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ABSTRACT 

 

 Four new applications of oligo-phenylene ethynylene (OPE) and poly-PE (PPE) 

compounds for detection and destruction of biological and chemical threats have been 

investigated. Mixed surfaces composed of PPEs and a thermoswitchable polymer were created, 

and were shown to be able to capture, kill, and reversibly release pathogenic bacteria. In order 

to develop fluorescent sensors for CW agents, the spectral changes of OPEs with surfactants 

and malathion (a simulant for nerve agents) were measured. Formation of OPE-dimers in the 

presence of surfactants can cause fluorescence enhancement (turn-on) or quenching (turn-off). 

Among six positive and negative OPEs, only OPEs with ethyl ester (COOEt) functional 

groups show fluorescence enhancement in the presence of surfactants, and quenching in the 

presence of malathion. In order to improve the lower detection limit (which is about nM) and 

specificity, a new OPE molecule with oximate (R-N=O-) functional groups is being 

synthesized and tested. Finally, PE compounds were investigated as potential dyes for two-

photon microscopy, and were found to be cell-penetrant, to have a good two-photon excitation 

cross-section, and hence to be useful as a nucleic acid stain for mammalian cells. 
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CHAPTER 1. INTRODUCTION 
 
 
1. 1. Motivation and Outline for Research Projects 

Worldwide, threats from chemical and biological warfare (CBW) agents have 

increased in recent years.1 Biological agents such as bacteria pose risks that range from 

relatively limited infections against soldiers (e.g. Bacillus anthracis, anthrax) to potentially 

unlimited epidemics in the general population (e.g., Yersinia pestis, bubonic plague). 

Chemical agents pose risks that range from skin irritation and blistering (e.g., chlorine, 

mustard agents) to rapid and painful death (e.g. organophosphorus (OP) nerve agents such as 

sarin, soman, VX). In order to defeat potential CBW attacks, the importance of developing 

methods to detect and protect against such agents has also risen. 

The project outlined below includes four efforts to develop such methods, all based on 

a class of fluorescent, biocidal molecules called oligo p-phenylene ethynylenes (OPEs) and 

poly p-phenylene ethynylenes (PPEs). In the first effort a new multifunctional surface was 

developed that can initially bind bacterial cells, then kill them (using the light-activated 

biocidal properties of PPEs), and then, by raising temperature slightly, release them to make 

the surface ready for another round of decontamination. In the second effort, OPEs were used 

to create a fluorescence-based sensor for malathion (a common pesticide and simulant for for 

organophosphorous nerve agents). In this case an OPE molecule senses malathion by forming 

a complex in the presence of a surfactant molecule. The third effort is still preliminary. It aims 

to improve the sensitivity and specificity of the CW sensor by synthesizing a new OPE 

molecule that is capable of reacting with CW agents to form a covalent complex. Finally, the 
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fourth effort explored the possibility of using OPEs and PPEs as sensors and detectors for CW 

agents inside cells and tissues, using two-photon fluorescence microscopy. 

 

1. 2. Background 

Poly phenylene ethynylenes, whose synthesis was made accessible by the discovery 

by Sonogashira and co-workers in 1975 of a facile bond-forming reaction between terminal 

acetylene and aryl or vinyl halide in the presence of catalytic Pd(0) and Cu(I),2 have been 

extensively explored for a variety of useful properties. Besides applications in organic 

photovoltaics,3 their photosensitizer properties have been explored to make light-activated 

antimcirobials,4 and their remarkable quenching and self-assembly have been used to develop 

sensors5.  

The OPEs and PPEs have been shown to have the ability to kill bacteria by (at least) 

two mechanisms: a) disrupting cell membranes, and b) generating reactive oxygen species 

using visible light.6 The first mechanism works under all conditions. The second (usually more 

efficient) mechanism works whenever OPEs or PPEs are exposed to visible light. Figures 8 

and 9 show the structures of some representative OPEs and PPEs. The side chains (often 

quaternary amines) provide both solubility and the ability to kill in the absence of light. The 

conjugated backbone acts as the chromophore necessary for either fluorescence or the photo-

generation of reactive oxygen species by which OPEs and PPEs become light-activated 

biocides. Thus OPEs and PPEs have a light-activated biocidal property that can be used to 

make otherwise passive surfaces into active “devices” that can sterilize biological warfare 

agents and (potentially) destroy chemical warfare agents. The investigation of these surfaces 

forms the first part of this work. 
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The utility of poly- and oligo-PEs has been demonstrated in a variety of sensing 

systems7, including DNA detection8, enzyme activity assays9, 10, and as stains for amyloid.11 

Using the known properties of variously substituted OPEs to form H- and J- aggregates with 

submicellar concentrations of surfactants, the second part of this work attempts to demonstrate 

detection of organophosphorus nerve agent by non-covalent disruption of the aggregate. The 

third part extends the sensitivity and selectivity of this assay by designing OPEs with a 

component that binds covalently to the phosphoester. 

