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Abstract 

Small organic molecules, including small molecule based fluorescent probes, small molecule 

based drugs or prodrugs, and smart multifunctional fluorescent drug delivery systems play 

important roles in biological research, drug discovery, and clinical practices. Despite the 

significant progress made in these fields, the development of novel and diverse small molecules 

is needed to meet various demands for research and clinical applications. My Ph.D study focuses 

on the development of novel functional molecules for recognition, imaging and drug release.  

In the first part, a turn-on fluorescent probe is developed for the detection of intracellular 

adenosine-5'-triphosphate (ATP) levels based on multiplexing recognitions. Considering the 

unique and complicated structure of ATP molecules, a fluorescent probe has been implemented 

with improved sensitivity and selectivity due to two synergistic binding recognitions by 

incorporating of 2, 2‟-dipicolylamine (Dpa)-Zn(II) for targeting of phospho anions and 
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phenylboronic acid group for cis-diol moiety. The novel probe is able to detect intracellular ATP 

levels in SH-SY5Y cells. Meanwhile, the advantages of multiplexing recognition design concept 

have been demonstrated using two control molecules.  

In the second part, a prodrug system is developed to deliver multiple drugs within one small 

molecule entity. The prodrug is designed by using 1-(2-nitrophenyl)ethyl (NPE) as phototrigger, 

and biphenol biquaternary ammonium as the prodrug. With controlled photo activation, both 

DNA cross-linking agents mechlorethamine and o-quinone methide are delivered and released at 

the preferred site, leading to efficient DNA cross-links formation and cell death. The prodrug 

shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV 

activation, but displays potent activity towards cancer cells (HeLa cells) upon UV activation. 

The multiple drug release system may hold a great potential for practical application. 

 In the last part, a new photo-initiated fluorescent anticancer prodrug for DNA alkylating 

agent mechlorethamine releasing and monitoring has been developed.  The theranostic prodrug 

consists a photolabile NPE group, an inactive form of mechlorethamine and a nonfluorescent 

coumarin in one small molecule.  It is demonstrated that the prodrug shows negligible 

cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, while the 

original parent drug mechlorethamine can be photocontrol-released and induces effective DNA 

cross-linking activity.  Importantly, the drug release progress can be conveniently monitored by 

the „off-on‟ fluorescence enhancement in cells.  Moreover, the selective prodrug is not only cell 

permeable but also nuclear permeable.  Therefore, the prodrug serves as a promising drug 

delivery system for spatiotemporal control release and monitoring of an anticancer drug to obtain 

the optimal treatment efficacy. 
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Chapter 1  

Introduction  

 

1.1 Background  

During the past several decades, vast progress has been achieved in the field of 

fluorescent imaging which has significant impact on biomedical research, drug discovery, 

and clinical practices. Fluorescent imaging allows the in vivo visualization of function 

molecules (amino acids, coenzyme, carbohydrates, nucleosides, nucleotides, etc.) in their 

intact and native psychological state with high sensitivity, selectivity, fast response time, 

flexibility, biocompatibility and high spatial and temporal resolution
 [1-9]

. It also provides 

information about the structure and/or dynamics of living systems at a molecular level to 

fully elucidate the roles of molecule of interest
 [1]

.  

Despite the wide clinical applications of chemotherapeutic agents, their high 

reactivity often accompanies high systemic toxicity and poor tumor selectivity, leading to 

severe adverse effects which greatly hinder their therapeutic efficiency. In order to 

alleviate or even overcome these limitations, various strategies have been developed such 

as targeted therapies 
[10]

, antibody-drug conjugates
 [11]

, nano-particle drugs
 [10, 12]

, and 

electrochemotherapy 
[13-19]

, etc. Among these therapies, prodrug strategy has provided an 

alternative to redesign the drug molecule through a chemical approach to improve 

multiple properties of the parent agents including bioavailability, duration of 

pharmacological effects, stability, solubility, selectivity and to decrease toxicity
 [20]

.  

An emerging area arises based on the integration of anticancer prodrug and 

fluorescent reporter to achieve multi-functions 
[21]

. The theranostic molecule is not only a 
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prodrug but also a fluorescent reporter that enables simultaneous monitoring and 

delivering of the active drug to the target. These features are highly desirable for reaching 

the optimal therapeutic efficiency in chemotherapy. Also, they emit fluorescence signals 

that have potential applications for researchers to study the drug delivery process, to 

control drug dosage, etc.   

 

1.2 Fluorescent Probes  

To explore and study the biological activities in the living system, the first step is to 

visualize the dynamic processes of molecules involved. Therefore, various detection 

methods have been utilized to transform biological information into other detectable 

signals, examples includes radioactive tracers, EPR (electronic paramagnetic resonance) 

probes, ion electrodes, etc
[1]

. Among them, fluorescent probes have received considerable 

attention as they can provide dynamic information about the quantity and localization of 

the molecule of interest with high sensitivity, selectivity, biocompatibility, sub-nanometer 

spatial resolution (e.g., by fluorescence imaging microscopy), and sub-millisecond 

temporal resolution, etc. 
[1-9, 22]

. 

As the photophysical properties of fluorescent molecules are strongly affected by 

their surrounding medium, they are generally applied for the investigation of 

physicochemical, biochemical, and biological systems, thus known as fluorescent probes. 

Fluorescent probe/sensor development was initially promoted by the blooming of 

supramolecular chemistry and the advancement of photochemistry. Supramolecular 

chemistry provides the basis of selective recognition between synthetic host molecules 

and guest molecules using noncovalent interactions 
[23-24]

, and photochemistry offers the 
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basic design principles how structure modification is related to photophysical properties. 

Since then, a large number of fluorescent probes have been developed for targeting 

various molecules and ions 
[25-26]

, especially to meet the demand of biological and life 

science.  

Nowadays, an increasing number of versatile fluorescent molecules have been 

developed to enable the noninvasive study of various biological processes 
[27-30]

, at the 

same time, advanced visualization methods have been utilized to give high quality 

detection with a moderate cost. These achievements make fluorescent imaging as a new 

exciting tool with great potential in basic research, drug discovery and clinical 

applications.  

 

1.2.1 Common Features of Fluorescent Probes 

A typical fluorescent probe 
[31-32]

 consists of a fluorophore (signaling moiety) for 

fluorescent signal generation, a receptor (recognition moiety) for analyte recognition, and 

a spacer, linking them together. The recognition event, which takes place at the receptor, 

and accordingly affects its topology and characters, is transduced through spacer to the 

signaling moiety and consequently changes its photophysical characteristics. Based on 

the differences in analyte recognition, fluorescent probes fall in two categories. 

Conventional analyte recognition is based on noncovalent interactions, including 

hydrogen bonding, π-π, donor-acceptor, electrostatic, hydrophobic, hydrophilic, and 

coordination based interactions. When analyte recognition takes place where a covalent 

bond is formed, it is reaction-based fluorescent probe (Figure 1.1). Both types of 

fluorescent probes are essential for the detection of different types of analytes. 



4 
 

 

Figure 1.1. Conventional sensory systems and reaction-based sensory systems. 

 

 

1.2.1.1 Fluorophore (Signaling Moiety) 

Organic dyes are commonly used fluorophores which cause fluorescent emission 

ranging from the ultraviolet to the near-infrared in the electromagnetic spectrum. Upon 

excitation, a molecule undergoes fast energy absorption (≈10
-15

s) and is excited from the 

ground state S0 (the most common state at room temperature for most organic species) to 

the excited singlet state (S1). Upon relaxation from S1 to S0, fluorescence is generated in 

the form of light (Figure 1.2). When the receptor interacts with its surroundings, 

information is transduced by the linker to the fluorophore and alters its fluorescence 

properties (such as absorption and emission spectra, quantum yield, lifetime, etc.). By 

measuring the differences in the fluorescence properties, spatial and temporal information 

of the microenvironment (such as ion and molecular concentration, polarity, etc.) can be 

monitored.  
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Figure 1.2. Jablonski diagram. 

 

 

1.2.1.2 Receptor (Recognition Moiety) 

For practical applications, a fluorescent probe should be able to detect a small amount 

of a particular analyte among various other species existing in the surrounding, therefore, 

specificity and sensitivity become two important parameters for fluorescent probe design. 

The specificity and sensitivity of a probe are designed based on the specific interactions 

or reaction between the receptor and the analyte.  

 

1.2.1.3 Spacer (Linker) 

Depending on the underlying photophysical mechanism, the spacer can be saturated 

to disconnect the electronic systems of chromophore and binding unit or unsaturated to 

couple these electronic subsystems. 
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1.2.2 Design Principles of Fluorescent Probes  

A fluorescent probe converts non-optical information into optical signals based on the 

alterations in the photophysical properties of the fluorophore. Different fluorophores have 

different energy transfer mechanisms to affect fluorescence properties. Listed in the 

followings are some of the most commonly used photoinduced processes that lead to 

photophysical changes.   

 

1.2.2.1 Photoinduced Electron Transfer (PET) 

One of the most extensively employed mechanisms in the design of fluorescent 

probes is based on photoinduced electron transfer (PET) process (Figure 1.3) 
[33-36]

. In a 

fluorescent molecule, an electron is promoted from HOMO to LUMO upon light 

absorption. Subsequent decay back to HOMO produces fluorescence emission.  However, 

the fluorescence emission process can be disrupted by introducing a quencher to the 

system. The quencher works by either reductive electron transfer or oxidative electron 

transfer. In the unbounded state, a fast electron transfer (from HOMO of reductive 

quencher to the HOMO of the excited fluorophore, known as reductive quench; from 

LUMO of the fluorophore to the LUMO of the excited fluorophore, known as oxidative 

quench) quenches the fluorescence of the system. The fluorescence emission can be 

regained by slowing down or switching off the electron transfer process. It is usually 

realized by analyte binding at the receptor to modulate the redox potential of the 

quencher. 

 

 



7 
 

 

Figure 1.3. PET mechanism. (a) reductive PET; (b) oxidative PET. 

(a) 

 

 

(b) 

 

 

 

1.2.2.2 Photoinduced Charge Transfer (PCT) 

Photoinduced charge transfer is another widely applied process in the design of 

fluorescent probes
 [37-38]

. When a fluorophore contains an electron-donating group (EDG) 
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conjugated to an electron-withdrawing group (EWG), it undergoes intramolecular charge 

transfer (ICT) from the donor to the acceptor upon light absorption. The consequent 

change in dipole moment results in a Stokes shift which depends on the 

microenvironment of the fluorophore. When an analyte binds to an electron-donating 

group, the electron-donating ability is reduced, the decrease in conjugation leads to a blue 

shift of the absorption spectrum and a decrease in extinction coefficient. Conversely, the 

binding between an analyte and an electron-withdrawing group leads to an increase in 

conjugation, i.e. a red shift of the absorption spectrum and an increase in extinction 

coefficient. In addition to all these shifts, changes in quantum yields and lifetimes are 

often observed. 

 

1.2.2.3 Fluorescence Resonance Energy Transfer (FRET) 

Fluorescence resonance energy transfer is one kind of "Förster resonance energy 

transfer" (FRET) when both the donor and the acceptor are fluorophores
[39]

. When there 

are interactions between a donor moiety and an acceptor moiety, non-radiative excitaion 

energy is transferred from the donor to the acceptor. It often takes place if the emission 

spectrum of the donor overlaps with the absorption spectrum of the acceptor, and that 

several vibronic transitions in the donor have practically the same energy as the 

corresponding transitions in the acceptor. Such transitions are dipole-dipole coupled in 

resonance (Figure 1.4). The surrounding environment changes the spectra properties of 

either donor or acceptor, or the space between donor and acceptor, thus results in a 

change of the spectra properties of acceptor or donor. 
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Figure 1.4. FRET mechanism. 

 

 

1.2.2.5 Excimers and Exciplex Formation 

Excimers are dimers in the excited state. They are formed by collision between an 

excited molecule and an identical unexcited molecule 
[40-41]

. Dual fluorescence is 

observed with a monomer band and a structureless broad band at longer wavelength due 

to excimer formation. When a fluorescent probe contains two fluorophores whose mutual 

distance is affected by analyte complexation,
[39]

 recognition of this analyte can be 

monitored by the monomer/eximer fluorescence-intensity ratio.  

Exciplexes are another form of excited-state complexes. They are formed by collision 

of an excited molecule (electron donor or acceptor) with an unlike unexcited molecule 

(electron acceptor or donor). 

 

Excimer formation: M* + M ←→ (MM)* 

Exciplex formation: D* + A ←→ (DA)*; A* + D ←→ (DA)* 

 

1.3 Cancer Chemotherapy  

Cancer, characterized by the uncontrolled cell growth
 [42-43]

, is currently the second 
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most common cause of deaths in the US, accounting for nearly one in every four deaths
 

[44]
. Among the management options such as surgery, radiation therapy and palliative care, 

chemotherapy is currently the leading treatment option to treat many cancer types, 

especially for the systematic treatment of metastasis 
[45]

. Chemotherapeutic agents are 

small molecule drugs that interfere with DNA replication, repair, translation or cell 

division, thus inhibit cancerous cell proliferation 
[46]

. Clinical chemotherapeutic agents 

include DNA alkylating agents, anti-metabolites, anti-microtubule agents, topoisomerase 

inhibitors and cytotoxic antibiotics, among which, DNA alkylating agent is one of the 

most prominent class of anticancer agents due to their high degree of reactivity
 [47-49]

.  

Being the first modern cancer chemotherapeutic agent in the DNA alkylating family, 

nitrogen mustard type anticancer drug has attracted lots of investigations and is one of the 

most heavily employed anticancer agents in use today
 [48-49]

. For example, Valchlor by 

Ceptaris Therapeutics, is a gel formulation of mechloethamine hydrochloric salts 

approved by US Food and Drug Administration in August 2013 for the treatment of Stage 

IA and IB mycosisfungoides-type cutaneous T-cell lymphoma (Scheme 1.1a). Leukeran 

by GlaxoSmithKline, contains DNA alkylating agent chlorambucil is currently used for 

treating chronic lymphocytic leukemia (Scheme 1.1b). Both of these nitrogen mustard 

type anticancer drugs bear a reactive N,N-bis-(2-chloroethyl)amine to form interstrand 

cross-links (ICLs) between DNA double strands, mostly at the guanine N-7. To carry 

sufficient reactivity, the nitrogen mustard type drug must have enough electron density 

on the amine nitrogen to form the highly electrophilic aziridinium ring through 

intramolecular displacement of the chloride. This highly electophilic aziridinium ring is 

the actual reactant with DNA bases in forming covalent bonds, shutting down DNA 
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replications and transcriptions, and consequently leading to mutations and/or cell death 

(Scheme 1.2) 
[48]

.  

 

Scheme 1.1 Nitrogen mustard type chemotherapeutic agents 

(a) Valchlor (Mechloethamine hydrochloric salt) 

 

(b) Leukeran (Chlorambucil) 

 

 

Scheme 1.2 Mechanism of action of nitrogen mustard type anticancer drug  

 

 

Besides the nitrogen mustard type DNA interstrand cross-links (ICLs) inducing 

agents, quinone methide derivatives have displayed good activities as antitumor agents or 

antibiotics. Its reactivity was mainly caused by its forming highly polarized structure to 

react with nucleophiles, especially DNA bases at the exocyclic methylene group to form 

benzylic adducts
[50]

 (Scheme 1.4). Various quinone methide derivatives have been 
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developed as DNA intercross linking agents. For example, Mitozytrex or Mutamycin, 

containing mitomycin C, is a commercially available chemotherapeutic agent for the 

treatment of stomach cancer, pancreas cancer and other types of cancer 
[51-52]

 (Scheme 

1.3a). Anthracycline is a class of very effective anticancer drugs that showed potent 

activity against a wide spectrum of cancer types 
[53-54]

. Their antitumor activities are 

caused by the formation of QMs which undergo tandem reactions to form DNA cross-

links 
[55-56]

, see the first example of anthracycline discovered – Daunomycin 

(Daunorubicin) (Scheme 1.3b).  

 

Scheme 1.3 Quinone methide derivatives 

(a) Mitozytrex or Mutamycin (Mitomycin C)  

 

(b) Daunomycin (Daunorubicin) 

 

 

 

Scheme 1.4 Mechanism of action of quinone methide type anticancer drug 
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Despite the wide applications of the nitrogen mustard type and quinone methide type 

chemotherapeutic agents, their high degree of reactivity came alone with low selectivity 

lead to high systematic toxicity and limited therapeutic indices 
[57-58]

, i.e. severe or even 

life-threatening side effect with little therapeutic effects 
[20]

. Therefore, prodrug strategy 

becomes a very important option in designing less cytotoxic anticancer drugs.   

