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ABSTRACT
The HaloacidDehalogenase Enzyme Superfamily (HADSF) is a ubiquitous family of
enzymes.Presently, more than 45, 000 deposited gene sequences encode proteins of the
HADSF, and only a fraction of these have defined structure and/or function. The work
described in this thesis focuses on function determination in several members of the
HADSF. An integrated bioinformatic-protein structure-enzyme mechanism approach was
used to differentiate and track D-glycero-D-manno-heptose-1,7-bisphosphate
phosphatase (GHMB) and histidinol phosphatephosphatase (HisB)orthologues;2-keto-3-
deoxynononic acid 9-phosphatephosphatase (KDN9PP) and 2-keto-3-deoxy-D-manno-
octulosonic  acid  8-phosphatephosphatase ~ (KDO8PP)orthologues;  inorganic
pyrophosphatase and p-phosphoglucomutase (B-PGM) orthologues. In addition, a
structure-function/bioinformatic analysis was carried-out on thebifunctional 1,3-

diposphoglycerate acyltransferase/Cys-S-glyceryl-3-phosphate phosphatase (FKBH).
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Each study began with the examination of the genome context of the encoding gene of
the target HADSF member. Based on this analysis possible catalytic functions were
posited. In vitro activity assays were then applied to test possible substrates. Having
identified a potential physiological substrate the X-ray structure of the enzyme-substrate
(or substrate analog) complex was determined. From this structure the substrate
recognition residues were identified. These residues were replaced by site directed
mutagenesis and the impact on substrate binding and catalysis was determined by
measuring the steady-state kinetic constants kcgand Ke/Kn for each of the mutant
enzymes. Residues shown to be important were used as sequence markers to identify
among the sequence homologues identified in BLAST searches the most confidently
defined orthologues. The final step used in the function annotation procedure was to
examine the genome context of the encoding gene of each putative orthologue. These

data were then used to formulate the proposal for in vivo function.
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CHAPTER ONE

HALOACID DEHALOGENASE ENZYME SUPERFAMILY FUNCTION

DISCOVERY

1.1 Introduction to the Haloacid Dehalogenase Enzyme Superfamily

The Haloacid Dehalogenase Enzyme Superfamily (HADSF) is a ubiquitous
family of enzymes [1]. Presently, >45, 000 deposited gene sequences encode proteins of
the HADSF, and only a fraction of these have defined structure and/or function.
Numerous proteins from the HADSF are found in each organism (29 in E. coli and 185 in
humans, for example.)

The HADSF was named after the first family member characterized: 2-
haloalkanoate dehalogenase. Despite the name, the dehalogenases, which catalyze carbon
group transfer, represent a minute fraction of the family [2-4]. The known reactions
catalyzed by the HADSF are depicted in Figure 1.1. Most of these are phosphoryl
transfer reactions of which the phosphohydrolase activities of the ATPases and the
phosphatases are the most prevalent. Diversification of the HADSF catalytic scaffold to
include phosphonate (P-C bond) hydrolysis (phosphonatases) and the transfer of
phosphoryl groups between hexose hydroxyl substituents (phosphomutases) has occurred
less frequently. phosphotransferases, having evolved to perform a multitude of different
biochemical functions essential to cell growth and adaptation. Nature uses the phosphoryl

group to enhance metabolite solubility, link monomers, facilitate protein-substrate



binding, couple catabolism to biosynthesis and movement, and as the on-off switch for
signal transduction. Phosphotransferases therefore rank high among Nature's protein

catalysts and a significant fraction of these phosphotransferases are found in the HADSF.
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Figure 1.1: Known reactions catalyzed by the members of the HADSF.

All members of the HADSF possess an Alpha, Beta-core catalytic domain
consisting of a central parallel Beta-sheet flanked by Alpha-helices on both sides [5,6].
The core catalytic domain of the HAD superfamily contains a three layered Alpha/Beta
sandwich comprised of repeating Beta-Alpha units which adopt the topology typical of
the Rossmannoid class of Alpha/Beta-folds. The central sheet is parallel and typically
comprised of at least five strands (S1-S5) in a 54123 strand order (Figure 1.2). The HAD
fold is distinguished from other Rossmannoid folds by two key structural motifs: First,
immediately downstream of strand S1 is a unique, six residue structural motif that
assumes a nearly complete single helical turn, termed the *“squiggle”. Second,
downstream of the squiggle there is a Beta-hairpin turn formed by two strands projecting
from the core of the domain. This structural motif constitutes the “flap”. The squiggle,
being close to a helical conformation, can be alternatively tightly or loosely wound,
inducing a movement in the flap immediately juxtaposed to the active site and
alternatively results in the closed and open states. Since the simplest structures (type C1)
add the cap domain to the flap motif itself (Figure 1.3A), conformational changes in the
squiggle allow the active site to be completely sealed in the closed state. Although the C2
caps have a different insertion site and thus likely lack mobility comparable to the C1
caps, together, the movement of the “squiggle-flap” and C2 cap allow dynamic ligand

induced fit.



CO0/C1 Cap Insertion

Figure 1.2: Topology diagram of the classic HADSF Rossmann core domain. Core
strands conserved across all members are in blue; non-conserved elements that may have
been absent from the ancestral state are in gray. The HAD CO0/C1 cap insertion point is a
bright green and the C2 cap insertion point is an orange line. The magenta loop
represents
the conserved squiggle. Residues conserved across all members are labeled on their
corresponding loops.

The concave surface of one face of the catalytic domain is the location of the
active site (Figure 1.3B) where the substrate binds with its phosphoryl group pointed at

the bottom and its leaving group projected upwards towards solvent. The core domain
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catalyzes the transfer of the phosphoryl group from a specific phosphate ester or
anhydride to an acceptor, which is most commonly a water molecule. The catalytic
scaffold, or "active-site template” is formed by 4-loops that station the conserved

catalytic residues” (Figure 1.3B). These include the two Asp residues of loop 1, the loop

2 Ser/Thr, the loop 3 Lys/Arg and the loop 4 Asp/Glu.
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Figure 1.3: A) The HADSF subfamilies-C1 and C2 are distinguished by the insertion
points of the cap (gold) in the Rossmann fold (blue) (C1 after b-strand 1, C2 after b-
strand 1, CO has a minimal insert in either site. B) liganded Beta-PGM with catalytic

segments colored as in C) with cap residue in black.

The HADSF phosphotransferase reaction occurs in two steps (Figure 1.4). The
first step involves phosphoryl transfer to one of the two loop 1 Asp residues (the Asp
nucleophile) aided by proton transfer from the other loop 1 Asp residue (the Asp
acid/base residue). The second step involves phosphoryl transfer from the
aspartylphosphate to the acceptor (a water molecule in the case of the phosphohydrolases

or hexose in the case of the phosphomutases) activated by the Asp acid/base residue.
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Figure 1.4: The two-step reaction pathways catalyzed.
The Mg?* cofactor is coordinated by the carboxylate group of the loop 1 Asp
nucleophile, the backbone amide C=0 of the loop 1 Asp acid/base and by the carboxylate

of an Asp (or Glu) located on loop 4 (Figure 1.5).
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Figure 1.5: The Mg?* (cyan sphere) binding site in a HADF phosphatase.
The Mg®* functions to prevent charge repulsion between the Asp nucleophile
and the transferring phosphoryl group and at the same time orient the Asp nucleophile,

transferring phosphory! group and the Asp acid/base for the reaction (Figure 1.6).
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Figure 1.6: A depiction of the charge shielding and orientation functions of the HADF
Mg?* cofactor.

The transferring phosphoryl group is also activated for nucleophilic attack
through hydrogen bond formation with the loop 2 Thr/Ser side chain, the loop 3 Lys and

several backbone amide NHs of the catalytic scaffold (Figure 1.7).



Figure 1.7: Activation of the transferring phosphoryl group (represented by the grey and
red vanadate) by hydrogen bonds to the side chains Thr (green and red) and Lys (blue)
and backbone amide NHs (BB). Hydrogen bonds are shown as black dashed lines.

The catalytic scaffold common to all HADSF phosphotransferases acts binds the
tetrahedral phosphoryl group of the substrate weakly and through increased noncovalent
bonding interactions stabilizes the trigonal bipyramidal phosphorane at the transition
states. Crystallographic snap-shots of various liganded HADSF phosphotransferases
indicate that the catalytic scaffold acts as an electrostatic mold for transition state

stabilization (Figure 1.8).



) tungstate

Figure 1.8: Crystallographic snapshots of (A) the hexose phosphate phosphatase BT4131
bound with Mg?* and tungstate, (B) Beta-phosphoglucomutase bound with Mg®* and
Beta-glucose-1,6-bisphosphate and (C) KDN-9-phosphate phosphatase bound with Mg?*,

vanadate and neuramic acid.
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1.2 The Structural Determinants of HADSF Phosphatases Substrate Recognition

The expansion of the HADSF can be attributed to phosphatases whose
biochemical functions can be divided into four main categories: 1) metabolism, 2)
regulation of metabolic pools, 3) cell housekeeping, and 4) nutrient uptake. Earlier work
on the HADSF phosphatases showed that the physiological substrates run the full gamut
in size and shape from phosphoproteins, nucleic acids, and phospholipids to
phosphorylated disaccharides, sialic acids and terpenes to the smallest of the
organophosphate metabolites, phosphoglycolate [7]. It is through the acquisition of
structural accessories to the catalytic domain that the HADSF has succeeded in covering
this vast range of substrate structure.

Whereas the catalytic scaffold binds the substrate phosphoryl group weakly at the
ground state and tightly at the transition state it does not bind the leaving group (Figure
1.9). Therefore, the substrate must derive additional binding energy through favorable
binding interactions with residues outside of the catalytic scaffold. This added binding
energy augments the binding energy derived from binding the tetrahedral phosphoryl
group such that under physiological conditions the HADSF phosphotransferase is able to

target its physiological substrate.
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Figure 1.9: Snap-shots of CO HADSF phosphatases illustrating the placement of the
leaving group into the solvent.

The CO phosphatases either form tetramers wherein the active site is formed at the
subunit-subunit interface: one subunit contributes the catalytic residues and the other

subunit contributes the leaving group binding residues (Figure 1.10).
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Figure 1.10: KDN-9-phosphate phosphatase bound with neuramic acid (black stick).
Each subunit is shown in a different color.

Other CO HADSF phosphotransferases do not rely on an interfaced subunit to
bind the substrate leaving group. Those that act on large substrates such as a
phosphorylated protein or a nucleic acid use the surface surrounding the catalytic site to
dock with the substrate. Those that act on metabolites possess extended loops that bind

the substrate-leaving group (Figure 1.11).

Figure 1.11: The CO HADSF phosphatase GMHB bound with Mg?* (cyan sphere) and

13



substrate (glycerol-manno-heptose 1,7-bisphosphate) (stick). The residues that bind the
substrate leaving group are located on the extended loops colored blue, green or magenta.
The majority of the HADSF phosphatases, do however possess a cap domain. In
the caped phosphatases the catalytic scaffold of the Rossmann-like domain alone binds
the transferring phosphoryl group, whereas the cap domain alone binds the leaving group
(Figure 1.12). Thus, HADSF phosphatase catalytic residues positioned by the catalytic
scaffold are physically separated from the substrate recognition residues positioned on

the cap domain.
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Figure 1.12: The C1 HADSF phosphotransferase b-phosphoglucomutatase bound with
Mg** (cyan sphere) and Beta-glucose-1,6-bisphosphate (black stick). The cap domain is
shown in magenta and the catalytic domain in gray.

The cap domain provides a large surface, which can accommodate numerous
substrate recognition residues. Typically, however, only one or two cap residues
participate in binding the physiological substrate. The cap domain serves as a “pegboard”

(see Figure 1.13) for the placement/replacement of substrate recognition residues.

Figure 1.13: Structure of a-phosphomannose mutase showing the cap residues (yellow)

that are potentially available to bind a substrate-leaving group.
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Notably, the cap domain carries the potential to recognize more than one
substrate, and this ability fosters promiscuity among the HADSF phosphatases.
Promiscuity might directly support a general housekeeping role in the cell or
alternatively, facilitate specialization through replacements that enhance the binding of
the physiological substrate and suppress the binding of others. In addition, the cap
residues can be tailored to specifically target two structurally distinct physiological
substrates. Such tailoring would provide the HADSF phosphatase with two biochemical
functions. For example, the housekeeper NagD [8] protects the cell from toxic
glucoseamine 6-phosphate build-up during cell wall recycling, and siphons excess UMP

from imbalanced ribonucleotide pools.

1.3 HADSF Phosphatase Function Determination

A challenge of this decade to the life sciences community is the accurate function
annotation to the rapidly growing numbers of enzyme sequences and structures that are
accumulating in the public databases. The classification of enzymes into enzyme families
constitutes the first step in function assignment because members of a given family share
a common chemical trait the knowledge of which facilitates function determination. An
enzyme family grows by evolving new members of unique function via gene duplication
and random mutation against a selection pressure. The inherited family chemical trait
(exemplified in the phosphotransferase branch of the HADSF as the ability to stabilize

trigonal bipyramidal phosphorane-like transition states) is the result of an inherited
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backbone fold, which in turn supports the catalytic scaffold. Located on the catalytic
scaffold are the residues that are inherited in the duplicated family member and which
can be conserved and replaced as needed to adapt the inherited chemical trait to a novel
biochemical context. It is through developing an understanding of the structural
determinants of enzyme function that genomic enzymologists hope to expedite the
process of function annotation.

Function assignment to a HADSF phosphatase entails identification of its
physiological substrate, and in order for this function assignment to facilitate future
assignments, the structural basis for substrate recognition must be determined. Moreover,
knowledge of the key substrate recognition residues also allows the tracking orthologs
found in the gene data banks thus expanding function well beyond that of the single
enzyme that was subjected to the structure-function analysis. This is exemplified by my
work on the HADSF phosphatase BT2127 reported in Chapter 2.

Organophosphates comprise a big piece (viz. ~35%) of the metabolome. Because
of their predominance the HADSF phosphatases play a major role in regulating and
recycling the organophosphate metabolite pool as well functioning in metabolic
pathways. By discovering new functions among the HADSF phosphatases novel
biochemical pathways can be revealed. This is exemplified by my work on the HADSF
phosphatase FKBH reported in Chapter 3.

In addition to my investigation of BT2127 and FKBH, | have participated in the
structure-function analysis of HADSF phosphatases GMHB, KDO-8-phosphate

phosphatase and KDN-9-phosphate phosphatase. This work is reported in the Appendix
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of this thesis.
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CHAPTER TWO
DIVERGENCE OF STRUCTURE AND FUNCTION IN THE HALOACID
DEHALOGENASE (HAD) ENZYME SUPERFAMILY: BACTERIODES

THETAIOTAMICRON BT2127 IS AN INORGANIC PYROPHOSPHATASE

2.1 Introduction

Function annotation to the rapidly growing numbers of enzyme sequences and
structures that are accumulating in the public databases is a challenge that should be met
quickly so that the scientific community can effectively mine these databases. Ultimately,
enzyme function annotation must be done by computer because experimental-based
function determinations are far too time consuming. The Enzyme Function Initiative

(http://enzymefunction.org/) was instituted in 2010 for the ultimate purpose of evolving

current experimental strategies into computational-based function prediction. The work
reported in this chapter is an early product of this initiative as it outlines enzyme function
determination in a member of the Haloalkonate Dehalogenase enzyme superfamily
(HADSF) that is based on an integrated bioinformatic-protein structure-enzyme
mechanism approach which provides reliable tracking of orthologs.

The HADSF was selected to explore methods of function assignment because of
its large size, its presence in all organisms represented in the NCBI genome bank and
because of the diversity in the types of chemical reactions that its members catalyze. The

initial focus is on the HADSF phosphatase subfamily. HADSF phosphatases can number
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up to 30 in bacterial cells and up 200 - 300 in eukaryotic cells. A central question to be
addressed is “how many unique in vivo functions are there to be discovered within this
subfamily?”. Bacterial (as opposed to eukaryotic) HADSF phosphatases were chosen for
study, so to avoid splice variants and the complicating issues of protein partners and
subcellular localizations as modulators of in vivo function. Function assignment to the
bacterial HADSF phosphatase thus entails identification of its physiological substrate
among the pool of organophosphate metabolites that exist in the cell, followed by
defining the biological context of the catalyzed reaction.

Earlier work that involved the screening of 23 cytoplasmic E. coli HADSF
phosphatases with an 80-compound library of known metabolites made clear the
challenge of identifying the physiological substrate [1]. Specifically, most of the
phosphatases displayed activities towards multiple substrates, which in numerous
instances were structurally dissimilar. In addition, there also existed some degree of
overlap in the substrate ranges between paired phosphatases. Nevertheless, the
physiological substrates of several of the 23 E. coli HADSF phosphatases have been
convincingly identified and their in vivo functions as phosphoserine phosphatase (SerB)
[1,2],histidinol phosphate phosphatase (HisB) [3], trehalose-6-phosphate phosphatase
(OtsB) [4], 3-deoxy-D-manno-octulosonate-8-phosphate phosphatase (Yrbl) [5] ,
glycerol-manno-heptose 1,7-bisphosphate phosphatase (YaeD) [6] assigned. Notably,
each of these phosphatases function in biosynthetic pathways. The in vivo function
assignment was facilitated by gene context as well as by a narrow substrate range

coupled and a high ke./Ky value for the physiological substrate. In addition, gene
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knockout experiments have been used to show that the promiscuous phosphatases YniC
[1] and YjjG [7] can function in vivo to remove toxic 2-deoxy-glucose-6-phosphate and
toxic nonconical nucleoside-5’-monophosphates. Genetic experiments have also shown
that YjjG performs in the thymidine salvage pathway as a dUMP nucleotidase [8].

With the objective in mind of gaining insight into how many of the HADSF
phosphatases contained in two different species of bacteria share common function and
how many do not, a side-by-side comparison of the HADSF phosphatases from E. coli

and Bacteroides thetaiotaomicron was initiated. Whereas these two species derive from

different phyla they share a common habitat: the human gut. B. thetaiotaomicron

possesses 19 HADSF phosphatases. Two of these have been experimentally
characterized. One is 3-deoxy-D-manno-octulosonate-8-phosphate  phosphatase
(BT1677) [9], ortholog to the E. coli Yrbl of the 3-deoxy-D-manno-octulosonate pathway
and the other one is 2-keto-3-deoxy-D-glycero-D-galactonate-9-phosphate phosphatase
(BT1713) of the 2-keto-3-deoxy-D-glycero-D-galactonate pathway [10], which notably is
not found in E. coli.

In collaboration with structural biologists in the Steve Almo lab at Einstein
Medical School and the Karen Allen’s lab at Boston University, | have carried out the
structure-function analysis of the unknown HADSF member BT2127 (EXPASy accession

# Q8A5V9) from B. thetaiotaomicron. In this chapter | report the BT2127 function, X-

ray structure and biological range and contrast these with those of its closest homologue
Beta-phosphoglucomutase (Beta-PGM) and with those of a HADSF Archeal inorganic

pyrophosphatase.
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2.2 Materials and Methods

2.2.1 General Method

All chemicals and buffers were purchased from Sigma-Aldrich. The sources of
the gene cloning materials are as follows: primers, T4 DNA ligase, restriction enzymes
(Invitrogen); E. coli BL21 (DE3) competent cells and Pfu, Turbo polymerases
(Strategene); pET14b, pET23a and pET28a vector kits (Novagen); Qiaprep Spin
Miniprep Kit (Qiagen). DEAE Sepharose was from Amersham Biosciences. Butyl and
Phenyl-Sepharose resins were purchased from Sigma-Aldrich, whereas the Ni-NTA resin
was from Qiangen. Snakeskin pleated dialysis tubing was purchased from Thermo
Scientific. SDS-PAGE analysis was performed with a 12% acrylamide running gel and a
4% stacking gel (37.5:1 acrylmide:biacryamide ratio) (BioRad, Hercules, CA). Protein
solutions were concentrated using a 10K Amicon Ultra Centrifugal filter (Millipore). The
nucleotide sequence of each cloned gene or mutant gene was determined by the Center
for Genetics in Medicine, University of New Mexico. Electro-spray mass-spectrometry
(ES-MS) determinations were carried out by the University of the New Mexico Mass
Spectrometry Facility. Protein concentrations were determined using the Bradford assay

kit from Sigma-Aldrich.

2.2.2 Preparation of Recombinant Wild-type and Mutant BT2127
The DNA encoding the gene NP_811040 from B. thetaiotaomicron was amplified

by PCR using the genomic DNA B. thetaiotaomicron (ATCC 29148D), Pfu Turbo DNA

23



polymerase and oligonucleotide primers (5’-GATTCCATCTAACCCACATATG AGAA
AGAAAC) and (5-CTTTTGCATAGTAGGATCCGTATTT ATAGGT) containing
restriction endonuclease cleavage sites Ndel and BamHI. The pET-28A vector, cut by
restriction enzymes Ndel and BamHI, was ligated to the PCR product that had been
purified and then digested with the same restriction enzymes. The ligation product was
used to transform E. coli BL21 (DE3) competent cells which were then grown on a
Kanamycin-containing agar plate. The selected colony was checked for BT2127
production and the isolated plasmid was sequenced to verify the correct gene sequence.
For BT2127 preparation, the transformed cells (9 L) were grown at 25 °C with agitation
at 200 rpm in Luria broth containing 40 pug/mL Kanamycin to an ODgy of 0.6-0.7, and
then induced for 12 h at 20 °C with 0.4 mM isopropyl Alpha-D-thiogalactopyranoside.
The cells were harvested by centrifugation (6500 rpm for 15 min at 4 °C) to yield 2.2 g/L
of culture medium. The cell pellet was suspended (1 g wet cells/10 mL) in ice-cold buffer
A (50 mM Tris (pH 7.6), 5 mM MgCl, and 1 mM DTT). The cell suspension was passed
through a French press at 1,200 PSIG before centrifugation at 20,000 rpm and 4°C for 45
min. The supernatant was loaded onto a 40 x 5 cm DEAE-Sepharose 50-120 column,
which was eluted with a 2 L linear gradient of NaCl (from 0 to 0.5 M) in buffer A. The
column fractions were analyzed by SDS-PAGE. The desired fractions were combined
and loaded onto 10 mL Ni-NTA Agarose column at 4 °C. After washing the column with
100 mL of buffer B (50 mM NaH,PO,, 300 mM NaCl, 20 mM imidazole (pH 8.0)), the
enzyme was eluted with 200 mL elution buffer C (50 mM NaH,PQO,4, 300 mM NaCl, 250

mM imidazole (pH 8.0)). The column fractions were analyzed by SDS-PAGE, and the
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desired fractions were combined and concentrated with an Amicon Ultrafiltration
apparatus (PM10) before dialysis at 4 °C against buffer A. Yield: 11 mg BT2127/g wet
cells.

The site directed mutagenesis was carried out using a PCR-based strategy, the
BT2127-pET-28A clone as template and commercial primers. The mutant proteins were

purified in the same manner as described for the wild-type BT2127.

2.2.3 BT2127 Molecular Weight Determination

The theoretical subunit molecular mass of recombinant BT2127 was calculated by
using the amino acid composition, derived from the gene sequence, and the ExXPASy
Molecular Biology Server program Compute pl/MW. The subunit size of recombinant
BT2127 was determined by SDS-PAGE analysis, which included the molecular weight
standards from New England Biolabs Inc. The subunit mass was determined by MS-ES
mass spectrometry. The molecular weight of native BT2127 was estimated by FPLC gel
filtration column chromatography against protein standards (13.7-220 kDa from GE
Healthcare). The 1.6 cm x 60 cm Sephacryl S-200HR column (GE Healthcare) was
eluted at 4 °C with buffer D (50 mM HEPES, 100 mM NaCl (pH 7.5)) at a flow rate of 1
mL/min. The BT2127 molecular weight was derived from the measured elution volume
by extrapolation of the plot of the elution volume of the molecular weight standard versus
log molecular weight. BT2127 native mass was also analyzed at the HHMI
Biopolymer/Keck Foundation Biotechnology Resource Laboratory at Yale University by

size exclusion chromatography coupled with on-line laser scattering, refractive index,
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and ultraviolet detection.

2.2.4 Kinetic Assay for Beta-Phosphoglucomutase Activity

Reaction solutions initially contained 7 M wild-type BT2127, 200 uM Beta-
glucose-1-phosphate, 10 M Beta-glucose-1,6-bisphosphate, 2 mM MqgCl,, 0.4 mM
NADP and 5.4 units/ml glucose-6-phosphate dehydrogenase in 50 mM K"HEPES (pH
7.5). The formation of NADPH from reduction of glucose-6-phosphate was monitored at

340 nm (g = 6.2 mMem™).

2.2.5 Steady-State Kinetic Constant Determinations

Initial velocities for BT2127 catalyzed hydrolysis of phosphate esters and
anhydrides were measured at 25 °C using assay solutions that contained 1 mM MgCl,,
1.0 unit/ml purine nucleoside phosphorylase, and 0.2 mM MESG in 50 mM Tris (pH
7.5). The reactions were monitored at 360 nm (¢= 9.8 mM™ cm™). The steady-state
kinetic parameters (Kmn and Ke) were determined by fitting the initial velocity data
measured at varying substrate concentrations (ranging from 0.5K, to 5Ky,) to equation 1
using KinetAsyst I.

Vo=Vmax [S])/ ([S] + Km) (Equation.1)

Vo is the initial velocity, Vmax the maximum velocity, [S] the substrate concentration, and
Km the Michaelis constant for the substrate. The ke value was calculated from V.« and
[E] according to the equation Kea=Vmax/[E], where [E] is the enzyme concentration.