PE’s have also been investigated as cell-penetrant dyes for two-photon microscopy, 

using their large size and tendency to self-aggregate as a method to increase cross-section of 

the two-photon absorption nonlinear optical process.12 The fourth part of the work discusses 

the promising advantages of two-photon microscopy and reports the effective intracellular 

detection of various OPEs with this technique. 
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CHAPTER 2. SWITCHABLE BIOCIDAL SURFACES 
	
 
2.1 Introduction 
	

In the first effort a new type of surface was developed. By combining both the light-

activated biocidal polymer PPE-DABCO with thermally-switchable Poly(N-

isopropylacrylamide) (PNIPAAm), the surface can first capture bacteria, then kill them, then 

release them at lower temperature. The surface consists of two active materials: poly(p-

phenylene ethynylene)-based polymers, which can inactivate a broad range of microbes and 

pathogens, and poly(N-isopropylacrylamide), which can convert between an hydrophobic 

“capture” state and a hydrophilic “release” state, in a patchwork arrangement. The 

combination of these materials creates a surface that can both trap microbes in a switchable 

way and kill surface-bound microbes efficiently. 

OPEs and CPEs are highly disruptive against microbial cell walls, and they have been 

demonstrated to kill Gram-negative bacteria, Gram-positive bacteria (including biofilms, 

spores, viruses and fungi). OPEs and PPEs are also light-activated; exposure to light sensitizes 

the production of singlet oxygen that reacts to form various species that oxidize available 

biological redox sites, disrupting the physical structure and metabolism of the target organism. 

This light- and dark-environment killing activity is highly effective in solution, but for real-

world applications a surface-based approach would be more practical.13 

 Control of cellular adhesion to surfaces through control of surface free energy is a 

useful approach to inhibiting biofilms. PNIPAAm undergoes an entropically driven phase 

transition from a hydrophobic, collapsed state above about 32 °C to a hydrophilic expanded 

state at low temperature. This change has been shown to modify the adhesion of cells to a 

PNIPAAm surface to a significant extent.14 
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 This section describes the fabrication, characterization, and testing of an active, 

nanostructured surface functionalized with both biocidal CPEs and temperature-switchable 

PNIPAAm. The surface was prepared by a combined approach of sequential layer-by-layer 

polyelectrolyte deposition and surface-initiated atom transfer radical polymerization. The 

resulting surface exhibits both characteristics of the biocidal CPEs and temperature-

switchable PNIPAAm. The surface topology and patterning of different polymers was 

characterized with atomic force microscopy. Bacterial cells, which were deposited onto the 

surfaces, were evaluated for killing by live/dead staining with a cell-permeant and cell-

impermeant nucleic acid stain, allowing for determination of the membrane-compromised 

individuals by confocal microscopy. Cell release rates were determined by fluorescence 

microscopy after washing with 5 mL of cold water.  

 

2.2. Results 

2.2.1. Fabrication and nanoscale morphology 
	

Films of CPEs can be formed controllably using a layer-by-layer (LbL) strategy, in 

which an initial layer of a CPE polycation (PPE-DABCO) is first physisorbed to a glass 

substrate, then a second layer of a CPE polyanion (PPE-SO3) is physisorbed on top, followed 

by a third layer of a CPE polycation (Figure 2). A higher degree of surface roughness is 

achieved by introducing a multilayer film, rather than just a single layer of cationic polymer, 

which is optimal for the binding of bacteria. 

Figure 1a shows such an LbL CPE film imaged by AFM (1.5 bilayers, substrate/PPE-

DABCO/PPESO3/PPE-DABCO, on a glass coverslip) on a wide scale (main image, 5 µm × 

5 µm) and on a 10× magnified scale (inset, 500 nm × 500 nm). On the wide scale the film 
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appears quite smooth, with only subnanometer roughness. By scratching the film with the 

AFM tip, it was possible to show that the overall film is about 5 nm thick. A higher resolution 

AFM image of the CPE film is shown in the inset of Figure 1a. Here, it can be seen that the 

surface is populated by distinct nodular structures averaging about 10−20 nm in size. The 

nodules are presumably due to aggregated CPE chains, either with themselves or with the 

polymer of opposite charge. It is also apparent that the top layer of PPE-DABCO may not be 

completely continuous; some regions of the surface descend by about 1.5 nm from the average 

height of the top layer, which is enough to reach down to the PPE-SO3 layer below. 

Statistically, such regions of deficiency may extend to the glass substrate. Overall, the 

structure of the CPE LbL film as seen by AFM is consistent with the model shown in Figure 

2, where regions with 1.5 bilayers are mixed with regions with fewer layers, including some 

regions of bare glass. 

Surface-polymerized PNIPAAm films have often been fabricated in the three-step 

process. First, a free radical polymerization initiator is first attached to a glass substrate using 

a silane linkage; then PNIPAAm is grown from these initiator sites using atom transfer radical 

polymerization in alcoholic solution. Figure 2b shows an AFM image of a PNIPAAm film 

grown in this way. The main image shows the film on a wide scale, and the inset shows a 

higher resolution image. On both scales the film appears smooth and continuous, with a grain 

structure of about 10 nm visible at high resolution. It was not possible to measure the 