 

1.3.1 Nitrogen Mustard Based Prodrugs 

Anticancer prodrugs are the less active and less cytotoxic forms of drug derivative 

that has some barrier to its utility as an effective drug, after activation or metabolism, it is 

preferentially released at the site of action
 [20, 59-60]

. In general, a prodrug is designed by 

attachment of the active moiety (parent drug) through an activatable linkage to the 

“promoiety” 
[61]

 (Scheme 1.5). The promoiety is designed to improve selectivity based on 

the differences between cancer cells and normal cells. There are generally three strategies 

in designing the promoiety: 1. Active targeting, promoiety is designed by taking 

advantage of the differences in cell surface makers such as receptor or antigen between 

tumor cells and normal cells. 2. Passive targeting, promoiety is designed by taking 

advantage of the differences in biochemical or physiological properties between tumor 

cells and normal cells such as pH, oxidative stress, etc. 3. External activator, promoiety is 
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designed based on external stimuli such as light or heat to achieve direct control of drug 

release in the targeted area 
[61]

.  

 

Scheme 1.5 An illustration of the prodrug concept 

 

 

As nitrogen mustard type anticancer drugs bear very high reactivity, much effort has 

been devoted to making prodrugs to improve the clinical utilities of nitrogen mustard 

type anticancer agents. For example, cyclophosphamide (CPA)
 [62-64]

 and its isomer 

ifosfamide (IFA)
 [65]

 are prodrugs that can be activated in vivo by cytochrome P450 to 

release the ultimate DNA alkylating agent phosphamide mustard. Based on the parent 

drug chlorambucil, a number of lipophilic prodrugs have been developed. Examples 

include clinical approved prednimustine, the ester of prednisolone-chlorambucil 

conjugate, is able to selectively target tumor cells with cancer specific receptors 
[66-67]

. 

Bestrabucil, the benzoate of the estradiol-chlorambucil conjugate, has been approved for 

the treatment of estrogen-receptor positive breast cancer 
[68-69]

. Other examples include 

the dipeptide prodrug of melphalan, J1 (L-melphalanyl-p-L-fluorophenylalanine ethyl 
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ester, which can be activated by aminopeptidase to release melphalan. The selectivity of 

prodrug J1 is designed based on the elevated aminopeptidase activity in the plasma of 

cancer patient. It is currently in phase I clinical trial for the treatment of disseminated 

solid tumors in adults 
[70-73]

. Another prominent example is hypoxia activated prodrugs 

for the selective treatment of solid tumors. PR-104, currently under clinical trial, works 

converting to PR104A, subsequently to PR-104H and PR-104A metabolites under 

hypoxic conditions 
[74]

. To the best of our knowledge, no light activated nitrogen mustard 

type prodrug has been reported. 

 

Scheme 1.6 Structure of nitrogen mustard type prodrugs 

(a) cyclophosphamide (CPA)                                  ifosfamide (IFO) 

                                                       

(b) Prednimustine 

 

(c) Bestrabucil 
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(d) J1 (L-melphalanyl-p-L-fluorophenylalanine ethyl ester 

 

(e) PR-104 

 

 

1.3.2 O-quinone Methide (o-QM) as Inducible DNA Alkylating Agent  

With the fact that quinone methide derivatives are excellent DNA alkylating agents, 

they can be generated in different ways. As is reported, they can be generated by photo-

irradiation 
[75-77]

, oxidation
 [78-81]

, or fluoride inducing 
[55, 82-83]

. Recently, biphenyl 

biquaternary ammonium derivatives have been reported to have much more potent ISC 
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activity than the traditional phenyl biquaternary ammonium upon photochemical 

activation 
[50]

 (Scheme 1.7a). Its high reactivity is caused by the formation of bisquinone 

methide intermediate instead of monoquinone methide intermediate. Meanwhile, its 

structural affinity with a DNA helix improves DNA alkylating potency. Based on the 

previous report, Zhou group developed a phenyl selenide biphenyl compound which can 

be efficiently oxidized by periodate to release quinone methide for DNA bisalkylation 
[81]

 

(Scheme 1.7b).  

 

Scheme 1.7 Biphenyl biquaternary ammonium based quinone methide prodrug 

(a) light activated quinone methide prodrug 

 

(b) oxidation mediated quinone methide prodrug 

 

 

1.4 Multiple Drug Release Chemotherapy 

Many diseases, especially cancer, usually cannot be fully cured by a single drug 

treatment due to the pathological complexity. However, multiple drug chemotherapy may 
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have enhanced therapeutic efficiency compared with traditional chemotherapy
 [84]

. 

Compared with traditional chemotherapy, multiple drug chemotherapy is more potent so 

that lower dosage is administrated, leading to suppression of severe side effect. 

Considerable efforts have been devoted to nano-material based multidrug delivery system, 

but limited progress was made in small molecule based multidrug delivery system
 [84]

.  

The combination of prodrug design and multiple drug release to the desired site 

would be potentially useful. In the field of small molecule based multiple drug delivery 

system, dual acting antibiotics have been developed previously 
[85]

, only very few dual 

acting anticancer prodrugs were developed. Back in 1999, Smyth and coworkers made a 

novel class of β-lactamase-dependent prodrug using cephalosporin as prodrug nucleus. 

Through enzyme catalyzed hydrolysis, two structural distinct components – 3‟ acetoxy 

group and the side chain sulfur-attached S-amino moiety was released 
[86]

. Based on the 

same cephalosporin prodrug nucleus structure, further modification gave a prodrug that 

inhibits estrogen production in hormone-dependent breast cancer by the release of 

aminoglutethimide (an aromatase inhibitor) at the 3‟-position and coumate (a sulfatase 

inhibitor) as the S-aminosulfenimine 
[87]

. The synergistic effect of two drugs released at 

the same site may become an alternative approach for chemotherapy.   

   

Scheme 1.8 Cephalosporin-based dual-release prodrug 
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1.5 Combining Fluorescent Imaging with Prodrug Therapy 

Despite the traditional role of fluorescent molecules in detecting small molecules, 

they have found many new applications in the field of life sciences as a versatile tool. 

Nowadays, with the development of drug delivery system, people have developed a novel 

type of fluorescent imaging agent that carries dual functions. On the one hand, it is a 

prodrug that can be activated by various biological stimuli to release parent drug to 

improve selectivity and reduce cytotoxicity. On the other hand, the prodrug itself is an 

imaging agent that emits fluorescence light upon drug release. These properties facilitate 

the monitoring of drug delivery process, help to diagnose diseases, and guide in 

controlling the dosage level in a spatial and temporal manner.   

Among various studies in this field, a large amount of the multifunctional anticancer 

drug delivery systems (DDSs) to date are based on nano-materials 
[21, 88-93]

, only a few 

examples of small-molecule based drug delivery system have been reported
[94-99]

. In 2011, 

Perez et al. developed a cell-specific theranostic prodrug for cancer imaging and therapy. 

Taking advantage of the over-expressed folic acid receptors on many types of tumor cells, 

the authors synthesized folate doxorubicin conjugate. Both the fluorescence and 
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cytotoxicity are quenched by the covalently linked folic acid, through targeted cellular 

uptake, disulfide bond undergoes glutathione mediated dissociation and nuclear 

translocation to display enhanced fluorescence, meanwhile release doxorubicin 
[94]

 

(Scheme 1.9a). In 2012, Kim et al. designed a theronostic prodrug using a RGD peptide 

as a cancer-targeting unit, a naphthalimide moiety as a fluorescent reporter to release a 

model anticancer agent camptothecin (CPT). Through RGD-dependent endocytosis, it is 

preferentially taken up by αvβ3 integrin rich U87 cells over αvβ3 integrin deficient C6 

cells. Subsequently, disulfide bond cleavage takes place in the cytoplasm, resulting in 

CPT release and a red-shifted fluorescence emission 
[96]

(Scheme 1.9b). In 2012, Shabat et 

al. reported a novel molecular design of a prodrug based on a self-immolative linker 

attached to a pair of FRET fluorophores and chemotherapeutic agent camptothecin. The 

prodrug is recognized by enzyme penicillin-G-amidase to release the parent drug 

camptothecin, meanwhile, the disassembly of the prodrug gave off fluorescent signals 

which provide information about the actual location and amount of drug release 

[97]
(Scheme 1.9c). In 2013, with a similar strategy, Kim et al. made a gemcitabine-

coumarin-biotin conjugate in which biotin is the cancer targeting unit, gemcitabine (GMC) 

is the active drug, and coumarin is the fluorescent reporter. Upon uptake into the tumor 

cells, abundant thiols in tumor cells lead to disulfide bond cleavage, and subsequently 

release gemcitabine drug and cause fluorescence enhancement 
[99]

(Scheme 1.9d). In 2013, 

Zhou et al. developed a fluorescent activatable anticancer prodrug. It contains a 

naphthalimide as fluorescent reporter and a chloroambucil as a potent anticancer drug 

which are linked by a disulfide link. Through intracellular thiol mediated disulfide 

cleavage, free active DNA alkylating agent was released, meanwhile, produced a red-
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shifted fluorescent signal 
[98]

. The combination of fluorescent imaging and prodrug 

therapy makes a powerful tool in enhancing therapeutic effect as well as providing 

fluorescent information about drug delivery.  

 

Scheme 1.9 Examples of combing fluorescent imaging with prodrug strategy 

(a) Folic acid mediated activation 

 

(b) RGD peptide mediated activation 

 

(c) Penicillin-G-amidase mediated activation 
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(d) Biotin mediated activation 

 

(e) Thiol mediated activation 

 

 

1.6 Research Summary 
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Despite the enormous efforts made in the field of fluorescence imaging and 

anticancer prodrug design, there are significant challenges facing upon us. On the one 

hand, novel fluorescent probes to detect function molecules in the living system with 

good selectivity and sensitivity are needed to meet the requirement of biochemical 

research.  On the other hand, new anticancer prodrugs with high selectivity and low 

cytotoxicity are in great demand to fight against cancer. Moreover, the combination of 

fluorescent imaging and prodrug chemotherapy will not only be a good candidate in drug 

discovery but also be a versatile tool in biomedical research. Therefore, I will detail my 

efforts in the above mentioned areas. Chapter 2 presents a novel fluorescent probe for 

detection of ATP in biological system. Chapter 3 reports a photo-triggered multiple drug 

releasing prodrug. Chapter 4 focuses on the development of a multi-functional photo-

triggered fluorescent prodrug for imaging and drug release. 
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Chapter 2  

Development of Fluorescent Probe for ATP 

 

2.1 Background 

Adenosine-5'-triphosphate (ATP) is a multifunctional nucleoside widely existing in 

biological systems. Being a universal energy source for various cellular functions in 

almost all living systems, it is also involved in many other biological processes
 [1]

. For 

example, ATP acts as a phosphate donor in kinase-catalyzed protein phosphorylation. It 

plays an important role as signaling substances in periphery as well as in central nervous 

systems
 [2]

. Recently, it was found that ATP plays a vital role in mediating distinct forms 

of sensory transduction within the central nervous system
 [3]

. Furthermore, ATP released 

from human neutrophils helps to amplify chemotactic signals and direct cell orientation
 [2]

. 

The ability to significantly detect the local or dynamic ATP concentrations in biological 

environment is critical for fully elucidating its roles in living systems.  

In recent years, much effort has been devoted to the development of fluorescent 

probes for ATP detection 
[4-21]

. The ATP structure contains a tri-phospho anion connected 

by a ribose with an adenine base (Figure 2.1). However, most of ATP probes focused on 

the recognition of tri-phospho anion. In 2002, it was first discovered by the Hamachi 

group that anthracene derivatives bearing Zn(II)-dipicolylamine selectively binds to 

phosphorylated chemical species, and causes fluorescence change
 [22]

. Later, they 

published a turn-on fluorescent probe for ATP based on the previous discovery 
[21]

. It 

contains fluorescein as fluorophore with two Zn(II)-dipicolylamine moieties for binding 

with tri-phospho anion on ATP (Scheme 2.1).   
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Figure 2.1 ATP structure 
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Scheme 2.1 ATP probe developed by the Hamachi group 

 

 

To achieve better sensitivity and selectivity, we have developed a turn-on fluorescent 

probe with multiplexing recognitions towards ATP - 2, 2‟-dipicolylamine (Dpa)-Zn(II) 

strongly binds to phospho anions, and phenylboronic acid binds to a cis-diol on the ribose. 

Firstly, we demonstrated that the probe was able to response to ATP with good sensitivity 

and selectivity in aqueous buffer at physiological pH. Furthermore, the probe was applied 

for the monitoring of intracellular ATP levels in SH-SY5Y cells. In the end, we 

compared the probe with two control compounds and showed the advantages of 
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multiplexing recognitions over traditional fluorescent probe bearing a single recognition 

group.  

 

2.2 Design Strategy 

The unique structure of ATP promoted us to apply multiplexing recognitions to detect 

ATP aimed at enhancing selectivity and sensitivity. Unlike most of the simple analytes, 

ATP has a relatively complicated structure with three parts. A purine base (adenine) 

attached to the 1‟ carbon atom and three phosphate groups attached to the 5‟ carbon atom 

of pentose sugar (ribose). In aqueous solution at physiological pH, the triphosphate 

residue exists as a tetra-charged anion 
[23]

. We proposed that a fluorescent probe having 

dual interactions with both tetra-charged triphosphate ion and ribose would exhibit 

stronger and more specific binding than single interaction with either phospho ion or 

ribose. Taking advantage of the previous discovery that 2, 2‟-dipicolylamine (Dpa)-Zn(II) 

binds strongly to phospho ions 
[22]

, and the relatively strong and specific binding affinity 

between phenylboronic acid and a cis-diol which is an essential component in 

monosaccharide 
[24-29]

, we incorporated into the fluorescent probe a 2, 2‟-dipicolylamine 

(Dpa)-Zn(II) moiety for tri-phospho ion recognition and a phenylboronic acid moiety for 

ribose binding. As is shown in Scheme 2.2, probe 2-1 was composed of a polyamine 

appended anthracene as the fluorophore with two receptors connected to the amine 

groups at both end of the anthracene. The lone pair electrons on both of the unbounded 

amines are expected to quench the fluorescence of anthracene by PET pathway, resulting 

in non-fluorescence. Upon binding of phospho ion to 2, 2‟-dipicolylamine (Dpa)-Zn (II) 

moiety, PET pathway from one of the amine was blocked, resulting in weak fluorescence. 
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Upon binding of cis-diol to phenylboronic acid, PET pathway of the other free amine was 

blocked, also resulting in weak fluorescence. The fluorescence can be turned on only if 

both PET pathways of the amines were blocked by binding with phospho ion and ribose, 

respectively. Thus, ATP is expected to turn on the fluorescence with its structure bearing 

both a triphosphate moiety and a ribose moiety (Scheme 2.2). In order to achieve good 

selectivity with ATP against ADP and AMP, the proper length between phospho ion and 

ribose diol should be considered. From the structure of these molecules, ATP could 

interact with the probe better than ADP and AMP with a longer distance between 

phospho ion and ribose diol, as well as stronger binding between 2, 2‟-dipicolylamine 

(Dpa)-Zn (II) and triphosphate than monophosphate and diphosphate. 

 

Scheme 2.2 Proposed ATP binding mechanism 

 

 

To verify the hypothesis that both the 2, 2‟-dipicolylamine (Dpa)-Zn (II) moiety and 

the phenylboronic acid group contribute to ATP binding, we designed control compounds 

2-2 and 2-3 (Figure 2.2).  Control 2-2 has the similar structure as probe 2-1 except it 

contains a phenyl group instead of a phenylboronic receptor. Control 2-3 has the similar 
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structure as probe 2-1 except it contains a hydroxyl methyl group instead of the 2, 2‟-

dipicolylamine (Dpa)-Zn(II) moiety. Based on our hypothesis, upon the addition of ATP, 

we expect to see strong fluorescence of probe 2-1, compared with no or weak 

fluorescence with control compounds 2-2 and 2-3.  

 

Figure 2.2 Structure of probe 2-1, control compound 2-2 and control compound 2-3. 