The steady-state competitive inhibition constant K; was determined for
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imidodiphosphate by fitting the initial velocity data, measured as a function of
pyrophosphate (3, 5, 8, 10, 15, 20uM) and imidodiphosphate (0, 10, 35, 50uM)
concentration to Equation 2 using KinetAsyst I.

Vo=Vimax [S)/ (Km(1+(1/Ki))+[S]) (Equation.2)

Where [1] is the inhibitor concentration and K; is the inhibition constant.

2.2.6 pH Rate Profile Determination

The steady-state kinetic constants ke, and Ky, for BT2127-catalyzed hydrolysis of
pyrophosphate were measured at 25 °C as a function of reaction solution pH. Reaction
solutions initially contained pyrophosphate (0.5K, to 10K,), 1 mM MgCl,, 1.0 unit/ml
purine nucleoside phosphorylase, 0.2 mM MESG in 50 mM buffer (MES, pH 5.0-6.0;
HEPES, pH 6.5-7.5; Tris, pH 8.0-8.5). The k../Kr, data were fitted with Equation 2 and
the kcq: data were fitted with Equation 3.

LogY = Log[C/(1 + [H)/Kp)] 2

LogY = Log[C/(1 + [H]/K; + KW/[H])] (3)
where Y is the ket Or  Kea/ Km, [H] is the hydrogen ion concentration of the reaction
solution, K, and Ky, are the apparent ionization constants, and C is the constant value of

Y.

2.2.7 BT2127 Crystallization and Structure Determination
This work was carried out by X-ray crystallographers Patskovsky Yury and

Rafael Toro. | prepared the wild-type and mutant proteins. The proteins were crystallized
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by the sitting drop vapor diffusion method. In brief, the protein solution (usually 0.3 or 1
mL) was mixed with an equal volume of a precipitant solution and equilibrated at room
temperature (294 oK) against the same precipitant solution in the clear tape-sealed 96-
well INTELLI-plates (Art Robbins Instruments, Sunnyvale, CA, USA). Crystallization was
performed using either a TECAN crystallization robot (TECAN US, Research Triangle
Park, NC, USA) or a PHOENIX crystallization robot (Art Robbins Instruments) and
three types of commercial crystallization screens: the WIZARD screen (Emerald
BioSystems, Bainbridge Island, WA, USA), the INDEX and the CRYSTAL SCREEN I
and Il (both from Hampton Research, Aliso Viejo, CA, USA). A number of
crystallization conditions produced diffraction-quality protein crystals starting within 24-
72 h of incubation. The crystals were collected using Hampton Research cryogenic loops,
quickly transferred in liquid nitrogen, and stored frozen in liquid nitrogen until X-ray
analysis and/or data collection. Only in one case (PDB code 3QU2) was the
cryoprotectant glycerol employed. Where necessary, the crystallization conditions were
optimized manually using 24-well Cryschem sitting drop plates (Hampton Research).
The crystallization conditions for each crystal structure are listed in the Table SI1
(Supporting Information)

The X-ray diffraction data from majority of frozen crystals were collected at 100
oK on the Beamline X29A (NSLS, Brookhaven National Laboratory) using the
wavelength of the radiation of either 0.93 or 1.08 Angstroms. The X-ray diffraction data
from the crystal of the D13A mutant were collected at 100 oK using an RU-200 rotating-

anode X-ray generator (A=1.5418A) coupled to a Rigaku R-AXIS IV area detector. All
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diffraction data were processed and scaled using the HKL2000 software package
(Otwinowski and Minor, 1997). The first out of 13 crystal structures (PDB 3QU2) reporte
d here was solved by molecular replacement using coordinates for the PDB structure
3DV9 as a search model and the program MOLREP (the CCP4 program package suit,
www.ccp4.ac.uk). The other 12 structures were solved using coordinates for the structure
3QU2 as a search model. Each structure was refined using REFMAC 5.03 (CCP4 suit,
Murshudov et al, 1997) and the resulting model was fixed manually using COOT
visualization and refinement software (Emsley et al, 2010). The data collection and
refinement statistics for these structures are shown in the Tables SI2-SI5 of Supporting

Information.

2.2.8 Bioinformatic Analysis
Putative orthologues to BT2127 and the pyrophosphatase from Themococcus
onnurineus TONO002 were identified by carrying out BLAST searches of the NCBI

microbial genome bank (http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi) and

selecting those sequences in which the key marker residues are conserved. The multiple

sequence alignments were made in Cobalt (http://www.ncbi.nlm.nih.gov/tools/cobalt/)

and displayed in ESPript (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cqi).

In order to compare biological ranges of BT2127 and Beta-PGM a more
automated approach was employed. BLAST searches were performed for BT2127, Beta-
PGM, maltose phosphorylase, and trehalose phosphorylase using a locally installed copy

of BLAST against the NCBI non-redundant protein database (ftp:/ftp.ncbi.nih.
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gov/blast/db/) with default parameters. The resulting hits were filtered for query coverage
>90% and >30% sequence identity. A reciprocal BLAST search, using an e-value
threshold of 1e-10, was performed for each filtered hit. A hit was considered successful
if the reciprocal BLAST search identified the initial query sequence. For each successful
hit, taxonomic information was downloaded from NCBI taxonomy website

(http://www.ncbi. NIm.nih.gov/Taxonomy/taxonomyhome.html/). For the selection of -

PGM orthologues, only species with a maltose or trehalose phosphorylase gene were
considered. A phylogenetic tree for the orthologues was generated using iTOL -

interactive Tree Of Life (http://itol.embl.de/) and visualized using FigTree

(http://tree.bio.ed.ac.uk/software/fig tree/).

2.3 Results and Discussion
2.3.1 BT2127 Substrate Specificity Profile

Because the closest characterized structural homolog of BT2127 is Beta-
phosphoglucomutase (Beta-PGM), the ability of purified recombinant BT2127 (see SDS-
PAGE gel in Figure 2.1) to catalyze the conversion of Beta-glucose-1-phosphate to
glucose-6-phosphate in the presence of the cofactor Beta-glucose-1, 6-bisphosphate was
tested. No activity was observed above the detection limit of one catalytic turnover per

hour.
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Figure 2.14: Commassie blue stained SDS-PAGE gel of purified BT2127 (Q8A5V9).
Next, the BT2127 phosphatase activity was tested using a structurally diverse
chemical library of 21 organophosphate metabolites as the substrate screen (Table 2.1).
The most active substrates identified by this screen were further analyzed to determine
Kearand Kea/ Ky Values (Table 2.2) at the pH optimum of 7.5 (pH rate profile is shown in

Figure 2.2).
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Table 2.1: The apparent first order rate constants for BT2127 catalyzed hydrolysis of
phosphate esters and anhydrides at pH 7.5 and 25 °C. Reaction solutions initially
contained 0.3 mM substrate, 8.4 uM BT2127, 1 mM MgCl,, 1.0 unit/mL purine
nucleoside phosphorylase and 0.2 mM MESG in 50 mM Tris (pH 7.5). The Kqps Value
was calculated by dividing the initial velocity of the reaction by the enzyme

concentration.

Substrate Kobs (Min™) Substrate Kobs (mMin™)

Pyrophosphate 19 [ I Hucose-1-P 0.10
Imidodiphosphate 0.06 GMP 0.38
Glyceraldehyde 3-P 0.17 UDP 0.17
Glycerate-3-P 0.31 ATP 0.20
D-erythrose-4-P 0.20 dATP 0.18
Dihydroxyacetone phosphate 0.30 Farnesylpyrophosphate 0.059
Glycerol-2-P 0.49 PLP NA?
Glucose-1-P 0.12 CTP NA?
Glucose-6-P 0.19 Serine-3-P NA?
Fructose-6-P 0.32 Threonine P NA®

[ 1fucose-6-P 0.21

% NA represents no detectable activity.
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Table 2.2: Steady-state Kinetic constants for BT2127-catalyzed hydrolysis of
pyrophosphate and selected phosphate monoesters at 25 °C and pH 7.5. See Materials
and Methods for Details.

Substrate Keat (s Km (MM) Keat! K (M7's™)
pyrophosphate 0.32+£0.01 0.0036 + 0.0004 9 x 10
glycerol-1-phosphate 0.35 +0.02 48+0.3 7 x 10"
D-ribose-5-phosphate 0.20 + 0.02 3.8+0.3 6 x 10"
fructose-6-phosphate 0.066 + 0.002 6.4+0.2 1x 10"
uridine-5-phosphate 0.15+£0.01 2604 6 x 10"
p-nitrophenylphosphate | 0.0019 + 0.0004 0.05+0.01 4x 10"
6
5
a4
3
® Log(kcat/Km)
2
O Log(kcat)
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Figure 2.15: The pH rate profiles measured for BT2127 catalyzed hydrolysis of
pyrophosphate. (See the Materials and Methods section for details).

The Keat value is governed by the rate-limiting step of the two-step reaction:
phosphoryl transfer from the bound substrate to the Asp nucleophile followed by
hydrolysis of the aspartyl-phosphate intermediate (Figure 2.3). Variation in the ke value

with substrate structure indicates that the first step is rate-limiting (or at least partially
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rate-limiting) and that some substrates bind more productively than others. The largest
keat Value was measured for the substrate inorganic pyrophosphate (0.3 s™). Inorganic
pyrophosphate exists in the cell as the magnesium complex, and it undergoes
spontaneous hydrolysis to two molecules of orthophosphate at the reported rate of 2.8 x

1095 (at 25 °C, pH 8.5) [11]. BT2127 thus increases the hydrolysis rate ~1 x 10°-fold.

i Asp acid/base
Asp acidibase Asp acid/base p
o (0] I é
o I O—&— HO_C_§
S b HO-C—, S o 0 [ S S Q
__C-O o 4 M 0 > N
g NG ;—C RO c
0-P-OR R*:OHE 5O, 3 o
oA ijeH Asp nucleophile I
Asp nucleophile O Asp nucleophile P P “0—P—OH
o

Figure 2.16: The HADSF phosphatase chemical pathway.

The ke K value (also known as the substrate specificity constant) is determined
by the substrate binding affinity as well as by the efficiency that the bound substrate is
converted to product. Because the concentration of the substrate in the cell is likely to be
sub-saturating, the kc./Kn value is most useful for identifying substrates that have

physiologically relevant activities. HADSF phosphatases that target a single
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physiological substrate typically display a kea/Km Value in the range of 1 x 10° to 1 x 10’

M™ st whereas those that function as regulators of the level and composition of
organophosphate metabolite pools typically have K., values in the mini-molar range and
Keat/Km values in the 1 x 10° to 1 x 10* M s range. The kea/Knm value of ~1 x 10° M s
measured for inorganic pyrophosphate qualifies it as a candidate for physiological
substrate. Furthermore, the fact that the screen did not identify other substrates with
physiologically relevant activities suggests that BT2127 might indeed function in vivo as

an inorganic pyrophosphatase.

2.3.2 BT2127 Structure Determination

The structure of BT2127 was examined in order that we might identify the
structural determinants of substrate recognition. A total of 13 X-ray structure
determinations were carried out with wild-type enzyme and the D11N, D13A, D13N and
E47A, E47D, and E47N mutants. The crystallization conditions (Table 2.3) and the
crystallographic and refinement statistics are reported in Supporting Information (Tables
2.4-2.7). The different crystallization conditions led to different crystal packing and to
different ligands in the active site. All crystallizations were carried-out in the presence of
5 mM MgCl,, however only six of the structures (PDB codes 3QU2, 3QU4, 3QU9,
3QUQ, 3QUT and 3QX7) contained Mg?®* within the active site. In two of the structures
(PDB codes 3QU7 and 3QYP) Ca?* derived from the crystallization solution, replaced
the Mg®*. Co-crystallization of each enzyme was attempted with pyrophosphate as well

as with its analog imidodiphosphate (a competitive inhibitor with a Kj =13 + 1 uM
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(Figure 2.4), but without success. Crystal soaking with these two ligands also failed to
place the intended ligand in the active site. Three structures derived from the
pyrophosphate-soaked crystals (PDB codes 3QYP, QX7 and 3QUY7) contained the

hydrolysis product phosphate.
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Figure 2.17: Inhibition plot for BT2127 with Imidodiphosphate under different fixed
concentrations of pyrophosphate.
The structures of the BT2127 mutants showed that the wild-type native
conformation, including the active site residue side chains, was retained. Therefore, the

reduction in catalytic activity in the mutants (vide infra) is attributed to a loss of side

chain function and not to an alteration of the native conformation.
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Table 2.3: A list of the crystallization conditions used for wild-type and mutant BT2127.

BT2127 | PDB code| Crystallization conditions

0.1 M sodium citrate, pH 5.6, 30% PEG4000, 0.2 M ammonium
WT 3QU2

acetate, 5 mM, MgCl,, 294 °K
WT 30XG 5 mM MgCl,, 294 °K
WT 3QUQ 0.1 M Bis-Tris, pH 6.5, 25% PEG3350, 0.2 M MgCl,, 294 °K
WT 3QX7 0.056 M sodium phosphate monobasic, pH 8.2, 1.34 M

potassium phosphate dibasic, 5 mM MgCl,, 294 °K
D1IN | 3QUS5 0.1 M Bis-Tris, pH 6.5, 25% PEG3350, 0.2 M MgCl,, 294 °K

0.1M MES, pH 6.0, 20% PEG8000, 0.2 M calcium acetate,5 mM
D13A | 3QuU4

MgCl,, 291 °K

0.1 M potassium sodium tartrate, pH 8.0, 0.1 M imidazole, 0.2 M
D13N | 3QU9

NaCl, 5 mM MgCl,, 294 °K

0.1 M sodium acetate, pH 4.5, 30% PEG400, 0.2 M calcium
D13N | 3QU7

acetate,5 mM MgCl,, 294 °K
D13N 3QUT 0.15 M Malic acid, pH 7, 20% PEG3350, 5 mM MgCl,, 294 °K

0.1 M Tris-HCI, pH 8.5, 30% PEG4000, 0.2 M LiSO4, 5 mM
E47D | 3R9K

MgCl,, 294 °K

0.2M MES, pH 6.0, 20% PEG8000, 0.2 M calcium acetate,5 mM
E47N | 3QYP

MgCl,, 294 °K

0.1 M Tris-HCI, pH 8.5, 30% PEG4000, 0.2 M LiSO4, 5 mM
E47N | 3QUC

MgCl,, 294 °K

0.1 M Tris-HCI, pH 8.5, 30% PEG4000, 0.2 M LiSO4, 5 mM
E47A | 3QUB

MgCl,, 294 °K
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Table 2.4: Data collection and refinement statistics for the wild-type BT2127 crystals.

PDB ID 3QUQ 3QU2 30QX7 3QXG
Cap orientation Opened Closed Closed Closed
Space group P212121 C2 P3121 C2
Unit cell dimensions (A) - - - -
-a 45.20 137.60 84.58 114.07
-b 65.34 71.76 84.58 70.59
-C 75.62 114.53 79.27 76.32
Cell angles (degrees) - - - -
-alpha 90.00 90.00 90.00 90.00
-beta 90.00 105.80 90.00 119.77
-gamma 90.00 90.00 120.00 90.00
Molecules per asymmetric 1 4 1 9
unit
Solvent content 38.42 51.25 61.05 50.18
Matthew’s Coefficient 2.00 2.52 3.16 2.47
X-raV Source NSLS NSLS NSLS NSLS
y X29A X29A X29A X29A
Wavelength 1.0750 1.0809 0.9791 0.9791
Resolution 49.45-1.65 | 40.00-1.94 | 20.00-2.00 | 50.00-1.24
Reflections 28,023 79,445 22,599 147,352
Completeness (%) 99.2 (92.1) | 99.3(93.1) 95.00 99.0 (86.0)
I/sigma (1) 6.10 (3.00) | 3.40(1.20) | 7.40(1.00) | 7.40 (0.90)
0.092 0.124 0.078
?
Rsym (Rmerge) (0.530) (0.800) (0.900) 0.056 (?)
Rwork (Rfree) 16.4 (17.8) | 23.4(27.5) | 19.1 (24.3) | 15.2 (18.2)
Rfree reflections (%) 683 (3.2%) | 2349 (3%) | 683 (3.2%) (gﬁz)
Average B factor (overall) 23.69 20.31 58.11 22.23
-amino acid residues 22.54 19.78 58.15 20.26
33.12 25.21 56.95 35.98
Root-mean square deviation - - - -
-bond lengths 0.011 0.010 0.011 0.012
-bond angles 1.293 1.273 1.293 1411
Ramachandran 99.1(0.9) | 99.1(0.9) | 98.7(1.3) | 98.8(1.2)
Number of solvent molecules 98 649 98 525
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Table 2.5: Data collection and refinement statistics for the BT2127 D11N crystals.

PDB ID 3QU5
Mutation D11N
Cap orientation Closed
Space group P21
Unit cell dimensions (A) -
-a 42.80
-b 77.21
-C 70.76
Cell angles (degrees) -
-alpha 90.00
-beta 90.41
-gamma 90.00
Molecules per asymmetric unit 2
Solvent content 45.44
Matthew’s Coefficient 2.25
Wavelength 0.9786
Resolution 40.00-1.24
Reflections 129,987
Completeness (%) 96.3 (68.4)
I/sigma (1) 8.00 (1.40)
Rsym (Rmerge) 0.043 (0.550)
Rwork (Rfree) 13.0 (16.0)
Rfree reflections (%) 3775 (3%)
Average B factor (overall) 22.35
-amino acid residues 19.62
-waters 35.36
Root-mean square deviation -
-bond lengths 0.011
-bond angles 1.407
Ramachandran favored/allowed (%) 99.4 (0.6)
Number of solvent molecules 764
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Table 2.6: Data collection and refinement statistics for the BT2127 D13 mutant crystals.

PDB ID 3QU4 3QUT 3QU7 3QU9
Mutation D13A D13N D13N D13N
Cap orientation Closed Opened Closed Closed
Space group Pl P212121 C2221 P3121
Unit cell dimensions (A) - - - -
-a 69.94 45.47 72.55 84.17
-b 76.22 65.40 136.87 84.17
-C 95.59 76.17 114.83 79.36
Cell angles (degrees) - - - -
-alpha 89.97 90.00 90.00 90.00
-beta 89.97 90.00 90.00 90.00
-gamma 90.00 90.00 90.00 120.00
Molecules per asymmetric | 8 1 2 1
Solvent content 47.95 38.42 53.48 59.60
Matthew’s Coefficient 2.36 2.00 2.64 3.04
X-ray source NSLS NSLS NSLS NSLS
Wavelength 1.5418 0.9791 0.9792 1.0750
Resolution 50.00-2.00 | 50.00-1.50 |50.00-1.90 | 40.00-1.87
Reflections 133,986 37,187 45,325 27,292
Completeness (%) 93.2 (83.9) 100.0 99.8 (99.5) | 99.1 (92.8)
(100.0)

I/sigma (1) 4.50 (0.60) | 7.40(3.00) | 7.70(2.00) | 8.10(1.00)

0.101 0.067 0.053 0.069
Rsym (Rmerge)

(0.730) (0.600) (0.680) (0.820)
Rwork (Rfree) 21.8 (28.6) | 14.5(17.2) | 19.0(22.6) | 20.9 (25.2)
Rfree reflections (%) 3211 (3) 1152 (3.1) | 1408 (3.1) |826(3.2)
Average B factor (overall) 36.17 25.13 47.74 51.00
-amino acid residues 36.24 23.78 47.63 50.92
-waters 35.32 35.55 49.74 52.02
Root-mean square deviation - - - -
-bond lengths 0.009 0.011 0.009 0.011
-bond angles 1.177 1.387 1.202 1.352
Ramachandran 98.3(L7) |98.7(1.3) |98.7(L3) |97.0(3.0)
Favored/allowed(%)

082 243 275 110
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Table 2.7: Data collection and refinement statistics for BT2127 E47 mutant crystals.

PDB ID 3QUB 3RIK 3QUC 3QYP
Mutation E47A E47D E47N E47N
Cap orientation Closed Closed Closed Closed
Space group P3121 P3121 P3121 P21
Unit cell dimensions (A) - - - -
-a 85.38 84.60 84.72 42.94
-b 85.38 84.60 84.72 77.18
-C 78.92 79.24 79.21 70.80
Cell angles (degrees) - - - -
-alpha 90.00 90.00 90.00 90.00
-beta 90.00 90.00 90.00 90.21
-gamma 120.00 120.00 120.00 90.00
Molecules per asymmetric unit | 1 1 1 2
Solvent content 59.60 59.60 59.60 43.50
Matthew’s Coefficient 3.04 3.04 3.04 2.17
NSLS NSLS NSLS NSLS
X-ray source
X29A X29A X29A X29A
Wavelength 1.0750 1.0750 1.0750 0.9792
Resolution 40.00-1.90 |50.00-1.80 | 50.00-1.87 | 50.00-1.60
Reflections 27,369 30,588 27,575 61,148
Completeness (%) 99.1(99.6) | 99.7 97.2 (95.3) | 95.3(69.0)
I/sigma (1) 4.60 (1.00) |8.50(1.20) | 4.30(1.20) | 9.50 (1.00)
Rwork (Rfree) 19.8 (24.3) | 19.0(22.7) | 21.6 (28.3) | 18.5(21.7)
Rfree reflections (%) 846 (3.2%) | 966 (3.2%) | 703 1776
Average B factor (overall) 43.06 44.14 57.09 29.12
-amino acid residues 42.58 43.57 57.04 28.16
-waters 47.80 49.74 58.06 36.31
Root-mean square deviation - - -
-bond lengths 0.010 0.011 0.010 0.012
-bond angles 1.253 1.225 1.256 1.343
Ramachandran favored/allowed | 99.1 (0.9) [98.3(1.7) ]98.7(1.3) |99.6(0.4)
191 192 127 467
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Quaternary Structure. The theoretical mass of BT2127 minus its N-terminal Met is
26,983 Da compared to 26,970 Da determined by mass spectrometry. The SDS-PAGE
analysis (Figure 2.1) gave an estimated subunit mass of 27 kDa. The native mass was
determined by using molecular size gel filtration chromatography to be 27-28 kDa. Thus,
BT2127 is a monomer. Seven of the structure determinations revealed only a single
protein molecule in the asymmetric cell (PDB codes 3QU9, 3QUB, 3QUC, 3QUQ,

3QUT, 3QX7 and 3RIK).

Tertiary Structure. BT2127 possess the conserved HADSF Alpha/Beta Rossmann-like
catalytic domain comprised of a six-stranded parallel Beta sheet (Betal, and Beta4-
Beta8) surrounded by six helices (Alphal-Alpha3, and Alpha5-Alpha7) and the type C1A
tetra-Alpha-helical cap domain inserted between Betal and Alphal. Well-characterized
members of the C1A class include Lactobacillus lactis Beta-PGM (Z-score 10.2) [12]
and Bacillus cereus phosphonatase (Z-score 7.8) [13]. The superposition of the structure
of BT2127 with that of Beta-PGM is shown in Figure 2.5. The C1A type cap domains of
BT2127 and Beta-PGM superimpose with a RMSD of 2.4 A (13.4% identity), whereas
the two catalytic domains superimpose with a RMSD of 1.9 A (26.7% identity). The
closest homolog (Z-score 14.7) is the HADSF member PDB code 3DV9 from
Bacteroides vulgatis, which is annotated “putative Beta-PGM”. As detailed below I posit

that this protein is not Beta-PGM but rather a pyrophosphatase, orthologue to BT2127.
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Figure 2.18: Superposition of BT2127 (PDB code 3QX7) (gray) and L. lactis Beta-PGM

(PDB code 1008) (cyan).

Cap Domain-Catalytic Domain Association. CA1 cap motion has been most thoroughly
studied with L. lactis Beta-PGM for which crystallographic snapshots of the enzyme in
the cap-open and cap-closed conformations have been obtained (see superposition in
Figure 2.6) [14,15], The snapshots of BT2127 reveal a cap-closed conformation that is
similar to that of Beta-PGM (Figure 2.5) and a cap-open conformation that is not as open

as that observed for Beta-PGM (Figure 2.6).
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Figure 2.19: (Left) Superposition of the cap-open (royal blue) and cap-closed (cyan)
conformations of L. lactis Beta-PGM (PDB codes 1ZOL and 1008). (Right)
Superposition of the cap-open (black) and cap-closed (gray) conformations of BT2127
(PDB codes 3QUQ and 3QX7).

In the case of Beta-PGM the cap and catalytic domains associate for catalysis and
dissociate to allow ligand exchange. An earlier crystallographic based analysis of the
“clam-like” domain movement in Beta-PGM using DynDom (Hayward 1997 ) indicated
That the cap and catalytic domain move as rigid spheres and that the movement is

primarily the result of changes in backbone conformations (psi and phi angles) at
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domain-domain linker 1 hinge residues Thrl14-Aspl5-Thrl6-Alal7 [16]. The more
modest domain movement observed in BT2127 is attributed to changes in phi and psi
angles at linker 1 hinge residues Ser19-Met20-Pro21 and linker 2 hinge residues Pro87-
Glu88-Ala89-Glu90-Arg91. The rotation angle between the cap and catalytic domains in
BT2127 is 16.3 degrees, with a translation of -0.6 A and a closure percentage of 99.6%.
As seen with Beta-PGM, the BT2127 cap and core domains must dissociate in order for
pyrophosphate to bind to the active site and phosphate to depart from it because only in
the cap-open conformation is there solvent access to the active site.