PNIPAAm film thickness directly in this case. The film could not be scratched, consistent with 

covalent grafting of the polymer chains to the glass. Films made under similar conditions were 

reported to have thickness of less than 10 nm. From images like those in Figure 1a it was 

expected that thin LbL films of CPEs (especially films with only 1.5 bilayers) on glass might 
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be discontinuous, having small regions of uncoated, solvent-exposed glass substrate 

surrounded by CPE. If so, a combined CPE/PNIPAAm film could be created by first 

depositing a thin LbL film, then attaching ATRP initiators in these exposed regions. Control 

experiments in which CPE LbL films were exposed to the polymerization conditions (toluene 

solvent overnight and alcohol solvent) showed no damage to the CPE LbL films. Figure 1c 

shows a mixed CPE/PNIPAAm film fabricated by first doing a 1.5 BL deposition, followed 

by surface grafting of PNIPAAm. Both the wide scale main image and the high-resolution 

inset show a pattern of relatively large raised features on a smoother background. The size of 

these raised features varies widely, from about 5 nm to more than 50 nm in lateral dimension, 

and from less than 1 nm to about 5 nm in height. Overall this structure is consistent with the 

model shown in Figure 2, where plumes of PNIPAAm have grown from a set of discrete sites 

where ATRP initiators where located originally. In Figure 2 c the fractional surface coverage 

by PNIPAAm appears to be about 50%. In other samples with longer growth times, much 

higher surface coverage were seen, including some large areas (∼1 µm) of nearly continuous 

PNIPAAm overgrowth of the CPE film. Overall, AFM shows that the 1.5 BL CPE film 

remains intact following exposure to acetone and methanol. 

 

Figure 1. AFM tapping mode height images of active films on borosilicate glass substrates: 
(a) LbL CPE film with the structure: substrate//PPE-DABCO//PPE-SO3//PPE-DABCO.  
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The main image is 5 µm × 5 µm (scale bar 1 µm). The inset image is 500 nm × 500 nm (scale 
bar 100 nm). Height scale color bar is 25 nm from black to white. (b) Surface-polymerized 
film of PNIPAAm alone. Scale and color bars as in (a). (c) Mixed CPE/PNIPAAm film created 
by forming the LbL layers in (a), followed by surface polymerization of PNIPAAm as in (b). 
Scale and color bars as in (a). Adapted from Pappas et al. 
 

 

Figure 2. Structure of the random mixed CPE and PNIPAAm surfaces. (a) Layer-by-layer film 
formed from PPE-DABCO (light brown) and PPE-SO3 (orange) on a glass surface (gray). (b) 
3 layer CPE surface with silane linkers (pink) attached to the glass substrate via gaps in the 
CPE coverage. PNIPAAm (red) polymerized from the silane linkers at 4 °C (c) and 37 °C (d). 
The PNIPAAm extends beyond the CPE layers to create the plumes and surface coverage 
observed in the AFM images. Adapted from Pappas et al. 
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2.2.2. Killing and Release Function 
	
 

The ability of mixed CPE/PNIPAAm surfaces to inactivate bacterial cells and then 

release them was tested by a) depositing cells on the surface at high temperature (37 °C), b) 

exposing the adsorbed bacteria to visible light for a fixed length of time, c) staining the cells 

with “live” and “dead” fluorescent stains and imaging by confocal fluorescence microscopy, 

and finally d) releasing the cells with a cold-buffer rinse (4 °C). Live-dead stained confocal 

microscopy indicated a peak killing level of around 80% for the light-activated 

PNIPAAm/PPE surfaces against both bacterial species. After rinsing with 5 mL of cold buffer, 

around 90% of the cells were removed from the PNIPAAm/CPE mixed surface, as shown in 

Figure 3. No cells were removed with similar rinsing from untreated glass or pure CPE-coated 

surfaces. 
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Figure 3. Fluorescence images of bacteria on combined CPE/ PNIPAAm surfaces. Bacteria 
were adsorbed from suspension at a concentration of 1 × 107 cells/mL. (a) E. coli after 
adsorption for 1 h at 37 °C and 1 h exposure to 420 nm light. Green cells are living; yellow or 
red cells are dead. (b) E. coli substrate, shown in (a), following rinsing with 5 mL of 4 °C 
water. (c) S. aureus after adsorption for 1 h at 37 °C and 1 h exposure to 420 nm light. (d) 
S.aureus substrate shown in (c) following rinsing with 5 mL of 4 °C water. Scale bars denote 
20 µm in all images. Adapted from Pappas et al. 
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CHAPTER 3. SENSORS FOR CHEMICAL WARFARE AGENTS 
	
	
3.1. Introduction 
	

Against chemical warfare agents threat, in addition to the applications of OPEs against 

biological warfare, an approach has been arising: detecting CW agents by observing 

fluorescence color changes with low detection limit by disruption of a dye/surfactant pre-

micellar complex. In order to develop sensors, the fluorescent changes of OPEs needs to be 

tested. First, some background on CW agents, their chemistry, and the mechanisms used to 

detect them should be presented. 