 

 

2.3 Synthesis 

The synthesis of probe 2-1 was outlined in Scheme 2.3. Using the typical procedure 

for making compound 2-4 10-(hydroxymethyl)anthracene-9-carbaldehyde through two 

steps, the hydroxyl group was subsequently protected as silyl ether.  Reductive amination 

gave 2-7 in good yield, followed by Boc protection of the secondary amine. The 

introduction of 2, 2‟-dipicolylamine (DPA) was conducted by making methyl sulfate as a 

good leaving group. After deprotection of Boc, phenylboronic acid moiety was 

successfully incorporated into the anthracene backbone. In the end, Zn(II) was 

coordinated to DPA by stirring with zinc nitrate THF solution for 30 min.  
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Scheme 2.3 Synthesis of probe 1 

Reaction conditions: (i). NaH, (CH3)3SI, dry DMSO, r.t., under dark environment, 1.5 h. (ii). LiBr, 

dry MeCN, 60 ºC, under dark environment, 16 h. (iii). TBSCl, imidazole, dry DMF, r.t., 14 h. (iv). 

CH3NH2 in methanol, NaBH4, 6h. (v). Boc2O, anhydrous ethanol, 5 h. (vi). TBAF, THF, r.t. 3 h. 

(vii). MsCl, dry CH2Cl2, TEA, 0 ºC to r.t. (viii). 2,2‟-dicopicolylamine, MeCN, reflux, 36 h. (ix). 

TFA, CH2Cl2, r.t. 2h. (x). 2-(2-(bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane, K2CO3, 

THF, reflux, 39 h. (xi). Zn(NO3)2 solution, THF, r.t. 0.5 h. 

 

The synthesis of control compound 2-2 was similar to that of probe 2-1 except the 

coupling reaction was conducted with (bromomethyl)benzene instead of 2-(2-

(bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane (Scheme 2.4). The synthesis of 

control compound 2-3 was outlined in Scheme 2.5, starting from compound 3, reductive 
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amination afforded compound 13 which was further converted to control compound 2-3 

by reaction with 2-(2-(bromomethyl)phenyl)-5,5-dimethyl-1,3,2-dioxaborinane.  

 

Scheme 2.4 Synthesis of control 2-2 

 

Reaction conditions: (i). (bromomethyl)benzene, K2CO3, THF, reflux, 24 h, separated by reverse 

phase HPLC. (ii). Zn(NO3)2, THF, r.t. 0.5 h. 

 

Scheme 2.5 Synthesis of control 2-3 

 

Reaction conditions: (i). CH3NH2, NaBH4, ethanol, r.t. 6 h. (ii). 2-(2-(bromomethyl)phenyl)-5,5-

dimethyl-1,3,2-dioxaborinane, K2CO3, THF, reflux, 39 h. 

 

2.4 Results and Discussions 

2.4.1 Evaluation of Probe 2-1 in HEPES Buffer  
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With probe 2-1 in hand, we first tested its fluorescence properties and established the 

optimal test conditions. Notably, probe 2-1 showed good solubility in water. Accordingly, 

all the experiments were performed in HEPES buffer (10mM, pH = 7.2). As designed, 

probe 2-1 exhibited weak fluorescence in the absence of ATP which can be explained as 

the lone pair electrons from the two amine atoms (amine attached to 2, 2‟-dipicolylamine 

(DPA)-Zn(II) and phenyl boronic acid, respectively) quenched the fluorescence by PET 

pathway. The fluorescence intensity enhancement was observed with as low as 0.01 μM 

ATP. The characteristic peaks of anthracene fluorophore between 410nm and 480nm 

continued to increase with increasing amount of ATP, maximum fluorescence emission 

was reached with 30 µM of ATP. Meanwhile, the relationship between ATP 

concentration and fluorescence intensity was investigated. The fluorescence intensity at 

415 nm was proportional to ATP concentration (Figure 2.1).  

 

(a)                                                                   (b) 

   

Figure 2.1 Effect of ATP concentrations on the fluorescence emission of probe 2-1. Probe 2-1 

(10 µM) was studied in a HEPES buffer (pH = 7.2, 0.01 M) at room temperature in the absence 

and presence of ATP at different concentrations (10 nM~30 µM). After 3 min, the reaction 
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solution was immediately sampled for fluorescence measurement. (a). fluorescence spectra. (b). 

fluorescence intensity at 415 nm was plotted vs. ATP concentrations.  

 

Based on the results above, we subsequently conducted the selectivity test of probe 2-

1 towards ADP, AMP, other phosphates and sugar in aqueous solution. The fluorescence 

intensity increased moderately upon the addition of ADP. Very weak fluorescence 

intensity was observed upon the addition of AMP and other compounds (Figure 2.2). 

These results demonstrated that probe 2-1 showed a certain level of selectivity for 

discriminating ATP from ADP, AMP, phosphates, and mannose.   

 

(a)                                                                   (b) 

   

 

Figure 2.2. The selectivity of probe 2-1 towards ATP and other species. 10 µM probe 2-1, 

prepared from a stock solution of MeCN, was studied in a HEPES buffer (pH = 7.2, 0.01 M) at 

room temperature in the presence of 10 µM various analytes (1 equiv.). After 3 min, reaction 

solution was sampled for fluorescence measurement. (a). fluorescence spectra. (b). Fold of 

fluorescence enhancement for various species at λem = 415 nm.   
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2.4.2 Fluorescent Detection of Intracellular ATP Levels 

We further investigated the biological applications of probe 2-1 in living cells. Probe 

2-1 was incubated with neural cancer cells SH-SY5Y cells, 30 min after the extracellular 

addition of ATP, fluorescence imaging was conducted. Results showed that stronger 

fluorescence signals were observed with increased ATP concentrations from no ATP, 50 

µM ATP, to 100 µM ATP addition (Figure 2.3a-c). Furthermore, the ATP deficient 

condition was created when SH-SY5Y cells were treated with KCN (0.1mM), an 

inhibitor for glycolysis under glucose starvation conditions, a substantial decrease in 

fluorescence was observed (Figure 2.3 d). All the results demonstrated that intracellular 

ATP level was reflected by the fluorescence signals of probe 2-1 in live cells.   

 

 

 

Figure 2.3. (a) Fluorescence images of SH-SY5Y cells stained with 10µM probe 2-1. (b) 

Fluorescence images of SH-SY5Y cells stained with 10µM probe 2-1 upon addition of 50µM 

ATP. (c) Fluorescence images of SH-SY5Y cells stained with 10µM probe 2-1 upon addition of 

c d 

b a 
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100µM ATP. (d) Fluorescence images of SH-SY5Y cells stained with 10µM probe 2-1 after 

treatment of 0.1 mM KCN in the absence of glucose. 

 

2.4.3 Mechanism Study of Probe 2-1 Comparing with Control Compounds 2-2 and 

2-3 

To verify our hypothesis that multiplexing recognition gave better fluorescence 

responses compared with traditional fluorescent probes with only a single recognition 

group, we tested the fluorescence responses of control 2-2 and control 2-3 towards ATP 

in comparison with probe 2-1. Both the control compound 2-2 and control 2-3 were 

tested in the same condition as of probe 2-1. Compound 2-2 showed weaker fluorescence 

enhancement upon the addition of ATP in the buffer as well as poor resolution in cell 

imaging, both of which proved that the phenylboronic acid moiety is playing a role in 

ATP binding (Figure 2.4 and Figure 2.6a). Compound 2-3 showed no fluorescence 

enhancement upon the addition of ATP in buffer and no fluorescence signal in the cell 

imaging (Figure 2.5 and Figure 2.6b), which proved our design strategy that 2,2‟-

dicopicoylamine Zn(II) moiety was also essential for ATP binding. On the other hand, 

probe 2-1 showed higher sensitivity both in buffer and cellular imaging.  The results 

above proved that with two recognition groups binding phospho ion and cis-diol, 

respectively, probe 2-1 exceeds control compound 2-2 and 2-3 in its sensitivities for the 

detection of ATP molecules. 
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Figure 2.4. Emission spectra of probe 2-1 and control compound 2-2 (10 µM) towards ATP. 

Both probe 2-1 and control compound 2-2 were prepared from a stock solution of MeCN, and 

were studied in a HEPES buffer (pH = 7.2, 0.01 M) at room temperature in the absence and 

presence of 10µM ATP. After 3 min, the reaction solution was sampled for fluorescence 

measurement. Dashed blue line: control compound 2-2; dashed orange line: control compound 2-

2 after addition of ATP; solid red line: probe 2-1; solid green line: probe 2-1 after addition of 

ATP.  
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Figure 2.5. Emission spectra of probe 2-1 and control compound 2-3 (10 µM) towards ATP. 

Both probe 2-1 and control compound 2-3 were prepared from a stock solution of MeCN, and 

were studied in a HEPES buffer (pH = 7.2, 0.01 M) at room temperature in the absence and 

presence of 10 µM ATP. After 3 min, the reaction solution was sampled for fluorescence 

measurement. Dashed green line: control compound 2-3; dashed red line: control compound 2-3 

after addition of ATP; solid orange line: probe 2-1; solid blue line: probe 2-1 after addition of 

ATP.  

 

 

 

Figure 2.6. (a). Fluorescence images of SH-SY5Y cells stained with 10µM probe 2-1. (b). 

Fluorescence images of SH-SY5Y cells stained with 10µM control compound 2-2. (c). 

Fluorescence images of SH-SY5Y cells stained with 10uM control compound 2-3.  

 

2.5 Summary 

In conclusion, we developed a fluorescent probe 2-1 for monitoring ATP based on 

multiplexing recognition. The probe worked in a pH=7.2 aqueous buffer, and showed 

6.13 fold fluorescence enhancement upon ATP binding.  It also exhibited a certain degree 

of selectivity among other structurally similar compounds including ADP, AMP, 

pyrophosphate ion, phosphate ion and mannose. It has been successfully applied in 

detecting intracellular ATP levels. Meanwhile, we made two control compounds which 

were tested in the same condition as probe 2-1. Comparing with control compounds, 

a b c 
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probe 2-1, designed with multiplexing recognition, showed stronger fluorescence turn-on 

effect in buffer and gave better resolution in cell imaging. All the results demonstrated 

that multipoint recognition strategy may act as an effective approach in designing probes 

with higher resolution and better selectivity. 

 

2.6 Experimental Section 

General Information 

Commercial reagents were used as received, unless otherwise stated. Merck 60 silica gel 

was used for chromatography, and Whatman silica gel plates with fluorescence F254 

were used for thin-layer chromatography (TLC) analysis. 
1
H and 

13
C NMR spectra were 

recorded on Bruker tardis 300 or Bruker Avance 500. Data for 
1
H are reported as follows: 

chemical shift (ppm), and multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m 

= multiplet). Data for 
13

C NMR are reported as ppm. Mass Spectra were obtained from 

University of New Mexico Mass Spectral facility. 

 

Synthesis of Probe 2-1, Control Compounds 2-2 and 2-3: 

Compound 2-1 was synthesized following the procedures in Scheme 2.3. 

 

O

O  

Trans-dispiro[oxirane-2,9’(10’H)-anthracene-10’,2”-oxirane] (2-4). 

To a stirred mixture of 60% NaH (900 mg, 22.5mmol), and anthraquinone (2080mg, 

10mmol) in 60mL dry DMSO ar r.t. was added dropwise a solution of  
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trimethylsulfonium iodide (4590mg, 22.5mmol) in 40mL of dry DMSO over a period of 

1 hour. The reaction was conducted in dark and under nitrogen protection. The reaction 

mixture was stirred for 5 hours until no anthraquinone remained monitored by TLC. The 

mixture was poured into 170mL of ice water, and filtered after standing for 0.5 hour. The 

residue was collected and washed with water to give the product as light yellow solids, 

which were used in the following reactions without further purification. 

 

CHO

HO

 

10-(hydroxymethyl)anthracene-9-carbaldehyde (2-5). 

To a solution of lithium bromide (1203mg, 46.2mmol) in 150 mL of dry acetonitrile was 

added compound 2-4 (2360mg, 10mmol). The reaction mixture was stirred at 60 °C for 

16 hours in the dark and cooled to r.t. Then, the solvent was removed and extracted with 

dichloromethane, washed with brine. The crude solid was purified by column 

chromatograph to give the product as yellow solid (1746mg, 74% two-step yield). 
1
H 

NMR (CDCl3, 500 MHz): δ 11.52 (s, 1H), 8.91 (d, J = 8.5 Hz, 2H), 8.54 (d, J = 8.5 Hz, 

2H), 7.70~7.64 (m, 4H), 5.73 (s, 2H).  

 

CHO

TBSO

 

10-((tert-butyldimethylsilyloxy)methyl)anthracene-9-carbaldehyde (2-6). 
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Compound 2-5 (120 mg, 0.51mmol), TBSCl (100 mg, 0.66mmol), and imidazole (50 mg, 

0.74mmol) were dissolved in 5mL of anhydrous DMF and stirred at r.t. for 14 hours. 

After solvent removal under reduced pressure, the residue was dissolved in 20 mL of 

ethyl acetate. It was then washed with 7 mL of water, 7 mL of 0.5N of hydrochloric acid, 

and 7 mL of saturated brine. The organic layer was separated, dried over anhydrous 

MgSO4, and then evaporated to give a yellow solid. The crude product was purified by 

silica gel chromatography using ethyl acetate to hexane 1/50 as the eluent to give 2-6 as a 

yellow solid (125mg, 70% yield). 
1
H NMR (CDCl3, 500 MHz): δ 11.51 (s, 1H), 8.91 (d, J 

= 9 Hz, 2H), 8.50 (d, J = 9 Hz, 2H), 7.68~7.59 (m, 4H), 5.67 (s, 2H), 0.90 (s, 9H), 0.14 (s, 

6H). 

 

TBSO

NH

 

1-(10-((tert-butyldimethylsilyloxy)methyl)anthracen-9-yl)-N-methylmethanamine 

(2-7). 

Compound 2-6 (200 mg, 0.57mmol) was dissolved in 10mL of 2.0 M solution of 

methylamine in methanol and the resulting mixture was stirred at r.t. for 6 hours. Then, 

NaBH4 (65 mg, 1.71mmol) was added and the reaction mixture was stirred at r.t. for 

another 2 hours. The solvent was removed under reduced pressure and the residue was 

dissolved in ethyl acetate, the organic layer was washed with saturated NaHCO3 solution 

and dried over anhydrous Na2SO4, Solvent evaporation gave a yellow solid which was 

used in the following reaction without further purification.    
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TBSO

N
Boc

 

tert-Butyl(10-((tert-butyldimethylsilyloxy)methyl)anthracen-9-

yl)methyl(methyl)carbamate (2-8). 

To a solution of compound 2-7 (208 mg, 0.57 mmol) in 15 mL of anhydrous ethanol at r.t 

was added di-tert-butyl dicarbonate (224 mg, 1.0 mmol). After stirring for 5 hours, the 

solvent was removed under reduced pressure. Then, the reaction mixture was diluted with 

dichloromethane, washed with brine and the organic layer was dried over Na2SO4. The 

solvent was removed to give yellow solids which were purified on the silica gel column 

to afford compound 2-8 as yellow solids (265 mg, 96% two-step yield). 
1
H NMR (CDCl3, 

500 MHz): δ 8.48~8.44 (m, 4H), 7.58~7.54 (m, 4H), 5.67 (s, 2H), 5.54 (s, 2H), 2.49 (s, 

3H), 1.56 (s, 9H), 0.93 (s, 9H), 0.14 (s, 6H). 

 

HO

N
Boc

 

Tert-Butyl (10-(hydroxymethyl)anthracen-9-yl)methyl(methyl)carbamate (2-9). 

Compound 2-8 (540mg, 1.16mmol) was dissolved in THF, TBAF (450 mg, 1.72mmol) 

was added to the solution in one portion. The mixture turned red immediately and then 

became lighter. It was stirred for 1 hour and then the solvent was removed under reduced 

pressure. The residue was dissolved in ethyl acetate, and washed with brine. The organic 
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layer was evaporated under reduced pressure and dried over anhydrous Na2SO4 to give 

off a red liquid which was purified by silica gel chromatography using ethyl acetate to 

hexane 1 to 20 as eluent to give compound 2-9 as yellow liquid (407mg, quantitative 

yield). 
1
H NMR (CDCl3, 300 MHz): δ 8.48~8.45 (m, 2H), 8.34 (m, 2H), 7.57 ~ 7.48 (m, 

4H), 5.65 (s, 2H), 5.31 (s, 2H), 2.41 (s, 3H), 1.54 (s, 9H). 