Crystallographer Jeremiah Farelli used the program Voidoo (http://xray.bomc.uu
se/usf/voidoo.html) was to calculate the volume of the active sites of BT2127 (189.8 A%)
and Beta-PGM (285.1 A% in their cap-closed conformations. Next, the volumes of
pyrophosphate (99.4 A% and Beta-glucose-1,6-bisphosphate (242.5 A®) were calculated
using the molinspiration server  (http://www.molinspiration.com/).  Whereas
pyrophosphate is small enough to fit in the active site of BT2127, Beta-glucose-1,6-
bisphosphate is not. Models of the BT2127 bound with pyrophosphate and Beta-glucose-
1,6-bisphosphate were generated to show the fit of the ligand in the 3-dimensional space
available within the active site cavity (Figure 2.7). Whereas the pyrophosphate can be
easily docked in a productive binding mode without steric clash, the larger Beta-glucose-
1,6-bisphosphate ligand cannot fit without the cap dissociating to some extent from the

core domain.
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Figure 2.20: The active site of BT2127 in the cap-closed conformation (PDB code
3QX7) showing the unfilled area (mesh) calculated in Voidoo and the pyrophosphate and
Beta-glucose-1,6-bisphosphate ligands modeled in Coot. Oxygen atoms are colored red,
carbon atoms cyan and phosphorus atoms orange.

| posit that the cap-open and cap-closed conformations observed in the BT2127
crystal structures are not artifacts of crystal packing because the different crystallization
conditions led to different crystal packing and different ligands in the active site.

Substrate binding and product release would occur with the cap-open conformer whereas
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catalysis would occur with the cap-closed conformer. The low level activity that is
observed with the larger substrates (Table 2.1 and 2.2) might be rationalized by catalytic
turnover in a conformer in which the cap domain is partially dissociated to enlarge the
active site cavity.
Active Site. The active site scaffold of the HADSF phosphotransferase catalytic domain
consists of a 4-loop platform on which the conserved catalytic residues are located: the
Asp nucleophile and Asp acid/base on loop 1; the Thr/Ser and Lys hydrogen bond donors
to the transferring phosphoryl group on loop 2 and 3, respectively; the Asp/Glu Mg®*
ligand on loop 4 [17]. Figure 2.8 shows the residues surrounding the Mg?®* cofactor in the
BT2127-Mg complex and the interacting residues in the BT2127 E47N-Ca-phosphate
complex. As observed with other HADSF phosphotransferases, the Mg?* is coordinated
to the loop 1 Asp nucleophile (Aspll) carboxylate group and Asp acid/base (Aspl3)
backbone amide C=0 (2.2 A). However, the BT2127 loop 4 Asp171 is not positioned to
coordinate the Mg?* but instead is positioned to form a hydrogen bond (2.7 A) to one of
the two Mg®" water ligands. It is the loop 4 Asn172 that forms a coordination bond with
the Mg®* (2.3 A). A second deviation from the classical HADSF Mg?* binding site [18,
19] is the identity of the sixth ligand, Glu47 (2.0 A), which is located on the specificity
loop of the cap domain (Thr50-Arg49-Gly48-Glu47).

From the structure of BT2127 E47N bound with phosphate and Ca** at the
catalytic site we observe that an oxygen atom of the phosphate ligand replaces a water
ligand (Figure 2.8). The phosphate ligand also is engaged in numerous hydrogen bond

interactions with the active site residues: loop 2 Thr113 and loop 3 Lys147 side chains,
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and loop 1 Asp13, loop 2 Gly114 & Ser115 backbone amide NHs.

Figure 2.21: (Left) The Mg®* binding site observed structure of wild-type BT2127 bound
with Mg** (PDB code 3QUQ). (Right) The phosphate binding site observed in the
structure of the BT2127 E47N mutant bound with phosphate and Ca®* (PDB code
3QYP). Oxygen atoms are colored red, nitrogen atoms blue and phosphorus atoms
orange. The Mg?" is shown as a magenta sphere, the Ca®* as a green sphere and the water
molecules are represented as red spheres. Coordination bonds are shown as dashed purple
lines and hydrogen bonds as dashed black lines.

In order to best illustrate the key interactions in the context of the pyrophosphate
substrate, a model of the BT2127 active site (cap-closed conformer) with pyrophosphate
bound in an orientation that superimposes the transferring phosphoryl group on the

phosphate ligand of the BT2127 E74N-Ca-phosphate structure was made (by Jeremiah
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Farelli) (Figure 2.9). Only one P-O-P rotomer conformation placed the phosphate-
leaving group within the vacant space defined by the VVoidoo analysis (vide supra). Here

it can engage in hydrogen bond formation with a water molecule that is bound to cap
domain Trp27 and with the backbone amide NH of cap domain residue Gly48 and
catalytic domain Serl15. Moreover, the Aspl3 acid/base is positioned to donate a
hydrogen bond to a non-bridging oxygen atom, and possibly to the bridging oxygen

atom, of the phosphate-leaving group.

Glu171
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Figure 2.22: The BT2127 active site with pyrophosphate (manually docked). The Mg
is shown as a magenta sphere and the water molecules are represented as red spheres.
Oxygen atoms are colored red, nitrogen atoms blue and phosphorus atoms orange.
Coordination bonds are shown as dashed purple lines and hydrogen bonds as dashed
black lines.

It is noteworthy that at pH 7.5 the pyrophosphate is monoprotonated (pK; = 9.3)
and if it were to bind with the protonated phosphate group in the leaving-group position,
then there would be no need of acid catalysis. On the other hand, it has been suggested
that the Asp acid/base of the HADSF phosphotransferases is protonated by the substrate
phosphate ester, which binds to the active site in the monoprotonated form and upon
coordination with the Mg?®" loses its proton [16]. Thus, in order for the Aspl3 to be
protonated the pyrophosphate would have to be fully ionized.

Interestingly, by replacing the pyrophosphate bridging oxygen atom with an “NH”
as in imidodiphosphate tight binding to BT2127 is retained (K; = 13 + 1uM) but catalytic
turnover is greatly diminished (Table 2.1). We infer from this observation that the Asp13
is not able to protonate the bridging nitrogen atom most likely owing to steric
restrictions. In contrast, several of the 23 E. coli HADSF phosphatases examined by
Kuznetsova et al [1] showed significant hydrolase activity with imidodiphosphate but
curiously, not with pyrophosphate.

The transferring phosphate group of the modeled pyrophosphate is positioned to

coordinate with the Mg?* and to form hydrogen bonds with the side chains of loop 2
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Thr113 and loop 3 Lys147 and with the backbone amide NHs of loop 1 Asp13 and loop 2

Glyl114 (Figure 2.10).

Ser1g
His23 5 Lys45
Thri6
Lys79

Lys78

Glu171

b Lys147
Lys145 ¥

51



Figure 2.23: (Top) Superposition of BT2127 (gray) bound with phosphate and Mg*
(PDB code 3QX7) and B-PGM (cyan) bound with Mg?* and B-glucose-1,6-bis-phosphate
(PDB code 1008). (Bottom) Zoom in on the active site.

An interesting side note is the position that phosphate ligand assumes in the
structure of wild-type BT2127-Mg-phosphate complex (PDB code 3QX7). Superposition
of this structure with the structure of L. lactis Beta-PGM bound with Beta-glucose-1,6-
bisphosphate places the phosphate ligand at the same position that the non-transferring
phosphoryl group is found (i.e., C6-phosphate) (Figure 2.10). It is tempting to speculate
that once formed the phosphate product in the BT2127 active site it might diffuse into
this vacant space to make room for the water nucleophile, which will undergo in-line
attack at the phosphorus atom of the aspartylphosphate intermediate in the second step of
the reaction (Figure 2.3). Alternatively, the movement of the phosphate into the cap

domain might trigger cap dissociation.

2.3.3 Site Directed Mutagenesis of BT2127 Active Site and Domain-Domain
Interface Residues

The individual contributions that the active site residues make to catalysis were
evaluated by site-directed mutagenesis coupled with steady-state kinetic analysis of the
mutant enzymes in catalysis of pyrophosphate hydrolysis. The mutants that did not
display activity above background are listed in Table 2.8 as not active (“NA”). The
mutants that displayed detectable yet very low activity were evaluated by measuring the

initial velocity of the reaction using a concentration of pyrophosphate (300uM) that we
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assume to be saturating. The ratio of the initial velocity and the enzyme concentration
gives an approximate kg, value (i.e, turnover rate). For the mutants that displayed higher

activity, ket and Ky, values were measured.

Table 2.8: Steady-state kinetic constants for wild-type and mutant BT2127-catalyzed

hydrolysis of pyrophosphate at 25 °C and pH 7.5. See Materials and Methods for Details.

BT2127 Keat (Min™) Ko (CIM) Keat/ Kip (M s
Wild-type 1.9 (+ 0.06) x 10 3.6+0.4 8.9x10
D1IN NA* | e
D13A NAY ] e e
D13N NA* | e
K147A ~2x10%°* | e
N172A 7.4 (+1.8)x 10" 45+0.3 3x10°
T113A 4.0 (+0.03) x 10" 5.9+0.2 1x10°
S115A 8.4 (+ 0.12) x10™ 36+04 4 x 10°
T50A 4.1 (+0.18) x 10" 2.7+0.7 3 x 10°
R49A ~3x10°" | e
K79A ~2x10°" | e
H23A 3.3 (+0.06) x 10" 1.2 (+ 0.08) x 10 5 x 10°
M20A ~51x10°" | e
M20K 2.4 (+0.04) x 10" 2.5 (+0.3) x 10" 2 x10°
M20L 5.8 (+ 0.04) x 10 35+0.1 3x10°
E47A ~3x10° | e |
E47Q 4.8 (+0.4) x 10™ 6+1 1x10°
E47N ~3x10°" [ e
E47D ~3x10°* | e
S80A 1.7 (£ 0.04) x 10™ 7.1+0.9 4.1 x 10°
Q117A ~3x10%°* | |
Y76F ~2x10°" | e
S19A ~2x10°* | e

2 NA represents no activity detected above the detection limit ey < 0.001 min™.
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® The rate was determined by measuring the initial velocity of orthophosphate formation
(UM/min) and dividing that value by the enzyme concentration. Reaction solutions
initially contained 10 uM enzyme, 300uM pyrophosphate, 1 mM MgCl,, 1.0 unit/ml

purine nucleoside phosphorylase, and 0.2 mM MESG in 50 mM Tris (pH 7.5).

Table 2.9: The apparent first order rate (kops (Min™)) constants for BT2127 catalyzed
hydrolysis of phosphate esters and anhydrides at pH 7.5 and 25 °C. Reaction solutions
initially contained 300 uM substrate, 8.4 UM mutant BT2127, 1 mM MgCl,, 1.0 unit/mL
purine nucleoside phosphorylase and 0.2 mM MESG in 50 mM Tris (pH 7.5). The Kops
value was calculated by dividing the initial velocity of the reaction by the enzyme

concentration.

Substrate | wild-type E47A E47N M20A M20L M20K

Ppi 1.9x10" | 47x10" | 55x10” | 84x10" | 3.1x10”° | 6.5x10°

D-ribose5P | 2.0x10" | 25x10* | 7.3x10* | 1.3x10° | 21x10° | 2.3x10™

glycerollp | 3.5x 10" | 44x10* | 46x10* | 48x10° | 4.2x10° | 40x 107

PNPP 58x10° | 42x10* | 3.8x10% | 21x10° | 26x10° | 46x10°

fructose6p | 5.3x10° | 25x10* | 9.5x10° | 44x10* | 1.6x10° | 3.6x 10"

UMP 15x 1071 | 216 x10° | 2.6 x10* | 3.16x10* | 1.6x10° | 3.7x10°

imidodip | 1.03x10 | 6.2x 10> | 2.2x 10" | 6.0x10° | 3.1x10° | 44x10”

glucoselp | 20x10° [ 1.1x10* | 95x10° | 84x10* | 1.3x10° | 2.9x107

glucosebp | 3.2x10° | 1.9x10* | 2.9x10* | 2.8x10* | 6.2x10* | 3.7x 107

[0A516p | 41x10° | 3.0x10° | 28x10° | 6.3x 10" | 6.7x 10" | 1.5x 10"

R-fucoselp | 3.5x 107 | 2.3x10* | 9.2x10* | 25x 10" | 21x10° | 1.6 x 10™

a-fucoselp | 1.7 x10° | 55x10* | 3.2x10* | 2.3x10* | 1.9x10° | 9.1x 10"

glycerol2p [ 8.16 x 10| 2.1x10* | 27x10* | 1.6 x10* | 1.6 x10”° | 3.7x 107

serine3p | 3.3x10° | 1.4x10" | 41x10* [ 3.5x10* | 1.0x10° | 3.5x10°

Firstly, we tested the impact of Ala and/or Asn replacement of the key catalytic
residues Aspll and Aspl3, both of which are stringently conserved (see multiple

sequence alignment of putative BT2127 orthologues in Figure 2.11). Not surprisingly,
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given that the Asp nucleophile and Asp acid/base are known to be essential to HADSF
phosphatase catalysis, Ala and/or Asn replacement of BT2127 Aspl1l or Aspl3 removed
all detectable activity (Table 2.8). However, the observation of a phosphate ligand in the
active sites of pyrophosphate-soaked crystals of BT2127 D13N indicates that a single
turnover reaction had occurred during the 15 min soaking time or within the frozencrystal
during data collection.

Ala replacement of the residues that contribute to the positioning of the Aspl3
acid-base: Serl19, His23, Serll5 and Met20 (each of which is stringently conserved)
reduced the turnover rate 950, 60, 230 and 370-fold, respectively. The Met20 was also
replaced by Leu and by Lys. The M20L and M20K mutants were found to be 330 and 80-
fold lower in turnover rate compared to that of the wild-type BT2127. Because the Met20
side chain restricts both the volume and the polarity of the region available to
accommodate the substrate leaving-group we tested the activities of M20A, M20L and
M20K towards the same panel of phosphate esters that were used to screen the wild-type
enzyme. The objective was to determine if creating additional space (Ala for Met with
Leu as the control) at the binding site might facilitate catalyzed hydrolysis of a larger

substrate.
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Figure 2.24: Multiple alignment of the amino acid sequences of BT2127 orthologues.

Likewise, we wished to determine if the placement of positively charged side
chain (Lys for Met with Leu as the control) that might favorably interact with the
phosphate-leaving group might enhance activity towards pyrophosphate. The results
(reported in Table 2. 9) indicate that the substrate specificity of the mutants was not
significantly different than that of wild-type BT2127.

The coordination of the Mg®* by the loop 1 Asp nucleophile and by the backbone
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amide C=0 of the Asp acid-base is observed in all structurally characterized HADSF
phosphatases and an Asp or Glu residue located on loop 4 adds a third ligand. In some
cases an Asp or Glu also located on loop 4 forms a hydrogen bond with a water ligand
bound to the Mg®* cofactor. To my knowledge the collaboration between a loop 4 amide
(Asn172) and cap domain specificity loop carboxylate (Glu47) to augment the Mg
binding by the two loop 1 Asp residues has not previously been reported. The Ala
replacement of the stringently conserved Asnl172 resulted in only a 26-fold reduction in
turnover rate. In contrast, Ala replacement of the stringently conserved Glu47 resulted in
~6000-fold decrease in turnover rate and the same reduction is observed with the E47D
and E47N mutants. The E47 might be required for Mg®* binding and/or for productive
binding of the cap and catalytic domains (E47 remains coordinated to the Mg?* in the
cap-open conformation). Notably, the structures of the three E47 mutants (PDB codes
3QUB, 3R9K, 3QUC, 3QYP) crystallized in the presence of Mg®* conserve the positions
of the Asp11 and Asn172 side chain and the Asp13 backbone amide C=0 yet the Mg®* is
absent, and the enzyme is in the cap-closed conformation. In contrast, the E47N mutant
crystallized in the presence of Ca?* (PDB code 3QYP) contains Ca** and it is coordinated
to the loop 1 and 4 ligands as well as to the Asn47. The larger coordination sphere of
Ca®* apparently compensates for the shortened reach of the Asn side chain (see Figure
2.8). The replacement of Glu47 with Gln would allow Mg®* coordination and this is
reflected in the comparatively higher activity of this mutant which has a turnover rate that
is decreased only 40-fold from that of the wild-type enzyme (Table 2.8). These findings

suggest that E47 rather than the loop 4 Asn172 plays the key role in Mg®* binding. The
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E47-Mg** coordination is the likely reason why the cap domain does not dissociate from
the catalytic domain to the extent observed with 3-PGM.

The Thrl13 and Lys147 activate the transferring phosphoryl group via hydrogen
bond formation (Figures 2.8 and 2.9). Both are stringently conserved, and we found that
the turnover rate was reduced 42-fold in the case of the T113A mutant and 9,500-fold in
the case of the K147A mutant.

The stringently conserved cap domain residue Lys49 is not close enough to the
catalytic site for direct interaction with pyrophosphate. It does however, form a hydrogen
bond with stringently conserved cap domain His23, which in turn forms a hydrogen bond
with the catalytic domain Asp13 acid/base (Figure 2.9). Whereas the turnover rate of the
K49A mutant was found to be 950-fold slower than that of the wild-type BT2127, that of
the H23A mutant was reduced only 60-fold. Thus, Lys49 appears to contributing to
catalysis in some way beyond simply serving as a hydrogen bond partner to His23 (vide
infra).

Additional mutants were examined to evaluate the contributions made by residues
located at the domain-domain interface, which appear from the structures to stabilize the
cap-closed conformation through hydrogen bond formation with a partner located on the

opposing domain (Figure 2.12).
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Figure 2.25: Interactions at the BT2127 cap domain (yellow)-catalytic domain (gray)
interface.

Firstly, the stringently conserved GInl1l7 of the catalytic domain forms a
hydrogen bond with cap domain residue Ser80 (replaced with Thr, Ala or Arg in 8 out of
33 sequences). Ala replacement of GInl117 reduced the turnover rate 630-fold whereas

Ala replacement of Ser80 reduced the turnover rate 110-fold. Secondly, the stringently
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conserved Tyr76 located on the inter-domain linker 2 is almost close enough (3.7 A) for
hydrogen bond formation with the backbone amide NH of catalytic domain GIn117 and
Gly116 (highly conserved; replaced with Ala in 1 out of 33 sequences). The conservative
replacement of Tyr76 with Phe reduced the turnover rate 950-fold. Thirdly, the highly
conserved (31 out of 33 sequences) Arg49 and Thr50 (32 out of 33 sequences) are
located on the cap domain specificity loop (Thr50-Arg49-Gly48-Glu47). The Arg49 side
chain projects into solvent where the nonpolar hydrocarbon region of the side chain
packs against the side chains of the catalytic domain Pro148 (stringently conserved) and
Leul75 (conservatively replaced by Met in 5 out of 33 sequences), an interaction that
might facilitate the proper positioning of Glu47 within the active and/or influence the
association of the cap and core domains. Ala replacement of Arg49 reduced the turnover
rate 630-fold. Thr50 is seen in the crystal structures to be a bit too far away (4.3 A) from
the stringently conserved catalytic domain Gly114 amide C=O for hydrogen bond
formation. Nevertheless, Ala replacement of Thr50 reduced catalytic turnover 50-fold,
suggesting that the solution conformation might allow hydrogen bond formation or
alternatively, that the Thr50 contributes to the conformation of the cap domain substrate

specificity loop.
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2.3.4 BT2127 Biological Range and In Vivo Function
Based on the structure-function analysis described in the previous sections we
selected the catalytic residues Aspll, Aspl3, Thrll3 and Lys147 as well the metal
binding residues Aspl71, Asnl72 and Glu47 to curate the list of BT2127 homologues
identified by BLAST searches. An alignment of 33 putative homologues was generated
(see Figure 2.11) that conserved 46 residues (including the 7 marker residues) out of 244
residues total (19% conservation). The lowest pair-wise sequence identity between
BT2127 and a putative sequence homolog is 47%. Many of these sequences have N-
terminal extensions (~20 amino acids) when compared to the BT2127 sequence. One of
these is the orthologue from Bacteroides vulgatis (EXPASy accession code A6L7P8). The
supposition of its X-ray structure (PDB code 3DV9) with that of BT2127 (not shown)
reveals that N-terminal extension forms an a-helix at the surface of the catalytic domain
located at the edge of the R-sheet, distant from the active site.
Although the marker residues used in the curation of the BT2127 homologues are
by definition stringently conserved, 14 sequences could be identified that replaced a
marker residue, Asnl172 with Asp (multiple sequence alignment shown in Figure 2.13).
These sequences are more divergent (28-30% pair-wise sequence identity with BT2127)
and all but one of them also possesses the conservative replacement of the Met12 of the

Aspll-Met12-Aspl3 loop 1 catalytic motif with Leu.
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Figure 2.26: Alignment of the BT2127 sequence with the sequences of more distantly

related homologues, which do not conserve the marker residue Asnl172.
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Although the residue that separates the Asp nucleophile and Asp acid/base on
loop 1 is not known to have a direct catalytic role, it has been our observation that it is
typically conserved within function families that have clear sequence boundaries.
Moreover, highly or stringently conserved supporting residues identified in the previous
section such as Tyr76, Thr50, GIn117, Serl9, Met20 and K49 are not conserved.
Nevertheless, the 14 sequences might in fact be pyrophosphatases, but such annotation
should be first supported by an in vitro activity assay of a representative member. For
now we will refer to them as “BT2127-like” homologues.

The biological range of the putative BT2127 orthologues is restricted to the phylum
Bacteroidetes/Chlorobi (Figure 2.14). BT2127 orthologues are found in all Bacteroides
species/strains represented in the gene databanks (with the exception of B. pectinophilus
that instead possesses at BT2127-like homologue) as well in the Parabacteroides
species/strains and Prevotella species/strains. Bacteroides, Parabacteroides and
Prevotella colonize the human cavity from mouth to colon, yet occupy different regions
along this environmentally stratified track. The BT2127-like homologues are also
contained in the Bacteroidetes/Chlorobi phylum where they are found in select species
that occupy a diverse range of habitats: Capnocytophaga ochracea (human mouth);
Chlorobium luteolum and Pelodictyon phaeoclathratiforme (sulfide rich equatic
environments), Croceibacter atlanticus and Flavobacteria bacterium BAL38, BBFL7,
ALC-1 (sea water); Listeria innocua, Listeria marthii, Listeria monocytogenes and

Listeria seeligeri (ubiquitous in the environment), Paenibacillus sp. Y412MC10 and
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Paenibacillus vortex (heterogeneous and complex environments such as soil and

rhizosphere).
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Figure 2.27: A phylogenic representation of the biological range of the putative

orthologues of BT2127 (blue), Beta-PGM (brown) and the archeal pyrophosphatase

TONOO002 (purple). This tree was created by Chetanya Pandya.

The substrate specificity profile and the active site structure strongly indicate that

inorganic pyrophosphate is the physiological substrate for BT2127. Independent

66



supportive evidence for the in vivo function of BT2127 as inorganic pyrophosphatase
derives from gene context analysis. Pyrophosphate is derived from nucleoside 5’-
triphosphates as they undergo nucleotidyl transfer reactions catalyzed by ligases,
synthases, nucleotidyl transferases and DNA and RNA polymerases. The hydrolysis of
the pyrophosphate product drives these reactions forward and at the same time
replenishes the orthophosphate pool.

The gene neighborhoods of BT2127 and the 33 putative orthologues were
examined for the bacterial genomes that have been mapped. The BT2127 gene overlaps
the fkp gene that encodes the bifunctional L-fucose kinase/L-fucose-1-phosphate
guanyltransferase. The products of the kinase-catalyzed reaction are Beta-L-fucose-1-
phosphate (a poor substrate for BT2127, ke ~0.1 min™) and ADP whereas the products
of the transferase-catalyzed reaction are pyrophosphate and Beta —L-fucose-GDP. The
Beta —L-fucose-GDP is in turn used as a precursor for the decoration of surface capsular
polysaccharides and glycoproteins with L-fucose for colonizing the mammalian intestine
[19]. Thus, we posit that the biochemical function of BT2127 is inorganic pyrophosphate
hydrolysis, which supports the biological function of host colonization. Intriguingly,
several genes upstream and on the same DNA strand as BT2127 is the lysyl-tRNA
synthase gene lysS (BT2122). Thus, BT2127 might also assist protein synthesis by
removal of the synthase pyrophosphate product.

In Bacteriodes fragilis the putative pyrophosphatase orthologue encoding gene
(BF3814) is next to the gene (BF3815) that encodes a putative [1Asparagines synthase.

Located a few genes upstream and on the same DNA strand is the lysyl-tRNA synthase
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gene (BF3610). This same gene context is observed for Bacteroides helcogenes (viz.
Bache 3336 = lysyl-tRNA synthase gene, Bache 3341 = pyrophosphatase gene, Bache
3343 =Asparagines synthase). In Parabacteroides distasonis (BDI 0146 = lysyl-tRNA
synthase gene, BDI 0150 = pyrophosphatase gene) and Prevotella denticola (1697 =
pyrophosphatase gene, 1699 = lysyl-tRNA synthase gene). Finally, we note that the
Paludibacter propionicigenes genome encodes two BT2127 homologs, one having 56%
sequence identity (Paplr 3043) and the other 28% sequence identity (Paplr 2273) with
BT2127. The Palpr 3043 gene is located on a different DNA strand, opposite of the gene
encoding DNA polymerase (Palpr 3030). Curiously, it is the more distant homolog (Paplr

2273) that is co-located on the same strand with cysteinyl-tRNA synthase.

2.3.5 Structural Determinants in the Divergence of Function in BT2127 and 3-PGM

Beta—PGM and maltose phosphorylase or trehalose phosphorylase collaborate in
the utilization of maltose or trehalose as a carbon and energy sourde] Beta -PGM and
BT2127 share 30% sequence identity and a common cap domain fold (tetra-a-helical) in
addition to the highly conserved catalytic domain fold. Most significantly, they share the
cap His20-Lys76 hydrogen bond diad motif that in Beta-PGM is the responsible for the
discrimination between Beta-glucose-1-phosphate and solvent as reactants with the

aspartyl phosphate intermediate (Figure 2.15) [16].
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D8 nucleophile D& nucleophile

Figure 2.28: Left: The hydrogen bond network (black dashed line) of L. lactis Beta-
PGM. Mg*" cyan sphere and Beta-glucose-1,6-bisphosphate stick (oxygen red, carbon
yellow, phosphorus orange, nitrogen blue). Center: The placement of Aspl10 in the cap-
open conformation (arrows indicate the direct direction of movement of the Thrl16 hinge
backbone and Aspl0 side chain in going to the cap-closed conformation. Right: The
placement of Asp10 in the cap-closed conformation.

