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ABSTRACT 

 

Models are important tools for designing or redesigning water treatment 

processes and technologies to minimize disinfection byproducts (DBPs) 

formation without compromising disinfection efficiency. Empirical models, which 

are the most common, are based on bulk water quality parameters that vary with 

time and space. These parameters may not always have linear relationships with 

chlorine demand and DBPs formation which make structure-based models more 

attractive to study. In this dissertation, Quantitative Structure-Property 

Relationship (QSPR) models which make use of structural properties of 

individual molecules were developed using experimental data obtained from the 

literature. The amounts are reported in moles of chlorine (HOCl) consumed or 

DBP formed per mole of a compound (Cp). The QSPRs were derived by multiple 
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linear regression of chlorine demand or DBPs on a set of significant constitutional 

descriptors. The QSPRs were also tested for predictive power using cross 

validation and external validation for which the criteria were: Rc
2 > 0.6, q2 > 0.5, 

0.85 ≤ k ≤ 1.15 and Rt = (Ri
2-Ro

2)/Ri
2 < 0.1. 

The eight descriptor QSPR for HOCl demand had good statistics of fit (Rc
2 

= 0.86 and SDE = 1.24 mol-HOCl/mol-Cp, N = 159) and also showed high 

predictive power on cross validation data (q2
LMO = 0.86, RMSELMO = 1.21 mol-

Cl2/mol-Cp) and external validation data (q2
ext = 0.88, RMSELMO = 1.17 mol-

HOCl/mol-Cp). The QSPR also met all the criteria for QSPR predictive power 

and was robust. This model was integrated with AlphaStep model of natural 

organic matter (NOM) so as to estimate chlorine demand of surface waters. The 

predicted chlorine demand was 27.55 μmol-HOCl/mg-C which is comparable to 

27-33 μmol-HOCl/mg-C reported for surface waters.  

The 4 descriptor QSPR for total organic halide (TOX) formation had Rc
2 = 

0.72 and SDE = 0.43 mol-Cl/mol-Cp. The Leave-One-Out validation of the QSPR 

(q2
LOO = 0.60, RMSE = 0.5 mol-Cl/mol-Cp, N = 49) and external validation (q2

Ext = 

0.67, RMSE = 0.48 mol-Cl/mol-Cp, N = 12). These statistics showed that the 

QSPR had high predictive power and also was robust. Results from integration of 

the QSPR with AlphaStep predicted TOX in surface water to be 183.6 μmol-

Cl/mg-C which comparable 170-298 μg-Cl/mol-Cp for the experimental TOX 

formation measured for whole dissolved organic matter. 
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Trichloromethane (TCM) and trichloroacetic (TCAA) were the two specific 

DBPs studied. The QSPR for TCM formation had three descriptors and statistics 

of fit were Rc
2 = 0.97 and SDE = 0.08 mol-TCM/mol-Cp and was validated by 

LMO data and external data. The results showed that LMO cross validation 

(q2
LMO = 0.94, RMSE = 0.09 mol-TCM/mol-Cp, N = 90) and external validation 

(q2
Ext = 0.94, RMSE = 0.08 mol-TCM/mol-Cp, N = 27) met criteria of predictive 

power and was therefore robust. The model prediction of 0.33 mol-TCM/mol-Cp 

was higher than 0.13 mol-TCM/mol-Cp observed for tannic acid. The QSPRs for 

predicting TCAA formation were developed but none of them met all the criteria 

for predictive power and were therefore not robust. The relationship between 

predicted TCAA and experimental data was too weak to be useful. This implies 

that TCAA formation has insignificant linear relationship with constitutional 

descriptors and it may better be predicted by QSPRs derived from non-linear 

algorithms. A major drawback of the constitutional descriptors is that they cannot 

explain electronic or steric effects. It is not easy to explain the differences in 

electron density and steric effects when same number of substituents occupy 

different position relative each other in aromatic ring (e.g., catechol vs. quinol). 

Use of geometrical descriptors (e.g., molecular volume, solvent accessible area), 

quantum-chemical descriptors (e.g., dipole moment, polarizability) or electrostatic 

descriptors (e.g., partial charge, polarity index) is recommended. 
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CHAPTER 1 

  

INTRODUCTION AND LITERATURE REVIEW 

 

1.1. Water Quality Supply and Health 

Freshwater is a very important resource for sustaining our socio-economic 

development (1). However, natural water sources are rarely in pristine conditions 

due to microbiological and chemical contamination. Microbiological 

contamination of drinking water causes increasing cases of morbidity and 

mortality rates. Data on outbreaks of waterborne diseases outbreaks worldwide 

show that developing countries are more impacted than developed countries and 

that is due to poor access to sanitary and water supply services (2,3,4). For 

example, there were 39 outbreaks of waterborne diseases in US from 1999 - 

2000 (5), 116 outbreaks in Sweden from 1980-1999 (6). Africa reported about 

118,349 cases cholera and 5,853 deaths, Americas reported 17,760 cases and 

225 deaths, Asia reported 11,293 cases and 196 deaths, Europe reported 18 

cases and 1 death whereas Oceania reported 5 cases and zero deaths (7). 

 Africa emerges as the most impacted region of the world accounting for 

80.3% and 93.3% of all cases and deaths reported to WHO in 1997 respectively. 

A glimpse of waterborne disease cases in Africa for 1990s indicated that there 

were 1,931 cases of cholera reported in refugee camps in Malawi in 1990 (8) and 

5,600 cases in Nigeria in 1996 (9) and Tanzania reported about 40,249 cases in 

year 1997 (7). The global statistics of cholera outbreaks between 1995-2005 
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show that cholera outbreaks are still a global phenomenon and Africa is the most 

impacted continent (10). Thus, drinking water treatment using chemical 

disinfectants or UV radiation is required for water supply companies in order to 

protect the public health.  

1.2. Drinking Water Disinfection 

There are different methods with which pathogenic microbes can be 

eliminated from drinking water. The well known methods are use of chlorine (Cl2), 

ozone (O3), chlorine dioxide (ClO2), potassium permanganate (KMNO4), 

chloroamine (NH2Cl) and UV radiation (2,11). These disinfectants will be 

discussed briefly in terms of their chemistry, advantages and disadvantages of 

using them as primary disinfectants. These oxidants inactivate bacteria but there 

are no clear mechanisms known and reported in literature. However, there are 

three proposed mechanisms by which pathogens get inactivated during water 

treatment (11). 

i. The oxidants may destroy or impair cell wall of pathogens by attacking its 

cell constituents, 

ii. Oxidants may enter the cells where they interfere with energy-providing 

metabolic process by making enzyme involved in metabolic process non-

functional, 

iii. Oxidants may enter the cells of pathogens where they interfere with 

synthesis of important proteins, amino acids, co-enzymes or cell wall 

which impair their growth. 
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However, the mechanism of action of disinfectant may vary depending on the 

type of oxidant employed and type of microorganisms. Microbes differ in their cell 

organization and mechanism of biosynthesis of important proteins or enzymes for 

their growth and energy-production and therefore one or more of these 

mechanisms will be involved.  

1.2.1. Chlorination 

Chlorine was first used as a water disinfectant in London in the 1850s 

following a cholera outbreak and it was first used to combat waterborne diseases 

in the US in 1908 (12). It is still the major disinfectant in most water treatment 

plants in the US and Europe (13) and is a reliable and cost effective disinfectant 

in developing countries (2). Chlorine is available commercially as chlorine gas or 

hypochlorite salts mostly as Ca(OCl)2 and NaOCl. These chlorine sources have 

to be dissolved in water in order to produce the reactive oxidizing species.  

Chlorine  

Gaseous chlorine is dissolves in water to form hypochlorous acid (HOCl) 

and aqueous HCl (Eq. 1.1). The hypochlorous acid (pKa = 7.5) dissociates in 

water to give hypochlorite and hydronium ions (Eq. 1.2).  

5
22 103)()()()( −×=+→+ eqKaqHClaqHOCllOHgCl …..………….… (Eq. 1.1) 

8
32 103)()()()( −+ ×=+→+ −

aKaqOClaqOHlOHaqHOCl ……………. (Eq. 1.2) 

The rates of formation of OCl- and HOCl are pH dependent and at pH below 7.5 

HOCl predominates over OCl- species (14,15). Figure 1.1 provides information 

on the distribution of these two oxidizing species as function of increasing pH in 
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water. Predominance of HOCl over OCl- at water treatment pH conditions is 

advantageous to achieving the goals of disinfecting drinking water from 

microbiological contaminants.  
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Figure 1.1. Distribution of HOCl and HOBr- species at various pH levels 

First, HOCl has  a reduction potential of 1.49 V that makes it a stronger oxidant 

than hypochlorite ion whose potential is 0.9 V (16). Second, neutral nature of 

HOCl is an added advantage in that OCl- will face stronger electrostatic repulsion 

than HOCl on the surface of microbial pathogens. This is because most microbial 

pathogens, particularly bacteria and viruses, have negatively charged surfaces 

(17,18,19) and the same property has been utilized to separate bacteria by 

capillary electrophoresis (20,21,22). Thus, it is expected that HOCl will penetrate 

the cell wall more easily than OCl-.  
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Hypochlorite 

Sodium hypochlorite and calcium hypochlorite are the second most 

commonly used disinfectants in drinking water treatment systems (14). They 

dissolve in water to produce HOCl and OH- (Eqs 1.3 & 1.4). The hydroxide ions 

produced in hydrolysis of these salts raise the pH of water above normal water 

treatment pH. That may affect the biocidal potency of HOCl. Thus, hypochlorites 

may work better with slightly acidic water than neutral water.  

)()()()( 2 aqNaOHaqHOCllOHaqNaOCl +→+ …………………………… (Eq. 1.3) 

)()()(2)(2)()( 222 aqOHCaaqHOCllOHsOClCa +→+ …………………….. (Eq. 1.4) 

Drinking water sources may contain bromide at concentrations from trace 

to 0.5 mg/L and desalinized water may have up to 1.0 mg/L (23) most of which 

comes from erosion of rock salts and degradation of methyl bromide used 

agriculturally (24). Bromide may also come from hypochlorite salts used to 

disinfect drinking water (25,26). Thus, hypochlorous acid reacts with bromide 

ions to give HOBr (pKa = 8.7) based on Equations 1.5 and 1.6. Figure 1.1 shows 

HOBr would be a better disinfectant than HOCl at around neutral drinking water 

treatment conditions because the former dissociates less than the latter (27,28). 

Thus, the presence of HOBr (Eo = 1.33 V) and HOCl (Eo = 1.46 V) together in 

water would increase microbial inactivation on one hand and increase amounts 

of disinfection byproducts formation on the other (24).  

)()()()( aqOHaqBrClaqBraqHOCl −− +→+ ……………………………….. (Eq. 1.5) 
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)()()()( aqClaqHOBraqBrClaqHO −− +→+ ……………………………..… (Eq. 1.6) 

Chlorine is the most widely used disinfectant in water treatment and that 

may be due to the following attributes of chlorine (2,11): It has wide spectrum of 

biocidal effects; it leaves residual in water to take care of microbes in distribution 

system; it is cheap and it has proven to be effective in improving water quality 

over a century (2). The draw backs of chlorine are that it reacts with dissolved 

organic matter (DOM) to give chlorinated disinfection byproducts; chlorine gas 

requires strict handling and protective gears as it is toxic when released to air 

and NaOCl is corrosive; high doses of chlorine gives bad odor and taste to 

treated water (11). It is not very effective at eliminating Cryptosporidium parvum 

and Giardia lamblia (2). 

1.2.2. Ozonation 

Ozone is the disinfectant that came into use in Europe in the late 19th 

century and was first introduced in US in 1987 (11) and since then its use has 

grown gradually. Solubility of pure ozone in water at 20 oC is about 570 mg/L 

while the amount of ozone used for water treatment does not exceed 14% and 

hence its typical level in water treatment plants ranges between < 0.1 and 1 mg/L 

(11). Ozone chemistry is associated with two reaction pathways. The first is 

through direction oxidation of substrate by ozone and is prominent in acidic 

conditions; and the second is through ozone decomposition into hydroxy radicals 

that occurs mostly at high pH (11). The second is by reaction of ozone with 
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bromide ions in water to produce HOBr (Eq. 1.7) and OBr-, formed from 

dissociation of HOBr, reacts with ozone to form BrO3
- (Eq. 1.8). 

)()()()()()( 223 gOaqOHaqHOBrlOHaqBrgO ++→++ −− …………….. (Eq. 1.7) 

)()()()( 233 gOaqBrOaqOBrgO +→+ −−  ……………………………..….... (Eq. 1.8) 

The advantages of ozone as disinfectant are: it is more effective 

disinfectant than chlorine because it attacks Giardia and Cryptosporidium 

species; it removes color and odor from water; it requires very short contact time, 

produces no halogenated DBPs in bromine free water and its activity is 

independent of pH of water (11). The disadvantages of ozone are that: it has high 

investment cost of infrastructure, it requires high operator skills and energy as it 

has to be prepared on site; it corrosive and toxic; it is decays very quickly at high 

pH and temperature and it leaves no residual to protect the water in distribution 

system (11). 

1.2.3. Chlorine dioxide 

Chlorine dioxide was first used in water treatment in 1950s and 40 years 

later 700 to 900 public water systems use it (29). Chlorine dioxide is a neutral 

molecule which oxidizes substrate by one-electron transfer mechanism and gets 

reduced to ClO2
- as given by Equation 1.9 (30,31). This is the most predominant 

reaction in water treatment systems. 

VEaqClOeaqClO o 954.0)()( 22 =→+ −− ………………………………. (Eq. 1.9) 
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The dosage of chlorine dioxide in water ranges from 0.07 to 2.0 mg/L 

depending on water quality conditions though the standard is 1.0 mg/L (11). 

Although chlorine dioxide is not widely used in water treatment it has some 

advantages as an alternative disinfectant. It is more effective than chlorine in 

inactivating Giardia and Cryptosporidium species; removes odor and taste from 

decaying algae and vegetation; biocidal effect is not pH dependent; it is easier to 

generate than ozone and provides residual (11). Some of the disadvantages of 

chlorine dioxide are: it must be made on site and therefore requires skilled 

operators and expensive equipment; it decomposes easily when exposed to light 

and high temperature; it may produces noxious in some water treatment plants 

and produces chlorite and chlorate as byproducts which are expensive to 

measure (11). 

1.2.4. Potassium permanganate 

Potassium permanganate is supplied as crystalline solid and its solution, 

which is purple in color, by mixing it with water because its solubility in water at 

20 oC is 6.0 mg/L (11). It is a good oxidizing agent under acidic conditions and 

basic conditions (Eqs 1.10 & 1.11) (31). These reactions release heat. 

VElOHsMnOeaqHaqMnO o 68.1)(2)(3)(4)( 224 =+→++ −+−  ……….(Eq. 1.10) 

VEaqOHsMnOelOHaqMnO o 60.0)(4)(3)(2)( 224 =+→++ −−− ……. (Eq. 1.11) 

There are a few advantages of potassium permanganate worth 

mentioning. It removes odor and taste from water; it is easy to store, transport 
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and apply to water; it works well with certain group of viruses; and controls 

nuisance organisms (11). Potassium permanganate has also some drawbacks 

that include: long contact time is required; it leaves pink color to the water; it 

require proper handling as it is toxic and irritant to skin and mucous membrane; 

over dosing may cause detrimental health effects (11). 

1.2.5. Chloroamine 

Chloroamine was identified as having oxidizing power in the early 20th 

century and was used regularly up to 1940s (11). Monochloroamine is the most 

predominant species in water at water treatment pH conditions. The species is 

produced in situ during chlorination of water with high ammonia levels (31) based 

on Equation 1.13. The chloroamine can also produced ex-situ by using the same 

reaction and maintain chlorine to ammonia ratio of 3:1 to 5:1 (11). 

8
223 103)()()()( −×=+→+ aKlOHaqClNHaqNHaqHOCl  …………... (Eq. 1.13) 

The merits of chloroamines are that: they are not reactive to dissolve 

organic materials; chloroamine residual have long life time in water; no odors and 

taste problems; it not expensive and easy to make (11). The demerits of 

chloramines are that: it has less oxidizing power; it has to be generated on site; 

excess ammonia leads to nitrification problems; monochloramines lose oxidizing 

power at high pH (11). 

1.2.6. Ultraviolet radiation 

Ultraviolet radiation is a band of electromagnetic radiation waves, located 

between X-rays and visible regions of light spectrum, has a wavelength ranging 
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from 100 to 400 nm and the most potent biocidal wavelength range is 240-280 

nm (11). The UV radiation dosage, D, is a product of light intensity, I (mW/cm2) 

and exposure time, t, in seconds (i.e., D = I*t). Thus, its mechanism is unique in 

that it inactivates pathogens by triggering a series of photochemical reactions 

that leads to disruptions of essential molecules in their body (11).  

The advantages of UV-radiation are that: It produces no chlorinated DBPs; 

it eliminates spores forming virus and bacteria; it requires short contact time; it is 

easy to operate and require minimum skills of operation when UV lamps are 

used (11). .The shortcomings of using UV radiation as a disinfectant are that: its 

inactivation efficiency requires water to have low UV absorbing organics and 

inorganics, low turbidity, low coloring materials; microbial aggregation or 

clumping limit efficiency of UV radiation (11).  

1.2.7. Efficacy of water chlorination 

When pros and cons of the alternative disinfectants are compared to the 

conventional disinfectant (chlorine), chlorine is the most preferred because it 

provides low capital, operating and maintenance costs (32,33), low technical 

skills required for operating and handling, and low price of chlorine (2,11,33). The 

most recent studies showed that chlorine tablets and sodium hypochlorite were 

reliable and cost effective water disinfectants. Application of these disinfectants 

to treat water at household level saved millions of lives of displaced people in 

tsunami and earthquake stricken areas of Indonesia and other neighboring 

countries (34,35). 
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The use of chlorine disinfectant has proven effective in protecting the 

public health as evidenced by the decline in mortality and morbidity from 

waterborne diseases in US and Europe since introduction of chlorine in water 

treatment systems (5,12) and other countries in the world (2) and it remains the 

disinfectant of choice for most countries (36). However, little attention was paid to 

the fate of chemical disinfectants in water and their public health consequences 

until early 1970’s.  

1.3. Disinfection Byproducts Formation 

Natural organic matter (NOM) in fresh water is a heterogeneous mixture of 

organic materials of allochthonous, autochthonous and anthropogenic origins 

and the yellow-brown color of water is associated with high levels of NOM (37). 

NOM is operationally divided into dissolved organic matter (DOM), which is a 

mixture of carbonaceous materials that pass though a 0.45 mμ  pore filter and 

what remains on the filter is particulate organic matter (POM) (37,38). The major 

components of DOM are humic materials (fulvic acid, humic acid and humin) and 

non-humic materials (amino acids, and lipids, etc.) at various levels (16). In this 

context fulvic acid refers to a fraction of DOM soluble in water at pH<2; humic 

acid is the fraction of DOM that is insoluble in water only at pH<2 and humin is a 

DOM fraction that insoluble in water at all pH values (38). Nonetheless, 

components of DOM are not completely removed by conventional water 

treatment processes (39,40,41).  

It is usually stated in the literature that chlorine or any alternative 

disinfectant reacts with DOM which may suggest that it is a single molecule. 
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Rather it implies that a disinfectant reacts with thousands of individual molecules 

of diverse chemical structures and molecular sizes to form known and unknown 

disinfection byproducts. With advances in spectroscopic methods attempts have 

been be made to characterize the DOM or its fractions. FTIR studies of DOM 

have shown that components of DOM have functional groups such as alcohols, 

carbonyls (aldehyde and ketones), amines, acids, etc (42,43). Arnold et al (44) 

used compound specific isotopic analysis of model compounds to predict the 

functional groups in surfaces water. Size exclusion chromatography was used to 

characterize molecular weights of components of freshwater DOM and molecular 

weights varied from less than 500 to more than 30,000 (45,46). Some studies 

have reported use computational methods to model the structures of DOM (47). 

Based on elemental analyses and spectroscopic information of DOM, structures 

of fulvic acid shown in Figure 1.2 (48) and humic acid (49) have been proposed. 

However, there is no study that has comprehensively characterized the 

structures of DOM and no consensus has been reached on proposed structures 

reported in the literature. Thus, studies of reaction of disinfectants with DOM are 

mainly based on integration of bench scale experiments using model compounds 

with raw water laboratory experiments or water treatment plant data. Tannic acid 

is a naturally occurring compound in plants (50) and its molecular structure is 

shown by Figure 1.3 (51) whereas commercially available tannic acid, such as 

corilagin, have slightly different structure from the natural one (50).  
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FA-2 (MW = 948) 

 

  

FA-1 (MW = 960) 

Figure 1.2. Proposed structures of fulvic acid 
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Figure 1.3. Structures of tannic acid (MW = 1701) 

Chlorine, being a non-selective oxidant, will also react with traces of 

dissolved organic matter (DOM) in water to produce various species of 

chlorinated disinfection byproducts (DBPs), many of which are unknown (52). 

The reaction of DOM with chlorine in water is mostly through electrophilic 

substitution reactions for aromatic compounds (16) and electrophilic addition or 

elimination in aliphatic compounds and haloform reaction in the case of simple 

ketones or β -diketones (53). 

Trihalomethanes were the first class of DBPs to be detected in potable 

drinking water in the US (54,55). The detection of chloroform in water sparked 

further research on the fate of chlorine in water which brought to light ten classes 
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of DBPs (52). Recent advances in analytical techniques have led to identification 

of new halogenated disinfection byproducts such as furanones, 

halonitromethanes, haloaldehydes, and haloketones (56,57). Trihalomethanes 

(THMs), haloacetic acids (HAAs), haloacetonitriles (HAN), halonitromethames 

(HNMs) and haloketones emanate from the chlorination process whereas 

ozonation process yields carboxylic acids, aldoketones and aldehydes (52). 

Chloroamination process produces nitrosamine and cyanogen halides whereas 

chlorine dioxide disinfectant yields oxyhalides (52). Of the ten disinfection 

byproducts, THMs and HAAs are of public health concern (52,58).  

1.3.1. Trihalomethanes 

Trihalomethanes are a group of chlorinated organic compounds formed in 

water when chlorine reacts with natural organic matter. In the presence of trace 

amounts of Br- in water low levels of HOBr will also be present (Eqs 1.5 & 1.6) 

whereas  in Br- rich water HOBr levels will be higher than HOCl. The conjugate 

acid (neutral) forms are usually favored at water treatment pH of less than 7.5 

(15). Thus, trihalomethanes formed in Br- rich water will have higher levels of 

brominated byproducts than chlorinated byproducts and account for over 90% of 

total THMs produced (59). Trihalomethanes represent the total mass 

concentrations (μg/L) of four species of trihalogenated methanes (denoted as 

THM4 or TTHM) formed from chlorination of DOM in water contaminated with 

bromide and the 4 species are: trichloromethane (CHCl3), bromodichloromethane 

(CHBrCl2), dibromochloromethane (CHBr2Cl), tribromomethane (CHBr3) (60). 

The maximum contaminant level, which is the highest allowable concentration of 
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a regulated contaminant in water delivered consumers of potable water supply, 

for THM4 is 80 µg/L in US (61). There are different precursors of DBPs in DOM 

matrices and based on results from studies using model compounds and raw 

water samples aromatic 1,3-dihydroxy substituted benzene (e.g., resorcinols) 

and β -diketones (e.g., acetylacetone) have been identified as key functional 

groups for DBPs formation (Arnold et al. 2008). A proposed mechanism for 

formation of chloroform (TCM) from chlorination of methyl ketone (16) and β -

diketone is given in Figure 1.4 (62). The halogenation is a multistep process and 

both halogenated and non-halogenated products are possible. 