 

MsO

N
Boc

 

(10-((tert-butoxycarbonyl(methyl)amino) methyl) anthracen-9-yl) methyl 

methanesulfonate (2-10). 

To a stirred mixture of compound 2-9 (180 mg, 0.51mmol) in 60 mL of dichloromethane, 

methanesulfonyl chloride (114 mg, 1.0mmol) was added at 0 °C. Then, triethylamine 

(126 mg, 1.25 mmol) was added and the resulting mixture was stirred at r.t. for 90 min. 

After the reaction was complete, the solvent was removed under reduced pressure and 

dissolved in dichloromethane. The organic layer was washed with brine and dried over 

anhydrous Na2SO4. After solvent evaporation, the residue was collected and used in the 

following step without further purification.  

 

N

N
Boc

N

N
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Tert-butyl(10-((bis(pyridin-2-ylmethyl)amino)methyl)anthracen-9-yl) 

methyl(methyl)carbamate(2-11). 

To a solution of compound 2-10 (220 mg, 0.51 mmol) in 17 mL of acetonitrile was added 

2,2‟-dicopicolyamine (111 mg, 0.56 mmol). It was refluxed for 40 hours. Then, the 

solvent was removed under reduced pressure, residue was dissolved in dichloromethane. 

The organic layer was washed with brine, dried over anhydrous Na2SO4. After solvent 

evaporation, the residue was purified by silica gel chromatograph using 

dicholoromethane to methanol 50 to 1 as eluent to give compound 2-11 (220mg, 81% 

two-step yield) as yellow solid.
 1

H NMR (CDCl3, 300 MHz): δ 8.50~8.39 (m, 4H), 

8.39~8.36 (m, 2H), 7.60~7.44 (m, 6H), 7.30~7.33 (m, 2H), 7.13~7.11 (m, 2H), 5.47 (s, 

2H), 4.70 (s, 2H), 3.90 (s, 4H), 2.44 (s, 3H), 1.55 (s, 9H). 

 

N

NH

N

N

 

1-(10-((methylamino)methyl)anthracen-9-yl)-N,N-bis(pyridin-2-

ylmethyl)methanamine (2-12). 

Compound 2-11 (220 mg, 0.41mmol) was dissolved in a solution of 2.5 mL of  

dichloromethane and 0.6 mL of TFA. After stirred at r.t. for 0.5 hour until no compound 

2-11 remained monitored by TLC, the solvent was removed under reduced pressure, and 

the residue was dissolved in dichloromethane, extracted with dichloromethane/saturated 

NaHCO3, and washed with brine. The solvent was then removed to produce a yellow 
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liquid which was used in the next step without further purification. 
1
H NMR (CDCl3, 300 

MHz): δ 8.49~8.45 (m, 4H), 8.34~8.31 (m, 2H), 7.60~7.43 (m, 6H), 7.31~7.29 (m, 2H), 

7.11~7.08(m, 2H), 4.68 (s, 2H), 4.65 (s, 2H), 3.87 (s, 4H), 2.66 (s, 3H).  

 

N

N

B

N
N

HO

OH  

2-((((10-((bis(pyridin-2-ylmethyl)amino)methyl)anthracen-9-yl)methyl) (methyl) 

amino ) methyl) phenylboronic acid (2-13). 

To a solution of compound 2-12 (60 mg, 0.138 mmol) in 2 mL of THF was added K2CO3 

(19 mg, 0.138 mmol) and 2,2-dimethylpropane-1,3-diyl(o-

(bromomethyl)phenyl)boronate (44mg, 0.156mmol). The reaction mixture was refluxed 

for 39 hours. After solvent removal under reduced pressure, it was dissolved in CH2Cl2 

and washed with brine. The organic layer was then collected. After solvent evaporation, 

the residue was purified on silica gel chromatograph to give compound 2-13 (24mg, 27% 

two-step yield) as yellow solid. 
1
H NMR (CD3OD-d

4
, 500 MHz): δ 8.46 (d, J=8.5 Hz, 

2H), 8.31 (d, J=4 Hz, 2H), 8.09 (d, J=7.5 Hz, 2H), 7.66 (d, J= 7 Hz, 1H), 7.60~7.57 (m, 

2H), 7.53~7.50 (m, 4H), 7.36~7.24 (m, 5H), 7.16 (m, 2H). 
13

C NMR (CD3OD-d
4
, 500 

MHz): δ 160.25, 149.13, 138.26, 135.34, 134.27, 132.43, 132.28, 131.78, 128.98, 127.84, 

127.06, 126.70, 125.40, 125.17, 123.70, 64.21, 61.48, 52.21, 50.08, 40.14.  
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N

N

B

N
N

HO

OH

Zn

 

2-((((10-((Bis(pyridin-2-ylmethyl)amino)methyl)anthracen-9-yl)methyl) (methyl) 

amino ) methyl) phenylboronic acid Zn complex (2-1). 

To a solution of compound 2-13 (21 mg, 0.038 mmol) in 1mL of THF was added 

Zn(NO3)2 (7 mg, 0.038 mmol), and the mixture was stirred for 30 min at r.t. After 

concentration in vacuo, the residue was dissolved in HPLC acetonitrile and purified by 

reverse phase HPLC to get compound 2-1 as yellow solid (24 mg, quantitative yield). 

ESI-MS: [M+H-Zn] Calculated for C36H35BN4O2: 567.29, found 567.29. 

 

Control 2-2 was synthesized following the procedures in Scheme 2.4. 

N

N

N
N

 

N-Benzyl-1-(10-((bis(pyridin-2-ylmethyl)amino)methyl)anthracen-9-yl)-N-

methylmethanamine (2-14). 

To a solution of compound 2-12 (19 mg, 0.044mmol) in 1.5 mL of THF was added 

K2CO3 (10 mg, 0.072mmol). The reaction mixture was refluxed for 39 hours. After 

solvent removal under reduced pressure, it was dissolved in CH2Cl2 and washed with 
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brine. The organic layer was then collected. After solvent evaporation, the residue was 

purified on silica gel chromatograph using CH2Cl2 to methanol 20 to 1 as eluent to give 

compound 2-14 (14mg, 61% yield) as yellow solid. 
1
H NMR (CDCl3, 300 MHz): δ 

8.49~8.41 (m, 5H), 7.59~7.53 (m, 2H), 7.48~7.42 (m, 4H), 7.33~7.25 (m, 8H), 7.11~7.07 

(m, 2H), 4.68 (s, 2H), 4.46 (s, 2H), 3.66 (s, 4H), 3.67(s, 2H), 2.21 (s, 3H). 
13

C NMR 

(CDCl3, 300 MHz): δ 159.68, 148.67, 139.39, 136.15, 131.22, 129.16, 128.11, 126.98, 

125.62, 125.52, 124.97, 123.56, 121.93, 62.40, 60.57, 53.66, 51.07, 42.15.  

 

N

N

N
N Zn

 

N-benzyl-1-(10-((bis(pyridin-2-ylmethyl)amino)methyl)anthracen-9-yl)-N-

methylmethanamine Zn complex (2-2). 

To a solution of compound 2-14 (14 mg, 0.027mmol) in 1 mL of THF was added 

Zn(NO3)2 (5 mg, 0.027 mmol), and the mixture was stirred for 30 min at r.t. After 

concentration in vacuo, the residue was dissolved in HPLC acetonitrile and purified by 

reverse phase HPLC to get compound 2-2 (16 mg, quantitative yield) as yellow solid. 

ESI-MS: [M+H-Zn] Calculated for C36H34N4: 523.28, found 523.28.  

 

Control Compound 2-3 was synthesized following the procedures in Scheme 2.5. 
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HO

NH

 

(10-((methylamino) methyl) anthracen-9-yl) methanol (2-15). 

Compound 2-5 (53 mg, 0.22 mmol) was dissolved in 2mL of 33% wt methylamine in 

ethanol, and the resulting mixture was stirred at r.t. for 6 hours. Then, NaBH4 (73 mg, 

1.92 mmol) was added and the reaction mixture was stirred at r.t. for another 2 hours. The 

solvent was removed under reduced pressure and the residue was dissolved in ethyl 

acetate, the organic layer was washed with water and dried over anhydrous Na2SO4, 

Solvent evaporation gave a yellow solid which was used in the following steps without 

further purification. 

 

N

BHO

OH

HO

 

2-((((10-(hydroxymethyl) anthracene-9-yl) methyl) (methyl) amino) methyl) 

phenylboronic acid (2-3). 

To a solution of compound 2-15 (60 mg, 0.239mmol) in 7 mL of THF was added K2CO3 

(52 mg, 0.377 mmol) and 2,2-dimethylpropane-1,3-diyl (o-

(bromomethyl)phenyl)boronate (44 mg, 0.155 mmol). The reaction mixture was refluxed 

for 39 hours. After solvent removal under reduced pressure, it was dissolved in CH2Cl2 

and washed with brine. The organic layer was then collected. After solvent evaporation, 
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the residue was purified on silica gel chromatograph to give compound 2-3 as yellow 

solid (35% two-step yield). 
1
H NMR (CD3OD-d4, 500 MHz): δ 8.57 (d, J=9 Hz, 2H), 

8.24 (d, J=8.5 Hz, 2H), 7.70 (d, J= 7.5 Hz, 1H), 7.63~7.56 (m, 4H), 7.41~7.35 (m, 2H), 

7.28~7.25 (m, 1H), 5.62 (s,2H), 5.14 (s,2H), 4.46 (s, 2H), 2.43 (s, 3H).  
13

C NMR 

(CD3OD-d4, 500 MHz): δ 135.39, 132.87, 131.83, 131.46, 131.06, 129.04, 128.03, 

127.62, 126.99, 126.58, 125.44, 114.06, 64.26, 57.19, 50.02, 40.01. ESI-MS: [M+H-H2O] 

Calculated for C24H23BNO2: 368.18, found 368.18.  

 

Spectroscopic materials and methods:  

Millipore water was used to prepare all aqueous solutions. The pH was recorded by a 

Beckman ΦTM 240 pH meter. Fluorescence emission spectra were obtained on a 

Shimadzu RF-5301PC spectrofluorophotometer. 10 mM probe 2-1 in MeCN was 

prepared as the stock solution, 5 µL of the stock solution was added to 4995 µL 10mM 

PH=7.2 HEPES buffer to make the final concentration of 10 µM. All the analytes (ATP, 

ADP, AMP, Na4P2O7, K3PO4 and mannose) were prepared by dissolving the respective 

amount in water to make the final concentration of 10 µM. Fluorescence spectra were 

measured 3 min after the addition of each analyte.   

 

Preparation of cell cultures 

SH-SY5Y cell line was purchased from American Type Culture Collection. The cells 

were cultured in DMEM containing 10% FBS and 1% (v/v) antibiotic-antimycotic 

solution at 37C with 95% air/5% CO2 in an incubator. 
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Intracellular fluorescence imaging  

Grow SH-SY5Y cells on coverslips inside a dish filled with DMEM culture medium. 

When cells reached the 70 % confluency, removed the media from the dish and added 

pre-warmed (37°C) staining solution containing ATP probe 2-1 (10 µM) and incubated 

for 30 min under growth conditions. Following a through wash, the coverslips were 

placed onto Olympus IX71 fluorescence microscopy and imaged with DAPI dichroic 

mirrors. Cells pretreated with 0.1mM KCN (inhibitor of ATP) before probe addition was 

used as a negative control. The images of control compound 2-2 and 2-3 stained cells 

were collected as another negative control.  
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Chapter 3  

Development of Photo-triggered Anticancer Prodrug to Release 

Multiple Drugs  

 

3.1 Background 

Prodrug strategy is an effective method in drug discovery, especially for the 

anticancer drugs 
[1]

. It not only improves ADME (absorption, distribution, metabolism, 

excretion), but also greatly alleviates systematic toxicity and significantly enhances 

therapeutic index with controlled release of active drugs at the site of action 
[2]

. Recently, 

multidrug delivery systems (MDDSs) have been developed with the advances in 

nanobiotechnology and material science. Multidrug delivery systems (MDDSs) allow 

multiple drug moieties to be delivered to be released at the preferred site. Compared with 

monochemotherapy, the combination therapy has brought about synergistic effect and 

lowered side effects so that they are commonly used in clinical chemotherapy 
[3]

. Despite 

significant progress in this field, very few small molecule based multiple anticancer drug 

release systems are developed. The Smyth and coworker made a prodrug with a 

cephalosporin nucleus, upon hydrolysis by β-lactamase, releases aminoglutethimide (an 

aromatase inhibitor) and coumate (a sulfatase inhibitor) to inhibit estrogen production in 

hormone-dependent breast cancer
[4]

. With the limited achievements in this field, we hope 

to expand the horizon of this field by developing new strategies to release multiple drugs 

in cancer chemotherapy.  
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As well documented, DNA alkylating agents are one of the most widely used 

chemotherapeutic agents 
[5-6]

. However, their high degree of reactivity accompanies high 

systematic toxicity that often prevents their clinical applications. To overcome severe 

side effect and improve therapeutic efficiency, prodrug strategy has been widely used to 

mask the highly reactive DNA alkylating agents 
[7]

. Among various prodrug activation 

triggers, light is a highly orthogonal external stimulus, precise control of drug release at 

specific time and location can be realized 
[8-17]

. Currently, no report was made on 

prodrugs that release multiple DNA alkylating agents upon activation. Thus, we have 

designed, synthesized and characterized a light activated prodrug 3-1 that releases two 

different types of chemotherapeutic agents – nitrogen mustard type mechlorethamine and 

quinone methide type o-quinone methide anticancer drug.  

 

3.2 Design Strategy  

As reported, biphenol biquaternary ammonium demonstrated very potent ISC 

properties upon photoactivation. Its extraordinary ISC activity is induced by its strong 

interaction with the backbone of double-stranded DNA, upon photoactivation, the 

subsequent formation of o-quinone methide intermediate easily forms intercross links 

with DNA double strand 
[10, 18]

. Inspired by the previous report, we took biphenol 

biquaternary ammonium as the prodrug nucleus structure. The two phenol groups were 

masked by 1-(2-nitrophenyl)ethyl (NPE) photo-trigger, and DNA cross-linking agent 

mechlorethamine was inactivated at the phenol ortho position by converting to a charged 

nitrogen atom (Scheme 3.1).   
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The prodrug 3-1 was expected to be inactive as both the toxicity of o-quinone mthide 

and mechlorethamine was significantly reduced in the prodrug form. On the one hand, o-

quinone methide was not formed until activated  by light. On the other hand, the positive 

charge developed on the nitrogen decreases the electron density of mechlorethamine 

required for DNA alkylation. Upon photoactivation, NPE group was unmasked from the 

phenol, and o-quinone methide was formed subsequently, meanwhile, two molecules of 

mechlorethamine were released. Two types of DNA alkylating agents collectively react 

with DNA double strand to form ISC, inhibiting DNA separation during DNA replication 

and transcription, consequently leading to cell death. The photo-controlled activation is 

expected to control the dosage of drug released in a spatial and temperol manner.  

 

 

Scheme 3.1 Design of photo-triggered prodrug for multiple drug release. 
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3.3 Synthesis  

The biphenol biquaternary ammonium prodrug 3-1 was synthesized according to the 

procedure shown in Scheme 3.2. Compound 3-9 was obtained by Duff Reaction. Lithium 

aluminum hydride reduction gave compound 3-10 in quantitative yield. Under the K2CO3 

basic condition, the photo sensitive group 1-(bromomethyl)-2-nitrobenzene was 

selectively coupled at the phenolic position to yield compound 3-11 which was then 

converted to 3-12 using tribromophosphine. Treatment of 3-12 with excess amount of N-

methyldiethanolamine under reflux condition gave compound 3-13, which was then 

converted to the target product 3-1 by thionyl chloride.  

 

Scheme 3.2 Synthetic routes for prodrug 3-1 

 

Scheme 3.2 Synthetic routes for prodrug 3-1. Reagents and conditions: (a). 

hexamethylenetetraamine, TFA, 80 °C, 3 h. (b). LiAlH4, THF, 1.5 h. (c). 1-(bromomethyl)-2-
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nitrobenzene, K2CO3, MeCN, 50°C, 4.5 h. (d). PBr3, DCM, in dark, -5 °C to -3 °C, 70 min. (e). 