Briefly, in the cap domain open conformation the Beta—PGM Asp acid/base side
chain assumes a rotomer conformation, stabilized by hydrogen bond formation with the
backbone amide NH and side chain of the linker hinge residue Thr117, which places it
outside of the active site [14]. Upon substrate induced cap closure the His20-Lys76 diad
and the Beta-glucose 1,6-bisphosphate P-O-C oxygen atom engage the Asp acid/base in

hydrogen bond formation, placing it into position for catalysis (see Figure 2.15) [15].
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As described above, BT2127 conserves the His23-Lys79 diad, and in both the cap
domain-open and closed conformations the Aspl3 side is in the same conformation,
engaged in hydrogen bond formation with linker residue Serl5. In the cap-closed
conformation the His23-Lys79 diad is close enough to the Aspl3 carboxylate for
hydrogen bond formation with the His23, however in the cap-open conformation it is too
far away. The cap domain His-Lys diad appears to be a vestige of the common ancestry
between BT2127 and Beta-PGM.

Having determined the biological range of the BT2127 orthologues we next
examined the biological range of Beta-PGM using the same approach applied to BT2127.
The specifics will be published separately, but here we present the final result that the
putative Beta-PGM orthologues are primarily found in the phylum Firmicutes and
especially in the genera Bacilli (as represented in Figure 2.14), however they can also be
found in certain species of the phyla Proteobacteria, Actinobacteria and
Bactoidetes/Chlorobi (not represented in Figure 2.14). Notably, a bacterial species that

contain orthologues of both BT2127 and Beta-PGM were not found.
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2.3.6 Evolution of Pyrophosphatases Within the HADSF and Other Superfamilies

Inorganic pyrophosphatases are essential to cellular function. The large (660-770
amino acid) membrane-bound pyrophosphatases are limited in range to plants and certain
bacteria, wherein they function as proton pumps. The soluble pyrophosphatases are
ubiquitous and they are found into two distinct fold families (type I and type IlI). The type
| pyrophosphatases are widely distributed in all three kingdoms of life. This is an ancient
family with high sequence divergence. The more recently characterized family is the type
Il family. Inorganic pyrophosphatases of the type Il family are restricted in range to
select lineages of bacteria [20].

The type | pyrophosphatases are single domain, Beta-barrel proteins whereas the
type Il pyrophosphatases are two-domain Alpha/Beta-proteins in which the active site is
located at the domain-domain interface. Type | and Il pyrophosphatases employ three or
four Mg®* cofactors to activate the transferring phosphoryl group and water nucleophile
and to stabilize the phosphate-leaving group [20,21];

Most recently, a novel pyrophosphatase (TONO0002) from Thermococcus
onnurineus was discovered [22]. This Archeal pyrophosphatase is a member of the
HADSF, which prompted us to take a closer look at its structure and biological range.
Like BT2127, TONOO0O2 possesses a C1 tetra-alpha-helical cap domain, yet this enzyme
has evolved some unique structural features as inferred from the structure of its close
sequence homolog (60% identity) from Pyrococcus horikoshii (PDB code 20M6). The
superposition of the structures of BT2127 and the P. horikoshii enzyme is shown in

Figure 2.16.
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Figure 2.29: Superposition of the structures of BT2127 (gray) (PDB code 3QX7) and the
putative pyrophosphatase from P. horikoshii (teal) (PDB code 20M6).

The two sets of alpha-helices that form the TONO0002 cap domain are splayed apart
thereby expanding the area above the catalytic site. The active site would be open to
solvent on two sides of the protein if it were not for: (1) the insertion of a hydrophobic
loop (viz. loop 2) from the catalytic domain between the paired a-helices which seals one

of the two openings and fills part of the void and (2) the long side chains of Arg48, Lys52
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and Arg55 from the cap Alpha-helix 2 that partially occlude the opening on the opposite
side.

A model was made (by Jeremiah Farelli) of the active site with Mg®* and
pyrophosphate bound by using the positions of the Mg?* and the phosphate (to define the
cofactor and transferring phosphoryl group) in BT2127 structure and the position of the
sulfate ligand in the P. horikoshii enzyme structure to define the position of the
phosphate leaving group (Figure 2.17). Remarkably, the loop 1 Asp acid/ base and loop
2 Thr/Ser are not conserved and instead Trpl2 and Gly122, respectively are observed at
these positions. The loop 1 Asp nucleophile is Asp10 and the loop 3 Lys is Lys158. The
counterparts to the BT2127 loop 4 Glul71l and Asnl72 are Gly182 and Aspl83,
respectively. In the model, the phosphoryl leaving group is positioned for favorable
interaction with Arg48, Lys52 and Arg55 of the cap domfain a-helix 2 whereas the
transferring phosphoryl group is positioned to coordinate the Mg?* and to favorably

interact with catalytic domain residues Asn123 (loop 2) and Lys158 (loop 3).
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Asp188

Figure 2.30: The active site of the putative pyrophosphatase from T. onnurineus |,
BT2127 modeled with pyrophosphate (manually docked) and Mg (derived from the
superposition of BT2127 PDB code 3QUQ). The Mg?* is shown as a magenta sphere and
the water molecules are represented as red spheres. Oxygen atoms are colored red,
nitrogen atoms blue and phosphorus atoms orange. Coordination bonds are shown as
dashed purple lines and hydrogen bonds as dashed black lines.

Because the sequence identity is high (60%) and because the key active site

residues identified in the P. horikoshii enzyme structure are conserved in the T.
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onnurineus pyrophosphatase we assume that the P. horikoshii enzyme is also a
pyrophosphatase. The active site model suggests that the backbone amide NH of Asn123
substitutes for the conserved loop 2 Thr/Ser in activating the transferring leaving group
and that cap domain residues Arg48, Lys52 and Arg55 stabilize the phosphate leaving
group. In the second partial reaction (Figure 2.3), the loop 1 Asp acid/base activates the
water nucleophile for attack on the aspartylphosphate. If it were to assume a slightly
altered side chain rotomer conformation from that observed in the structure, the Asn123
could orient (but not deprotonate) the water nucleophile.

The biological range of the Archeal pyrophosphatase orthologues was tracked so
that we might compare it to the BT2127 orthologues. A BLAST search carried out using
the T. onnurineus pyrophosphatase identified three orders of Archea that produce
homologues: Thermococcales (53-80% sequence identity), Desulfurococcales (31-41%
sequence identity) and Thermoproteales (29-33% sequence identity). A sequence
alignment was made (all sequences conserved Trpl2) and those sequences that did not
conserve the marker residues Arg48, Lys52, Arg55 and Asnl23 were omitted. The
alignment of suggested orthologues (orders Thermococcales and Thermoproteales) is
shown in Figure 2.18 whereas the biological range is contrasted with those of the
BT2127 orthologues in Figure 2.14. Inspection of the gene contexts associated with
these putative orthologues revealed that in some of the thermophiles a gene encoding
DNA polymerase was found either on the same DNA strand next to pyrophosphates

gene, or across from it on the opposite strand. This suggests a possible biochemical
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context for the pyrophosphatase, i.e. aiding the polymerase by removing its product,

pyrophosphate. On the other hand, the TON0002 Keai/Kim ~ 4 x 10 M s is so low.
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Figure 2.31: Multiple alignment of the amino acid sequences of TON0002 orthologues.
One might question its physiologically relevance especially given that the T. onnurineus

genome encodes a type A inorganic pyrophosphatase.

2.3.7 Conclusion

A BLAST search of the B. thetaiotaomicron genome using the E. coli type I

inorganic pyrophosphatase and the Bacillus subtilus type Il inorganic pyrophosphatase
sequences as query failed to identify a homologue. Thus, the C1-type HADSF member
BT2127 appears to be the only known soluble inorganic pyrophosphatase in B.
thetaiotaomicron. The C1-type class appears to be the most prevalent and functionally
versatile of the three HADSF classes (CO, C1, C2) [23]. Aside from the many
phosphatases that have evolved within this class, dehalogenase, phosphonatase, Beta-
PGM and the newly identified pyrophosphatase activites have evolved as well. By
comparing these structures we gain insight into the key structural changes that might be
responsible for the change in function. In the case of the inorganic pyrophosphatase
BT2127 and its closest relative Beta-PGM the key structural changes are seemingly
directed at the how large the leaving group can be (phosphate vs glucose-phosphate) and
the position of the Asp acid/base in the cap-open vs cap-closed conformation. The
BT2127 pyrophosphatase active site volume precludes binding the Beta-glucose-1, 6-
bisphosphate. The two key residues in space restriction are the cap domain residues
Tyr76 and Glu47. The Beta-PGM activity requires the movement of the Asp acid/base

out of the active site when the cap opens to allow the association of the Beta-Glucose-1-
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Phosphate for reaction with the aspartylphosphate. In both BT2127 and Beta-PGM the
Asp acid/base forms a hydrogen bond with the linker hinge residue. In Beta-PGM this
hydrogen bond only occurs in the cap-open conformation and it holds the Asp acid/base
outside of the active site. In the BT2127 pyrophosphatase the hydrogen bond is present in
both the cap-open and cap-closed conformations and the Asp acid/base remains in the

active site.
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CHAPTER THREE

STRUCTURE, CATALYSIS AND FUNCTION OF FKBH

3.1 Introduction

FKBH is comprised of three sequential structural domains. The center domain is a
capless HADSF domain whose closest characterized homologue is the mammalian
phosphatase MDP (EXPASY accession # Q86V88, 176 amino acids). The physiological
substrate of MDP is not known although it has been speculated to be a protein
phosphorylated at a tyrosine residue [1]. FKBH catalyzes the three-step reaction shown
in Figure 3.1, the product of which is a glyceryl-holo acyl carrier protein/domain or
glyceryl-CoA. The C-terminal domain catalyzes the autoacylation of its Cys residue
using the metabolite 1,3-diphosphoglycerate as substrate [2] (see Figure 3.1). The C(3)
phosphoryl group is then removed by the HAD domain. The glyceryl unit is transferred
to the pantetheine thiol of a charged acyl carrier protein. The biological function of
FKBH varies according to the biosynthetic context of the synthase that acts on the
glyceryl-holo acyl carrier protein or domain. The glycerated ACP can either modified to
serve as a starter unit for some polyketides biosynthesis (Figure 3.1A)[3-5], or it can be
oxidized into a glycolate unit which can act as an extender unit in some other polyketide
products (Figure 3.1B)[6-11], or the glycerate unit can be transferred to pantetheine arm
of CoA to produce a glycerate CoA, which can be applied to construct other large

molecules (Figure 3.1C)[12].
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Figure 3.32 Pathway for FKBH generation of the glyceryl unit and pathways for its

incorporation into natural products.

The Bacteriodes fragilisstrain YCH46 genome encodes two putative FKBH
homologues: BF0824 (529 amino acids) and BF1531 (575 amino acids). Curiously, the
encoding genes are not located within polyketide biosynthetic gene clusters. Instead they
are found within two respective capsular polysaccaharide loci (BF0803-BF0823 and

BF1529-BF1554). B. fragilis lives closely associated with mucosal surface of the human
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colon where it us under constant scrutiny by the host’s immune system. Variation in the
polysaccharide makeup of the B. fragilis outer capsule is important for evasion as well as
for opportunistic pathogenesis. Three different strains of B. fragilis (638R, NCTC 9343,
YCH46) have been sequenced to show that the genomes of all three contain ten distinct
capsular polysaccaharide loci. Remarkably, when the ten polysaccharide loci of strain
NCTC were compared with those of 638R, it was discovered that none are shared. Strain
YCHA46 shares one locus with strain NCTC 9343 and a second, different locus with strain
638R. Thus, in total there are 28 unique polysaccharide loci represented among these
three strains.

The fact that the BF0824 and BF1531 genes are located within capsular
polysaccaharide loci (Figure 3.2 and 3.3) suggests that the FKBH protein products are
not functioning in the context of a polyketide synthase or a nonribosomal peptide
synthase. Indeed, a BLAST search of the deposited B. fragilis genomes using polyketide
synthase | and Il sequences and a nonribosomal peptide synthase sequence as query
failed to retrieve homologues. The glyceryl unit produced by BF0824 and BF1531 might

be used in the biosynthesis of a novel capsular polysaccharide sugar moiety.
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The work reported in this Chapter focuses on the structures and functions of BF0824 and
BF1531. The X-ray structure determination of BF1531 was carried out in Professor Steve
Almo’s laboratory at Albert Einstein School of Medicine. The (attempted) X-ray
structure determination of BF0824 was carried out in Professor Karen Allen’s laboratory
at Boston University. The SAXS (small angle X-ray diffraction) determinations were

carried out in collaboration with Professors Karen Allen and Hiro Tsuruta.

3.2 Materials and Methods
3.2.1 General Methods

All chemicals and buffers were purchased from Sigma-Aldrich. The sources of
the gene cloning materials are as follows: primers, T4 DNA ligase, restriction enzymes
(Invitrogen); E. coli BL21 (DE3) competent cells and Pfu, Turbo polymerases
(Strategene); pET14b, pET23a and pET28a vector Kits (Novagen); Qiaprep Spin
Miniprep Kit (Qiagen). Genomic DNA (strain YCH46) from B. fragilis strain YCH46
was gift from Dr. Masahira Hattori of the University of Tokushima. DEAE Sepharose
was from Amersham Biosciences. Butyl and Phenyl-Sepharose resins were purchased
from Sigma-Aldrich, whereas the Ni-NTA resin was from Qiangen. Snakeskin pleated
dialysis tubing was purchased from Thermo Scientific. SDS-PAGE analysis was
performed with a 12% acrylamide running gel and a 4% stacking gel (37.5:1
acrylmide:biacryamide ratio) (BioRad, Hercules, CA). Protein solutions were
concentrated using a 10K Amicon Ultra Centrifugal filter (Millipore). The nucleotide

sequence of each cloned gene or mutant gene was determined by the Center for Genetics
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in Medicine, University of New Mexico. Electro-spray mass-spectrometry (ES-MS)
determinations were carried out by the University of the New Mexico Mass Spectrometry
Facility. Protein concentrations weredetermined using the Bradford assay kit from

Sigma-Aldrich.

3.2.2 Preparation of Wild-Type Recombinant BF0824 (ExPasY #Q64Y51)

To prepare the N-terminal Hisg-tagged protein the BF0824 gene was amplified by
PCR using the genomic DNA (strain YCH46 from B. fragilis) and Pfu DNA polymerase.
Oligonucleotide primers, which contain restriction endonuclease cleavage sites- Bamhl
(GGCGCAACTTGGATCCACATTCTCCAACTC) and Nhel (GAGTCTTAATACT
GCT AGC ATGAAGTATTTTAT) were used in the PCR reactions. The purified PCR
product was digested with restriction enzymes Bamhl and Nhel and the digested product
was ligated into vector pET28a that had been digested with the same enzymes. The
ligation product wasused to transform E. coli BL21(DE3) competent cells. The confirmed
colony of E. coli (BL21) cells was used to inoculate 10 mL of LB medium containing 30
ug/mL karamycin at 37 °C and 250 RPM. The 10 mL culture was then used to inoculate
10 L of fresh LB medium containing 30 pg/mL karamycin and the culture was grown at
25 °C with shaking at 200 RPM. After 6 h (O.D ~0.6 at 600nm)IPTG was added to a
final concentration of 1 mM. The mixture was incubated at 20 °C and 200 RPM for 14 h
before harvesting the cells by centrifugation at 6500 x g for 15 min. The 10 g of wet cells
were suspended in 100 mL of lysis buffer (50 mM NaH,PO,4, 300 mM NaCl, 10 mM
imidazole; pH 8.0). Thecell suspension was passed through a French press at 1,200 PSIG

and then centrifuged at 20000 x g at 4°C for 45 min. The supernatant was loaded onto a
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Ni-NTA Agarose column (25 mL, 4°C) that had been pre-equilibrated with the lysis
buffer. The column was eluted with 300 mL of wash buffer (pH 8.0;50 mM
NaH,PO,4,300 mM NaCl, 20 mM imidazole) and then eluted with 400 mL elution buffer
(pH=8.0;50 mM NaH,PO,4, 300 mM NaCl, 250 mMimidazole). The protein was dialyzed
for 3 h against three changes of 2.5 L buffer A (pH 7.6; 50 mM Tris, 5 mM Mg?*, 1 mM
DTT). The protein purity was verified by SDS-PAGE analysis, the desired fractions were
combined and concentrated by using a Centricon (10kDa, Pall Filtron) at 4 °C, The
concentration of protein was measured by using the Bradford method (12). Yield: 25mg
protein/gm wet cell.

A similar procedure was used to prepare C-terminal Hisg-tagged BF0824.The
oligonucleotide primers used are: GAGTCTTAATACTGCT AGC ATGAAGTATTT
TAT(Nhel site) and ATTTTCTCTTCCCTCGAGGTTCATATTTATTTTAT(Xhol site).
Following digestion, the gene was ligated into the pET 23a vector. Ampicilin was used in
the growth media in place of the karamycin. All other steps were the same as described
above. Yield: 15 mg protein/gm wet cell.

Two different cloning strategies were tried in the cloning of the native (i.e., no
Hiss tag) BT0824. Firstly, the oligonucleotide primers that contain Nhel and BamH |
restriction sites (vide supra) were used in the PCR reaction and the digested product was
ligated to the linear pET 23a vector, which was used to transform the E. coli (BL21) cells
as previously described. Following cell lysis, the supernatant was loaded onto a 40 cm x
5 cm DEAE Sepharose column at 4 °C, which was eluted with a 2 L linear gradient of

KCI (0 to 0.5 M) in buffer A. The column fractions were analyzed by SDS-PAGE. The
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desired protein fractions were combined, adjusted to 20% (NH,4),SO4 (W/V), and loaded
onto a 18 cm x 3 cm Butyl-Sepharose column that had been pre-equilibrated with buffer
A containing 20% (NH,4)2SO4. The column was eluted at 4 °C first with a 0.5 L linear
gradient of (NH;).S04(20% to 15%) in buffer A, and then with 0.5 L buffer A containing
15% (NH4)2SO4. The column fractions were analyzed by SDS-PAGE. The desired
protein fractions were combined and concentrated at 4 °C using a 10K Amicon Ultra
Centrifugal filter (Millipore). The concentrated protein fractions were loaded onto a
Sephadex G-75 column and then the column was eluted with buffer A. The column
fractions were analyzed by SDS-PAGE. The desired protein fractions were concentrated
and stored at -80°C. Yield: 12mg protein/gm wet cell.

For the second cloning method the IMPACT (Intein Mediated Purification with
an affinity Chintin-binding Tag) system was employed. This system (vector pTXB1
(NEB#NG6707) with Ndel and Sapl restriction sites) utilizes the inducible self-cleavage
activity of protein splicing elements to cleave the affinity tag from recombinant protein.
The base pairs for the two Nde | restriction sites were substituted using the following
primers:  GTTATGATGACATTTCGTATGTCCCTTTGG,CCAAAGGGACATACGA
AATGTCATCATAAC;GAAGATGGGGCAAAAGCGTATGTACAATG,CATTGTAC
ATACGCTTTTGCC CCATCTTC.The original stop codon was replaced using the
Primers ATAAATATGAACTGCTATGGAAGAGAAAAT,ATTTTCTCTTCCATAG
CAGTTCATATTTAT. Finally, the oligonucleotide primers containing the Ndel
(GTCTTAATACTGCTCATATGAAGTA TTTTATT) and Sapl (CCAAT ATTTTC

TGCTCTTC AGCAGTTCATATTT) restriction sites were used to clone the modified
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gene into pTXB vector digested with the corresponding restriction enzymes. The
recombinant vector was used to transformE.coli ER2566 (NEB# C2566) cells for
culturing as previously described. The cell pellet was suspended in200 mL of column
buffer (20 mM Tris-HCI pH 8.5, 500 mM NaCl, 1 mM EDTA).The cell lysate-derived
supernatant was loaded onto a chitin bead (NEB#S6651) column(10 mL) at 4°C. The
column was washed with 20 bed volumes of the column buffer before applying the on-
column cleavage buffer (50 mM DTT, 20 mM Tris-HCI pH 8.5, 500 mM NaCl, 1 mM
EDTA). Following 24 h at 4°C the native protein was eluted from the column with 50 mL
of column buffer. The eluant was concentrated and dialyzed at 4 °C against 3 changes of
buffer A (pH 7.6; 50 mM Tris-HCI, 5 mM MgCl,, 1 mM DTT). Yield: 20mg protein/gm

wet cell.

3.2.3 Preparation of Wild-Type Recombinant BF1531 (ExPasY # Q64W45)

All attempts to clone the B. fragilis (strain YCH46) BF1531 gene for over-
expression in E. coli using a genomic DNA/PCR-based strategy failed. Therefore, a
codon-optimized gene was synthesized. The protein production group at Eli Lilley (under
Steve Sauder and Steve Burley) synthesized 5 constructs: aa 2-377, 2-575, 17-377, 17-
575 and 216-377.These gene constructs were expressed in an E. coli Met auxotroph to
produce the Seleno-Met protein products for crystal structure determination, which was
carried out in Steve Almo’s laboratory. The gene constructs were also sent to our lab for
kinetic analysis. The full length construct in the pET30 vector was used to transformE.

coliBL21(DE3) codon+RIL cells. The confirmed colony was used to inoculate 10 mL of
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LB medium containing 30 pg/mL karamycin and 20 pg/mL chloramphenicol at 37 °C.
The 10 mL culture was then used to inoculate 6 L of fresh LB medium containing 30
pg/ml karamycin and 20 pg/ml chloramphenicol. The culture was grown at 25 °C with
shaking at 200 RPM. After ~6 h (O.D ~0.6 at 600nm), IPTG was added to a final
concentration of 1 mM. The mixture was incubated at 20 °C with shaking at 200 RPM for
14 h, before harvesting the cells by centrifugation at 6500 x g for 10 min. The 20 g of wet
cells were suspended in 200 mL of lysis buffer (50 mM NaH,PQO,4, 300 mM NacCl, 10 mM
imidazole; pH 8.0). The cell suspension was passed through a French press at 1,200 PSIG
and then centrifuged at 20000 x g at 4 °C for 45 min. The supernatant was loaded onto a
Ni-NTA Agarose column (10 mL), which had been pre-equilibrated with the lysis buffer.
The column was eluted with 150 mL of wash buffer (pH 8.0; 50 mM NaH,PO,, 300 mM
NaCl, 20 mM imidazole) and then eluted with 400 mL elution buffer (pH 8.0; 50 mM
NaH,PO4, 300 mM NaCl, 250 mM imidazole). The eluant wasanalyzed by SDS-PAGE
and the desired fractions were combined and concentrated by using a Centricon
(10kDa,Pall Filtron) at 4°C. Finally, the protein was dialyzed at 4 °C against three
changes of 2.0L buffer A (pH 7.6; 50mM Tris, 5mM MgCl,;, 1 mM DTT). The final
concentration of protein was measured by using the Bradford method. Yield: 10mg

protein/gm wet cell.

3.2.4 Preparation of BF0824 Site Directed Mutants and Truncation Mutants
Several gene constructs that encode BF0824 minus one or two of the three

domains were prepared for the purpose of structure determination. Trucl (1-330) was
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prepared using two primers with Nhel(GAGTCTTAATACTGCTAGCATGAAG
TATTTTAT) and BamHI (GTTCCGTCTTTTTCGGATCCTCTTACGTGATGG)
restriction sites; Truc 2 (331-529) was prepared using two primers with Nhel
(GGTGATTAATGCTAGCTTGGCAGGGGC) and BamH | (GGCGCAACTTGGATC
CACATTCTCCAACT C) restriction sites and Truc 3 (161-529) was prepared using two
primers with Nhel (GGCTTTTCGCAAAGCTAGCA CTTGTAAAACAAG) and BamH
| (GGCGCAACTTGGATCCACATTCTCCAACTC) restriction sites. The PCR products
were cloned into a pET 28a vector (adds an N-terminal Hisgtag). The protein preparation
procedures used were the same as those used for the Hisg tagged full length BF0824
protein.

Because the full length BF0824 was found to undergo cleavage at the central-C-
terminal linker during crystallization amino acid replacements were made in hopes of
stabilizing the linker. The K350K351was replaced with E351V352 and K334K335 was
replaced with 334A335L. Two pairs of oligonucleotide primers were used to make the
quadruple-mutation, (CGGAAGA GGATGCACTAAAGACGGAAC AATATAAAGC,
GCTTTATATTGTTCCGTCTTTAGTGCAATCCTCTTCCG;GCAGGACACAGGAAG
AAGTGAAATTTACAGATCTCGGTGC,GCACCGAGATCTGTAAATTTCACTTCTT
CCTGTGTCCTGC). The protein preparation procedures used were the same as those
used for the Hisg tagged full length BF0824 protein.

Three key catalytic residues (Asp 178, Asp180 and Cys488) were replaced with
Ala. The primers used for generation of the D178A, Asp180 and Cys488 mutanta are

GTTTGGTTCTTGCTTTGGATAATACACTGTGGAG and CTCCACAGTGTATTA
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TCCAAAGCAAGAACCAAAC,GTTTGGTTCTTGATTTGGCTAATACACTGTGGA
G and CTCCACAGTGTATTAGCCAAATCAACAACCAAAC;GATTCATTGTTGT
TAAGCTCTAGGATCTTAGG and CCTAAGATCCTAGAGCTTAACAACAATG
AATC, respectively. The protein preparation procedures used were the same as those

used for the Hisg tagged full length wild-type BF0824 protein.

