow d-band to form

new bonding and anti-bonging orbitals between the surface and adsorbate as is seen

in two-state atomic orbital model. This is opposed to interaction with the broad

s-band, which does not split the orbitals but rather just smears them out. This

interaction with the s-band is far weaker and does not change much from one metal
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to another. The position of the d-band, on the other hand, varies from 4 eV below

EFermi in Ag to 2.5 eV above in Hf. The relative position of the d-band determines

the occupation of bonding/anti-bonding orbitals formed, and therefore the strength

of adsorption.

1.3.2 Adsorption

The initial step for any reaction on a surface must be one or more of the reactants

adsorbing on the surface. Adsorption may play a number of roles in surface catalysis,

from immobilizing the species near each other, to fully modifying the electronic

structure of the adsorbate upon interaction with the d-band. In some cases, this

interaction is enough to break bonds in the molecule, as in the dissociative adsorption

of O2 on Pd(111) to form 2 atomic oxygen species. Alternatively, it could be a weaker

interaction with the surface that simply activates a bond for later interaction with

another species. This is the case for CO on Pd(111), in which the ⇡⇤ MO of CO is

populated from the d-orbital of the binding metal atom; elongating and weakening

the C�O bond. These types of adsorption fall under the category of chemisorption,

in that they result in a chemical bond to the surface. Physisorption, a weaker

interaction, results from van der Walls interactions between the molecule and the

surface. As this interaction is so weak and has almost no e↵ect on the structure

of the adsorbate, I will confine my discussion to the more catalytically interesting

chemisorption.

Adsorption of a single atom on a surface is the simplest case and provides a

clear picture of the electronic interaction, which is later applied to more complicated

molecular adsorbates. When an atom comes close to a surface a number of interac-

tions take place as the atomic orbitals mix with the valence states of the metal. It is

useful to mentally break this into two separate steps, as is illustrated in Figure 1.5.
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Figure 1.5: Illustration of the interaction of the atomic orbital as it couples with a
metal surface. In vacuum the atomic orbital is discrete. Upon coupling with the s-
band, the orbital is broadened. Coupling to the d-band slits metal-atom orbitals into
bonding and anti-bonding orbitals, whose position with respect to (EFermi). depend
on the position of the d-band in the metal and the atomic orbital.

First the AO’s mix with the broad s-band of the surface. Since the s-band is so wide,

this simply broadens the AO levels slightly, but does not cause them to shift in energy

or spit into bonding and anti-bonding states. Secondly, there is coupling with the

narrow d-band. Since the d-band is narrow, this interaction does result in bonding

and anti-bonding orbitals formed above and below the initial AO’s. The interaction

of the atom with the surface is then controlled by the location of these orbitals with

respect to the Fermi level. Since only the d-band forms bonding/anti-bonding or-

bitals, its relative position with respect to the Fermi level determines the extent to

which the various atom-metal orbitals are filled, and thus it is the location of the

d-band center than is the determining factor in determining the binding strength. If,

for example, the d-band is very low with respect to EFermi than both bonding and

anti-bonding orbitals would form below EFermi, resulting in no significant bonding
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Figure 1.6: Three cases of d-band position and the resulting metal-atom orbitals
upon adsorption. A) Unoccupied d-band; part of the resulting bonding orbital is
populated. B) Half filled d-bad; here the strongest bond results because all bonding
states are occupied and non of the anti-bonding. C) d-band totally occupied; now
the anti-bonding orbitals are becoming populated weakening the adsorption.

interaction. On the other extreme, if the d-band center is very high, the resulting

bonding and anti-bonding orbitals might both fall above EFermi, again forming no

net bonding interaction. Three possible cases are presented in Figure 1.6

This implies that there is an ideal intermediate range of d-band position which

form strong interactions with a given adsorbate, but not so strong that the adsorbed

species is trapped on the surface. In fact, this variation in EFermi through the periodic

table is the origin of the “volcano plot” of reactivity as shown in Fig 1.7 [20]. As the

Sabatier principle identifies, the most active catalyst will be the one that does not

bind too tight (poisoning) or too loose (no interaction) to the adsorbate. The most

active transition metals tend to be those that fall in this intermediate range d-band

center, and therefore adsorption strengths.

Molecular adsorption on surfaces follows that of atoms, but with some additional

complexity. No longer is there a single adsorbate orbital interacting with the surface
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Figure 1.7: Volcano plot for the decomposition of formic acid on various transition
metals. The temperature of decomposition (a measure of relative activation energy)
is plotted against the enthalpy of formation. The most active metals are centered
around Group 9 and 10 elements.

but many. As with atoms, there the molecular orbitals interact with the d-band

to form new molecule-metal bonding and anti-bonding orbitals. The occupation of

these orbitals determines the strength of the adsorption. However, the molecule also

has it’s own molecular bonding and anti-bonding orbitals which will change upon

interaction with the surface. The change in filling of these molecular orbitals can

change the bonding within the molecule itself, as in the loosening of the C�O bond

upon adsorption to Pd.
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1.3.3 Brønsted Evans Polanyi Relationships and Scaling Re-

lationships

Another powerful theoretical framework on which to case catalytic reactions is the

so called “BEP relationship”, named after Brønsted, Evans and Polanyi, key figures

in its development. [21, 22] Brønsted first articulated it in 1928 by observing that

there was a linear relationship between the rate of an acid catalyzed reaction and

the strength of the acid doing the catalysis. It was later generalized and extended

to surface reactions. It articulates the relationship between the stability of reactants

and products and the transition state between them. BEP relationships are often

used to predict how the activation energy of a reaction will change on various metals.

The BEP relationship can be written as,

�Eact = ↵⇥�Er (1.2)

where the change in activation energy (Eact) is linearly proportional to the corre-

sponding change in reaction energy (Er). Constant ↵ depends on the particular

reaction and can be roughly interpreted as how reactant-like (early) or product-like

(late) the transition state is.

The key to understanding the BEP relationship rests on viewing the reaction as

the crossing of two independent wells in the potential energy surface. One represent-

ing the reactant and the other the product. This is illustrated in Figure 1.8 where

the reactant is labeled R, product P, and the transition state is represented by where

the two curves cross. In this framework the transition state is the point at which the

distortion of the reactant overlaps with the product well, both in geometry and in

energy.

Also illustrated in Figure 1.8 is how a change in the vertical position of the reac-

tant in this case, will shift the crossing point by roughly the same amount of energy.

The depth of a well in the case of a surface reaction is simply the binding energy of
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Figure 1.8: Illustration of the BEP relationship. Here the reactant has been stabilized
by �R, resulting in a downward shift of the crossing points; the transition state by
�‡.

a species to that surface. Assuming that the shape of the wells do not change going

from metal to metal, and that the binding energy will change with the position of the

d-band center of the metal as discussed above, knowledge of the activation energy

and binding energies of one surface plus the change in binding energy for another

metal is su�cient to predict the transition state energy on the other surface. This

is useful in light of the practical challenges to calculating a transition state. Fur-

thermore, since the d-band model allows the prediction of binding energies based

on the d-band center, transition states can be estimated with only knowledge of the

electronic structure of the surface.

As shown by Hammer and Nørskov [15–17], a consequence of the above d-band

model of bonding to surfaces, a linear relationship is found between BE and d-center.

As a result of the BEP relationships, the activation energy of a reaction can be related

to the binding energy. This allows extrapolation of metal reactivity from a known
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metal to one unknown one and the screening of many potential metals to a first

approximation by their d-band center.

This is particularly useful in studying possible alloy combinations which have a

d-band character of interest. Nørskov et al. have publish a few models recently

which utilize these linear relationships to e�ciently screen a great number of metals

for reactivity [23–25]. The results of such screening can direct experimental studies

on potentially active materials, an exciting step towards a priori catalyst design.

1.4 Conclusion

In the following chapters, transition metal catalysis will be explored in a number

of cases, from mathematically infinite surfaces of metals, to a case of single atom

catalysis, to studies of the reactivity of complexes which contain a single metal atom

in the gas phase. Throughout these studies, time independent quantum mechanical

methods have been used to predict the key geometries involved in reactions and their

electronic structure, providing both practical and fundamental insight into these

processes. Interestingly, these systems tend to be of a size scale that is di�cult

for our current quantum tools to treat. On one hand, our formalism of electronic

structure is developed for an infinitely extended 3D periodic lattice and on the other

for single isolated atoms. Both are strained when applied to these systems where the

discrete quantum nature of an atom is blurred with the continuum nature of a solid.

In the next chapter I will outline the theoretical methods used throughout. Chap-

ter 3 traces the possible reaction pathways of formaldehyde on a copper surface under

methanol steam reforming conditions. In chapter 4 the e↵ect of alloying Zn atoms

into a Pd surface is studied in the context of CO oxidation. Further studies on the

reactivity of formaldehyde on Pd, Cu and PdZn surfaces are investigated in chap-

ter 5. Chapter 6 looks at the development of a model for a single Pd atom embedded
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in a �-Al2O3 surface, which is capable of performing CO oxidation at encouragingly

low temperatures. These projects were often collaborations with experimentalists,

whose data provided inspiration and key benchmarks for development of these theo-

retical models. The experimental methods and results are largely included to provide

context and narrative, but have been edited down. Please see any publications for

full details. The following chapters are associated with these publications: Chapter

3: [26], Chapter 4: [27], Chapter 7: [28].
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The study of chemical reactions on the molecular level requires that we confront

the quantum nature of these systems. In principle, the Schrödinger equation o↵ers

us an complete description but full solutions to systems of interest to chemists are

very di�cult and thus largely unavailable. This has necessitated developement of

the rich variety of approximate methods to study quantum systems. As discussed

below, it is customary to first separate the treatment of the electronic part of the

problem from the nuclear one. Under this so-called Born-Oppenheimer (BO) ap-

proximation, the Schrödinger equation for the electronic motion is solved at fixed

nuclear configurations. In this Thesis, we will focus on the electronic problem.

The gold standard for treating electronic motion are the “first-principles” or ab

initio methods that contain no empirical approximations; only the geometry, charge,

spin state and fundamental constants are specified. They are typically very accurate,

but also computational expensive. While impractical for routine use in large systems,

they are powerful analysis and benchmarking tools for relatively small systems. An

alternative approach to ab initio methods that has gained tremendous popularity

is the density functional theory (DFT). In DFT, the problem is not cast in terms

of wavefunctions as in the Schrödinger equation, but rather on the electron density

and is e�cient and qualitatively accurate. As a result, the primary methodology

employed in the following work is DFT based.

There are two formalisms which I have utilized, depending on the nature of the

system being studied. For large, periodic systems such as bulk crystals and surfaces,

a planewave based DFT is the optimal choice. Inspired by the periodic nature of

crystals, this formalism is cast in the language of planewaves, Fourier series and the

notion of reciprocal space. For small gas phase systems an atomic orbital based

DFT is preferred and inspired by the language of chemists. It is important to note

that these two formalisms were derived to treat two di↵erent limiting cases: isolated

atoms and molecules on one hand and infinitely extended crystalline structures on
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the other. One is marked by quantized behavior and the other continuous. Both of

these frameworks are deeply strained in some sense when applied to the intermediary

systems that are of current interest in heterogeneous catalysis.

2.1 Quantum mechanics

The starting point for a quantum mechanical description of microscopic system is

the time independent Schrödinger equation,

Ĥ = E (2.1)

where the wavefunction is a function of both the electronic and nuclear coordinates;

 (r, R) for r electron coordinates and R nuclear coordinates. Ĥ is the Hamiltonian

and E is its energy. Solving this partial di↵erential equation for the individual and

correlated motion of each nucleus and electron in the desired system, at least a 3N�6

degree problem for N particles, is an immensely di�cult mathematical undertaking.

Robert Oppenheimer and Max Born in 1927 [1] recognized the fact that the mass

of a nucleus is more than 1800 times that of an electron and as such the nuclear

motion is often so slow with respect to electron motion that the nuclear motion can

be considered considered adiabatic. In other words, it is a good approximation to

consider nuclei as a fixed framework upon which electrons move. The total wave-

function can thus be approximated as the product of the nuclear wavefunction (�)

and the electronic wavefunction ( ) at a fixed position R, ie

 (r,R) =  (r;R)⇥ �(R)

A consequence of the Born Oppenheimer (BO) approximation is a divide-and-conquer

scheme for studying molecular systems. Instead of solving electronic and nuclear

problems simultaneously, the electronic energy is parameterized by the nuclear co-
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ordinates and can be determined by repeating this step at di↵erent nuclear config-

urations. The resulting BO potential energy surface (PES) allows us to determine

the forces acting on atoms as the negative derivative of PES with respect to nuclear

coordinates, allowing geometry optimization. The BO PES can be used to predict

behavior of the chemical system such as its reactivity and interaction with light. Our

task is now to seek a solution to the electronic Schrödinger equation, the starting

point is often the Hartree-Fock approximation, which is discussed below.

2.1.1 Hartree-Fock

In the Hartree approach, the true multi-electron wavefunction is approximated by

the product of single electron wavefunctions:

 (r1, r2, . . . , rn) = �(r1) ⇤ �(r2) ⇤ · · · ⇤ �(rn) (2.2)

By replacing  in equation 2.1 with the Hartree wavefunction, one can solve for

the energies and wavefunctions for multi-electron systems. With this approximation

each electron is under the averaged influence of the other electrons, and the Hamil-

tonian must account the Coulombic attraction to the nucleus, the electronic kinetic

energy and for the average charge distribution of electrons. As the average repulsion

felt by electron 1 with electron j is given by the integral of the product of the jth

electrons charge density (the square of its wavefunction) and 1/r1j:

v1j =

Z
|�j(r)|

2 1

r1j
d⌧j (2.3)

the resulting single electron e↵ective Hamiltonian for electron 1 is,

heff
1 =

�r

2
1

2
�

Z

r1
+
X

j 6=1

Z
|�j(r)|

2 1

r1j
d⌧j (2.4)

Since the solution for one electron requires the knowledge of all the other elec-

trons, the problem must be tackled iteratively. First, a guess must be made for all
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�(r) in order to construct the electron-electron potential energy term in Eq. 2.4.

Solving the resulting single electron Schrödinger equations provide improved wave-

functions over the initial guesses. The e↵ective Hamiltonian is updated with the

new �(r), and the process is repeated until there is not significant change in energy

or wavefunctions upon further iteration. This is known as the Self Consistent Field

(SCF) procedure.

The above discussion does not take electron spin into account. We now must

consider a spin-orbital �, to be the product of the spatial function �(r) and a spin

function, either ↵ or �. The Pauli exclusion principle requires that the total electronic

wavefunction be antisymmetric upon exchange of any two electrons, ie:  (1, 2) =

� (2, 1). As a result, only certain spin-orbit functions are valid. Vladimir Fock

antisymmetrized the Hartree states by selecting only appropriate linear combinations

of exchanged spin-orbit functions. The antisymmetrization was further developed by

John Slater in the form of the so-called Slater determinant, shown in Eq. 2.5. For

a closed shell system with two electrons, the wavefunction for two electrons sharing

the same spatial orbital � is written as the Slater determinant, then expanded into

the resulting spin-orbit function,

 (r1, r2) =
1
p

2

������

�1(1) �2(1)

�1(2) �2(2)

������
(2.5)

=
1
p

2
{�1(1)�2(2)� �1(2)�2(1)} (2.6)

=
1
p

2
{�(1)�(2)[↵(1)�(2)� ↵(2)�(1)]} (2.7)

The Slater determinant ensures that if any two electrons are exchanged (ie two

rows are switched) the wavefunction remains the same with a switched sign, and if

any two rows are equal to each other (ie two electrons have the same spin and spatial

coordinates) the determinant vanish, satisfying the Pauli principle.

Importantly, in in the Hartree-Fock (HF) method an electron does not “see”
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another individual electron, but only its average charge density as given in Eq. 2.3.

In truth, each electron will tend to avoid the other electrons in the system, slightly

reducing Coulombic repulsion. The HF approximation fails, therefore, to account

for this electron-electron correlation. The correlation function is is defined as the

di↵erence between the exact energy of the system and the HF energy,

Ecorr = Eexact � EHF

Relative to EHF, Ecorr is typically small and much of the total energy is reasonably

well represented by the HF approach. However, the correlation energy is on the order

of the strength of a bond, and therefore can become absolutely critical for accurate

modeling of molecules and their processes. To address this problem a number of post-

HF approaches have been developed to account for the missing electron correlation

energy. These include the perturbative approaches of Møller-Plesset (MP3, MP4,

etc), multi-configurational SCF, couple-cluster (CC) and configuration interaction

(CI) based methods. DFT takes a distinct approach to the problem, and captures

the correlation and exchange energies in an approximate. DFT takes a distinct

approach to the problem, and captures the correlation and exchange energies in an

approximate way through the use of an exchange-correlation functional, and is not

typically considered to be an ab inito method because the exact form of the functional

is not known.

Post Hartree-Fock ab initio Methods

In HF, the total wavefunction is constructed using only the Slater determinant cor-

responding to the ground state. However, by writing the total wavefunction as a

linear combination of all possible determinants (in other words, by including those

determinants that represent all possible excited configurations in which one or more

unoccupied orbitals are switched with occupied ones), electron correlation is rein-

troduced into the calculation. It is common to label these excited determinants by
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the number of electrons that are being simultaneously excited; “singles” for a wave-

function that includes all single electron excitations, “doubles” for two, etc. The

HF determinant could be considered the zeroth configurations, in that it has no

excitations.

 CI =
X

k

ckDk (2.8)

whereDk contains the HF determinate and k possible excitations within a given basis

set. The energy is minimized with respect to the coe�cients ck. For N electrons

and M orbitals the number of Dk is (2M !)/[N !(2M �N)!] and can quickly number

in the millions or billions, thus is only possible for small systems. This is called

the Configuration Interaction (CI) approach, and when used as the full CI with all

possible Dk the exact energy is found for a given basis set. Since the number of Dk

can be so large and because not all excited determinants will contribute equally to the

correlation energy, the number of configurations is often truncated. For example CIS

and CISD are methods which just include the single or single and double excitations

respectively. Unfortunately, it is not possible to tell a priori how large such an

expansion needs to be and there is not well behaved convergence with respect to

increasing k.

Another popular approach to truncating the number of excitations considered

is called the “Complete Active Space” SCF or CASSCF. Here, the wavefunctions

are divided into three types: those that are doubly occupied in all configurations,

those that are totally unoccupied, and the active space which contain the electrons

and orbitals that are allowed to participate in excitations. Furthermore, unlike CI

where HF wavefunctions are used unchanged and only determinant coe�cients Ck

are optimized, the CAS procedure optimizes both determinant and wavefunction

coe�cients. This can dramatically reduce the computational e↵ort, but requires

careful selection of the active space. Generally, one wants to choose one which

captures all the important states (large ck) that contribute to the  and few of those
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with minimal contribution.

Similar in spirit to CI but cast in terms of quantum operators is the Coupled

Cluster (CC) method. Here the total wavefunction  CC is constructed from  0, the

single HF determinant, operated on by an exponential operator which performs the

excitations as in CI in the exponent.

 CC = eT 0, (2.9)

where

T = T1 + T2 + T3 + · · · (2.10)

Here T1 performs modifications of the HF determinant to create the ensemble of

possible single excitations, T2 the doubles, and so on. When all T operators are

included, the exact wavefunction is found within the given basis set, just as in CI.

However, this is only possible again for the smallest systems. Often the excitation

operator is truncated with the first or second, resulting in CCS and CCSD respec-

tively. The accuracy of these level calculations is superb for their speed, but can

be further improved with addition of higher terms. The “gold standard” of compu-

tational chemistry, CCSD(T) with a large basis set, includes some triple excitation

not iteratively like the singles and doubles, but rather uses a perturbative approach

to make estimates of the triplet contribution. This method is still considered to be

“single reference” because only the ground state HF determinant is used to generate

the expansion.

2.1.2 Density Functional Theory

In the 1960’s Density Functional Theory (DFT) was first established by two seminal

papers by W. Kohn, P. Hohenberg, and L. Sham [2, 3]. These two papers have had a

tremendous impact in molecular and atomic modeling as evidenced by the fact that
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they are the two most cited papers in the publishing journal: Physical Review and by

the exponential growth of those citations since 1964. Unlike the ab initio methods

discussed above, which concern themselves with the 3N dimensional wavefunction

 (r1, r2, . . . , rN), DFT is cast in terms of the total ground state electron density of

the system ⇢(r), a function of only the three spatial coordinates. Although not as

accurate as the post-HF ab initio methods, DFT scales far better with the number

of electrons and thus as drastically increased the size of systems that can be brought

under quantum mechanical analysis.