2,2'-(methylazanediyl)diethanol, anhydrous MeCN, in dark, 85°C ,12 h. (f). SOCl2, 3 d.    

 

3.4 Photo-triggered Drug Release Studies 

After obtaining prodrug 3-1, we performed photo-triggered drug release studies. 

According to the proposed activation mechanism (Scheme 3.1), both the o-quinone 

methide 3-4 and mechlorethamine 3-5 can be released upon photoactivation.  

In the presence of UV light, NPE group on prodrug 3-1 can be cleaved to form phenol 

biquaternary ammonium in aqueous solutions. According to Freccero and Zhou‟s reports 

[10-12, 18-19]
, phenol processing a quaternary ammonium group forms o-quinone methide by 

photoactivation in aqueous solutions. Thus, prodrug 3-1 should be able to release o-

quinone methide 3-4. However, o-quinone methide 3-4 is a very unstable intermediate 

that cannot be easily monitored or isolated. To prove the formation of o-QM 3-4, DNA 

alkylating tests will be performed in the following section.   

Meanwhile, mechlorethamine 3-3 is not easily isolated and characterized for its high 

reactivity and lack of UV-vis absorption. To monitor the existence of mechlorethamine 3-

1, we used diethyldithiocarbamate (DDC) to rapidly trap drug 3-5, and monitored the UV 

absorption of the stable bisadduct 3-9
[20]

 (Scheme 3.3). Comparing with the standard 

compound 3-9, the presence of 3-5 was confirmed by RP-HPLC. 
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Scheme 3.3 Chemistry of detection of mechlorethamine 

 

3.5 Kinetic Studies 

Next, we conducted the more detailed kinetic studies of the photolytic reaction of 

prodrug 3-1 by monitoring the consumption of prodrug 3-1 as well as the formation of 

mechlorethamine 3-3 using RP-HPLC. An aqueous solution of 2 mM prodrug 3-1 was 

irradiated under UV light (2 W, 365 nm) for different time courses. We observed a 

decreasing peak 24.7 min corresponding to the decomposition of prodrug 3-1 (Figure 

3.1a). To capture the UV-vis inactive compound 3-5, the irradiated solution was 

incubated with 27.5 mM DDC at 37℃ for 20 min to complete the trapping reaction. 

HPLC analysis confirmed the presence of 3-5 by comparing with the standard peak of 

compound 3-9 at 20.3 min retention time under the same RP-HPLC condition, by 

monitoring the concentration of bisadduct 3-9 peak at 20.3 min, the amount of 3-5 can be 

calculated. Through path A: direct substitution reaction with prodrug 3-1, there is roughly 

a constant concentration of 3-9 under all conditions for 20 min incubation time with DDC. 

The actual amount of bisadduct 3-9 released from the photolytic reaction (path B) can be 

obtained by subtracting 3-9 produced from path A from the total amount detected 

(Scheme 3.4). Using the standard curve of compound 3-9, the conversion percentage was 
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plotted against time of UV irradiation. The amount of mechlorethamine released was 

proportional to the time of UV irradiation.  

 

(a) 

 

(b) 

 

Figure 3.1. (a). Controlled decomposition of prodrug 3-1 in aqueous solution upon UV 

irradiation for designated time courses monitored by RP-HPLC. (b). Controlled release of 

mechlorethamine 3-5 in aqueous solution upon UV irradiation for designated time courses 

monitored by RP-HPLC.
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Scheme 3.4 Chemistry of detection of mechlorethamine release from prodrug 3-1 by: (path A) 

direct substitution with diethyldithiocarbamate (DDC) and (path B) photolytic fragmentation.  

 

3.6 Cell Viability Test 

Before conducting cellular tests, we firstly evaluated the stability and cell 

permeability of prodrug 3-1. Concerning the fact that prodrug 3-1 is an electrophile, we 

tested its stability in a thiol rich cellular environment. As reported, GSH is present at very 

high levels in the cytosol, comprising about 90% of nonprotein sulfur with 1-2mM 

concentrations in most of cells
 [21]

. An aqueous solution containing 10 mM prodrug 3-1 

was incubated with 2 mM GSH for 6 hours at 37 ℃, DDC was incubated for 20 min to 

trap the released active drug 3-5. An aliquot of solution was injected to RP-HPLC. We 
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have not observed decomposition of prodrug 3-1 nor increased amount of active drug 3-4, 

which showed that prodrug 3-1 was very stable in a GSH rich cellular environment. 

To evaluate the cell permeability of prodrug 3-1, 0.5 mM prodrug 3-1 was incubated 

with HeLa cells for 2 hours, cell lysate was collected. After filtration, it was injected into 

RP-HPLC, a single peak on HPLC, i.e. the prodrug 3-1 peak was detected. It indicated 

that prodrug 3-1 was cell permeable.    

Having established that prodrug 3-1 is able to release active mechlorethamine and 

showed high potency in inducing DNA cross-links. We evaluated its ability in inhibiting 

cancer cell growth as well as its cytotoxicity towards normal cells.  

To begin with, cytotoxicity of prodrug 3-1 was evaluated on normal skin cells (Hekn 

cell lines) by using cell counting kit-8 (CCK-8). As is shown in Figure 3.2, without UV 

exposure on Hekn cells, inactivated prodrug 3-1 showed negligible cytotoxicity towards 

normal skin cells.  Even with a drug concentration as high as 0.5 mM, Hekn cell viability 

as high as 89.2% was observed.  After 30 min UV exposure, activated prodrug 3-1 

showed lower cell viability than inactivated prodrug under the same concentration with 

majority of the cells survived. Thus, prodrug 3-1 displays low systematic toxicity towards 

normal cells both with and without UV activation. Its low toxicity assures its potential for 

further study. 
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Figure 3.2. Cell viability assays of prodrug 3-1 on normal skin cells (Hekn cell lines) Prodrug 3-1 

was incubated with the cells for 2 h followed by 30 min UV irradiation. The cell viability was 

measured after 24 h incubation using cell counting kit-8 (CCK-8). 

Next, we evaluated prodrug 3-1 ability in inhibiting cancer cell growth. In the 

presence of 30 min mild UV irradiation (low-power UV light as light source was used 

and positioned 75 cm away from the reaction), with an increasing drug concentration, a 

larger amount of cancer cells (HeLa cells) was killed.  In the absence of UV activation, 

prodrug 3-1 showed very limited cytotoxicity towards HeLa cells (Figure 3.3). 

Meanwhile, we have observed an impressive selectivity towards cancer cells. This is 

important in practical application. With a drug dosage of 0.5 mM and UV irradiation 

selectively at the tumor site, 2.1% cell viability on HeLa cells compared with 89.1% cell 

viability on Hekn cells. This might be explained by the selective activation of prodrug 3-

1 with UV light as well as the ICL property of the inhibition mechanism. Cancer cells 

generally grow and divide at a much faster rate than normal cells.  It is expected that 

much higher DNA replication and transcription activities take place in cancer cells than 
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those in normal cells, thus cell growth inhibition by intercross links formation is much 

more efficient towards cancer cells.  

 

 

Figure 3.3. Cell viability assays of prodrug 3-1 on cancer cells (HeLa cell lines) Prodrug 3-1 was 

incubated with the cells for 2 h followed by 30 min UV irradiation. The cell viability was 

measured after 24 h incubation using cell counting kit-8 (CCK-8). 

To prove that the anticancer properties of prodrug 3-1 was due to the release of both 

mechlorethamine 3-5 and o-quinone methide 3-4, we made control compound 3-13 which 

only releases o-qionone methide 3-4 upon UV irradiation. Prodrug 3-1 exhibited much 

more significant potency than control compound 3-13. At 0.5 mM concentration, prodrug 

3-1 demonstrated 2.1% cell viability comparing to compound 3-13 with 60.6% cell 

viability. In the absence of UV, control 3-13 is less cytotoxic than prodrug 3-1. The 

above results demonstrated that the incorporating mechlorethamine into the prodrug 

scaffold greatly improved drug potency.    
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Figure 3.4. Cell viability assays of prodrug 3-1 and control compound 3-13 on cancer cells 

(HeLa cell lines) Prodrug 3-1 and control compound 3-13 were incubated with the cells for 2 h 

followed by 30 min UV irradiation. The cell viability was measured after 24 h incubation using 

cell counting kit-8 (CCK-8). 

3.7 Summary 

In conclusion, we have developed a photo-triggered multiple drug delivery system for 

anticancer drug releasing.  The release of both of the active DNA alkylator o-quinone 

methide and mechlorethamine can be controlled with UV irradiation. We carried out 

detailed kinetic studies by monitoring the consumption of prodrug 3-1 and releasing of 

active mechlorethamine. From the cell viability tests, prodrug 3-1 showed negligible 

cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation. 

Morever, activated prodrug 3-1 showed potent anticancer activity towards cancer cells. 

By comparing the results with control compound 3-13,  it showed that the anticancer 

activity of prodrug 3-1 was mainly contributed by the release of mechlorethamine. The 

preliminary results of multiple drug delivery system based on biphenol biquaternary 
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ammonium nucleus structure may serve as a potential prodrug candidate as 

chemotherapeutic agent.  

 

3.8 Experimental Section 

General Information 

All reactions were carried out in dried flasks. The reactions were monitored by TLC 

for completion. Commercially available reagents were used as received without further 

purification unless otherwise specified. Merck 60 silica gel was used for column 

chromatography, and Whatman silica gel plates with fluorescence F254 were used for 

thin-layer chromatography (TLC) analysis.  
1
H and 

13
C NMR spectra were recorded on 

Bruker Avance 500 or 300. Data for 
1
H are reported as follows: chemical shift (ppm), and 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet). Data for 
13

C 

NMR are reported as ppm.  Mass Spectra were obtained from University of New Mexico 

Mass Spectral facility. 

 

Synthesis of prodrug 3-1 

Compound 3-1 was synthesized following the procedures in Scheme 3.2  

 

4,4'-dihydroxy-[1,1'-biphenyl]-3,3'-dicarbaldehyde (3-9) 

4,4'-Biphenol (279 mg, 1.5 mmol) and hexamethylenetetraamine (472 mg, 3.37 mmol) 

were dissolved under argon in 5mL of anhydrous TFA, and stirred for 3 hours at 80 ℃, a 
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yellow solution was formed. After cooling to room temperature, the solution was poured 

into 4N HCl and stirred for 2 hours, during this time solids were formed. The yellow 

solids were collected by filtration, washed with water (2×) and cold ethanol once, and 

dried in vaccum. Purification by column chromatography (silica gel) gave product as 

yellow solids (363 mg, 86% yield). 
1
H NMR (CDCl3 with one drop of CD3OD , 300 

MHz): δ 9.97 (s, 2H), 7.71 (m, 4H), 7.07 (d, J = 9.3 Hz, 2H). 

 

 

3,3'-bis(hydroxymethyl)-[1,1'-biphenyl]-4,4'-diol (3-10) 

4,4'-Dihydroxy-[1,1'-biphenyl]-3,3'-dicarbaldehyde (121 mg, 0.5 mmol) was dissolved in 

10 mL of dry THF, 2 eq LiAlH4 (38 mg, 1 mmol) was added in portions over 30 min at 

0 °C while stiring, the solution was slowly warmed up to room temperature and stirred for 

another 1 hour until the reaction was complete. After solvent removol, the residue was 

redissolved in 2N HCl, then it was extracted with ethyl acetate and 2N HCl, the organic 

layer was obtained. After solvent evaporation, yellow solids were obtained as desired 

product (123 mg, quantitative yield). 
1
H NMR (CD3OD, 500 MHz): δ 7.48 (s, 2H), 7.29 

(d, J = 8.0 Hz, 2H), 6.80 (d, J = 8.0 Hz, 1H), 4.69 (s, 4H), 
13

C NMR (CD3OD, 500 MHz): 

δ 155.09, 133.91, 128.68, 127.35, 127.26, 166.20, 61.16. 
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(4,4'-bis((2-nitrobenzyl)oxy)-[1,1'-biphenyl]-3,3'-diyl)dimethanol (3-11)  

Potassium carbonate (22 mg, 0.161 mmol) was dissolved in 1 mL of acetonitrile, 

followed by the addition of 1 eq 3,3'-bis(hydroxymethyl)-[1,1'-biphenyl]-4,4'-diol (18mg, 

0.073mmol) and 2.2 eq 1-(bromomethyl)-2-nitrobenzene (35mg, 0.161mmol). The 

reaction mixture was stirred in dark at 50 °C for 4.5 h.  After solvent removal under 

reduced pressure, the crude product was further purified by silica column 

chromatography to give yellow solids as product (24 mg, 68% yield). 
1
H NMR (acetone-

d6, 300 MHz): δ 8.16 (d, J = 8.4 Hz, 2H), 7.95 (d, J = 7.5 Hz, 2H), 7.81 (m, 4H), 7.64 (m, 

2H), 7.47 (dd, J1 = 8.4 Hz, J1 = 2.4 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 5.57 (s, 4H), 4.80 

(d, J = 5.7 Hz, 4H), 4.16 (t, J = 5.7 Hz, 2H). m.p.:239-240 °C.  
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3,3'-bis(bromomethyl)-4,4'-bis((2-nitrobenzyl)oxy)-1,1'-biphenyl (3-12) 

A solution of tribromophosphine (643 mg, 226 μL, 2.3 eq mmol) in 2.0 mL of anhydrous 

dichloromethane was added dropwise to a solution of 8(4,4'-bis((2-nitrobenzyl)oxy)-

[1,1'-biphenyl]-3,3'-diyl)dimethanol (654 mg, 1 eq mmol) in 10 mL of anhydrous 

dichloromethane over 30 min with the temperature between -5 °C and -3 °C.  The 

reaction mixture was stirred in dark at rt for 40 min. After the reaction is complete, it was 

washed with brine, concentrated and run column to give light yellow solids as product 

(56% yield). 
1
H NMR (DMSO-d6, 300 MHz): δ 8.17 (dd, J = 8.1 Hz, 2H), 7.93 (d, J = 

6.6 Hz, 2H), 7.82 (m, 2H), 7.76 (d, J = 2.4 Hz, 2H), 7.62 (m, 4H), 7.16 (d, J = 9 Hz, 2H), 

5.61 (s, 4H), 4.76 (s, 4H). m.p.: 216-219 °C. 

 

 

N,N'-((4,4'-bis((2-nitrobenzyl)oxy)-[1,1'-biphenyl]-3,3'-diyl)bis(methylene))bis(2-

hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium) bromide (3-13) 

A solution of 3,3'-bis(bromomethyl)-4,4'-bis((2-nitrobenzyl)oxy)-1,1'-biphenyl (389 mg, 

1.0 mmol) and 2,2'-(methylazanediyl)diethanol (357 mg, 8.0 mmol) in 10 mL of 

anhydrous acetonitrile was stirred in dark at 85°C for 12 h.  After filtration, white solid 

was obtained as product (76% yield). 
1
H NMR (DMSO-d6, 500 MHz): 8.20 (d, J = 8.5 
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Hz, 2H), 7.91 (s, 2H),  7.83 (m, 6H), 7.67 (m, 2H), δ 7.32 (d, J = 9.0 Hz, 2H), 5.62 (s, 

4H), 5.31 (m, 4H), 4.75 (s, 4H), 3.88 (m, 8H), 3.59 (m, 4H), 3.42 (m, 4H), 3.02 (m, 6H). 

m.p.: 212-215°C.  

 

 

N,N'-((4,4'-bis((2-nitrobenzyl)oxy)-[1,1'-biphenyl]-3,3'-diyl)bis(methylene))bis(2-

chloro-N-(2-chloroethyl)-N-methylethanaminium) chloride (3-14) 

N,N'-((4,4'-bis((2-nitrobenzyl)oxy)-[1,1'-biphenyl]-3,3'-diyl)bis(methylene))bis(2-

hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium) bromide  (43 mg, 0.05 mmol) was 

dissolved in 2 mL of thionyl chloride.  The reaction mixture was stirred at rt for 3 d.  

After solvent evaporation under reduced pressure, white solid was obtained as product 

(quantitative yield). m.p.: 118-120 °C.   