 

3.2. Background 
	
3.2.1. ACh, AChE, and the aging prosess caused by organophosphorus compounds 

Many of the most dangerous CW agents are covalent inhibitors of acetylcholinesterase 

(AChE) which function by very similar chemistry, and hence have similar chemical properties 

overall. Acetylcholine (ACh) and AChE play key roles in the nervous system, especially at 

the synapse between nerves and muscles. Acetylcholine is a neurotransmitter that, among 

other roles in the central and peripheral nervous system, delivers the signal for muscle 

contraction from the neuronal to the muscular side of the neuromuscular synapse. After 

acetylcholine molecules are released from the neuron into the synaptic cleft, they bind to 

receptors on the opposite side of the synapse. This opens the Na+/K+ channels of nicotinic 

acetylcholine receptors, which depolarizes the membrane and initiates a cascade leading to 

muscle contraction (Figure 4a).15 AChE is a hydrolase that breaks ACh into acetate and 
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choline. AChE plays a crucial role in vertebrate motion by degrading free ACh in the 

neuromuscular junction, allowing the muscles to eventually relax. 

Organophosphorous compounds such as Sarin (GB), Soman (GD) and nerve agents 

(VX) are extremely dangerous because they irreversibly inhibit AChE. Even though AChE 

has high affinity for acetylcholine and reaction time is fast (necessary for adaptive function of 

the muscle response), the organophosphorus agents create strong covalent bonds with the 

active serine in the catalytic site of acetylcholinesterase, disabling the enzyme. Inhibition of 

AChE thus causes the ion channels on the muscle tissues to be excited. Eventually, the muscles 

go into permanent tension (Figure 4 (c)). Turnover and axonal transport of new AChE is not 

fast enough to recover normal synaptic function before death by asphyxia. 

 

Figure 4. ACh, AChE and the aging caused by organophosphorous compounds. Adapted from 
Pediatric Environmental Health Specialty Unit(PEHSU) from University of Washington. 
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Fast detection of organophosphorus compounds in the air at low concentrations is 

extremely valuable, because swift administration of a reversible AChE inhibitor such as 

atropine, or a drug such as pralidoxime that reverses the covalent attachment, can prevent 

death and raise the LD50 of sarin by 7-14 fold.16 Since deadly weapons such as sarin share 

their mechanism of function with relatively harmless pesticides such as malathion, differing 

mainly in their pharmacokinetics, it would be especially useful to be able to distinguish 

between organophosphorus compounds bearing different substituents. 

 

3.2.2. OPE-surfactant complexes as sensors 

A recently developed class of fluorescent molecules with phenylene - ethynylene (PE) 

backbones can act as excellent sensors for a class of CW simulant molecules (malathion and 

its derivatives) when in complex with an anionic surfactant at very low concentrations.  Oligo 

phenylene ethynylenes (OPEs) have recently been shown to be both efficient fluorophores 

and (depending on details of structure) sources of photo-generated reactive oxygen species, 

especially singlet oxygen. As such, the OPEs are attractive candidates as both potential CW 

sensors and potential CW-destroying agents. Several OPE variants are able to detect the CW 

simulant malathion when in aqueous complex with small concentrations of surfactants such 

as sodium dodecyl sulfate (SDS). At the correct molar ratios, the combination of the OPE 

molecule with SDS and malathion appears to form a cooperative triple complex that varies 

sharply in its fluorescence properties over a narrow range of malathion concentrations. With 

some OPE/surfactant combinations the complex acts as a “turn off” detector—fluorescence 

intensity decreases with malathion concentration—while other combinations can act as “turn 

on” detectors—fluorescence intensity increases with malathion concentration. 
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 Aggregation between molecules is caused by molecular interaction such as London 

dispersion, hydrophobic forces, and pi-pi and pi-cation interactions. Absorption or emission 

spectra of aggregates can be either blue shifted or red shifted with respect to the monomers. 

Dimers with the blue-shifted spectra are called H-aggregates, and dimers with red-shifted 

spectra are called J-aggregates. H and J-aggregates can be caused by parallel (plane to plane 

stacking) or alternating (head-to-tail) stacking.  

Sensors for chemical warfare agents and mimics have been developed based on such 

property changes in dye molecules. Hill at al reported the fluorescence changes of charged 

oligo phenylene ethynylene compounds with surfactants and lipids.9, 10 Adding TTAB in 20uM 

PE-SO3-H in water solvent causes absorbance signal changes. Even though OPE absorbance 

spectra decreased (between 0uM and 60uM of TTAB concentrations) and then increased (up 

to 0.2mM), a strong red-shift occurs throughout, indicating steady J-aggregate formation 

(Figure 5). In addition, the fluorescent changes of S-OPE-2-COOEt molecules with various 

amounts of 1,2-dilauroyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DLPG) also shows red-

shifts caused by J-aggregate formation (Figure 6). 

 

Figure 5. UV-visible absorbance spectra with 20uM PE-SO3-H (A) with various amount of 
TTAB (from 0 to 60uM) (B) with various amount of TTAB (from 60uM to 0.2mM) and 
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Emission spectra with 20uM PE-SO3-H with TTAB (from 0 to 0.2mM). Adapted from Hill et 
al. 
 

 

Figure 6. (left) Absorbance spectra and (right) fluorescence spectra (excitation wavelength : 
375nm) of 1.4 µM +2C with DLPG. Adapted from Hill et al. 
 

These results and others from Hill et al show that OPEs complex with oppositely-

charged surfactants to form J- or H-aggregates based on differences in molecular geometry, 

and these complexes are highly sensitive to the solution environment. 