Kohn and Hohenberg first laid the theoretical underpinnings of DFT by showing

that the total energy of a molecule is a unique functional (function of a function) of

the electron density and that there exists a variation principle such that any density

that other than the ground state density will have an energy greater than the ground

state energy.

The basic form of the energy functional can be written as the sum of two terms;

E[⇢(r)] =

Z
Vext(r)⇢(r)dr + F [⇢(r)] (2.11)

Where ⇢(r) is the electron density, (Vext) is the external Coulombic potential of the

BO nuclear framework, and F [⇢(r)] is a “catch-all” for everything else including the

electronic kinetic, exchange and correlation energy contributions. Since E[⇢(r] is

uniquely determined by Vext, the functional F [⇢(r)] must be universal for any system

of electrons! Unfortunately, the exact form of F [⇢(r)] is not known, but Kohn and

Sham proposed the following expansion:

F [⇢(r)] = EKE[⇢(r)] + EH [⇢(r)] + EXC [⇢(r)] (2.12)

Here EKE[⇢(r)] is the kinetic energy of a system of non-interacting electrons with

the same density as the true system at point r. EH [⇢(r)] is the classical electrostatic

(Hartree) energy of the electrons and EXC [⇢(r)] is the exchange-correlation energy.

The first two terms are known exactly, however some error is introduced by taking
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the kinetic energy of non-interacting electrons and a correction for this is included

in EXC [⇢(r)]. In practice, this last term is actually implemented as VXC [r], which is

the functional derivative of EXC [⇢(r)] with respect to the density ⇢;

VXC [r] =

✓
�EH [⇢(r)]

�⇢(r)

◆
(2.13)

VXC [r] is called the exchange-correlation potential and its approximation is key to

the success of DFT. Kohn and Hohenberg o↵ered the first approximation for VXC [r]

in their 1964 paper, called the Local Density Approximation (LDA). Here, VXC [r]

is just the exchange-correlation potential for a homogeneous electron gas of density

⇢(r). This model of an even and infinitely distributed electron gas is a poor model

for molecular systems, yet it proved to have better accuracy than HF for comparable

computational e↵ort. This is in part because DFT is able to account for some of

the correlation energy, whereas the correlation is explicitly ignored in HF. However,

LDA-DFT su↵ers from shortcomings such as overbinding, in which bond strengths

are consistently over estimated.

Later, the Generalized Gradient Approximation (GGA) family of functionals were

developed which include local gradients of electron density in deriving the exchange-

correlation functional and tend to perform much better than LDA. The functional

used in Chapters 3, 4, 5 and 6, Perdue-Wang 1991 (PW91) [4], is a GGA func-

tional and is very popular for the study of surface chemistry. One of the most

successful functionals developed and the one used in Chapter 7, Becky3-Lee-Yang-

Parr (B3LYP) [5], is considered a “hybrid functional” because it uses a portion of

the exact exchange energy as calculated from Hartree-Fock along with a GGA based

functional. The amount of HF exchange to include is empirically fit to the heats of

formation of a number of small molecules. Hybrid functionals are slower than non-

hybrid because they perform a HF calculation as well as evaluate the DFT functional,

but the accuracy is significantly improved over non-hybrid GGA functional.

There exists a variational principle for DFT that states the lowest energy possible
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achieved for a given electron density corresponds to the actual ground state electron

density. This allows an iterative approach to solving the problem. The density is first

expanded by linear combination of basis functions in some (often random) fashion.

Then these orbitals are optimized with respect to the expansion coe�cients until the

total energy is minimized. It should be noted that the orbitals that are calculated

in DFT are actually the so-called one electron “Kohn-Sham orbitals”, but are very

similar to the actual molecular orbitals and can be casually interpreted as such [6].

2.1.3 Basis Sets

An important consideration in any quantum calculation is the choice of basis set.

Mathematically, a basis is a complete set of linearly independent vectors which to-

gether in linear combination, can represent any possible vector in that space. Quan-

tum mechanically, they are the set of basic (often atomically inspired) functions

which are used, in linear combination, to construct the total electronic wavefunc-

tions and/or electron density for a given nuclear framework. These are the functions

that are used to construct the �(n) in equation 2.2 by linear combination:

�(r) =
X

cibi (2.14)

Typically, the coe�cients ci of this expansion are optimized in the SCF procedure

until su�ciently converged. The size of a basis set expansion is one of the primary

limits of accuracy within a given model chemistry, thanks to the variational treat-

ment. For example, if they are not su�ciently large (numerous) there is not enough

flexibility in coe�cient optimization to accurately model the chemical system. In

principle, larger basis sets tend to be more accurate, however a practical number

of basis sets that can be reasonably handled today is on the order of 1000 func-

tions. There are two popular classes of basis functions (bi); atomic-orbital inspired

and planewave basis sets. These are typically used to model isolated and periodic
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systems respectively.

Atomic orbital basis sets

A chemically intuitive approach to constructing basis sets is to use atomic based

orbitals. This is in the spirit of the LCAO-MO procedure, which constructs molecular

orbitals from the linear combination of atomic orbitals. For example, a carbon atom

may be constructed from a 1s, 2s, and 3 separate 2p orbital functions. To ease the

computational e↵ort of dealing with the cusp at r = 0 for many atomic orbitals a

series of Gaussian functions are used to fit, as close as possible the radial features

of the true orbital. Using Gaussian functions to mimic the atomic orbitals is a far

more e�cient approach because mathematical operations on Gaussian functions are

relatively easy. However, multiple Gaussian functions are needed to describe both

the cusp behavior and exponential tail of the function. This results in a larger set

of functions which comprise the basis set, but the computational e�ciency is still

largely improved. Basis sets are further enlarged by doubling or more the number

of Gaussian constructed atomic orbitals included, adding higher angular momentum

orbitals (polarized functions) and/or including deliberately di↵use functions in the

basis set expansion.

Plane-wave basis sets

Another popular choice of basis functions particularly convenient for periodic systems

is planewaves of various frequencies. A Fourier series can be constructed by adding

enough planewaves, which vary in wavevector k to completely model the system. The

expansion will require high frequency functions near the nucleus where the wavefunc-

tion is more energetic and therefor more curved. Lower frequency planewaves are

needed far from the nucleus, where the energy (and curvature) of the wavefunction
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!pseudo

!actual

Figure 2.1: Di↵erence between pseudopotential (blue) and actual wavefunction
(green). Beyond cuto↵ radius (purple) they are identical.

is much less.

In principle, a planewave basis set forms a complete basis set, however approxi-

mations are often made to minimize the number of planewaves used to construct the

basis. For instance, an energy cuto↵ is usually employed above which no planewaves

are included in the Fourier series. This is reasonable because the high energy (and

high frequency) functions are usually associated with the core electrons which do not

play a large role in chemistry. The completeness of the planewave basis set means

that results can be systematically improved by increasing the cuto↵ energy.

Pseudopotentials

Core electrons are qualitatively di↵erent from valence electrons in that they di↵er in

energy by an order of magnitude or more, are spatially located in di↵erent areas of

the atom and are rarely involved in chemical bonds. Additionally, the core electrons

are often the most challenging computationally, because the core wavefunctions os-

cillates wildly near the nucleus, which require many high frequency planewaves to

accurately model. Hence it seems reasonable to replace these core functions with
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approximate ones, which are easy to deal with mathematically yet produce the same

e↵ective potential on valence electrons. Additionally, these approximate functions

can be built to include e↵ects not typically addressed by electronic structure cal-

culations such as the orbital contraction that results from relativistic e↵ects in late

period transition metals. Under the atomic orbital formulization these functions

are called e↵ective core potentials (ECP) and when used with planewaves they are

called pseudopotentials (PsP). This concept is illustrated in Figure 2.1. Currently

the most popular pseudopotentials are of the “projector augmented wave” (PAW)

type [7, 8]. Development of these PsP’s is done by finding the appropriate linear

transformation matrix (T) between the true wavefunction  and the pseudo one  ̂

such that  = T ̂. Due to the high accuracy and e�ciency of these PsP’s they have

been used throughout the periodic DFT work contained in this Thesis.

2.2 Application of quantum mechanical tools

2.2.1 Periodic Boundary Conditions

The quantum mechanics of periodically repeating systems can be elegantly cast in

terms of reciprocal space and planewaves. Surfaces, being 2D periodic entities are

most e↵ectively modeled under periodic boundary conditions (PBC). This frame-

work, which di↵ers significantly from that of isolated systems, is addressed now.

An idealized crystal is a periodic entity with a unique “unitcell” defined by lattice

constants a, b and c. The unitcell is repeated infinitely in space by a translational

operation: T = n1a + n2b + n3c, where n1, n2 and n3 can be any integers. Bloch

recognized that since the nuclei of a crystal are periodic arranged, the resulting

electronic wavefunction will also be periodic, and so will all properties derived from

that wavefunction. For example, if the electron density of copper metal is equal
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to ⇢(r) at point r in the unitcell, than ⇢(r + T) = ⇢(r). Bloch’s theorem is a

condition that solutions for the Schrø“dinger equation must satisfy and it provides

the connection between the original unit cell and all others extending infinitely out

in space. This theorem is;

 E(r) =  E(r +T) = eikT E(r) (2.15)

This subtle result requires wavefunctions to obey Eq. 2.15, in that under any transla-

tion operation ( E(r+T)) only di↵ers from  E(r) by the multiplicative phase factor

eikT. This arises from the translational symmetry of a crystal but in essence maps

the infinitely extended space in r to a discrete reciprocal space in k. The wave vector

k has units of inverse length and corresponds to points within the reciprocal space

of the lattice in the same way that r is used to denote points in Cartesian space.

The ground electronic state of a crystal is determined by evaluating the energy as a

function of k, touring the reciprocal unitcell (called the first or irreducible Brillouin

Zone (IBZ)) and tracing out the ”Band Structure“ of the crystal. Since the number

of k vectors in the IBZ is equal to the number of unitcells in the structure, any

macroscopic crystal will have essentially an infinite number that must be evaluated.

In practice, only a subset of possible k vectors in the IBZ, selected by k-points, are

considered.

K-points

To evaluate properties of the wavefunction, integration must be done over all k, which

in principle could be infinite. K-points are a grid of points extended in reciprocal

space which defines the k vectors that are sampled. The idea of a k-point grid is

justified in the fact many k vectors are degenerate; only a representative sampling

of important k-points is needed.

There is an inverse dependence on the number of kpoint required and the size
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of the supercell; the smaller the unit cell, the higher the number of k-points are

required for accurate calculation. However, when a very large unit cell is used, only

a single kpoint, called the gamma point, is required. If a gas phase molecule is

being studied the periodic nature of the model needs to be suppressed. Using a

gamma point calculation can achieve this without using massive unitcells. This is

key in calculating the binding energy of a molecule to a surface. For this common

calculation we need to model both a periodic system, the clean surface and the

molecule in the gas phase.

Throughout the following studies of surfaces, the k-point grid is generated au-

tomatically by the method of Monkhorst and Pack [9], which simply extends a ho-

mogeneous grid of k-points of user specified density throughout the IBZ. To choose

the k-point grid, a number of calculations are performed for the same system but

with increasing grid density. Properties of interest must be converged with respect to

k-points. Fortunately, we are not typically interested in absolute energy values, but

instead the di↵erence between two or more structures. As long as these comparisons

are made between identical unit cells, and with the same k-point grid, errors from

slightly unconverged k-points are canceled systematically. In Figure 2.2 the binding

energy of carbon monoxide on Cu(111) is plotted against the number of k-points

used.

Construction of Slab and Supercell Selection

The use of PBC-DFT to study surfaces requires that the model constructed must

be a unitcell that repeats infinitely in all three directions. Surfaces are built first

from an optimized bulk structure which is cleaved to the desired plane, and then

expanded and oriented to construct the “supercell”, or the unitcell that defines the

entire model. There are a number of important considerations while constructing

such models and they will be discussed here.
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Figure 2.2: The binding energy of CO on Cu(111) is calculated for various kpoint
grids. C and O atoms are allowed to relax at each kpoint. Kpoint grids are generated
to insure that they are always �-centered and reasonable convergence is acheived at
6x6x1.

A surface is the termination of a bulk material, and so to construct one it is

reasonable to begin with the bulk material itself. The bulk calculation for simple

materials consists of determining the lattice constants of the primitive unitcell, and

for fcc metals like Pd and Cu there is only one defining parameter a. The PW91

GGA functional used in these studies tends to over-correct the overbinding problem

of the LDA functionals, and so tends to overestimate the lattice constant slightly.

For Cu, for example, a = 3.67Å with PW91 is 0.05Å larger than the experimentally

determined value. DFT optimized values are used to reduce any artificial compres-

sion, which has the e↵ect of lowering the dband center and changing the reactivity

of the surface.

The optimized bulk structure is cleaved with the Miller indices defining the sur-

face of interest. Often, low index surfaces such as the (111) are more densely packed

and more thermodynamically favored. Defects such as steps and kinks can be mod-

eled with higher index surfaces, which expose increasingly under-coordinated surface
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Figure 2.3: The periodic nature of these models is illustrated. The original supercell
is highlighted and periodic images in all three directions shown.

atoms. The cleaved surface slab is then reoriented in the supercell as slice of the top

layers of the surface. A vacuum layer is added above the surface to separate one slab

from its periodic image in the z direction. A final surface supercell is displayed in

Figure 2.3.

We see that this model is not really that of a surface as we usually think about

it, but rather an infinitely stack of slabs of atoms separated by a finite vacuum

spacing. A true surface is achieved only the limit of an infinitely thick vacuum and

slab. Vacuum slabs are usually on the order of 15Å for small molecule and atomic

adsorbates. The thickness of the slab and whether or not it is allowed to relax

are important accuracy vs. speed considerations. For simple metals, models with

3-5 atomic layers in which the top layer is allowed to relax from it bulk-truncated

position are usually su�cient. The surface area of the supercell can be adjusted
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Figure 2.4: A graphic of the surface of Cu(111) surface with unique adsorption sites
illustrated and labeled.

in order to mimic various surface concentrations of adsorbates. A full monolayer

coverage is achieved with a small supercell containing only a single occupied binding

site. Increasing the supercell size but not the number of adsorbates decreases the

surface coverage accordingly.

The (111) surface of an face center cubic (fcc) metal, such as Cu an Pd has four

possible high symmetry binding sites. “Top”, which is on top of an atom, “bridge”

which is between two atoms, and two hollow sites which are between three atoms.

The hollow sites are labeled fcc and hcp depending on whether there is a atom directly

below. These sites are illustrated in Figure 2.4. Adsorbates on a surface may have

strong preference for particular binding sites over others and preference can change

depending on the concentration of adsorbates. This can have a profound impact on

the details of reactivity. Engel and Ertl [10, 11] showed that the complex interplay

between adsorbed CO and dissociating O2 at various binding sites and under various

pressures resulted in kinetics not described by simple rate laws.
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Figure 2.5: The potential energy diagram of butane as it is rotated along the center
carbon-carbon axis. Many topographical features of various stationary points are
illustrated.

2.2.2 Topographical definition of stationary points

Under the BO approximation, we seek to identify stationary points (dR/dE = 0)

along the 3N dimensional PES in order to characterize a chemical reaction. Di↵er-

ences in the energy of minima relate to thermodynamic quantities and equilibrium

constants, and the maxima, or transition state between two minima, determines the

rate of a reaction. The unique topographical features of these points allow the de-

termination and classification of stationary points, and these will be discussed here

using the butane molecule as an example. Figure 2.5 shows one 2D slice of the 42D

PES of butane as energy vs. the C-C-C-C dihedral angle is scanned from 0 to 360�.

Eclipsed, gauche and staggered geometries are highlighted.

Minima in a potential energy surface (both local and global) correspond to bound

species, or those which will have some measurable lifetime due to their stability.
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Topographically, minima are molecular geometries that experience a restoring force

against any small displacement of nuclear coordinates. A calculation of vibrational

modes at a minima will find 3N � 6 real vibrational frequencies for a non-linear

molecule with N atoms. Minima can be further categorized as the global, the lowest

possible energy configuration or local, which are less stable than the global minimum.

The global minimum for butane is, as shown in Figure 2.5, the “Anti” conformation

at 180�, where steric hindrance is most reduced. Two degenerate local minima exist

as “Gauche” conformations at 60� and 300�.

Transition states are maxima for the minimum energy path between the two

minima that define reactants and products. They are actually saddle points in the

topography of the PES in that they are a point of both positive and negative curva-

tures. In other words, for any arbitrary perturbation of the transition state geometry

the energy will rise, save for one particular mode which displacement along will re-

sult in a lower energy. This particular mode, also called the imaginary frequency

mode, corresponds to the reaction coordinate through that point. As discussed in

Chapter 1, the transition state can be viewed as the point at which the product and

reactant minima curves cross. In Figure 2.5 a transition state exists between every

pair of minima.

As a result of these unique topographical features of stationary points, vibrational

mode analysis is a useful tool for characterizing structures. A method commonly

employed, the finite di↵erences method, involves displacing each atom in x, �x, y,

�y, z and �z by a small amount (⇠0.01 Å) from its equilibrium position. Usually

under the harmonic oscillator approximation, the vibrational frequencies are calcu-

lated. Minima will have 3N � 6 modes and transition states will have (3N � 6)� 1

real modes and one imaginary one. Harmonic vibrational frequencies are defined as

! =
p

kf/µ, where kf is the force constant of the vibrational mode in question and

µ is the reduced mass. For minima, the force constant will always be positive, but
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at a maxima kf is negative. Hence it is proper to use the term imaginary due to

the square root, but most computational codes report it as a negative frequency.

Occasionally, a search for a transition state will result in more than one imaginary

mode, indicating that it is not a 1st order saddle point.

Additionally, the calculation of vibrational modes allows a zero-point vibrational

energy correction to be added to the energy. Approximating the vibrational wells of

the molecule with harmonic oscillators leads to the following definition of the ZPE

correction:

EZPE =
X

i

h̄!i

2
(2.16)

where !i is the harmonic vibrational frequency for the ith mode. ZPE correction for

transition states includes all but the imaginary frequency in the above summation.

At a transition state, the imaginary frequency describes the curvature of the

potential through the saddle along the reaction pathway. This has important conse-

quences for another quantum e↵ect: tunneling. A transition state can be viewed as

a barrier from one state to another and quantum mechanics tells us there is a finite

probability of a system to tunnel through barriers. The probability is a function of

the mass of the particle, the height and width of the barrier. The magnitude of the

imaginary frequency provides insight into the width of the barrier, and if the reaction

involves light atoms like hydrogen, a narrow barrier (large imaginary mode) might

indicate that tunneling could be playing a role in the reaction dynamics. However,

to quantify this requires studying the dynamics of the reaction, which is precluded

in these approaches by use of the time independent Schrödinger equation.

These discussions have all concerned themselves with the ground electronic state

of a molecule or surface. In many cases this is su�cient but there are cases when

excited potential surfaces must be understood in addition to the ground state. Pho-

tochemistry, in which the deliberate excitation of the system is used to make/break
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bonds, is best understood in terms of a vertical transition to the excited potential

energy surface. If the excited state does not share the same minimum energy geom-

etry as the ground state the system will move along the gradient of that potential

and change its geometry appropriately. In cases where there are states very close

in energy to the ground state, as is often the case with transition metals, another

phenomena can occur. The ground state electronic configuration may change with

the geometry of the molecule. If a molecule is going from one geometry to another,

ie moving along a PES, and it encounters another PES (same geometry and energy)

there is a possibility that the molecule will undergo an electronic rearrangement and

cross to the other surface. This has a profound impact on chemistry involving tran-

sition metals, and speaks to the reasons behind their ability to catalyze reactions.

These concepts are explored in greater deal in Chapter 7.

Geometry Optimizations

Locating various stationary points on the PES, ie optimizing the molecular geometry

until it is either a minimum or a transition state, often depends on derivative based

methods. The direction of 1st derivative of energy with respect to nuclear coordinates

(@E/@Ri) indicates where the minimum lies and its magnitude provides information

on the steepness of the potential energy surface at that geometry. “Steepest de-

scent” and “conjugate gradient” are two popular optimization algorithms which use

the derivative to locate minima moving the atoms in the direction parallel to the

net force. “Conjugate gradient” tends to converge on the minimum faster as each

new step in the minimization is both orthogonal to the gradient and to the previous

search vector. The Hessian, or the matrix of second partial derivatives of energy

with respect to geometric coordinates, can also be utilized in optimization meth-

ods. The “Newton-Raphson” method, for instance, calculates a new geometry from

the di↵erence of the current geometry and the gradient times the inverse Hessian.
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While very powerful, calculation and inversion of the Hessian can be computationally

formidable. Fortunately, analytical expressions for the derivatives are available for

many methods like atomic orbital based DFT, and minimization is e�cient.