 

 

(Methylazanediyl)bis(ethane-2,1-diyl) bis(diethylcarbamodithioate) (3-9) 
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1
H NMR (CDCl3, 500 MHz): δ 4.03 (m, 4H), 3.75 (m, 4H), 3.46 (t, J = 11.5 Hz, 4H), 

2.79 (t, J = 12.0 Hz, 4H), 2.42 (s, 3H), 1.28 (m, 12H),  
13

C NMR (CDCl3, 500 MHz): δ 

55.75, 49.47, 46.65, 34.59, 12.46, 11.58. 

 

HPLC monitoring of drug release 

Prodrug 3-1 (2 mM) was dissolved in an aqueous solution of pH 7.4 HEPES buffer (30% 

DMSO), a hand-held UV lamp (365 nm, 2W) was positioned 10 cm away from the 

reaction vial as light source.  After designated reaction time, an aliquot of 200 μL 

solution was taken and incubated with 20 μL 27.5 mM DDC at 37 °C for 20 min to allow 

complete reaction. Next, an aliquot of 20 μL solution was submitted to RP-HPLC to be 

analyzed by a 254 nm UV detector, the amount was integrated by the area under each 

peak, and calculated from the standard curves under the same HPLC condition.  

HPLC condition: Eclipse XDB-C8 column, flow rate is 0.8 mL/min, 0-20 min: 

MeCN/H2O (10:90), 20-40 min: MeCN/H2O (30:70). 

 

Cell viability test 

Cell viability was measured by using cell counting kit-8 (CCK-8), which 

quantitatively measures activities of dehydrogenases in cells.  Cells (5  10
3
 cells/well) 

were seeded into 96-well microtiter plates.  Following treatment with prodrug 4-1 and 

different reaction conditions (in the presence or absence of 365 nm UV light), 10 μL of 

CCK-8 solution was added to each well of the plate. The plate was placed into the 

incubator at 37 C with 95% air/5% CO2. After one hour incubation, the absorbance was 

measured at 450 nm in a Bio-Rad 3350 microplate reader.  Cells without any treatment 
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were used as 100% cell viability.  The cell viability was calculated by using the formula: 

Cell viability = (Experimental absorbance value – culture medium absorbance 

value)/(without treatment absorbance value – culture medium absorbance value). 

 

 

  



78 
 

 

3.9 References 

 

[1] J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen, J. 

Savolainen, Nat. Rev. Drug Discov. 2008, 7, 255. 

[2] Drug Delivery Principles and Applications John Wiley & Sons, Inc., Hoboken, 

New Jersey, 2005. 

[3] S. K. Tatsuya Okuda, J. Biomater. Nanobiotechnol. 2012, 3, 50. 

[4] J. W. Grant, T. P. Smyth, J. Org. Chem. 2004, 69, 7965. 

[5] S. R. Rajski, R. M. Williams, Chem. Rev. 1998, 98, 2723. 

[6] D. M. Noll, T. M. Mason, P. S. Miller, Chem. Rev. 2005, 106, 277. 

[7] V. B. Stella, R.; Hageman, M.; Oliyai, R.; Maag, H.; Tilley, J., Prodrugs: 

Challenges and Rewards, 2007. 

[8] C. Alvarez-Lorenzo, L. Bromberg, A. Concheiro, Photochem. Photobiol. 2009, 85, 

848. 

[9] J. J. Tepe, R. M. Williams, J. Am. Chem. Soc. 1999, 121, 2951. 

[10] P. Wang, R. Liu, X. Wu, H. Ma, X. Cao, P. Zhou, J. Zhang, X. Weng, X.-L. 

Zhang, J. Qi, X. Zhou, L. Weng, J. Am. Chem. Soc. 2003, 125, 1116. 

[11] S. N. Richter, S. Maggi, S. C. Mels, M. Palumbo, M. Freccero, J. Am. Chem. Soc. 

2004, 126, 13973. 

[12] E. E. Weinert, R. Dondi, S. Colloredo-Melz, K. N. Frankenfield, C. H. Mitchell, 

M. Freccero, S. E. Rokita, J. Am. Chem. Soc. 2006, 128, 11940. 

[13] I. S. Hong, H. Ding, M. M. Greenberg, J. Am. Chem. Soc. 2005, 128, 485. 



79 
 

[14] M. Di Antonio, F. Doria, S. N. Richter, C. Bertipaglia, M. Mella, C. Sissi, M. 

Palumbo, M. Freccero, J. Am. Chem. Soc. 2009, 131, 13132. 

[15] D. Verga, M. Nadai, F. Doria, C. Percivalle, M. Di Antonio, M. Palumbo, S. N. 

Richter, M. Freccero, J. Am. Chem. Soc. 2010, 132, 14625. 

[16] A. Jana, K. S. P. Devi, T. K. Maiti, N. D. P. Singh, J. Am. Chem. Soc. 2012, 134, 

7656. 

[17] R. Weinstain, E. Segal, R. Satchi-Fainaro, D. Shabat, Chem. Commun. 2010, 46, 

553. 

[18] X. Weng, L. Ren, L. Weng, J. Huang, S. Zhu, X. Zhou, L. Weng, Angew. Chem. 

Int. Ed. 2007, 46, 8020. 

[19] M. Freccero, C. Di Valentin, M. Sarzi-Amadè, J. Am. Chem. Soc. 2003, 125, 3544. 

[20] W. A. Denny, W. R. Wilson, M. Tercel, P. Van Zijl, S. M. Pullen, Int. J. Radiat. 

Oncol. Biol. Phys. 1994, 29, 317. 

[21] H. Peng, W. Chen, Y. Cheng, L. Hakuna, R. Strongin, B. Wang, Sensors 2012, 12, 

15907. 

 



80 
 

 

Chapter 4  

Development of Multi-functional Photo-triggered Fluorescent 

Prodrug for Imaging and Drug Release 

 

4.1 Background 

Despite the fact that nitrogen mustards such as mechlorethamine and chlorambcil are 

the earliest and perhaps most extensively studied of the DNA interstrand cross-linking 

agents, nowadays they still are the front line therapies for the treatment of many types of 

human cancers in clinics and provide an area of extremely intense and progressive 

investigation
 [1-3]

. However, their applications are severely limited due to high systemic 

toxicity as a result of their poor selectivity between normal and cancer cells.  One of the 

effective strategies to reduce toxicity towards normal cells is to transform inactive 

prodrugs that can be activated to release preferentially at the site of action in tumor cells.  

In this regard, significant efforts have been made on the development of stimuli, such as 

light or heat 
[4-13]

, hypoxia condition 
[14-25]

, oxidative stress
[26-31]

, and other means
[2, 32-36]

 

to control release of the active DNA alkylating agents.  Nevertheless, these methods 

cannot spatiotemporally monitor the release event in order to reach the optimal 

therapeutic effectiveness in high demanding personalized medicine.   

The use of light as a remote-activation mechanism for drug delivery has received 

considerable attention as a result of its capacity of highly specific spatial and temporal 

control of drug release.
[3]

  This feature renders the light-triggered theranostics particularly 

attractive in personalized medicine.  Therefore, intensive efforts have been directed 
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towards the development of photo-triggered theranostic agents including DNA 

alkylators
[37]

.  The studies in the field are mainly focused on the nanomaterial-based drug 

delivery systems (DDSs)
[12, 38-42]

. Despite impressive progress, to the best of our 

knowledge, a small molecule-based photo-triggered DDS enabling to simultaneously 

deliver and monitor drug release of DNA alkylating agents has not been reported
 [43-48] 

because unlike nanomaterial, it is formidably challenging to incorporate an imaging tag, a 

drug and a trigger into one small molecule.  A new strategy that contributes to this 

subject should be of broad interest.  Herein we wish to disclose the first example of 

photo-triggered fluorescent theranostic prodrug for controlled release and monitoring of 

DNA alkylating agent mechlorethamine. 

 

4.2 Design Strategy 

In the design of a new nitrogen mustard photo-triggered prodrug, three important 

criteria must be taken into consideration: (1) alleviate systemic toxicity and increase 

tumor selectivity; (2) provide precise control of drug release; (3) monitor drug release 

process using non-invasive, sensitive fluorescent imaging with desired „off-on‟ signal.  

Therefore, a new prodrug 4-1 consisting of three essential components – a masked DNA 

cross-linking agent mechlorethamine, a 1-(2-nitrophenyl)ethyl (NPE) photo-trigger, and a 

coumarin fluorophore is designed (Scheme 4.1). 

This prodrug is expected to act as an effective drug delivery system enabling 

concurrently both controlled release and fluorescent-based drug monitoring.  It is 

conceivable that the toxicity of mechlorethamine would be significantly reduced by the 

positive charge developed on the nitrogen that strongly decreases the electron density of 
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mechlorethamine required for alkylation.  Moreover, the strong electron-withdrawing 

moiety coupled with the second strong electron withdrawing NPE could effectively block 

internal charge transfer (ICT), thereby leading to the prodrug 4-1 initially nonfluorescent.  

However, upon photo-irradiation, the release of the active drug mechlorethamine 

accompanies a desired „off-on‟ fluorescence signal by change from the „pull-pull‟ to a 

„push-pull‟ system.  In addition, the coumarin fluorophore not only acts as a signal tag, 

but also as an antenna, greatly improve photolysis efficiency of NPE group by enhancing 

UV absorbance and transferring energy to NPE group.  Finally, the positively charged 

prodrug 4-1 may also enhance the selectivity and binding affinity of negatively charged 

DNA. 

 

 

Scheme 4.1 Design of photo-triggered fluorescent prodrug for mechlorethamine. 

 

4.3 Synthesis  
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The synthetic route for prodrug 4-1 is outlined in Scheme 4-2. Starting from 2-

Methylresorcinol, 7-hydroxyl, 8-methyl coumarin 4-8 was made, which was then 

protected as coumarin acetate, followed by bromination with NBS, and hydrolysis to 

afford 7-hydroxyl-8-(hydroxymethyl) coumarin 4-11 in moderate yield.  Under the mild 

basic condition, the photo sensitive group 1-(bromomethyl)-2-nitrobenzene was 

selectively coupled at the phenolic position to yield 8-(hydroxymethyl)-7-(2-

nitrobenzyloxy)-coumarin 4-12, which was then converted to 4-13 using 

tribromophosphine. Treatment of 4-13 with N-methyldiethanolamine yielded 4-14, which 

was converted to target compound 4-1 using thionyl chloride. 

 

 

Scheme 4.2 Synthetic routes for prodrug 4-1. Reagents and conditions: (a). concentrated H2SO4, 

2-hydroxysuccinic acid, MW (240W, 120℃), 4 min; (b). acetic anhydride, pyridine, rt, 12 h; (c). 

NBS, AIBN, CCl4, reflux, 6 h; (d). CaCO3, dioxane/H2O=1/1, 50 ℃, 24 h; (e). 1-(bromomethyl)-

2-nitrobenzene, K2CO3, MeCN, 50℃, in dark, 5h; (f). PBr3, DCM, rt, in dark, 70 min; (g). 2,2'-

(methylazanediyl)diethanol, dry MeCN, rt, in dark; (h). SOCl2, rt, in dark, 3 d. 
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4.4 Photo-triggered Drug Release Studies 

With the compound 4-1 in hand, firstly we performed photo-triggered drug release 

studies. According to the proposed mechanism (Scheme 4.1), both the active drug 4-4 

and fluorescent product 4-6 will be formed during the process. Compound 4-6 can be 

easily monitored and isolated for its strong fluorescence and stability in aqueous solution, 

while active drug 4-4 itself is not easily isolated and characterized due to its high 

reactivity and lack of UV-vis absorption. According to the previous report 
[49]

, we used 

diethyldithiocarbamate (DDT) to rapidly trap drug 4-4, and monitor the UV absorption of 

the stable bisadduct 4-15 (Scheme 4.3).  Comparing with the standard compound 4-15, 

the presence of 4-4 was confirmed by RP-HPLC.  

 

 

Scheme 4.3 Chemistry of detection of mechlorethamine 

 

 An aqueous solution containing 5 mM prodrug 4-1 was prepared and irradiated with 

a hand-held UV lamp (2 W, 365 nm).  Time course study revealed complete 

disappearance of 4-1 in 90 min.  A highly fluorescent presumed product was formed 

during the process, monitored by a fluorometer.  The fluorescent molecule was isolated 

and characterized by 
1
H and 

13
C NMR and mass spectroscopy. Its structure was 
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determined to be compound 4-6.  Meanwhile, the irradiated solution was incubated with 

27.5 mM DDC at 37°C for 20 min, HPLC analysis confirmed the presence of 4-4 by 

comparing with the standard peak of compound 4-15 at 20.3 min retention time under the 

same (RP) HPLC condition.   

The above studies proved the proposed reaction mechanism and working hypothesis.  

Prodrug 4-1 was able to release and meanwhile monitor the release process by 

fluorescence. 

 

4.5 Kinetic Studies 

Next, we conducted the more detailed kinetic studies of the photolytic reaction of 

prodrug 4-1 with reversed-phase (RP) HPLC. The concentrations of prodrug 4-1, 

photolytic products 4-15 and 4-4 were monitored. An aqueous solution of 2 mM prodrug 

4-1 was irradiated under UV light (2 W, 365 nm) for different time courses. Then an 

aliquot sample was taken and injected to (RP) HPLC using water/acetonitrile mixture as 

mobile phase at a flow rate of 0.8 mL/min at λmax 254 nm. We observed the decreasing of 

peak at 32.2 min accompanied with the concurrent appearance of new peak at 16.2 min.  

Peak at 32.2 min corresponded to the decomposition of prodrug 4-1 (Figure 4.1a), while 

the new peak resulted from the formation of photoproduct 4-6 (Figure 4.1b).  The release 

of fluorescent product 4-6 was proportional to the time of UV irradiation. 

 

(a) 
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Figure 4.1. (a). Controlled decomposition of prodrug 4-1 in aqueous solution upon UV 

irradiation for designated time courses monitored by RP-HPLC. (b). Controlled release of 

fluorescent molecule compound 4-6 in aqueous solution upon UV irradiation for designated time 

courses monitored by RP-HPLC. (c). Controlled release of mechlorethamine 4-4 in aqueous 

solution upon UV irradiation for designated time courses monitored by RP-HPLC. 

 

To quantify the amount of active drug 4-4 released from the photolytic reaction, DDT 

was used as a trapping agent. From the above reaction mixture, an aliquot sample was 

taken and incubated with 27.5 mM DDC for 20 min at 37°C to complete the trapping 

reaction. Then, it was injected into RP-HPLC, by monitoring the concentration of 

bisadduct 4-15 peak at 20.3 min, the amount of 4-4 can be calculated. Through path A: 

direct substitution reaction with prodrug 4-1, there is roughly a constant concentration of 

4-15 under all conditions for 20 min incubation time with DDC. The actual amount of 

bisadduct 4-15 released from the photolytic reaction (path B) can be obtained by 

subtracting 4-15 produced from path A from the total amount detected (Scheme 4.4). 

Using the standard curve of compound 4-15, the conversion percentage was plotted 
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against time of UV irradiation. The amount of mechlorethamine released was 

proportional to the time of UV irradiation (Figure 4.1c).     

 

 

 

Scheme 4.4 Chemistry of detection of mechlorethamine release from prodrug 4-1 by: (path A) 

direct substitution with diethyldithiocarbamate (DDC) and (path B) photolytic fragmentation.  

 

The above mentioned properties of prodrug 4-1 provided a way for the precise control 

of the progress of the photolysis reaction with different time courses of UV irradiation to 

release active drug 4-4 and fluorescent signaling molecule 4-6.  
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4.6 Spectroscopic Properties 

The spectroscopic properties of the photolytic reaction were investigated next.  These 

experiments were performed in a pH 7.4 HEPES buffer.  Both the UV absorption 

spectrum and fluorescence emission (λex = 375 nm, λex = 448 nm) were measured before 

and after treatment with UV light irradiation (365 nm).  The absorption maximum of 

prodrug 4-1 is 324 nm (Figure 4.2).  After exposure under UV for 15 min, a new 

absorption peak, a characteristic of compound 4-6, at 364 nm appeared (Figure 4.2).  