3.2.5 Preparation of the Apo and Holo Acyl Carrier Proteins BF0825 (ExPasY
#Q64Y50) and BF0819 (ExPasY #Q64Y56)

The BF0825 (Q64Y50) gene was cloned into the pET23a vectorusing the primers
TAAATATGAACTCATATGGAAGAGAAAATATTGGAG (Nde I site) and CAAA
ACGAACAACCTCCTCGAGTTTCCCCTGAAGTATC (Xho | site) and the
methodology used for preparation of the BF0824-pET23a construct (for preparation of
the C-terminal His6-tagged protein product). The same cell culture (except that
amphicillin was used instead of kanamycin) and protein purification steps were followed.
Yield: 8 mg protein/gm wet cell. ES-MS analysis identified the protein product as the apo
BF0285. Theoretical mass: 9388 Da vs observed mass 9415 Da.

The BF0819 (Q64Y56) gene was cloned into the pET 14b vector using the
primers TTTAAAATAATAATCATATGGAACTTAAAAC (Nde 1 site) and CAGG
GGTTTGGATCCAAATATCAGACATC (Bamh | site). The N-terminal His6-tagged
protein was prepared using the same methodology used in the preparation of the Hisg-
tagged BF0824. Yield: 5mg protein/gm wet cell. ES-MS analysis identified the protein

product as the apo BF0285. Theoretical mass: 9842 Da vs observed mass 9870 Da.
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The holo-BF0825 was prepared as follows. To a 1 mL plastic tube 10 pL of apo-
BF0825 (8.53 mM in 50 mM Tris-HCI pH 7.6), 2.5 uL BF1558 (0.65 mM in50 mM Tris-
HCI pH 7.6) and 70 ul CoA (20 mM) were added. The resulting solution was incubated
at 25 °C for 10 min after which 50 pL of 10 % formic acid was added. ES-MS analysis
identified the protein product as the apo BF0285. Theoretical mass: 9727 Da  vs
observed mass 9755 Da.

The holo-BF0819 was prepared as follows. To a 1 mL plastic tube 30 pL of apo-
BF0819 (1.52 mM in 50 mM Tris-HCI pH 7.6), 1.5 uL BF1558 (0.65 mMin 50 mM Tris-
HCI pH 7.6) and 7 ul CoA (20 mM) were added. The resulting solution was incubated at
25 °C for 10 min after which 50 pL of 10 % formic acid was added. ES-MS analysis
identified the protein product as the apo BF0285. Theoretical mass: 10181 Da vs

observed mass 10210 Da.

3.2.6 Preparation of the Phosphopantethienyl Transferase BF1558 (ExPasY #
Q64W18)

The BF1558 gene was cloned into the vector pET28a for expression in E. coli
BL21 (DE3) cells using the primers CCTGATATCAGCTTTTCATATGGCTTTGTTA
CGG) (Ndel site) and TAATAGGATACGCTCTCGAGTTGTATTTTCTTCAT (Xhol
site) in the PCR reactions. The purified PCR product was digested with restriction
enzymes Ndel and Xhol and then the digested product was ligated to vector pET28a
which had been digested with same enzymes. The ligation product was used to transform

E. coli BL21 (DE3) competent cells (Stratagene). The confirmed colony of E.coli (BL21)
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cells was used to inoculate 10mL of LB medium containing 30 pg/ml karamycin at 37°C.
The 10mL culture was then used to inoculate 4L of fresh LB medium containing 30
pg/ml karamycin and the culture was grown at 25 °C with shaking at 200 RPM. After 6 h
(O.D ~0.6 at 600nm) IPTG was added to a final concentration of 1mM. The mixture was
incubated at 20 °C and 200 RPM for 14 h, before harvesting the cells by centrifugation at
6500 x g for 10min. The 15 g of wet cells were suspended in 150 mL of lysis buffer
(50mM NaH;PO4, 300 mM NaCl, 10mM imidazole; pH 8.0). The cell suspension was
passed through a French press at 1,200 PSIG and then centrifuged at 20000 x g at 4°C for
45min. The supernatant was loaded onto a Ni-NTA Agarose column (10 ml), which had
been pre-equilibrated with the lysis buffer. The column was eluted with 300 mL of wash
buffer (pH 8.0; 50mM NaH,PO,4, 300mM NaCl, 20mM imidazole) and then eluted with
400mL of elution buffer (pH 8.0; 50mM NaH,PO,4, 300mM NaCl, 250mM imidazole).
The desired fractions were combined and concentrated at 4°C by using a Centricon (10
kDa, Pall Filtron). The protein was dialyzed at 4°C against three changes of 2.5L buffer
A (pH 7.6; 50mM Tris-HCI, 5mM MgCl,, ImM DTT). The protein purity was verified
by SDS-PAGE analysis. The concentration of protein was measured by using the

Bradford method. Yield: 12mg protein/g wet cell.

3.2.7 Preparation ofthe Putative 3-Oxyoacyl-ACP SynthaseBF0820 (ExPasY
#Q64Y55)and Attempted Preparation of the Putative 3-Oxyoacyl-ACP Synthase
BF0822 (ExPasY # Q64Y53).

The BF0820 (Q64Y55) gene was cloned into the PET-28a vector using the

primers GTTGTAAGAACAAAGGACATATGGCTTTTATAG (Nde I site) and ATCAA
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AGAAAAAGGATCCTATATTTCCATAAAG (Bamh | site). The N-terminal Hiss-
tagged protein was prepared using the same methodology used in the preparation of the
Hise-tagged BF0824. Yield: 15 mg protein/g wet cell.

The BF0822 (Q64Y53) gene was successfully cloned however it failed to express
in E.coli cell lines BL21(DE3), BL21 codon-RIL and NEB. Several attempts were tried
to express this gene. The two primers with Nhe 1 (CTACAGGGGC
TAGCTTGGTAATAGATGGAG) and Hindlll (GAAATTTAAAATCAGGATCCATA
ACTCAATATTC) restriction site were designed to amplify the gene by PCR. The gene
product was inserted into different vectors to test expression. The pET28a vector was
used for production of the N-terminal Hisg-tagged protein. The pET23a vector was used
for production of the C-terminal Hisg-tagged and taggless protein. The chaperone plasmid
set (Takara, Code 3340, pGro7) was used to aid the folding of the target protein. The
BF0822 gene was inserted into a pCold Il DNA vector and co-expressed with the
chaperones-GroEL and GroES. The pETDuetvector (from Novagen) was utilized to
express the BF0820 and BF0822 genes on the same vector. Finally the codon-optimized
gene was synthesized at Eli Lilleyand inserted into an expression vector. None of the

approaches resulted in BF0822 gene expression.

3.2.7 Preparation of the Putative Serine O-Acetyl Transferase BF0818 (ExPasY #
Q64Y57)
The BF0818 (Q64Y57) gene was cloned into the pET23a vector using the primers

ATGGAAATAATTAACATATGAAGAATATAGC (Nde 1 site) and TTTTCAATA
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AATG TCTCGAGTTCCATTTTATTATT (Xho I site) and the methodology used for
preparation of the BF0824-pET23a construct (for preparation of the C-terminal His6-
tagged protein product). The same cell culture and protein purification steps used in the

preparation of the Hisg-tagged BF0824 were followed. Yield: 10 mg protein/g wet cell.

3.2.8 Preparation of the Putative Malonyl-CoA: Acyl Carrier Protein Transacylase
BF2258 (ExPasY # Q64U24).

BF2258 (Q64U24) gene was cloned into the pET23a vector using the primers
TTAAAAAACAAACATATGAAAGCATTTGTATTC (Nde I site) and GAGTGGTCT
ATCA ATACTCGAGTGCTATTCC (Xho | site) and the methodology used for
preparation of the BF0824-pET23a construct (for preparation of the C-terminal Hise-
tagged protein product). The same cell culture and protein purification steps used in the

preparation of the Hisg-tagged BF0824 were followed. Yield: 12 mg protein/g wet cell.

3.2.9 BF0824 (ExPasY #Q64Y51) Molecular Mass Determination

The theoretical subunit molecular mass of N-terminal Hisg-tagged recombinant
BF0824 was calculated by using the amino acid composition, derived from the gene
sequence, and the EXPASy Molecular Biology Server program Compute pl/MW. The
subunit size of recombinant BT2127 was determined by SDS-PAGE analysis, which
included the molecular weight standards from New England Biolabs Inc. The subunit
mass was determined by MS-ES mass spectrometry. The native molecular was estimated

by FPLC gel filtration column chromatography against protein standards (13.7-220 kDa
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from GE Healthcare). The 1.6 cm x 60 cm Sephacryl S-200HR column (GE Healthcare)
was eluted at 4 °C with bufferD (50 mM HEPES, 100 mM NaCl (pH 7.5)) at a flow rate
of 1 mL/min. The BT2127 molecular weight was derived from the measured elution
volume by extrapolation of the plot of the elution volume of the molecular weight
standard versus log molecular weight. BT2127 native mass was also analyzed at the
HHMI Biopolymer/Keck Foundation Biotechnology Resource Laboratory at Yale
University by size exclusion chromatography coupled with on-line laser scattering,

refractive index, and ultraviolet detection.

3.2.10 BF1558 (ExPasY # Q64W18) Activity Assay

BF0825. A reaction solution initially containing 1 mM apo-BF0825, 21 uM BF1558, 16
mM CoA, 1 mM DTT, 5 mM MgCl, and 50 mM Tris-HCI (pH 7.6) was incubated at 25
°C for 10 min and then 50 uL of 10% formic acid were added to terminate the reaction.
The holo-BF0825 was detected by ES-MS analysis (m/z at 9, 755 Da).

BF0819. A reaction solution initially containing 1.2 mM apo-BF0819, 24.5 uM BF1558,
3.5 mMMCoA ,1 mM DTT, 5 mM MgCl, and 50 mM Tris-HCI (pH 7.6) was incubated at
25 °C for 10 min and then 50 pL of 10% formic acid were added to terminate the

reaction. The holo-BF0819 was detected by ES-MS analysis (m/z at 10, 210 Da).

3.2.11 Reaction of BF1531 (ExPasY # Q64W45) with 1,3-Diphosphoglycerate
A reaction solution initially containing 300 uM C-terminal Hisg-tagged BF1531,
1.8 mM ATP, 1.8 mM 3-phosphoglycerate, 20 units of phosphoglyceratekinase, 1 mM

DTT, 50 mM MgCl, and 50 mM Tris-HCI (pH 7.6) was incubated at 25 °C for 10 min
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and then 50 uL of 10% formic acid were added to terminate the reaction. The glyceryl-

BF1531 was confirmed by ES-MS analysis (m/z at 67, 359 Da).

3.2.12 Preparation of Glyceryl-BF0824 (ExPasY # Q64Y51) and Reaction with
Holo-ACP BF0825 and Holo-ACP BF0819.

To prepare glyceryl-BF0824 400 uL of N-terminal Hisg-tagged BF0824 (390 []M
in 50 mM Tris-HCI pH 7.6), 33 uL 3-phosphoglycerate (28 mM), 66 uL ATP (14 mM),
30 uL MgCl, (800 mM) and 5 pL 3-diphosphoglycerate-kinase (20 units) were combined
and the resulting solution was incubated at 25°C for 30 min. The solution was clarified by
centrifugation at 14000 rpm for two min. The supernatant was stored at -20°Cwhile the
product, glyceryl-BT0824 was confirmed by LC-MS. The frozen was reaction solution
was thawed and a 1 mL aliquot containing ~0.29mM glyceryl-BF0824 was mixed with
200 pL Holo-0825 (1.48mM). The resulting solution was incubated at 37 °C for 5 min.
The reaction product was validated by ES-MS analysis.

The transfer of the glyceryl moiety from glyceryl-BF0824 to the holo-BF0825 or
holo-BF0819 was tested by incubating the reaction mixture comprised 22 holo -
BF0825 or holo-BF0819 and 74 uM glyceryl-BF0824 in 50 mM Tris-HCI pH 7.6 at 25°C

or 37 °C for 20 min. The reaction solutions were directly subjected to ES-MS analysis.

3.2.13 Reaction of Glyceryl-BF0825 with BF0820
Glyceryl-BF0825 (100 uL 0.24 mM in 50 mM Tris-HCI, pH 7.6) was incubated

with the putative 3-oxoacyl-[acyl carrier protein] synthase BF0820 (39441Da, 7 uL, 1.0
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mM in 50 mM Tris-HCI, pH 7.6) at 37 oC for 30 min. The solution was clarified by
centrifugation and then directly subjected to ES-MS analysis. The Glyceryl-BF0820 was

observed (39530.6Da) with a slow rate.

3.2.14 Reaction of Glyceryl-BF0825 with Coenzyme Aand BF0818

Glyceryl-BF0825 (50 uL 0.24 mM in Tris pH 7.6 buffer) was incubated with the
putative Serine-O-Acyl Transferase BF0818 (24268Da, 2 ulL, 0.3 mM in Tris pH 7.6)
and Coenzyme A (2uL, 4mM in Tris pH 7.6 buffer)at 25 °C for 30 min. The solution was
frozen and then directly subjected to ES-MS analysis. No detectable glyceryl-CoA was

found (m/z at 766 Da for CoA).

3.2.15 Reaction of Holo-BF0825 with Various Acyl-CoAs Catalyzed by BF2258.

The relative rates of BF2258 catalyzed acyl-transfer to the ACP holo-BF0825
were measured by carrying out an HPLC-based fixed time assay. The initial reaction
solutions contained 500 UM holo-BF0825, 500uM acyl-CoA, 50uM BF2258, 5 mM
MgCl,, 1 mM DTT and 50 mM Tris-HCI (pH 7.6). The reaction solutions were incubated
at 25 °C for 15 min before chromatographing them on a reversed-phased C18 column
(100 x 4.6 mm; ThermoScientific ODS HYPERSIL) using a linear gradient of solvent A
(100 mM NasgPO4 and 75 mM sodium acetate; pH 4.6) and solvent B (70% A in
methanol) and a flow-rate at 1.5 ml/min. The acyl-BF0825 products were verified by ES-

MS analysis.
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3.2.16 Structure Determination of Crystallization the C-terminal Domain BF1531
Truncation Mutant (Residues 3-381).

This work was carried out in Steve Almo’s laboratory at Albert Einstein School of
Medicine. PurifiedC-terminal Hisg-tagged Se-modified BF1531 (residues 3-381) was
crystallized from 35% pentaerythritol propoxylate, 0.05 M HEPES, 0.2 M potassium
chloride, pH 7.5, via the hanging drop vapor diffusion method, at 293.0 K. Diffraction
data were collected at 100 K on NSLS beamline X4A using an ADSC QUANTUM 4
CCD area detector, located in Brookheaven National Laboratory and processed using the
DENZO [13] software suite. The Hise-tagged Se-modified BF1531 crystallized in space
group P21212 with unit cell dimensions a =75.74 A, b = 126 A and ¢ = 41.62 A. Data
were collected to 1.71 A resolution. Data collection, refinement, and final model statistics
are reported in Table 3.1. Phases were determined by the SAD method using PHENIX
[14] yielding a solution with one enzyme protomer in the asymmetric unit. Alternating
rounds of manual rebuilding were performed using the molecular graphics program

COOT[15]followed by minimization and simulated annealing in PHENIX.

The final model of the BF1531 partial structure, included residues 3-376 in the
protomer, 275 water molecules, one tungstate ion, and one Mg®* ion, was refined to 1.71
A resolution with a Ryork 0f 18.3% and Ryee 0f 20.9%. Analysis of the Ramachandran plot
showed that 97.5% of residues fall in the most favored regions with 2.5% in the
additionally allowed and generously allowed regions. Figures were produced using

Molscript[16], and were rendered in POVRAY.
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3.2.17 BF0824 Small Angle X-ray Diffraction (SAXS) Data Collection and
Processing

This work was carried out by Dan Saltzberg (Karen Allen laboratory) in
collaboration with the Hiro Tsuruta laboratory. SAXS data were collected at beam line 4-
2 at the Stanford Synchrotron Radiation Lightsource (Palo Alto, CA). Concentrations of
5, 10 and 20 mg/mL BF0824 in 50 mM Tris-HCI were each centrifuged at 14,000 g for 5
min before placing on the sample holder block maintained at 10 °C. Samples were
exposed to radiation for 15 exposures, each 1 s in duration while passing through a
capillary flow cell at a rate of 1uL/s and the scattering data collected on a MarCCD165 at
a distance of 1.5mm from the sample flow cell. Two buffer blanks were collected using
the same procedure. Each exposure was reduced by radially averaging each image to
produce the scattering intensity as a function of the magnitude of the momentum transfer
vector (q = 4n*sinb/A). Outlier exposures, possibly a result of bubbles in the beam path,
were indicated computationally and then manually inspected. Those exposures clearly

different from the majority were discarded.

1D scattering profiles for each concentration of protein were constructed by
subtracting ( 1 — volume fraction protein ) * 100% of the buffer scattering intensity from
the averaged protein sample intensity. A Guinier plot was constructed to look for signs
of aggregation. At extremely low scattering angles, evidence of interparticle interactions
were observed at higher concentrations. Low-angle data that did not conform to the
Guinier approximation was discarded. The 1D scattering profiles at 20, 10, and 5 mg/mL

FkbH were extrapolated to zero concentration using the PRIMUS data analysis package
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of Svergun [17]. The radius of gyration was estimated using the Guinier approximation
for points 9 through 19 ( 0.017< q < 0.026 ) and found to be 51.6 +/- 0.06 angstroms.
The pairwise distance probability distribution (p(r))curve was constructed with GNOM

[17]and found to reach zero at 185 A. The Ry as calculated from the p(r) curve is 51.3 A.

Ab-initio molecular envelopes for the full length BF0824 were calculated from the
zero concentration extrapolation described above at a resolution range from 0.017 < q <
0.311 (1/370 to 1/20 Angstroms). The program DAMMIN [18]was used using default
values for simulated annealing to create bead models fit to the extrapolated dataset. Two
models were created, one enforcing no symmetry (P1) and one enforcing a two-fold
rotation axis (P2) because of the dimer assumed from the gel filtration solution data and
the packing in the crystal structure of residues 3-376 of the ortholog BF1531. Forty-six
independent DAMMIN simulations were performed with each symmetry and the
resulting bead models superimposed, averaged and filtered using the programs
SUPCOMB, DAMAVER and DAMFILT [19-20]. The final bead models for both P1
and P2 symmetry were converted to surface maps at 20A resolution using pdb2vol from

the SITUS software suite.

“Threading” homology models of the two N-terminal domains of BF0824 FkbH
were based on the crystal structure of homologue BF1531 (PDB ID: 3NVB, XX%
similarity) and constructed using MODELLER [21]. A set of homology models for the
C-terminal transferase domain of FkbH was produced by the phyre2 protein fold
recognition algorithm[22] using the final 169 residues of BF0824 (residues 360-529).

The top 20 templates used in the modeling were all acetyl-transferases of the GNAT
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superfamily. The homology model based on the structure with the highest sequence
identity, 22%, was selected (PDB 20H1) allowing 90% of the residues to be modeled at
>90% confidence, with the low confidence areas at the N- and C- termini of the modeled

domain.

The homology model was fitted into the SAXS envelopes using COLORES from

the SITUS software suite. The top six fits were recorded.

3.3 Results and Discussion
3.3.1 BF0824 (ExPasY #Q64Y51) and BF1531 (ExPasY # Q64W45) X-ray Structure
Analysis

BF0824 (529 amino acids) and BF1531 (575 amino acids) share 45 % sequence

identity. An InterProScan (http://www.ebi.ac.uk/Tools/services/web _iprscan/) analysis of

the two sequences predicts three domains: the N-terminal domain (residues 1-216 in
BF1531) belongs to the GDSL hydrolase superfamily, the central domain (residues 220-
372 in BF1531) belongs to the HADSF type CO and a C-terminal domain (residues 375-
575 | BF1531) belongs to the acyl-CoA N-acyl transferase family. The X-ray structure
determinations of full length and truncated BF0824 and BF1531 constructs were pursued
in the Karen Allen (BF0824) and Steve Almo (BF1531) laboratories. | carried out the
BF0824 genetic engineering and protein preparations for the BF0824 X-ray structure

determinations. I also provided full length BF0824 for the SAXS experiments.
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BF0824. His6-tagged BF0824 was found having a mass of 63,685 Da
compared to which had the theoretical mass of 63675 Da. The SDS-PAGE analysis gave
an estimated subunit mass of 63 kDa. The native mass measured by using molecular
size gel filtration chromatography is ~116 kDa consistent with the data from the Keck
Foundation Biotechnology Resource Laboratory ~125 kDa. These results indicate that
protein BF0824 exist as a homodimer. The mass for the three truncated BF0824: Truc
1(1-330), Truc 2 (331-529) and Truc 3 (161-529AA) were determined to confirm their
structures: theoretical mass of Truc 1 is 40971 Da observed mass is 40971 Da; the
theoretical mass of Truc 2 is 25052Da and the observed mass is 25184Da,; the theoretical
mass of Truc 3 is 44442 Da and the observed mass is 44482 Da.

Full-length BF0824 was crystallized and an X-ray data set was collected. SDS-
PAGE analysis of the crystalline protein revealed that the protein had undergone
cleavage and that only the truncated protein had crystallized. The C-terminal domain had
been lost. Whereas the central domain could be resolved by molecular replacement using
a HADSF homologue structure the N-terminal domain could not be resolved by
molecular replacement. The truncation constructs Trucl (1-330) Truc 2 (331-529) Truc 3
(161-529) failed to crystallize. The linker mutant (334A335L/E351V352) designed to
reduce the rate of C-terminal domain loss proved to undergo linker cleavage albeit at a
reduced rate.
BF01531. Five BF01531 constructs Trucl (2-377), Truc2 (2-575), Truc3 (17-377), Truc4
(17-575) and Truc5 (216-377). Only Trucl and Truc3 crystallized. The structure

determination was carried out on Truc2 which contains the N-terminal and central
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domain. The crystallization and refinement statistics are provided in Table 3.1. The
structure was refined to 1.7 A resolution (pdb code: 3NVB). The structure includes one
Mg?* and one tungstate ion, which occupy the cofactor and phosphate binding sites,

respectively, found in all HAD phosphotransferases.

The structure is composed of two separate domains connected by one linker
region (Figure 3.4). The N-terminal domain belongs to the SGNH hydrolase, or GDSL
hydrolase superfamily based on DALI [23] search results, which has an unknown

function in BF1531. The most similar structure to the N-terminal domain identified
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Table 3.10. Crystallographic Data Collection and Refinement Statistics

Data Collection Statistics

Resolution (A)

37.87-1.71(1.75-1.71)

X-ray Source SYNCHROTRON
Wavelength (A) 0.97915
Space group P21212

Cell dimension (A)

a=75.74 b=126 c=41.62

Reflections Observed (unique)

42477 (XXX)

Completeness (%) XXX (XXX)
Rimerge” (%) XXX (XXX)
I/o (I) XXX (XXX)
Redundancy XXX (XXX)
Refinement Statistics
No. of protein residues/water atoms per asu | 374/270
No. of other ligands 2
Number of reflections (work/free) 42477/2144
Rwork/Riree (%0) 18.4/20.9
Resolution (A) 37.87-1.71
Average B-factor (A% 22.1
Protein 21.6
Manganese /tungstate 22.1
Water 27.7
Root mean square deviation
Bond length (A) 0.008
Bond angle (°) 1.140
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a. Rmerge = X hiaXil Ihit, i=<In> 1| /Y nkai | Ihia, i |, where <lpg> is the mean intensity of the
multiple In, i observations for symmetry-related reflections. Data for the highest
resolution shell is in parenthesis by DALI is a lipase/acylhydrolase fromEnterococcus
faecalis (PDB 1YZF) with rmsd 2.5 A and 13 % sequence identity The C-terminal
domain (central domain in full-length protein) is identified as CO class of HAD members
(Figure 1A) [24] which confers a phosphohydrolase activity. The HAD domain shares

similar active-site residues with other HAD members.
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Figure 3.35. Ribbon diagram of the BF1531 partial structure consisting of a HAD domain
(green) and GDSL hydrolase domain (blue). The Mg®* cofactor is shown as a magenta

sphere.

The BF1531 HAD domain has the typical active-site residues seen in family
members: two Asp residues (D226 and D228, the nucleophile and general acid/base

catalyst, respectively) from motif 1, a Ser residue (S277) from motif 2, a Lys residue
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(K311) from motif 3 (which serve to position the transferring phosphoryl group and

nucleophile) and one Asp residue (D334) from motif 4, which bind the Mg** cofactor.

4 ""'}
R 7
N8

Figure 3.36. Zoom-in on the active site of the HAD domain. Red spheres are water

molecules, the magenta sphere is Mg?* and the black sphere is tungstate.

In the HAD domain active site, there is one magnesium ion and one tugstate ion.
The Mg** is coordinated by the side-chain of D226, backbone carbonyl group of D228,
the side-chain of D334, two water molecules (one of which is positioned by the side

chain of motif 1 D226 and the other by the side chain of motif 4 residue D335) and one
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oxygen atom from the tungstate ion. The tungstate ion is 2.5 A from the Asp nucleophile

carboxylate.

Figure 3.37. Structural overlay between MDP-1 (red) and BF1531 HAD domain (green)
shown as a ribbon diagram. The active site residues, waters, and tungstate ligand from
the BF1531 HAD domain are shown as ball and stick.

Based on Dali search results, MDP-1 is the most similar in structure to the BF1531
HAD domain. The two structures share RMSD 1.87 A and an identical active site. The
two structures are superimposed in Figure 3.6 and their active sites are superimposed in

Figure 3.7.
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Figure 3.38. Active site overlay between MDP-1 (yellow) and BF1531 HAD domain
(grey). The active site residues, Mg?* cofactor (magenta sphere) and tungstate ligand

from the BF1531 HAD domain and MDP1 domain are shown as ball and stick.