 

3.3. Materials and Methods 
	

Six phenylene-ethynylene (PE) backboned compounds were tested: S-OPE-2(COOEt), 

PIM-4, EO-C2 (positive) PE-SO3-H, PE-SO3-COOH, and PE-SO3-COOEt (negative). 

Structures of these six compounds are shown in Figures 7 and 8.  
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Figure 7. Positively charged PE-backboned oligomers and polymer. 

 

Figure 8. Negatively charged PE-backboned oligomers structures. 
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In order to observe the changes in fluorescence between compounds and surfactants, 

sodium dodecyl sulfate (SDS) with positive OPEs and tetradecyltrimethylammonium 

bromide(TTAB) with negative OPEs were used (surfactant structures shown in Figure 9). A 

concentration of 2uM in 2.5ml of DI water was used for each OPE, with varying surfactant 

concentrations up to 5mM. In order to observe the fluorescence changes caused by CW agents, 

malathion was used as a CWA mimic (structure in Figure 9). The concentrations of malathion 

are various, up to 0.25mM (LC50).  Emission spectra were measured with different excitation 

wavelengths based on previous work (Figure 10).9,18,19 Then, excitation spectra were measured 

based on the emission maximum wavelength. Spectrophotometry was performed in fused-

quartz cuvettes in a PTI QuantaMax 40 steady-state spectrophotometer, using a xenon arc 

lamp for illumination, grating monochromators and a single PMT detector. 

 
 

 
 

Figure 9. Molecular structures of surfactants and malathion. 
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Compounds 

Excitation for  
emission spectra 

S-OPE-2-COOEt 375nm 

PIM-4 430nm 

EO-C2 325nm 

PE-SO3-H 360nm 

PE-SO3-COOH 360nm 

Figure 10. A Table of OPE excitation wavelengths for emission spectra. 

 

3.4. Results 
	
3.4.1. Positively charged OPE vs sodium dodecyl sulfate (Figure 11) 

A set of spectra with S-OPE-2-COOEt (2uM) and different amounts of sodium dodecyl 

sulfate (SDS) shows the possibility of developing turn-on sensors. As adding more SDS, the 

fluorescent signals of S-OPE-2-COOEt increase because of OPE dimers formation. Turning-

on point concentration ratio, S-OPE-2-COOEt to SDS, is between 0.84uM and 1.4uM, at 

which the ratio of OPE to SDS is 2:1. Even though the OPEs have quaternary amines as side 

chains, which increase the solubility of OPEs in water, S-OPE-2-COOEt molecules are acting 

like hydrophobic because of electron-withdrawing carboxylic ester functional groups at the 

end of chains. 

 PIM-4 vs SDS and EO-C2 vs SDS, however, show the quenching effects of surfactant. 

Even though fluorescence signals of PIM-4 without SDS is higher than S-OPE-2-COOEt, 

imidazolium groups on PIM-4 are more interactive with the surfactant molecules than 

quarternary amine groups on S-OPE-2-COOEt. While EO-C2 has a higher fluorescence signal 
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than the other two positive OPEs, the degree of quenching increased with longer light 

exposure, implying an end-only OPE is not the best candidate for a chemical warfare agent 

sensor. 
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Figure 11. Positive OPEs(2uM) vs SDS emission(left) and excitation (right) spectra. 

 

3.4.2.  2uM Positive OPE + 1.96uM SDS vs malathion (Figure 12) 

 All three compounds are quenched in the presence of malathion, and the quenching 

increases as malathion concentration increases. Spectra of S-OPE-2-COOEt (2uM) with 

increasing amounts of malathion show increasing fluorescence quenching effects. It can be 

explained that the formation of OPE dimers are interrupted by malathion.  Spectra of PIM-4 

on Figure 11 and 12 look similar, which implies that the interaction between PIM-4 and SDS 

and between PIM-4 and malathion are interrupting the electron flow along the polymer equally. 

The fluorescence of EO-C2 with SDS are less quenched by malathion than PIM-4 because 

EO-C2 has shorter OPE chains as well as quaternary amines on the end of chains. Quaternary 

amines on EO-C2 and S-OPE-2-COOEt are less subjective to water soluble molecules than 

imidazoliums. 
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Figure 12. Positive OPEs(2uM) + SDS(1.98uM) vs malathion emission(left) and excitation 

(right) spectra  
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3.4.3. 2uM Negative OPE vs TTAB (Figure 13) 

 PE-SO3-H vs TTAB and PE-SO3-COOH vs TTAB show the quenching effects of 

surfactant. Even though the initial fluorescence signal of PE-SO3-H was higher than PE-SO3-

COOH, the degree of TTAB quenching effects was similar, about five percent according to 

the relative fluorescence intensity (f=F0/F) calculation. This is probably because the 

interactions between OPE and TTAB and between OPE-COOH and TTAB are similar. 