A particularly useful method for locating transition states and mapping minimum

energy paths from reactants to products is the Nudged Elastic Band method (NEB)

and in particular the Climbing-Image variant of NEB [12, 13]. In this method, the

geometry of reactant is linearly extrapolated to the product in a series of images

of intermediary geometries. In simple NEB, these points are then simultaneously

optimized but are given an artificial force constant which connects each state to its

nearest neighbors forming an elastic chain of structures from reactant to product.

The “band” of geometries will minimize along the minimum energy pathway (MEP),

passing through the saddle point. There is no guarantee that one of the points will

fall at exactly the transition state and a large number of images must be used to

accurately describe the barrier height. Climbing Image-NEB addresses this problem

by performing an additional step after the NEB has converged. The image highest

in energy (and therefore closest to the TS) is freed from the neighboring images and

optimized uphill along the reaction coordinate until the forces acting on the atoms

vanish. This final image should be located at the transition state of interest, however

in practice a vibrational mode analysis is performed to check the existence of the

single imaginary frequency, and verify that a saddle point has been located. CINEB

has been utilized in all periodic DFT work to locate transition states and trace the

minimum energy path MEP between reactants and products.
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This chapter is based on collaborative work found in the following publication:

Reproduced from S. Lin, R. S. Johnson, G. K. Smith, D. Xie, and H. Guo,

Pathways for methanol steam reforming involving adsorbed formaldehyde and hy-

droxyl intermediates on Cu(111): density functional theory studies., Phys. Chem.

Chem. Phys., vol. 13, no. 20, pp. 9622� 9631, May 2011, with permission from the

PCCP Owner Societies.

3.1 Introduction

Methanol steam reforming (MSR);

CH3OH+H2O ��! 3H2 + CO2 �H� = 49.6 kJ/mol

has emerged as a leading candidate for generating hydrogen fuel for on-board appli-

cations such as proton exchange membrane (PEM) fuel cells [1–4]. In this approach,

methanol serves as a liquid hydrogen carrier, thus avoiding the challenging prob-

lem of hydrogen storage and transportation. Methanol has several advantages as a

hydrogen carrier. First, it is commercially produced in large scale with established

techniques. Second, existing infrastructure for other liquid fuels, such as gasoline,

can be leveraged with some modifications in transportation, storage, and dispense.

Third, methanol is a relatively clean fuel because of its high H/C ratio and low sulfur

content [3, 5]. Finally, MSR generally takes place at relatively manageable temper-

atures (150 � 300�C) as no C�C bonds need to be cleaved, and good catalysts are

known.

The traditional catalyst for MSR has been Cu supported by ZnO, which is highly

selective towards CO2 [1, 3, 4]. This selectivity is very important as the by-product

CO, in addition to being a pollutant, readily poisons anode sites in PEM fuel cells

[1, 3]. Unfortunately, copper catalysts su↵er sintering at temperatures above 300�C,
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with the associated loss in surface area and reactivity. Furthermore, copper catalysts

are pyrophoric when exposed to oxidative conditions, a significant concern when used

in automotive applications. More recently, a PdZn alloy formed on ZnO has shown

some promise as an alternative MSR catalyst with better thermal stability [6]. It is

believed that MSR proceeds on the PdZn/ZnO catalysis in a similar way to that on

Cu/ZnO [7–9]. As a result, elucidation of MSR on Cu may help us to understand

the process on other catalysts as well.

In order to improve existing catalysts and design new ones for MSR, it is impor-

tant to understand the catalytic mechanism. Although e↵orts in this direction have

been made through kinetic modeling [10, 11] there is much uncertainty in such en-

deavors because not all kinetic intermediates are experimentally identifiable. Thanks

to advances in plane-wave density functional theory (DFT) [12] there is an increasing

interest in addressing mechanistic questions in heterogeneous catalysis from the bot-

tom up [13–15]. Indeed, much work has been reported on the decomposition of both

methanol and water on Cu surfaces using DFT [16–24]. For example, the complete

reaction path from CH3OH to CO + H2 has been mapped out in pioneering DFT

studies by Greeley and Mavrikakis on Cu(111) [16], and by Mei, Xu, and Henkelman

on Cu(110) [23]. Although these studies have shed much light onto MSR cataly-

sis, none has yet provided information concerning how the various species produced

by these decomposition processes interact with each other and how the CO2 + H2

products are formed.

It has been proposed that MSR on Cu based catalysts is initiated by OH bond

cleavage of both CH3OH and H2O. The resulting methoxyl (CH3O) and hydroxyl

(OH) species adsorb strongly on the metal surface. These species may further de-

hydrogenate to produce formaldehyde (CH2O) and O, respectively, but typically

with high barriers. Indeed, the dehydrogenation of CH3O is considered to be the

rate-limiting step in MSR [10, 11, 25, 26]. On the other hand, formaldehyde has
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been identified as a key intermediate in MSR and was detected in both MSR [27]

and decomposition reactions of CH3OH on Cu [28–30]. Indeed, when fed with H2O

under steam reforming conditions [27], it produces CO2 and H2 as products, fur-

ther suggesting its key role in MSR. Three mechanisms have been proposed for

MSR on the copper catalyst [3, 4, 26]. The first consists of methanol decomposi-

tion to CO, followed by conversion to CO2 via the water-gas shift (WGS) reaction

(CO+H2O ��! H2+CO2) [1]. However, the importance of this decomposition/shift

pathway is now discounted by most researchers [3], as WGS was found inoperative

in the presence of methanol [10, 27, 31]. The second mechanism involves reactions

of CH2O with adsorbed OH or O species to produce intermediates such as formic

acid (CHOOH), formate (CHOO), and dioxomethylene (CH2OO), which eventually

convert to CO2 + H2 [32]. At high temperatures, an alternative pathway involv-

ing methyl formate (CHOOCH3), formed from CH3O + CH2O, has also been pro-

posed [10, 11, 27]. Methyl formate is also one of the main products in methanol

decomposition over Cu in the absence of water [31, 32]. Unfortunately, the latest

experimental studies were unable to determine definitively whether the second or the

third mechanism is in operation [26]. It is possible that both mechanisms are active

depending on the operating temperature [27]. In this Chapter, we will focus on the

formic acid/formate/dioxomethylene pathway(s).

It is well known that formaldehyde adsorbs weakly on Cu and is nonreactive [33].

Recent DFT calculations have indicated that because of the relatively high (⇠0.65

eV) barrier the dehydrogenation of formaldehyde on copper surfaces cannot com-

pete with desorption, although its dehydrogenation product, namely CHO, readily

decomposes to CO + H on Cu surfaces with large exothermicity and a small bar-

rier [16, 19, 23]. Hence, it is reasonable to assume that there has to be a pathway

that diverts formaldehyde to the experimentally observed selective production of

CO2 in MSR. More importantly, the reaction must have a barrier lower than or com-

parable to the adsorption energy of formaldehyde. A likely mechanism involves the
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Figure 3.1: Proposed pathways for the decomposition and steam reforming of
methanol on Cu(111).

reaction of CH2O with OH or O produced by water decomposition. In Fig. 3.1, we

sketched a few possible reaction pathways for such processes. In order to gain in-

sights of the MSR mechanism, plane-wave DFT results are reported in this Chapter

for these elementary steps on Cu(111). The energetics of the reaction network should

help us to advance our understanding of this important process. This Chapter is or-

ganized as follows. The theory and computational protocol are outlined in Sec. 3.2

The results are presented in Sec. 3.3. The subsequent section (Sec. 3.4) discusses

the implication of the calculation results in the context of MSR catalysis. Finally, a

summary is given in Sec. 3.5.
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3.2 Theory

All DFT calculations were carried out using the Vienna ab initio simulation package

(VASP) [34–36] with the gradient-corrected PW91 exchange-correction functional

[37]. The ionic cores were described with the projector augmented-wave (PAW)

method [38, 39] and for valence electrons a plane-wave basis set with a cuto↵ of 400

eV was employed. The Brillouin zone was sampled using a 4⇥ 4⇥ 1 MonkhorstPack

k-point grid [40] with Methfessel-Paxton smearing of 0.1 eV [41]. The optimized

bulk lattice parameter for Cu was found to be 3.67 Å, in good agreement with the

experimental value (3.62 Å) [42]. Slab models for the Cu(111) surface consisted of

three layers of a 3⇥3 unit cell, with the top layer allowed to relax in all calculations.

Our unit cell is larger than previous work [14, 23, 24], and it reduces the chance of

artificial interactions between co-adsorbed species in adjacent cells. A vacuum space

of 14 Å was used in the z direction. The adsorption energy was calculated as follows:

Ead = Eadsorbate + surface�Efree molecule�Efree surface. The climbing image nudged elastic

band (CI-NEB) method [43, 44] was used to determine the reaction pathways with

the energy (10�4 eV) and force (0.05 eV/Å) convergence criteria. Stationary points

were confirmed by normal mode analysis and the vibrational frequencies were used

to compute zero-point energy (ZPE) corrections.

3.3 Results

3.3.1 Adsorption of pertinent species

In order to understand elementary chemical steps in MSR, it is important to first

characterize the adsorption of pertinent species. In Table 3.1, we list the geometric

and energetic information on various such species adsorbed on Cu(111). Many species
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involved in the decomposition of CH3OH* and H2O
* on Cu(111), such as CH3O

*,

have been extensively investigated before, and our results are in general agreement

with the available literature values. Below, we will focus on other species identified

in Fig. 3.1. The adsorption energies and geometric parameters of the energetically

preferred states of all relevant species are listed in Table 3.1, where the side and top

views of the adsorption geometries are also included.

CH
2

OOH

This species formed by the reaction between CH2O
* and OH* preferentially adsorbs

in a unidentate fashion at the fcc site through its carbonyl oxygen, with the methylene

hydrogens pointing away from the surface. The distances between the O atom and

the three surface Cu atoms are 2.04, 2.04, and 2.17 Å, respectively. The adsorption

energy of -2.23 eV indicates relatively strong chemisorption. The calculated O�C�O

angle was found to be 111.48. As far as we know, there has been only one DFT study

on this species, where a similar adsorption energy (-2.78 eV) and configuration were

reported on Cu(100) [45]. This species appears in all the reported pathways explored

in this study.

CH
2

OO

The dioxomethylene species adsorbs on Cu(111) with both oxygen moieties on bridge

sites. The bidentate bonds are roughly equivalent. The calculated O�C�O angle

is 112.7 and the two H atoms point away from the surface. A similar adsorption

pattern has been reported in several earlier DFT studies in the context of methanol

synthesis [15, 46], where the dioxomethylene is believed to be a key intermediate. The

dioxomethylene species has been observed on Cu(110) as a product of formaldehyde

oxidation, serving as a precursor to formate (CHOO) [33]. The bidentate adsorption
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Species Adsorption DCu�A Adsorption Bond Details

Configuration (Å) Energy (eV) Bond Length (Å)

H Fcc/Hcp
through H

1.74 -2.45 (-2.28)/ -
2.44 (-2.27)

- -

O Fcc/Hcp
through O

1.90 -4.94 (-4.86)/ -
4.94 (-4.87)

- -

OH Fcc through O 2.03 -3.21 (-3.12) O-H 0.97
H2O Top through O 2.34 -0.20 (-0.16) O-H 0.98
CO2 Top through O 3.58 -0.04 (-0.03) C=O 1.18
CH2O Parallel to sur-

face
3.41 -0.06 (-0.06) C=O 1.22

C-H 1.12
Bidentate-
CHOO

Top-Top
through O

2.01 -2.78 (-2.63) C-O 1.27

2.02 C-H 1.11
Unidentate-
CHOO

Fcc through O 2.09 -2.25 (-2.14) C=O 1.22

2.11 C-O 1.35
2.18 C-H 1.11

Cis-COOH Bridge through 2.11 -1.78 (-1.72) C=O 1.25
O and C 1.96 C-O 1.35

O-H 0.98
Trans-COOH Bridge through 2.12 -1.67 (-1.62) C=O 1.26

O and C 1.96 C-O 1.35
O-H 0.99

CHOOH(I) Top through O 2.23 -0.24 (-0.24) C=O 1.23
C-O 1.32
O-H 1.01
C-H 1.10

CHOOH(II) Top through O 2.41 -0.10 (-0.08) C=O 1.22
C-O 1.34
O-H 0.98
C-H 1.10

CH2OO Bridge-Bridge 2.04 -4.15 (-3.98) C-O 1.42
through both Os 2.04 C-H 1.10

1.99
1.98

CH2OOH Fcc through O 2.04 -2.23 (-2.08) C-O 1.42
2.04 O-H 0.98
2.17 C-H 1.10

Table 3.1: Adsorption energies and geometric parameters for various pertinent
species on Cu(111). Entries in the parentheses are the ZPE-corrected values.
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leads to a large adsorption energy of -4.15 eV, which is also in reasonable good

agreement with that reported by Mei et al. [46] (-3.69 eV) on the same surface.

The di↵erence might be attributable to the smaller k grid (2⇥ 2⇥ 1) used by these

authors. This species appears only in pathway B reported here.

CHOOH

Due to its closed shell nature, the formic acid adsorbs weakly on Cu(111), with an

adsorption energy of -0.24 eV. There are two important adsorption configurations,

as shown in Table 3.1. In the first configuration (CHOOH(I)), the carbonyl oxygen

interacts with a Cu atom on the top site. The hydroxyl hydrogen points toward the

surface, while another hydrogen atom on the carbon points upwards. The distance

between the carbonyl oxygen and the Cu atom is 2.23 Å and the two calculated

O-C bonds are 1.23 and 1.32 Å, respectively. In the second adsorption configuration

(CHOOH(II)), the carbon hydrogen points toward the surface and the hydroxyl

hydrogen points away from the surface. The calculated adsorption energy is smaller

with the value of -0.10 eV. The weaker interaction is reflected by the fact that

the distance between the carbonyl oxygen and the Cu atom is elongated to 2.41

Å. The weak adsorption of formic acid on copper is consistent with experimental

observations [47]. This species appears in pathways A and C reported in this study.

CHOO

It is known that formate (CHOO) can adsorb on Cu(111) with both bidentate and

unidentate modes [14, 24, 46, 48]. The bidentate adsorption features atop adsorption

via the two oxygen atoms with O-Cu distances of 2.01 and 2.02 Å, respectively.

These distances are very close to the reported experimental and theoretical values

[14, 46, 49]. The calculated O�C�O angle of 127.8 is also consistent with the
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previous theoretical values of 126.9 [46], and 127.8 [14]. The molecular plane is

perpendicular to the surface and the adsorption energy was found to be -2.78 eV.

The unidentate adsorption, on the other hand, features an oxygen on the hpc site

with a smaller adsorption energy of -2.25 eV. While the O�C�O angle is roughly

the same (124.2), the O-Cu bond lengths (2.09, 2.11 and 2.18 Å) are slightly longer

than those in the bidentate configuration. The adsorption energies for the bidentate

and unidentate binding modes are in good agreement with theoretical values, such as

those obtained by Gokhale et al. (-2.77 and -2.32 eV, respectively) [14]. The stronger

bidentate adsorption of formate is consistent with experimental observations [50, 51].

This species appears in pathways B and C reported in this study.

COOH

The carboxyl species have two possible conformations, namely the cis and trans-

COOH species. Their adsorption patterns on Cu(111) are however similar, namely

with C�O moiety interacting at the bridge site in a bidentate fashion with two

Cu atoms. For the cis-COOH, the molecular plane is nearly perpendicular to the

Cu(111) surface with an O�C�O angle of 115.4 and the C�Cu and O�Cu bond

lengths are 1.96 and 2.11 Å, respectively. For the trans-COOH, as shown in Table 3.1,

the configuration is close to that of cis�COOH except that its O�H bond pointing

toward the surface. The cis isomer binds slightly stronger (-1.78 eV) than its trans

counterpart (-1.67 eV). Our results di↵er somewhat from previous studies which have

used a 2⇥ 2 unit cell [14, 24]. While we can reproduce the literature values with the

smaller 2 ⇥ 2 unit cell, we believe that our 3 ⇥ 3 unit cell should provide a better

description of the low coverage adsorption because it avoids interactions between

adsorbates in adjacent unit cells. This species appears in pathway A reported in this

study.

56



Chapter 3. Reaction of formaldehyde and hydroxyl intermediates on Cu(111)

3.3.2 Reaction Pathways

As shown in Fig. 3.1, the decomposition of CH3OH* and H2O
* on Cu(111) produces

several species. Since the decomposition processes have been extensively investigated

before, we will focus here on the reactions between the key decomposition products

on the Cu(111) surface. The initial step of methanol decomposition involves the

cleavage of the O�H bond, and this activated reaction has a moderate barrier, e.g.,

0.68 eV on Cu(110) [20]. This is followed by the dehydrogenation of CH3O
* leading to

CH2O
* with a high (ZPE corrected) barrier of 1.16 eV [17]. Although this step might

in principle be achieved with the assistance of OH*, which abstracts a hydrogen from

CH3O
*, the barrier for this process is unlikely to be lowered with the participation of

OH*, as discussed below. On the other hand, the decomposition of water to H*+OH*

on Cu(111) is also activated with a (ZPE-corrected) barrier of 1.15 eV [14]. The

further decomposition of OH* to O* + H* is even more di�cult (E‡ = 1.76 eV,

�E = 0.48 eV without ZPE corrections) [14], although O* can be produced by the

disproportionation reaction OH* + OH*
��! O* + H2O

* (E‡ = 0.23 eV, �E = -0.1

eV). While the latter reaction has a low barrier, it consumes OH*, which itself is

di�cult to form due to the high barrier for water dissociation. It is thus reasonable

to assume that the O* is a minor species in MSR on Cu(111). As a result, we

will only consider reaction pathways initiated by the reaction between CH2O
* and

OH*. In addition, the recombinative desorption of H2 and the desorption of CO2 are

not included as these two processes have been extensively studied before on copper

surfaces [16, 20]. All of the thermodynamic and kinetic results in Table 3.2 are

reported with and without ZPE corrections. The geometries of the initial state (IS),

transition states (TS), and final states (FS) in all elementary steps are shown in

Fig. 3.2.
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Step Elementary step E‡ �E

A1 CH2O
* +OH*

��! CH2OOH* 0.11(0.11) -0.64(-0.46)
A2 CH2OOH*

��! CHOOH* +H* 0.99(0.90) -0.03(0.09)

A3 CHOOH(I)* ��! CHOOH(II)* 0.22(0.23) 0.14(0.15)

A4 CHOOH(II)* ��! cis�COOH** +H* 1.18(0.98) 0.40(0.26)
A5 cis�COOH**

��! trans�COOH** 0.53(0.48) 0.02(0.03)
A6 trans�COOH**

��! CO*
2 +H* 1.26(1.02) -0.46(-0.59)

A6’ trans�COOH** +OH*
��! CO*

2 +H2O
* 0.04(0.00) -0.14(-0.14)

B1 CH2OOH*
��! CH2OO** +H* 1.22(1.02) 0.65(0.51)

B1’ CH2OOH* +OH*
��! CH2OO** +H2O

* 0.15(0.05) 0.08(0.06)
B2 CH2OO**

��! CHOO** +H* 0.77(0.59) -0.69(-0.82)
B3 CHOO**

��! CHOO* 0.55(0.51) 0.53(0.50)
B4 CHOO*

��! CO*
2 +H* 0.60(0.45) -0.20(-0.30)

C1 CHOOH(I)* ��! CHOO** +H* 0.66(0.46) -0.12(-0.22)

C1’ CHOOH(I)* +OH*
��! CHOO** +H2O

* 0.07(0.05) -0.37(-0.29)

Table 3.2: Calculated activation and reaction energies (eV) for the elementary re-
actions on Cu(111) studied in this Chapter. Entries in parentheses are the ZPE-
corrected values

Pathway A

Pathway A on Cu(111) starts with the reaction between adsorbed formaldehyde

(CH2O
*) and hydroxyl (OH*):

CH2O
⇤ +OH⇤

��! CH2OOH⇤
��! CHOOH⇤

��! COOH⇤⇤
��! CO⇤

2

The H* species is not explicitly included in the reaction sequence for simplicity. The

energetics of the pathway is displayed in Fig. 3.3. The first step (A1) is exothermic

(�E = -0.64 eV) and has a low barrier of 0.11 eV, indicating this reaction will be

highly favored. In this step, the OH* species at an fcc site attacks the weakly bound

CH2O
* molecule to form CH2OOH* at the fcc site with oxygen binding with three

copper atoms. Both the reaction barrier and exothermicity of A1 indicate that it

should be able to compete e↵ectively against the dehydrogenation of CH2O
* (E‡ =
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0.66 eV) which eventually leads to CHO* and CO* [19]. It should also be favored

against the desorption of formaldehyde (Ead = 0.06 eV). The second dehydrogenation

step (A2) producing the formic acid (CHOOH(I)*) has, on the other hand, a high

barrier (0.99 eV), and is nearly thermoneutral. The length of the breaking C�H bond

was found to be 1.60 Å at the transition state. After the C�H bond cleavage, the H*

species moves to an fcc site and CHOOH(I)* moves to a top site. This orientation

of the formic acid adsorbate cannot undergo further dehydrogenation from carbon

without a rearrangement (A3) in order to bring the hydrogen on the carbon atom

close to the surface. As shown in Fig. 3.2, the transition state for A3 depicts a flip of

the adsorbate, yielding the product CHOOH(II)* which points the carbon hydrogen

towards the surface. This step has a small barrier of 0.22 eV and small endothermic-

ity (�E = 0.14 eV). The further dehydrogenation of the formic acid (A4) was found

to have a large barrier (1.18 eV) and moderate endothermicity (�E = 0.4 eV). At

the transition state, the breaking C�H bond is elongated to 1.57 Å. The dehydro-

genation gives a bidentate carboxyl COOH** and H* coadsorbed at top and fcc sites,

respectively. It should be noted that CHOOH adsorbs weakly on the surface with

adsorption energies -0.24 eV for CHOOH(I) and -0.10 eV for CHOOH(II). Therefore

desorption would likely be favored over further dehydrogenation without some assis-

tance from a surface hydroxyl or oxygen species. The resulting carboxyl (COOH**)

isomerizes from cis�COOH** to trans�COOH** (A5) with a moderate barrier of

0.53 eV. This is needed because the H atom in cis�COOH** points away from the

surface, as shown in Table 3.1. After isomerization, the hydrogen in trans�COOH**

is pointing towards the surface, ideally positioned for the next step. Finally, CO*
2 is

produced by removing the hydroxyl hydrogen of trans�COOH** (A6), which features

a high barrier of 1.26 eV and exothermicity (�E = -0.46 eV). The O�H distance

at the transition state is 1.416 Å, and the CO*
2 and H* species are above the top

and hcp sites, respectively. However, this step can also be accomplished by react-

ing trans�COOH** with OH* (A6), which has essentially no barrier. As shown in
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Fig. 3.2, after dissociation, the hydrogen of the product H2O
* forms a hydrogen bond

with CO*
2.