CH3COOH + -CCl2COCH3

CCl3COCH3

H3C CH3

O O
HOCl CH3COCCl2COCH3

OH-

HOCl
-OH

CH3COOHCHCl3 +  

Figure 1.4. Proposed pathway for formation of TCM from ketones (62) 

If all possible species of halomethanes are considered there are five other 

species of halomethanes, in addition to the four species above, namely CH3Cl1, 

CH2Cl2, CH2B1Cl1, CH3Br1 and CH2Br2. If the water is free of bromide ions, only 

three possible species of chloromethanes (CH3Cl1, CH2Cl2, and CHCl3) will be 

produced during chlorination of water. 

1.3.2. Haloacetic acids 

Haloacetic acids (HAAs) are a group of halogenated organic acids that 

formed from the reaction of chlorine and naturally occurring organic substances 

such as fulvic acids, humic acids and amino acids (16,63). The HAAs of 

significance in disinfected water are chloroacetic acid, dichloroacetic acid, 
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trichloroacetic acid, as well as some brominated forms (15). Some of the reaction 

pathways for the formation HAAs from aspartic acids (64) and cyanoethanoic 

acid (65) have been proposed. Since cyanoethanoic acid is the end product 

proposed for chlorination of aspartic acid, Peters et al. (65) used it as precursor 

to follow the reaction products. Figure 1.4 shows the reaction pathways for the 

formation of trichloroacetic acid from alanine based on proposed reaction 

mechanism for chlorination of a primary amino acid (63).  

CH3CN CCl3CN CCl3CO2H

H3C CO2H

NH2

3HOCl 3H2O2HOCl 2H2O 2H2O
H3C CO2H

NCl2

2HCl, CO2
NH3

 

Figure 1.5. Proposed trichloroacetic acid formation from alanine 

In water free of bromine, only three haloacetic acid species are possible 

which are CH2Cl1COOH, CHCl2COOH and CCl3COOH. But in the presence of 

bromine there are also CH2Br1COOH and CHBr2COOH, and the total mass 

concentrations of the five haloacetic acid species is denoted by HAA5 (60). The 

HAA5 is being regulated and its maximum contaminant level in drinking water is 

60 µg/L in US (61), When an acronym, HAA6, is used in the literature it 

represents the total concentrations of haloacetic acid, i.e., HAA5 and 

CHBr1Cl1COOH (60,66). There are also four other species of haloacetic acids 

that may be formed in presence of Br- ions namely CBr2Cl1COOH, 

CBr1Cl2COOH and CBr3COOH. The total mass concentration of the nine species 

of HAAs (μg/L) is denoted as HAA9 (60).  
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1.3.3. Total organic halides (TOX) 

Total organic halide (or total organic halogens) is term that refers to all 

organic compounds that contain covalently bonded chlorine, bromine and iodide 

formed from halogenation of water samples (67). TOX is comprised mostly of 

organic chlorides and organic bromines and in rare instances organic iodides 

when water has at least traces of iodine. Disinfection of drinking water using 

chlorinating agents produces the chlorinated disinfection byproducts discussed 

above but there are still many unidentified disinfection byproducts at the present 

time (67,68). Thus, measurement of TOX is used as a surrogate for toxic 

potential of disinfection byproducts formed from chlorination of drinking water 

(39,67). It has been reported that TOX varies linearly with activated aromatic 

content, UV absorbance and dissolved organic carbon (69). Nonetheless, TOX is 

currently not regulated in any country in the world (67). 

1.3.4. Impacts of THMs and HAAs on public health 

Studies conducted in animals have shown that the THMs and HAAs have 

toxic effects. Bromodichloromethane (BDCM) has been shown to reduce sperm 

motility in rats consuming 39 mg/kg of body weight per day in drinking water. 

0BDCM and tribromomethane (TBM) induce 1H1Htumors of the large intestine in rats 

(58). HAAs are carcinogenic and their effects appear to be limited to the liver and 

at high doses whereas dichloroacetic acid (DCAA) and trichloroacetic acid 

(TCAA) have tumorgenic effects in cell division and cell death (58). Some 

epidemiological studies conducted in Norway (70), in Chesapeake USA (71) and 

North Carolina USA (72) and in Nova Scotia, Canada (73) linked THMs 

http://www.greenfacts.org/glossary/def/dibromochloromethane.htm
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consumption to birth and urinary track defects in newborns, spontaneous 

miscarriages in women and stillbirth respectively. But studies elsewhere 

concluded that there is insufficient evidence to link THMs in water to the 

reproductive problems reported in previous studies (74,75). Currently there is 

insufficient evidence of carcinogenicity of THMs in humans (76) with the 

exception of one meta analysis study that showed that some association 

between drinking chlorinated water and risk to bladder cancer in men and women 

(77). Despite the insufficiency in toxicological data, these compounds have to be 

regulated based on precautionary principle because very little is known of their 

synergistic effects in the body (78). For example, the EU Directive 1998 has set 

maximum contaminant levels (MCL) for TTHMs at 150 µg/L in 2003 (79) and the 

US regulation sets MCL at 80 µg/L for THM and 60 µg/L for HAA5 (61).  

1.3.5. Challenges facing water supply authorities 

The water authorities have the responsibility of supplying water to the 

public that meets requirements of the law. There are different ways the water 

treatment plant can achieve the goal of reducing DBPs in finished water. 

However, the waters supply companies may incur unnecessary costs if they treat 

water without prior knowledge of amounts of DBP precursors and the expected 

amounts of DBPs produced. The methods of acquiring such information should 

be fast, cheap, less sophisticated and reliable. This goal could be achieved by 

developing predictive models based on chlorine consumptions or formation of the 

THMs and HAAs during chlorination of drinking water.  
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1.4. Current Modeling Practices 

Modeling refers to the use of mathematical equations to calculate the 

behavior of a natural system (80) and such equations are used to predict the 

effects of a set of independent variables on the dependent variable in the system. 

Current modeling practices in drinking water disinfection are primarily kinetic 

modeling and empirical modeling. The models were developed using either lab 

experimental data (using model compounds, river water, water from distribution 

system) or water treatment plant data. They have been used to predict either 

chlorine demand or formation of disinfection byproducts from model compounds 

or water samples obtained from water treatment plants or distribution systems.  

1.4.1. Kinetic models 

Kinetic models are a set of differential equations that simulate the 

disappearance of HOCl and or formation THMs and HAAs formation based on 

water quality parameters. Gallard and von Gunten (81) and Gang et al. (82) have 

monitored TTHM and HAA9 formation and developed kinetic models based on 

bulk water parameters. Gallard and von Gunten (83) derived a rate equation for 

chlorine demands of phenols. They found out that the extent of formation of 

chloroform increases with time and there is a linear relationship between 

chloroform production and chlorine demand of phenols. On the hand, Norwood et 

al. (84) studied the rate of consumption of chlorine and formation of chloroform 

from resorcinol and phenolic model compounds with acid functional groups. The 

reactivity of resorcinol was relatively higher than that of other phenolic 

compounds under the same reaction conditions.  
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Mechanistic kinetic modeling monitors the disappearance and formation of 

intermediate products from a known precursor. de Laat et al. (62) monitored 

acetylacetone, 3,5-dichlorophenol and resorcinol using GC/MS. They found out 

that chlorination of precursor molecule is a multi-step process leading to 

formation of more than one chlorination byproduct. However, they did not derive 

any rate equations for the disappearance or the rate of formation of individual 

disinfection byproducts. Boyce and Hornig (85) performed mechanistic kinetic 

study to determine formation of products other than chloroform and bromoform 

from dihydroxyphenolic precursors at pH 4, 7 and 10. They found out that 

chlorination of the ring is usually followed by ring cleavage from which chloroform 

and other products are produced by elimination or addition process. They also 

used mass spectrometry to analyze the structure of the intermediate and final 

products. However, they did not report the rate of disappearance of precursor or 

rate of formation products.  

Mechanistic kinetic models requires knowledge of the structure of each 

molecule and monitoring of the reaction intermediates over time, followed by 

derivation of a rate equation for each elementary reaction and finally solving the 

simultaneous equations to obtain the overall rate equations (86). The advantages 

are that it can provide information on rate of reaction, flexibility with reaction 

conditions and may provide reliable predictions of chlorine consumption or 

disinfection byproducts formation. The disadvantage is that it requires a lot of 

computation time when there is a large number of molecules in the database (86) 
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and we do not know the molecular structure of components of dissolved organic 

matter.   

1.4.2. Empirical models 

Empirical models relate HOCldem or disinfection byproducts formation to 

bulk water quality parameters like pH, ultraviolet absorption, temperature, 

turbidity and dissolved organic carbon, etc. Although there are different 

approaches to empirical modeling, the discussion will be restricted to linear 

regression approaches which are within the scope of this research work. 

Simple linear regression models 

A simple linear regression model relates chlorine demand and DBPs 

formation to a single water quality parameter. It assumes that the relationship 

between the dependent variable (y) and independent variable (x) is linear with a 

y-intercept (b) as represented by Equation 1.14.  

bxy += β  ……………………………………………………………. (Eq. 1.14) 

Reckhow et al. (87) studied chlorination of humic and fulvic acids at pH 

7.0.  The chlorine demand, THM formation potential (THMFP) and TOX formation 

were proportional to the concentration of activated aromatic carbons ([ActAr-R]), 

measured in µmol/mg-C, for both fulvic and humic acids (Eqs 1.15, 1.16 & 1.17). 

However, the authors did not directly measure activated aromatic content of 

humic or fulvic acid, rather they estimated it using probability with the assumption 

that aromatic ring substituted with OH and NH2 are the most reactive. This 

approach worked better for fulvic acids than humic acids and the equations could 
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not account for chlorine demand or DBPs formation from deactivated aromatic 

compounds or aliphatic compounds.  

[ ]RActAraHOCldem −+= 9.7  .......................................................... (Eq. 1.15 

[ ]RActArTHMFP −+= 1710  ......................................................... (Eq. 1.16) 

[ ]RActArTOX corr −+= 8550  ........................................................  (Eq. 1.17) 

Total organic carbon (TOC) or dissolved organic carbon (DOC) has been 

reported to be a good indicator of chlorine demand and DBPs formation 

particularly in bench scale experiments (88). Simple linear regression was used 

to model DBPs formation from TOC using annual average data from 85 

conventional water treatment plants in Pennsylvania (89). They found that annual 

average TOC did not show significant correlation with TTHM/HAA5. When plant-

specific average TOC and TTHM/HAA5 data were used, they found a good 

correlation between the two parameters in one out of four plants with the highest 

average annual TOC (~ 2.3 - 3.1 mg/L) and in two out four plants with the lowest 

mean TOC (~ 0.6 - 0.8 mg/L). They arrived to a general conclusion that TOC is 

not a good indicator for THM or HAA formation (89). 

Multiple linear regression models 

Multiple linear regression (MLR) models for prediction of chlorine demand 

and disinfection byproducts formation have been reported. The chlorine demand 

or disinfection byproduct is a function of a linear combination of two or more 

water quality parameters given by Equation 1.18. jβ  is the coefficient of jth 
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descriptor, b  is y-intercept (for regression through origin, 0=b ) and jε is the 

error 

εββ ++++= ∑
=

=

bxxy nn

nj

j
jj )...(

1
 …………………………………… (Eq. 1.18) 

Lekkas and Nikolaou (90) reported empirical models for prediction of THMs and 

HAAs from chlorination of raw water rich in bromide ions using bench scale 

experiments. They found that logarithm of THM (logTHM) was related to pH, time 

and chlorine dose (R2 = 0.87, N = 192) whereas logHAA was a function of pH, 

Br, chlorine dose and time (R2 = 0.52, N = 192). However, THM and HAA models 

behaved well with external data set at 95% confidence interval particularly for 

HAA.  

Other authors have also reported MLR models for formation of THMs and 

HAAs from NOM at water treatment plants. Obolensky and Singer (91) generated 

models for prediction of DBPs formation. The THM4 (in log units) was a linear 

combination of turbidity, bromide, time, TOC, UV, Cl2 dose, Cl2 residual, 

alkalinity, temperature, and pre-chlorination dose. The model gave R2 of 0.707 

which indicates a good linear relationship but that could have been attributed to 

over fitting as N was 741 and the model’s predictive power was not tested using 

external data.  Golfinopoulos et al. (92) developed MLR model for formation of 

TTHM with chlorophyll a (Chla), temperature, pH, chlorine, bromide, and 

sampling time (summer). But the residual plots showed that some points had 

very large residuals and the predictive power of the model was not tested against 

the external data.  
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Other authors have also reported the application of multiple linear 

regression models to predict disinfection byproducts formation using field water 

samples. THM formation databases from three water treatment plants were used 

to derive MLR THM formation models using pH, UV, TOC, DOC, Br-, chlorine 

dose and contact time as descriptors (93). The MLR models for prediction of 

DBPs formation in distribution systems using KMnO4, residual chlorine, pH, 

temperature and contact time as descriptors have been reported (94). The MLR 

models from these two models were verified by independent data and there was 

a good agreement between predicted THM and observed THM. Nonetheless, 

some MLR models for DBPs formation derived using water treatment plant data 

reported in literature have low coefficients of determination (R2) ranging from 

0.35 to 0.62 (92,95). This implies that the models failed to explain about 40-60% 

of the variances in DBP formation. These observations show that regression 

models based on water quality parameters require rigorous testing using 

independent data from different water treatment plants in order determine model 

robustness and predictive power. The most common norm is that researchers 

calibrate the model and test its predictive power using same calibration data 

(internal validation) and sometimes autocorrelation analysis is not done to check 

for redundant descriptors. It also rarely involves use of external data to test the 

model predictive power and defining applicability domain in order to determine 

influential training data and prediction outliers (96). 

Although empirical models using bulk water quality parameters as 

descriptors have been widely used in predicting chlorine consumption or DBPs 
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formation, they do have some drawbacks. Firstly, empirical approach treats DOM 

as a single, average entity while it is actually a mixture of organic molecules with 

different chemical structures (97). Secondly, the structure of the molecule is the 

key to reactive behavior of DOM towards HOCl. Types of functional groups and 

their arrangement in a molecule are expected to strongly affect reactivity towards 

chlorine during chlorination process (62,66,88). But this aspect of the molecule is 

not considered in development of the empirical models. Thirdly, the empirical 

models are derived by varying the water quality conditions (e.g. pH, turbidity, 

DOC, UV254) though most of these are optimized prior to addition of chlorinating 

agent at water treatment plant. An alternative approach of developing predictive 

models based on molecular structure must be explored and that brings the 

discussion to QSPR modeling. 

1.5. Quantitative Structure-Property Relationships (QSPRs) 

Quantitative Structure-Activity Relationship (QSAR) is an alternative 

method of predicting biological behavior of molecules based on their chemical 

structures (98,99). The term was evolved in drug design and discovery fields 

where it is used to screen biological activity of drugs with similar chemical 

structures or screen a number of structural analogues to narrow down to those 

chemicals with potential biological activities (100). Since its evolution the 

application of QSAR principles have been extended beyond drug design and 

discovery. The term is, therefore, coined slightly different depending on the field 

of science in which the method is used. In medical sciences, where structure of 

molecules is related to toxicity molecules the term quantitative structure-toxicity 
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relationship (QSTR) is normally used (101,102,103). In physical and 

environmental sciences professions where physico-chemical property of 

molecules is related to the chemical structures of the molecules, the term 

quantitative structure-property relationship (QSPR) is frequently used 

interchangeably with QSAR. Regardless of slight differences in the terminology 

they all follow the same basic principles and protocols of model calibration and 

validation. However, in this work quantitative structure-property relationship 

would be used throughout unless otherwise mentioned. 

1.5.1. Principles of quantitative structure-property relationships 

A quantitative structure-property relationship is a modeling approach that 

attempts to relate structure of molecules to the property being measured. Early 

QSAR is accredited to the work of Hammett who correlated electronic properties 

of organic acids and bases with equilibrium constants and reactivity (104), 

termed Linear Free Energy Relationships (LFER). Hansch introduced lipophilicity 

descriptor that is represented by octanol-water partitioning coefficient (105). The 

use of structural properties to model chemical or physical property is more 

attractive in modeling because reactivity of a molecule with another molecule 

under optimized reaction conditions depends primarily on the molecular 

structures of the reactants (106). In the water treatment it is known that dissolved 

organic matter react with chlorine under the optimized water treatment conditions 

to form disinfection byproducts (Eq. 1.19). 

DBPsaqHOClDOM →+ )(  …………………………………… (Eq. 1.19) 
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The optimal water quality conditions, as recommended by WHO, for effective 

terminal chlorination include: 6 ≤ pH ≤ 8, turbidity ≤ 5 NTU, contact time ≥ 30 

minutes and chlorine residual ≥ 0.5 mg/L (107,108). These parameters are 

essentially kept more or less constant (i.e., optimum levels) at the water 

treatment plant. Under such a reaction scenario only the molecular structure of 

individual molecules in DOM matrix is the most important (106) and that is why 

application of QSPR becomes of interest in drinking water treatment.  

There are different algorithms for developing QSPRs in the literature and 

the most commonly used algorithm is multiple linear regression (109). Since 

quantitative structure relationships (QSAR and QSPR) are an extension of linear 

free energy modeling approach, linear regression algorithms (simple or multiple 

linear regressions) are the most convenient option for derivation of the models. 

Therefore the algorithm follows the fundamental assumptions of multiple linear 

regressions, with some flexibility (95): 

i. The effect of each independent variable (xi) on dependent variable (y) is 

linear and additive. Since bulk water quality parameters vary with time and 

space, they are not always linearly related to chlorine demand or DBPs 

formation which violates the assumption. However, the violation is usually 

ignored in regression techniques in water treatment system;  

ii. Independent variables used in regression are assumed to be free of 

errors. This is not always true because there are some uncertainties in 

measurement of independent variables under laboratory conditions. 
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Correlation analysis of variables or determination the inflation factor may 

be used to test for independence of variables. 

The model developed by multiple linear algorithms must also be analyzed for its 

adequacy by checking if it satisfies the key assumptions on model residuals (95):   

i. Normal distribution of residuals, tested using normal score plots,  

ii. Constant variance of the residuals, tested using residual plots, 

iii. Independence of residuals, tested by using a plot of residual against 

observed data or predicted data, 

iv. Average of residuals must be near zero and is tested by calculating mean 

of residuals.  

1.5.2. Important steps in developing QSPRs  

There two most commonly used steps in QSPR modeling which are data 

preparation and model generation. Additional steps that are highly 

recommended, though not commonly used in the past, include model validation 

using cross validation and external data and defining model applicability domain 

(96,110). These steps are elaborated as follows: 

i. The data preparation involves lab or literature data collection for the target 

property to be modeled and calculation of descriptors to be used. The 

descriptors can be calculated manually for constitutional descriptors or 

using special software for other descriptors (typological, quantum-

chemical, etc).  

ii. Selection of significant descriptors to be used for calibration of the model 

because not all descriptors generated will be statistically significant. It is 
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important to check for redundant descriptors by performing multi-

colinearity analysis of selected descriptors. 

iii. Model generation involves establishment of statistical relationship 

between the target property (y) and the list of significant descriptors (x).  

iv. Model validation which involves assessment of model robustness and 

predictive power using internal and external data. 

v. Definitions of the applicability domains, AD (in this context AD is the range 

of values within which a model is calibrated and prediction is reliable) of 

the model which assess influential points in model calibration data and 

reveal which molecules in the external data are predicted due to 

extrapolation of the model. An influential data point, in this context, refers 

to value of an observation that changes coefficients of model descriptors 

or fits when the data point is omitted from the calibration data set.  

Since QSPR is calibrated with a set of experimental data from compounds 

of known structures, it becomes easier to predict properties of a new compound 

of similar structure without performing any experiment (111). This is done by 

calculating the descriptors and plugging them into the QSPR equation which 

saves time and resources. There are several QSPRs or QSARs derived using 

linear regression algorithms reported in literature (112,113,114). However, not all 

of models reported in literature have been evaluated for predictive power (using 

validation data), presence of redundant descriptors and applicability domain 

(AD). A few studies reported in literature are used as examples to emphasize the 

importance as two steps are rarely performed. Lack of model external validation 
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and AD analysis may raise question over robustness of most models to predict 

the property of interest using different molecules or systems.  

The QSPRs for prediction of refractive index of polymers and surface 

tension of non-surfactants have been reported (115,116). However authors did 

not go farther to analyze the predictive power of the model using external 

validation data set. QSPR has also been used to predict soil sorption coefficient 

of organic pollutants, aqueous solubility of drug-like organic compounds; 

chromatographic retention time and boiling point of organic compounds and UV 

absorption intensities of organic molecules (117-120). The model predictive 

power in these studies was validated by cross validation and external data.  

QSAR has been successfully used to predict toxicities and biodegradation 

of anilines and phenols (121) whereas QSTR was used to predict toxicities of 

aliphatic compounds and organic compounds (122,123). The models in these 

studies were not tested for predictive power using external data. Heat of 

formation and enthalpy of formation of organic compounds (124,125) and 

polarographic wave half life of benzonoids (126) have been predicted by QSPR 

but the models were not evaluated for their predictive power using external data 

as well. Of the studies reviewed here only Katritzky et al. (120) went further at 

defining applicability domain of the QSPR which is rare in literature though it is 

highly recommended (96,110, 127,128) 

Model internal and external validations provide information on model 

stability and to what extent it can be used to predict the property of interest using 

new data. Applicability domain helps to identify which data points in calibration 
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data set are outliers or influential and therefore affect the model fits and 

coefficients of descriptors. Thus,  high model calibration R2 and high R2 of 

validation (q2) have to be interpreted with caution because they may be  high due 

to over fitting of the model or presence of a few data points that were outliers 

(i.e., a data point with a value far from other data) or both outliers and influential.  

1.6. Statement of the Research Problem 

Despite numerous applications of QSPR in environmental studies, we are 

unaware of any attempts to predict HOCldem or disinfection byproducts formation 

using this approach. This approach is not a substitute for traditional experimental 

measurements (e.g., routine jar test), rather it destined to enable predictions of 

HOCl demand and disinfection byproducts due to potential changes in the DOM 

such as changing pre-treatment methods or land use within the watershed. A 

predictive model has been developed which provides composition data for 

thousands of molecules in a DOM mixture (129,130). What is lacking is a rapid 

and quantitative method to predict HOCl demand from the molecular information. 

In this work experimental data from the literature on HOCldem and disinfection 

byproducts formation from small molecules are used to calibrate and validate a 

QSPR that predicts HOCldem and disinfection byproducts based solely on 

constitutional descriptors. The novel MLR QSPRs that will be used to predict 

HOCldem and disinfection byproducts formation from model DOM structures which 

have never reported before. The QSPRs for HOCldem and TOX formation will be 

interfaced with the AlphaStep model of NOM for prediction chlorine demand and 

DBPs formation in surface waters used in water treatment facilities or watershed 
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catchment waters. It is anticipated that the models will be quick tools for 

screening the chlorine demand of water and potential production of DBPs 

formation. This would not only save time and resources but also minimize 

excessive formation of disinfection byproducts. 

1.7. Statement of Goals and Objectives 

The main goals of this research are: to develop Quantitative Structure-

Property Relationships (QSPRs) that will predict chlorine demand and formation 

of THMs and HAAs from the precursor model compounds and determine the 

performance of the QSPR models to predict the chlorine demand and THMs and 

HAAs formation of the test compounds.  

The plan is envisaged to accomplish the following specific objectives: 

1) Develop QSPRs to predict HOCl consumption by known precursor model 

compounds that include aromatic and aliphatic compounds. 

2) Develop QSPRs for prediction of trichloromethane (TCM), trichloroacetic 

acid (TCAA) and total organic halide (TOX) formation from aromatic and 

aliphatic model compounds.  

3) Evaluate the performance of QSPRs to predict HOCl demand, TCM, 

TCAA and TOX formation using external data and determine the 

applicability domains. 
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4) Integrate the QSPRs for HOCl demand and TOX formation with AlphaStep 

model of natural organic matter in order to estimate HOCl demand and 

TOX formation from to chlorination of NOM in surface water. 