Meanwhile, as expected, prodrug 4-1 was originally nonfluorescent due to the presence 

of the NPE group and the charged nitrogen moiety in the coumarin (Figure 4.1).  The 

fluorescence intensity enhancement is proportional to the UV irradiation time (Figures 

4.3a and 4.3b).  Notably, maximal fluorescence emission was reached within 15 min UV 

irradiation with up to 152 folds.  In contrast, no fluorescence intensity change was 

observed when prodrug 4-1 was exposed in a pH 7.4 HEPES buffer under ambient light, 

indicative of its high stability.  Taken together, these findings provide support for the 

notion that the photo-controlled release system 4-1 only responses to photo- triggered 

cleavage.  Moreover, the release event can be readily tracked by fluorescence. 
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Figure 4.2. Photolytic activation of 0.1mM fluorescent prodrug 4-1 in pH=7.4 HEPES buffer, 

irradiated by a hand-held UV lamp (λ= 365nm). UV-vis spectra in the absence of UV and after 15 

min UV exposure. 

 

(a)                                                                           (b) 

   

Figure 4.3. Photolytic activation of 0.1mM fluorescent prodrug 4-1 in pH=7.4 HEPES buffer, 

irradiated by a hand-held UV lamp (λ= 365nm) with different time courses. (a). Fluorescence 

spectra. (b). Fluorescence emission enhancement at 448 nm with different UV irradiation time.  
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In the design of a prodrug system, the active parent drug must be released to ensure 

biological activity.  It is expected that the UV uncaged bioactive mechlorethamine 

produced from prodrug 4-1 upon UV irradiation leads to the subsequent DNA intercross 

linking.  Therefore, DNA cross linking activity studies were conducted.  The experiments 

were conducted using linealized plasmid DNA by denaturing alkaline agarose gel 

electrophoresis as originally reported by Cech 
[50]

. pBR322 plasmid DNA was linearized 

by EcoRI restriction endonulease digestion. DNA cross-linking experiment was carried 

out in a pH 7.4 Tris-HCl buffer. Due to the inherent toxicity of strong UV light and the 

possible UV induced cross link interference, a low-power UV light as light source was 

used.  It was positioned 75 cm away from the reaction.  After 1 h exposure to 365 nm UV 

irradiation, cross linking reactions were analyzed on denaturing alkaline agarose gel 

electrophoresis by the different mobility of ICL products versus single stranded DNA. 

1kb DNA ladder was used as a molecular weight stardard (Figure 4.4, lane 1). Control 

reactions were performed with DNA in the absence of prodrug 4-1 treatment both in the 

dark (Figure 4.4, lane 2) and with 1 h UV exposure (Figure 4.4, lane 3). Results showed 

no noticeable cross-links formation in both cases which suggested that mild UV exposure 

for 1 h does not induce DNA cross-links formation. To exclude the possibility that the 

UV activated fragment 4-5 was responsible for DNA cross-links formation, control 

compound 4-14 was synthesized. According to the photoactivation mechanism, 

compound 4-14 was able to release the same fragment 4-5 as prodrug 4-1. Results 

indicated that both in the absence (Figure 4.4, lane 4) and presence of UV light (Figure 

4.4, lane 5), control compound 4-14 did not induce noticeable cross-link prodructs. The 

same result was observed when DNA was treated with 1mM prodrug 4-1 in the absence 
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of UV light (Figure 4.4, lane 6).  It indicated that prodrug 4-1 itself without UV exposure 

showed negligible activity in forming DNA cross-links.  However, in the presence of 

prodrug 4-1 (1 mM) with exposure to UV light for 1 hour, efficient DNA cross-link was 

observed (Figure 4.4, lane 7), which is comparable to that of the active anticancer drug 

mechlorethamine (Figure 4.4, lane 8).  These results show that prodrug 4-1 itself the 

lacks the cross link activity toward DNA, but can be activated by UV light to generate the 

activity by releasing the real drug mechlorethamine, and the other released fragment 4-5 

was not responsible for DNA cross-links formation.  

 

 

                                           1         2          3         4          5         6         7         8 

Figure 4.4. DNA cross-links formation with prodrug 4-1/mechlorethamine with exposure to UV 

light (365 nm). Lane 1: 1 kb DNA ladder (molecular weight standard). Lane 2: 1 µg pBR322 in 

dark (negative control). Lane 3: 1 µg pBR322 with UV treatment for 1 hour. Lane 4: 1 µg 

pBR322 with treatment of 1mM control compound 4-14 in dark. Lane 5: 1 µg pBR322 with 

treatment of 1mM control compound 4-14 with 1 h UV exposure. Lane 6: 1 µg pBR322 with 

treatment of 1 mM prodrug 4-1 in dark. Lane 7: 1 µg pBR322 with treatment of 1 mM prodrug 4-

1 with 1 h UV exposure. Lane 8: 1 µg pBR322 with treatment of 1 mM active drug 

mechlorethamine in dark. 

 

4.8 Cell Viability Test 
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Before going into cellular tests, we firstly evaluated the stability and cell permeability 

of prodrug 4-1. Concerning the fact that prodrug 4-1 is an electrophile, we tested its 

stability in a thiol rich cellular environment. As reported, GSH is present at very high 

levels in the cytosol, comprising about 90% of nonprotein sulfur with 1-2 mM 

concentrations in most of the cells 
[51]

. An aqueous solution containing 5 mM prodrug 4-1 

was incubated with 2.0 mM GSH for 6 hours at 37 °C, DDC was incubated for 20 min to 

trap the released active drug 4-4. An aliquot of solution was injected to RP-HPLC. We 

have not observed decomposition of prodrug 4-1 nor increased amount of compound 4-4, 

which showed that prodrug 4-1 was very stable in a GSH rich cellular environment.  

To evaluate the cell permeability of prodrug 4-1, 0.8 mM prodrug 4-1 was incubated 

with HeLa cells for 2 hours, cell lysate was collected and injected into RP-HPLC, 

prodrug 4-1 peak was detected. It supported that prodrug 4-1 was cell permeable.    

Having established that prodrug 4-1 is able to release active antineoplastic 

mechlorethamine and showed high potency in inducing DNA cross-links. We evaluated 

its ability in inhibiting cancer cell growth as well as its cytotoxicity towards normal cells. 

Cell viability was measured by using cell counting kit-8 (CCK-8). First of all, 

cytotoxicity of prodrug 4-1 was evaluated on normal skin cells (Hekn cell lines).  As is 

shown in Figure 4.5, without UV exposure on Hekn cells, inactivated prodrug 4-1 

showed negligible cytotoxicity towards normal skin cells.  Even with a drug 

concentration of 0.8 mM, Hekn cell viability as high as 83.5% was observed.  After 30 

min UV exposure, activated prodrug 4-1 showed lower cell viability than inactivated 

prodrug under the same concentration, but also displays relatively low toxicity towards 

normal skin cells, although . Thus, prodrug 4-1 displays low systematic toxicity towards 
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normal cells both with and without UV activation. is low toxicity assures its potential for 

further study. 

 

 

Figure 4.5 Cell viability assays of prodrug 4-1 on normal skin cells (Hekn cell lines). Prodrug 4-1 

was incubated with the cells for 2 h followed by 30 min UV irradiation. The cell viability was 

measured after 24 h after incubation using cell counting kit-8 (CCK-8). 

 

Next, cell viability was evaluated with prodrug 4-1 on cancer cells (HeLa cell lines). 

First of all, as is shown in Figure 4.6, prodrug 4-1 activated by 30 min UV irradiation 

showed significant greater potential in killing cancer cells than inactive prodrug 4-1 itself.  

With an increasing drug dosage, a larger amount of cancer cells (HeLa cells) was killed. 

Meanwhile, we have observed an impressive selectivity towards cancer cells.  With a 

drug concentration of 0.8 mM, 27.8% cell viability on HeLa cells compared with 83.5% 

cell viability on Hekn cells.  This might be explained by the ICL property of the 

inhibition mechanism.  Cancer cells generally grow and divide at a much faster rate than 

normal cells.  It is expected that much higher DNA replication and transcription activities 
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take place in cancer cells than those in normal cells, thus cell growth inhibition by 

intercross links formation is much more efficient towards cancer cells, accounting for the 

selectivity of the prodrug 4-1.  

 

 

Figure 4.6 Cell viability assays of prodrug 4-1 on cancer cells (HeLa cell lines) Prodrug 4-1 was 

incubated with the cells for 2 h followed by 30 min UV irradiation. The cell viability was 

measured after 24 h after incubation using cell counting kit-8 (CCK-8). 

 

During the drug release process, both mechlorethamine 4-4 and quinone methide type 

compound 4-5 were produced. As quinone methide was reported to exhibit DNA 

alkylating ability , we made control compound 4-14 to further investigate drug action 

mechanism. Compound 4-14 is different from prodrug 4-1 for it has the inactive 2,2'-

(methylazanediyl)diethanol incorporated instead of the active drug mechlorethamine. As 

is shown in Figure 4.7, with dosage at 0.8 mM, control compound 4-14 exhibit weaker 

potential in killing cancer cells compared with prodrug 4-1 both in the presence and 
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absence of UV irradiation. Thus, it confirmed that the anticancer ability of prodrug 4-1 

was mainly due to the release of mechlorethamine 4-4 instead of  quinone methide type 

compound 4-5.  

 

 

Figure 4.5. Cell viability assays of prodrug 4-1 and control compound 4-14 on cancer cells 

(HeLa cell lines) Prodrug 4-1 and control compound 4-14 were incubated with the cells for 2 h 

followed by 30 min UV irradiation. The cell viability was measured after 24 h incubation using 

cell counting kit-8 (CCK-8). 

 

4.9 Fluorescence Imaging Study 

Having demonstrated that the prodrug can release the active drug form, next we 

evaluate the second feature of the prodrug 4-1.  It is designed for fluorescent monitoring 

of photoactivated drug release in cells.  Prodrug 4-1 was incubated with HeLa cells for 2 

hours for cellular uptake, followed by 30 min UV exposure to release active drug 4-4 and 

the fluorescent signal molecule 4-6.  As is shown in Figure 4.6, HeLa cells exhibited 

strong fluorescence only with photoactivated prodrug (Figure 4.6 a). In the absence of 
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either prodrug 4-1 or UV light, no fluorescence was observed (Figure 4.6 b and 4.6 c). 

These results clearly showed that the prodrug 4-1 was cell permeable and the 

fluorescence signals reflected the process of UV activated drug release. 

 

 

 

Figure 4.6. Fluorescence images of HeLa cells using an Olympus IX71 fluorescence microscope. 

(a) Fluorescence image of HeLa cells treated with prodrug 4-1 (350 μM) for 2 h followed by 30 

min UV exposure; (b) Fluorescence image of HeLa cells treated with prodrug 4-1 (350 μM) for 2 

h in the absence of UV light, total incubation period of 2.5 h; (c) Fluorescence image of HeLa 

cells in the absence of prodrug 4-1 only with 30 min UV exposure. The total incubation time is 

2.5 h; (d) Fluorescence image of HeLa cells in the absence of prodrug 4-1 (350 μM) and without 

UV exposure. 

 

To track the intracellular internalization and localization of prodrug 4-1, we incubated 

it with HeLa cells at different times.  The prodrug is cell permeable and nucleus 

a b 

c d 
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permeable (Figure 4.7).  It was found that its distribution is time dependant and nucleus 

selective presumably due to its positive charged characteristic.  The prodrug moves from 

cytoplasm to nuclei as incubation time prolongs.  In a short incubation time (20 min), 

fluorescence was mainly observed in the cytoplasm upon UV irradiation, while 1 h, the 

signal was seen both in the cytoplasma and nuclei region. Longer incubation time (2 h) 

leads to stronger fluorescence in the nuclei region.  The studies offer the important 

information of optimal time for the delivery of the drug at the desired site.  Prodrug 4-1 is 

able to be monitored by convenient fluorescent tracking of drug localization in a 

spatiotemporal manner.  Furthermore, the ability of controlled drug release into nuclei 

maximizes the DNA cross-linking efficiency. 

 

 

Figure 4.7. Fluorescence images of HeLa cells treated with 350 μM prodrug 4-1 followed by 30 

min UV irradiation. HeLa cells were incubated with prodrug 4-1, after 30 min UV irradiation, 

cells were fixed and stained with propidium iodide (red) for nuclei and prodrug 4-1 (blue) for the 

site of action. a) Fluorescence image of UV activated prodrug 4-1; b) Fluorescence image of 

nuclei; c). Merged image of a and b. 

 

4.10 Summary 

In conclusion, we developed a novel dual functional photo-triggered fluorescent 

prodrug for anticancer drug releasing and monitoring.  The release of the active DNA 

a b c 
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alkylator mechlorethamine can be controlled with UV irradiation, accompanied with a 

maximum of 152 fold fluorescence increase.  Moreover, we demonstrated that the 

photolytic product was able to induce effective DNA cross-linking activities which 

account for its anticancer activity.  Prodrug 4-1 showed negligible cytotoxicity towards 

normal skin cells (Hekn cells) with and without UV activation.  Nonetheless, the 

activated prodrug 4-1 exhibits potent anticancer activity towards cancer cells.  

Furthermore, importantly, the drug release progress can be conveniently monitored by the 

fluorescence enhancement in cells.  Fluorescence imaging experiment showed that 

prodrug 4-1 is not only cell permeable but also nuclear permeable and selective.  

Therefore, these studies demonstrate that the prodrug could serve as a promising drug 

delivery system for spatiotemporal control release and monitoring of an anticancer drug 

to maximize the treatment efficacy in personalized medicine. 

 

4.11 Experimental Section 

General Information 

All reactions were carried out in dried flasks.  The reactions were monitored by TLC for 

completion. Commercially available reagents were used as received without further 

purification unless otherwise specified. Merck 60 silica gel was used for column 

chromatography, and Whatman silica gel plates with fluorescence F254 were used for 

thin-layer chromatography (TLC) analysis.  
1
H and 

13
C NMR spectra were recorded on 

Bruker Avance 500 or 300. Data for 
1
H are reported as follows: chemical shift (ppm), and 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet). Data for 
13

C 
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NMR are reported as ppm.  Mass Spectra were obtained from University of New Mexico 

Mass Spectral facility. 

 

Synthesis of prodrug 4-1 

 

Compound 4-1 was synthesized following the procedures in Scheme 4-2 

 

OHO O

 

7-Hydroxy-8-methyl-2H-chromen-2-one (4-8) 

A mixture of equimolar amount of 2-methylbenzene-1,3-diol (2.48 g, 20.0 mmol) and 2-

hydroxysuccinic acid (2.48 g, 20.0 mmol) with 3.0 equiv. of concentrated sulfuric acid 

(5.88 g, 3.2 mL, 60 mmol) was exposed to mircrowave irradiation (240W, 120 °C) for 4 

min. The reaction mixture was extracted with ethyl acetate and water. After solvent 

evaporation, the crude product was purified by silica gel column chromatography to give 

brown yellow solid as product (2.53 g, 72% yield). 
1
H NMR (CD3OD, 300 MHz): δ 7.75 

(d, J = 9.3 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 6.11 (d, J = 9.3 Hz, 

1H), 2.20 (s, 3H). 