A set of spectra with PE-SO3-COOEt and different amounts of TTAB shows similar 

results to the cationic analogue. With increasing concentration of TTAB, the fluorescent 

signals of PE-SO3-COOEt increased because of OPE dimers formation. The turning-on point 

concentration ratio, PE-SO3-COOEt to TTAB, is between 0.56uM and 0.84uM, at which the 

ratio of OPE to TTAB is 4:1. Even though all three negative OPEs have shorter chains and 

functional groups on the chain ends, only PE-SO3-COOEt with TTAB shows the fluorescence 

enhancement. The fluorescence yield of PE-SO3-COOEt is highly quenched in water, and its 

ethyl ester end groups significantly change the hydrogen-bonding geometry and electronic 

structure of the dye. 

 

3.4.4. 2uM Negative OPE + 1.96uM TTAB vs malathion (Figure 14) 

 Addition of malathion to OPE-TTAB complexes resulted in no significant change to 

the emission or excitation properties of the dye. Spectra of PE-SO3-H and PE-SO3-COOH on 

Figure 14 are similar to the ones on Figure 13, which implies that the sensitivity of the two 

oligomers is similar. Though fluorescence changes of PE-SO3-COOEt are similar with the 

other two oligomers, which is about 6% quenching, turning-off is observed after turning-on 
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due to the formation of OPE dimers. The change is not large enough to form the basis for a 

functional sensor, however; only the cationic OPEs showed promise in this area. 

 



	 24	

 

Figure 13. Negative OPEs(2uM) vs TTAB emission(left) and excitation (right) spectra. 
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Figure 14. Negative OPEs(2uM) + TTAB(1.96uM) vs malathion emission(left) and excitation 
(right) spectra. 
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CHAPTER 4. OXIMATES AND FLUORESCENCE CHANGES 

4.1. Background 
 

Wallace et al20 and Diaz de Grenu et al21 reported that oximate ions can both detect 

chemical warfare agents and reactivate acetylcholinesterase (AChE). They modified a 

coumarin fluorophore with an oxime group, resulting in a molecule with very low 

fluorescence. But when a CW simulant, diiopropylfluorophosphate (DFP), was added, 

fluorescence enhancement and blue-shifted absorbance spectra were observed. The reaction 

between coumarin oximate and DFP is shown to be fast with a rate constant of 1410s-1 and 

half-life of 50ms (Figure 15). Ellin et al22 found that CW antidotes with oximates, such as 

pralidoxime (2-PAM) and 1,1’-trimethylene bis(4-formylpyridinium bromide) dioxime 

(TMB-4), can reactivate acetylcholinesterase (AChE) by reversing the covalent modifications 

caused by organophosphorus agents, detaching the residues of the agents from the 

acetylcholinesterase (Figure 16). 

  

Figure 15. (Left) Absorption spectra changes of coumarin-oximate compounds as adding more 
DFP. (Right) Fluorescence enhancement of coumarin-oximate compounds as adding more 
DFP. Adapted from Wallace et al. 
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Figure 16. Reaction mechanisms of 4-PAM with chemical warfare agent. Adapted from Ellin 
et al. 

  

Diaz de Grenu et al developed the chemical warfare screening model with different 

fluorophores and reactive functional groups (Figure 17).21 Their results show that each 

chemical warfare agent and mimic molecule has unique color changes, so it is possible to 

identify which of many possible CWAs are present, as well as distinguish against false positive 

results (Figure 18). often caused by organophosphorus pesticides such as malathion. This type 

of chemical array allows for more robust screening and better rejection of false positives.  
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(Figure 17) A scheme of different fluorophore with various reactive functional groups. 
Adapted from Diaz de Grenu et al. 
 

 

 

Figure 18. Observation of fluorescent color changes of different compound from figure 17. 
Adapted from Diaz de Grenu et al. 
 

4.2. Oxime-OPEs as selective sensors 

In addition to OPEs with COOEt functional groups, a new OPE molecule with 

oximates are currently being developed. Oximates are nucleophiles attacking phosphorus 

centers of the organophosphrous compounds. After making covalent bonds between oxygen 

and phosphorus, the fluorescent dyes can be turned-on due to the loss of photoinduced electron 

transfer from the oximate anion, as demonstrated by Wallace et al.20 
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4.2.1. Synthetic procedure 
	
 The synthesis of new oxime molecules is summarized on Figure 19. 1.16g (1 eq) of 

1,4-Bis[(trimethylsilyl)ethynyl]benzene(1g, Sigma-Aldeich) was added into 150ml round 

flask and dissolved in 30ml DCM(CH2Cl2) and 30ml methanol. Then 4.73g (8 eq.) of 

potassium carbonate was added into the solution. The reagents were stirred at the room 

temperature overnight. After evaporating solvents from the flask, compounds were washed 

with ammonium chloride(NH4Cl) and sodium chloride(NaCl). Then, the compound solution 

was dried by 4g of magnesium sulfate(MgSO4) overnight. The solution was filtered with DCM 

and the solvent were evaporated. 

 Synthesis of the bis-benzaldehyde OPE is ongoing. Preparation of the oxime from the 

aldehyde with hydroxylamine should be facile. Once the oximo-OPE is completed, testing of 

its pH sensitive photophysical properties will be completed, reactivity towards 

organophosphates determined spectroscopically and the kinetic parameters found. 