The A6 and A6’ steps have been investigated before with plane-wave DFT. The

barrier heights of 1.41 eV [14] and 1.14 eV [24] for A6 are in reasonable agreement

with our value of 1.26 eV. On the other hand, the barrier for A6 was found to be

0.03 eV by Gokhale et al. [14], in good agreement with our value of 0.04 eV.

Pathway B

The second pathway (B) branches o↵ from Pathway A by removing the hydroxyl

hydrogen of CH2OOH*:

CH2OOH⇤
��! CH2OO⇤⇤

��! CHOO⇤ + CO⇤
2

The direct O�H bond cleavage (B1) has a high barrier (1.22 eV) and large endother-

micity (�E = 0.65 eV). The breaking O�H bond length is 1.66 Å at the transition

state and after the bond scission, the bidentate CH2OO** species prefers to locate

at bridge-bridge site and H* locates on an hcp site. However, the production of

CH2OO** can also be achieved by reacting CH2OOH* with OH* (B1), which is al-

most thermoneutral (�E = 0.08 eV) and has a lower barrier of 0.15 eV. (We note in

passing that the CH2OO** species cannot be formed directly via the reaction between

CH2O
* and OH*, based on our calculations. It has to go through the CH2OOH* in-

termediate (A1).) In the initial state of B1, CH2OOH* and OH* are coadsorbed

on the surface through a hydrogen bond with the length of 1.68 Å, as shown in

Fig. 3.2. At the corresponding transition state, the distance of the dissociating O�H

bond was found to be 1.30 Å. The resulting dioxomethylene dehydrogenates in B2

to form the bidentate formate (CHOO**), which has a large exothermicity (�E =

-0.69 eV) and a moderate barrier of 0.77 eV. This O�H bond scission on Cu(111)

surface proceeded from an initial bridge-bridge site to a top-top site for CHOO**
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and a fcc site for H*, respectively. To produce CO*
2, CHOO** first has to convert

from the bidentate adsorption configuration to a unidentate one (B3) on an hpc site,

which involves a barrier of 0.55 eV and �E of 0.53 eV. The final product (CO*
2) is

produced by dehydrogenation of unidentate formate (B4) with a barrier of 0.60 eV.

At the transition state, the C�H distance is calculated to be 1.54 Å and after dehy-

drogenation, the product H* locates at an hcp site. The energetics of this pathway

is given in Fig. 3.3.

Our B2 barrier height of 0.77 eV is in reasonably good agreement with the cal-

culated values reported in the literature. For example, Mei et al. [46] have found a

barrier of 0.85 eV while Yang et al. [15] reported a value of 0.9 eV. The conversion of

CHOO** to CO*
2 has also been studied theoretically before by several authors [14, 46].

The calculated overall barrier heights of 1.30 eV [46], and 1.29 eV [14], are in good

agreement with our value of 1.13 eV (B3 + B4). These theoretical values are also

consistent with experimental results in the literature (1.17 ± 0.13 eV [52] and 1.12

±0.03 eV [53]).

Pathway C

The third pathway (C) bypasses the dioxomethylene by removing the hydroxyl hy-

drogen in formic acid:

CHOOH⇤
��! CHOO⇤

��! CO⇤
2

As in Pathway B, the first step of Pathway C can be accomplished in two ways. The

direct dehydrogenation (C1) has a moderate barrier (0.66 eV) and is slightly exother-

mic (�E = -0.12 eV). As shown in Fig 3.2, in the initial state, the hydroxyl hydrogen

of CHOOH* points towards the surface. At the transition state, the CHOO** and

H* are at top and fcc sites, respectively and the distance of the dissociating O�H

bond is 1.55 Å. On the other hand, the reaction of CHOOH* with OH* is essentially
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barrierless and has a larger exothermicity (�E = -0.37 eV). Similarly to the reaction

(B1), the CHOOH* and OH* species form an initial state with a hydrogen bond

between the two. After reaction, the products CHOO** and H2O
* were found to

coadsorb at top-top and top sites, respectively. The B and C Pathways share the

same last steps. The relevant energetics is given in Fig. 3.3.

Role of hydroxyl in dehydrogenation of CH
x

O
y

species.

Figure 3.4: Energetics (blue) and geometries of the CH2OOH* +OH*
��! CHOOH*

+H2O
* reaction. The energetic of the A2 reaction is also given (red) for comparison.

An important caveat is in order concerning the reaction network proposed in Fig. 3.1.

We only consider several most probably reaction pathways in this work, and our

proposal is by no means exhaustive. One such possibility not considered in our

model is the OH* assisted removal of hydrogen bonded to carbon, such as the reaction

CH2OOH*+OH*
��! CHOOH*+H2O

*. To test this possibility, we have computed

the reaction path for this process. As shown in Fig. 3.4, the barrier is 1.38 eV (without

ZPE correction), higher than the corresponding process without OH*, namely A2

which has a barrier of 0.99 eV. Our results are consistent with the earlier work of
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Gokhale et al. [14], in which it has been shown that the barrier for the CHOO** +

OH*
��! CO*

2 + H2O
* + * reaction is higher than the direct dehydrogenation of

CHOO** on Cu(111). Based on these observations, it is reasonably safe to conclude

that the involvement of OH* is unlikely to lower the barrier in such a reaction.

3.4 Discussion

Several observations are immediately in order. First, the reaction between formalde-

hyde (CH2O
*) and hydroxyl (OH*), namely A1, is strongly favored both thermo-

dynamically and kinetically over the dehydrogenation of formaldehyde on Cu(111),

which eventually leads to CO*. The barrier and exothermicity of the former (0.11

and -0.46 eV obtained in this work) are much more favorable compared to latter (0.66

and 0.26 eV reported by Lim et al. [19]). Furthermore, A1 should be able to compete

e↵ectively with desorption of formaldehyde as well, given the endothermicity of 0.06

eV for the desorption process. These results are consistent with the observed small

amount of formaldehyde in MSR and help to explain the high selectivity towards the

CO2 product in MSR. For comparison, the dehydrogenation of CH2O
* on Pd(111)

has a smaller barrier (0.22 eV) and large exothermicity (-0.67) [19], which explains

why Pd is not a selective MSR catalyst.

Second, the involvement of OH* seems to have a dramatic e↵ect in lowering the

barriers of reactions involving the cleavage of an O�H bond. For instance, the direct

removal of the hydroxyl hydrogen in COOH** (A6) has a high barrier of 1.26 eV,

which can be reduced to 0.04 eV if the hydrogen is abstracted by OH*. Similarly,

the barrier for direct dehydrogenation of CH2OOH* to CH2OO** (B1) of 1.22 eV is

reduced to 0.15 eV if OH* is involved. Such dramatic lowering of reaction barriers

have been extensively discussed in the literature for the gas-water shift reaction [14].

Recall that the barrier for the formation of OH* from the decomposition of H2O
*
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Figure 3.2: Side and top views of the initial states (IS), transition states (TS), and
final states (FS) for the elementary reactions listed in Table 3.1
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Figure 3.3: Energetics of three possible pathways initiated by the reaction between
formaldehyde (CH2O

*) and hydroxyl (OH*). The green and red lines denote path-
ways with and without the involvement of the OH* species, respectively. When a
break symbol (//) is present, an H* species is removed from the next step of the
calculation.
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is 1.15 eV, lower than both of those in the aforementioned direct dehydrogenation

reactions. Thus, it is still advantageous to proceed with OH* for these two elementary

steps. We also note that the involvement of OH* in cleaving a C�H bond in an

adsorbate is not e↵ective.

If the OH* involved reactions are considered to dominate, it follows that the

Pathway A is not competitive because of the high barrier (1.18 eV) involved in the

conversion of formic acid (HCOOH*) to carboxyl (COOH**). On the other hand,

both Pathways B and C are viable as the highest barrier is only 0.77 eV and 0.99 eV,

respectively, which are lower than that for the putative rate-limiting step, namely

the dehydrogenation of methoxyl (1.16 eV) [17]. Even when reactions with OH* are

excluded, Pathway A is still not viable because of the high barrier in the conversion of

carboxyl to carbon dioxide (A6). Under such circumstances, the cross-over pathway

(C) becomes the most favorable with the highest barrier (0.99 eV) involving the

conversion of CH2OOH* to formic acid (HCOOH*). This contrasts with a barrier of

1.22 eV in the B Pathway. Thus, Pathway C would be consistent with experimental

data on the rate-limiting step of MSR [10, 11, 25, 26]. However, it might be premature

to predict the dominant pathway for the MSR based on the energetics reported here

alone. Detailed micro kinetic modeling is required to make definitive statements on

the dominant reaction pathway.

As mentioned earlier, the newly discovered PdZn catalyst for MSR might have

the same mechanism as Cu. Indeed, it is established theoretically that the dehy-

drogenation of methoxyl (CH3O
*) is also the rate-limiting step on defect free PdZn

alloy surfaces [17, 54], although the initial O�H bond cleavages of both H2O and

CH3OH are highly activated [55, 56]. Furthermore, DFT studies have suggested that

the dehydrogenation of formaldehyde (CH2O
*) on PdZn surfaces has a high barrier,

qualitatively similar to that on Cu(111) but di↵erent from Pd(111) [19]. The di�-

culties for decomposing CH3OH to CO product on PdZn surfaces predicted by DFT
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has recently been experimentally confirmed [57]. However, no theoretical studies

have yet been reported on the reactions between the formaldehyde and hydroxyl

intermediates.

It might also be interesting to comment on the implications of our results in the

context of methanol synthesis: CO2 +3H2 ��! H2O+CH3OH, which is the reverse

of MSR and uses the same copper catalyst. A recent study [15] explored this reaction

in detail and identified a path that is very similar to the Pathway B presented here.

If we consider the reverse of the B2 reaction (CHOO** to CH2OO**), we have a

barrier of 1.46 eV and �E of +0.69 eV. These values compare well with 1.60 eV

and +0.70 eV reported by Yang et al. [15] However, the reverse of the subsequent

steps (B1 and A1) is a two step scheme in our study with a CH2OOH* intermediate

and barriers of 0.57 eV (B1 reverse) and 0.75 eV (A1 reverse), compared to their

reported single step reaction with barrier 1.60 eV. Further, no report on the reverse

of the Pathway C was discussed in their study, where we have obtained the reverse

barriers of 0.78 eV (C1), 1.02 eV (A2), and 0.75 eV (A1). Our calculations suggest

the reverse Pathway C would be favored for methanol synthesis on Cu(111).

3.5 Conclusions

Despite its importance in energy science, the methanol steam reforming (MSR) mech-

anism has not yet been fully elucidated. Experimental evidence has identified several

key intermediates, such as methoxyl (CH3O
*) and formaldehyde (CH2O

*), but their

involvements in the reaction network has not been firmly established. In this work, we

explore several pathways leading to the CO2 +H2 products initiated by the reaction

between CH2O
* and OH* on Cu(111), using a plane-wave DFT method. Our com-

putational results indicate several plausible pathways, which involves species such as

formic acid (CHOOH*), dioxomethylene (CH2OO**), and formate (CHOO**). Ener-
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getics of these pathways suggests that the one with carboxyl (COOH**) intermediate

is not viable due to high barriers. Our pathways are not only consistent with several

mechanistic proposals in the literature [26], but also provide much more microscopic

details as well as energetics. These plausible pathways involve barriers that are less

than the rate-limiting step of methoxyl dehydrogenation, thus are consistent with

experimental observations. The energetics reported here can be combined with pre-

vious DFT results to establish a kinetic model for MSR and help to map out the

complicated reaction network in this important heterogeneous catalytic process.
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[38] P. Blöchl, “Projector augmented-wave method.,” Physical review B, Condensed
matter, vol. 50, pp. 17953–17979, Dec. 1994.

[39] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector
augmented-wave method,” Physical Review B, vol. 59, no. 3, p. 1758, 1999.

[40] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,”
Physical review B, Condensed matter, vol. 13, no. 12, pp. 5188–5192, 1976.

[41] M. Methfessel and A. Paxton, “High-precision sampling for Brillouin-zone in-
tegration in metals.,” Physical review B, Condensed matter, vol. 40, pp. 3616–
3621, Aug. 1989.

[42] CRC Handbook of Chemistry and Physics. New York: CRC press, 1996.

[43] H. Jonsson, G. Mills, and K. W. Jacobsen, “Nudged elastic band method for
finding minimum energy paths of transitions,” in Classical and Quantum Dy-
namics in Condensed Phase Simulations (B. J. Berne, G. Ciccotti, and D. F.
Coker, eds.), Singapore: World Scientific, 1998.

71



Chapter 3. Reaction of formaldehyde and hydroxyl intermediates on Cu(111)

[44] G. Henkelman, B. P. Uberuaga, and H. Jonsson, “A climbing image nudged
elastic band method for finding saddle points and minimum energy paths,” The
Journal of Chemical Physics, vol. 113, no. 22, pp. 9901–9904, 2000.

[45] J.-Y. Bo, S. Zhang, and K. H. Lim, “Steam Reforming of Formaldehyde on
Cu (100) Surface: A Density Functional Study,” Catalysis Letters, vol. 129,
pp. 444–448, Jan. 2009.

[46] D. Mei, L. Xu, and G. Henkelman, “Dimer saddle point searches to determine
the reactivity of formate on Cu (111),” Journal of Catalysis, vol. 258, no. 1,
pp. 44–51, 2008.

[47] D. H. S. Ying and R. J. Madix, “Thermal desorption study of formic acid
decomposition on a clean Cu(110) surface,” Journal of Catalysis, vol. 61, no. 1,
pp. 48–56, 1980.

[48] G. Wang, Y. Morikawa, T. Matsumoto, and J. Nakamura, “Why is formate
synthesis insensitive to copper surface structures?,” The Journal of Physical
Chemistry B, vol. 110, no. 1, pp. 9–11, 2006.

[49] A. Sotiropoulos, P. K. Milligan, B. C. C. Cowie, and M. Kadodwala, “A struc-
tural study of formate on Cu(111),” Surface Science, vol. 444, pp. 52–60, Jan.
2000.

[50] M. D. Crapper, C. E. Riley, D. P. Woodru↵, A. Puschmann, and J. Haase, “De-
termination of the adsorption structure for formate on Cu(110) using SEXAFS
and NEXAFS,” Surface Science, vol. 171, no. 1, pp. 1–12, 1986.

[51] T. Fujitani, Y. Choi, M. Sano, Y. Kushida, and J. Nakamura, “Scanning tunnel-
ing microscopy study of formate species synthesized from CO2 hydrogenation
and prepared by adsorption of formic acid over Cu (111),” The Journal of Phys-
ical Chemistry B, vol. 104, no. 6, pp. 1235–1240, 2000.

[52] H. Nishimura, T. Yatsu, T. Fujitani, T. Uchijima, and J. Nakamura, “Synthesis
and decomposition of formate on a Cu (111) surface—kinetic analysis,” ”Journal
of Molecular Catalysis. A, Chemical”, vol. 155, no. 1, pp. 3–11, 2000.

[53] I. Nakamura, H. Nakano, T. Fujitani, T. Uchijima, and J. Nakamura, “Synthesis
and decomposition of formate on Cu(111) and Cu(110) surfaces: Structure sen-
sitivity,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and
Films, vol. 17, no. 4, pp. 1592–1595, 1999.

[54] Z.-X. Chen, K. H. Lim, K. M. Neyman, and N. Rösch, “E↵ect of steps on
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This chapter is based on collaborative work found in the following publication: R.

S. Johnson, A. DeLaRiva, V. Ashbacher, B. Halevi, C. J. Villanueva, G. K. Smith,

S. Lin, A. K. Datye, and H. Guo, The CO oxidation mechanism and reactivity on

PdZn alloys, Physical Chemistry Chemical Physics, vol. 15, no. 20, pp. 7768-7776,

2013. with permission from the PCCP Owner Societies. Please refer here for full

experimental details.

4.1 Introduction

The oxidation of carbon monoxide (CO) to carbon dioxide (CO2) is one of the most

studied reactions in heterogeneous catalysis. Being toxic to life and a product of

incomplete combustion of hydrocarbon fuels, CO therefore must be removed from

exhaust streams. Additionally, it is one of the simplest redox reactions, converting

two reactants to a single product, which quickly desorbs from the surface. In fact,

this reaction has even been proposed as an ideal probe for characterizing catalysts

for other heterogeneous reactions [1]. Despite its apparent simplicity, however, it

has proven to hold remarkable complexity and there are still conflicting views about

the nature of the catalyst in its most active working state [2–6]. The development

of catalysts capable of performing this exothermic reaction at room temperature

still remains a significant goal for industrial applications. These applications include

supplying clean H2 for low temperature fuel cell systems since catalysts for this

process are deactivated at low temperatures by exposure to CO. Another application

is the scrubbing of industrial gas streams and automotive exhaust [7].

The pioneering work by Ertl et al. [8] applied advanced surface science techniques

to this reaction on well-defined single crystal surfaces such as Pd(111). Their work

unambiguously identified the reaction mechanism as being Langmuir-Hinshelwood,

and uncovered the source of the observed negative reaction order with respect to CO.
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These authors observed, with photoemission electron microscopy (PEEM), CO and

O forming discrete islands on the surface, the boundaries of which being where the

reaction takes place. Interestingly, under high CO concentrations the dissociative

adsorption of O2 is blocked by CO, which has a stronger binding energy. These

observations immediately suggest a possible route to enhanced reaction rate, namely

by reducing the binding energy of CO, making the adsorption of O2 more competitive.

The addition of Zn to Pd has been shown to lower the binding energy of CO [9–12].