 

OAcO O
 

8-Methyl-2-oxo-2H-chromen-7-yl acetate (4-9) 
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7-Hydroxy-8-methyl-2H-chromen-2-one (1.76 g, 10 mmol) was dissolved in acetic 

anhydride (20.4 g, 200 mmol) and immersed in an ice water bath.  After the addition of 

pyridine (948 mg, 12 mmol), the reaction mixture was stirred at rt for 12 h. Excess acetic 

anhydride was removed under reduced pressure.  Residue was dissolved in 

dichloromethane, washed with saturated sodium bicarbonate, water, dried over sodium 

sulfate.  The crude product was further purified by silica gel column chromatography to 

give (2.18 g, quantitative yield) white solids as product.  
1
H NMR (CDCl3, 300 MHz): δ 

7.66 (d, J = 9.6 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.35 (d, J = 

9.6 Hz, 1H), 2.34 (s, 3H), 2.25 (s, 3H). 

 

OAcO O

Br  

8-(Bromomethyl)-2-oxo-2H-chromen-7-yl acetate (4-10) 

8-Methyl-2-oxo-2H-chromen-7-yl acetate (2.18 g, 10.0 mmol) was dissolved in 15 mL of 

carbon tetrachloride, then NBS (2.136 g, 12.0 mmol) was added to the reaction mixture 

followed by AIBN (49 mg, 0.2 mmol). The reaction mixture was stirred under reflux for 

6 hours. After solvent removal under reduced pressure, the crude product was further 

purified by silica gel column chromatography to give light yellow solid as product (2.25 

g, 76% yield). 
1
H NMR (CDCl3, 300 MHz): δ 7.67 (d, J = 9.6 Hz, 1H), 7.44 (d, J = 8.4 

Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 6.38 (d, J = 9.6 Hz, 1H), 4.63 (s, 2H), 2.40 (s, 3H). 
13

C 

NMR (CDCl3, 300 MHz): δ 168.17, 159.38, 152.20, 151.47, 142.95, 128.24, 119.28, 

118.59, 116.69, 115.98, 20.83, 19.05. 
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OHO O

OH  

7-Hydroxy-8-(hydroxymethyl)-2H-chromen-2-one (4-11) 

A mixture of calcium carbonate (2.6 g, 26 mmol) in 12 mL of water was added  to a 

solution of 8-(bromomethyl)-2-oxo-2H-chromen-7-yl acetate (1.468 g, 5.0 mmol) in 12 

mL of dioxane.  The mixture was stirred at 50 °C for 24 h.  Dioxane was removed under 

reduced pressure to give a white solid.  After extraction using ethyl acetate and 2M HCl, 

the crude product was further purified by silica gel column chromatography to give white 

solids as product (936 mg, 80% yield).  
1
H NMR (acetone-d6, 300 MHz): δ 9.62 (s, 1H), 

7.84 (d, J = 9.6 Hz, 1H), 7.43 (d, J = 8.7 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.15 (d, J = 

9.6 Hz, 1H), 5.02 (s, 2H), 2.02 (d, J = 6.0 Hz, 1H). 
13

C NMR (acetone-d6, 300 MHz): δ 

161.11, 160.85, 153.87, 145.08, 129.13, 114.57, 113.95, 112.62, 112.55, 56.05. ESI-MS: 

[M+H] calculated for C10H9O4: 193.05; found: 193.05. m.p. : 158-160 °C.  

 

O OO

NO2 OH  

8-(Hydroxymethyl)-7-(2-nitrobenzyloxy)-2H-chromen-2-one (4-12). 

Potassium carbonate (662 mg, 4.8 mmol) was dissolved in 25 mL of acetonitrile, 

followed by the addition of 7-hydroxy-8-(hydroxymethyl)-2H-chromen-2-one (936 mg, 4 

mmol) and 1-(bromomethyl)-2-nitrobenzene (1046 mg, 4.8 mmol).  The reaction mixture 

was stirred in dark at 50 °C for 5 h.  After solvent removal under reduced pressure, the 

crude product was further purified by silica column chromatography to give white solids 
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as product (968 mg, 74% yield).
 1
H NMR (CDCl3, 300 MHz): δ 8.22 (d, J = 8.1 Hz, 1H), 

7.90 (d, J = 7.8 Hz, 1H), 7.65 (m, 2H), 7.56 (m, 1H), 7.42 (d, J = 8.7 Hz, 1H), 6.94 (d, J 

= 8.7 Hz, 1H), 6.31 (d, J = 9.6 Hz, 1H), 5.64 (s, 2H), 5.07 (d, J = 6.0 Hz, 2H), 2.35 (t, J = 

6.9 Hz, 1H). [M+H] calculated for C17H14NO6: 328.08; found: 328.08. m.p.: 212-214 °C.   

 

O OO

NO2 Br  

8 (8-(Bromomethyl)-7-(2-nitrobenzyloxy)-2H-chromen-2-one) (4-13):  

A solution of tribromophosphine (643 mg, 226 μL, 2.4 mmol) in 2.0 mL of anhydrous 

dichloromethane was added dropwise to a solution of 8-(hydroxymethyl)-7-(2-

nitrobenzyloxy)-2H-chromen-2-one (654 mg, 2 mmol) in 10 mL of anhydrous 

dichloromethane over 30 min with the temperature between -5 °C and -3 °C.  The 

reaction mixture was stirred in dark at rt for 40 min. After the reaction is complete, it was 

washed with brine, concentrated and run column to give white solids as product (599 mg, 

77% yield).  
1
H NMR (CDCl3, 300 MHz): δ 8.23 (d, J = 2.5 Hz, 1H), 8.04 (d, J = 7.8 Hz, 

1H), 7.76 (d, J = 7.2 Hz, 1H), 7.65 (d, J = 9.6 Hz, 1H), 7.55 (d, J = 7.8 Hz, 1H), 7.43 (d, 

J = 8.7 Hz, 1H), 6.92 (d, J = 8.7 Hz, 1H), 6.32 (d, J = 9.6 Hz, 1H), 5.69 (s, 2H), 4.88 (s, 

2H). 
13

C NMR (CDCl3, 300 MHz): δ 160.15, 158.64, 152.91, 146.71, 143.25, 134.50, 

132.59, 129.23, 128.78, 128.32, 125.21, 114.58, 114.07, 113.51, 108.60, 67.57, 20.22. 

ESI-MS: [M+H] calculated for C17H13BrNO5: 390.00; found: 390.00. m.p.: 210-212 °C.  

 



104 
 

O OO

NO2 N+ OH

Br-
OH  

2-Hydroxy-N-(2-hydroxyethyl)-N-methyl-N-((7-(2-nitrobenzyloxy)-2-oxo-2H-

chromen-8-yl)methyl)ethanaminium bromide (4-14) 

A solution of 8-(bromomethyl)-7-(2-nitrobenzyloxy)-2H-chromen-2-one (389 mg, 1.0 

mmol) and 2,2'-(methylazanediyl)diethanol (357 mg, 3.0 mmol) in 10 mL of anhydrous 

acetonitrile was stirred in dark at rt for 12 h.  After filtration, white solids were obtained 

as product (309mg, 61% yield).  
1
H NMR (DMSO-d6, 300 MHz): δ 8.21 (d, J = 8.1 Hz, 

1H), 8.07 (d, J = 9.6 Hz, 1H), 7.89 (d, J = 8.7 Hz, 1H), 7.81 (m, 2H), 7.68 (m, 1H), 7.29 

(d, J = 9.0 Hz, 1H), 6.42 (d, J = 9.6 Hz, 1H), 5.71 (s, 1H), 5.25 (t, J = 4.8 Hz, 2H), 4.84 (s, 

2H), 3.89 (m, 4H), 3.64 (m, 2H), 3.46 (m, 2H), 3.02 (s, 3H). ESI-MS: [M+H] calculated 

for C22H25N2O7: 429.17; found: 429.17. m.p.: 195-196 °C.  

 

O OO

NO2 N+ Cl
Br-

Cl  

2-Chloro-N-(2-chloroethyl)-N-methyl-N-((7-(2-nitrobenzyloxy)-2-oxo-2H-chromen-

8-yl)methyl)ethanaminium bromide (4-1) 

2-Hydroxy-N-(2-hydroxyethyl)-N-methyl-N-((7-(2-nitrobenzyloxy)-2-oxo-2H-chromen-

8-yl)methyl)ethanaminium bromide (254 mg, 0.5 mmol) was dissolved in 10 mL of 

thionyl chloride.  The reaction mixture was stirred at rt for 3 d.  After solvent evaporation 

under reduced pressure, white solid was obtained as product (272 mg, quantitative yield). 
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1
H NMR (DMSO-d6, 300 MHz): δ 8.21 (d, J = 8.1 Hz, 1H), 8.08 (d, J = 9.3 Hz, 1H), 7.90 

(d, J = 8.7 Hz, 1H), 7.78 (m, 2H), 7.67 (m, 1H), 7.28 (d, J = 8.7 Hz, 1H), 6.43 (d, J = 9.3 

Hz, 1H), 5.74 (s, 2H), 4.88 (s, 2H), 4.17 (m, 4H), 3.86 (m, 4H), 3.15(s, 3H).  
13

C NMR 

(DMSO-d6, 300 MHz): 160.33, 158.95, 154.73, 147.23, 144.39, 134.32, 132.85, 131.31, 

129.54, 129.45, 125.14, 113.56, 113.37, 109.98, 103.54, 68.21, 61.64, 55.03, 48.07, 36.51. 

ESI-MS: [M+H-Br] Calculated for C22H23Cl2N2O5: 465.10, found 465.10. m.p.: 95-96 °C.  

 

HPLC monitoring of drug release 

(a)                                                                    (b) 

           

(c) 
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Figure S1. HPLC monitoring of drug release of prodrug 4-1. (a) 0 min; (b) 28 min; (c) 85 min. 

Photolytic activation of 0.1 mM fluorescent prodrug 4-1 in pH = 7.4 HEPES buffer, irradiated by 

a hand-held UV lamp (λ= 365 nm).  

 

Prodrug 4-1 (2.0 mM) was dissolved in an aqueous solution of MeCN/H2O (20:80), a 

hand-held UV lamp (365 nm, 2W) was positioned 10 cm away from the reaction vial as 

light source.  After designated reaction time, an aliquot of 20 μL solution was taken and 

submitted to RP-HPLC to be analyzed by a 254 nm UV detector, the amount was 

integrated by the area under each peak, and calculated from the standard curves under the 

same HPLC condition.  

HPLC condition: Eclipse XDB-C8 column, flow rate is 0.8 mL/min, 0-20 min: 

MeCN/H2O (10:90), 20-40 min: MeCN/H2O (30:70). 

 

Protocol of study of UV irradiation reaction of prodrug 4-1 

Prodrug 4-1 (13 mg) was dissolved in 239.2 μL of DMSO and 2152.8 μL of PBS buffer 

to make a solution of 10 mM.  A hand-held UV lamp (365 nm, 2W) was positioned 10 

cm away from the reaction vial as light source.  Reaction was complete in 90 min, 

extracted with ethyl acetate and water, after solvent removal, the crude mixture was 

submitted to column chromatograph to obtain 1.5 mg white solids as product (isolated 

yield of 71%).  
1
H NMR (acetone-d6, 300 MHz): δ 9.62 (s, 1H), 7.84 (d, J = 9.6 Hz, 1H), 

7.43 (d, J = 8.7 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.15 (d, J = 9.6 Hz, 1H), 5.02 (s, 2H), 

2.02 (d, J = 6.0 Hz, 1H). 
13

C NMR (acetone-d6, 300 MHz): δ 161.11, 160.85, 153.87, 

145.08, 129.13, 114.57, 113.95, 112.62, 112.55, 56.05. ESI-MS: [M+H] calculated for 

C10H9O4: 193.05; found: 193.05. 
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Spectroscopic materials and methods 

Millipore water was used to prepare all aqueous solutions.  The pH was recorded by a 

Beckman ΦTM 240 pH meter.  UV absorption spectra were recorded on a Shimadzu UV-

1800 spectrophotometer.  Fluorescence emission spectra were obtained on a Shimadzu 

RF-5301PC spectrofluorophotometer.  Prodrug 4-1 in DMSO (10 mM) was prepared as 

the stock solution, 50 μL of the stock solution was added to 4.950 mL of 20 mM pH 7.4 

HEPES buffer to make the final concentration of 0.1 mM.  A hand-held UV lamp (365 

nm, 2W) was positioned 10 cm away from the reaction vial as light source.  Change in 

fluorescence emission (λex = 375 nm, λem = 448 nm) and UV-vis spectra were measured 

at designated time interval. 

 

Preparation of cell cultures 

HeLa cell line was purchased from American Type Culture Collection.  The cells were 

cultured in DMEM containing 10% FBS and 1% (v/v) antibiotic-antimycotic solution at 

37 C with 95% air/5% CO2 in an incubator. 

 

Human Epidermal Keratinocytes (HEKn) cells were obtained from Lifeline Cell 

Technology. The cells were cultured in DermaLife Basal Medium (DermaLife K Medium 

Complete Kit) at 37 C with 95% air/5% CO2 in an incubator. 

 

Interstrad DNA cross-links formation study 

General Procedure for Linearization of Plasmid pBR322 by EcoRI. 



108 
 

pBR322 Vector(New England Biolabs) (28µL, 28 µg) was incubated with EcoRI-

HF(New England Biolabs) (20 µL),EcoR1 buffer (10 ×, 20 µL), and 132 µL of H2O 

(sterile) for 3 h  at 37 °C. NaOAc (20 µL, 3M) and ethanol (750 µL) were added, and the 

solution was cooled at -20 °C overnight. The mixture was centrifuged for 15 min at 

16000 rpm, and the ethanol was decanted off. The remainder of the ethanol was 

evaporated off in vacuo at -20°C , and the remaining linearized DNA was suspended in 

100 µLof sterile H2O. The amount of linearized pBR322 was quantitated by 

NANODROP 2000 spectrophotometer (Thermo Scientific).  

 

Photoreaction of DNA with prodrug 4-1, control compound 4-14, or 

mechloethamine.  

Solutions contained 1 µg linearized plasmid DNA in 0.15 M NaCl, 0.01 M Tris-HCl, and 

0.001 M EDTA, pH 7.4.  10mM stock solution of prodrug 4-1 or control compound 4-14 

or mechloethamine was added to a final concentration of 1mM, obtaining a final volume 

of 50 μL. The Interstrad DNA cross-link formation reactions were conducted 75 ± 5 cm 

away from UV light (30 W g30t8 bubble from General Electronic Company). After 1 

hour incubation, the reaction solution was submitted to alkaline agarose gel 

electrophoresis.  

 

General Protocol for Alkaline Agarose Gel Electrophoresis.  

The agarose gels were prepared by adding 150 mL of a 50 mM  NaCl / 2 mM  EDTA (at 

pH = 8.0) to 1.8 g of agarose. The suspension was heated in a microwave oven until all of  

the agarose was dissolved(3 min). The gel was allowed to cool until 50°C and poured and 



109 
 

solidified for 1h at room temperature. The gel was soaked in an alkaline running buffer 

(25 mL of 2 N NaOH, 4 mL of 0.25 M EDTA in 1 L of H2O). Agarose loading dye (New 

England Biolabs) (6 x, 10 µL) was added to the samples (50 µ L) , and the samples were 

loaded into the wells. The gel was run for 3 h at 200 mA/30 V. The gel was then 

neutralized for 45 min in a 1 M Tris pH = 7/1.5 M NaCl solution, which was refreshed 

every 15 min. The gel was subsequently stained in an ethidium bromide solution (100 µ 

L of a 10 mg/ mL ethidium  bromide solution in 1 L of 1 M Tris /1.5 M NaCl buffer at 

pH = 7.5) for 1 h. Gels were visualized by UV and photographed using Gel Doc™ XR+ 

System(BIO-RAD). 

 

Cell viability test 

Cell viability was measured by using cell counting kit-8 (CCK-8), which quantitatively 

measures activities of dehydrogenases in cells.  Cells (5  10
3
 cells/well) were seeded 

into 96-well microtiter plates.  Following treatment with prodrug 4-1 and different 

reaction conditions (in the presence or absence of 365 nm UV light), 10 μL of CCK-8 

solution was added to each well of the plate. The plate was placed into the incubator at 37 

C with 95% air/5% CO2. After one hour incubation, the absorbance was measured at 

450 nm in a Bio-Rad 3350 microplate reader.  Cells without any treatment were used as 

100% cell viability.  The cell viability was calculated by using the formula: Cell viability 

= (Experimental absorbance value – culture medium absorbance value)/(without 

treatment absorbance value – culture medium absorbance value). 

 

Fluorescence imaging of photoactivated prodrug 4-1 
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HeLa cells were plated onto polylysine-coated glass coverslips. After reaching 70% 

confluence, 350 μM prodrug was added to Hela cells, incubated for 2 h before 30 min 

UV exposure.  Next, cells were washed thoroughly by DMEM.  The coverslips were 

mounted on a glass slide.  Images were acquired using an inverted microscope with a 

DAPI dichroic mirror.  

 

Fluorescence subcellular imaging of photoactivated prodrug 4-1 

HeLa cells were plated onto polylysine-coated glass coverslips.  After reaching 70% 

confluence, cells were incubated with prodrug 4-1 for 30 min, followed by 30 min UV 

exposure. Cells were then washed 3 times with warmed DMEM medium, fixed with 4% 

paraformaldehyde for 15 min at room temperature (RT) and washed with PBS again.  For 

counter staining, cells were permeabilized with 0.1% Triton-X100 for 10 min and rinsed 

with PBS again.  Nuclei were labeled using propidium iodide (10 mg/mL) and cover 

glasses were mounted by AntifadeH mounting media. All slides were kept in dark until 

fluorescence images were acquired using an inverted microscope with a DAPI dichroic 

mirror for prodrug imaging and DSRED dichroic mirror for nuclei stain image. 
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