3.3.2 BF0824/BF1531 SAXS Analysis
Because the structure determination of the full length BF0824 and BF1531 was
unsuccessful SAXS was used to determine a structural envelope that we could use to

generate a model of the native protein. The PHYRE webserver was used to construct a
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threading model of the C-terminal acyl transferase domain. The transferase domain was
placed at a complementary interface with the HAD domain and positioned such that the
catalytic cysteine was in close proximity (16A) to the nucleophile Asp of the HAD

domain (Figure 3.8).

Figure 3.39. All-atom model of BF0824 monomer

A model of the BF0824 dimer was constructed by applying the P2 symmetry axis

from the 3NVB PDB file (see Figure 3.9)
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Figure 3.40. Rough all-atom model of BF0824 dimer from homology model of C-
terminal (orange), HAD (blue) and acyl transferase (green) domains. The dimer is 160 A
long.

The overall shape of the rough all-atom dimer model has a consistent shape with
the SAXS data, indicating that the oligomeric state of the protein is likely correct and that
the transferase domains extend away from the central structure at either end of the dimer

(Figure 3.10).
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Figure 3.41. Ribbon models of BF0824 all-atom model with P2 SAXS envelope.

The docked model indicates the N-terminal does not play a role in catalysis but
rather it serves as a dimerization domain. As described below, the biological range of
BF0824/BT1531 homologues was determined. A multiple sequence alignment of these
homologues shows that many of these homologues are either missing the N-terminal

domain or possess an N-terminal domain from a different protein fold family.
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3.3.3 BF0824 (ExPasY #Q64Y51) and BF1531 (ExPasY #Q64W45) In vitro Function
Determination

The catalytic function of FKBH is to autoacylate the catalytic Cys residue of the
C-terminal acyl transferase domain using 1,3-diphosphoglycerate and then remove the
C(3)phosphate from the Cys-S-glyceryl-3-phosphate using the HAD domain catalytic
residues. The final step is the transfer of the glyceryl moiety to an acceptor. First we
showed using ES-MS to monitor the reaction that in the presence of 1,3-
diphosphoglycerate (generated in situ) BF0824 and BF1531 form the Cys-S-glyceryl
adduct. The mass spectrum of N-terminal Hiss-tagged BF0824 before and after
incubation (at a concentration of with 140 uM) with 3-phosphoglycerate (767 uM), ATP
(924 uM), MgCl,(11 mM) and glycerate kinase (20 units) in Tris-HCI (50 mM, pH 7.6,
25 °C) for 30 min, is shown in Figure 3.11. The mass spectrum of C-terminal Hiss-tagged
BF1531 before and after incubation (at a concentration of with 300 uM) with 3-
phosphoglycerate (1.8 mM), ATP (1.8 mM), MgCl,(5 mM) and glycerate kinase (20
units) in Tris-HCI (50 mM, pH 7.6, 25 °C) for 10 min, is shown in Figure 3.12.These

results show that BF0824 and BF1531 are in fact functional FKBH enzymes.
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Figure 3. 42. The mass spectrum of N-terminal Hisg-tagged BF0824 before (above) and

after (below) incubation (at a concentration of with 140 uM) with 3-phosphoglycerate
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(767 uM), ATP (924 uM), MgCl, (11 mM) and glycerate kinase (20 units) in Tris-HCI
(50 mM, pH 7.6, 25 °C) for 30 min.
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Figure 3.43. The mass spectrum of C-terminal His6-tagged BF1531 before(above) and
after (below) incubation (at a concentration of with 300 pM) with 3-phosphoglycerate
(1.8 mM), ATP (1.8 mM), MgClI2 (5 mM) and glycerate kinase (20 units) in Tris-HCI (50
mM, pH 7.6, 25 °C) for 10 min

The next question to be addressed is what is the identity of the glyceryl unit
acceptor. The likely candidate is the ACP, which is encoded by a gene located next to the
FKBH gene (BF0825 in the case of BF0824 and BF1532 in the case of BF1532). For
now only the transfer of the glyceryl unit from glyceryl-BF0824 to holo-BF0825 was
tested. Recombinant BF0825 was isolated as the apo-ACP and the converted to the holo-
ACP by reaction with CoA catalyzed by recombinant phosphopantetheinyl transferase
BF1558.

The ES-MS spectrum of holo-BF0825 before and after incubation (at a
concentration of 22 uM) with glyceryl-BF0824 (71 uM)in 50 mM Tris-HCI (pH 7.6) at
25 °C for 20 min shows that BF0825 is the acceptor. Notably, the recombinant ACP
BF0819 (encoding gene is just upstream of that of the BF0824 gene) is a substrate for the
recombinant phosphopantetheinyl transferase BF1558, however the holo-BF0819 is not a
substrate for glyceryl-BF0824. The ES-MS spectrum of holo-BF0825 before and after
incubation (at a concentration of 22uM) with glyceryl-BF0824 (37uM) in 50 mM Tris-
HCI (pH 7.6) at 25 °C and also at 37 °C for 20 min shows that holo-BF0825 is unchanged
(Figure 3.13). Thus, the glyceryl-BF0824 discriminates between its ACP acceptor and an

ACP that is encoded by the same capsular polysaccharide loci.
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The conclusion drawn from these findings is that BF0824 catalyzes the
glycerylation of the holo-ACP BF0825 using 1,3-diphosphoglycerate as the source of the
glyceryl unit. The next step was to determine the identity of the acyl transferase that
receives the glyceryl unit from glyceryl-BF0825. The putative acyl-transfereases encoded
by the polysaccharide loci are: putative 3-oxyoacyl-ACP synthase BF0820 (a type llI
fatty acid synthase homolog), putative 3-oxyoacyl-ACP synthase BF0822 (a type Il fatty
acid synthase homolog), putative serine O-acetyl transferase BF0818 and putative
malony-CoA: ACP transacylase BF2258. Attempts to express the clone of BF0822 failed,
however the other three acyl transferases were successfully prepared for activity testing.
The reactions were carried out under the conditions detailed in Materials and Methods
and the reaction solutions were subjected to ES-MS analysis. Disappointingly, no product

was observed and presently the recipient of the BF0825 glyceryl unit remains unknown.
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Figure 3.44. The ES-MS spectrum of holo-BF0825 before and after incubation (at a

concentration of 22 uM) with glyceryl-BF0824 (71 uM) in 50 mM Tris-HCI (pH 7.6) at
25 °C for 20mins.
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3.3.4 BF0824 (ExPasY #Q64Y51) and BF1531 (ExPasY #Q64W45) Biological Range.

To date reports of FKBH homologues have focused on FKBH domains that
function within a polyketide synthase. BF0824 and BF1513 are not associated with a
polyketide synthase and instead appear to contribute a glyceryl unit to a capsular
polysaccharide. By tracking homologues via BLAST searches of the NCBI genome
database the biological range of FKBH could be examined. Moreover, inspection of the
gene context of FKBH genes in annotated genomes provides insight into possible FKBH
functions.

The FKBH biological range search was limited to prokaryotes. None were found
in Archea. Within the Bacteria FKBH is found primarily in Acintobacter and Bacillales.
within Bacteroidetes/Chlorobi FKBH is found in Bacteroides fragilis (not all strains),
Prevotella marshii, Parabacteroides distasonis, Bacteroides fluxus, Chitinophaga
pinensis, Paludibacter propionicigenes, Bacteroides eggerthii and Prevotella ruminicola.
Within Proteobacteria FKBH is present in select species of alpha, gamma, delta and
epsilon division species.

Inspection of FKBH gene contexts within the genomes of these bacteria provides
some insight into the applications of FKBH function. FKBH is most commonly
represented as a free-standing protein that is not linked to a polyketide synthase. The
glyceryl moiety is apparently used in a variety of biosynthetic contexts that are yet to be

discovered.
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APPENDIX

A.1 Published Collaborative Work

Al.1 Divergence of biochemical function in the HAD superfamily: D-glycero-D-
manno-heptose-1,7-bisphosphate phosphatase (GmhB).

Wang L, Huang H, Nguyen HH, Allen KN, Mariano PS, Dunaway-Mariano D.

Department of Chemistry and Chemical Biology, University of New Mexico,

Albuquerque, New Mexico 87131, USA.

Abstract

D-Glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB) is a member of the
histidinol-phosphate  phosphatase (HisB) subfamily of the haloalkanoic acid
dehalogenase (HAD) enzyme superfamily. GmhB supports two divergent biochemical
pathways in bacteria: the D-glycero-D-manno-heptose-1-alpha-GDP pathway (in S-layer
glycoprotein biosynthesis) and the I-glycero-D-manno-heptose-1-beta-ADP pathway (in
lipid A biosynthesis). Herein, we report the comparative analysis of substrate recognition
in selected GmhB orthologs. The substrate specificity of the I-glycero-D-manno-heptose-
1-beta-ADP pathway GmhB from Escherichia coli K-12 was evaluated using hexose and
heptose bisphosphates, histidinol phosphate, and common organophosphate metabolites.
Only D-glycero-D-manno-heptose-1-beta, 7-bisphosphate (k(cat)/K(m) = 7 x 10° M* s
and D-glycero-D-manno-heptose-1-alpha,7-bisphosphate (k(cat)/K(m) = 7 x 10*M™ s*
displayed physiologically significant substrate activity. **P NMR analysis demonstrated
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that E. coli GmhB selectively removes the C(7) phosphate. Steady-state kinetic inhibition
studies showed that D-glycero-D-manno-heptose-1-beta-phosphate (Kis = 60uM, and Kj;
= 150uM) and histidinol phosphate (Kjs = 1 mM, and Kj = 6 mM), while not hydrolyzed,
do in fact bind to E. coli GmhB, which leads to the conclusion that nonproductive
binding contributes to substrate discrimination. High catalytic efficiency and a narrow
substrate range are characteristic of a well-evolved metabolic enzyme, and as such, E.
coli GmhB is set apart from most HAD phosphatases (which are typically inefficient and
promiscuous). The specialization of the biochemical function of GmhB was examined by
measuring the kinetic constants for hydrolysis of the alpha- and beta-anomers of D-
glycero-d-manno-heptose-1-beta,7-bisphosphate catalyzed by the GmhB orthologs of the
I-glycero-D-manno-heptose-1-beta-ADP pathways operative in Bordetella bronchiseptica
and Mesorhizobium loti and by the GmhB of the D-glycero-D-manno-heptose-1-alpha-
GDP pathway operative in Bacteroides thetaiotaomicron. The results show that although
each of these representatives possesses physiologically significant catalytic activity
toward both anomers, each displays substantial anomeric specificity. Like E. coli GmhB,
B. bronchiseptica GmhB and M. loti GmhB prefer the beta-anomer, whereas B.
thetaiotaomicron GmhB is selective for the alpha-anomer. By determining the anomeric
configuration of the physiological substrate (D-glycero-D-manno-heptose-1,7-
bisphosphate) for each of the four GmhB orthologs, we discovered that the anomeric
specificity of GmhB correlates with that of the pathway kinase. The conclusion drawn
from this finding is that the evolution of the ancestor to GmhB in the HisB subfamily

provided for specialization toward two distinct biochemical functions.
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A.1.2 Structural determinants of substrate recognition in the HAD superfamily
member D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB) .

Nguyen HH, Wang L, Huang H, Peisach E, Dunaway-Mariano D, Allen KN.

Department of Physiology and Biophysics, Boston University School of Medicine,

Boston, Massachusetts 02118-2394, USA.

Abstract

The haloalkanoic acid dehalogenase (HAD) enzyme superfamily is the largest family of
phosphohydrolases. In HAD members, the structural elements that provide the binding
interactions that support substrate specificity are separated from those that orchestrate
catalysis. For most HAD phosphatases, a cap domain functions in substrate recognition.
However, for the HAD phosphatases that lack a cap domain, an alternate strategy for
substrate selection must be operative. One such HAD phosphatase, GmhB of the HisB
subfamily, was selected for structure-function analysis. Herein, the X-ray
crystallographic structures of Escherichia coli GmhB in the apo form (1.6 A resolution),
in a complex with Mg®* and orthophosphate (1.8 A resolution), and in a complex with
Mg?" and D-glycero-D-manno-heptose-1-beta-7-bisphosphate (2.2 A resolution) were
determined, in addition to the structure of Bordetella bronchiseptica GmhB bound to
Mg** and orthophosphate (1.7 A resolution). The structures show that in place of a cap
domain, the GmhB catalytic site is elaborated by three peptide inserts or loops that pack

to form a concave, semicircular surface around the substrate leaving group. Structure-
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guided kinetic analysis of site-directed mutants was conducted in parallel with a
bioinformatics study of sequence diversification within the HisB subfamily to identify
loop residues that serve as substrate recognition elements and that distinguish GmhB
from its subfamily counterpart, the histidinol-phosphate phosphatase domain of HisB.
We show that GmhB and the histidinol-phosphate phosphatase domain use the same
design of three substrate recognition loops inserted into the cap domain yet, through
selective residue usage on the loops, have achieved unique substrate specificity and thus

novel biochemical function.

A.2 Manuscript of Collaborative Work Submitted for Publication

A.2.1 Evolution of Substrate Specificity in Sialic Acid Phosphatases within Bacterial
Speciest, 11
Kelly D. Daughtry, Liangbing Wang#, Hua Huang#, XXX, Steve C. Almott, Debra

Dunaway-Mariano#*, and Karen N. Alleng*

Department of Physiology and Biophysics, Boston University School of Medicine,

Boston, Massachusetts 02118-2394

#Department of Chemistry and Chemical Biology, University of New Mexico,

Albuquerque, NM 87131-0001

ttDepartment of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA

8Department of Chemistry, Boston University, Boston, MA 02215- 2521

132



Running Title: Evolution of Phosphatase Specificity

Key Words: 2-keto-3-deoxyoctulosonic acid, KDO, 2-keto-3-deoxynononic acid, KDN,

phosphohydolases, structural genomics, HAD enzyme superfamily, enzyme evolution

ttThe coordinates of the ES6A mutant, ES6A/K67A double mutant, and 2-keto-3-
deoxynononic acid 9-phosphate phosphohydrolase complexed with 2-keto-3-
deoxynononic acid and metavanadate from B. thetaiotaomicron, 2-keto-3-
deoxyoctulosonic acid 8-phosphate phosphohydrolase from B. thetaiotaomicron, and 2-
keto-3-deoxy-D-manno-octulosonic acid 8-phosphate phosphohydrolase complexed with
2-keto-3-deoxy-D-manno-octulosonic acid and metavanadate from H. influenzae have
been deposited in the Protein Data Bank with accession codes XXX, XXX, XXX, XXX,

and XXX.

TThis work was supported by NIH grant R01 GM61099 and U54 GM093342-01 (K.N.A.

and D.D-M.)

Abbreviations

HADSF, Haloalkanoate acid dehalogenase superfamily; KDO, 2-keto-3-deoxy-D-manno-
octulosonic acid; KDO8P, 2-keto-3-deoxy-D-manno-octulosonic acid 8-phosphate,
KDO8PP, 2-keto-3-deoxy-D-manno-octulosonic acid 8-phosphate phosphohydrolase;
KDN, 2-keto-3-deoxynononic acid ; KDN9P, 2-keto-3-deoxynononic acid 9-phosphate;

BT, Bacteroides thetaiotaomicron;

133



Abstract

Defining substrate specificity in enzyme systems is crucial to understanding evolution
and selection processes over time. Two paralogous enzymes (with 28% overall sequence
identity) that work on substrates with similar structures, 2-keto-3-deoxy-D-manno-
octulosonate  8-phosphate  (KDO8P) phosphatase and 2-keto-3-deoxy-9-O-
phosphonononic acid phosphatase (KDN9P) phosphatase from Bacteriodes
thetaiotaomicron, are both members of the CO subfamily of the Haloalkanoate
Dehalogenase Superfamily (HADSF). The two phosphotransferases have similar three-
dimensional structures, sugar phosphate substrates, and active site composition, with
28% overall sequence identity). Previously, kinetic analyses show that B.
thetaiotaomicron KDNO9P phosphatase has a 60 fold greater specificity (Kt /Km) for
KDNO9P over KDO8P, while KDO8P phosphatase is 20 fold more efficient for KDO8P
over KDNO9P. In order to uncover the structural origins of substrate specificity the crystal
structures of KDN9PP from B. thetaiotaomicron and KDOS8PP from Haemophilus
influenza were solved in the presence of the corresponding intermediate/transition state
analog complex, KDN/vanadate or KDO/vanadate at 2.1 A and 1.8A resolution,
respectively. Sequence analysis, examination of the ligand interactions, solvent
accessibility, and comparison with the structure of the unliganded KDO8PP from B.
thetaiotaomicron (1.8 A resolution) shows that the previously identified specificity
residues Glu 56 and Lys 67 in KDN9PP are replaced by Gly and Ala respectively in B.
thetaiotaomicron KDOS8P phosphatase. The role of these residues in delineating

specificity was further demonstrated by mutational analysis and kinetics, with the Glu56
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to Ala mutation in KDN9P phosphatase showing a switch in specificity from KDN9P to
KDOS8P. Moreover, the bioinformatic analysis of bacterial genomes lead to the
identification of a subset of KDO8PP sequences with altered specificity determinants
(Arg and Asp in place of Gly and Ala). Structural and kinetic analysis of hypothetical
KDO8PP and KDNO9PP enzymes confirm the identity of four KDOS8PPs that can be
recognized by these markers throughout gram-negative bacteria. Bioinformatic analysis
of bacterial genomes indicates that the Bacteroides phylum contains KDO8PP enzymes
with Gly/Ala specificity determinants, while the remainder of gram-negative bacteria
(across all phyla) contains the Arg specificity determinant (similar to H. influenzae).
Overall, structural and kinetic analysis in the presence of ligand was utilized to uncover
specificity determinants which were not apparent from sequence analysis alone.

Although the HADSF was initially named for 2-haloacid dehalogenase, the first
well characterized family member [1], most extant members are phosphohydrolases. The
conserved HADSF three-dimensional structsandwich comprised of repeating units which
adopt the typical Rossmannoid fold [2]. The four conserved motifs of the HADSF are
juxtaposed in tertiary but not primary structure and contain catalytic residues and, in the
phosphohydrolase members, residues that coordinate the Mg?* (Figure A.1). Motif 1
(DxD) comprises the nucleophilic Asp residue, and the Asp+2 residue contributes the
backbone carbonyl for cofactor binding, and acts as general acid/base (Figure A.l).
Motif 2 contains a Ser or Thr residue which coordinates the transferring phosphoryl
group. Motif 3 contains a Lys/Arg residue which forms a salt bridge to both nucleophile

and transferring phosphoryl group, positioning them with respect to one another. In Motif
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4 Asp/Glu (and very rarely Asn/GIn) coordinate the magnesium cofactor. The HADSF
can be classified by the location and topology of the inserted caps [2], CO caps have only
a small inserted region between motifs 1 and 2, and C1 caps have a larger insert/domain
in this region, whereas C2 caps have an insert/domain between motifs 2 and 3. The cap
domain introduces a specificity loop into the active site in C1 and C2 HADSF members
[3-4], while little is understood about the mechanism of specificity within CO sub-family
members. Thus CO members are interesting to study to understand HADSF specificity

elements.

Loop 3
Lys/Arg - @

i _ Ser/Thr

Loop 1

Asp/Glu . Asp/Glu General
4 — Acid

Figure A.45: HADSF Structure, Figure generated by Pymol [53]

B. thetaiotaomicron is a gram negative symbiotic human gut bacterium, that has
evolved to acquire and hydrolyze otherwise indigestible dietary polysaccharides [5].
BT1677 is a 2-keto-3-deoxy-D-manno-octulosonate 8-phosphate phosphatase (KDO8PP)
which produces KDO, a saccharide integral to lipid A and thus crucial for gram negative

cell survival [6-8]. BT1713 was recently identified as a 2-keto-3-deoxy-9-O-
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phosphonononic acid phosphatase (KDN9PP) [9]. KDN is a sialic acid derivative
commonly used in cell wall polysaccharides in higher level organisms [10-11].

Eukaryotic synthesis of KDN is a two step process, entailing the condensation of
mannose 6-phosphate and phosphoenolpyruvate to produce KDN9P, which is then
dephosphorylated by KDN9PP to produce KDN [12]. In general, bacterial synthesis of
KDN differs in that KDN is directly produced from the condensation of mannose and
phosphoenolpyruvate [13]. Notably, in B. thetaiotaomocron KDN is synthesized via the
eukaryotic two-step process (Figure A.2) [14]. The 8-carbon sugar KDOS8P is formed
from the condensation of D-arabinose 5-phosphate and phosphoenolpyruvate [15].
KDN9P is formed by the condensation of mannose 6-phosphate and
phosphoenolpyruvate. Hydrolysis of the phosphate group is catalyzed in the next step by
the corresponding phosphatase. The synthases preceding the phosphatases in the KDN
and KDO pathways derive from different fold families (Figure A.2). Thus, biosynthesis

of KDO and KDN are similar structurally yet are biosynthesized by distinct pathways.
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Figure A.46: KDO and KDN biosynthesis. Schematic of KDO (left panel) and KDN

(right panel) biosynthesis. Figure generated with ChemDraw
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The means of conferring specificity in the two phosphatases is not clear from
primary sequence alignments since there is not a distinct specificity loop provided by the
CO0 cap, as there is in C1 or C2 cap members. An N-acetylneuraminic acid liganded
structure of KDN9PP was recently published [9], but structural overlays of unliganded
KDOS8PP and liganded KDN9PP do not lead to the clear identification of specificity
determinants. An E. coli KDOS8PP c-terminal truncation mutant structure with ligand has
also been determined to modest resolution [16], but a wild-type liganded structure is not
available for comparison. While this work is informative, it does not assist in elucidating
the basis of specificity.

The object of this work was to elucidate the structural means of KDO8PP and
KDNOPP specificity in B. thetaiotaomicron, and determine the evolutionary importance

in all gram-negative bacteria using bioinformatic techniques.

Methods
Unless otherwise stated all chemicals were obtained from Sigma-Aldrich and all

primers, competent cells, ligases, polymerases and restriction enzymes from Invitrogen.

Cloning and site-directed mutagenesis

The gene encoding BT1713 was previously cloned [9].The gene encoding
BT1677 was amplified from Bacteriodes thetaiotaomicron VPI-5482 genomic DNA
with primers 5’-CCG GCG GGG AGA ATT GGA GGC TAA TAT AA 3’ (forward) and

5-GCT GGC AGA CAG TCA GGC ATT GCA GGA AAT 3’ (reverse). After
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amplification, the clone was modified to include restriction sites for Ndel and BamH1
using the primers 5° GTAAAAGCATATGAGCACCATCAATTATGATTATCCCGC
3’ (Ndel) and 5’TTATTAAAGGGATCCACAACTCACCAGCCGAAAGCATCTTCC
GCC 3’ (BamH1) (bold letters indicate restriction sites). After amplification, the clone
was digested with restriction enzymes Ndel and BamH1. The fragment was cloned into a
PET15b vector (Invitrogen) containing a thrombin protease site.

BT1713 and BT1666 genes bearing site-directed mutations were prepared by a
PCR-based strategy with commercial primers and the wild-type BT1713 or BT1677

plasmid serving as a template. The gene sequence was confirmed by DNA sequencing.

Expression and Purification

Recombinant BT1713 wild-type and mutant was expressed and purified as
previously described [9]. Recombinant BT1677 was purified from Escherichia coli BL-
21(DE3) cells transformed with the pET15b vector harboring the BT1677 sequence.
Cells were grown in LB media at 37 °C until Agoo = 1.0 when IPTG was added to a final
concentration of 1 mM. Cells were harvested by centrifugation after 4 h. Cell pellets were
resuspended in 20 mM Hepes pH 7.5 and 100 mM NaCl and were lysed by sonication.
Cell debris was removed by centrifugation for 45 min. The soluble fraction was filtered
using a 0.22 um sterile filter and applied to a TALON Metal Affinity Resin (Clontech)
gravity column (5 mL) equilibrated in 20 mM Hepes pH 7.5, 100 mM NaCl and 10mM
imidazole. BT1677 was eluted using a step gradient of imidazole (30 mM, 100 mM, 250

mM, and 500 mM). Fractions containing BT1677 were analyzed by SDS-PAGE, pooled,

140



and dialyzed against 2L of 20 mM Hepes pH 7.5, 100 mM NaCl 10 mM imidazole, and 1
mM DTT. The dialyzed protein was cleaved using Tagzyme DAPase (Qiagen) for 2
hours at 37 °C with 225 rpm shaking. The cleavage mixture was applied to the TALON
Metal Affinity Resin (Clontech) gravity column (5mL) pre-equilibrated in 20 mM Hepes
pH 7.5, 100 mM NaCl and 10 mM imidazole. The flow-through was analyzed by SDS-
PAGE, pooled and dialyzed against 2L of 20 mM Hepes buffer, pH 7.5, 50 mM NaCl,
and 10 mM MgCl,. Purified protein was concentrated to 30 mg/mL using Amicon Ultra
Concentrators. Typical yields were 3.75 mg / g cell paste of enzyme that was > 90% pure
as assessed by SDS/PAGE.

All BT1713 mutants were isolated and purified to homogeneity (as judged by
SDS-PAGE analysis) from transformed and induced E. coli cells using the same protocol

used for wild-type BT1713.