In fact, a significant change in the CO binding energy occurs even when submono-

layer quantities of Zn are deposited onto Pd, and the influence of Zn becomes more

pronounced as coverage is increased [9]. However, there are no reports of steady state

CO oxidation reactivity measurements on Zn modified Pd surfaces. Early studies fo-

cused on well-defined single crystals of either ZnO or Pd, which were then modified

by adding Pd or Zn respectively to make thin layers of PdZn on the surface of the

support [11, 13–16]. It was quickly realized that both the thickness of the PdZn layer

and the support underneath might play an important role in the activity of these

catalysts. Additionally, these clean, well-defined surfaces di↵er significantly and

fundamentally from the nanoparticle catalysts used in industrial catalysis. Nanopar-

ticles display both a high surface area and defects, and the latter can significantly

a↵ect the catalytic activity. Nanoscale particles of PdZn are usually synthesized by

wet-impregnation, and the influence of both particle size and Pd loading has been

characterized [17, 18]. Unfortunately, conventional supported catalysts su↵er from

poor homogeneity in phase, composition, and particle size. Since the activity of Pd

is known to change significantly even with small concentrations of Zn, the uncer-

tainty in the phase and composition of these particles poses serious problems for

investigating the role of Zn on the catalytic activity of Pd.

The PdZn alloy has multiple phases. Apart from the 1:1 � phase, there exists

an ↵ phase with the Zn mole fraction up to about 0.18 at 300K. Control of the
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homogeneity and composition in PdZn nanoparticles is quite challenging. Recently,

a new synthesis method has been reported where the metals of interest (in the form

of metal salts) are sent as an aerosol stream through a furnace [19, 20]. This method

produces bimetallic nanoparticles that are homogeneous in both phase and composi-

tion, thus facilitating the study of PdZn reactivity and the e↵ect of composition and

phase on catalytic performance without the additional complications of a support.

We have used these aerosol derived bimetallic samples to investigate whether the

reduced binding energy of CO on Zn-modified Pd leads to enhanced CO oxidation

reactivity, as summarized in Sec.4.3.1. We also report detailed experimental and

density functional theory (DFT) studies of the CO oxidation reaction on Pd, and

both the ↵ and � phases of the PdZn alloy.

4.2 Theoretical Methods

Periodic plane wave DFT calculations were performed using the PW91 functional [21]

as implemented in the Vienna Ab Initio Package (VASP [22–24]). Core electrons are

approximated with the PAW pseudopotentials [25, 26] and the plane wave basis was

truncated above 400 eV. In this work, we have used the (111) face to represent the

catalysts surfaces. The �-PdZn(111) and Pd(111) surfaces were modeled with 2x2

unit cells, 4 and 3 layers, respectively; and constructed at the DFT optimized lattice

parameters (a = b = c = 3.97 Å for Pd, a = b = 4.139 Å, c = 3.378 Å for �-

PdZn). The ↵-PdZn surfaces were modeled with a 3 ⇥ 3 unit cell, 3 layers deep.

This larger slab was chosen in order to accurately model this low zinc concentration

phase. The 1-Zn slab was comprised of 27 Pd atoms and the Zn atom in the top

layer, resulting in a slab with Zn mole fraction of 0.04 and was built at the DFT

optimized Pd lattice parameters. The 2-Zn slab was identical to the 1-Zn slab with

an additional Zn atom in the top most layer, resulting in a mole fraction of 0.07.
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Partial occupancies were determined using Methfessel-Paxton smearing [27] with a

width of 0.1 eV. k-point sampling was carried out using the method of Monkhorst

and Pack [28] with a 4 ⇥ 4 ⇥ 1 grid for Pd, �-PdZn, and ↵-PdZn. A vacuum space

of 14 Å was used in the z direction. For all surfaces the top layer was first relaxed,

and then fixed at the clean slab geometry for all further calculations. Including the

top layer in the geometry optimizations resulted in a change of binding energies less

than 0.1 eV.

Adsorption energies were calculated in the usual way. For adsorbed oxygen atoms,

the binding energy is referenced to either O(g) or 1
2O2(g). For adsorbed CO, we have

used the method developed by Abild-Pedersen and Andersson [29] to correct the well-

known intrinsic overbinding (OB) error of CO on metal surfaces in DFT calculations,

which stems from the underestimation of the energy of the 2⇡⇤ orbital of CO. The

empirical correction (in eV) is given as follows:

Ecor = 1.8� 0.0008⇥ vCO

where vCO is the CO stretching frequency in wavenumbers, determined by finite

di↵erence.

Activation energies for reactions were obtained with the climbing-image nudged

elastic band method (CI-NEB) [30, 31], with energy (10�4 eV) and force (0.05 eV/Å)

convergence criteria. All stationary points were confirmed by normal mode analysis.

4.3 Results

4.3.1 Experimental

The key experimental results are summarized in Table 4.1. Samples of phase pure

Pd metal, ↵-PdZn and �-PdZn were synthesised and test for CO oxidation activity.
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Reaction Order CO desorption TOF (185�C)

Sample Order
in CO

Order
in O2

Tdesorp

(K)
Edesorp (kJ
mol�1/eV)

s�1

Pd Metal -1 1 530 150/1.55 0.055
↵-PdZn -0.6 0.6 450 125/1.30 0.11
�-PdZn -0.4 0.6 420 120/1.24 0.075

Table 4.1: Summary of various experimental results, namely the reaction orders for
CO oxidation at 185�C , desorption temperature and desorption energy of CO, and
steady-state turnover frequencies for CO oxidation on Pd metal powders and PdZn
alloys.

It was found that the initial CO oxidation reactivity (per Pd surface atom) could

be 10 times higher on the ↵-PdZn surface and about 5 times higher on the �-PdZn

surface, compared to metallic Pd. However, the high initial activity is lost during CO

oxidation presumably due to the fact that the Zn becomes oxidized and is no longer

available. Fig. 4.1 shows how the specific activity for the PdZn ↵ and � samples

decays within the first hour, and approaches the value for Pd metal (which is shown

as a horizontal dotted line). The ↵-PdZn surface remains slightly more active than

Pd metal, even at steady state.

4.3.2 Theoretical

Adsorption

We first screened all surfaces for binding energies of O and CO at all unique binding

sites. The results are given in Tables 2 and 3, along with comparison with previous

theoretical and experimental results. These calculated adsorption energies are in

good agreement with values found by previous researchers [9, 12, 29, 33–35].
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Figure 4.1: TOF as a function of time. This plot clearly demonstrates the deacti-
vation of PdZn catalysts. Over time both drop towards the TOF of Pd metal (here
shown as black dotted line)

Pd(111)

On Pd(111), several binding sites were found for CO. The most stable one is the

hcp hollow site, which is closely followed by the fcc hollow site. At low coverages,

CO is found experimentally to adsorb at hollow sites [36], with perhaps a slight

preference to fcc [37, 38]. The adsorption energies of these two sites after the OB

correction are in good agreement with experimental value of -1.47 eV [33]. The

top site adsorption was the least stable and the bridge site is in between. Our

calculated adsorption energies shown in Table 4.2 are similar to those found in other

studies [29, 32, 34, 39]. The relatively small di↵erences between our values and

other reported values can presumably be attributed to the di↵erent functional and

pseudopotentials used. The adsorption energy is also in good agreement with the
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Surface Site Eads (OB) Theo. Eads (OB) Theo. Eads Expt.
(This work)

�-PdZn T-Pd -1.00 (-0.78) -0.9938
B-Pd2 -0.95 (-0.63)

↵-PdZn T1 -1.42 (-1.25) -1.3
(1-Zn) T2 -1.47 (-1.31) (this work)

H1 -1.99 (-1.62)
F1 -1.94 (-1.58)
B2 -1.83 (-1.51)
B3 -1.75 (-1.44)

↵-PdZn T1,1 -1.33 (-1.17)
(2-Zn) T2,1 -1.34 (-1.17)

T2,2 -1.43 (-1.26)
H1,1 -1.88 (-1.51)
F1,1 -1.90 (-1.53)
B1,1 -1.55 (-1.25)
B2,2 -1.74 (-1.42)

Pd H-hcp -1.97 (-1.55) -1.83 [32], (-1.37) [29] -1.47 [33], -1.55
(this work)

H-fcc -1.92 (-1.51) -2.07 [34], -1.85 [32],
(-1.36) [29]

T-Pd -1.41 (-1.20) -1.27 [32], (-0.98) [29]
B-Pd2 -1.79 (-1.44) (-1.26) [29]

Table 4.2: Calculated CO adsorption energies (eV) on three surfaces and comparison
with experimental and previous theoretical values (overbinding corrected values are
given in parentheses). The most favorable sites are underlined.
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value of 150 kJ/mol (1.55 eV) estimated from the desorption temperature of 530K

for CO on Pd metal powder [20, 40] (see Table 4.1).

Our DFT calculations indicated that oxygen also prefers hollow sites, either fcc

or hcp. The adsorption energies are similar for these two sites, and much larger

than that for the top site. As shown in Table 4.2, our results are similar to previous

theoretical values [32, 34]. It should be pointed out that the values listed in the

table are referenced to the gas phase oxygen atom. If molecular oxygen is used as

the reference, adsorption energies are generally reduced by 2.5eV.

�-PdZn On the (111) face of �-PdZn, CO is found to adsorb preferentially on the

Pd top site. The overbinding corrected adsorption energy of -0.78 eV is consistent

with both experimental TPD data [9, 12] and an earlier DFT value [32] reported

in the literature, as shown in Table 4.2. Overall, the binding energy is significantly

smaller than that on Pd(111), due apparently to the abundant Zn atoms nearby.

Interestingly, the recent experimental work on PdZn powders seems to suggest a

much larger binding energy for CO (-1.24 eV) [19], which is likely due to multiple re-

adsorption events in the experiment and therefore an increase in binding energy when

compared to the ideal desorption energy measured in a single turnover experiment

[41].

Oxygen, on the other hand, prefers to adsorb at hollow sites. Most stable is the

PdZn2 site, followed by the Pd2Zn site. The adsorption energies are consistent with

the previous theoretical values [32], as shown in Table 4.3.

↵-PdZn The ↵-PdZn surfaces (Zn in substitutional sites in fcc Pd) have not been

previously studied via DFT methods, and as a result a thorough investigation has

been carried out. In our 1-Zn model, the sole Zn atom replaces a Pd atom on the

(111) surface. To label the binding sites on the alpha slab we use the symbol Sd,

where S is a letter denoting the site (T for top, B for bridge, H and F for hcp and fcc
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Figure 4.2: Adsorption sites studied on the ↵-PdZn model surfaces.

hollows sites, respectively) and d indicates the relative distance from the zinc atom.

For example, T0 refers to the atop zinc site and H1 is the hcp hollow one hcp site

away from the zinc, as is shown in Fig. 4.2. The adsorption energies for several sites

are listed in Table 4.2. It was found that CO avoids the immediate vicinity of the

Zn atom in the surface. Not surprisingly, the adsorption energies are significantly

larger Based on the experimental CO desorption temperature of 450K (Table 4.1),

we estimated the desorption energy of 125 kJ/mol (1.30 eV).

Oxygen binding weakens as the sites approach the Zn atom. Comparing top sites

T0, T1 and T2; the binding energy is -2.52 eV, -3.09 eV, and -3.16 eV. A similar trend

is noted for hollow sites as well. We can also clearly see that the hcp sites are more

stable than the fcc sites. This trend is the opposite on Pd(111), where fcc sites are

more stable.

On the 2-Zn atom slab, where a slightly higher Zn concentration is modelled, there

are 17 unique binding sites, which have been investigated. The labelling scheme we
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have adopted for this slab is similar to that of the 1-Zn ↵-PdZn except with two

subscripts denoting the relative distance from each Zn atom. For example, T0,1 is

equivalent to T0 in the 1-Zn system and B1,1 is the bridge site equidistant between

the two Zn atoms and is shown in Fig. 4.2. We find that the general trend established

by the other three slabs is retained; the binding energy of CO is reduced with more

Zn, CO binds less favorably near Zn atoms and CO prefers three fold hollow sites

followed by bridge and then top sites. Oxygen binding energies are similar to the

1-Zn slab and it prefers binding to threefold hollow sites in the vicinity of the Zn

atoms. All binding energies are summarized in Table 4.2.

Reaction Barriers

The calculated reaction barriers are summarized in Table 4.4. The reaction of ad-

sorbed CO with O proceeds on all surfaces in very similar fashion. The initial state

has the oxygen in a hollow site and the CO bound to an adjacent hollow (Pd) or the

top site of Pd (↵ and �-PdZn). The initial states were chosen based on the most

favorable adsorption energies for the two species. While only one single initial state

was considered for the Pd and �-PdZn surfaces, three unique coadsorbed states were

considered for ↵-PdZn. These configurations, labeled A, B, and C, have coadsorbed

adsorption energies of -5.83, -5.70 and -6.01 eV, respectively.

The CO oxidation on the Pd(111) surface has a barrier of 0.88 eV and an exother-

micity of -0.70 eV. These values are consistent with the recent theoretical work of

Zhang and Hu [42]. The same reaction on �-PdZn(111) has a much lower barrier

(0.59 eV) and larger exothermicity (-0.90 eV). To our best knowledge, there has not

been any theoretical study of this reaction on any PdZn surfaces.

On the 1-Zn ↵-PdZn surface, the CO oxidation in the A configuration, in which

the oxygen is at the H0 site and the carbon monoxide is on T2 site, has a barrier of
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Surface Site Eads Eads
Theo. (This work) Theo.
ref. to O/ ref to 1

2O2

�-PdZn H-PdZn2 -4.85 / -2.35 -4.6538 [32]
H-Pd2Zn -4.34 / -1.84 -4.1038 [32]

↵-PdZn (1-Zn) T0 -2.52 / -0.02
(1-Zn) T1 -3.09 / -0.59

T2 -3.16 / -0.66
H0 -4.19 / -1.69
F0 -4.35 / -1.85
H1 -4.29 / -1.79
F1 -4.57 / -2.07

↵-PdZn T0,1 -2.62 / -0.12
(2-Zn) T1,0 -2.62 / -0.12

T1,1 -3.05 / -0.55
T2,2 -3.17 / -0.67
H0,1 -4.20 / -1.70
F0,1 -4.35 / -1.85
H1,0 -4.15 / -1.65
F1,0 -3.35 / -0.85
H1,1 -4.24 / -1.74
F1,1 -4.51 / -2.01
B2,2 -4.05 / -1.55

Pd H-hcp -4.41 / -1.91 -4.1338 [32]
H-fcc -4.60 / -2.10 -4.3538 [32], -4.0837 [34]
T-Pd -3.11 / -0.61 -2.6438 [32]

Table 4.3: Calculated O adsorption energies (eV, reference to O(g)) on three sur-
faces and comparison with previous theoretical values. The most favorable sites are
underlined.
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Surface Ea (Theo.) �E (Theo.) Ea Ea
This work This work (Expt.) (Theo.) [34]

Pd 0.88 -0.7 0.90 0.93

↵-PdZn (1-Zn) 0.73
A 0.75 (0.93) -0.85 (-0.67)
B 0.50 (0.81) -1.05 (-0.74)
C 0.83 (0.83) -0.67 (-0.67)

↵-PdZn (2-Zn)
A 0.34 (1.59) -2.05 (-0.67)
B 0.51 (0.78) -1.06 (-0.79)
C 0.74 (0.74) -0.82 (-0.82)

-PdZn 0.59 -0.9 0.78

Table 4.4: Calculated activation energies (Ea) and reaction energies (�E) (eV) on
three surfaces and comparison with experimental and previous theoretical values.
Values in parentheses are normalized to most stable initial state.

�-PdZn.

The addition of another Zn atom in the alpha system causes further reduction

in the barrier for the most stable of the three states studied. The C coadsorbed

configuration, in which the CO is on the T1,1 and O on F1,0 sites, has a barrier of

0.74 and exothermicity of -0.82. The other two configurations (A with CO on T1,0,

O on F0,2 and B with CO on T2,1 and O on H1,0) display low apparent barriers of

0.34 (A) and 0.51 (B) but large exothermicities of -2.05 and -1.06 respectively as a

result of the very low binding energies of their coadsorbed initial states. As a result,

the very small barrier of state A is misleading, and should be compared to the most

stable state C. When all are normalized to C, the barriers are 1.59 (A), 0.78 (B) and

0.74 (C), respectively.
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4.4 Discussion

Our calculations show that the addition of a single Zn atom on the Pd(111) surface

reduces the reaction barrier for CO oxidation by almost 10%. This is consistent with

the experimentally observed reduction of the activation energy from 86 kJ/mol (0.89

eV) on the Pd catalyst to 73 kJ/mol (0.77 eV) on ↵-PdZn. We emphasize here that

our calculated ↵-PdZn model is an approximation of the catalyst because the precise

surface composition is not known. Rodriguez [12], on the basis of the rate which

Pd bound CO decreases with increasing Zn concentration, deduced that Zn tends

to segregate to the surface. Our calculated results are indeed consistent with the

enhanced reactivity we observe on the ↵ samples.

However, this initial high activity state is not stable and the ↵-PdZn samples

showed a significant drop in activity once exposed to CO oxidation conditions. To

explain both the high initial activity and the subsequent deactivation we envision

the following two-site kinetic picture. On the ↵ samples we can expect that a large

portion of the surface behaves similarly to the Pd metal but with islands of Zn-

modified Pd sites as has been predicted theoretically [43]. These Zn-modified Pd

sites, with destabilized CO binding but essentially unchanged O binding, remain

available for O2 dissociative adsorption, preventing CO poisoning and providing a

continuous source of O. The surrounding Pd does strongly binds CO, providing a

ready source of bound CO reactants. The reduced activation energy at these sites,

together with this favorable kinetic situation, result in the initial enhanced activity.

On �-PdZn, the activation energy is even lower than on ↵, but now Zn modifies all

Pd. As a result, all sites are equal.

Unfortunately, this enhanced state is short lived, and quickly deactivates as can

be seen in Fig. 4.1. We believe that this deactivation is a result of the oxidation of

Zn to ZnO. Previous work [19, 40] has indicated that the PdZn surface is readily
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Figure 4.3: Reaction profile for all surfaces. Pd and � are compared in the top and
Pd and ↵-PdZn in the bottom trace. Gas phase CO + O + clean surface is used as
reference state. These plots highlight the competing e↵ects of Zn; destabilization of
the coadsorbed state and a reduction in the activation energy.

oxidized under CO oxidation reaction conditions, but this oxidation can be reversed

during the reductive methanol steam reforming process, which produces hydrogen.

The oxidation of Zn modifies the interaction with Pd, and the beneficial e↵ects of

Zn are likely lost. Nonetheless, even at steady state the ↵-PdZn is about two times

more reactive than Pd metal, which suggests that some of the beneficial e↵ects of Zn

are retained. Indeed, the activation energy of ↵-PdZn in the steady state is slightly

di↵erent from that of Pd, as shown in Fig. 4.1.

Given the much lower theoretical barrier for CO oxidation on the �-PdZn(111)
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intermetallic surface, one would expect that this catalyst would show the highest

reactivity. However, even in the initial transient stage, this catalyst is less active

than ↵-PdZn. The CO oxidation reactivity is determined by the coverage of CO

and the barrier for CO oxidation. We found that the coverage of CO on the �-PdZn

surface is very low, as also seen in previous work [9, 12, 40]. Rodriguez analyzed

this phenomenon [12] and reasoned that the presence of Zn, which binds CO poorly,

e↵ectively reduces the number of available Pd sites to bind CO, thereby reducing to

total amount of CO these particles are able to adsorb. This would then explain the

lower overall reactivity of the �-PdZn catalyst. Like the ↵-PdZn samples, however,

we also see a decline in activity of this catalyst during the initial 60 minutes of CO

oxidation. We believe that the same mechanism discussed above on the ↵ phase

catalysis is in operation here as well, namely, the surface Zn is oxidized during the

catalysis, which diminishes the promotional e↵ects of Zn. It is interesting to note

that the CO binding energy on PdZn (-0.78 eV) is significantly smaller than that on

Pd (-1.55 eV). Hence, as the Zn is oxidized and Pd sites are liberated, CO would

clearly prefer to adsorb on Pd if both surfaces are available, due to the higher binding

energy on Pd. Thus, the e↵ective barrier for CO oxidation would closely resemble

that on Pd, which was indeed what was observed. This is illustrated in Fig. 4.3,

which summarized the reaction profiles for all surfaces. Indeed, the experimentally

measured steady state activation energy on the �-PdZn catalyst is slightly lower than

that on metallic Pd, suggesting coexistence of Pd and PdZn sites.