1.8. Dissertation Organization 

This dissertation is comprised of seven chapters. Chapter 1 explores 

different disinfecting techniques and efficacy of water chlorination and provides a 

brief overview of the principles of QSPR and potential application of QSPR in 

water treatment industry. The chapter closes with objectives of the current 

research work. Chapter 2 provides information on general research methodology 

used in this work. It covers data collection, descriptor generation and data 

splitting into training and external data sets, QSPR calibration and evaluation. 

Chapter 3 covers QSPR development for predicting chlorine demand (published 

in Environmental Science and Technology, 2010, 44(7), 2503-2508). Chapter 4 

describes calibration and evaluation of the QSPR for predicting total organic 

halides (TOX), Chapter 5 covers QSPR development for prediction of 

trichloromethane (Submitted to SAR & QSAR in Environmental Research) and 

Chapter 6 discusses QSPRs for predicting trichloroacetic acid formation. Chapter 

7 gives a summary the results from the four QSPRs and also covers the 

integration of QSPRs for chlorine demand and TOX formation with AlphaStep 

NOM model. The chapter also summarizes implications of descriptors and 

limitation of the QSPRs and also gives recommendations for future work. 
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CHAPTER 2  

 

STATISTICAL METHODOLOGY 

 

2.1. Data Sources 

 The data for chlorine demand (HOCldem) and disinfection byproducts 

(DBPs) for model compounds were obtained from research papers published 

between 1978 and 2010 (Table 2.1). The data are comprised of small aromatic 

and aliphatic compounds with carboxyl, amine, alcohol, phenol, ether and other 

functional groups and some representative compounds in Figure 2.1. 

Table 2.1. Data sources for model compounds and reaction conditions  

Sources Chlorine source Chlorine dose pH Time, h Temp 

Boyce and Hornig (1) Cl2 10-102 mol/mol 7 24 10 oC 

Norwood et al. (2) HOCl 1.5-2.0 mol/mol-C 7 0.3-4 25 oC 

de Laat et al. (3) Cl2 2 mol/mol 7 15 20 oC 

Boyce and Hornig (4) Cl2 10-102 mol/mol 7 24 10 oC 

Hureiki et al. (5) Cl2 8-20 mol/mol 8 72 20 oC 

Gallard and von Gunten (6) NaOCl 90 mol/2-6 mol  8 20 23 oC 

Bull et al. (7) Cl2 20 mg/L 7 48 20 oC 

Dickenson et al. (8) Cl2 4-7 mg/mL 8 24 22 oC 

Bond et al. (9) Cl2 35 mol/mol 7 24 20 oC 

Hong et al. (10) NaOCl 10 mg /mg-C 7 96 20 oC 

Larson and Rockwell (11) NaOCl 10 mol/mol 7-8 0.33-24 25 oC 

 

The choice of using a mixture of structurally diverse molecules is contrary 

to the norm in quantitative structure-property relationship (QSPR) or quantitative 

structure-activity relationship (QSAR), which is using molecules with similar 
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structures. The water samples usually contain a mixture of simple aliphatic and 

aromatic molecules derived from degradation of large molecules from dead 

animal and plants or derived from anthropogenic sources (12). Simple phenolic 

molecules have been detected in surface water, ground water and tap water (13-

17) and occurrences of amino acids and organic nitrogenous compound have 

been reported in lake and sea waters (18-20). 
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Figure 2.1. Examples of model precursor compounds used in this work 

2.2. Descriptors generation 

 There are different molecular descriptors that can be used in QSAR/QSPR 

modeling which include constitutional descriptors (e.g., MW, atom counts), 

electrostatic descriptors (e.g., partial charges, polarity indices), geometric 

descriptors (e.g., molecular volume, solvent accessible surface area), quantum 

chemical descriptors (e.g., highest occupied molecular orbital, dipole moments) 

and topological descriptors (e.g., Wiener index, randic index) (21,22). The 
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advantages of constitutional descriptors are that they are easy to compute and 

do not require expensive software packages whereas disadvantages are that 

they cannot discriminate position isomers (e.g. catechol and resorcinol) and it 

becomes extremely laborious when you have a very large set of compounds and 

cannot explain effects of electronic, steric or geometric on reactivity of a 

molecule. In this work constitutional descriptors were used and were limited to 

those compatible with the AlphaStep model for NOM reactivity (23), including 

atom counts (the number of atoms of each element), functional group counts (the 

number of each functional group, including the number of aromatic rings), and 

variables which can be calculated from those (for example, H:C ratio, O:C ratio 

and number of phenol groups per ring). Two types of composite descriptors 

require explanation: the ring activation index (RAI) and the carbonyl index (CI).  

 The presence of electron donating substituents such as hydroxyl (OH) or 

amino group (NH2) will activate the ring because they are strong electron 

donating groups. If any of the strong donors is present with a weak electron 

donating group (e.g., methoxy or ethoxy), strong donors will be directing the 

electrophilic substation (24). But if the weak electron donors are present with 

electron with drawing groups (e.g., cyano, carboxylic), the weak donor will direct 

the substitution (24). However, the increase in the number of strong electron 

donors in aromatic ring may not always increase electrophilic substitution 

because the relative position of the groups matters most (24). Thus, the RAI 

descriptor is motivated by the observation that aromatic rings with only electron 

withdrawing substituents showed much less HOCldem and DBPs formation than 
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compounds with a single strong electron-donating substituent (3). Those 

aromatic rings with multiple electron donating group (not meta to each other) 

show intermediate chlorine demand. For example, benzoic acid and 

nitrobenzene consume < 0.5 mole HOCl per mole of substrate, phenol consumes 

9.8 mole/mole, but 1,2-hydroxy benzenes and 1,4-dihydroxy benzenes consume 

< 6 mole/mole (3,6). In addition, reactivity of aromatic molecules is influenced not 

only by the number of strong electron donating groups (OH and NH2) in the 

molecule but also their relative position from each other. A 1,3-disubstitution 

(e.g., 1,3-dihydroxybenze) is more reactive than 1,2-disubstitution (e.g. 2-

aminophenol) or 1,4-disubstitution (e.g., 1,4-dihydroxybenzene) due to 

cooperative effects in the former and antagonistic effect in the latter (6,24). 

However, it was also observed from the chlorine demand data that 2-hydroxy (or 

2-amino) benzoic acid consumed less chlorine than corresponding meta and 

para isomers. The difference in reactivity could be attributed to higher stability of 

2-hydroxy(2-amino) benzoic acid over the meta and para isomers due to 

hydrogen bonding effects (25,26,27). Thus, RAI descriptors were devised based 

upon the ratio of strong electron donating groups (-OH and -NH2) to the number 

of aromatic rings (ED:AR) in a given molecule. RAI values range between 0 and 

1 for each molecule (for molecules with several rings, e.g. tannic acid, a single 

average RAI is used). If ED:AR was < 1, the RAI value was set equal to that 

ED:AR (except for ortho-carboxylic acids, which were assigned RAI = 0.75). If 

ED:AR was 2 or 3, the RAI was set equal to a lower value; the values which gave 

the lowest residuals were RAI = 0.6 for ED:AR = 2 and RAI = 0.5 for ED:AR = 3. 
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If -OH and -NH2 groups were ortho or para to each other, as in 4-aminophenol or 

2-aminophenol, the RAI index was 0.3 since two strong activators in such 

positions have antagonistic effects. The RAI was assigned 0.1 if the molecule 

had only alkoxy groups as ring activators to the ring (ED:AR = 0). If alkoxy 

groups were present along with OH or NH2, as in 3,5-dimethoxyphenol, only the 

effects of strong activators affects the RAI. The RAI for molecules without -OH, -

NH2 or alkoxy groups on the ring was assigned a value of zero.  

The carbonyl index, CI, is motivated by the observations that carbonyl 

compounds undergo substitution reaction through keto-enol tautomerization 

(24,28,29), and that β-dicarbonyl compounds consume more HOCl than other 

dicarbonyls (8). Carbonyl index (CI) relates to the lower pKa of hydrogen in a C-

H bond located between two carbonyls (e.g., β -diketones) relative to other C-H 

bonds adjacent to a single carbonyl (24,30). The hydrogen can easily be 

abstracted by a base in solution to form keto-enol (or keto-enolate) tautomers 

and the enol form is the one that contributes to higher halogen substitution 

reaction (30). This concept was extended to carbons located between two hidden 

carbonyls (phenols) as in resorcinol. The index adds contributions from C atoms 

around carbonyl groups. The α-carbon between two keto groups was assigned a 

value of 2, the α-carbon between a keto-group and either an ester or acid group 

was assigned a value of 1.5. A carbon adjacent to an α-dicarbonyl is assigned a 

value of 1. The two carbons between γ-dicarbonyls (e.g. 4-oxoheptanedioic acid) 

are assigned a total value of 0.5, as is the α-carbon in ketones (e.g., 

acetophenone, acetone). Contributions from all carbonyl groups in a molecule 
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are used to calculate the CI. The list of constitutional and other derived 

descriptors is given in Table S2.1 and Table 2.2 gives the list of significant 

descriptors selected by descriptor selection process in this work.. 

Table 2.2. A list of significant descriptors and abbreviations 

Descriptors Abbreviation Descriptors Abbreviation 
# Alkoxy groups attached 
to the aromatic ring 
without NH2 and OH  

ArORact # Alkoxy groups 
attached to the aromatic 
ring without NH2 and OH 

ArORnoact 

# Oxygen to carbon ratio O:C Ring activation index RAI 
Square root of # 
heteroatoms 

sqrtHeA # One three activated 
aromatic carbon 

OTactC 

Square root of #phenols sqrtArOH  Difference of ArED:C 
and CORH:C 

EDCORH 

# sum of ArOR per carbon ArOR:C # Aliphatic C bonded 
reduced nitrogen (NR2) 

ACN 

# Phenols ArOH # ArED per carbon ArED:C 
# Aliphatic sulfur AS Carbonyl index CI 
Log of hydrogen to carbon 
ratio 

logH:C # Phenol per carbon ArOH:C 

# Hydrogen to carbon 
ratio 

H:C Square root of ring index sqrtRAI 

 

2.3. Data Splitting and descriptor selection 

 The data collected for chlorine demand or DBPs formation was divided 

into training and external validation data sets using random data splitting or 

stratified random data splitting approaches (31) or pseudo-stratified random data 

splitting where necessary. The external data set is the list of compounds with 

similar functional groups but different chemical structure than members of the 

training data set. These data are not involved in model calibration whatsoever 

and therefore are used to evaluate the performance of the model. The training 

data is the list of compounds with diverse structure and functional groups used to 

calibrate the model and for internal validation of the model.  In case of limited 

data size the whole training data set may be used to calibrate the model but 
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where there is enough data, the training data can be split into calibration and 

cross validation data sets. 

Random data splitting allows each individual compound an equal chance 

of being selected into training and external validation data sets. However, the 

selection process that is based on random numbers does not take into account 

the structural attributes of the molecules. As a result you may end up with data 

sets that are not heterogeneous in terms of structural diversity which is important 

in QSPR modeling.  

Alternatively, stratified random data splitting may be used, particularly 

when there are duplicate data points. In this case, each individual point is given 

an equal chance of being in training and external data sets but the process is 

repeated such that no compound is present in both training and external sets. 

Stratified data splitting is also used in splitting training data into calibration data 

sets and cross validation using the Leave-Many-Out approach. Splitting of 

training data may be repeated 2 to 10 times, each time leaving out 20-30% of 

data consistently in order to ensure that any data point should appear at least 

once in cross validation data. Pseudo stratified randomization was used where 

the entire data set was too small to be split into calibration, Leave-Many-Out 

(LMO) cross validation and external validation data sets and no duplicate 

measurements were available. This process ensures that the data splitting 

produces calibration and external data sets that are as heterogeneous as 

possible. In this research work stratified random data splitting was used to split 

the training data into calibration and cross validation five folds for HOCldem and 
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TCM formation. Due to limited data size for TOX and TCAA formation, pseudo 

stratified random data splitting was used instead. 

The simplest quantitative structure-property relationship (QSPR), both 

conceptually and statistically, expresses HOCldem or DBP formation for a given 

molecule as the weighted sum of a set of M descriptor variables xj (Equation 2.1). 

εβ +=∑
=

M

j
jjdem xDBPorHOCl

1
)(  …………………………….………….. (Eq. 2.1) 

where βj is the linear coefficient for the jth descriptor variable, xj and ε is the 

standard error of regression of the model where each descriptor represents a 

sub-structure of the molecule. The intercept is set to zero because pure water is 

expected to have zero chlorine demand or DBPs formation.  

Selection of significant descriptors was done by multiple linear regression 

using Minitab® statistical software, StatGuideTM version 15 (32). Regressions 

began with a complete list of all potential descriptors and training model 

compounds (minimum 5 non-zero values for each descriptor). Successive 

elimination of the least significant descriptor was based on the p-value criterion. If 

the p-value for a given descriptor coefficient, βj, exceeds 0.05, the descriptor was 

eliminated and multiple linear regression analysis was repeated on the remaining 

descriptors until all coefficients of descriptors were significant (that is, p < 0.05). 

Final significant descriptors obtained were tested for multi-colinearity by 

correlation analysis. If pair-wise correlations of descriptors had r < 0.7 (r2 = 0.49), 

this indicates that they were sufficiently independent to be used as a group (33). 

These descriptors were used in all subsequent model calibration and validation.  
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2.4. Model calibration and validation 

 Once the significant descriptors were identified, the training data set was 

divided into calibration and cross validation data sets by Leave-Many-Out (LMO) 

approach in case there was sufficient data. In case of limited data, training data 

was used for model calibration and Leave-One-Out (LOO) was used for cross 

validation. Model calibration was performed using the Analysis ToolPak in MS 

Excel for Windows XP. Note that most commercial software and MS Excel 

versions on the market have errors in the default equations for calculation of R2 

and F-statistic for regression through origin (34). Preliminary multiple linear 

regression of the chlorine demand on a set of descriptors through origin using 

commercial statistical software packages (Minitab 15 and SPSS 15) and MS 

excels (MS Excel XP, MS Excel 2003 and MS Excel 2007) showed that only MS 

Excel for Windows XP gave correct calculations of R2 and F-statistic.  

 In Leave-Many-Out cross validation, the training data were split into a 

calibration data set (70-80%) and a cross validation data set (20-30%) five times 

using stratified data splitting so that each compound is used at least once in 

cross validation (31). This resulted in five subsets of calibration and cross 

validation data. Multiple linear regression was then performed on each of the five 

calibration subsets using the selected significant descriptors to obtain five QSPR 

equations. Each of the five QSPR equations was used to predict chlorine 

demand or DBP formation of the respective cross validation subsets.  
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The final QSPR model was obtained from the five QSPR equations by 

averaging coefficients of descriptors and standard error of descriptors in the five 

equations. This equation was then used to predict HOCldem or DBP formation of 

each compound in the five cross validation subsets from which averaged 

statistics of LMO cross validation (LMOCV) were obtained. The average statistics 

of cross validation should be comparable to those obtained from individual cross 

validation sets using each QSPR equation above if there is little bias in data 

splitting. The equation was also used to predict HOCldem or DBPs formation for 

the entire training data set and its statistics of cross validation were compared to 

the average statistics of cross validation obtained previously. The bias in data 

splitting using  the LMO approach was cross checked by comparing the 

regression fits and cross validation statistics to that of LOO cross validation 

(LOOCV).  

In Leave-One-Out cross validation one compound out of ‘N’ compounds is 

set aside for validation and ‘N-1’ compounds are used for model calibration (31). 

The N-1 compounds are used to produce a multiple linear regression equation. 

The equation is then used to predict HOCl demand/DBP formation of the omitted 

compound. The process is repeated until each compound is used for validation. 

Therefore there will be ‘N’ equations and ‘N’ validated compounds in total (31). 

Then, average of statistics of fit, coefficients of descriptors and standard error of 

descriptors are calculated. This was followed by internal validation using Leave-

One-Out cross validation (LMOCV) where there were enough data and Leave-
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One-Out cross validation (LOOCV) was used where there were not enough 

training data to split into two.  

 External validation evaluates model stability on independent data that are 

not used in the model calibration process (31). Compounds used in external 

validation should have similar structures to compounds used in model calibration. 

The model has predictive power if statistics of external validation meet criteria of 

predictive power and are comparable to those of LMOCV.  

2.5. Model predictive power evaluation 

The predictive ability of the QSPR model was assessed using the 

coefficient of determination (Rc
2) of regression, coefficient determination of cross 

validation (q2), mean bias deviation (MBD) and root mean square error (RMSE) 

for cross validation and external validation. The Rc
2 can easily be calculated 

using the Equation 2.2. 
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Where, yi and iŷ  are experimental and predicted values respectively and y  is 

the mean of experimental values. 

q2 is the square of correlation coefficient of predicted against experimental 

data for validation and was computed for both cross validation (q2
cv) and external 

validation (q2
ext). The q2

cv and q2
ext were calculated using Equations 2.3 and 2.4 

respectively. 
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Where yi and ŷi are experimental and predicted HOCl demands or DBP 

formations (from external or cross validation data set) respectively; iy is average 

of entire data in calibration data set, try  is the average of the experimental 

HOCldem or DBP in the entire training data (35,36).  

Since q2 has some limitations an indicator of predictive power, additional 

tests of QSPR model predictive power recommended in the literature (33,35,36) 

were performed. The slope (ki) and Ri
2 were obtained from regression line in a 

plot of predicted HOCl/DBP versus observed HOCl/DBP whereas slope (ko) and 

Ro
2 were obtained by forcing the regression line through the origin (Figure 2.2).  
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Figure 2.2. Normal regression of substituent steric effects in benzoic acid with q2 
= 0.99 and Rt = 0.001. Data source: Karelson (37)  
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Similarly one may obtain ki’, Ri
2’ and ko’, Ro

2’ from inverse regression lines 

with y-intercept and through origin, that is, a plot of observed HOCl/DBP versus 

predicted HOCl/DBP respectively (Figure 2.3).  
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Figure 2.3. Inverse regression of substituent steric effects in benzoic acid with q2 
= 0.99 and Rt = 0.00. Data source: Karelson (37) 

  
The model is said to have high predictive power and to be robust if it 

meets the following criteria for QSPR/QSAR predictive power: Rc
2 > 0.6 and q2 > 

0.5. The ratio (Ri
2-Ro

2)/Ri
2 or (Ri

2’/Ro
2’)/Ri

2’ which, in this work, will be denoted by 

Rt and Rt’ respectively should be less than 0.1. Thus, Rt < 0.1 and 0.85 ≤ k ≤ 1.15 

(k = ki & ko) or Rt’< 0.1 and 0.85 ≤ k’ ≤ 1.15 (k’ = ki’& ko’) or both. A QSPR that is 

close to an ideal model should have slopes k or k’ close to 1 for both normal and 

inverse regression of predicted and observed data.  

The root mean square error (RMSE) and model bias deviation (MBD) were 

computed using Equations 2.5 and 2.6.  
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where yi and iŷ  are experimental and predicted HOCldem or DBP formation and 

N is the total number of observations. The RMSE of internal and external 

validation is expected to be lower and comparable to the residual standard 

deviation of model calibration with high predictive power. The MBD is issued is 

qualitative diagnostic predictive power. A model bias deviation of zero indicates 

that model has no net prediction bias whereas a negative MBD indicates that the 

model predicts lower that experimental value and positive MBD indicates that 

model predicts higher than experimental data. The magnitude of MBD does not 

necessarily indicate extent of bias because one compound that is either over-

predicted or under-predicted may drive total residuals up or down respectively 

(Eq. 2.6).  

The predictive power of the model was also evaluated using y-

permutation, in which the chlorine demand or DBP formation values were 

randomly permuted while the descriptor values were fixed (33,38). This analysis 

is used to determine if the relationship between dependent variable and 

independent variables was by chance. The MLR r2 and q2 values obtained for 60 

repetitions were compared with those using non-permuted HOCldem or DBP 

formation. A model is robust if the average permuted R2 < 0.3 and q2 < 0.05 (33). 

The model predictive power can also be assessed visually using the plot 

of predicted data versus observed data and vice versa. A model with high 
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predictive power is expected to have data points scattered closely around the 1:1 

ideal model line (Figure 2.4).  
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Figure 2.4. Deviation of the calculated substituents steric effects in benzoic acid 
from ideal model. Data source: Karelson (37)  

 
The graphs may also have either confidence interval or predictive interval 

marginal lines or both. The plot of standardized residuals versus predicted data 

(Figure 2.5) is useful for testing constant variance of residuals or independence 

of variables and it may also show data points that are out of the ordinary. For a 

model derived at 95% confidence level, a data point with standardized residuals 

greater than +2.5 or less than -2.5 may be an outlier (33,39,41). A data point in 

training data becomes a suspected outlier if the standardized residual is outside 

or near the ±2.5 boundary and leverage (h) is greater than the cutoff leverage 

(h*), h>h*. The compound may be considered influential if the observed value 

have impacts on magnitude of model fits and coefficients (42,43). 
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Figure 2.5. Residual plot of substituent steric effects in benzoic acid. Data source: 
Karelson (37) 

 
The model with high predictive power will have the data points along the 

zero SDR line without a distinct pattern. Figure 2.5 shows there is some linear 

pattern in data points which is an indication that errors are not random and there 

is no constancy in variance though standardized residuals had an average 

around 1 (Mean = 0.97). The linear pattern of data points in Figure 2.5 suggests 

that the model had inadequate predictive power.  

2.6. Model Applicability domain 

 The applicability domain is defined as the physico-chemical and structural 

space on which the training set of the model has been developed, and for which 

it is applicable to make predictions for new compounds (33,36). Model 

applicability domain is evaluated by calculating standardized residuals of cross 

validation and leverage for training and external data sets. Leverage is the 

potential of an observation to affect the model fit and influence refers to the 

actual effect the observation has on model fit due to having extreme descriptor 
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values (30). Standardized residuals were calculated by taking ratio of residual 

(predicted value-experimental value) to root mean square error (Equation 2.7). 

Leverage, h, was calculated using the Equation 2.8 and its magnitude is 

independent of the measured parameter (31,43). 

RMSE
yySDR ii )ˆ( −

= ……………………………………………...…………………. (Eq. 2.7) 

where, yi and iŷ  are experimental and calculated values respectively 

i
TT

ii xXXxh 1)( −=  (i = 1, 2, …, n) …………………………………………… (Eq. 2.8) 

where, 

    X = N*k matrix of k model descriptor values of N training dataset  

   XT = transpose of matrix vector X 

    xi = row vector of compound xi 

   xi
T = transpose of row vector of compound xi 

    h* = is a warning leverage (Fixed at 3k’/N) 

 The applicability domain can provide three important pieces of information. 

First it can show compounds that are outliers in terms of model fit if standardized 

residuals of cross validation are out of the cutoff value of ±2.5 (40). However, a 

data point in training data set that is an outlier may not necessarily be influential if 

its h < h* (42). Secondly, a data point from the training data set may be influential 

in determination of model parameters if its h > h* and it will be considered most 

influential if the data point is an outlier falling outside the applicability domain and 

its h is far from h* (42). Thirdly, predicted values of the external data set that fall 

within the applicability domain are considered reliable. Those predicted values 
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falling outside applicability domain are predicted due to over-extrapolation of the 

model (i.e., h> h*) and the results may be not be reliable. The prediction results 

of external data points with h close to h* may be accepted with cautions. Further 

information on use of Williams plot to determine model calibration and prediction 

outliers and influential data points can be found in the literature (33,39,40,44,45). 

2.7. Other statistics for detection of outliers and influential data 

There were other statistics that were used to detect data points that were 

influential or both outlier and influential in terms of model calibration include 

Cook’s distance (Di), DiFference in FiT Standardized (DFFITS) and Difference in 

BETA Standardized (DFBETAS) (42,43). 