Crystallization, Data Collection and Structure Solution BT1677 (BT-KDOS8PP)
Crystals of BT1677 (BT-KDO8PP) were obtained by the vapor diffusion method
using hanging drop geometry. Drops were equilibrated against reservoir solution
containing 30% polyethylene glycol (PEG) MME 550, 40 mM MgCl,, 100 mM Hepes,
pH 7.5 at 18 °C. The hanging drops contained equal volumes (1 pl each) of the reservoir
solution and a 30 mg/mL protein solution in 20 mM Hepes buffer, pH 7.5, 50 mM NacCl,
and 10 mM MgCl,. Small crystals (0.1mm x 0.1mm x 0.05mm) appeared within 2 days.
The crystals belonged to the space group P2;2:2; with cell dimensions a=37.517 A b=

91.349 A ¢=170.115 A. There were four molecules in the asymmetric unit and the
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solvent comprised 35% of the unit cell. Surface solvent was removed using Paratone, and

the resulting crystals were flash-cooled in liquid nitrogen. Data was collected at 100 K

using a single wavelength at the X12C beamline of the National Synchrotron Light

Source (Brookhaven National Laboratory, Upton, NY). For data collection, beamline

X12C was equipped with a Brandeis 2 x 2 CCD detector. Data were collected to 1.8 A

resolution and processed with the program DENZO and SCALEPACK (Table A.1).

Table A.11 Data collection and refinement statistics for BT-KDO8PP, BT-KDN9PP

liganded with Mg?*, VO5; and KDN and HI-KDOS8PP liganded with KDO and VOs.

Values in parentheses are for the highest resolution shell, NA indicates not applicable

BT-KDN9PP/ HIKDOS8PP/
Data Collection BT-KDOS8PP
KDN/VO3 KDO/VO3
Space group P212129 P2,2:2 14
a=237.52
a=81.30 b=106.32 a=b=79.85
Cell dimension () b =91.35
c=74.15 c=52.15
c=170.12
Molecules / ASU 4 4 1
Wavelength (A) 1 1.54 1.54
85.1-1.8 285-21 29.5-1.8
Resolution (A)
(1.86 - 1.8) (22-21) (1.89 - 1.8)
Observed reflections 822,448 220,160 120,635
Unique reflections 55,354 38,011 14,537
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Completeness (%) 91.1(79.7) 95.5 (99.0) 95.6 (91.4)
Rmerge (%) 6.1 (43.2) 7.6 (48.3) 5.73 (38.13)
<|I/> 19.6 (2.79) 6.29 (2.5) 13.68 (2.40)
Redundancy 5.3 (4.8) 5.4 (2.73) 7.9 (5.7)
Twin Law -k,-h,-l
Twin Fraction 0.33
Refinement
R / Rfree 17/22.1 19.67 / 26.45 14,52/ 17.60
Average Temperature Factor (A?%)
Protein /Water 23.47129.0 26.4/26.0 18.3/26.0
Mg / Ligand 16.9/ NA 30.4/47.1 16.0/21.6
Rms deviation from ideal
Bonds 0.013 0.008 0.0286
Angles 1.376 1.115 2.352

The structure of unliganded wild-type BT-KDOSPP was determined to 1.8 A

resolution with phases determined by the molecular replacement method with the

program Phaser in the CCP4 suite [17-18]. The search model was the protomer of BT-

KDNO9PP (BT_1713), leading to a clear solution for four protomers (forming the

expected tetramer). The structure was refined using the program CNS [19] using data

between 50 and 1.8 A, for which F> 2o(F).

An energy minimization molecular

dynamics cycle was followed by a simulated annealing molecular dynamics cycle at 5000

K which was followed by alternating cycles of positional and individual temperature

factor refinement. The resulting model was manually inspected and modified with the

program COOT [20]. In the final stages of the refinement, water molecules were added
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to the model using an electron-density acceptance criteria of & 3o(d) in the Fo-Fc

difference electron-density map

BT1713 liganded with KDN/VO3’

Crystals of BT1713 (BT-KDNO9PP) were obtained by vapor diffusion in hanging
drops. Drops were equilibrated against reservoir solution containing 19% PEG 3350 and
100 mM magnesium formate at room temperature. The hanging drops contained equal
volumes (1pl each) of the reservoir solution and a 29 mg/mL protein solution in 10 mM
Hepes buffer, pH 7.5 and 10 mM MgCl,. Small crystals (0.15 mm x 0.15 mm x 0.01 mm)
appeared in 1 day. Crystals were soaked in 50 [JL of 50 mM KDN, 20 mM sodium
vanadate, 22% PEG 3350 and 100 mM magnesium formate for one week before data
collection. Surface solvent was removed by dragging the crystal through paratone then
flash-cooling in liquid nitrogen. The crystals belonged to the space group P2;2;2 with
cell dimensions a=81.296 A b=106.324 A ¢=74.147 A. Data was collected at a single
wavelength on the Bruker Microstar-H running at 2.7 kW with Helios multi-layer optics
and a Platinum 135 CCD detector at Bruker AXS, Madison, Wisconsin, USA. Data were
collected to 2.1 A, reduced using SAINT and scaled using SADABS from
the PROTEUM2 software suite (Table A.1).

The structure of liganded BT-KDN9PP was determined to 2.1 A resolution by the
molecular replacement method with the program MOLREP in the CCP4 suite. The search
model was the protomer of KDN9PP, leading to a clear solution for four protomers (the

expected tetramer). Successive rounds of model refinement were performed with the
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program PHENIX [21] with data between 50 and 2.1 A, for which F> 2o(F) with
alternating cycles of positional and individual temperature factor refinement. The
resulting model was inspected and modified with the program COQT. In the final stages
of refinement, water molecules were added to the model with electron-density acceptance
criteria of & 3o0(d) in the Fo-Fc difference electron-density map. Ligand molecules
(KDN and VOg3’) were added when the R Was below 30%. A composite omit map with

coefficients 2Fo-Fc was calculated using the program CNS.

BT1713 Glu56Ala and Glu56Ala Lys67Ala

Crystals of BT1713 Glu56Ala mutant were obtained by vapor diffusion using
hanging drop geometry. Drops were equilibrated against reservoir solution containing
100 Mm Bis-Tris buffer, pH 6.2, 200 mM MgCl,, and 23% PEG 3350. Drops contained
equal volumes (1pl each) of seed stock solution suspended in mother liquor and 20
mg/mL protein in 50 mM Hepes buffer, pH 7.5 and 5 mM MgCl,. Seed stock was
prepared by adding one crystal to 500 uL of mother liquor and crushing using Seed Bead
from Hampton Research. Crystals appeared within one day (0.170 x 0.075 x 0.03 mm)
belonging to the space group P222;. A single crystal was dragged through paratone to
remove surface solvent for cryo-protection, and placed directly in the liquid nitrogen
stream. Data was collected at a single wavelength (1.54 A) on a Bruker MICROSTAR
micro-focus rotating anode with Helios optics and Platinum 135 CCD detector, using a

four circle kappa goniometer, at Boston University. Data was collected to 2.28 A
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resolution, reduced using SAINT and scaled using SADABS from the PROTEUM2
software suite [24] (Table A.1).

The structure of BT1713 mutants, E56A and E56A/K67A double mutant, were
determined to 2.28 and 2.05 A resolution respectfully by the molecular replacement
method with the program MolRep in the CCP4 suite. The search model was the protomer
of BT1713. KDN9PP-E56A/K67A is twinned (twin fraction = 0.035, twin law I, -k, h).
Twin refinement was included in the rounds of refinement, resulting in improved maps
than without twin refinement for KDN9PP-E56A/K67A. Otherwise, the refinements of
KDN9PP-E56A were the same. Phenix refine was used to perform iterative cycles of
atomic positional refinement, atomic displacement parameter refinement and real space
atomic position refinement. Each round of Phenix was followed by manual inspection in
COOT. Waters were added to the model with electron-density acceptance criteria of d >

36(d) in the Fo—Fc difference electron-density map.

HI11679 (HI-KDO8PP)

Crystals of HI1679 (HI-KDO8PP) were obtained by vapor diffusion in hanging
drops. Drops were equilibrated against reservoir solution containing 21% PEG 3550, 100
mM Tris, pH 8.5 at 17 °C. The hanging drops contained equal volumes (1 ul each) of the
reservoir solution and an 11 mg/mL protein solution in 50 mM Hepes buffer, pH 7.6, 5
mM MgCl; and 1 mM DTT. Small crystals (0.15 mm x 0.1 mm x 0.05 mm) appeared in
within 1 day. Crystals were soaked in 50 pL of 100 mM Tris pH 8.5, 30% PEG 3350,

20mM vanadate, and 20 mM KDO for 3 days at room temperature before data collection.
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Surface solvent was removed by dragging the crystal through Paratone then flash-cooling
in liquid nitrogen. The crystals belonged to the space group 14 with cell dimensions a=
79.846 A b= 79.846 A c=52.151 A. There was one molecule in the asymmetric unit and
the solvent comprised 46% of the unit cell. Data was collected at a single wavelength
(1.54 A) on a Bruker MICROSTAR micro-focus rotating anode with Helios optics and
Platinum 135 CCD detector, using a four circle kappa goniometer, at Boston University
Department of Chemistry. Data was collected to 1.8 A resolution, reduced using SAINT
and scaled using SADABS from the PROTEUMZ2 software suite [24] (Table A.1).

The structure of ligand-bound HI-KDOB8PP was determined at a 1.8 A resolution by
the molecular replacement method with the program MolRep in the CCP4 suite. The
search model was the protomer of HI1679 (PDB ID: 1K1E with 7 C-terminal residues
manually removed) [22], leading to a clear solution for the protomer. The presence
of twinning was confirmed by examination of the cumulative intensity distribution, with
a twinning fraction of 0.33 and twin law -k, -h, -I. The structure was refined using the
program REFMAC [23] with the data between 29.46 and 1.8 A, for which F > 2c(F).
Restrained refinement with hemihedral twin refinement was performed. The resulting
model was inspected and modified with the program COOT. In the final stages of
refinement, water molecules were added to the model with electron-density acceptance
criteria of 6>30(d) in the Fo—Fc difference electron-density map. Vanadate and 2-keto-3-

deoxy-octulosonic acid (KDO) were added to the model in the final round of refinement.
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Determination of Steady State Kinetic Constants
BT1713 Activity

Reaction mixtures (1 mL) at 25 °C and initially containing BT1713 (0.04uM for
KDNO9P; 1.0uM for KDO8P), varying concentrations of KDN9P (50uM-560uM) or
KDOS8P (100uM-1500uM), 10 U of NeuNAc aldolase[9], 10 U of lactate dehydrogenase,
2 mM MgCl,, and 0.2 mM NADH in 50 mM K*HEPES (pH 7.0) were monitored at 340
m (Ae = 6200M ! cm 7). Initial velocity data were fitted to equation 1 using the
computer program KinetAsyst | in order to define the steady state Kinetic constants.

Vo=Vmax[S)/([S] + Km ) (Equation 1)

where Vp is the initial velocity, Vmax the maximum velocity, [S] the substrate
concentration, and Ky, the Michaelis-Menten constant for the substrate. The ks Value was
calculated from Vmax and [E] according to the equation Kea=Vmax/[E], Where [E] is the

protein subunit concentration in the assay reaction

Result and Analysis:
Bioinformatic Analysis

The HI-KDO8PP amino-acid sequence was used to search for additional KDN9PP
or KDO8PP sequences using BLAST [24] within each phylum of bacteria. Sequences
were separated using the specificity sequence identifier: KDO8PP T/SXGXXXXXXXRXXA,
KDOB8PP T/SXRxxxxxxXRxxD/E/T/S/IQ/N, KDN9PP T/SXExxxx xxxRxxK, where T/S

indicates motif 2 of the HADSF. With each sequence identified, the bacterial genome
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was then solely searched for additional CO HAD family members using the initially
identified CO. Additional sequences were classified based on the above specificity

sequence identifiers.

Variability Analysis

Protein variability was computed with multiple sequence alignments of KDN9PP,
KDOS8PP (with Gly, KDO8PP-Gly) and KDOS8PP (with Arg, KDO8PP-Arg) using the
Protein Variability Server [25]. Variability is calculated using the Shannon entropy
equation [26], with a score of 0 indicating absolute conservation across all sequences and
4.322 indicating that all 20 natural amino acids are found at that position(a variability
score < 2 is considered conserved). A random selection of sequences from each group
was chosen as input and results mapped onto the corresponding three-dimensional
structures of BT-KDN9PP, BT-KDO8PP, and HI-KDOS8PP. Electrostatic potential
surfaces of BT-KDO8PP, BT-KDN9PP and HI-KDO8PP were calculated using GRASP
[30]. KDO8P was manually docked into BT-KDOS8PP structure using the phosphate
binding site and overlays with HI-KDO8PP/KDO/VOs as a guide. The structure was then
minimized using an energy minimization molecular dynamics cycle (200 steps) in the

program CNS [18].

Structural Comparison of BT-KDN9PP and BT-KDO8PP
The structure of unliganded B. thetaiotaomicron KDO8PP with Mg -bound was

solved and refined to a resolution of 1.8 A (Table A.1) for comparison with BT-
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KDN9PP, which has previously been solved (PDB ID 3E8M, [9]). BT-KDOS8PP and BT-
KDN9PP have 28% primary sequence identity and an overall RMSD of 1.6 A for the
protomer (Figure A.3). Both enzymes were crystallized as tetramers in the asymmetric
unit, with the active site at the interface of two subunits, consistent with other KDO8PPs
[15, 22]. Thus, one subunit acts as the HAD core or ‘catalytic’ domain, containing the
HAD conserved motifs, and the other subunit acts as a “‘cap’ domain, and is expected to
contribute residues to ligand the substrate leaving group. When comparing unliganded
structures of KDN9PP with KDOB8PP, there exists a very similar protomer structure and
active-site makeup. Notable differences are seen in the C-terminus with the C-terminus of
BT-KDN9PP being alpha helical and extended away from the core domain, while the C-
terminus of BT-KDOBS8PP does not have clear electron density associated with it; possibly
this temporal or spatial disorder indicates flexibility in this region. Two other KDO8PP
structures have previously been solved from E. coli (PDB ID 2R8E [15]) and H.
influenza (PDB ID 1K1E, [22]), both containing extended C-terminal tails which are
juxtaposed to the active site of the adjacent monomer, indicating a possible role in
functionality of the C-terminus of KDO8PPs in specificity, exclusion of bulk solvent or
catalytic positioning of the substrate [15]. Indeed, a truncation mutant of the last
sevel67) yields a 15-fold reduction in kcat compared to wild-type BT-KDOS8PP (Table
A.2) with a 7 fold reduction in Km. Similar results are seen for E. coli KDO8PP [15].
This highlights the importance of the C-terminus to substrate turnover in KDOS8PP

enzymes.
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Table A.12: BT-KDN9PP and BT-KDO8PP wild-type steady-state Kinetics. Steady-state
kinetic constants for BT-KDN9PP and BT-KDOS8PP catalyzed hydrolysis of KDN9P or

KDOS8P in 50 mM K*"HEPES containing 2 mM MgCl, (pH 7.0, 25°C).

Substrat

Enzyme . Keat (s™) Km(MM)  Kea/Km (M5

KDN9P  0.061 +0. 89+0.1

BT-KDOSPP 9P 0.061+0.005 0.89+0.19 69
KDO8P 15+0.3 0.10 £ 0.04 1.5x10%

A167 )

. KDO8P 0.10+0.1 0.76 +0.01 1.3x 10

truncation
KDN9P 1.2+0.1 0.105 + 0.09 1.1 x10*

BT-KDN9PP ,
KDOSP  0.092+0.003  0.43 +0.07 2x10

. KDN9P  0.026 +0.002  0.41 +0.01 6 x 10*
KDOSP  0.109+0.02  0.207 + 0.09 5 x 102
KDN9P 0.004 +0.0008 0.99 +0.03 41

E56A / K67TA

KDO8P 0.062 +0.002 0.196 +0.009 3.1x 10
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Figure A.47: Overlay of BT-KDN9PP and BT-KDO8PP. The RMSD of Ca of the
monomers is 1.6 A. BT-KDN9PP is shown in blue, BT-KDO8PP green (Mg®* depicted

as magenta sphere). figures generated using MOLSCRIPT [54]

Kinetic Comparison of BT-KDN9PP and BT-KDOS8PP

With the similarities noted between these two enzymes, one could assume each
enzyme would be able to readily dephosphorylate the sugar phosphate substrate of the
other. Each enzyme shows high catalytic efficiency toward its physiological substrate
with the Kea/Km = 1.2 x 10* M 5™ for BT- KDNIPP against KDNIP, and kea/Km = 1.5 X
10* M s for BT-KDO8PP against KDO8P (Table A.2, [9]). Steady-state kinetics of the
two enzymes with the swapped substrate gives a large decrease in Kei/ Ky (KDOS8PP has

a 22 fold decrease in keai/ Kiy against KDN9P versus KDO8P, and KDN9PP has a 60 fold
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decrease in Kqi/ Ky against KDO8P versus KDN9P) (Table A.2). Clearly the enzymes are
able to differentiate KDO8P and KDNO9P via hydrogen-bonding, electrostatic, or steric

interactions with the substrate.

Structural Analysis of BT-KDN9PP with KDN and VO3

Analysis of the ligand bound structure clarifies specificity determinants by
highlighting primary structure differences between BT-KDN9PP and BT-KDOS8PP. The
most obvious difference is found in two BT-KDNO9PP ligand binding residues. Glu56 of
the core subunit and Lys67* of the adjacent (cap) subunit in BT-KDN9PP occur as Gly63
and Ala74* respectively in BT-KDO8PP. Met20 in KDN9PP is Val in KDO8PP. These
three differences open up a pocket in BT-KDOS8PP for ligand binding. Also, Asn106 in
KDN9PP is Prol13 in KDOS8PP. These changes, which potentially could affect the
ability of KDO8PP to discriminate against KDN9P were thus tested by site-directed

mutagenesis.

Structure Determination and Kinetics of E56A and ES6A/K67A BT-KDN9PP

The X-ray crystallographic structure of E56A and E56A/K67A BT-KDN9PP
mutants were solved (Table A.3) to demonstrate that the mutations do not affect overall
stability of the enzyme. Both structures are similar to wild-type BT-KDN9PP, with
RMSD values of 0.23 A, and 0.0 A for E56A and E56A/K67A, respectively (Figure
A.4). We can conclude that changes seen in activity (kcat and Km) are solely due to the

replacement of a residue rather than global structural changes.
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Figure A.48: BT-KDN9PPmutant structures. Rainbow colored ribbon diagram of BT-

KEN9PP Glu56Ala (right panel) and BT-KDN9PP Glu56Ala / Lys67Ala (left panel).

Magnesium is shown as magenta spheres.
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Table A.13: BT-KDN9PP mutant data collection and refinement statistics. Data

collection and refinement statistics for BT-KDN9PP Glu56Ala and Glu56Ala /

Lys67Ala. Values in parentheses are for the highest resolution shell.

Data Collection BT-KDN9PP-Glu56Ala

BT-KDN9PP-Glu56Ala-

Lys67Ala

Space group P222; P2,
Cell dimension (A) a=88.94 b=94.12 ¢=161.50 a=72.37 b=116.77 ¢c=75.18
Molecules / ASU 8 8
Wavelength (A) 1.54 1.54
Resolution (A) 2.28 2.05
Observed 388,814 832,804
reflections
Unique reflections 62,511 76,062
Completeness (%) 99.9 (100) 97.4 (92.7)
Rmerge (%) 8.78 (46.48) 13.08 (47.69)
<l/o> 11.6 (2.2) 14.12 (3.73)
Redundancy 6.21 10.66
Twin Law None I, -k, h
Twin Fraction 0.0 0.067
Refinement
R/ Réree 19.54 /24.93 21.27125.29
@/%rage B Factor 25 76 19.05
Rms deviation from ideal

Bonds 0.007 0.006

Angles 1.015 0.941

Steady-state Kkinetics were previously reported for BT-KDN9PP-E56A mutant

against the substrate KDN9P [9]. The BT-KDN9PP-K67A protein is unstable and could

not be assayed. The BT-KDN9PP-E56A is a stable mutant, with Kea/Km = 6 x 10 M™* s

against KDN9P as substrate (Table A.2) showing a 200 fold decrease compared to wild-

type. When KDOS8P is supplied as substrate, kea/Km = 5 x 10° M™s™ (2 fold increase

compared to wild-type). With this single mutation, the specificity of BT-KDN9PP has
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shifted to favor KDO8P over KDNO9P (ratio of KDO8P/KDN9P k../Ky, is 8 fold, Table
A.2). Double mutants of ES6A and K67A were assayed to test for further enhancement
of the specificity switch between the two sugars. The ES6A/K67A mutant of KDN9PP is
80 fold more specific for KDO8P over KDNOP (Kes /Km Of 3.1 x 10% vs. 4.1 Ms™,
respectively, Table A.2). The change in specificity is due to a large loss of binding
affinity of KDN9P as reflected by K., due to the absence of critical ligand binding

residues (Glu56 and Lys67).

BT-KDOS8PP and BT-KDN9PP Analysis

Together the X-ray crystallographic and mutational kinetic data highlight the
importance of two critical residues within each active site. In KDN9PP, Glu56 and Lys67
provide key ligand stabilizing interactions to position the substrate KDN9P for catalysis
(Figure A.5). When these residues are mutated to Ala, the selectivity of the KDN9PP
changes to prefer KDOS8P as substrate. This correlates with the presence of Gly and Ala
at the homologous positions in KDOS8PP, indicating their importance in substrate
specificity. The production of KDN is uncommon in bacteria, and it is normally found in
eukaryotic organisms [27], with the exception of a few bacteria such as S. fredii and K.
ozaenae [28-29]. The pathway utilized in these bacterium has not been studied. It is thus
interesting that B. thetaiotaomicron has acquired the ability to produce KDN, probably
through gene duplication. It is tempting to speculate that environmental pressures played
a role in this evolution. B. thetaomicron is a human gut symbiont, the most abundant

found in human feces [5, 30]. Because Lipid A, of which KDO is an integral part, is a
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potent stimulator of the human innate immune response [31], B. thetaiotaomicron must
circumvent immunity in order to survive in the gut. It is known in other bacterial species
(eg. H. influenzae, Salmonella O48) that sialyated bacterial cells do not up regulate the
innate immune response [32-34]. The use of KDN to sialate the B. thetaiotaomicron cell
surface and mimic human cells would prevent eliciting the innate immune response to

Lipid A.
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Figure A.49: Structure of KDN9PP in complex with KDN and VOgs'. 2Fo-Fc composite
omit electron density map contoured at 1.0 sigma (dark gray cages, left panel) shown for
KDN and VOs5,(yellow), and Mg** is depicted as magenta sphere, residue Asp10 shown
in gray. Hydrogen bonds to KDN (ball and stick, yellow) are shown (dashed line, right
panel). The catalytic domain (gray residues) and ‘cap domain’ (brown residues with *)

are shown, otherwise colored as in left panel.

Bioinformatic Analysis
To elucidate the evolutionary relationship between KDO8PP and KDN9PP

enzymes, bioinformatic techniques were employed to analyze available bacterial genome
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sequences in NCBI. 6 displays a representative sample of the sequences collected and
analyzed, separated by specificity marker. Sequences were separated using the specificity
markers for BT-KDO8PP, and BT-KDN9PP determined herein (vide supra). Out of a
total of 4,303 bacterial genome sequences available, a random sample of 687 sequences
was analyzed for KDO8PP and KDN9PP by phylum. It is important to note that over
2,000 genomes are found in the proteobacteria phylum alone and thus was sub-divided
into classes. All bacteria labeled as non-classified were excluded from analysis.

All species in the Bacteroides phylum contain a KDO8PP gene with Gly and Ala at
the two specificity residue positions. Only a subset of Bacteroides species (11 out of 77
analyzed) also contain a KDN9PP gene, confirmed by the presence or absence of KDN9P
synthase, the preceding enzyme in the KDN pathway [12, 14], which is found adjacent to
the KDN9PP gene. KDN9PP orthologues were identified in a subset of the Bacteroides
phylum, and in the Chlorobi phylum (Table A.4). The Chlorobi phylum contains
KDOB8PP enzymes with Arg at the first specificity position and consists of green sulfur
photoautotrophic bacteria which are considered most similar to Bacteroides [35], and the
need for KDN production is not clear. All other gram-negative bacteria do not contain a
gene for KDNO9PP, as assessed by BLAST searches of each bacterial genome for which a

KDOB8PP gene was identified.
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Table A.14: Bioinformatic Summary. All phyla of bacteria are listed with number of

genome sequences analyzed, percent of sequences in phyla analyzed, number of CO

Phylum Genomes Percent Co Specificity | Enzyme
Actinobacteria 25 6.8 1 E KDN9PP
Aquificae 9 75 1 R KDO8PP

: G KDO8PP
Bacteroides 77 54 lor2 E KDNOPP

. R KDOS8PP

Chlorobi 12 86 2 £ KDNOPP
Chlamydiae 6 13 1 R KDOS8PP
Cyanobacteria 16 12 1 G/S KDO8PP
Deferibacteres 2 100 1 R KDO8PP
Elusomicrobia 2 40 1 R/G KDO8PP

. R KDO8PP
Fibrobacteres 3 75 2 £ KDNOPP
Firmicutes 17 1.5 1 R KDOS8PP
Fusobacteria 20 65 1 K KDO8PP
Gemmatimonadetes 1 100 1 R KDO8PP
Alphaproteobacteria 5 1.1 1 E KDN9PP
Betaproteobacteria 98 32 1 R KDO8PP
Gammaproteobactera 288 26 1 R KDO8PP
Delta/Epsilon 88 56 1 R KDO8PP
Zetaproteobacteria 1 100 1 R KDO8PP
Nitrospirae 2 100 1 R KDOS8PP
Planctomycetes 5 83 1 R KDO8PP
Spirochaetes 4 1.3 1 N/S KDO8PP
Synergistetes 6 100 1 R KDO8PP
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gi[29347087|ref|NP_810590.1|

MRTVNIKDGYAIQLAVKKGLHIAII TGERTEAVRIRFAALGVK--DLYMG 83
gi[265765968|ref|ZP_06094009.1

MRTVNVKDGYAIQLAVKKGLRIAII TGERSDVVRKRFIGLGVS--DLYFG 83
gi|150005032|ref|YP_001299776.
MRTVNIKDGYALQLAVKCGLHVAIITGENTEAVRKRYEGLGIK--DVYLA 81
gi[237713692|ref|ZP_04544173.1

MRTVNIKDGYAIQLAVKKGLHIAI TGERTEAVRIRFEGLGVK--DLYMG 83
gi[224540513|ref|ZP_03681052.1
MRTVNIKDGYALHLACKQGLLLGITGERSEAVRKRFMALGIPSEDIYMA 85
gi[262340978|ref|YP_003283833.