4.5 Conclusions

In this Chapter, we examined the e↵ects of Zn in PdZn alloys on CO binding and re-

activity for its oxidation. On the experimental side, phase pure samples of Pd metal,

↵-PdZn and �-PdZn have been synthesized. Specific reactivities for CO oxidation
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were measured both in the initial state (after exposure to CO oxidation reaction

conditions) and at steady state. It was found that the initial CO oxidation reactivity

(per Pd surface atom) could be 10 times higher on the ↵-PdZn surface and about 5

times higher on the �-PdZn surface, compared to metallic Pd. This was attributed

to higher reactivity to a weakening of the CO bond and easier binding of oxygen

to Pd sites modified by Zn. However, the high initial activity is lost during CO

oxidation presumably due to the fact that the Zn becomes oxidized and is no longer

available. At steady state, the reactivity of the �-PdZn surfaces approaches that of

Pd metal. The ↵-PdZn surface remains slightly more active than Pd metal, even at

steady state.

To understand these experimental findings, we have calculated the most stable

adsorption sites for CO and O as well as the barriers for CO oxidation on Pd(111),

↵-PdZn where Zn is present a low concentrations on the Pd(111) surface, and �-

PdZn which is an ordered intermetallic compound. The calculated binding energies

suggest that Zn weakens the binding of CO to Pd and also lowers the barrier for

reaction on the Zn modified surfaces. The energetics of all reactions on coexisting

Pd and Zn sites under experimental conditions allows us to identify the preferred

reaction site and mechanism, which are consistent with experimental observations.

The work reported here suggests that modification of the reactivity of Pd by

added oxophilic metals such as Zn is consistent with the predictions of theory, but

in order to achieve stable high steady state activities it is important to prevent the

oxidation of the oxophilic component.
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5.1 Introduction

Using methanol as a hydrogen carrier to be reformed upstream from fuel-cells is an

exciting prospect for a next generation transportation strategy [1]. It takes advantage

of the high e�ciency of polymer-electrolyte hydrogen fuel cells and the fact that

their only exhaust is H2O. It also circumvents the inherent di�culties in dispensing,

storing and transporting hydrogen. However, using an methanol reformer upstream

of a fuel cell places strong demands on the selectivity of the catalyst; fuel cells are

rapidly poisoned by CO, a possible side product in reforming. It is thus critical that

the catalyst is optimized to produce exclusively CO2 to avoid the added complexity

of scrubbing the hydrogen stream of CO.

Methanol steam reforming,

CH3OH+H2O ��! CO2 + 3H2 (5.1)

and methanol decomposition,

CH3OH ��! CO+ 2H2 (5.2)

are closely related reactions, and both can be catalyzed by transition metal surfaces.

However, even under reforming conditions, Pd will exclusively decompose methanol

to CO and hydrogen gas.

As was illuminated by the study of MSR on copper in Chapter 3, and as noted

by previous theoretical studies [2, 3], the selectivity of MSR catalysts is governed

by the fate of the adsorbed formaldehyde (CH2O
*) intermediate. It can either

decompose to form formyl (CHO) and adsorbed hydrogen (H⇤), which then will

quickly and irreversibly dehydrogenate further to produce CO* + H*
2. Or, it can

condense with an adsorbed hydroxyl (OH*) or oxygen (O*) species to form hydrox-

ymethoxy/dioxymethalene (OCH2OH/OCH2O) respectively. These, via a series of

low barrier dehydroxylation steps, eventually produce CO2 and hydrogen gas, the
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required products of MSR. On a Pd surface, the decomposition reaction is favored

over MSR, resulting in the evolution of CO + H2 exclusively. Yet, on Cu and PdZn

surfaces, MSR is the favored reaction, with little or no CO production. Understand-

ing the electronic and molecular factors that influence the fate of formaldehyde on

these three surfaces provide powerful tools for future development of MSR cata-

lysts. Dehydrogenation of formaldehyde has been previously modeled on Cu, Pd and

PdZn surfaces [3] showing a low reaction barrier on Pd surfaces but Cu and PdZn

showed activation energies greater than the binding energy of CH2O. Later it was

calculated [2] that not only is the decomposition pathway blocked on copper but

additionally the condensation reaction is activated with respect to Pd. There are no

studies which address both reaction on these three import surfaces.

In this Chapter a detailed analysis of the adsorption of CH2O on the (111) sur-

faces on Pd, Cu, and the 50:50 �-PdZn alloy are presented, as well as the sta-

tionary points for the decomposition (CH2O
*
��! CHO* + H*) and condensation

(CH2O
* + OH*

��! OCH2OH**) reactions of formaldehyde are presented. Density

of states (DOS) are calculated for adsorbed formaldehyde and are consistent in ex-

plaining trends in binding energies within the framework of the d-band model [4, 5].

Only the reaction with CH2O
* and OH* are considered as concentrations of O* are

expected to be low under reforming conditions and reactions with O* tend to be

similar to OH* but with lower barriers [6]. It is found that on both Cu and PdZn the

condensation reaction is quite exothermic with low reaction barriers. Additionally,

the decomposition pathway is disfavored, both thermodynamically and kinetically.

This behavior is reversed for Pd, as might be expected give the various selectivities

of these three metals.
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5.2 Methods

Planewave density functional calculations were performed with the VASP code un-

der the PW91 functional. Planewave expansion was truncated at 400 eV and the

core electrons are treated with PAW type pseudopotentials. Integrations over the

Brillouin zone where performed using a 5x5x1 kpoint grid constructed by the method

of Monkhorst-Pack. The three surfaces studied (Cu(111), Pd(111) and PdZn(111))

where each was constructed from bulk structures with DFT minimized lattice pa-

rameters. Our calculated lattice parameters are reported previously [6, 7], and agree

well with other calculations.

Cu(111) and Pd(111) were modeled with 2x2x3 super cells, and PdZn(111) was

modeled with a slightly larger 4x4x3 slab because the equivalent sized slab could not

be constructed with the desired 1:1 stoichiometry and a 2x2x1 slab was found to be

too small due to interactions with adjacent images. The top most layer of each clean

slab was allowed to relax fully before being fixed for all subsequent calculations. This

common approximation has been found to have only a minor (< 0.1 eV) e↵ect on

binding energies. The ionic positions in minimizations and reaction path calculations

are all optimized until forces are less that 0.05 eV/Å. Binding energies are calculated

by Ecomplex �Eslab +Egas, where subscripts indicate the adsorbed system, the clean

slab, and the gas phase adsorbate respectively. As such, a negative value indicates

favorable binding. Reaction pathways were followed with the climbing image nudged

elastic band method [8]. Density of states (DOS) are calculated and projected upon

atomically centered spherical harmonics, allowing the resolution of d, s and p orbitals.

Since DOS calculations are more sensitive to the size of kpoint grid than are geometry

optimizations, the 7x7x1 Monkhorst-Pack grid was used for single point electronic

calculations on the various structures determined at 5x5x1.
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5.3 Results

5.3.1 Adsorption of CH2O

Formaldehyde exhibits both a weakly bound physisorbed and more tightly bound

chemisorbed state. The binding energies and geometries are presented in Table 5.1.

The geometry of CH2O remains similar to its gas phase counterpart in the ph-

ysisorbed state, which is characterized by binding energies on the order of 0.1 eV

and shows no site preference on the surface. Physisorption is very weak interaction;

there is very little coupling between the molecular orbitals and the surface d-band.

This can be observed in the sp-band DOS of physisorbed CH2O in Figure 5.1, where

the molecular orbitals have only been broadened and shifted down in energy, consis-

tent with interaction only with the delocalized s-band of the surface. The molecular

geometry of CH2O is only slightly perturbed from that in gas phase.

The chemisorbed state, however, is bent towards a trigonal-pyramidal geometry

with the hydrogen atoms projecting up from the surface and O atom down on all

surfaces, but most so on Pd. The oxygen atom prefers binding at a bridge site and

carbon on an adjacent top site such that the CH2O straddles a hollow site. This

top-bridge configuration is unique on Pd and Cu, but on PdZn the carbon atom

prefers the top site on a Pd atom and oxygen at a two zinc atom bridge site. This

is typical of the PdZn surface, where it is observed that carbon and hydrogen atoms

tend to favor coordination with Pd oxygen prefers to maximize its interactions with

Zn. It should be noted that both top-top [3, 9] and top-bridge [2, 6] configurations

have been reported as the most stable configuration on all three these surfaces. All

reported binding energies are consistent with each other within experimental error,

and this reflects the fact that the shallow binding potential of CH2O to the surface

does not show a strong binding site preference.
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Surface BE (eV) O-Surf (Å) C-Surf (Å) C�O (Å) C�H (Å)

Pd(111) -0.10, (-0.66) 1.75, (3.04) 1.97, (3.03) 1.33, (1.22) 1.10, (1.12)
Cu(111) -0.06, (-0.06) 1.68, (3.35) 2.04, (3.22) 1.33, (1.22) 1.10, (1.12)

PdZn(111) -0.06, (-0.15) 1.81, (2.80) 1.97, (3.12) 1.32, (1.22) 1.10, (1.11)
CH2O(g) 1.21 1.12

Table 5.1: Binding energy and geometric parameters of chem- and physisorbed CH2O
on Cu, Pd and PdZn surfaces. Chemisorbed values are in parenthesis. Also included
are gas phase CH2O bond lengths for comparison

CH
2

O Adsorption DOS

According to the d-band model, molecular adsorption is a result of coupling between

molecular orbitals and the metal’s d and s-bands. Coupling with the broad s-band

results in a down shift and broadening of the molecular orbitals and this interaction

does not change from metal to metal. The d-band however, is discrete enough that

interaction with molecular orbitals results in a splitting into broadened bands or

bonding and anti-bonding molecule-surface orbitals. The degree of the splitting will

depend on the energy di↵erence between the d-band center and the s-band down-

shifted MO energy, and the degree of coupling between the d-band and MO.

Upon weak physisorption, both the HOMO and LUMO of CH2O shifted down in

energy by about 1.5 eV. The HOMO, which is anti-bonding in the C�
�

O and bonding

in C�H is not significantly modified in shape from the gas phase, indicating a weak

coupling with the surface states. The LUMO is modified more: it is broadened but

there is not significant splitting into distinct bonding/anti-bonding states. Between

the di↵erent surfaces, we again see a manifestation of the similarity of Cu with PdZn

and in contrast to Pd. Neither HOMO or LUMO are shifted as far down in Pd as

Cu and PdZn, consistent with the higher d-band center in Pd.

Chemisorption causes a significant distortion in the molecular orbitals, which
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Figure 5.1: Total s+p projected DOS of CH2O in gas phase, at its physisorbed
geometry and upon full chemisorption on the (111) surfaces of PdZn, Cu and Pd.
The clean surface d-band is also plotted as unshaded dashed line. Di↵erences in
adsorption energies can be interpreted as the di↵erent occupation of anti-bonding
orbitals produced first upon weak coupling (red line) and then upon full coupling
with the d-band (blue lines).

might be surprising given the relatively small binding energy of formaldehyde to these

surfaces. The small binding energy might be incorrectly interpreted as indication

of a weak interaction with the surface, but as evidenced from the DOS, adsorbed

formaldehyde is very di↵erent (electronically) from gas phase formaldehyde. Low

binding energies, particularly on Cu and PdZn, arise because both bonding and anti-

bonding adsorbate-surface orbitals fall below the Fermi level, and thus contribute no

net bonding. The higher d-band center of Pd, however, pushes some small population

of anti-bonding orbitals above the Fermi level, depopulating these most energetically
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unfavorable and therefore most anti-bonding states. The result is slightly more

occupied bonding orbitals than anti-bonding on Pd surface, and stronger binding.

5.3.2 Reactions

5.3.3 CH2O
*
���! CHO* +H*

The dehydrogenation reaction is similar on all three metals. Starting from the

chemisorbed geometry as the IS, the plane of CH2O tilts to position the dissociating

hydrogen towards the nearest adjacent 3-fold hollow site in the transition state. The

C-H bond breaks, and the CHO moiety moves to its preferred o↵-hollow binding site

in the final state, in which carbon points down and the O and H atoms up, and the

H* atom is fully in its hollow site. On PdZn, the most stable FS corresponds to that

where both CHO* and H* are in the preferred Pd2Zn hollow site. These reactions are

illustrated in Figure 5.2. On Cu and PdZn, CHO prefers a more a-top interaction

with Cu and Pd respectively, and is pulled slightly out of the hollow site. On Pd, the

C atom is bridging two Pd atoms, and its O is a-top another. The binding energy

of this Pd FS is also the strongest of the three metals [3].

The reaction is favored on the Pd surface both with the lowest relative transition

state (0.5 eV) and because it is significantly exothermic (-0.6 eV). PdZn and Cu both

have barriers 0.3 eV greater and are endothermic by 0.5 and 0.4 eV respectively.

These barriers are far larger than the binding energy of CH2O and as such would be

expected to desorb or defuse away rather than decompose. The barrier on Pd(111) is

also high, however it is compensated by the strong binging energy to this surface. As

a result, once CH2O is formed, decomposition is a competitive pathway to desorption.

These results for the decomposition of CH2O are consistent with previously published

results within the variation of functionals and surface models used.
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Figure 5.2: Initial, transition and final states (top, middle and bottom respectively)
for CH2O

*
��! CHO* +H* on PdZn (left) , Cu (center) and Pd (right) slabs.

5.3.4 CH2O
* +OH*

���! OCH2OH**

The condensation reaction is also similar on the three surfaces studied, however

slight variation in the initial coadsorbed state and transition state geometries are

Figure 5.3: Geometry of Initial, transition and final states (top, middle and bottom
respectively) for CH2O

* + OH*
��! OCH2OH** on PdZn (left) , Cu (center) and

Pd (right) slabs.
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CH2O OH

Surface O�M C�M C�O C�H O-M O�H CCH2O�OOH

Pd(111) 2.26, 2.29 2.12 1.33 1.10, 1.10 2.16, 2.16 0.98 3.14
Cu(111) 2.15, 2.15 2.13 1.33 1.10, 1.10 2.06, 2.06, 2.03 0.97 3.78
PdZn(111) 2.39 (Zn), 2.39 (Zn) 2.31 (Pd) 1.29 1.10, 1.10 2.10 (Zn), 2.10 (Zn) 0.98 3.22

Table 5.2: Geometric parameters of coadsorbed CH2O
* + OH* on (111) surfaces of

Pd, Cu and PdZn in Å.

Reaction Surface E‡ (Lit. Refs) �E

CH2O
*
��! CHO* +H* Pd(111) 0.53 (0.36 [2], 0.39 [3], 0.53 [10]) -0.58 (-0.84 [2], -0.58 [3], 0.75 [10])

Cu(111) 0.80 (0.76 [2], 0.66 [6], 0.83 [3]) 0.37 (0.24 [2], 0.56 [11], 0.37 [3])
PdZn(111) 0.76 (0.83 [12], 0.81 [3]) 0.49 (-0.19 [12], -0.04 [3])

CH2O
* +OH*

��! OCH2OH** Pd(111) 0.45 (0.58 [2]) -0.32 (-0.18 [2])
Cu(111) 0.11(0.18 [2], 0.11 [6]) -0.73 (-0.42 [2], -0.46 [6])
PdZn(111) 0.02 (0.16 [13]) -0.65 (-0.34 [13])

Table 5.3: Transition state and reaction energies of CH2O
*
��! CHO* + H* and

CH2O
* +OH*

��! OCH2OH** on Cu(111), Pd(111) and PdZn(111) in eV

collected in Tables ?? and 5.2. All initial states where constructed to be the most

stable configurations in which OH* is positioned to attack the C atom from the

nearest stable 3-fold hollow site. The final states where constructed such that the

OCH2OH** is bound to the hollow site that CH2O initially straddled in it’s top-bridge

configuration. The IS and FS structures as well as TS structures are illustrated in

Figure 5.3. Again, e↵orts were made to locate the binding configurations which

maximize Pd interaction with C and H atoms, and Zn with O, which maximize the

binding energies of adsorbates to the surface.

On copper, the reaction passes through an early transition state in which carbon

atom lifts slightly as it moves to atop position, and the O of CH2O remains in the

hollow. OH moves into the bridge site, changing the C�OH bond from 3.78Å in the

IS to 3.30 at the TS. The reaction continues as carbon further rises, OH reorients to

lay parallel to the surface and the C�OH distance shortens to 1.42Å in the FS. On

PdZn, the TS is also very early, and marked by a lifting of formaldehyde from the
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CH2O OH

Surface O�M C�M C�O C�H O�M O�H CCH2O�OOH

Pd(111) 2.23, 3.05 2.92, 2.91 1.25 1.11, 1.10 2.38, 2.07 0.98 2.85
Cu(111) 2.40, 2.40 2.43 1.27 1.11, 1.10 2.02, 2.02 0.98 3.30
PdZn(111) 3.28, 3.57 3.75 1.22 1.12, 1.12 2.05 (Zn), 2.06(Zn), 2.5 (Pd) 0.98 3.73

Table 5.4: Geometries of CH2O
*+OH*

��! OCH2OH** transition state on Pd(111),
Cu(111), and PdZn(111) in Å

surface as in Cu. On Pd, however, the TS is later (CCH2O�OOH bond length = 2.85Å),

and formaldehyde remains more tightly bound to the surface than Cu or PdZn. In

fact, rather than move on top of the Pd atom, CH2O shifts to a bridge site, tilting

slightly as the O of CH2O moves to bridge also, allowing a more side-on attach than

on Cu and PdZn. The non ZPE-corrected barriers reaction energies are summarized

in Table 5.3 and Figure 5.4. These results overestimate the exothermicity compared

to previous results but are consistent with their trends. These di↵erences are likely

due to the lack of ZPE corrections in this work.

The reaction energies and barriers for condensation follow the opposite trend as

those for the dehydrogenation reaction. The reactions are exothermic for all three

surfaces, but more so for Cu and PdZn by ⇠ 0.4eV. The transition state energy is

significantly higher for Pd however. The non-ZPE corrected values presented here

are consistently lower than the ZPE corrected values in previous work. However, the

trend is; depending on the surface in question, which di↵er primarily in their d-band

electronic structure, both the point at which decomposition becomes unfavorable

and when condensation becomes favorable happens in between that of palladium

and copper and their isoelectric analogs.
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5.4 Discussion

The various reactions studied here are summarized in Figure 5.4. We can see the

similarity between Cu and PdZn, and the source of the favored product on all three

surfaces. The similar reactivity between the copper and PdZn surfaces s. The 50:50

alloy between Pd and Zn is isoelectric with Copper (Zn carries one more electron

than Cu and Pd one electron less), and further the band structures are very similar

as can be see in the d-band plots of the clean surfaces found in Figure 5.1. Pd’s d-

band ends just at the Fermi level, with a small amount tailing above, in contrast to

PdZn and Cu, which both terminate about 1 eV below the Fermi level. The high d-

band center on Pd is responsible for the tighter binding energy, as the surface-CH2O

anti-bonding orbitals are less occupied than those for Cu/PdZn.

The tight binding of formaldehyde to the the Pd(111) surface is responsible for

the exclusive selectivity of this surface towards CO; the reaction barrier to decom-

position is lower that for desorption. This situation is not true on the Cu and PdZn

surfaces, where very weak binding energies far outcompete the barrier to decompo-

sition. This relative barrier heights for decomposition on the three surfaces can be

rationalized with the BEP relationship. Stabilization of the IS on Pd will shift the

CH2O vibrational well down in energy, and in turn the crossing point between the

IS well and the FS well is reduced as well.

In the condensation reaction, the reactivity trends are reversed. Here the barrier

on Pd becomes competitive with the adsorption energy, and desorption becomes more

likely. Likewise, barriers on Cu/PdZn surfaces are low enough that they become as

likely as desorption. The fact that CH2O does have such a low binding energy on

these surfaces, even compared to the very low barriers to react with adsorbed OH, is

consistent with the observation of small traces of CH2O in MSR products on these

two catalysts. Again, these reactions follow the BEP relationship but it is not due to
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Figure 5.4: Summary of the reaction energies for condensation and dehydrogenation
of formaldehyde on the three surfaces studied here.

the stabilization of the reactants as it is in decomposition, as this would lead to the

expectation that the barrier on Pd would be the lowest. Rather, it is stabilization of

the product on Cu and PdZn over that on Pd, a result of the di↵erence in OCH2OH**

adsorption energies [2, 6, 13].