Cook’s distance (Di) of the ith observation in a training data set is an 

overall measure of impact on regression model coefficients upon deletion of ith 

observation in a training data set (42). Cook’s distance (Di) can be calculated 

manually using Equations 2.9 or 2.10. Nonetheless, most statistical software can 

calculate Cook’s distance automatically if that option is selected when performing 

regression analysis. Data points with large residuals and/or high 13H13Hleverage may 

also have high Cook’s distance and therefore may distort the outcome and 

accuracy of a regression. A simple operational guideline is that an ith observation 

with Di > 1 is considered an outlier. Such points require further examination using 

DFFITS and DFBETAS statistics in order to determine the impacts of the data 

points on model fits and coefficients respectively (42). 
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where, 

iŷ  is the prediction from the full regression model for observation j; 

)(ˆ ijy  is the prediction for observation j from a refitted regression model in 
which observation i has been omitted; 

iih is the ith diagonal element of the 14H14Hhat matrix; 

ie is the crude residual (i.e., the difference between the observed value 
and the value fitted by the proposed model); 

MSE  is the 15H15Hmean square error of the regression model; 

p  is the number of fitted parameters in the model 

DiFference in FiTs, Standardized (DFFITS) of an ith observation is a 

measure of a mean response variable obtained using model derived from training 

data set with the ith observation omitted (42,43). DFFITS can be calculated 

manually using Equation 2.11. 
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where iih , iŷ and )(ˆ ijy have the same meaning as described above, )(is is 

the standard error estimated without the ith observation, and hii is the 16H16Hleverage for 

the point. Points with 5.0' )(2 n
kDFFITS > are potentially influential. Here 'k  is the 

number of predictors plus 1 in the model and n  is total number of observations. 

The DFFITS of 2 is usually used as an operational cutoff value whereas absolute 

value for size adjusted DFFITS should not exceed 0.89 (42). Since the difference 
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in fit for an ith observation may be due to influence of one or more independent 

variables, it important to evaluate the change in coefficients of each descriptor.  

Difference in BETA, standardized (DFBETAS) is a measure of how much 

the coefficient, in standard deviation units, of an independent variable changes in 

regression model when an ith observation is deleted from training data set 

(42,43). DFBETAS can be calculated manually using Equation 2.12 or 2.13 and 

DFBETAS exceeding 5.02 −n is considered large (43). For such points, examine 

DFBETAS for those points with high DFFITS in order to determine the influential 

observations in the training data set.  The operational cutoff of DFBETAS is 2 

and absolute value for size adjusted DFBETAS should not exceed 0.63 (42). 
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where, n is data size, s(i) is standard deviation when ith row has been deleted and 

e(i) is residual vector when ith row has been deleted. βj is the beta when the ith 

observation is included and βj(i) is the beta when the ith observation is excluded, 

SEβj(i)  is standard error of beta when the ith observation is excluded (46). Cook’s 

distance, DFFITS and DFBETAS can be calculated using most of the commercial 

statistical software such as Minitab and Statistical Package for Social Science. 
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CHAPTER 3  
 

QSPR FOR PREDICTING CHLORINE DEMAND  

 

Abstract 

 Conventional methods for predicting chlorine demand (HOCldem) due to 

dissolved organic matter (DOM) are based on bulk water quality parameters and 

ignore structural features of individual molecules that may better indicate 

reactivity towards the disinfectant. The Quantitative Structure-Property 

Relationship (QSPR) modeling approach can account for structural properties of 

individual molecules.  Here we report a QSPR for HOCldem based on eight 

constitutional descriptors. Model compounds with HOCldem ranging from 0.1 to 

13.4 mole chlorine (HOCl) per mole compound (Cp) were divided into a 

calibration and cross-validation data set (N = 159) and an external validation set 

(N = 42). The QSPR was calibrated using multiple linear regression in a 5-way 

Leave-Many-Out approach and has average Rc
2 = 0.86 and standard error of 

regression (SDE) = 1.24 mol-HOCl/mol-Cp and p < 0.05. LMO Cross validation 

has average q2
LMO = 0.85 and the external validation has q2

(Ext) = 0.88, indicating 

a robust model.  The leverage of 7 of 42 compounds in the external validation 

dataset exceeded the critical value, suggesting that these compounds may be 

over-extrapolated. However, root mean square error (RMSE) of prediction in the 

external validation was 1.17 mol-HOCl/mol-Cp, and all compounds were 

predicted with ±2.5 standardized residuals (SDR). Application of the QSPR to 
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model structures of NOM predicts HOCldem comparable to reported 

measurements from natural water treatment.  

3.1. Introduction 

 Freshwater contamination from microbial pathogens poses serious public 

health risks worldwide (1,2,3). Chlorination has been the most commonly used 

technology to eliminate microbes in drinking water (1,4). However, chlorine 

residue reacts with traces of dissolved organic matter (DOM) in water to produce 

disinfection byproducts (DBPs) mostly through electrophilic substitution reactions 

(5). Disinfection byproducts include trihalomethanes (THMs), haloacetic acids 

(HAAs), haloacetonitriles (HACN), halonitromethames (HNMs) and haloketones 

(6). Most DBPs are carcinogenic and tumorgenic to test animals (7) and are 

being regulated in most countries (8,9,10). The regulation is based on 

precautionary principle (11) for there is little evidence to link DBPs directly to 

reproductive problems and carcinogenicity in humans (12,13).   

 Since the first detection of DBPs in 1970’s, the minimization of DBP 

production without compromising water quality has been a major challenge.  A 

closely related problem is prediction of the amount of HOCl consumed, or 

chlorine demand (HOCldem). Quantitative prediction of HOCldem for different water 

supplies has been undertaken in order to help optimize chlorine dosages while 

maintaining disinfection and minimizing DBP production.   

 Empirical models relate HOCldem to bulk water quality parameters like pH, 

ultraviolet absorption and dissolved organic carbon (7,8,14,16,19).  However, this 

approach treats DOM as a single, average entity while it is actually a mixture of 
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organic molecules with different chemical structures (20). The types, number and 

arrangement of functional groups in each molecule are expected to strongly 

influence reactivity towards chlorine during water treatment (21,22,23). 

 An alternative approach develops predictive models based on molecular 

structure and applies them to postulated DOM molecules. This approach is not a 

substitute for traditional experimental measurements, but can enable predictions 

of HOCl demand due to potential changes in the DOM-for example, changing 

pre-treatment methods or land use within the watershed. A predictive model has 

been developed which provides composition data for thousands of molecules in a 

DOM mixture (24,25). What is lacking is a rapid and quantitative method to 

predict HOCl demand from this molecular information.  

 Quantitative structure-property relationships (QSPRs) have been 

successfully used to predict physical properties of organic pollutants (26) and 

activities of pharmaceuticals (27).  Common variables used in QSPR modeling 

include electrostatic (e.g., partial charge), geometric (e.g., molecular volume), 

quantum-chemical (e.g., dipole moment) and typological descriptors (e.g., 

Weiner index) modeling (28). Constitutional descriptors reflect only the chemical 

composition without any reference to geometry or electronic structure, and are 

attractive for work with large numbers of molecules because of their conceptual 

and computational simplicity (29). 

 Despite numerous applications of QSPRs in environmental studies, we are 

unaware of any attempts to predict HOCldem using this approach. Here we use 

experimental data from the literature on HOCl consumption by small molecules to 
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develop, calibrate and validate a QSPR that predicts HOCldem based solely on 

constitutional descriptors. This QSPR is used to predict HOCldem by tannic acid 

and model DOM structures.   

3.2. Methodology 

3.2.1. Data collection 

  HOCldem data for model compounds were obtained various sources 

(19,20-23,30-34) and the complete list of compounds and HOCldem values is 

given in Tables S3.1, S3.2 and S3.3. There were 201 compounds with chlorine 

demand data that included both aromatic and aliphatic compounds with carboxyl, 

amine, alcohol, phenol, ether and other functional groups. The data were not 

acquired under consistent chlorination conditions; in particular, reaction times 

varied from 4 to 96 hours (Table 2.1). Since reaction with HOCl can require 

several days (35), the HOCldem values in the shorter-time studies were adjusted 

by comparing the chlorine demand of compounds included in both longer- and 

shorter-time studies. Two studies could only be compared if one or more 

‘common’ compounds were used in both. The ratio of HOCldem at a shorter 

reaction time (si) to HOCldem at longer reaction time (li) was calculated for each 

‘common’ compound. If the average ratio si/li for the two studies was less than 

0.85, only the shorter-time HOCldem was adjusted using Equation 3.1. The 

adjusted chlorine demands for the ‘common’ compounds given in Tables S3.1 

and S3.2 were used in calibration and validation along with those compounds 

which were not adjusted.  
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3.2.2. Significant descriptor selection 

The entire chlorine demand data comprised of 201 compounds. HOCldem 

ranged from 0.1 mole/mole for non-reactive compounds like ethanol up to 13.40 

mol-HOCl/mol-Cp for tyrosine, with a mean of 5.57 mol-HOCl/mol-Cp and 

standard deviation of 3.31 mol-HOCl/mol-Cp. The frequency distribution of 

HOCldem for the 201 compounds is given Figure 3.1. The 201 compounds were 

split into training data set (N = 159) and external validation data set (N = 42). 

Multiple linear regression was algorithm of choice for selection of significant 

descriptors in training data set using Minitab® statistical software, StatGuideTM 

version 15 (38). HOCldem was used as the dependent variable and descriptors as 

independent variables.  
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Figure 3.1. Distribution of the chlorine demand for 201 compounds  
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Descriptor selection process started with a complete list of all potential 

descriptors listed in Table 2.2 and 159 model compounds. Successive 

elimination of the insignificant descriptors (p < 0.05) left eight significant 

descriptors listed in Table 3.1. Correlation analysis of the eight descriptors 

indicated that the descriptors were independent because they had r < 0.7 (Table 

3.1). These descriptors were used in model calibration and validation.  

Table 3.1. Correlation matrix of the eight descriptors 

 RAI ArOH ACN CI OC AS ArORact ArORnact 
RAI 1.00        
ArOH 0.63 1.00       
ACN -0.44 -0.39 1.00      
CI -0.17 -0.16 -0.13 1.00     
OC -0.49 -0.33 0.12 0.13 1.00    
AS -0.16 -0.17 0.25 -0.05 -0.09 1.00   
ArORact -0.21 -0.22 -0.11 -0.05 -0.05 -0.06 1.00  
ArORnact 0.37 0.19 -0.18 -0.06 -0.04 -0.07 -0.09 1.00 

 

3.2.3. Calibration and validation  

 The training data (N = 159) were used for model calibration using MS 

Excel for Windows XP and cross validations- Leave-Many-Out (LMO) and Leave-

One-Out (LOO) cross-validations. In Leave-Many-Out cross validation, the 

training data were split into a calibration data set and a cross validation data set 

five times using stratified data splitting  so that each compound is used at least 

once in cross validation (39). Each of the 5 calibration data sets had 109 

compounds and each cross validation data set had 50 compounds (example, 

Tables S3.1 and S3.2) resulting in five subsets of calibration and cross validation 

data. Analysis Toolpak in MS Excel for Windows XP was used to perform 

multiple linear regression on each of the five calibration subsets using the eight 
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descriptors. Each of the five QSPR equations obtained was used to predict 

chlorine demand of the respective cross validation subsets and statistics of 

predictive power were obtained.  

The final QSPR was obtained from the five QSPR equations by averaging 

coefficients of descriptors and standard error of descriptors in the five equations. 

This equation was then used to predict HOCldem of each compound in the five 

cross validation subsets from which averaged statistics of LMO cross validation 

were obtained. The equation was also used to predict HOCldem of the all 159 

compounds in training data set and its statistics of cross validation were 

compared to the average statistics of cross validation obtained previously. The 

bias in data splitting in LMO was cross checked using Leave-One-Out (LOO) 

cross validation.  

Leave-One-Out cross validation used the entire 159 compounds. Each 

time 1 compound was left out and 158 compounds were used to calibrate the 

model to obtain Rc
2 and SDE, coefficient of each descriptor and its standard 

error. The QSPR obtained was used to predicting the chlorine demand of the 

single compound left out. The compound left out was put back in training data 

and another compound was taken out and the process was repeated 159 times 

to obtain 159 QSPR equations. The observed and predicted chlorine demands 

for each compound were then used to determine statistics of predictive power. 

QSPR was tested for predictive power using 42 compounds in listed in Table 

S3.1. The equations for calculating model predictive power and threshold values 

for each statistic are given in Chapter 2 (Section 2.3.2). 
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3.3. Results and Discussion 

The QSPR was calibration using the Leave-Many-Out (LMO) approach 

from which five QSPR equations for each of the five calibration data sets (Tables 

S3.4 and S3.5). The average QSPR model was obtained from the five equations. 

The coefficients, β, and standard error for each descriptor, based on Equation 

2.1, are given in Table 3.2. The average model obtained had regression Rc
2 = 

0.86 and SDE = 1.24 mol-HOCl/mol-Cp which is similar to Rc
2 = 0.87 and SDE = 

1.21 mol-HOCl/mol-Cp obtained by regression of HOCl demand for all 201 

compounds (Table S3.4). This indicates that stratified data splitting that was used 

in LMO had little bias and the effects of spread in the data using five-fold data 

splitting was minimized. 

Table 3.2. The average coefficients and standard errors for the eight descriptors 
obtained using LMO approach (Tables S3.4 and S3.5) 

 
Descriptor, xj Coefficient, βj StdE, εi (εj /βj)*100 
RAI 7.61 0.34 4.5 % 
ArOH 1.16 0.26 22.4 % 
ACN 3.00 0.20 6.7 % 
CI 1.23 0.23 18.7 % 
OC 1.01 0.28 27.7 % 
AS 2.37 0.54 22.8 % 
ArORact 0.49 0.17 34.7 % 
ArORnact -0.72 0.28 38.9 % 

 

3.3.1. LMO and LOO cross validations  

 In Leave-Many-Out cross validation (LMOCV), five validation datasets (N = 

50) were used (Table S3.2). Each QSPR equation (Tables S3.4 and S3.5) was 

used to predict chlorine demand for each of the five validation subsets and 

average statistics of cross validation were q2
LMO = 0.83, RMSELMO = 1.32 mol-

HOCl/mol-Cp and MBD = 1.01 % (Table S3.6). The average statistics obtained 
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from five plots of predicted HOCl demand against observed HOCl demand with 

y-intercept were Ri
2 = 0.84, ki = 0.86. When the intercept was set to zero the 

average values were Ro
2 = 0.81, ko = 0.97 and Rt = 0.03 (Table S3.6). These 

statistics indicate that the five QSPR equations have high predictive power 

(41,42). On the other hand, Leave-One-Out cross validation (LOOCV) cross 

validation had q2
LOO = 0.85, RMSELOO = 1.28 mol-HOCl/mol-Cp and MBD = -

0.55%, Ri
2 = 0.85, ki = 0.88, Ro

2 = 0.84, ko = 0.97 and Rt = 0.01 (Figure 3.2 & 

Table S3.6,). These results are comparable to those obtained from LMO cross 

validation.  

Prediction using the averaged model (Equation 2.1 and Table 3.2) on each 

of the five cross validation sets gave q2
LMO = 0.85, RMSELMO = 1.22 mol-

HOCl/mol-C and MBD = 0.99 % (Table S3.7). The average statistics obtained 

from five plots of predicted HOCl demand against experimental HOCl demand 

with y-intercept were Ri
2 = 0.86, ki = 0.87. When the intercept was set to zero the 

average values were Ro
2 = 0.84, ko = 0.97 and Rt = 0.02 (Table S3.7). Finally the 

average QSPR predictive power was tested using the entire training data set (N 

= 159) and obtained q2
LMO = 0.86, RMSELMO = 1.21 mol-HOCl/mol-C and MBD = 

-0.28% (Table S3.7). The plot of predicted HOCldem versus experimental HOCldem 

with and without y-intercept had Ri
2 = 0.86 and ki = 0.88 and Ro

2 = 0.85, ko = 0.97 

respectively (Figure 3.3) and Rt = 0.02. These statistics of predictive power are 

comparable and meet the criteria for checking predictive power of QSPR/QSAR 

(41,42). Therefore the average QSPR model obtained is robust 
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Figure 3.2. Regression of predicted HOCldem on observed HOCldem with y-intercept 
(Ri

2) and through origin (Ro
2) for LOOCV 
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Figure 3.3. Regression of predicted HOCldem on observed HOCldem with y-intercept 
(Ri

2) and through origin (Ro
2) for LMOCV 

 
Plotting predicted HOCldem against observed HOCldem showed that the two 

were linearly related and most of the points along the line for the ideal QSPR 

there were only a few points fell outside the standard deviation margins (Figure 

3.4).  
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Figure 3.4. Deviation of predicted HOCldem from ideal QSPR (N = 159) with ±2SDE 
margins 

 
The plot of standardized residuals against predicted HOCldem also supported 

the argument that the model has predictive power as the data points scattered 

with no distinct pattern with only a few points outside ±2.5 standardized residuals 

(Figure 3.5). The results from Leave-One-Out cross validation (N = 159) using 

statistical and graphical approaches were comparable to those obtained by LMO 

cross validation (Tables S3.6 and S3.7). The consistency of the two results 

implies that there was no serious bias in 5-way LMO data splitting employed to 

calibrate the QSPR model. 
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Figure 3.5. Standardized residuals for prediction of HOCldem by LMO 

3.3.2. External validation 

    The external validation data set (N = 42) has HOCldem ranging from 0.1 to 

11 mole chlorine per mole compound with a mean of 4.98 mol-HOCl/mol-Cp and 

standard deviation of 3.35 mol-HOCl/mol-Cp. The HOCldem for each test 

compound was computed (Equation 2.1 and Table 3.2) from which we obtained 

q2
Ext = 0.88, RMSEExt = 1.17 mol-HOCl/mol-C and MBD = 11.42% (Table S3.8). 

The plot of predicted HOCldem versus observed HOCldem with y-intercept gave Ri
2 

= 0.91, ki = 0.90 and the regression through origin gave Ro
2 = 0.87 and ko = 1.05 

(Figure 3.6) and the ratio Rt = 0.04. These statistics of power were comparable to 

average values obtained when each of the five QSPR equations was used to 

predict the test compounds (Table S3.8).  
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Figure 3.6. Plot of predicted HOCldem against observed HOCldem with y-intercept 

(Ri
2) and through origin (Ro

2) for external validation 

y-Permutation test was performed 60 times and the average permuted R2 was 

0.073 and q2 was -0.186 which are less than 0.3 and 0.05 respectively, implying 

that the model is robust. These external validation statistics are consistent with 

those obtained from LMOCV and LOOCV, satisfying the criteria for QSPR/QSAR 

predictive power (41,42). This confirms that the QSPR is robust. 

The plot of predicted HOCldem versus observed HOCldem in the external 

validation dataset showed a good linear relationship (Figure 3.7). However, most 

of the points lie above the line bisecting the two axes, indicating a bias toward 

over-prediction for compounds with HOCldem < 9 mol-HOCl/mol-Cp (Figure 3.7) 

consistent with MBD of 11%. Nonetheless, all compounds were predicted within 

±2.5 standardized residuals (Figure 3.8). This indicates that there were no 

extreme outliers in validation data set. 
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Figure 3.7. Deviation of predicted HOCldem from ideal QSPR for external validation 

data with ±2SDE margins 
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Figure 3.8. Standardized residuals for HOCldem.for external data 
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3.4. QSPR Applicability Domain 

Results from the applicability domain evaluation indicate that 3 of the 159 

compounds had cross validation standardized residuals beyond ± 2.5 (Figure 

3.8). 4-Iodophenol (SDR = -2.94), leucine (SDR = -2.70) and isoleucine (SDR = -

2.70) are therefore outliers in terms of fits in training data set. However they are 

not considered influential as they fall within model applicability domain and were 

therefore retained in the data set. One compound, acetylacetone acid (h = 0.30) 

had h > 0.25 (Figure 3.9).  
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Figure 3.9. Williams plot for detection of outliers and influential observations in 
training and external validation data sets 

 
The leverage of this compound is closer to the cutoff point of 0.25 and 

therefore, acetylacetone is not considered structurally most influential in 

determination of the model descriptors (39). Seven compounds in the external 

validation data had leverage, h > h* and far from acetylacetone. These 

compounds were 3-oxohexanedioic acid (h = 0.33), 3,4,5-Trimethoxybenzyl 

alcohol (h = 0.33), 3-(3,4,5-trimethoxyphenyl) propionic acid (h = 0.33), 3,4,5-
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Triethoxybenzyl alcohol (h = 0.33), 1,2,3-trihydroxybenzene (h = 0.36) and 3-

ethylaceto acetate (h = 0.54) and ornithinechlorohydrate (h = 54). The predicted 

values for these compounds were obtained due to over-extrapolation. 

3.5. Mechanistic Implications of the Descriptors in the QSPR 

The final model had 8 descriptors- RAI, ACN, CI, ArOH, AS, O:C, 

ArORnact and ArORact that differed in their contribution to HOCldem. The ring 

activation index (RAI), which accounts for the ratio of OH and NH2 to the number 

of rings, is the most significant and represents the degree of ring activation that 

favors electrophilic substitution reactions. Anilinic and phenolic compounds 

consume more chlorine than non-activated aromatics; however, more than one 

electron donor on the ring slows the reaction due to steric effects and 

antagonism among the substituents particularly when they are ortho or para to 

each other. Aliphatic carbon bonded to reduced nitrogen, NH2 (ACN), the second 

most significant descriptor, represents increased HOCldem due to chlorine 

substitution on amine which accounts for most of substitution reaction in amino 

acids (31).  

The remaining descriptors represent smaller but mechanistically distinct 

effect. β-dicarbonyl compounds have acidic carbons that allow HOCl to abstract 

the proton easily to form keto-enolates. However, the acidity of carbon decreases 

if sandwiched between two carboxylic acids or between carboxylic acid and keto 

group or aldehyde group. Sulfur increases reactivity of the molecules because 

sulfur has lone pairs of electron that could be donated and thiols tend to be more 

reactive than alcohols; e.g., benzothiomide had higher chlorine demand than 
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benzamide as was the case of phenylthiourea and acetanilide. The more 

oxidized molecules, (i.e., high O:C) are less reactive towards HOCl due to having 

fewer reduced carbons. This agrees with the observation that oxalic acid, fumaric 

and maleic acid had HOCldem of less than 1 (21). Although NO2 and COOH in 

molecules like nitrobenzene and benzoic acid deactivate the ring, the HOCldem 

will always be positive (21) as account for by the O:C descriptor. 1-Nitroalkanes, 

such as nitromethane, has been reported to undergo chlorine substitution at α-

carbon at pH 6-8 (44) and the O:C can account for prediction of its HOCldem in 

this case as well. Alkoxy groups are weak ring activators relative to OH and NH2. 

When alkoxy groups are present with strong ring activator (ArOH or ArNH2) its 

contribution is less significant or negative due antagonistic effects. Thus 

βArORnonact is negative, and the more the number of ArORnonact in the ring the 

lower the HOCldem relative to aniline or phenol (23). However, when alkoxy 

groups are the only activating groups in the ring or they are present with 

deactivating groups, they will activate the ring and βArORact is positive as observed 

in the case of 3,5-dimethoxybenzoic acid and 3,4,5-trimethoxybenzoic acid 

(23,30).  