 

Figure 19. Synthesis steps of an end-only oximes molecule. 
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CHAPTER 5. DETECTING CWAs in CELLS 

 

5.1. Background 

 Laser scanning microscopy is a useful biological research technique to observe cells 

and tissues treated by various analytes and cell stains. One-photon and two-photon laser 

scanning microscopy both use laser radiation to excite molecules bound to specific biological 

structures from the ground to the first excitation state, after which they decay by emitting a 

lower-energy photon (fluorescence) that is captured and transduced to an electrical signal by 

an appropriate detector. Two-photon microscopy has been used as an alternative for single-

photon microscopy in order to improve resolution in the z direction and hence get better 3D 

images and to avoid light scattering in biological samples to extend the depth at which 

functional imaging can be done. 

Even though both one-photon confocal microscopy provides high-resolution 

biological images, it requires the use of a pinhole to get resolution in the z-dimension, and 

requires excitation light that is in the range of absorption by the fluorophore. Fluorophores 

generally absorb and emit light in the near-UV or visible regions, to which biological samples 

are opaque in bulk. This fact limits the depth at which effective imaging can be performed. In 

order to overcome this limitation, two-photon excitation technique was developed. The 

difference between single-and double photon excitation is in the process used to excite the 

fluorophore. Whether using one or two-photon laser, the total energy used to the excite a 

fluorophore is the same, but two-photon excitation uses simultaneous absorption by the dye 

of two photons each with half the energy required to reach the exited state. This (1) allows the 

use of near-infrared and infrared radiation at double the usual wavelength, which is absorbed 
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and scattered much less by tissue, and (2) improves the vertical resolution significantly 

because the photon intensity is only high enough to cause excitation in a very small volume, 

smaller than the confocal volume created by the use of a pinhole.23 Unlike one-photon 

techniques which can be performed with any laser, two-photon excitation requires the use of 

a very fast pulsed laser to “compress” the incident light into very small windows of time. 

Otherwise the continuous power output required to get sufficient light intensity to produce a 

two-photon excitation would destroy the sample. 

The main limitation of two-photon microscopy, besides the expensive laser, is the lack 

of useful fluorophores with sufficient two-photon cross section. Based on their length, 

propensity to self-aggregate and potential for engineered charge-transfer systems, OPEs and 

PPEs are exciting candidates for usefully large two-photon cross section. In pursuit of 

intracellular detection of chemical warfare agents, a pilot study to determine if the relevant 

OPEs are cell-penetrant and capable of being excited with a two-photon laser was undertaken. 

 

Figure 20. Diagram of one-photon and two-photon excitation. Adapted from Kurtz et al. 



	 32	

 

Figure 21. Illustration of focuses with one-photon and two-photon excitations. Adapted from 
Kurtz et al. 
 

It has been shown that OPE molecules can be used to penetrate bacteria and 

mammalian cells and can be detected with single-photon confocal microscopy. Focusing on 

mammalian cell penetration, the experiment was designed to test whether OPEs can be used 

as a stain for tracking chemical warfare agent in cell organelles. It has been shown that OPEs 

and PPEs have high fluorescence quantum yields. Confocal microscopy with two-photon laser 

excitation can help to improve the resolution, especially in the z-direction, of cells and tissue 

images. In order to excite PPEs and OPEs and to test them for penetrating cells, two-photon 

laser scanning microscopy and 3t3 cells were used. Cells were penetrated by S-OPE-2-(H) 

molecules in less than an hour at a low concentration, between 0.1ug/ml and 10ug/ml.  After 

cell treatment under the OPE solution, cell images were taken with the two-photon laser 

microscopy. 
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5.2. Materials and Methods 
	
	
 3T3 cells (NIH 3T3 Cell Line murine) were originally obtained from Sigma-Alderich 

(St. Louis, MO). Cells were grown in Mem-alpha-based medium to approximately 70-80% 

confluence (forming cell monolayer) in tissue culture polystyrene(TCPS) flasks. Medium in 

the cell flasks were changed every two days until the flasks reach at 80% confluence. After 

confluence, cells were trypsinized with 0.25% trypsin/EDTA (100ml, from ThermoFisher 

Scientific, Waltham, MA) and moved into new TCPS flasks with a density of 150,000 cells 

per a flask. Cells were incubated at 37oC, 5% CO2 and ~90% relative humidity(RH). Medium 

was mixed with 90% MEM-alpha (500ml, from HyClone, Logan, UT), 5% Penicillin-

Streptomycin (100ml, from ThermoFisher Scientific, Waltham, MA), and 5% fetal bovine 

serums (500ml, from Sigma-Aldrich, St. Louis, MO). 

 In order to take images of 3T3 cells, cells were seeded on coverslips (18mm, from 

VWR, Northbrook, IL) in 24-well plates at a density of 100,000 cells per well and placed in 

an incubator (37oC, 5% CO2 and ~90% RH) overnight. Before seeding cells on coverslips, 

the coverslips were washed with 200 proof ethanol in covered petri dishes for 10 minutes then 

they were blow-dried with nitrogen gas. Before adding OPE solutions, cells were washed with 

PBS buffer three times. Then, cells were incubated in 2ml of S-OPE-2(H) solution, which is 

diluted stock solution with PBS buffer, for 30 minutes. For negative control coverslips, cells 

were incubated in 2ml of PBS buffer. After washing cells with 1ml PBS three times, cells were 

grown in 2ml of diluted Syto 21 green (5mM, 250ul, from Life Technologies, Carlsbad, CA) 

with PBS buffer. Cells were fixed with 2% glutaraldehyde 200ul after being washed with 1ml 

PBS buffer three times. Coverslips were placed inverted on the glass slides (25X75mm, 
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1.0mm thick, VWR, Northbrook, IL) with 15ul Prolong Diamond antifade mountant (2ml, 

from Life Technologies, Carlsbad, CA). 