Two possible reactions of formaldehyde have been investigated on three impor-

tant catalytic surfaces; dehydrogenation and condensation with OH. There is evi-

dence that the overall selectivity of an MSR catalyst is dependent upon the relative

rates of these two reactions. It is found that on the low d-band center surfaces Cu

and PdZn, condensation is favored and on the high d-band Pd surface, dehydro-

genation is preferred. This suggests a region of d-band energies which can influence

the selectivity of this key methanol reforming intermediate. Furthermore, it appears
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that PdZn is an intermediary between these two surfaces, as evidenced by the trends

in reactivity. There may be other elementary reaction steps along the MSR pathway

which take advantage the Pd-like qualities of PdZn, and other, such as the fate of

CH2O
*, which are favored by the Cu-like electronic structure.
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This chapter is based in part on the following collaborative work currently under

review under the title: Low Temperature CO Oxidation Catalyzed by Regenerable

Atomically Dispersed Palladium on Alumina, Eric Peterson, Andrew DeLaRiva, Sen

Lin, Ryan Johnson, Hua Guo, Je↵rey Miller, Ja Hun Kwak, Charles Peden, Boris

Kiefer, Lawrence Allard, Fabio Ribeiro, Abhaya Datye. Please refer to this reference

for full experimental details.

6.1 Introduction

In heterogeneous catalysis, only the surface of the material is catalytically active,

so increasing the surface area by decreasing the particle size will correspondingly

increase the activity of that material. As a result, chemists working in this field have

been working with nano particles long before development of the spectroscopic and

synthetic tools used today to create and characterize nanostructures. The catalysts

used currently to scrub pollutants from combustion engines are composed of small

(⇠ 10 � 100 nm) metallic particles deposited on inert but high surface area oxides

such as zeolites, alumina (Al2O3) or cerium oxide (CeO2). Despite the small size of

these clusters, there still remain metal atoms inside the particle which are unable to

do catalysis, and in this sense wasted. It is reasonable to try to develop catalysts

which make use of every metal atom. Towards this end, a number of catalysts

have been developed recently that consist of single isolated metal atoms deposited

on a supporting material [1–5]. There are, however, no reports of the stabilization

of atomically dispersed Pd at elevated temperatures, such as those encountered in

automotive catalysts. Increasing the atomic e�ciency of catalysts is particularly

important for automobile catalytic converters which use expensive Pd, Pt and Rh.

These systems are of interest beyond simply reducing material cost. The geomet-

ric and electronic features of supported but isolated metal atoms are quite di↵erent
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from the surfaces of clean metals slabs or small particles, and can give rise to unique

reaction mechanisms. This could lead to enhanced activity, an important goal for

automotive catalysts, which must reach an operating temperature of around 200�C

before active, as the strong binding energy of CO to these metals active sites are

blocked. Lowering the temperature at which these catalysts become active is critical

as new engine designs seek e�ciency by reducing wasted heat which is subsequently

used to activate the catalyst.

In the following, theoretical studies were performed to develop a model for the

active site and possible mechanism of CO oxidation for a novel catalyst composed of

atomically dispersed Pd on �-alumina developed and characterized by experimental

collaborators.

6.2 Methods

To corroborate the experimental results, plane-wave density functional theory (DFT)

calculations have been performed using the Vienna ab initio simulation package

(VASP) [6–8] with the gradient-corrected PW91 exchange-correction functional [9].

For valence electrons, a plane-wave basis set was employed with an energy cut-o↵

of 400 eV, while the ionic cores were described with the projector augmented-wave

(PAW) method [10, 11]. A 21 unit cell (11.178.41 Å) of the �-Al2O3(100) surface [12]

with penta-coordinated Al+3 sites exposed, was simulated using a slab supercell ap-

proach with periodic boundary conditions. A 2x2x1 Monkhorst-Pack k-point grid [13]

was adopted to sample the Brillouin zone, which was found to be converged. This

model consists of eight atomic layers with the top four atomic layers relaxed in all

calculations. A vacuum spacing of 15 Å was employed to avoid interactions between

adsorbates and slab images in the z direction. Geometries were optimized until the

maximum force on any ion is less than 0.05 eV/Å. Transition states were calculated
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using the CINEB methodology [14, 15]. Bader analysis was performed using the grid

based algorithm of Henkelman [16]. Our model for Pd-doped �-alumina involves the

(100) surface of Al2O3 with Pd replacing a surface four-coordinate Al.

6.3 Results

6.3.1 Experimental Results

A series of catalysts with a low ( 0.5 wt%) Pd loading were prepared. Operando X-ray

absorption spectroscopy (XAS) studies of these catalysts demonstrate the presence

of catalytically active atomically dispersed ionic Pd in these systems. Lanthanum

doping was generally found to stabilize this active site, however the role of La has

been neglected in this theoretical work. The Pd-O first shell coordination number

implies a 4-coordinate square planar geometry which drops towards 3-coordinate

under CO oxidation and fully recover upon switching to oxidizing conditions.

The light-o↵ curves (Figure 6.1) were obtained by monitoring CO2 formation as

the catalyst was ramped from room temperature to 300 �C at a rate of 2 �C/min and

show onset of catalytic activity at 40�C, indicating that the ionic Pd species are not

poisoned by CO. For metallic Pd, CO oxidation is known to be positive first-order

with respect to O2, and negative first-order with respect to CO. [17] The reaction

order of these catalysts in CO is significantly reduced towards zero, suggesting a

reaction mechanism that is di↵erent from that on metallic Pd. Furthermore, turn

over frequencies are found to be greater and activation energy considerably lower

than on metallic Pd. Low positive order with respect to O2 is consistent with a Mars

van Krevelen mechanism, with the oxygen being derived from the surface, rather

than the gas phase.
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Figure 6.1: CO-oxidation light-o↵ curves for 0.5 wt.% Pd on alumina and La-alumina.
The first run was performed after calcining the sample, in situ, at 700 �C for 30
minutes. After the completion of the first run (Tmax = 300 �C), the sample was cooled
to room temperature in the reaction mixture and the second run was performed.

6.3.2 DFT Results

Pd doped Al
2

O
3

The �-alumina structure is di�cult to study experimentally due to Al vacancies and

poor crystallinity, but has been considered to be a defective spinel structure [18].

Recently, however, a series of theoretical studies [19, 20] have proposed a non-spinel

structure which is energetically more stable and more reflective of experimental data.

Additionally, this structural model captures the essence of the �-alumina structure

in a smaller unit cell than the spinel structure making it more practical for DFT

calculations, and hence was used in these studies.

Both the (100) and (110) surfaces of �-Al2O3 were investigated for construction of

active sites, as they are expected to be the dominant surfaces comprising roughly 20%

and 75% of the surface of alumina particles, respectively [12]. Although these surfaces
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Figure 6.2: The four possible Al atoms which can be replaced with Pd. The unit
call is represented by the box on the left.

are expected to have considerable hydroxyl coverage, the 700�C pretreatment of that

these catalysts must undergo is expected to remove most if not all hydroxyls, and

therefore we consider only hydroxyl free surfaces. Evidence that Pd was coordinated

to four oxygen atoms in a square planar structure, as provided from XAS, guided the

search for reasonable Al+3 vacancy-defect sites that could provide this geometry if Pd

were to occupy the defect. Such defects are expected in both the defective spinel and

the non-spinel models proposed for the �-alumina structure. On the (110) surface,

no such sites were found. On (100), however there are four such possible sites [21],

labeled A-D in Figure 6.2 and all further work focused on the (100) surface.

Although the the formation of these Al vacancy-defects are calculated to be highly

unfavorable for all four Al atoms, Site A has the defect formation energy by roughly

an electron volt implying that it might be present in higher populations than at

other sites. Furthermore, the formation energy of incorporating the Pd atom into

the defect is the most exothermic for site A. While Sites A and B both showed square-

planar geometry with four equivalent Pd�O bond lengths, Site C had one uniquely
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Figure 6.3: Overlay of relaxed and unrelaxed (100) surfaces with a Pd atom in an Al
vacancy site. Atom color: O-relaxed (yellow), O-unrelaxed (red), Al-relaxed (light
blue), Al-unrelaxed (grey), Pd (dark blue).

long Pd�O bond and in Site D the Pd atom relaxed down below the surface to

coordinate with two oxygen atoms in the second layer. On the basis that Site A

defects are less unstable and the PdO4 moiety formed here is the most stable and

satisfies experimental geometrical evidence this site was chosen as the model catalyst.

The optimized geometry of the Pd@Al2O3 system features the Pd atom coordi-

nating with four nearby oxygen atoms, forming a planar geometry. The distances of

Pd-O are computed to be 2.11, 2.11, 2.13 and 2.13 Å, which are consistent with the

experimental value 2.04 Å. There is a fifth, apical oxygen beneath Pd, with a Pd-O

distance of 2.23 Å, which indicates a much weaker interaction. Due to di↵erences

in size and electronic structure, the Pd perturbs the surface somewhat, particularly

in its vicinity, as can be seen in Figure 6.3. For example, the shifts for the four

oxygen atoms coordinated to Pd are found to be +0.23, +0.23, -0.06, -0.06 Å in

the z-direction. The Bader charge [22] of the Pd atom is (+1.04e), indicating sig-

nificant electron transfer from the Pd atom to the surrounding oxygen atoms. The

positively charged Pd atom might be responsible for the observed catalytic activity

of the Pd@Al2O3 catalyst.

116



Chapter 6. Atomically dispersed Pd on Al2O3

Adsorption

CO: The carbon monoxide is found to bind atop on the tetra-coordinated Pd atom

as illustrated in Figure 6.4 with an adsorption energy of -0.72 eV, which is much

smaller than that (-1.97 eV) on Pd(111). The C-O bond length and the Pd�C

distance are found to be 1.15 and 1.90 Å, respectively. The angle of O�C�Pd is

174.7�. It should be noted that, after adsorption, the distances between Pd and its

surrounding oxygen atoms changed to 2.34, 2.09, 2.37 and 2.11 Å, consistent with

experimental results that, during the reaction, the coordination is found to drop to 3

or less. We have also considered the adsorption of CO on Pd in the case of O2 filling

the oxygen vacancy, and the adsorption energy becomes -0.33 eV. The adsorbed CO

has a slightly elongated bond length, indicating weakening of the bond. The C�Pd

distance is 1.93 Å and the O�C�Pd angle is 170.4�. The distance between C and

the upper O (denoted as Olat) atom of the adsorbed O2 is 2.64 Å, well positioned for

reaction. The Pd�O distances are 2.36, 2.25, 2.06 and 2.47 Å when CO is adsorbed.

When CO adsorbs on the top of a Pd atom, the frequency of CO is calculated

to be 2105 cm�1, which agrees very well with the experimental observation (2110

cm�1) [23]. This frequency changes to 2078 cm�1 after an oxygen molecule fills the

vacancy. These frequencies are consistent with the elongation of the CO bond length

from ⇡ back-bonding from the metal d-orbitals to the ⇡⇤ CO orbital.

CO
2

: The adsorption energy for CO2 on Pd is very small ( �0.03 ⇠ �0.05 eV),

indicating it is readily desorbed from the catalyst. The distance between C and Pd

is typically larger than 3.00 Å.

O
2

: The adsorption energy of the O2 molecule in the oxygen vacancy, created

after CO reacts with surface O, is -2.25 eV and can be seen in Figure 6.4. The

distances between Pd and its surrounding three lattice oxygen atoms are 2.15, 2.10

and 2.36 Å. The distances of Ogas�Oair and Ogas�Pd are found to be 1.45 and 1.93
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Figure 6.4: Adsorption of CO, CO2 and O2 on the Pd active site. The formation of
CO2 produces an oxygen vacancy, which is filled with an O2 molecule.

Å, respectively, which indicates that molecular oxygen, although not disassociated,

is activated upon binding to this site. The angle of Pd�O�O is calculated to be

110.8�.

Reaction Mechanism

A reaction mechanism is proposed based on the DFT calculations as displayed in

Figure 6.5, where the energetics are also shown. In this putative mechanism, the

catalytic cycle is initiated by the adsorption of CO onto the Pd, which then reacts

with a lattice oxygen (Olat) coordinated with Pd. After overcoming an activation

barrier of 0.26 eV, an intermediate (iii) was found with �E = -0.46 eV. At the

transition state, the C�O bond length and the Olat distance are computed to be

1.16 and 1.82 Å, respectively. Several steps are needed to eventually produce CO2,

which promptly desorbs removing Olat in the process (iv). The second half of the

catalytic cycle starts with the newly formed oxygen vacancy from the first step, in

which now Pd is coordinated by three lattice oxygen atoms with distances of 2.15,

2.27, and 2.49 Å. The adsorption of an O2 (labeled O2gas or Ogas herein) molecule

at the vacancy is highly exothermic, with its bond length elongated from 1.23 Å
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Figure 6.5: Proposed reaction mechanism for CO oxidation on isolated Pd on the
�-alumina(100) surface.

in the isolated molecule to 1.45 Å. This is followed by the adsorption of CO on Pd,

which promptly reacts with the pre-adsorbed O2 gas nearby. This step has an energy

barrier of 0.27 eV and the exothermicity is found to be -3.66 eV. At the transition

state, the C�O and the C�Ogas bond lengths are calculated to be 1.16 and 1.94 Å,

respectively. By releasing the CO2 product, the Pd recovers its tetra-coordinated

state on the �-Al2O3(100) surface.
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Bader Charge Analysis

Bader charge analysis was performed on the PdO4 and PdO3 active site to determine

where the charge is distributed upon formation of the O vacancy. In a formal charge

picture, the initial 10 electron O2– species is lost as a neutral 8 e� oxygen atom in

CO2, leaving 2e behind to be accounted for. According to the Bader charges, the

oxygen atoms in the PdO4 active site are not formally O2– but closer to O1.5� (-1.5,

-1.4, -1.4 and -1.4 specifically), as might be expected in the coordinately-unsaturated

surface, a notable departure from an O2– formal charge. Taking the total charge on

the Pd and adjacent O atoms before and after the defect formation the Bader values

indicate a 0.2e di↵erence rather than the 2e predicted from formal charges. This

is a result of a reorganization of partial charges among the remaining atoms in the

active site. Pd is reduced by 0.6e, and the remaining oxygen atoms bound to Pd

are collectively reduced by 0.8e. The remaining 0.2e is then distributed though the

9 nearest Al neighbors coordinated to the oxygen atoms in the active site. Although

the Al in Al2O3 is typically not considered to be a reducible moiety, we find that

one Al bound to two Pd coordinating oxygen atoms in is reduced by 0.17e. The

remaining 0.03e is distributed across the remaining adjacent Al atoms. In short,

the charge balance for formation of the defect state is achieved as partial charges

are distributed throughout the remaining structure. As this analysis shows, it is not

appropriate to assign formal charges in this system, as it is for homogeneous analogs.

The extended nature of the support allows far more flexibility in distributing partial

charges than in the case of relatively small and isolated homogenous catalysts.

6.3.3 Conclusions

In this work a DFT model for isolated single-atom sites of Pd is developed to under-

stand experimental results which demonstrate that �-alumina supported atomically
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dispersed Pd show exceptional activity for CO oxidation at low temperature. This

model of Pd atoms stabilized in Al vacancy defects on the (100) surface is consistent

with the XAS observations that Pd is coordinated to 4 oxygen atoms in a square-

planar geometry. These Pd atoms, being ionic, behave distinctly from that of metallic

Pd, which is poisoned by CO at low temperatures. The ionic form of Pd is not poi-

soned by adsorbed CO since CO is bound less strongly, consistent with our DFT

model and the observed positive order in CO oxidation kinetics. Furthermore, the

oxygen atoms coordinating the Pd are more labile than in typical alumina surfaces,

allowing them to participate in oxidation reactions, consistent with an experimental

reaction order with oxygen near zero. At steady-state, the active site could be viewed

as two adjacent binding sites: one which immobilizes and slightly activates CO and

one that binds and slightly activates molecular oxygen for two sequential oxidation

reactions. This proposed catalytic mechanism is consistent with the unexpected low

temperature reactivity for the isolated Pd species, whoos calculated barrier (0.27

eV) is similar to the apparent activation energy measured experimentally. Devel-

opment of atomically dispersed transition metals on high surface area supports is

an important step towards more cost-e↵ective catalysts and could provide novel and

important mechanistic pathways.
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This chapter is based on collaborative work originally found in part in the follow-

ing publication: S. G. Ard, J. J. Melko, V. G. Ushakov, R. Johnson, J. A. Fournier,

N. S. Shuman, H. Guo, J. Troe, and A. A. Viggiano, Activation of Methane by FeO +:

Determining Reaction Pathways Through Temperature Dependent Kinetics and Sta-

tistical Modeling, The Journal of Physical Chemistry A, vol. 118, no. 11, pp. 2029-

2039, Mar. 2014. Copyright 2014 American Chemical Society. H2 work is based in

part on the work: Further Insight into the Reaction FeO++H2 ��! Fe++H2O: Tem-

perature Dependent Kinetics, Isotope E↵ects, and Statistical Modeling, Ard, Shaun;

Melko, Joshua; Martinez, Oscar; Ushakov, Vladimir; Li, Anyang; Johnson, Ryan;

Shuman, Nicholas; Guo, Hua; Troe, Juergen; Viggiano, Albert, currently under re-

view. Please refer to these for full experimental and kinetic model details.

7.1 Introduction

The iron oxide cation (FeO+) is capable of reacting with both methane or hydrogen

to form methanol or water plus an iron cation, albeit with surprising ine�ciency:

FeO+(6⌃+) + CH4 ��! Fe(6D) + CH3OH �H�
r = 35.5± 6kJ/mol

��! FeOH+ + CH3 �H�
r = 1.4± 15kJ/mol

(7.1)

FeO+(6⌃+) + H2 ��! Fe+(6D) + H2O �H�
r = �154± 6kJ/mol

��! Fe+(4F ) + H2O �H�
r = �139± 6kJ/mol

��! FeOH+ +H �H�
r = 0± 16kJ/mol

(7.2)

Activation of the CH bond in methane is highly desirable in large part due to

methanes abundance and inertness (two deeply interrelated characteristics). Accord-

ing to the EIS’s 2013 summary of natural gas reserves [1] the US has over 300,000
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Figure 7.1: Generic potential energy surface for the FeO+ + CH4 and H2 reactions.

billion cubic feet of natural gas on reserve, which is primarily composed of methane.

Unfortunately, being non-polar, dipole free with negligible electronegativity, and pos-

sessing a large homo-lumo gap, is quite resistant to typical acid/base or redox based

synthetic approaches. As a result, this plentiful and promising carbon feedstock re-

mains underutilized. A great deal of research has focused on both finding cheap and

e�cient catalysts for the direct conversion of methane to methanol [2–6].

The reaction between iron oxide cation and molecular hydrogen [7, 8] is one of

the simplest examples of bond activation by a transition metal oxide cation [9–11].

As such it provides a nice system for investigating mechanistic details of transition

metal catalysis. Despite its deceptive simplicity, it proved to illustrate rich electronic

behavior and drove development of Two-State Reactivity (TSR) [12–14].

These two reactions display qualitatively similar and intriguing features as il-

lustrated generically in Figure 7.1. Geometries of the stationary points show that

the reactions proceed by first forming pre-reaction complexes in which the reactant

molecule associates with the Fe atom. Proton transfer from from either the Fe bound
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CH4 or H2 to the oxygen atom constitutes the highest TS along both potentials. Both

reactions conclude with migration of the remaining reactant to the oxygen atom and

then through disassociation to Fe+ and the appropriate product.

As both reactions are exothermic and spin allowed (both reactant and product

have sextet multiplicity derived from the FeO+ and Fe+ sextet ground state and

closed shell reactants and products), what should be a very e�cient reactions proceed

at less than 9% for CH4 and 1% for H2. Also, both reaction rates are negatively

dependent on temperature (k ⇠ T�1), often an indication of a rate determining

barrier which is pulled bellow the reactant energy by stable prereaction complexes.

This behavior can be explained if the reactions do not proceed along a single spin

surface, but rather cross to the quartet surface in order to circumventing large sextet

barriers. This is surprising in the context of typical organic reactions, which are

usually constrained to the ground state spin surface. When transition metals such as

Fe are involved in a reaction, there is su�cient spin-orbit coupling between the nearly

degenerate excited spin states that crossing becomes possible. TSR has been found

to be applicable to many organometallic systems including enzymatic reactions. [12,

13, 15–26]

A survey of the numerous potential energy surfaces, both in the literature and

generated in this work show significant disparity and few identify a negative barrier

implied by the negative temperature dependence. Unfortunately, simulations of the

reactivity based on the ab initio energetics fail to reproduce the observed magnitude

and temperature dependence of the rate constants, suggesting significant uncertain-

ties in the characterization of the transition state region. This is particularly an-

noying because the range of uncertainty for these barriers can changes the sign of

the barrier. We surprisingly conclude that chemically accurate energetics for these

relatively small systems are still are beyond the capabilities of the state-of-the-art

computational chemistry.
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Figure 7.2: The structures for all stationary states in Figure 7.1 for CH4 (top) and
H2 (bottom).