Constitutional descriptors may fail to explain reliably differences in 

HOCldem of isomeric molecules because they cannot completely represent steric 

and electronic effects on reactivity towards HOCl.  For instance, the aromatic 

isomeric pairs 1,2,4-trihydroxybenzene (HOCldem = 3.9 mol-HOCl/mol-Cp) and 

1,2,3-trihydroxybenzene (HOCldem = 6.9 mol-HOCl/mol-Cp), 2-nitrophenol 

(HOCldem = 9.60 mol-HOCl/mol-Cp) and 4-nitrophenol (HOCldem = 7.60 mol-
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HOCl/mol-Cp), and 2-methoxy phenol (HOCldem = 7.7 mol-HOCl/mol-Cp) and 4-

methoxyphenol (HOCldem = 3.5 mol-HOCl/mol-Cp) show remarkable differences.  

Aliphatic isomers can show similar differences- For instance, 3-oxopentanedioic 

acid (HOCldem = 5.3 mol-HOCl/mol-Cp) and 2-oxopentanedioic acid (HOCldem = 

1.4 mol-HOCl/mol-Cp). 

3.6. Prediction of Chlorine Demand of Large DOM Surrogates 

The QSPR model is derived using model compounds of low molecular 

weight. The predictive power of the QSPR model (Equation 2.1 and Table 3.3) on 

large molecules was tested using tannic acid (C76H52O46, MW = 1701) which has 

an experimental chlorine demand of 32.4 mol-HOCl/mol-Cp (~35.5 mmol-

HOCl/g-C) at pH 7 (34). The predicted chlorine demand with standard error of 

prediction was 33.42 ± 6.50 mol-HOCl/mol-Cp which is equivalent to 36.61 

mmol-HOCl/g-C.  This prediction is slightly higher than experimental, consistent 

with external validation results. Experimental results for typical fulvic acids are 

27-33 mmol-HOCl/g-C (35), consistent with this prediction. 

The predictive power of the QSPR model was also tested using two 

proposed model structures of fulvic acid (45). The first fulvic acid model structure 

(FA-1) and the second fulvic acid structure (FA-2) had molecular formulae of 

C43H44O25 (MW = 960) and C42H44O25 (MW = 948) respectively. The 

constitutional descriptors were calculated and used to predict HOCldem for FA-1 

of 8.37 mol-HOCl/mol-Cp (~16.21 mmol-HOCl/g-C) and 7.96 mol-HOCl/mol-Cp 

(~15.78 mmol-HOCl/g-C) for FA-2. These two model structures have two phenyl 

rings substituted with at most two hydroxyl groups and ketones which are 
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expected to contribute most to predicted HOCldem at pH 7 and chain of aliphatic 

carboxylic acid and esters in the molecules would not. Despite an unavailability 

of experimental data, these HOCldem predictions are within the expect range of 

HOCldem of phenolic model compounds reported in literature (21,22,23,32).  

3.7. Conclusions 

In this study a robust QSPR for predicting chlorine was developed using 

chlorine demand data for model compounds. The QSPR had eight descriptors 

that explained over 84% of variance in chlorine demand. The model was 

validated by LMO cross validation and external validation data which indicated 

that it met criteria for predictive power. However, the model showed that it over-

predicted chlorine demand of most compound in external data and prediction of 4 

out 27 compounds in the data set were not reliable. One of the reasons is that 

the QSPR used constitutional descriptors which cannot explain steric and 

position isomerism effect on chlorine demand. Thus, combination of 

constitutional descriptors with quantum chemical, geometrical, electrostatic and 

typological descriptors may be important for both the prediction, determine 

reaction rates and extrapolation chlorine demand of molecules with diverse 

structures.  
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CHAPTER 4  

 

QSPR FOR PREDICTING TOX FORMATION 

 

Abstract 

Chlorination of drinking water treatment produces many disinfection 

byproducts, the majority of them unknown. Total organic halide (TOX) is used as 

a surrogate for formation of toxic disinfection byproducts though it is currently not 

being regulated. In this study 49 compounds were used to train a quantitative 

structure-property relationship (QSPR) for predicting TOX formation in moles of 

chlorine (Cl) per mole of a compound (Cp) (mol-Cl/mol-Cp). The 4 descriptor 

QSPR had Rc
2 of 0.72 and standard deviation of estimation (SDE) of 0.43 mol-

Cl/mol-Cp. The Leave-One-Out validation of the QSPR (q2
LOO = 0.60, RMSE = 

0.5 mol-Cl/mol-Cp, N = 49) and external validation (q2
Ext = 0.67, RMSE = 0.48 

mol-Cl/mol-Cp, N = 12). In addition, statistical power analysis showed the QSPR 

had high predictive power on external validation data because Rt
 < 0.1 and 0.85 

≤ k’ ≤ 1.15 indicating that the model is robust. The prediction of TOX formation of 

tannic acid and two model fulvic acids gave TOX formation between 4.05-4.98 

mmol Cl/g-C which is consistent with 2.14-4.11 mmol-Cl/g-C range for TOX 

formation from dissolved organic matter reported for some river waters in the 

United States and Canada.  
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4.1. Introduction 

Drinking water disinfection is imperative to protect the public from 

waterborne diseases.  Chlorine is the most commonly used chemical disinfectant 

in most developed countries and is the disinfectant of choice in developing 

countries (1,2). The advantages of chlorine over the alternative disinfectants are 

that chlorine is the cheapest in terms of capital investment, operating and 

maintenance costs (3,4). The decline in waterborne diseases outbreaks in many 

countries is associated with chlorination of potable waters (5,6). However, the 

reaction of chlorine with traces of dissolved organic matter (DOM) produces 

disinfection byproducts which are potentially toxic. Since the discovery of 

trihalomethanes (THMs) in the early 1970’s (7,8) there have been rapid 

advances in technology leading to identification of more classes of disinfection 

byproducts (DBPs) (9,10,11,12).  

The chlorination of drinking water produces several chlorinated 

disinfection byproducts and only a fraction of them have been identified (13,14). 

However, toxicological studies have been based on individual trihalomethanes or 

haloacetic acids at doses which sometimes higher than normally present drinking 

water (9). The interactive toxic behavior of the mixture of DBPs may be more 

toxic than individual DBP. Thus, use of total organic halides (TOX) as a surrogate 

for toxic DBPs in drinking water becomes attractive. Studies have shown that 

TOX varies linearly with water quality parameters such as UV absorbance and 

dissolved organic carbon (15,16) and so do DBPs (17,18). Since both TOX and 

DBPs vary with DOC and UV absorbance, they are also expected to have some 
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linear relationship between themselves (19). Thus, total organic halide (TOX) is a 

potential surrogate for toxic DBPs in drinking water (14,20) though it is not 

currently being regulated (14).  

The US Environmental Protection Agency (USEPA) released Stage 2 

Disinfection Byproduct Rule (DBPR) that mandates monitoring of bulk water 

parameters (TOC and SUVA) as indicators of DBPs formation potential, for all 

drinking water utilities (21). The rule was released though USEPA was aware of 

the study by Weishaar et al. (17) that showed that the relationship between DOC 

and UV with DBPFP is not always linear and later studies supported results of 

their work (22,23,24,25). Thus, prediction of TOX formation in drinking water 

poses new challenge to water researchers.  

It is important at this point to have a short discussion on total organic 

halides measurement protocol and interpretation of TOX data with respect to 

chlorine demand.  Review of data for chlorine demand and TOX formation 

obtained from the same study showed that there is a lack of mass balance 

between the two (26,27,28). TOX analyzers have six key parts: adsorption 

module, boat inlet, pyrolysis furnace, titration cell, microcoulometer detector and 

strip chart recorder (29). Poor sample preparation and not adhering to sample 

analysis protocol at these six stages may lead to lack of mass balance. Higher 

TOX formation than expected may suggest contamination from reagents, 

glassware, gases or activated carbon used (29). Low TOX formation may 

suggest that there may loss of chlorine from chlorinated organic intermediates in 

the form of inorganic chlorine compounds as suggested by some proposed 
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reaction mechanisms (26,30) or there may be low recovery of TOX due to 

irreversible adsorption of some chlorinated byproducts (31,32,33) and other 

factors are detailed in Method 9020B (29), 

 The TOX formation models available in literature are mainly based on 

bulk water quality despite many studies showing water quality parameters such 

as DOC and UV fluctuate with time and space (22,23,25). The models derived 

based on these parameters may not be robust. Therefore, predictive models 

based on structural or functional group information, important in chemical 

reactivity, may be more stable than those based on bulk water parameters. 

Apparently no TOX formation model has been reported based on structural 

properties of individual molecules. Quantitative structure-property relationship 

(QSPR) using constitutional descriptors have been used in previous works to 

model degradation of natural organic matter and metal complexation (34,35). 

Constitutional descriptors are more attractive than quantum molecular 

descriptors (36,37) because there is no need to optimize the molecules, which is 

useful when dealing with mixtures of thousands or tens of thousands of 

structures (like DOM).  

The objective of this paper is to develop a new and robust QSPR that 

predicts TOX formation from constitutional descriptors and to define its 

applicability domain. This QSPR would be integrated with an AlphaStep model 

for DOM in order to predict TOX formation from disinfection of surface waters. 
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4.2. Methodology 

4.2.1. Data sources 

This research work is based on data mining and utilized water chlorination 

experimental data for model compounds reported in three publications 

(26,27,28). TOX formation ranged from 0.004 to 3.00 mol-Cl per mol-Cp for 1,3-

dihydroxybenzene (resorcinol) and (β-diketones. The average TOX formation for 

the entire data set was 0.84 mol-Cl/mol-Cp with standard deviation (Stdev) of 

0.80 mol-Cl/mol-Cp (TOX formation data in Tables S4.1 and S4.2). The Stdev 

was high because TOX formation data was skewed to the low end (Figure 4.1).  
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Figure 4.1. Frequency distribution of TOX formation data (N = 61) 

4.2.2. Generation of descriptors 

The data for 61 compounds were divided into model training data (N = 49) 

and external validation data (N = 12) by pseudo random data splitting. That is 

random splitting was done repeatedly until the external validation data contained 
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the various classes of compounds in the training data. The training data was not 

split further into calibration data set into Leave-Many-Out cross validation data 

set because the size of the training data was too small to have a robust average 

QSPR. The constitutional descriptors listed in Table 2.1 were computed from the 

structures of the compounds. Compounds lacking certain atom or group were 

given a value of zero for that descriptor. A descriptor was included in descriptor 

selection and model calibration only if it had non-zero values for at least five 

compounds. The data was split randomly into training and external validation 

data. The external validation data was set aside to validate the model because it 

was not use in model training. 

4.2.3. Descriptor selection  

The descriptors were selected by multiple linear regression of TOX using 

49 compounds in training data set with constitutional descriptors listed in Table 

2.1 using Minitab 15 Software (38). MLR through the origin was carried out using 

Equation 2.1 at 95% confidence interval. The descriptor selection process was 

repeated after dropping those with p > 0.05, until all remaining descriptors were 

significant (p < 0.05) and correlation coefficient  of each pair of descriptors should 

be < 0.7 (r2 = 0.49) as criteria for independence of descriptors (39). 

4.2.4. Model calibration  

The QSPR was calibrated by performing MLR of TOX formation (N = 49) 

on the four descriptors through the origin using Analysis ToolPak for MS ExcelTM 

(Windows XP). The coefficient of determination for QSPR calibration (Rc
2) was 

obtained by using Equation 2.2. The MLR output provided coefficients of 
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descriptors and standard errors for the QSPR. The statistics of predictive power, 

standardized residuals (SDR), leverage, Cooks distance (D), difference in fit 

standardized (DFFITS) and difference in beta standardized (DFBETAS) were 

calculated using formulae given in Chapter 2. 

4.2.5. Internal and external validations  

The QSPR was validated using internal cross-validation and external 

validation from which statistics of predictive power of the QSPR were calculated. 

The statistical indicators evaluated include q2, Rc
2, Rt = (Ri

2-Ro
2)/Ri

2 and k 

(40,41). The q2 is defined as the coefficient of determination for validation (i.e., 

R2) which can be calculated using Equations 2.3 and 2.4. The terms q2
LOO and 

q2
ext are used to denote q2 for LOOCV and external validation respectively. 

4.3. Results and Discussion 

4.3.1. QSPR calibration  

The descriptor selection process gave four significant constitutional 

descriptors (p < 0.05) namely carbonyl index (CI), number phenols per carbon 

(ArOH:C), square root of number of heteroatoms (sqrtHeA), and the log of 

hydrogen to carbon ratio (logH:C). Correlation analysis showed that all pairs of 

descriptors had absolute correlation coefficients <0.7 (Table 4.1) indicating that 

they were mutually independent (41).  

Table 4.1. Correlation matrix of the descriptors 

 Cl ArOH:C sqrtHeA logH:C 
Cl 1.00    
ArOH:C -0.18 1.00   
sqrtHeA -0.18 -0.27 1.00  
logH:C -0.06 -0.48 0.09 1.00 
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The calibration data set listed in Table S4.1 was used to derive the QSPR and for 

internal validation. The model descriptors listed in Table 4.2 show that order of 

importance of the descriptors was: CI (14.9%) > ArOH:C (19.7%) ≈ sqrtHeA 

(19.5%) > logH:C (40.0%) The statistics of fit indicated that the QSPR could 

explain 72% (Rc
2 = 0.72) of the variance in TOX formation with a standard 

deviation of regression, SDE of 0.43 mol-Cl/mol-Cp. This suggests the model 

would have good predictive power particularly for those molecules that produce 

TOX above 0.43 mol-Cl/mol-Cp.  

Table 4.2. QSPR for TOX formation (N = 49) 

Descriptor, xj Coefficients, βj StdE, εj (εj /βj )*100 
Cl 0.54 0.08 14.0% 
ArOH:C 5.33 1.05 19.7% 
sqrtHeA 0.33 0.06 19.5% 
logH:C -1.36 0.54 40.0% 

 

4.3.2. QSPR validations 

Internal validation 

Leave-One-Out cross validation was used to validate the QSPR using 

calibration data set (Table S4.1) in order to obtain additional statistics of 

predictive power, q2, k and Rt. Results showed that q2
LOO = 0.60, Rt

’ = 0.001, ki’ = 

0.95 and ko’ = 0.99 (Table 4.3) and all these parameters met criteria for predictive 

power (40,41). The RMSE of LOOCV was 0.50 mol-Cl/mol-Cp which is similar to 

model standard error of 0.43 mol-Cl/mol-Cp.  

Table 4.3. QSPR predictive power using internal and external validation (Unit of 
RMSE is in mol-Cl/mol-Cp and MBD is in %) 

 
 q2 MBD RMSE Ri

2’ ki’ B Ro
2 ko’ Rt’ 

LOOCV 0.60 -0.88 0.50 0.60 0.95 0.05 0.60 0.99 0.001 
External data 0.67 -0.70 0.48 0.65 1.14 0.13 0.65 1.04 0.004 
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The performance of the QSPR was evaluated by visualizing the distribution of the 

points along the ideal model line in the graph of predicted TOX formation versus 

experimental TOX formation (Figure 4.2) and standardized residual plot (Figure 

4.3).  

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Experimental TOX (moll/mol)

Pr
ed

ic
te

d 
TO

X 
(m

ol
/m

ol
)

 

Figure 4.2. Deviation of predicted TOX formation to ideal QSPR (N = 49). The 
dotted lines represent the ±2SDE margins 
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Figure 4.3. Predictive power diagnosis using SDR plot (N = 49)  
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Figures 4.2 and 4.3 revealed that 2-oxobutanedioic acid and coniferyl alcohol 

were slightly outside the ±2SDE margins. Thus, the QSPR underpredicted TOX 

formation for coniferyl alcohol (SDR = -2.56) but it was not considered an outlier 

because it is right at the margin. 

The total TOX formation in calibration data is 38.98 mol-Cl/mol-Cp and the 

49 compounds were divide into three groups based on TOX formation trends. 

The first group includes 8 compounds with higher TOX formation (1.50 ≤ TOX ≤ 

3.00 mol-Cl/mol-Cp) which accounts for a total of 18.23 mol-Cl/mol-Cp (46.75%) 

of the total TOX formation in the training data set. Although the QSPR predicted 

slightly low for 7 out 8 compounds in this group, they were within ±2.5 

standardized residuals. Coniferyl alcohol, ferulic acid, tyrosine and 

syringaldehyde showed slightly lower TOX formation than the rest of the 

compounds in the group. They lack β-diketone or hidden carbonyl (as in 1,3-

dihydroxybenzene) functionality which are responsible for high chlorine 

consumption and DBPs formation of TOX (27,42). Nonetheless coniferyl alcohol 

and ferulic acid have aliphatic C=C in their structure and tyrosine has amine 

group in aliphatic substituent (alanine moiety) which are good sites for chlorine 

attack. These two functionalities set these compounds apart from phenolic 

compounds in the other groups in terms of TOX formation. This group contains 

the most reactive compounds and accounts for 16.3% of the total number of 

compounds in the training data set.  

The second group has 20 compounds with intermediate TOX formation 

(0.45 ≤ TOX ≤ 1.30 mol-Cl/mol-Cp) and their total TOX is 17.81 mol-Cl/mol-Cp. 
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The TOX formation accounts for 45.69% of the total TOX formation in training 

data set. Nineteen compounds in this group were derivatives of phenol, aniline, 

3,4,5-trimethoxy benzenes and 3,4,5-triethoxybenzenes. The QSPR predicted 

slightly higher than expected the majority of the compounds in this group. These 

compounds share one structural feature in common, i.e., they have NH2, OH, 

OCH3 or OC2H5 as electron donating groups in the aromatic ring. Though 

chlorine demand data for these compounds showed that anilines and phenols 

had higher chlorine demand than 3,4,5-trimethoxy benzenes or 3,4,5-triethoxy 

benzenes (26), there is no similar trend in TOX formation. This may attributed to 

differences in adsorption affinity of adsorbates to adsorbent (activated carbon) in 

TOX analyzers.  

Adsorption of phenolics on activated carbon may occur irreversibly or 

reversibly as determined relative amounts of adsorbate recovered by desorption 

process (31,32,33,43,44). The factors that influence adsorption include: nature of 

adsorbent (e.g., pore size, functional groups, ash content), nature of adsorbates 

(e.g., concentration, functional groups, size, solubility) and conditions (e.g., pH, 

ionic strength) of liquid medium (45), Garcia-Araya et al. (44) studied reversible 

adsorption of benzoic acids on activated carbon and found that syringic acid was 

more adsorbed on activated carbon than gallic acid and para-hydroxybenzoic 

acid. Syringic acid is less soluble in water than other two phenolics and tends to 

spend more time on solid phase than liquid phase. Reversible adsorption of small 

chlorinated organic molecules on activated carbon has also been reported to be 

affected by solubility and hydrophobicity: Trichloroethylene > 1,2-
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dichloroethylene > 1,1-dichloethane > carbon tetrachloride > 1,1,1-

trichloroethane > chloroform (43). Based on adsorption studies, chlorinated 

phenolics or some of the chlorinated organic byproducts formed from ring 

opening might be strongly adsorbed. That may account for low recovery.  

The third group of compounds had 21 compounds with lower TOX 

formation than the first two groups (0.004 ≤ TOX ≤ 0.40 mol-Cl/mol-Cp). These 

compounds contributed 2.94 mol-Cl/mol-Cp to the total TOX formation in training 

data set. This was only 7.6% of the total TOX formation but 39% of the 

compounds in the training data. It was found that over 60% of the compounds in 

this group were non-aromatic amino acids which had surprisingly very low TOX 

formation despite having chlorine demands between 2 to 8 mol-Cl2/mol-Cp (28). 

The potential site for chlorine substitution for most aliphatic amino acids is NH2 

on the α-C. Nonetheless, the acidity of α-H is generally very weak because it is 

adjacent to C=O for carboxylic acid. Low TOX formation from chlorination may be 

attributed to two possibilities. Although amino acids consume high chlorine, most 

of the chlorine consumed might be converted into inorganic chlorine. The 

reaction mechanism proposed by Chu et al. (30) showed chlorine added to 

amino acids may be lost as HCl in later steps of chlorination reaction. Elimination 

of CO2 and HCl from may lead to formation of aldehyde and cyanoalkane. 

Substitution of the two hydrogens on NH2 may increase electron deficiency on 

the α-C. The nucleophilic attack on α-C (sp3) may lead to a loss of NH2 as 

monochloroamine (ClNH2) or dichloroamine (HNCl2). HCl and chloroamine, if 

they are formed, may not be detected by instruments used to measure TOX. The 
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study by Chu et al. (30) did not try to detect the possible inorganic byproducts 

from chlorination of amino acid. The lack of mass balance between chlorine 

consumed and TOX formation requires detailed investigations in order rule out or 

justify proposed mechanisms. 

QSPR external validation  

The QSPR was validated using an external validation data set of 12 

compounds that represented most of the functional groups in the training data 

set. The descriptors in the QSPR were calculated from the structures and 

substituted in QSPR (Table 4.2) to estimated TOX formation. The statistics of 

predictive power for external validation were: q2
ext = 0.67, Rt

’ = 0.004, ki’= 1.14 

and ko’ = 1.04 (Table 4.3). These statistics meet minimum requirements for 

QSAR/QSPR predictive power (40,41) and therefore the model is robust.  In 

addition, external validation RMSE was 0.48 mol-Cl/mol-Cp which was 

comparable to SDE (SDE = 0.43 mol-Cl/mol-Cp). Qualitative evaluation of model 

bias showed that external validation had MBD of -0.70% (Table 4.3) suggesting 

that the QSPR performance was good. The plot of predicted versus experimental 

TOX formation showed some deviation of the ideal model fitting line but the TOX 

was predicted within ±2SDE (Figure 4.4). The standardized residual plot 

confirmed that all compounds were predicted within ±2.5 standardized residuals 

(Figure 4.5) which also indicates that the model has high predictive power and is 

robust. 
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Figure 4.4. Deviation of predicted TOX from ideal QSPR for external validation 

data. The dotted lines represent the ±2SDE 
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Figure 4.5. Model predictive power on external validation data using SDR plot 
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4.3.2. Applicability domain of the QSPR 

The model applicability domain (AD) was used to assess presence of 

compounds in the training data set that were extreme to influence coefficients of 

the QSPR. It was also used to find out compounds in the external validation data 

that were prediction outliers (predicted due to extrapolation beyond the 

calibration data). The four descriptors QSPR calibrated by 49 compounds has 

warning leverage h* of 0.31 (Figure 4.6). The compounds 4-(3,4,5-

Trimethoxybenzoyl) butyric acid (SDR = -0.38, h = 0.34), 5,7-dioxooctanoic acid 

(SDR = -1.17, h = 0.34) and 1,3-dihydroxybenzene (SDR = 0.77, h = 0.57) were 

out of the applicability domain but within the ±2.5 SDR boundary. Of these, 1.3-

dihydrozybenzene is a potentially influential compound because its h is far from 

h*. The Cook’s distance for 1.3-dihydrozybenzene was 0.45 and 0.07 which was 

less than the cutoff value of 1 (46) and therefore was not considered an outlier 

which agrees with results from residual plot analysis. The DFFITS and DFBETAS 

statistics (Chapter 2, Eqs 2.11 & 2.12) were used to evaluate their impacts on 

regression fit and coefficients of descriptors in QSPR upon omission of 1,3-

dihydroxybenzene from the training data set. It was found that DFFITS was <2 

and DFBETAS for each descriptor was less than <2. This means that the 

compounds had little influence on the coefficients of descriptors in the QSPR and 

model fit (46). Therefore 1,3-dihydroxybenzene was retained in the training data 

set. There were three compounds in the external validation data set with 

leverage far greater than 0.31, 2-aminophenol (SDR = 1.99, h = 0.44), cysteine 

(SDR = -0.62, h = 0.50) and 3-oxopentanedioic acid (SDR = -1.35, h = 0.96). 
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Therefore, these three compounds were predicted due to extrapolation of the 

QSPR. 
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Figure 4.6. Williams plot indicating outliers and influential data points 

4.3.3. Prediction of other model compounds 

The QSPR was tested for its predictive performance using tannic acid (47) 

and two proposed structures of fulvic acid (48). The Cl, ArOH:C, sqrtHeA and 

logH:C were calculated from the three structures. The predicted TOX formation 

for tannic acid (MW = 1701) was 3.87 mol-Cl/mol-Cp (~150.63 μg-Cl/mg-C). The 

first fulvic acid model structure, FA-1 (MW = 960) had predicted TOX formation of 

2.09 mol-Cl/mol-Cp (~143.88 μg-Cl/mg-C). The second fulvic acid, FA-2 (MW = 

948) has TOX formation of 2.51 mol-Cl/mol-Cp (~176.89 μg-Cl/mg-C). The 

proposed fulvic model structures and tannic acid have phenols, ethylene and 

ketone functional groups which play role in chlorine demand and DBPs 

formation. The predicted TOX formations from the three structures were 

comparable to TOX formation for coniferyl alcohol, syringaldehyde, 5,7-
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dioxooctanoic acid and 1,3-dihydroxybenzene (26,27). However there was no 

experimental formation for tannic acid, FA-1 or FA-2 to compare with. Some 

other studies showed raw water formation from Massachusetts, Virginia, Texas, 

Quebec and Manitoba had TOX formation (μg/L) per DOC (mg/L) ranging from 

77.80 μg-Cl/mg-C to 192.50 μg-Cl/mg-C (14). The model predictions of TOX 

formation fall within this range.  