VRQMFAKDGYAMQLAKKKGYNLCI TRESDLMVFRRLRGLNIR--YIYQG 79
gi|167763293|ref|ZP_02435420.1

LRTVNIKDGYALHLAARHEIPLAII TGERTEAVRKRFRALGILPENIYMG 85
gi[288928245|ref|ZP_06422092.1

LRTVNIKDGYAIQFAQKVGLRICII TGEDTKAVRKRFEGLGVE--DIYMK 81
gi[218130320|ref|ZP_03459124.1
LRTVNIKDGYALHLAAKHEIPLAIITGERTEAVRRRFLALGIPAENIYMG 85
0i|198276869|ref|ZP_03209400.1
MRSVNIKDGYALQLAVKCGLHVAIITGEKTEAVRKRYEGLGIK--DVYLG 81

gi[29347123|ref|NP_810626.1|
WKKFNTSDSAGIFWAHNKGIPVGILTGEKTEIVRRRAEKLKVDY--LFQG 76
gi[294970963|gb|EFG46856.1|
SVRVHRGDGMGVSRLVKAEFPFLILSKERNPVVTRRAEKLRVE---VAQG 84
gi[254403203|ref|ZP_05018149.1
FVSVHRGDGLGIAALRDSGLKMLILSTEQNPVVAARARKLKIP---VLHG 86
gi[72160415(ref|YP_288072.1]
TVVVNRGDGMGVSLLLKAGIRVCILSTEVNSVVRARARKLGVP---VMHG 85
gi[239979820|ref|ZP_04702344.1
RVSVHRGDGLGIAALRDAGIPLLILSTEQNPVVTARARKLRIP---VLHG 83
0i[29829917|ref|NP_824551.1|
FVSVHRGDGLGIAALRKSGLTMLILSTEQNPVVAARARKLKIP---VLHG 84
gi[271964804|ref|YP_003339000.
MVAVSRSDGMGIALLRRSGVKLMIMSTEHNPVVAARARKLGVP---VLQG 83
gi[256778605|ref|ZP_05517068.1
LVAVHRGDGLGIAALRRAELALLILSTEKNPVVAARGRKLQVP---VLHG 84
gi[254377988|ref|ZP_04993443.1
LVSVHRGDGLGIAALRRSGLPLLILSTEQNPVVAARARKLRVP---VLHG 84
gi[78189040|ref|YP_379378.1|
LKRYSIRDGMGVERLRNAGIETCIMTGERSPNVQKRAEKLCMKW--LYLG 88
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0i|16273566|ref|[NP_439821.1]

IKSFHVRDGLGIKM LMDADIQVAVLSGHDSPILRRRIADLGIK--LFFLG 80
gi|149190591|ref|ZP_01868860.1
LKTFHTRDGYGIKALMSAGVEVAIITGHRSQIVENRMTALGIS--LIYQG 95
gi|260857325|ref|YP_003231216.
LKAFNVRDGYGIRCVLTSDIEVAIITGRKAKLVEDRCATLGIT--HLYQG 98
gi|170765508|ref|ZP_02900319.1
LKAFNVRDGYGIRCALTSDIEVAIITGRKAKLVEDRCATLGIT--HLYQG 98
gi|54310339|ref|YP_131359.1|
LKTFHTRDGYGIKSLMNAGIEIAIITGHQSAIVENRMTALGIK--HIYQG 95
0i[24114487|ref[NP_708997.1]
LKAFNVRDGYGIRCALTSDIEVAIITGHKAKLVEDRCATLGIT--HLYQG 98
gi|168231927|ref|ZP_02656985.1
LKAFNVRDGYGIRCALTSNIEVAIITGRKAKLVEDRCATLGIV--HLYQG 98
gi|15803738|ref|[NP_289772.1|
LKAFNVRDGYGIRCALTSDIEVAIITGRKAKLVEDRCATLGIT--HLYQG 98
0i|218691488|ref|YP_002399700.

LKAFNVRDGYGIRCALTSDIEVAI ITGEKAKLVEDRCATLGIT--H LYQG 98
i|262273848|ref|ZP_06051661.1

LKAFHTRDGYGVKSLM NAGVEIAIITGEKSAIVERRMAALGIQ--HIYQG 95

Figure A.50: Sample alignment of KDO8PP and KDNO9PP sequences from bacteria.

HAD motif two is colored green, specificity residues are highlighted in blue (KDO8PP-

Gly), pink (KDN9PP, Glu), and purple (KDO8PP-Arg).

Within the Gram-positive genomes, bacteria in the Actinobacteria phylum were

found to possess KDNOPP genes, all with Glu at the first specificity position, and Lys at

the second specificity position. The absolute conservation of the two specificity residues

in KDN9PPs is consistent with its importance in ligand binding, as seen in the BT-

KDNO9PP/VO3/KDN structure. All KDN9PPs identified in the Actinobacteria phylum are

found as fusion proteins to a CMP transferase domain, that catalyzes the transfer of KDN

to CMP [36]. The Actinobacteria phylum consists mainly of Streptomyces (the largest
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genus, 21 genomes out of 25 identified in our bioinformatic analysis), which utilize
anionic cell-wall polymers containing KDN [37-40]. As expected, no other bacterial
species contained the additional KDN9PP gene, with few exceptions (see below). The
absence of KDN9PP and other KDN synthesis genes correlates well with the rare
appearance of KDN in bacteria.

Surprisingly, further genome searching indicated an alternative KDOS8PP present in
all other gram-negative bacteria, with Arg present at the first specificity residue and a
variety of residues (Asp, Glu, Thr, Ser, etc) at the second specificity position. Thus, the
enzyme observed over these bacteria is dissimilar to the B. thetaiotaomicron KDOS8PP
enzyme under study here.

The presence of a KDOS8PP bearing Arg at this position indicates that the
Bacteroides phylum divergently evolved with respect to KDO8PP from all other gram-
negative bacteria. The divergent evolution possibly occurred through selective pressure
to retain KDO8P phosphatase activity, while still allowing for variation of substrate
binding residues to limit activity against other sugars present in the Bacteroides

metabolome such as KDN9P.

Exceptions to the Rule

The class of Betaproteobacteria within the Proteobacteria phylum consists of
aerobic or facultative anaerobic bacteria. In general, the bacterial species contain one CO
phosphatase, which is annotated as a KDO8PP with Arg at the first specificity position. A

subset of the Burkholderia species contains two CO phosphatases, both with sequences
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consistent with assignment as KDO8PPs, the first enzyme bearing Arg at the first
specificity position, and the second enzyme bearing Gly at the first specificity position.
It appears that the Burkholderia species have evolved to contain two KDO8PP enzymes,
which we cannot explain in terms of physiological function. Burkholderia are known to
have a very potent LPS causing an upregulation of the innate immune response [41].

The Francisella species in the Gammaproteobacteria contain a single CO
phosphatase with Lys at the first specificity position. We propose that they are KDO8PPs
because the Francisella species are shown to have the typical gram-negative Lipid A
moiety [42]. The Fusobacteria phylum also contains KDO8PPs with Lys at this position.
Fusobacteria are most similar to Bacteroides species, with a typical Lipid A moiety, but
are noted to possess an exceptionally virulent LPS [43-44]. We propose that these
Francisella and Fusobacteria enzymes identified are KDO8PPs, as the specificity residue
was conservatively replaces from Arg to Lys , and no KDN9P synthase genes were
identified within these genomes. The Acidobacteria class of Fibrobacteres phylum
contains both KDO8PP (with Arg) and KDN9PP (with Glu). Acidobacteria are a highly
acidic soil bacterium, and have only 4 total genome sequences available, so it is unclear

the role the KDO or KDN plays in cell survival or defense.

Additional KDO8PP and KDN9PP Kinetic Analysis
We chose to functionally characterize KDO8PP enzymes with alternate residues
present at the first specificity residue (these were additionally targeted for functional

characterization by the Enzyme Function Initiative, http://www.enzymefunction.org).
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The structures of E. coli, and H. influenzae KDO8PPs have previously been reported [15,
22] as well as the kinetics constants for the E. coli enzyme against KDOS8P and are used
for comparison. L. pneumophila, P. syringae and V. cholera are found in the
gammaproteobacteria class of proteobacteria, the largest phylum of bacteria. L.
pneumophila subsp. pneumophila str. Philadelphia 1 KDO8PP contains an Ala at the
first specificity position, GIn at the second specificity position, and is one of the
exceptions to the rule we have observed. Other L. pneumophilia strains contain an Arg at
the first specificity position.

The ket and K, of each enzyme confirms its assignment as a KDO8PP orthologue.
L. pneumophila subsp. pneumophila str. Philadelphia 1 KDO8PP (LP-KDOS8PP) is
specific for KDO8P as substrate with ke / Km= 1.7 x 10° M™s™ (compared to Kes; / K=
1.8 x 10* M's™* for KDN9P), with a similar activity to BT-KDO8SPP (Table A.5). E. coli,
P. syringae and V. cholera KDO8PPs all contain an Arg at the first specificity position
and a variety of residues at the second specificity position (Thr, Ser. Ala
respectively).The kinetics show that each enzyme is specific for KDO8P (Table A.5),
with kea / K ranging from 10° to 10° M*s™ and selectivity over KDNOP of 100 to 4,500
fold. Steady-state kinetics also confirm that H. influenzae KDO8PP (HI-KDOS8PP) is a
KDOB8PP with a Kea/Km = 4.8 x 10° M™ s towards KDO8P (Table A.5) and contains
specificity residues Arg and Asp. HI-KDO8PP with KDN9P provided as substrate yields
a kea/Km = 1.3 M™ s, thus HI-KDOB8PP is 370 fold more specific for KDO8SP over
KDNBO9P. This is a significant difference from the BT-KDO8PP (22 fold more specific for

KDOS8P over KDN9P) and indicates a significant role of Arg in the specificity of HI-
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KDOS8PP. The variability of the second specificity position in KDO8PPs indicates it

plays a minor role in enzyme specificity.

Table A.15: Steady-state kinetics to assign KDO8PP and KDN9PP enzymes. Steady-
state kinetic constants for enzyme catalyzed hydrolysis of KDN9P or KDOS8P in 50 mM

K"HEPES containing 2 mM MgCl, (pH 7.0, 25°C).

Phylum / Substra | Kea Km Kea/ Ky | ratio | Spec | PDB
Actinobacteria / KDO8P [9.4 £ |12 +|77x10° |16 |Glu/ MMz
A ... |KDN9P[20 |17+ |12x10° .
Gammaproteobac | KDO8P | 1300 #+ | 1.7 +|7.7x10° | 4530 | Arg | 2RSE
L KDNOP [ 7.7 + |46 +|1.7x10° .
Gammaproteobac | KDO8P |78 +4 [1.6 +|4.8x10° 370 | Arg | 1K1E
L KDN9P [ 2.1 +|16+5 [13x10' ,
Gammaproteobac | KDO8P [8+0.4 |05 +[1.7x10°| 100 |Ala/|3N1U
L KDN9P |18 +|10+1 |1.8x10° N
Gammaproteobac | KDO8P 60 +[0.50. | 1.2 x 10* 670 | Arg | 3MNL1
L KDN9P |17 +|96 +[18x10' o
Gammaproteobac | KDO8P [ 8.9 +0.19 |4.7x10°
Arg

teria /

25 £ 1200 |7 |3No7
V. cholerae /| KDN9P 11+1 |23x10

0.1 Ala
QIKP52
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An enzyme from S. avermitillis mis-annotated as KDO8P was found to possess the
signature determinants for KDN9PP. Kinetic characterization demonstrates the SA-
KDNO9PP is specific for KDNIP with a ket / K = 1.2 x10° M's™. Notably, SA-KDN9PP
occurs as a fusion protein with CMP transferase. Overall, then, the identity of KDN9PP
enzymes can be based on Glu and Lys markers, and KDOS8PP enzymes based on Gly and

Ala or Arg and Asp/Ser/Ala/GIn/Thr markers.

Additional Structural Data

To correlate the bioinformatic and kinetic data, with structural information of
KDO8PP and KDN9PP enzymes were compared (PDB ID 2R8E (E. coli, EC-KDO8PP),
1K1E (H. influenzae, HI-KDO8PP), 3MN1 (P. syringae, PS-KDO8PP), 3N1U (L.
pneumophila, LP-KDO8PP), 3N0O7 (V. cholera, VC-KDO8PP), 3AMMZ (S. avermittillis,
SA-KDN9PP).

Structural overlays of all available KDO8PP and KDN9PP enzymes show the
three-dimensional location of the putative specificity residues in the active site is
retained, (Figure A.7). Additionally the location always maps in primary structure with
the first specificity residue positioned two residues after HADSF motif two (Ser/Thr),
and the second specificity residue positioned 11 amino acids after the first. Overall,
specificity residues in KDO8PP and KDN9PP enzymes throughout bacteria are

conserved in primary and tertiary structure.
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Figure A.51: Overlay of all KDO8PP and KDNO9PP specificity residues. Side chains of
motif one Asp and both specificity residues (indicated in parentheses) shown for EC-
KDOS8PP (Arg78, Thr89, cyan), HI-KDOS8PP (Arg60, Asp71, yellow), PS-KDO8PP
(Arg69, Ser80, orange), LP-KDOS8PP (Ala7l, GIn82, forest green), VC-KDO8PP
(Arg75, Alag6, brown), SA-KDNIPP (Glu64, Lys75,blue), BT-KDO8PP (Gly63, Ala74,
green), BT-KDN9PP (Glu56, Lys67, gray with oxygen colored red and nitrogen colored
blue) active overlayed. KDN (gray), VOs (slate), Mg®* (magenta sphere), and ribbon

diagram of BT-KDN9PP shown for reference. Figure generated using PyMol
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Structural Analysis of HI-KDO8PP with KDO and VO3

The functional importance of Arg at the first specificity position is highlighted by
the structure of the complex of HI-KDO8PP with KDO and VOg3 as a transition state
mimic, which was solved to 1.8 A (Figure A.8). Two conformations of KDO were found
in the crystal structure, each modeled with 50% occupancy (Figure A.8). The second
conformer is not indicative of KDO8P binding, as the terminal OH forms a hydrogen
bond to oxygen of VO3, and was thus not included in analysis. Structural analysis shows
three charge-charge interactions and two hydrogen bonds to the leaving-group sugar.
Arg60 makes a mono-dentate salt bridge to an oxygen of the substrate carboxyl (2.8 A,
Figure A.8) revealing the basis of the functional importance of this residue in the binding
of substrate. The second specificity residue, Asp71, does not interact with ligand, which
correlates with the variability of that residue found in our bioinformatic data. The other
important ligand-protein interactions include a bi-dentate salt bridge from Arg 68 to the
carboxyl group of KDO (2.8 and 2.9 A), and a hydrogen bond between the carbonyl of
Val38 and Met178 to 02 (2.5 A) and 04 (3.2A), respectively. Also, a water molecule
forms a bridging hydrogen bond to O7 of KDO (3 A) and Aspl108 (2.8 A) of HI-
KDOS8PP. The C6-C8 carbon chain of KDO is packed neatly against the side chain
methylene carbons of Arg60. The C-terminus of HI-KDOS8PP (from the ‘cap’ subunit) is
found adjacent to the active site, effectively blocking solvent from the binding pocket
(the final residue, GIn180 could not be modeled into density). The backbone oxygen of
Met178 forms a hydrogen bond with O3 of KDO. This structure, combined with C-

terminal deletion mutant Kinetics for BT-KDOS8PP and the E. coli KDO8PP (vide infra
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and [18]) demonstrates that the C-terminus of KDOS8PP plays a role in positioning ligand,
allowing effective catalysis. Previously, the only ligand bound KDOS8PP structure

available was with a C-terminal truncation [15].

Met 178*

Figure A.52: Structure of HI-KDO8PP in complex with KDO and VO3 (yellow) is
shown and Aspl4, Vall5 and Aspl6 (motif one, gray, left panel). Hydrogen bonds
(dashed line) between KDO the catalytic domain (gray residues) and ‘cap domain’
(brown residues with *) are shown. Magnesium is represented as a magenta sphere and
vanadium is represented as a slate blue sphere. Figures generated using MOLSCRIPT
and POVS CRIPT [54-55].

Both structure and kinetics of KDO8SPP from H. influenzae, E. coli and B.

thetaiotaomicron demonstrates the function of the C-terminus in binding substrate and
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providing solvent exclusion. In contrast, the C-terminal tail of BT-KDN9PP does not
stabilize substrate; structural analysis shows it is positioned far from the active site. The
C-terminal tail of KDN9PPs and KDO8PPs are functionally disparate and represent a key
difference not observable via sequence alignment alone.

The other contribution to shape of the binding pocket is the specificity determinant
residues. HI-KDOB8PP has Arg60 (Asp71, the second specificity marker does not interact
with substrate) and BT-KDN9PP has Glu56 and Lys67, which directly form hydrogen
bonds to the substrate. BT-KDO8PP has Gly63 and Ala74 at these positions, significantly
altering the shape of the active site compared to HI-KDO8PP and BT-KDN9PP. With
respect to the size and shape of the binding cleft, HI-KDO8PP is more similar to BT-
KDNO9PP than BT-KDOS8PP. This provides explanation as to why HI-KDNO9PP can
accommodate KDNOP as a substrate (Table A.5).

Our data indicate that KDOS8PP has evolved to retain functionality while altering
substrate binding. This is confirmed by our kinetic and structural analysis. KDO8PP
either provides Arg as a direct ligand for KDOS8P, or Gly to provide an altered binding

pocket that is catalytically efficient toward KDOSP.

Variability Analysis

To identify any other possible conserved specificity residues, the sequence entropy

of each set of KDN9PP and KDOS8PP enzyme sequences was determined. A
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multiple sequence alignment of all KDN9PP sequences (44 available sequences from
Actinobacteria, Bacteroides and Chlorobi phyla) was utilized to calculate entropy which
was mapped our structure of BT-. For KDOS8PP with the Gly marker (KDO8PP-Gly),
sequences from Bacteroides (47) and Cyanobacteria (11) were aligned, with results
mapped onto the BT-KDOS8PP structure. For KDO8PP with the Arg marker (KDOS8PP-
Arg), selected sequences from all other phyla were aligned with results mapped onto the
HI-KDOB8PP structure.

Variability analysis confirms the identity of KDN9PP specificity residues, as
expected, and identifies Ser 37 (BT-KDN9PP numbering) as absolutely conserved
(Figure A.9). Ser37 does not contribute to ligand binding in the structure presented

above (4.2 A from KDN), it may affect the polarity of the active site.

[ LPSRIrT el 4 WK

Figure A.53: Variability of KDO8PP-Gly, KDO8PP-Arg and KDN9PP. Ribbon diagram

surrounding the active site of each structure: KDO8PP-Gly variability mapped onto BT-
KDOS8PP (left panel, KDO (yellow sticks) is docked), KDO8PP-Arg variability mapped
onto HI-KDO8PP (middle panel), and KDN9PP variability mapped onto BT-KDN9PP

(right panel). HAD motifs and specificity residues are shown as sticks.
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The variability analysis of KDO8PP-Gly shows that Arg38 (BT-KDOS8PP
numbering) is conserved throughout Bacteroides and is conservatively replaced in the
Cyanobacteria (6 / 12 Arg, 5/ 12 Lys). Likewise, in KDO8PP-Arg the orthologous
position is absolutely conserved as Lys throughout all phyla. The functionality of this
Lys/Arg residue is to position the acid/base Asp residue motif one). In KDO8PP-Arg
proteins, Lys is excluded from solvent by the specificity residue Arg, in comparison to
KDOS8PP-Gly proteins, Arg/Lys is exposed to solvent due to the presence of Gly at the
specificity position. This can be seen by comparing electrostatic surfaces of BT-KDO8PP
with HI-KDOB8PP calculated by GRASP [25] (Figure A.10). The insertion of a positive
charge into the KDOS8P binding site provides a potential ligand for the KDOS8P
carboxylate. Another mechanism could be to alter the electrostatic environment of the
active site to favor negatively charged ligand. Docking models of KDOS8P into BT-
KDOS8PP show that it is plausible to suggest KDO8P can form a weak charge charge
interaction with Arg38 and Arg71 (Figure A.10, 4 A and 4.4 A respectively). Arg38 is
present behind KDOB8P carboxyl, and Arg71 is found to the left of Arg37 in Figure A.8.
cannot visibly be docked into the same position. We hypothesize that Arg/Lys 38 is
contributing to ligand binding or altering the electrostatic environment of the active site
to make it more favorable for KDO8P binding, which has a negative charge due to the
carboxylate. This mechanism feasibly allows for selectivity of KDO8P over KDN9P.
Thus KDO8PP-Gly enzymes have possibly evolved a secondary mechanism for ligand

binding, alternative to KDN9PP and KDO8PP-Arg.
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Figure A.54: Electrostatic potential of BT-KDN9PP, BT-KDO8PP and HI-KDO8PP
active site. Electrostatic surface potential generated using GRASP [30]. BT-KDO8PP
surface is shown with KDO8P docked (yellow sticks, left panel), HI-KDOS8PP surface is
shown with KDO for positioning reference (middle panel), and BT-KDN9PP surface
shown with KDN (right panel).

The active site design does not eliminate KDN9P phosphatase activity in BT-
KDOS8PP, as confirmed by kinetics (Table A.2). This can be explained by the presence of
Arg71 in BT-KDOB8PP, which corresponds to Arg 64 in BT-KDN9PP, and Arg 68 in HI-
KDOS8PP, both of which form a bi-dentate salt bridge to ligand (Figure A.5, Figure A.8).
Variability analysis shows that this residue is conserved in all three enzymes (KDN9PP —
0, KDO8PP-Gly - 0.112, KDO8PP-Arg — 0.094) and Arg is always found in the same
position in primary structure, eight residues downstream from the first specificity residue.
The presence of Arg at this position allows for KDN9P to weakly bind to BT-KDOS8PP in

the absence of the specificity residues Glu and Lys.
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Phylogenetic Correlation

Recent phylogenetic proteome analysis provides a bacterial tree of life for
comparison with our findings [43]. The Bacteroides phylum is shown as a divergence on
the path to gram-negative bacteria, namely the proteobacteria phylum. Our data correlate
well with this tree of life, indicating that at some point in time a divergence occurred,
where the Bacteroides phylum evolved separately from other gram-negative bacteria,
possibly due to co-habitation with humans. Our data indicate that bacteria which are
symbiotic with humans contain both KDO8PP and KDN9PP genes (e.g. Bacteroides and
Chlorobi), while pathogenic bacteria tend to not have a KDN9PP gene, nor the
corresponding synthase. Although, some bacteria like H. influenzae have evolved a
secondary mechanism for obtaining KDN and its derivatives by importing sialic acid
from the extracellular environment [44], it appears that the chosen mechanism in
Bacteroides is to mimic human cells by acquiring the ability to produce sialic acids used

to decorate the cell wall in humans.

Evolutionary Divergence and Duplication
Enzyme Specificity

A literature search illustrates the complexity in identifying a single residue which
induces substrate selectivity seen here, as very few examples can be found. One example
is tyrosine ammonia-lyase (TAL) of the aromatic lyase family. TAL is selective for L-
Tyr over L-Phe by 150 — 300 fold depending on the enzyme analyzed [45] and contains a

His residue adjacent to the active site. Sequence alignments confirm that His is present
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in the same position in other TALS, while phenylalanine ammonia-lyases contain Phe at
the same position. Mutation of His89 to Phe in TAL modifies the substrate selectivity to
Phe over Tyr (15,000 fold) [45]. A similar example is the alteration of dyhydroflavonol
4-reductase specificity in Gerbera by changing a single amino acid (Asn134Leu) [46].
This results in the switch of specificity to solely utilize dihydrokaempferol as substrate,
excluding dihydroquercetin and dihydromyricetin, which only differ in the addition of
one or two hydroxyls, respectively, present on the ring structure [46]. The lack of
examples in the literature highlights the difficulty in uncovering the mechanisms of
substrate selectivity. The work described herein represents a structure-function-
bioinformatic approach which is feasible for teasing out subtleties in enzyme specificity.
The correlation of structural, kinetic and bioinformatic data confirms the identity
of two KDOB8P phosphatases within bacterial species. The vast majority of bacteria
contain a KDO8PP enzyme with an Arg residue at the identified specificity position. The
HI-KDOB8PP liganded structure highlights the importance of Arg in positioning KDO8P
for catalysis. Yet, some KDO8PPs (i.e. B. thetaiotaomicron and L. pneumophila subsp.
pneumophila str. Philadelphia 1) are specific for KDOS8P, but replaced Arg with Gly or
Ala. This exemplifies the variability and adaptability of enzymes. The loss of a large
charged residue changes the shape of the KDOS8P binding pocket which allows KDO8P
binding, while reducing the ability of the enzyme to take in alternative substrates. This is
critical for bacteria like B. thetaiotaomicron which must produce KDO for normal

growth, and KDN to mimic human cells to prevent the innate immune response.
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