 In order to take cell images, LSM 510 two-photon microscope were used with an 

objective of 40X oil immersion. Samples with OPE molecules were excited by 725nm (IR 

laser) with 364mW (13% of maximal power). To excite Syto 21 stain, the excitation 

wavelength was chosen at 488nm(Ar) with 13.5mW (45% of maximal power). DAPI (BP 

435-485nm) and FITC (LP 505) filters were used for OPEs and Syto 21 respectively. 

 
5.3. Results 
	
 In order to find the position of nucleic acid in the 3T3 cells, Syto 21 stain was used as 

a marker. As shown figure 22, nucleic acids are located in the middle of cell core and the stain 

is not shown under DAPI filter. After 30minutes exposure with the concentration of 10ug/ml, 

S-OPE-2(H) compounds are visible throughout the cell (Figure 23). In order to define the 

preferred binding sites for S-OPE-2(H) in the cells, the concentration of the OPE was varied 

during cell preparation. With 1ug/ml and 0.1ug/ml OPE concentration, the OPE compounds 

are clustered in the middle of cell core, showing that the OPEs bind preferentially to nucleic 

acid (Figure 24). This result shows that even low concentration of OPEs can penetrate cells 

within 30 minutes as well as that the compound can be excited by two-photon processes. 
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Figure 22. Non-OPE treated 3T3 cells with syto 21 stain. (Top left to right) Syto 21 channel, 
DIC images, and merged. (Bottom left and right) Under DAPI and FITC filter. All scale bars 
on images are 20um. 
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Figure 23. Images of 3T3 cells with 10ug/ml OPE treatment for 30 minutes. (Clockwise 
from the top left) images under DAPI, DIC, merged and FITC filters. All scales on the 
images are 20um. 
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Figure 24. Images of 3T3 cells treated with (a)10ug/ml, (b)1ug/ml, and (c) 0.1ug/ml S-OPE-
2(H). Each image set has the arrangement of DAPI filter, DIC, and merged (from left to 
right). All image scales are 20um. 
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Imaging of OPE-treated NIH 3T3 cells under two-photon excitation shows clearly that 

OPEs will penetrate cells and do not bind strongly to any particular structure. The two-photon 

excitation was capable of exciting OPE fluorescence which is a valuable proof of concept for 

further studies. Despite their cell penetration, OPEs have been shown not to exert any 

significant toxic effects on mammalian cells, indicating that their presence in the cell is 

relatively benign. These results, and the techniques used to obtain them, should prove useful 

in further development of OPE-based intracellular assays for a variety of analytes. 
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CHAPTER 6. Conclusions 
	
	
 For years, we have developed the applications of oligo phenylene-ethynylenes against 

biological warfare agent, bacteria. We successfully demonstrated that the biocidal activities of 

OPEs are moderately effective under different temperatures (4OC or 25OC) and different 

compositions (PPE + PNIPAAm, PPE only, negative control). New applications of 

OPE/surfactant systems as sensors for CW agents has been demonstrated, based on disruption 

of surfactant-mediated OPE dimers by CWA mimics. A proposed new sensor based on 

covalent reaction between oximate ions and organophosphorus CW agents is also under 

development.  

Among six high fluorescent dye molecules, the most effective dyes sensing malathion 

are S-OPE-2-COOEt and PE-SO3-COOEt because of turn-on and off mechanisms depending 

on the solution conditions. When adding more surfactants to the OPE solutions, the 

fluorescence of both molecules increased over six-fold vs. negative control (no surfactants) 

because of J-dimer formation and dequenching. The turning-on concentration ratios, OPE to 

surfactant, are 2:1 for positive OPEs and 4:1 for negative OPEs. As more malathion is added 

to the OPE aggregation solutions, the fluorescence is decreased, possibly because the 

malathion interrupt OPEs from aggregating with each other. 

 Even though S-OPE-2(H) is shown to penetrate mammalian cells and to undergo 

efficient two-photon excitation, other positively charged OPEs should be tested in order to 

develop cell organelle track stains. In order to track the pathways of chemical agents in vivo, 

imaging with live cells is needed to be performed. For understanding mechanisms of J-

aggregate formation and disaggregation in the presence of surfactants and malathion further, 

more experimental data such as computational calculation is needed to be supported. Currently, 
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a new OPE molecule with oximate functional groups is being synthesized and the 

measurements of absorbance and fluorescence changes and lifetime in the presence of 

organophosphorus compounds will be performed. Hopefully this project will lead to a useful 

advance in the detection of CWAs with one- and two-photon excitation. The results of this 

work shows the flexibility and power of self-assembling fluorescent amphiphiles in perturbing 

and reporting on biological systems. 
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