The QSPR was used to predict TOX formation for tannic acid and two 

fulvic acid model structures. The structures of the molecules were phenolic in 

nature but differed in molecular weight and chlorine demand. Chlorine demand 

for tannic acid was 32.4 mol-Cl2/mol-Cp (47) and calculated demands for FA-1 

and FA-2 were 8.37 mol-Cl/mol-Cp and 7.96 mol-Cl/mol-Cp (Chapter 3).  

However, the QSPR TOX formation predictions ranged from 2.09 to 3.87 mol-

Cl/mol-Cp. It would be expected that tannic acid should have had far higher TOX 

formation than fulvic acids based on chlorine demands. The low TOX formation, 

as predicted by QSPR, may suggest that the descriptors failed to explain the 

expected formation in tannic acid. The QSPR could also have given close 

prediction and low TOX formation may then be associated with irreversible 

adsorption of organic compounds on the activated carbon in the TOX analyzer. 

The unexpected low TOX formation relative to chlorine demands was also noted 

when experimental TOX formation data for phenolic compounds and 3,4,5-

triethoxybenzennes or 3,4,5-triethoxybenzenes were compared. They did not 

show clear differences despite having quite different chlorine demands (Chapter 

3). Thus, it is important to bear in mind that TOX recovery from sample is not 
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100% efficient (37,49) and that may affect the predicted TOX formation for some 

classes of phenolic compounds.  

4.4. Conclusions 

A robust QSPR for predicting TOX formation from chlorination was 

developed using 49 model compounds and four constitutional descriptors. The 

model showed high predictive power on external validation data. However, 

predictions of TOX formation for three compounds in the external validation data 

may not be reliable because they were out of the applicability domain (predicted 

due to extrapolation of the QSPR). The prediction of TOX formation of tannic acid 

fell within the range of TOX formation reported in raw waters in United States and 

Canada.  
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CHAPTER 5  

 

QSPR FOR PREDICTING TCM FORMATION 

 

Abstract 

Chlorination is the most widely used technique of water disinfection but 

leads to formation of chloroform (trichloromethane or TCM) and other disinfection 

by-products. This work reports the first quantitative structure-property relationship 

(QSPR) for predicting TCM formation in chlorinated drinking water. Model 

compounds (N = 117) drawn from ten literature sources were divided into training 

data (N = 90, analyzed by 5-way Leave-Many-Out internal cross-validation) and 

external validation data (N = 27). The QSPR internal cross validation had q2 = 

0.94 and root mean square error (RMSE) of 0.09 moles TCM per mole 

compound (Cp), consistent with external validation q2 of 0.94 and RMSE of 0.08 

mol-TCM/mol-Cp, and met criteria for high predictive power and robustness. In 

contrast, the QSPR using a logTCM performed poorly and did not meet criteria of 

predictive power. The QSPR predictions are consistent with experimental values 

for TCM formation from tannic acid and for model fulvic acid structures. The 

descriptors used are consistent with a relatively small number of important TCM 

precursor structures based upon 1,3-dicarbonyls or 1,3-dihydroxybenzenes.  
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5.1. Introduction  

Most water treatment plants in the US and European countries use 

chlorine for chemical disinfection of water (1). Chlorine is often chosen because it 

is the cheapest of all known disinfectants in terms of investment and operating 

costs (2).While chlorine has contributed to the decline in water borne disease 

outbreaks (3.4), there has been growing public health concern over the products 

from the reaction of chlorine with dissolved organic matter (DOM) during drinking 

water treatment. Trihalomethanes (THMs) were the first class of compounds 

discovered (5,6) and since then more classes have been identified including 

trihaloacetic acids (THAAs) and trihaloacetonitriles (THANs) (7), these are 

collectively referred to as disinfection byproducts (DBPs). The extent of the threat 

posed to human health by DBPs remains controversial.  Laboratory tests have 

shown that DBPs, particularly THMs and THAAs, are carcinogenic or tumorgenic 

to test animals (8). Epidemiological studies have found potential risks of 

miscarriage and stillbirth at highest sextile of THMs and THAAs concentrations 

(9,10,11). However, inconsistencies in various epidemiological studies led the 

International Agency for Research on Cancer (IARC) to conclude that there is no 

proven link between drinking water DBPs and cancer incidence (12,13). The 

IARC conclusions were supported by a later study which took into account 

methodological problems in the previous studies (14). 

Current modeling practices for DBP formation use bulk water quality 

parameters like dissolved organic carbon (DOC) concentration, pH and ultraviolet 

light absorbance at 254 nm (UV254) (8,15,16,17). The US Environmental 

Protection Agency (USEPA) Stage 2 Disinfection Byproduct Rule mandates 
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monitoring of bulk parameters as indicators of DBP formation potential for all 

drinking water utilities (18). Empirical models based on bulk water parameters 

have been summarized in the literature (19,20), and UV254 and DOC have been 

reported to have linear relationships with DBP formation (19,21,22,23). 

Nonetheless, these linear relationships between DOC or UV254 and DBP 

formation do not always hold (24,25,26,27) and no structural or functional group 

information on individual molecules can be derived from the bulk parameters. No 

model has been reported based on structural properties of individual molecules.   

Combining an agent-based model of DOM chemistry with quantitative 

structure-property relationships (QSPRs) using constitutional descriptors enables 

a structure-based approach to this heterogeneous mixture (28,29,30). The agent-

based model provides structural information for hypothetical DOM mixtures 

based on ecosystem and environmental factors (28). QSPRs using constitutional 

descriptors are rapidly and easily computed for each molecule in the mixture 

(DOM may include tens of thousands of structures).  

The objective of this work is to develop a new and robust QSPR that 

predicts chloroform formation from constitutional descriptors and to define its 

applicability domain. 

5.2. Methodology 

5.2.1. Data source  

This research work is based on data mining and utilized experimental data 

reported in ten publications (31,32,33,34,35,36,37,38,39,40). TCM formation 

ranged from <0.001 mol-CM/mol-Cp for aliphatic amino acids to >0.80 mol 
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TCM/mol compound for aromatic compounds with at least one 1,3-dihydroxy 

substituted aromatic ring and aliphatic β-diketones. The average TCM formation 

for the entire data set was 0.177 mol/mol with standard deviation (Stdev) of 0.318 

mol-TCM/mol-Cp (TCM formation data in Tables S5.1, S5.2, S5.3). The high 

Stdev is attributed to a wide range in TCM formation from different compounds 

and the distribution of TCM formation data (Figure 5.1) were skewed to the low 

end. Ninety three compounds (79.5%) had low TCM formation of 0.0001-0.1400 

TCM/mol-Cp, 20 compounds (17.1%) had high TCM formation of 0.680-1.140 

TCM/mol-Cp and 4 compounds (3.4%) had TCM formation of 0.280-0.320 

TCM/mol-Cp. 
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Figure 5.1. Frequency distribution of TCM formation (N = 117) 

5.2.2. Generation of descriptors  

The 117 data collected were divided into model training data (N = 90) and 

external validation data (N = 27). Constitutional descriptors were calculated by 

counting the number of atoms and functional groups for each of the 90 model 
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compounds. Compounds lacking a certain atom or group were given a value of 

zero for that descriptor. A descriptor was considered only if it had non-zero 

values for at least five compounds. Three were calculated differently from the 

rest. These were carbonyl index (CI), ring activation index (RAI) and both them 

have been used in previous work (30) and EDCORH and also were discussed in 

Chapter 2. 

Carbonyl index (CI) relates to the lower pKa of hydrogen in a C-H bond 

located between two carbonyls (e.g., β-diketones) relative to other C-H bonds 

adjacent to a single carbonyl (41,42). The hydrogen can easily be abstracted by 

a base in solution to form keto-enol (or keto-enolate) tautomers and the enol form 

is the one that contributes to higher halogen substitution reaction (41). This 

concept was extended to carbons located between two hidden carbonyls 

(phenols) as in resorcinol. A compound that had at least one unsubstituted 

carbon in between 1,3-hidden dicarbonyls in aromatic molecules (e.g., 1,3-

dihydroxybenzene) or 1,3-diketone in aliphatic molecules (e.g., 5,7-dioxooctanoic 

acid) was assigned a CI value of 2. A carbon between an aliphatic ester or acid 

carbonyl and keto group in 1,3 positions was assigned a CI value of 1.5 whereas 

a terminal carbon adjacent to a keto group in 1,3-dicarbonyls (e.g., 4,6-

dioxoheptanedioic acid) is given a CI value of 1. A non-terminal carbon adjacent 

to a keto group in 1,3-dicarbonyl (3-oxohexanedioic acid) was given a value 0.5 

and the same value was assigned for acetophenone and acetone or in molecules 

with carbonyls separated by more than two carbonyls (e.g., 4-oxoheptanedioic 

acid).  
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Ring activation index (RAI) reflects the fact that reactivity of aromatic 

molecules is influenced not only by the number of strong electron donating 

groups (OH and NH2) in the molecule but also their relative position from each 

other. A 1,3-disubstitution is more reactive than 1,2 or 1,4-disubstitution due to 

cooperative effects in the former and antagonistic effect in the latter (42). 

However, it was also observed from the chlorine demand data that 2-hydroxy (or 

amino) benzoic acid consumed less chlorine than corresponding meta and para 

isomers. The difference in reactivity could be attributed to higher stability of 2-

hydroxy(amino)benzoic acid over the meta and para isomers due to hydrogen 

bonding effects (43,44,45). Thus, RAI was calculated by taking the ratio of 

number of OH or NH2 to the number of aromatic rings: if this ratio is 1, RAI was 

equal to 1; when the ratio was 2, RAI was set 0.6; when ratio was 3, RAI was set 

0.5 (30). For a ratio of 1, RAI was reduced to 0.75 for 1,2 substitution with 

intramolecular H-bonding (e.g., 2-hydroxy benzoic acid). For ratio of 2 or 3, the 

RAI was reduced to 0.3 or 0.25 for ortho or para substitution, respectively. 

Molecules with only alkoxy groups, which are weak ring activators, had RAI set 

equal to 0.1. Aromatic molecules with only deactivating groups (e.g., 

acetophenone, 2-nitrobenzoic acid) and all aliphatic compounds were assigned 

RAI equal to zero (30) and in Chapter 2.  

EDCORH is the difference between the sum of strong electron donating 

groups per carbon (ArED:C) and the sum of carbonyls (ketone and aldehydes) 

per carbon (CORH:C) in each molecule. 
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The number of one-three activated carbons (OTactC) in aromatic 

compounds was motivated by the observation that molecules with 1,3-

disubstituted aromatic molecules (e.g., 1,3-dihydroxybenzene or 1,3-dihydroxy 

naphthalene) had higher experimental TCM formation than those with 1,2 or 1,4-

disubstituted aromatic molecules (31,32,33,39,42,46). If a molecule had at least 

one 1,3 activated carbon, it was given a value of 1 and if it did not, it was given a 

value of zero. Molecules like 3-chlorophenol, 2,4,5-trichlorophenol and 2,3,4,6-

tetrachlorophenol with at least one chlorine at 1,3-disubstution with OH were 

given a value of 1 as well. 

5.2.3. Descriptor selection  

Descriptor selection was carried out using Minitab 15 Software (47) by 

performing multiple regression (MLR) of TCM formation (as dependent variable, 

N = 90) on descriptors listed in Table 2.2 (as independent variables) generated 

using Equation 2.1. The y-intercept was set to zero and confidence interval was 

set at 95%. Any descriptor with p<0.05 was dropped and the process was 

repeated until all remaining descriptors had p<0.05. Three descriptors were 

finally obtained from the selection process. This was followed by correlation 

analysis in order to determine if indeed the descriptors were mutually 

independent since r < 0.7 (48).  

5.2.4. Model calibration and validation 

The training data (N = 90) were split in a 5-way Leave-Many-Out (LMO) 

design with 5 calibration data sets (N = 60) and cross validation data sets (N = 

30). QSPR was calibrated by performing multiple linear regression of TCM 
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formation against the three descriptors (with intercept set to zero) for each of the 

five calibration data sets using Analysis ToolPak for MS ExcelTM (Windows XP). 

The coefficient of determination for model calibration (Rc
2) is obtained by using 

Equation 2.2. Average statistics of fit, descriptor coefficients and standard errors 

were obtained for each of the five QSPRs.   

Each of the five LMO QSPRs was validated using the cross validation 

data and the average QSPR was validated internally and externally. The 

predictive power of the model was evaluated using statistical and graphical 

methods. There are four statistical indicators of predictive power which are q2, 

Rc
2, Rt and k (49,50) and the equations for calculating these statistics are 

described in Chapter 2 (Section 2.3.3).  

Applicability domain analysis was performed to establish the range of 

applicability of the model and determine influential compounds. Leverage (h) and 

standardized residual (SDR) are the two parameters used to evaluate 

applicability domain (51). Leverage, a measure of how far an observation is from 

the neighboring means, is calculated by Equation 2.8.  

5.3. Results and discussions  

5.3.1. Model calibration 

The process of descriptor selection gave three significant descriptors: the 

carbonyl index (CI), number of 1,3 activated aromatic carbons (OTactC), and the 

electron donor variable (EDCORH). Correlation analysis of the three descriptors 

showed that each pair of descriptors had r < 0.7 (Table 5.1) indicating that they 

were mutually independent (48). The five LMO QSPR equations are given in 
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Table S5.4, while the average QSPR is given in Table 5.2.  CI is the best 

determined descriptor with a relative error of 5.71%. Average statistics of fit for 

the QSPR were: Rc
2 = 0.94, AdjRc

2 = 0.92 and SDE = 0.08 mol-TCM/mol-Cp. 

The high Rc
2 and a low SDE of regression indicate good predictive power.  

Table 5.1. Correlation matrix of the three descriptors 

 CI OTactC EDCORH 
CI 1.000   
OTactC 0.617 1.000  
EDCORH 0.495 0.008 1.000 

 

Table 5.2. Average QSPR for TCM formation 

Descriptor, xj Coefficient, βj Standard error, εj (εj/ βj)*100 
Cl 0.275 0.016 5.7% 
OTactC 0.266 0.036 13.6% 
EDCORH 0.352 0.095 27.1% 

 

5.3.2. QSPR LMO cross validation  

The five LMO cross validations gave average statistics of q2
LMO = 0.91, Rt 

= 0.008, k = 0.90 and k’ = 0.94 (Table S5.5). All these parameters exceed 

threshold values for QSPR predictive power (49,50). The average RMSE of cross 

validation of 0.09 mol-TCM/mol-Cp is similar to model calibration error of 0.08 

mol-TCM/mol-Cp, whereas MBD was 6.2% indicating the model predicts high for 

some compounds. TCM formation for all 90 compounds in the training data set 

was predicted using the average QSPR and results were: q2
cv = 0.92, Rt = 0.007, 

k = 0.91 and k’ = 0.95 (Table S5.5) with RMSE and MBD of 0.09 TCM/mol-Cp 

and 6.2 % respectively. These statistics were comparable to those obtained by 

the five LMO cross validations (Table S5.5). Overall, the QSPR had high 

predictive power based on LMO cross validation. 
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Graphical analysis of the plot of predicted versus observed TCM (Figure 

5.2) and standardized residuals (Figure 5.3) shows that three data points were 

>2SDE (2 x 0.08 or 0.16 TCM/mol-Cp in this case) from the QSPR prediction. 

Two data points for 2-oxobutanedioic acid and one for 4-oxoheptanedioic acid 

were outliers.  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Experimental TCM formation (mol/mol)

Pr
ed

ic
te

d 
TC

M
 fo

rm
at

io
n 

(m
ol

/m
ol

)

 

Figure 5.2. Predicted versus observed TCM formation for external validation data 
(N = 90). Dashed lines are ±2SDE and the solid line represents 1:1 
prediction. 
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Figure 5.3. Standardized residuals of cross validation using average QSPR (N = 
90) 
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5.3.3. QSPR external validation  

The external validation set, never used in significant descriptor selection or 

model calibration, contained 27 compounds. TCM formations for these 

compounds were predicted using each individual QSPR and the average QSPR 

(Table S5.6), with comparable statistics of predictive power: q2
ext = 0.94, Rt = 

0.0001, k = 0.85 and k’ = 0.85 (Table S5.6). The external calibration RMSE of 

0.08 mol-TCM/mol-Cp was comparable to the 0.09 mol-TCM/mol-Cp obtained 

from LMO cross validation (Table S5.5) and SDE of 0.08 mol-TCM/mol-Cp 

obtained from model calibration (Table S5.4).  

The MBD on external TCM data was -13.40% which indicates a bias 

toward underprediction, contrary to the overprediction bias in the internal cross-

validation. The external validation bias was strongly influenced by a single 

compound, 2,4,6-trihydroxybenzoic acid, which had an absolute residual of -0.32 

mol-TCM/mol-Cp (~SDR = -3.90) and was the only compound not predicted 

within ±2.5 standardized residuals (Figures 5.4 and 5.5).   

It is not clear whether the underprediction of 2,4,6-trihydroxybenzoic acid 

is due to experimental error. 2,4,6-trihydroxybenzoic acid and phloroglucinol 

differ by a single carboxylic acid group, but the former has TCM formation 

potential of 1.14 mol-Cp/mol-Cp, much higher than 0.86 mol-TCM/mol-Cp 

reported for phloroglucinol in the same study (32) and 0.92 mol-TCM/mol-Cp in 

other work (54,55).  
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Figure 5.4. Predicted versus observed TCM formation for external validation data 
(N = 27). Dashed lines are ±2SDE and the solid line represents 1:1 
prediction. 
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Figure 5.5. Standardized residuals of external validation using average QSPR (N = 
27). 
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The reported TCM yield for 2,4,6-trihydroxybenzoic acid was also higher 

than for related resorcinols, which had TCM yields of about 0.87 mol-TCM/mol-

Cp for 2,4-dihydroxybenzoic acids (33,38,55); about 0.83 mol-TCM/mol-Cp for 

2,6-dihydroxybenzoic acids (38,55); about 0.75 mol-TCM/mol-Cp for 3,5-

dihydrobenzoic acid (33,38,55); about 0.80 mol-TCM/mol-Cp for 3,5-

hydoxytolune (33,38,55); about 0.85mol-TCM/mol-Cp for 1,3-dihydroxybenzene 

(31,33,39,55). Despite slight differences in experimental conditions the TCM 

formation potentials for resorcinols were closer to that of phloroglucinol because 

of these two groups of compounds had at least one pair of 1,3 hidden 

dicarbonyls and one 1,3-activated carbon. The presence of carboxylic acid may 

not likely increase TCM in phloroglucinol and thus the data point may have some 

errors. 

5.3.4. QSPR model applicability domain 

The model applicability domain was determined in order to assess if any 

of the training data were outliers (unduly influential in model calibration) and if 

any external data were prediction outliers (predicted due to extrapolation beyond 

the calibration data). The warning leverage h* for a 3-descriptor model and 90 

training data was 0.13 (Figure 5.6). The training compounds 3-oxohexanedioic 

acid, 2-oxobutanedioic acid and 4-oxoheptanedioic acid fell outside the ±2.5 SDR 

boundary, indicating that they were training outliers. Deletion of these three 

compounds from training data (N = 87) did not cause a significant change in 

descriptor coefficients (relative to N = 90) (Table S5.7). The q2 and RMSE for 

internal validation changed slightly from 0.92 and 0.09 mol-TCM/mol-Cp (N = 90) 
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to 0.96 and 0.06 TCM/mol-Cp (N = 87) respectively but there were no changes in 

q2 and RMSE for external validation (Table S5.7). The analysis of outliers and 

influential data points showed that Cook’s distances less was than 1, DFFITS<2 

and DFBETAS<2 for the three data points. Therefore these data points were 

retained in the training data set because they were not considered outliers and 

also not influential (h < 0.13).  

There were also five compounds in training data set with h>0.13 (Figure 

5.6): 5,7-dioxooctanoic acid (SDR = -0.44, h = 0.24); 3-oxopentanedioic acid 

(SDR = -2.34, h = 0.17; SDR = -0.55, h = 0.17); 1,2,3-trihydroxybenzene (SDR = 

2.05, h = 0.24) and 1,4-dihydroxybenzene (SDR = 1.34, h = 0.17), These 

compounds were not considered problematic, as their leverage values were 

closer to h* and their SDR were all within ±2.5; all were retained in the training 

data set. 
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Figure 5.6. Williams plot indicating outliers and high leverage compounds 

The Williams plot also revealed that five external compounds had h>0.13: 

2,4,6-trihydroxybenzoic acid (SDR = -3.90, h = 1), 4,6-dioxoheptanedioic acid 

(SDR = -0.34, h = 0.32), 2,4-dioxopentane (SDR = 0.27, h = 0.42) and 1,4-
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phenyldiamine (SDR = 1.40, h = 0.38) and 1,3-cyclohexanedioic acid (SDR = -

1.96, h = 0.24).  These compounds were extrapolated from the model and 

constitute 18.5% of the external data. Of these, only 2,4,6-trihydroxybenzoic acid 

(SDR = -3.90, h = 1) was not only over extrapolated but also a prediction outlier. 

As noted above, the experimental TCM for this compound seems questionable, 

but it was retained in the validation data set. 

Several published models predict log-transformed formation potential from 

bulk water quality parameters (59,60), but we found that log-transformed TCM 

formation was less useful than the untransformed TCM potential in the QSPR 

modeling. The average QSPR from 5-way LMO had four descriptors (Hydrogen 

to carbon ratio, H:C; carbonyl index, CI; number of activating alkoxy groups, 

ArORact; and number of heteroatoms per carbon, HeA:C). The statistics of fit for 

the average QSPR were: Rc
2 = 0.75 and SDE = 0.55 log units (Table S5.8). 

Although R2>0.6, the relative standard error of regression was exceedingly high 

(0.55 log units, greater than three-fold). Statistics of predictive power obtained 

from LMO cross validation using each QSPR were below the threshold values for 

QSPR, while those obtained using averaged QSPR for entire calibration data set 

were above the threshold values except k < 0.85 (Table S5.9). The q2 on external 

validation fell short of other criteria of predictive power (Table S5.10) and 

external RMSE was very high (RMSE = 0.9 log units). Thus, log-transformation of 

TCM does not improve predictive performance of the QSPR. 