Despite the previous large body of work on these reactions, several fundamen-

tal questions about the system remain unresolved. What are the transition state

barriers? And what is the rate determining step responsible for such ine�ciency;

crossing spin-surfaces or surmounting transition states? This requires knowledge of

the lifetimes and populations of the various intermediates. The kinetic models used

in the following work provides unique insight into these questions.

With the computational avenue being problematic, we turn instead to a statistical

adiabatic channel approach [27–29], using the ab initio information of the station-

ary points along the reaction path as guides but leaving their energies as fitting
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parameters. The modeling must fit the magnitude of the total rate constant, the

temperature dependence of the total rate constant over a wide range, the product

branching ratios at all temperatures and the isotope e↵ect. As such, the modeling is

severely overdetermined, and success in reproducing the data not only suggest mech-

anistic insight but also provide energetics which surpass current quantum chemical

calculations in accuracy, of the rate-limiting transition state heights.

7.2 Computational Methods

The stationary points along the reaction pathways for the FeO+ + CH4 ��! Fe+ +

CH3OH and FeO++H2 ��! Fe++H2O reactions have been evaluated with the CBS-

QB3 method, [30] similar to that reported by Altinay et al. [31] for methanol. This

composite method performs a geometry optimization and frequency calculations at

the B3LYP/CBSB7 (6-311G(2d,d,p)) level, followed by a series of additional single-

point calculations with larger basis sets and higher levels of theory to extrapolate

to what is typically considered a very accurate value for the energy. There is strong

evidence that B3LYP performs adequately in structural determination for systems

involving transition metals, [32, 33] but the energetics might contain significant er-

rors. Furthermore, most previous attempts [16, 31, 34–41] to model the potential

energy surfaces of this reaction have mostly been based on density functional theory

(DFT) methods and, in particular, the B3LYP functional.

To obtain better estimates of energetics, the CBS-QB3 protocol performs sin-

gle point calculations at CCSD(T)/6-31+G(d) and MP4SDQ/CBSB4 levels on the

geometry determined with B3LYP, and then, the final infinite basis set energy is ex-

trapolated with pair natural orbital energies at the MP2/CBSB3 level. Additionally,

a correction for spin contamination is included based on the hS2i eigenvalue from

MP2/CBSB3. CBS calculations were performed using the GAUSSIAN 09 software
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suite. [42] The energy values reported are those at 0 K and include the zero-point

energy corrections from the B3LYP-derived frequencies. The vibrational frequencies

and rotational constants of the stationary points were obtained at the B3LYP level.

In addition, a number of higher level methods were explored to account for

electron correlation e↵ects and multireference character. These methods include

CASSCF, [43, 44] CCSD(T), [45] its explicitly correlated CCSD(T)-F12 variant [46],

complete active space second-order perturbation theory (CASPT2) [47, 48] and

multi-reference configuration interaction (MRCI) [49, 50] approaches. The multi-

reference methods (CASSCF, CASPT2 and MRCI) and CCSD-F12 calculations were

performed using the MOLPRO suite of electronic structure programs, [51] and the

other calculations were implemented in Gaussian 09 package [42].

7.3 Results

7.3.1 FeO+ +CH4 ���! Fe+ +CH3OH

Experimental Results

The total rate constants for the reaction of FeO+ with both CH4 and CD4 from 123

to 700 K are summarized in Table 7.1. The rate constant for FeO+ with CH4 at 300

K was found to agree with the consensus of those previously reported, [52] occurring

at about 9% of the collision rate constant. The reaction with CD4 is found to be

somewhat less e�cient, with only about 5% of collisions leading to reaction at room

temperature.
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Reaction k (300K) lit. values (300K) reaction e�ciency
(10�10 cm3/s) (10�10 cm3/s) k/kcoll

FeO+ + CH4 ��! Fe+ + CH3OH (52%) 0.95 2.0(b), 0.85(c), 0.28(d), 0.74(e) 9.1⇥10�2

��! FeOH+ + CH3 (48%)
FeO+ + CD4 ��! Fe+ + CD3OD (79%) 0.51 na 5.4⇥10�2

��! FeOD+ + CD3

Table 7.1: Experimental Rate Constant (k), Reaction E�ciency, And Kinetic Isotope
E↵ect (KIE) at 300 Ka. (a) The error in our rate constant measurement is estimated
at ±25%. (b) ICR-derived rate constant from ref [53]. (c) ICR-derived rate constant
from ref [52]. (d) GIB-derived rate constant from ref [52]. (e) SIFT-derived rate
constant from ref [52].

Computational Results

A number of researchers [16, 24–26, 31, 34] have used the FeO+ + CH4 reaction

to investigate Two State Reactivity and the reaction pathways have been primarily

been explored by DFT studies, although some are augmented with higher-level energy

corrections. The qualitative PESs and geometries for the quartet and sextet states

are depicted in Figure 7.1 and 7.2. The calculations all indicate a crossing between

the quartet and sextet PESs somewhere before the TS1 allowing the system to access

a much lower barrier along the quartet surface.

Our CBS-QB3 energy for 4TS1 relative to that for the sextet FeO+ reactants is

slightly negative (7.72 kJ mol�1), which is quite similar to those reported earlier by

other theoretical calculations. [31] This submerged barrier is consistent with the neg-

ative temperature dependence of the rate constants at low temperatures. However,

as discussed below, the ab initio value for this reaction bottleneck is probably not

quantitatively accurate, evidenced by the much more negative value determined by

the statistical fit of the experimental rate constants presented below. With the less

negative (or positive) values for the bottleneck from the ab initio calculations (see

below), statistical modeling would obtain a rate constant significantly smaller than

that observed experimentally.
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Stationary point HF B3LYP CBS-QB3 CCSD(T)-F12 CCSD(T) AVTZ exp.derived kinetic model
Current work (ref [6]) AVTZ Current work (ref [6]) values determined values

4FeO+ + CH4 -76.8 52.5 24.1 (25) 50.5 49.5 (45) ⇠34.6 [55]
6Fe+ + CH3OH -304.9 -29.8 -35.9 (-36) -36.6 -52.0 (-49) -35.5±6 [7, 8] -34.6
4Fe+ + CH3OH -114.0 -21.7 -39.8 (-6) -24.4 -30.0 (-31) -10.6±6 [7, 8, 56]) -9.7
5FeOH+ + CH3 -209.7 -21.7 -22.8 (-23) -6.4 -5.4 -1.4±15 [7, 8] -0.6
6TS1 113.9 44.0 40.1 (40) 56.9 (60)
4TS1 -4.22 -7.9 (-1) 11.8 (12) -22.5

Table 7.2: Comparison of the energetics of key species along the reaction path be-
tween theoretical and experimental values. All energies are relative to reactants (kJ
mol�1) The literature values for CBS-QB3 and CCSD(T) are given in parentheses.

In order to gain a better understanding of the energetics, we performed single-

point calculations using the CCSD(T) method. Similar calculations have been re-

ported before but with a relatively small basis set. [31] Here, the explicitly correlated

version of CCSD(T)-F12 was used with the AVTZ basis set, which is expected to pro-

vide results with CBS quality. [54] The results shown in Table 7.2 suggests that the

previous CCSD(T) results are well-converged with the basis set. More importantly,

it shows that the 4TS1 is 11.8 kJ mol�1 above the reactant, in worse agreement with

the kinetic data.

The data in Table 7.2 underscore many of the challenges in describing this system

theoretically. Hartree-Fock theory, as is expected, fails badly due apparently to the

paramount importance of electron correlation. B3LYP, which incorporates electron

correlation, tends to do a far better job, as noted in previous studies. [32, 33] The

higher-level composite CBS-QB3 method only marginally improves upon the B3LYP

values. In addition, it fails to describe the relative ordering of the two spinorbit

levels of the Fe+ atom, incorrectly predicting the quartet to be more stable than

the sextet by 8.1 kJ mol�1. The CCSD(T)-F12 method does describe asymptotic

regions well but fails to predict a submerged 4TS1, finding it to be 11.8 kJ mol�1

above the reactant asymptote. Due to the failures of what are often considered

reliable methods, we have concluded that an alternative approach is necessary to

shed light on the energetics of this reaction.
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Figure 7.3: Statistical modeling of rate constants for FeO++CH4 from present work
(squares) and from GIB experiments of ref. [35] (filled circles). Green: total rate
constants, red: rate constants for formation of Fe+ + CH3OH, black: rate constants
for formation of FeOH+ + CH3. Lines: model.

The inconsistency may have several possible origins. First, the CBS-QB3 and

CCSD(T)-F12 calculations used the B3LYP geometry for the stationary points,

which might be di↵erent at the higher levels of theory. Second, the system may have

significant multireference character due to the numerous low-lying excited states.

The T1 diagnostic value at the 4TS1 is 0.07, significantly higher than the recom-

mended cuto↵ value of 0.02 for single-reference systems. [57] However, multirefer-

ence ab initio calculations involving transition metals, particularly with geometry

optimization, are computationally formidable.
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Reaction k(300K) (10�12

cm3s�1)
lit.values (10�12

cm3s�1)
e�ciency
(k/kcoll)

T dep.

FeO+ +H2 ��! Fe+ +H2O 10 10a, 8.8b .0066 T-1±0.1
FeO+ +D2 ��! Fe+ +D2O 5.1 6.9a, 4.2b, 2.5c .007 T-1±0.1
FeO+ +HD ��! Fe+ +HDO 8.7 8.1a, 7.7b .0047 T-1±0.1

Table 7.3: Room temperature rate constant (k), reaction e�ciency (k/kcoll), and
temperature dependence for the reactions of FeO+ with H2, D2, and HD (Errors in
the rate constants are estimated at 10% relative and 25% absolute). Refs: a. IRC
derived rate, b. SIFT derived rate, c. GIB derived rate all from Ref. [52]

Kinetic Modeling

In our statistical modeling, we rely on the vibrational frequencies and rotational

constants such as those derived by DFT calculations. As discussed above, energies

are not known with su�cient accuracy for use in the modeling, though these calcu-

lations provide reasonable measures of the frequencies [31]. Therefore, it appeared

reasonable to leave the energies of the reactants and the products as fit parameters

in the modeling. Furthermore, the energy of the 4TS1 between the 4INT1 and 4INT2

complexes was kept as a third fit parameter. The results of the statistical model-

ing sensitively depend on these three fit parameters such that the present approach

likely provides a better representation of these quantities than the ab initio values.

We calculate kB(T ) and kC(T ) while varying the three energy parameters mentioned

above. We then perform mean-least-squares fits of the modeling to the experimental

results presented here and in ref [35]. The results are shown in Figure 7.3, and the

resulting fitted energies are collected in Table 7.2.
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7.3.2 FeO+ +H2 ���! Fe+ +H2O

Experimental Results

The room temperature rate constants measured for the reactions of FeO+ with H2,

D2, and HD are shown in Table 7.3. The rate constants are found to proceed very

ine�ciently, agreeing well with previously published room temperature rate constants

and vary strongly with temperature for each of the three reactions, scaling as ⇠T�1.

Computational Results

Again, refer to Figures 7.1 and 7.2 for schematic PESs and geometries for the FeO++

H2 ��! Fe+ + H2O reaction. To assess the large number of PESs found in the

literature and produced in this work, a few benchmark values are chosen: the spin-

orbit splitting between the ground state sextet and the first quartet of Fe+ and

FeO+, the barrier height of 4TS1 relative to the sextet reactant asymptote, and

the barrier height of 4TS1 relative to 4INT, which provides information about the

performance of various electronic structure methods in predicting the barrier height

in a single electronic state and the overall exothermicity of the reaction (�Erxn) from

sextet reactants to sextet products. These values are summarized in Table 7.4 for

B3LYP, CBS-QB3, CCSD(T), CASSCF, CASPT2 and MRCI as well as previously

reported studies using B3LYP, di↵usion Monte Carlo (DMC) and CCSD(T) single

point results at B3LYP geometries. CASSCF was performed with 13 active electrons

in 11 orbitals, CASPT2 and MRCI were carried out using the CAS-configurations as

the reference configuration state functions. This active space is similar to previous

CASSCF/MRCI studies on FeO+ [58, 59].

Experimental spin-orbit splittings are available for Fe+ and FeO+, being 24.1

and 47.3 kJ/mol respectively [55, 56]. B3LYP does a fair job of capturing these
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Method Basis Fe+ (6-4) FeO+ (6-4) 6TS1�6INT1 4TS1 �Erxn

Modeled Values
(this work)

– -0.33

Expt. – 24.1 47.3 —— —— ——
B3LYP TZVP 28 61.8 102.3 14.5 -159.2
CBS-QB3 na -2.9 24.1 103.2 5.8 -144.7
CCSD(T) cc-PVDZ / SDD 88.8 -41.5 110 34.7 -194.9

cc-PVTZ / SDD at above
geometry

88.8 52.1 104.2 22.2 -217.1

cc-PVTZ 49.2 47.3 —— —— ——
CASSCF aug-cc-pVTZ / cc-pVTZ

for H
105.2 —— —— 44.4 -258.6

CASPT2 aug-cc-pVTZ/ cc-pVTZ
for H

95.5 —— —— 56 -158.2

MRCI AVTZ 99.4 41.5 —— 12.5 -167.9
(REF [60]) B3LYP -10.6 33.8 99.4 0 -161.1

(BP86) (-18.3) -53.1 -117.7 0
(REF [41]) DMC 30.9 52.1 107.1 5.8 -208.4
(REF [40]) B3LYP / CCSD(T) 28 53.1 96.5 -5.8 -159.2

Table 7.4: Various calculated and previously reported values of key features of the
FeO+ +H2 PES in kJ/mol

values, and are comparable to CCSD(T)/cc-PVTZ and DMC. CBS-QB3 fails badly

with the Fe+ atom, reversing the order of the sextet and quartet states. As far as

overall exothermicity of the reaction is concerned, B3LYP, CBS-QB3 and CASPT2 all

perform well, falling within 9.6 kJ/mol of the experimental value of 154±6 kJ/mol

[7, 8]. CASSCF and CCSD(T) fare the worst, overestimating the energy by at

least 48 and as much as 96 kJ/mol. The success of the CASPT2 is not surprising

because it maintains the size constancy necessary to evaluate the�Erxn without basis

superposition error. CCSD(T) likely fails due to the use of the SDD e↵ective core

potential on Fe and an unconverged basis set. However, full electron calculations were

not attempted other than for Fe+ and FeO+, due to formidable computational costs.

The key quantity investigated in this work is the relative barrier height of 4TS1,

which shows considerable variation among methods. Importantly, due to the fact

that the barrier is so close to the energy of the reactants, slight variation will cause

the sign of the barrier energy to change, giving qualitatively di↵erent behavior at this
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rate determining step. Of the methods surveyed here only one predicted a slightly

negative barrier, as might be expected from the negative temperature dependence of

the reaction rate. The CCSD(T) single point calculation on B3LYP geometries of ref.

19 find this barrier to be -5.8 kJ/mol. DMC and CBS-QB3 gave the second lowest

barriers at +5.8 kJ/mol, followed closely by MRCI and B3LYP values at +12.5 and

+14.5 kJ/mol, respectively. The highest barriers are found in CCDS(T), CASSCF,

CASPT2 and MRCI calculations. The failure of CCSD(T) is again likely due to the

use of the SDD potential for Fe, and there is evidence that the failure of CASPT2

and MRCI are due to a choice of an active space too small to accurately capture the

correlation and the multi-reference character of the wavefunctions. Unfortunately,

a larger active space is prohibitively costly, but we believe that this is the most

appropriate methodology for an accurate description of the reaction path.

Since a possible source of error is the splitting of the two spin states of FeO+,

the absolute barrier height along the sextet potential energy surface can provide

insight into the accuracy of the method independent of the splitting. In general,

most methods find the height of 6TS1 to be around 96.5 kJ/mol above 6INT1, and

the largest values correspond to methods which over estimate the 4TS1 barrier. The

lowest value, of 96.5 kJ/mol at CCSD(T)/B3LYP, also corresponds to the method

that produced the lowest barrier found for 4TS1. This methodology was also very

accurate for the spin-orbit splitting of Fe+ and FeO+ species.

In Table 7.5 we have compared the geometry of 4TS1 obtained using CBS-QB3,

CCSD(T) and CASSCF. In general, the transition-state structure becomes progres-

sively looser in that all bond lengths increase in this order. The CBS-QB3 and

CCSD(T) results are more similar to each other than CASSCF, in which bond lengths

can be as much as 0.2 Å longer. The CBS-QB3 values are closest to previously pub-

lished geometries [17, 40, 60], albeit this is not to be unexpected considering these

previous studies are also DFT based.
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TS4 RFeO RH1H2 RFeH1 RFeH2 AOFeH1 AOFeH2

CBS-QB3 1.603 0.916 1.703 1.665 52.2 83.7
CCSD(T) 1.656 0.922 1.760 1.704 48.6 79.4
CASSCF 1.759 0.944 1.925 1.825 40.9 69.9
DFT (Ref. [37]) 1.630 1.010 1.650
B3LYP (Ref. [60]) 1.620 0.930 1.689
B3LYP (Ref. [17]) 1.612 0.916 1.687

Table 7.5: Geometrical parameters of 4TS1 for FeO+ + H2 calculated at various
methods in Å and degrees.

Despite a known problem in calculating the splitting of nearly degenerate spin

states in Fe(II) compounds with sulfur ligands [61], B3LYP is known to perform quite

well in determining bond dissociation energies of MO+ complexes with respect to

other DFT functionals [32]. It has also been found to provide reasonable geometries

[62] and is commonly used to provide starting geometries for more accurate single

point evaluations as is the case in ref. [40]. In this spirit we have chosen to utilize

the geometries and vibrational frequencies as found in the CBS-QB3 method, which

is B3LYP with the reasonably large 6-311G basis with Fe, O and H receiving 2d, d

and p polarization functions respectively. The molecular parameters obtained and

used in the statistical modeling are given in the supplemental materials.

Kinetic Modelling

The results of our modeling of the present thermal rate constants ktot(T ) over the

range 173-673 K, as well as the experimental points from the present work, are

illustrated in Fig. 7.4. The curve for H2 is fitted with 4TS1 energies of -0.33 kJ

mol�1. For HD, the two di↵erent 4TS1 values were found to be -0.48 kJ mol�1 and

-2.03 kJ mol�1, and -1.81 kJ mol�1 was obtained for D2. Within the estimated

uncertainty of present quantum chemical calculations, they agree with the quantum
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Figure 7.4: Rate constants and statistical modeling for the reactions of FeO+ with
H2, HD, and D2

chemical values given in Table 7.4 and particularly well with the the result from

ref. [40]. We note in addition that the isotope dependence of the fitted experimental

energy values reproduces the results from the present quantum chemical calculations.

7.4 Conclusions

Thorough understanding of fundamental reaction mechanisms in numerous aspects

of organometallic chemistry is currently inhibited by an inability to precisely map

out the energetic landscape of the reaction. For example, modeling of the crossing

e�ciency in cases of two-state reactivity such as this would greatly benefit from an

approximation of the complex lifetime in the vicinity of the crossing, as well as its
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energy dependence. These quantities are highly dependent, however, on the relative

energetics of the complex as well as the neighboring transition states, which state-

of-the-art calculation methods have had little success in describing energetically.

To this end, experimentally determined temperature dependent rate constants for

the reactions of FeO+ with H2, CH4 and their isotopologues were used in conjunction

with kinetic and computational models to shed new light on the mechanistic details

of these important reactions. The combination of multiple near degenerate elec-

tronic states, the multi-reference nature of the system (particularly at the transition

states where bond breaking and formation are occurring) and electron correlation all

present in these cases of two-state reactivity prove challenging for current quantum

chemical models. Contrary to previous interpretations of these reactions, we find

spin-inversion to be e�cient and crossing of the first quartet transition state to be

rate limiting in both cases. The refined energies of 4TS1 are found to be -22 kJ mol1

and -0.33 kJ mol�1 for CH4 and H2 respectively.
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