Model deviations in predicting TCM formation may result from reactive 

intermediates and limitations of constitutional descriptors. For example, 
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chlorination of dicarbonyl compounds occurs through a nucleophilic keto-enol 

tautomer which forms several intermediate products (41,56). The rate of keto-

enol tautomerization depends on both pKa of H and steric hindrance at α-C to 

keto (C=O) (41). In the absence of steric factors, the stability of the enol tautomer 

increases with substitutions at the C=C bond (E/Z-geometric isomers) and with 

the possibility of intramolecular hydrogen bonding via the O-H group (or 

resonance of enolate in case of (β-diketones) (41). Enol stabilization should 

increase rates of chlorination and formation of chloroform, which may be found in 

intermediates. 

The pKa plugin in Marvin Sketch 4.1.1 software (57) was used to track 

changes in pKa during reaction sequences. For example, hydrogen atoms at 

carbon-2 and carbon-4 in 3-oxohexanedioic acid have pKa 19.2 and pKa 29.9 

respectively. During stepwise chlorination, the pKa of the H on carbon-4 

decreased from 29.9 to 17.2 after two chlorine atoms have been substituted onto 

carbon-2. This increases the probability of additional chlorination onto carbon-4, 

and thus increases the likelihood of TCM formation. On the other hand, 

substitution of chlorine at the carbon-3 position of 4-oxoheptanedioic acid 

followed by hydrolysis may lead to 2,2-dichlorobutane-1,4-dicarboxylic acid and 

3,3,3-trichloropropanoic acid. Since neither compound is likely to undergo further 

chlorination, 4-oxoheptanedioic acid has low TCM formation in spite of the 

presence of multiple carbonyl groups. Full reaction-path simulation may lead to 

improved predictive capability for compounds like these. 
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5.3.6. Prediction of higher-MW compounds 

Three model structures representing dissolved organic matter were 

examined to test the plausibility of the QSPR predictions for higher molecular-

weight compounds of environmental relevance. Prediction of TCM formation from 

tannic acid was compared with experimental values (31), and TCM formation 

based on two proposed structures of fulvic acid (FA-1 and FA-2) (58) were 

compared with field results for DOM. Predicted TCM formation for tannic acid 

(MW = 1701) was 0.13 ± 0.03 mol-TCM/mol-Cp (~0.14 mmol-TCM/g-C), 

compared to an experimental yield of 0.05 mol-TCM/mol-Cp (~0.05 mmol-

TCM/g-C) (31). While the relative error of this prediction is large, the error is 

small in absolute terms, comparable to the RMSE of QSPR calibration and 

validation (0.09 and 0.08 mol-TCM/mol-Cp, respectively). For FA-1 (MW = 960), 

predicted TCM was 0.13 ± 0.01 TCM/mol-Cp (~0.25 mmol-TCM/g-C) and for FA-

2 (MW = 948) it was 0.27 ± 0.02 TCM/mol-Cp (~0.54 mmol-TCM/g-C). In 

comparison, trihalomethane production from field sampled DOM typically varies 

from ~0.15 to 0.35 mmol-TCM/g-C, depending on source (25). The field values 

overlap with but are somewhat lower than the QSPR/FA-based predictions; the 

higher estimates may be caused by high aromaticity of the FA-1 and FA-2 

structures relative to bulk DOM samples.  

Structural implications Figures 5.2 and 5.3 show three classes of 

compounds in the data set: 1) aliphatic compounds (amino acids, carboxylic 

acids, etc) and phenols without the β-diketone or ‘activated carbon’ structure 

showed lowest TCM formation potential (TCM<~0.2 mol-TCM/mol-Cp), 2) 
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chlorinated phenols showed intermediate TCM formation potential (0.20 <TCM< 

0.32 mol-TCM/mol-Cp) and 3) ‘activated’ carbon (1,3-diphenols, β-diketones and 

their derivatives) showed high TCM formation potential (TCM > 0.50 mol-

TCM/mol-Cp). Of the 90 compounds used in the model training, dihydroxy 

substituted aromatic compounds with hidden dicarbonyls and β-diketones 

contributed 83% of the total TCM formation. This is consistent with previous work 

emphasizing the importance of the activated carbon structures (35,39,52). 

One consequence of this structural pattern is the relative simplicity of the 

QSPR for TCM production. Chlorine demand and TCM formation represent two 

different aspects of disinfection by-product formation: the reactant consumed and 

product created. Compared to a previously derived QSPR for chlorine 

demand30, the present QSPR for TCM formation has fewer descriptors (3 versus 

8) and higher validation q2 (0.94 versus 0.88). This improved performance with a 

simpler model arises from the small number of TCM producing structures relative 

to the larger number of structures which react with chlorine to form other 

byproducts.  

A second consequence is that water treatment operators should be more 

concerned when source water has high proportion of the resorcinols (i.e., 

resorcinol and its derivatives) and β-diketones. Currently, DOC and specific 

ultraviolet absorbance (SUVA) are used as indicators of NOM reactivity (21,52), 

but cannot distinguish SUVA from different classes of compounds due to their 

spectral overlap. It has also been demonstrated that water with high SUVA may 

have low disinfection byproducts formation potential and vice versa (25,26,27). 
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Efficient water treatment requires a more specific method of evaluating and 

predicting TCM formation which can account variation in relative composition of 

more and less reactive sub-structures.  

Apparent kinetic isotope effect is a promising alternative technique that 

has been reported for screening of functional groups responsible for TCM 

formation (53). Although the preliminary study used too few compounds to 

represent natural organic matter complexity, it presents an experimental avenue 

to improving mechanistic understanding and prediction of TCM formation due to 

resorcinols, β-diketones and phenols. 

5.4. Conclusions 

A robust QSPR for predicting chloroform formation from chlorination of 

model compounds (Rc
2 = 0.94, q2

ext = 0.94, external validation RMSE = 0.08 mol-

TCM/mol-Cp) uses only 3 constitutional descriptors. Model stability is limited by 

the quality of experimental data and by the number of different classes of model 

compounds represented in the training data. In terms of relative error, the model 

predicts β-diketones and resorcinols (higher TCM-forming compounds) more 

reliably than the lower TCM-forming compounds (amino acids, phenols, ketones, 

etc.). Arnold et al. (53) showed that β-diketones and resorcinols are not only very 

reactive toward chlorine substitution at room temperature but also give high TCM 

formation even at the WHO benchmark contact time of 30 minutes (61). However 

there is apparently no experimental technique that can quickly screen and 

discriminate presence of resorcinols and β-diketones from other compounds in 

drinking water sample.  
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CHAPTER 6 

 

QSPR FOR PREDICTING TCAA FORMATION 

  

Abstract 

In this work attempts were made to derive a quantitative structure-property 

relationship (QSPR) for predicting trichloroacetic acid (TCAA) formation using 

model compounds. A number of constitutional descriptors were used to derive 

QSPR for TCAA formation. None of the attempts were fruitful because the 

QSPRs did not meet all the requirements for QSPR predictive power. In the text 

five QSPRs are reported as examples of the failed QSPRs. All the QSPRs had 

high q2 > 0.5 and Rt < 0.1 but ki and ko were below the accepted range of slope, 

k (0.85≤ k ≤1.15) and there was no significant linear relationship between 

predicted and experimental TCAA formation. There was linear relationship with 

Rc
2 < 0.6, for compounds with formation less than 0.2 mole TCAA per mole 

compound. From these results it was concluded that TCAA had weak linear 

relationship with constitutional descriptors. Trichlororoacetic acid formation may 

have a linear relationship with other descriptors that may include quantum-

chemical, geometrical and electrostatic descriptors. Alternatively, the 

constitutional descriptors may be used to predict TCAA formation by QSPRs 

derived using non-linear algorithms. Alternatives to modeling TCAA formation 

from the molecular descriptors were beyond the scope of this study. 
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6.1. Introduction 

Trichloroacetic acid is one the haloacetic acids formed when water is 

chlorinated to inactivate microbial pathogens (1,2). Over the years attempts have 

been made to develop models that would predict haloacetic acid and 

trihalomethane formation in drinking water. The models are generally based on 

bulk water quality and most recent models are summarized in two reviews (3,4). 

Most of the models reported were not tested for predictive power using 

independent data or surface waters. Since there is high variability in water quality 

parameters (UV254, DOC, pH, turbidity, etc) from one water system to another 

and one season to another, water quality parameters may not always have linear 

relationship with disinfection byproducts formation (5,6,7,8). Use of molecular 

descriptors which may not change much with time and space would be useful for 

predicting disinfection byproducts formation. Of the known molecular descriptors 

reported in the literature (9,10), constitutional descriptors are easy to compute 

and fast because no molecular optimization and expensive software are required. 

There is no QSPR reported for TCAA formation so far and therefore the objective 

of this work is to develop a robust QSPR that predicts TCAA formation using 

constitutional descriptors. 

6.2. Methodology 

This work used 62 compounds obtained from three publications 

(11,12,13). TCAA formation ranged between 0.0001 mole of TCAA per mole 

compound (Cp) for amino acids and aliphatic compounds to 0.4760 mol-

TCAA/mol-Cp for aromatic aldehydes and phenols (Table S6.1 and S6.2) and 
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Figure 6.1 shows the frequency distribution of the data. The constitutional 

descriptors listed in Table 2.1 were calculated and the whole data set was split 

by pseudo randomization into calibration data (N = 47) and external validation 

data (N = 15) given in Tables S6.1 and S6.2. Multiple linear regression (MLR) 

was used to select significant descriptors from the entire set of calibration data 

using Minitab 15 Software (14). 
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Figure 6.1. Frequency distribution of TCAA formation (N = 62) 

A QSPR was derived using log-transformed TCAA formation and average 

for training data was -2.11  log units with standard deviation of 1.30 log units. The 

MLR of TCAA and four descriptors through origin was carried out using Equation 

2.1 at 95% confidence interval using Analysis ToolPak for MS ExcelTM (Windows 

XP). 
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6.3. Results and Discussions 

Equation 6.1 is the MLR-QSPR for log TCAA formation using hydrogen to 

carbon ratio (H:C), number of alkoxy groups on aromatic ring per carbon 

(ArOR:C) and number of strong electron donating groups on aromatic ring per 

carbon (ArED:C). The numbers in brackets are standard errors of coefficients. 

)94.0(:*34.3)91.0(:*88.2)08.0(:*72.1log ±+±+±−= CArEDCArORCHTCAAf .. (Eq. 6.1) 

The QSPR had Rc
2 = 0.74 and SDE = 0.68 log units.  Although the QSPR had 

high Rc
2, the SDE indicates that the model may have poor performance because 

the SDE was a factor of 4X or 5X, much higher than experimental uncertainty. 

 The internal validation of the QSPR produced q2= 0.74, ki‘ = 1.00 and ko’ = 

1.01, Rt
’ = 0.0001 and RMSE = 0.66 log units. Although these first four 

parameters met criteria for predictive power (15,16), the RMSE was about 4X. 

The close similarity of q2 and RMSE to Rc
2 and SDE was expected because 

internal validation uses the same data set that used for QSPR calibration. The 

MBD 0.03% which implies the data points are more or less equally distributed 

around the ideal line in that the plot of predicted against experimental TCAA 

(Figure 6.2) whereas the standardized residual plot (Figure 6.3) showed that 3-

hydroxy butyric acid (SDR = -2.67) was slightly outside the ±2.5 SDR margins.  
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Figure 6.2. Deviation of predicted TCAA formation from ideal QSPR (N = 47) 
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Figure 6.3. Standardized residual plot for logTCAA formation (N = 47).  

The external validation data (Table S6.2) was used to test the 

performance of the QSPR.  The statistics of predictive power showed that: q2
Ext = 

0.63, ki = 0.97 and ko = 1.00 and Rt
 = 0.003. These statistics meet minimum 

requirements for QSAR/QSPR predictive power but the RMSE was 0.51 log units 
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which is about 3X. The errors of 3 and 4 orders of magnitude are higher than the 

experimental TCAA formation of most compounds in the external validation data 

and calibration data respectively. The plot of predicted TCAA formation against 

experimental TCAA formation showed the relationship between the two was 

linear (Figure 6.4) and distribution of data points showed some pattern across the 

zero SDR (Figure 6.5) which suggests the QSPR lacked predictive power. 
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Figure 6.4. Deviation of the predicted logTCAA from ideal QSPR for external 
validation data 
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Figure 6.5. Assessment of model predictive power on external validation data 
using SDR plot  

6.4. QSPR Applicability Domain  

The model applicability domain of the QAPR was evaluated using 

William’s plot to determine prediction outliers in external validation data and 

influential points in calibration data. Figure 6.6 shows that all compounds in 

calibration data were within applicability domain (SDR = ±2.5 and h ≤ 2.6) except 

3-hydroxybutyric acid (SDR = -2.67, h = 0.05). This data point was not 

considered an outlier because its SDR was very close to the lower limit of SDR 

cutoff of -2.5. There were three compounds in external validation data set with h 

> 0.26, namely 2-oxopentanedioic acid (SDR = 1.64, h = 0.34), 3,4,5-

trimethoxyacetophenone (SDR = -0.73, h = 0.41) and 3,4,5-trimethoxy-

benzamide (SDR = 0.28, h = 0.39). These three data points were prediction 

outliers because h > h* and their predictions were due to extrapolation of the 

QSPR. 
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Figure 6.6. Williams plot for assessing outliers and influential compounds 

6.5. Remarks on QSPR using logTCAA 

The log-TCAA QSPR statistics of internal validation and external validation 

met criteria predictive power and Figures 6.1 and 6.3 were linear. These results 

suggest that model had high predictive power, which is not the case because the 

SDE and RMSEs were about 0.5-0.6 log units (factor of 3X to 4X). The SDE and 

RMSE error were higher than TCAA formation for most of the compounds in the 

data set. Predictions of compounds with TCAA formation less than RMSE or 

SDE are not reliable. The QSPR was not useful 

Since TCAA formation are not measured in log units, the antilogs of 

predicted TCAA and observed TCAA were obtained and correlated in order to 

see if linear relationship would still hold. it was found that internal validation had 

q2 = 0.22 and RMSE = 0.10 mol-TCAA/mol-Cp and external validation data had 
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q2 = 0.44 and RMSE = 0.03 mol-TCAA/mol-Cp. The q2 < 0.5 and the RMSE 

higher than experimental uncertainty in TCAA formation for most compounds in 

the training data confirms that the QSPR has low predictive power. This is a 

reminder that interpretation of results from the model that use log-transformed 

observation should be checked by taking antilog observed values in order to 

avoid misinterpretation of predictive power of the model. 

6.6. Other QSPRs Attempted 

Several further attempts were made to develop QSPRs using different 

combinations of constitutional descriptors and are reported here as examples. 

The first attempt used square root of TCAA (sqrtTCAA) as the dependent 

variable and number of phenols per carbon (ArOH:C), square root of number of 

hetero atoms (sqrtHeA) and square root of ring activation index (sqrtRAI) as 

independent variables (Eq 6.2). The numbers in brackets are standard errors. 

)05.0(*26.0)01.0(*03.0)29.0(:*83.0 ±+±+±= sqrtRAIsqrtHeACArOHsqrtTCAAf .(Eq. 6.2) 

Results showed that the QSPR had Rc
2 = 0.71 and SDE = 0.11 (mol-

TCAA/mol-Cp)1/2. Internal validation of square of predicted TCAA had q2 = 0.54 

and RMSE = 0.08 (mol-TCAA/mol-Cp)1/2 (Table 6.1).  

Table 6.1 Statistics of predictive power for the four QSPRs 

 q2 RMSE Ri
2 ki b Ro

2 ko Rt 
Eq. 6.2 0.54 0.08 0.57 0.47 0.02 0.49 0.56 0.05 
Eq. 6.3 0.61 0.07 0.63 0.54 0.05 0.58 0.63 0.03 
Eq. 6.4 0.59 0.07 0.60 0.62 0.03 0.53 0.73 0.04 
Eq. 6.5 0.61 0.07 0.61 0.51 0.03 0.54 0.70 0.04 
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RMSE was relatively higher than most of the compounds in the training data and 

the plot of experimental TCAA versus predicted TCAA was not linear (Figure 6. 

6). The ki and ko statistics were lower than acceptable range of slope, k (0.85 ≤ 

k≤1.15) and the final conclusion was that this QSPR had low predictive power. 

 

Figure 6.6. Scatter plot of predicted TCAA vs. experimental TCAA 

The second attempt used square root of number of phenols (sqrtArOH), 

sqrtHeA, and sqrtRAI as independent variables and sqrtTCAA as dependent 

variable, and the QSPR obtained is given by Equation 6.3. The QSPR had Rc
2 = 

0.75 and SDE = 0.10 (mol-TCAA/mol-Cp)1/2. The predicted sqrtTCAA from 

internal validation of the QSPR were transformed back to TCAA and data were 

used to determine predictive power of QSPR. Results showed that ki and ko were 

below acceptable values for slope (85 ≤ k≤1.15). There was very weak linear 

relationship between predicted TCAA and experimental TCAA (Figure 6.6). 

Therefore the QSPR’s was not useful. 
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)05.0(*19.0)01.0(*02.0)05.0(*20.0 ±+±+±= sqrtRAIsqrtHeAsqrtArOHsqrtTCAAf .(Eq. 6.3) 

The third QSPR was developed using multiple linear regression of TCAA 

on RAI and ArOH to obtain Equation 6.4. The Rc
2 and SDE for the QSPR were 

0.59 and 0.08 mol-TCAA/mol-Cp respectively and internal validation showed that 

ki and ko below the accept k values (Table 6.1). In addition the experimental and 

predicted TCAA formation had very poor linear relationship (Figure 6.6). The 

overall analysis was that the QSPR had low predictive power.  

)03.0(*12.0)03.0(*09.0 ±+±= RAIArOHTCAAf …………………………… (Eq. 6.4) 

Equation 6.5 represents the fourth QSPR relating TCAA formation to 

sqrtArOH and sqrt(RAI) and the model had Rc
2 = 0.61 and SDE = 0.07 mol-

TCAA/mol-Cp. From analysis of internal validation it was found that the slopes ki 

and ko were below acceptable value of k (Table 6.1) and it was also shown that 

the relationship between predicted and experimental TCAA was poor (Figure 

6.6). These results indicate that the QSPR had low predictive power. 

)03.0(*07.0)04.0(*13.0 ±+±= sqrtRAIsqrtArOHTCAAf …………………… (Eq. 6.5) 

6.7. Conclusions 

Constitutional descriptors were used to develop QSPRs for predicting 

TCAA formation. None of QSPRs presented above met all the minimum 

requirements for QSPR predictive power. However, there were some linear 

relationships between predicted TCAA and experimental TCAA for compounds 

with TCAA formation less than 0.2 mol-TCAA/mol-Cp. The interpretations of 

these results are of two fold: (i) the descriptors used in this work were not 
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sufficient to explain the variation in TCAA formation; (ii) TCAA formation has 

statistically insignificant linear relationship with constitutional descriptors and 

therefore TCAA formation may be explained better using more sophisticated 

molecular descriptors (quantum-mechanical descriptors, typological descriptors, 

geometrical descriptors) or by using QSPR derived using non-linear algorithms. 

The application of descriptors other than constitutional descriptors and non-linear 

algorithms to derive QSPRs was beyond the scope of this study. 
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CHAPTER 7  

 

RESEARCH SUMMARY AND RECOMMENDATIONS 

 

Abstract 

This chapter provides a summary of results from quantitative structure-

property relationship (QSPR) for chlorine (HOCl) demand and QSPRs for, total 

organic halide (TOX), trichloromethane (TCM) formation and trichloroacetic acid 

(TCAA) formation. In also presents results from integration of QSPRs (chlorine 

demand and TOX formation) with AlphaStep model of NOM. All QSPRs, except 

for TCAA, showed high predictive power using external data. None of the QSPRs 

for predicting TCAA formation had met the minimum criteria for predictive power. 

The QSPRs for chlorine demand and TOX formation were integrated with 

AlphaStep NOM. Results from simulation of HOCl demand and TOX formation 

potential from chlorination of NOM in surface water were 27.55 μmol-HOCl/mg-C 

and 183.6 μg-Cl/mg-C respectively. These results are consistent with reported 

values for humic acid and fulvic acids and also whole DOM. 

7.1. Summary 

Supply of good quality potable water to public that meets regulatory 

requirements is the goal of water supply authorities. Use of chemical 

disinfectants, particularly chlorine, to treat drinking water has saved millions of 

lives from waterborne diseases (1,2). The detection of THMs in drinking water 

(3,4) showed that chemical disinfection also yield toxic products. Early studies on 
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animals showed that THMs and HAAs were toxic and carcinogenic (5) and 

regulatory authorities responded by issuing standards that limit the amounts of 

disinfection byproducts. The response of water researchers to DBPs has focused 

on designing water treatment processes and technologies that minimize 

formation of disinfection byproducts without compromising disinfection efficiency. 

Mathematical modeling is one of the tool that is used to improve water treatment 

conditions and most of empirical models are based bulk water quality parameters 

(6,7). Application of empirical models based on water quality parameters have 

some drawbacks which have been discussed in Chapter 1. 

This research work was designed to address these challenges by 

developing models for predicting chlorine demand and disinfection byproducts 

formation using molecular structures of model compounds. Quantitative 

structure-property relationship (QSPR), which relate structure of molecules and 

physical chemical property, were used for the first time predict chlorine demand 

and disinfection byproducts formation.  The research work produced multiple 

linear regressions (MLR) QSPRs for predicting: chlorine demand, total organic 

halide (chlorine) formation, chloroform formation and trichloacetic acid (and 

HAAs) formation.  

7.1.1. QSPR for chlorine demand 

The QSPR for predicting chloride demand had eight constitutional 

descriptors: ring activation index (RAI), number of phenols (ArOH), carbonyl (CI), 

number of aliphatic carbons attached to reduced nitrogen, -NH2 (ACN), atomic 

oxygen to carbon ratio (O:C), number of aliphatic sulfur (AS), number of alkoxy 
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groups on an aromatic ring without NH2 an OH (ArORact) and number of alkoxy 

groups on aromatic ring with NH2 and OH (ArORnact). The QSPR (Eq. 7.1) had 

Rc
2 and SDE of estimate of 1.24 mole HOCl per mole compound (Cp). 

ArORnactArORactCO
ASCIACNArOHRAIHOCldem

*72.0*49.0:*01.1
*37.2*23.1*00.3*16.1*61.7

−++
++++=

..... (Eq. 7.1) 

The predictive power of the QSPR was evaluated using cross validation -Leave-

One-Out cross validation (LOOCV) and Leave-Many-Out cross validation (LMOCV) 

and external data. The LMOCV and LOOCV showed that the QSPR had high 

predictive power as q2
LMO = 0.86, RMSELMO = 1.21 mol-HOCl/mol-Cp, ki = 0.88, 

ko = 0.97 and  Rt = 0.015 and q2
LOO = 0.85, RMSELOO = 1.28 mol-HOCl/mol-Cp, ki 

= 0.88, ko = 0.97 and  Rt = 0.013 met the criteria for predictive power (8,9). The 

QSPR also performed well on external data as indicated by statistics of predictive 

power: q2
Ext = 0.88, RMSEExt = 1.17 mol- HOCl/mol-Cp, ki = 0.90, ko = 1.05 and 

Rt = 0.039. The q2 and RMSE for external validation were also comparable to Rc
2 

and SDE those from LMOCV and QSPR calibration respectively. However, the 

applicability domain revealed that chlorine demand predictions for 7 compounds 

in the external data (N = 42) were due to extrapolation of the QSPR. Of the eight 

constitutional descriptors, RAI, CI and ACN were the most important descriptors. 

RAI represents the ring activation from OH. NH2 groups and CI is important in 

aliphatic compounds with β-diketone and ACN is important descriptor for amino 

acids and other molecules with amine. Nitrogen is more electronegative than 

carbon and therefore induces electron deficiency on α-C in of most amino acids. 

The hydrogen on nitrogen and on α-C can be substituted for chlorine. Although 
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QSPR had high predictive power, it may not do well with position isomers 

because constitutional descriptors do not explain steric and electronic properties 

of the molecules. The model may not work well with aliphatic with C=C bonds 

which are good site for chlorine addition because the QSPR does not have 

descriptor to explain this molecular structure. 

7.1.2. QSPR for TOX formation 

 Chlorination of drinking water produces several disinfection byproducts 

and toxic nature of the mixture is of health concern. This makes total organic 

halide (TOX) as an appropriate surrogate of presence of toxic disinfection 

byproducts (10). In this work the QSPR for predicting TOX formation was 

developed is given by Equation 7.2. The QSPR has four constitutional 

descriptors which were carbonyl index (CI), ratio of phenol to carbon (ArOH:C), 

square root of number hetero atoms (sqrtHeA) and log of atomic hydrogen to 

carbon ratio (logH:C).  

CHsqrtHeACArOHCITOX f :log*36.1*33.0:*33.5*54.0 −++=  …...... (Eq. 7.2) 

The four descriptors explained about 72% of variation in TOX formation (Rc
2 = 

0.72) with SDE of 0.43 mol-Cl/mol-Cp. The model predictive power was validated 

by LOOCV (N = 49) and had q2
LOO = 0.60, RMSE = 0.50 mol-Cl/mol-Cp , ki’ = 

0.95, ko’= 0.99 and Rt’ = 0.001 whereas external validation (N = 12) had q2
Ext = 

0.67, RMSE = 0.48 mol-Cl/mol-Cp. These statistics indicate that the QSPR has 

high predictive power and robust. The predictions of TOX for three compounds in 

external data were due to extrapolation of the QSPR and therefore may not be 
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reliable. The predictions of TOX formation from tannic acid, fulvic acid (FA-1) and 

fulvic acid (FA-2) were 150.63 μg-Cl/mg-C, 143.89 μg-Cl/mg-C and 176.88 μg-

Cl/mg-C respectively and these fell in 77.80-192.50 μg-Cl/mg-C range for 

finished waters reported in literature (10). This QSPR will over-predict most of the 

compounds with very low TOX formation which were mostly amino acids. Since 

the contribution of the amino acids to the total TOX is very small the QSPR is still 

useful for prediction because they do not affect the overall performance of the 

model.  

The ArOH:C represents that number of phenols per carbon and is the 

most important descriptor of all would in TOX formation. But the descriptor may 

not be able to catch the difference in TOX formation of 1,2-dihydroxybenzene 

from 1,3-dihydroxybenzne and 1,4-dihydroxybenzene. The descriptor, sqrtHeA, 

is the square root of the sum of O, N and S and of these N and S are neutral 

nucleophiles which can attack HOCl. Oxygen is very electronegative atom 

(present in functional groups such as -OH, -C=O) and can cause electron 

deficiency to a carbon to which it is bonded. This in turn lower the pKa of protons 

attached to the α-carbon which promotes chlorine substitution.  

When chlorine demand and TOX formation data were compared it was 

found that the amount of HOCl consumed is generally larger than the amount of 

TOX detected for model compounds and water samples. The lack of mass 

balance may arise from irreversible adsorption chlorinated organics to activated 

carbon or volatile organics during TOX analysis or loss of chlorine as inorganic 

chlorine. The QSPR may under-predict TOX formation potential some 
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compounds because the model was derived using amount of TOX obtained after 

passing sample on activated carbon in TOX analyzer. Apparently there is no 

study that has evaluated how much of chlorine consumed during chlorination of 

water is lost as inorganic chlorine or irreversibly adsorbed on activated carbon. 

However, the average amount of TOX to chlorine consumed by model 

compounds used in this study was 22.38% which was within 18-30% range found 

for whole NOM or fulvic acid and humic acid fractions.  

7.1.3. QSPR for TCM formation 

Trichloromethane (TCM) is one of the trihalomethane that was discovered 

early in 1970s and it is the only trihalomethane that produced in water free of 

bromine. The QSPR for predicting chloroform formation was derived (Eq. 7.3) 

and had Rc
2 = 0.94 and SDE = 0.08 mol-TCM/mol-Cp. The model had three 

descriptors namely carbonyl index (CI), one-three activated carbon in aromatic 

ring (OTactC) and EDCORH is difference between sum of number of strong 

electron donors (OH and NH2) on aromatic ring and number of aldehyde and 

ketone groups (CORH). These descriptors explained over 90% of variance in 

chloroform formation.  

EDCORHOTactCCITCM f *35.0*27.0*28.0 ++= ……………… (Eq. 7.3) 

The OTactC descriptor for molecules with resorcinol like structures (3-

chlorophenols, 3-aminophenols and 1,3-dihydroxybenzenes) represents the 

ortho (2) carbon between the two groups which becomes highly activated  

making it more nucleophilic. The nucleophilic carbon can attack the electron 
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deficient chlorine in HOCl which eventually leads to chlorine substitution. The 

QSPR showed high predictive power using LMOCV (q2
LMO = 0.92, RMSE = 0.09 

mol-TCM/mol-Cp, ki = 0.91, ko= 0.95 and Rt = 0.007) and external validation 

(q2
Ext = 0.94, RMSEExt = 0.08 mol-TCM/mol-Cp, ki’ = 0.85, ko’= 0.85 and Rt’ = 

0.0003). These statistics indicate that the model had high predictive power. But 

applicability domain analysis showed that 5 out 27 compounds in external data 

were predicted due to extrapolation of the QSPR. The high predictive of the 

QSPR was tested on tannic acid for which predicted TCM formation (0.33 mol-

TCM/mol-Cp) which was higher than experimental value (0.13 mol-TCM/mol-Cp). 

The model over predicted molecules with low chloroform formation and did better 

with high chloroform producing molecules. Most of the compounds with low 

chloroform production were mostly amino acids and aliphatic compounds 

(excluding β-diketones). The QSPR may not predict reliably molecules with 

aliphatic C=C, and compound with high number of ketone and aldehyde relative 

to number of OH and NH2 (which ortho-para to each other) in aromatic ring.  

7.1.4. QSPR for TCAA formation 

Chlorination of drinking water also produces haloacetic acids which are 

among the DBPs of health concern. In this work attempts were made to derive 

QSPR for predicting trichloroacetic acid (TCAA) using various combinations of 

constitutional descriptors listed in Table 2.1. All QSPR reported had high Rc
2 and 

SDE but the models failed to meet the criteria of QSPR predictive power on 

validation data. The results also showed that there was insignificant linear 

relationship between experimental TCAA and predicted TCAA. It was concluded 
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the constitutional descriptors which were used in the study could not explain the 

variation in TCAA formation and had very poor linear relationship between 

constitutional descriptors and TCAA formation. The relationship between the two 

may be explained by non-linear QSPR which could be derived using non-linear 

algorithms such as artificial neural network (ANN).  

7.2. Integration of QSPRs with AlphaStep model of NOM 

7.2.1. Background 

Natural organic matter is a complex mixture of organic molecules with 

diverse structure, size and functional groups (11). The individual molecules 

interact with water (hydrophobic and hydrophilic interactions), each other 

(hydrogen bonding or acid-base interaction), metals (complexation, charge 

transfer), with bacteria (biodegradation), light, oxygen and chemical oxidants 

(redox and radical drive reactions), just to mention a few. The reaction of chlorine 

with components of natural organic matter is one of example of interaction of low 

level components which leads to change in properties of parent molecules or 

formation of new molecules. Thus, changes driven by individual molecules may 

ultimately impact the behavior of macrosystem (high level interaction). Agent-

based models (ABMs) are said to be appropriate for studying natural organic 

matter interactions because with various components in water matrix may act as 

agents (12).  

Alphastep model is an agent based modeling (ABM) software  and is 

defined as “a Windows-based program which simulates transformation of 

environmental biological materials into NOM and eventual consumption or 
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destruction” (13). The transformation and consumption (or destruction) reaction 

probabilities are influenced by various biological, chemical and physical factors 

which all together constitute environmental parameters (13). It is useful for 

estimating not only reaction probabilities for transformation of macromolecules 

based on structural properties but also examining properties of different 

molecules (end products) after simulation (13).  

Previous studies shown that it is possible to combine AlphaStep with 

QSAR or QSPR derived using constitutional descriptors in order to predict Cu(II) 

binding to NOM (14), conditional metal-ligand binding constants of metals to 

NOM (15) and pKa of NOM (16).  The results from each study were consistent 

experimental values reported in literature. In this work, the QSPRs for HOCl 

demand and TOX formation were derived using chlorine demand and TOX 

formation data based on bench scale experiments using dissolved organic 

precursors with well defined structure and functional groups. The reaction 

behavior of the molecules used in this study may not necessarily reflect the 

behavior of natural organic matter in a natural system. In order to evaluate the 

implication of the descriptors in natural systems QSPRs were combined with 

AlphaStep model in order to estimate chlorine demand and TOX formation in 

surface waters. 

7.2,2. AlphaStep algorithms 

The general algorithm for the AlphaStep is reported in literature (11) and 

reaction conditions used for simulation of transformation of natural organic matter 

precursors from aquatic and soil NOM matrices are summarized. Soil NOM had 
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an input of 2000 molecules each of abietic acid, flavonol and gallic acid with pH = 

5.0, dissolved oxygen = 0.1 mM, enzyme (protease and oxidase) activity = 0.01, 

carboxylase and bacterial abundance = 0.010, simulation time = 5000 h reaction 

time (~90s computing time) and humid soil incubated in darkness. Simulation of 

aquatic NOM precursors was performed using an input of 400 molecules each of 

lignin and protein, pH = 7.0, dissolved oxygen = 0.3 mM, temperature = 25oC, 

enzyme activity (protease, oxidase, decarboxylase) = 0.010, simulation time = 

5000 h reaction time (~90s computing time) and incubated under constant light 

intensity of 2.0 x 10-8 mol.cm2.h-1. A brief description of simulation process is 

given below (11). 

Each molecule is treated as an agent with defined chemical structure and 

reaction probabilities with other molecules or with environmental variables such 

as light, oxygen, bacteria. The molecules are therefore allowed to undergo 

chemical transformation through a series of steps in the course of simulation 

time. For each step, molecules are tested for possible chemical reactions that 

may lead to their transformation into new molecular products. The reaction 

probabilities of products in each step are allowed to react and their reaction 

probabilities are calculated and the process is repeated until the simulation time 

has elapsed. Since the program is capable of reporting reaction frequencies 

(counts) and also calculating aggregate properties of end products (NOM matrix), 

it is possible to obtain molecular descriptors that can be substituted in the 

QSPRs in order to estimate reactivity properties of NOM. In this case, the 
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molecular properties in the output were used to calculate the constitutional 

descriptors in order to estimate the chlorine demand and TOX formation of NOM. 

7.2.3. Results and discussion 

Simulation results for chlorine demand of natural organic matter in water 

using the eight constitutional descriptors (Eq. 7.1) was 27.55 μmol-HOCl/mg-C. 

This value is comparable to typical chlorine demand of fulvic acids in natural 

water of 27-33 μmol-HOCl/mg-C (17). However, the predicted chlorine demand 

for NOM from soil was 18.59 μmol-HOCl/mg-C which is lower than that for 

aquatic NOM. The soil NOM is derived primarily from chemical and 

biodegradation of terrestrial plants and animals as well as from anthropogenic 

activities. On the other hand aquatic NOM is a mixture of NOM terrestrial sources 

that reach water through surface runoffs and NOM derived from planktons. The 

differences in chlorine demand may reflect the differences in composition of 

NOM fractions and aqueous medium provides viable environment for faster 

biodegradation of NOM into smaller molecules than in terrestrial environment.  

Simulations of total organic halides showed that TOX formation from 

aquatic NOM was higher than TOX formation from soil NOM. The predicted TOX 

formation from aquatic NOM and Soil NOM were 183.6 μg-Cl/mg-C and 136.4 

μg-Cl/mg-C respectively. Previous studies showed that TOX formation from 

chlorination of humic acids (HA) and fulvic acids (FA) were 136-232 μg-Cl/mg-C 

for FA and 230-288 μg-Cl/mg-C for HA and for the whole dissolved organic 

matter was 170-298 μg-Cl/mg-C (18). The predictions TOX formation from 

simulation are consistent with Singer’s study and are also in agreement with 
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Reckhow et al. (10) study which showed that  chlorination of surface waters in 

the US gave 77.8-192.5 μg-Cl/mg-C. 

7.2.4. Conclusions 

The simulation of chlorine demand and TOX formation from NOM suing 

AlphaStep and descriptors from QSPRs gave results consistent with empirical 

data from chlorination of NOM in water. These results compliment to conclusions 

reached in earlier chapters that QSPRs derived using constitutional had high 

predictive power and robust and that the constitutional descriptors have 

mechanistic implications. The differences in between TOX formation and chlorine 

demand have also been revealed in simulation where HOCl demand was higher 

than TOX formation. This agrees with the hypothesis that there is lack of mass 

balance between the two which implies loss of chlorine in inorganic form, as 

VOCs or irreversible activated carbon in TOX analyzers. 

7.3. Implications of the descriptors to chlorination reaction   

This research has reported three multiple linear regression QSPRs that 

showed high predictive power. However, each QSPR had different numbers of 

descriptors used to explain the variation in dependent variable though there were 

few descriptors that were common to all QSPRs. The QSPR for chlorine demand 

had more descriptors than either the QSPRs for TOX and TCM formation QSPR 

(Eqs 7.1, 7.2 & 7.3). The QSPR for chlorine demand had more descriptors 

because there are different classes of molecules in water that vary in structural 

properties (or functional groups) that influence their chemical reaction with 

chlorine. The chlorinated organic molecules may retain parent structure or may 
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undergo further transformation to known and unknown chlorinated compounds 

(DBPs) and unchlorinated organic products. The RAI, ArOH, CI, ACN and AS 

were more important descriptors than O:C, ArORact and ArORnact. The RAi and 

ArOH were key descriptors for aromatic organic molecules with strong electron 

donating substituents. The ArOH and RAI (the relative number of strong electron 

donor (NH2 and OH) to number of aromatic rings) are explain for the degree to 

which the ring is activated. These functional groups make the ring highly electron 

rich though the number and the relative position of the groups to each in the ring 

may increase or decrease ring electron richness due cooperative or antagonistic 

effects respectively. In general, the more electron rich the ring is the higher the 

electrophilic substitution.  

Carbonyl index was an important additive descriptor to explain reactivity of 

carbonyl (aldehydes and ketones) α, β-and γ-dicarbonyl compounds that may 

present in water sample matrix. The pKa of hydrogen on alpha-carbon in 

between two carbonyl groups is relative lower than in alpha or gamma carbonyls. 

The lower the pKa the easier the abstraction of proton by a base in water to 

generate a keto-enol intermediate that eventually leads to chlorine substitution. 

The ACN and AS are two descriptors related to number of aliphatic nitrogen 

(amines) and sulfur (thiols, thiomide, thioethers, thioketone). Nitrogen and sulfur 

have a pair of electrons p-orbital which can act as neural bases. The lone pair 

can attack the Cl atom in HOCl which may eventually lead to addition chlorine to 

sulfur or nitrogen. The addition of chlorine to sulfur or nitrogen may induce 

electron deficiency on the carbon to which they are bonded and that may lead to 
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nucleophilic or electrophilic substitution with a release of inorganic chlorine 

compounds. This descriptor is additive and therefore chlorine consumed is 

expect increase with increasing number of aliphatic sulfur and amine in a 

molecule. The ACN is more important for amino acids (including cysteine and 

methionine) which moderate chlorine consumption and AS is for any molecule 

with aliphatic sulfur.  

Formation of disinfection byproducts from a precursor is a multistep 

processes with several intermediate products. Disinfection byproducts may be 

formed from any of intermediates by addition reactions, substitution reaction, 

elimination reactions, etc. Chlorination of aromatic rings (in aromatic compounds) 

or aliphatic compounds may occur at different rates and not every chlorinated 

molecule may undergo ring opening to form THMs and HAAs. Some of the 

molecules may retain its parent structure and some might be broken down into 

compounds with unknown identity whereas breakdown of intermediates for some 

compounds may favor formation of THMs over HAAs and vice versa.  The 

mechanisms by which THMs and HAAs are formed from intermediates may not 

be highly dependent on the structures of parent molecules. Thus, it is not 

surprising to find that QSPRs for DBPs formation have been explained by fewer 

descriptors than chlorine demand and just a few of the descriptors in chlorine 

demand model also appear TOX and TCM formation models. Thus, CI, ArOH or 

sum NH2 and OH in aromatic ring (ED) emerged as important descriptors for 

TOX and TCM formation.  
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Chlorination of aromatic and aliphatic compounds eventually leads to 

formation of disinfection byproducts which may imply that chlorine consumed 

should be equal to chlorine incorporated in organic molecules of known and 

unknown identities (TOX). This is generally not the case because some of the 

chlorine may be lost from intermediate products as inorganic chlorine which 

cannot be detected by TOX analyzers. Further analysis of the chlorine demand 

and TOX formation from individual model compounds (19,20,21) showed only 

22.38% of the chlorine consumed is detected as TOX for majority of them 

(Tables S7.1). Similarly amount TOX detected relative to chlorine form fulvic and 

humic fractions as well as raw water (18) was about 18-33% (Tables S7.2 & 

S7.3). These two results agree to each other and in this case it showed that 

about 70-80% of chorine consumed is lost probably as inorganic chlorine. 

Consequently, the linear relationship between chlorine demand and TOX 

formation may not always hold. This is one of the reasons chlorine demand and 

TOX formation QSPRs do not have the same number of descriptors. 

The application of the QSPRs developed in this study is limited by the 

conditions the data for chlorine demand and DBPs were collected. The prediction 

of chlorine demand, TOX and TCM may be reliable for samples chlorinated at pH 

7-8; water should not have high levels of copper (II), iron (II) and manganese (II) 

which can increase chlorine demand because these ions can be oxidized by 

chlorine. These metal ions may also coordinate to carbonyls or amines in 

molecules like β-diketone. The consequence of this phenomenon is that pKa of 

hydrogen on α-carbon will be lowered and study has shown that chloroform 
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formation from carbonyl compounds or 2-hydroxybenzoic acids and catechols 

was higher in presence of copper (II) than when it was absent (22,23). Presence 

of high levels of bromide may also affect predictions of DBPs because bromide 

reaction with HOCl to produce HOBr. The presence of these two oxidants will 

increase formation of DBPs significantly while the QSPRs were derived using 

data that were collected in samples without bromide. The nitrogenous aromatic 

compounds may have exocyclic directly bonded to the carbon in the ring or 

endocyclic amine when nitrogen part of the atoms forming the ring. The QSPRs 

for chlorine demand, TOX and TCM formation may not have high predictive in 

nitrogenous compounds with endocyclic nitrogen or oxygen or sulfur because 

there is descriptor in the QSPRs that account for endocyclic ring activation. 

7.4. Recommendations 

This work used constitutional descriptors to derived QSPRs. It was found 

that constitutional descriptors that were used in this study failed to explain 

variation in TCAA formation. This suggests that there is either no linear 

relationship between TCAA and constitutional descriptors or the relationship is 

non-linear. It is recommended TCAA formation should be predicted using non-

linear QSPR which could be derived using non-linear algorithms such artificial 

neural network.  

Constitutional descriptors cannot explain the differences in DBPs 

formation or chlorine demand positional isomers or constitutional isomers. 

Alternatively, use of descriptors such as geometrical descriptors, quantum-
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mechanical descriptors, typological descriptors is highly recommended in order 

to improve the predictions.  

Natural water may have traces of bromide from point and non-point 

sources and chlorination of such waters may affective predictive power of models 

derived using bromine free water sample matrices. There is an opportunity of 

QSPR studies on chlorination of water (with bromide at various concentrations) 

so that we may derive correction factors to account for presence of bromide  

The HOCldem and DBPs formation experiments were performed at contact 

times between 4-96 h and in excess chlorine dose which do not reflect the 

routine contact time and chlorine doses used in typical drinking water treatment 

plants.  More work is needed to build up data base for HOCldem and DBPs 

formation under typical water treatment conditions. Monitoring of chlorine 

demand and DBPs formation from chlorination of most reactive model 

compounds with time will shed light on which model structures will react at the 

water treatment plant and which ones will react in distribution systems. Such data 

will also be useful for evaluating the predictive power of the QSPRs reported in 

this work and designing strategies to control the most reactive precursors. 
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APPENDICES 

 

Table S2.1. A list of constitutional descriptors and abbreviations. 

Descriptors Abbreviation Descriptors Abbreviation 
# Alkoxy groups attached to the 
aromatic ring without NH2 and 
OH  

ArORact # Alkoxy groups attached to the 
aromatic ring without NH2 and 
OH 

ArORnoact 

# Oxygen to carbon ratio O:C Ring activation index RAI 
Square root of number of 
heteroatoms 

sqrtHeA # One three activated aromatic 
carbon 

OTactC 

Square root of number of 
phenols 

sqrtArOH  Difference of ArED:C and 
CORH:C 

EDCORH 

Sum of weak of strong electron 
donors (alkoxys) bonded to 
aromatic ring per carbon 

ArOR:C # Aliphatic C bonded reduced 
nitrogen (NH2) 

ACN 

# Phenols ArOH Sum ArED per carbon ArED:C 
# Aliphatic sulfur AS Carbonyl index CI 
Log of hydrogen to carbon ratio logH:C # Phenol per carbon ArOH:C 
# Hydrogen to carbon ratio H:C Square root of ring index sqrtRAI 
# Anilines ArNH2 Log of number of heteroatoms logHeA 
# Nitrogen to carbon ratio N:C Log of number of carbons logC 
# Carboxylic acids and acid 
amides 

COOH/NH2 # Carboxylic acids and acid 
amides per carbon 

COOH/NH2:C 

#Aldehydes and ketones CORH # Aldehydes and ketones per 
carbon 

CORH:C 

# C-C pi-bonds  piB # C-C pibonds per carbon piB:C 
# Hydroxyl, amino and alkoxy 
groups bonded to aromatic ring 

EDOR # Hydroxyl, amino and alkoxy 
groups bonded to aromatic ring 
per carbon 

EDOR:C 

# Heteroatoms HeA Log of number of heteroatoms 
per carbon 

logHeA:C 

# Aniline per carbon ArNH2:C # Alcohols and thiols RO(S)H 
# Carboxylic acid and acid 
amines per carbon 

COOH/NH2:C # Aromatic rings Ar 

# Aldehyes and ketones per 
carbon 

CORH:C #Aliphatic amine RNH2 

# Hydroxyl, amino and alkoxy 
groups bonded to aromatic ring 
per carbon 

EDOR:C # Aromatic aldehyde and 
ketones 

ArCORH 

# C-C pibonds per carbon piB:C # Aliphatic aldehyde and ketones RCORH 
# Oxygen atoms O # Aromatic carboxylic acid and 

acid amines per carbon 
ArCOOH/NH2:
C 

# Hydrogen atoms H # Aromatic aldehyde and 
ketones per carbon 

ArCORH:C 

# Carbon atoms C # Aliphatic amine per carbon RNH2:C 
# Activated aromatic carbon ActC Sum of strong electron donors 

(OH and NH2) bonded to 
aromatic ring  

ArED 

# Halogens bonded to aromatic ArX Sum of weak of strong electron 
donors (alkoxys) bonded to 
aromatic ring 

ArOR 

Square root of number of carbon sqrtC # Aliphatic carbons R-C 
Square root of number of oxygen 
atoms 

sqrtO Square root of hydrogen atoms sqrtH 

# Aromatic and aliphatic esters COOR # Aromatic carbons Ar-C 
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Table S3.1. Leave-Many-Out calibration data set (N = 109) for chlorine demand (mol-HOCl/mol-Cp). AdjHOCl = adjusted HOCl demand 

Compound name Source HOCl AdjHOCl RAI ArOH ACN CI OC AS ArORact ArORnact 

2,4-Dihydroxybenzoic acid (1) 7.50  0.60 2.00 0.00 0.00 0.57 0.00 0.00 0.00 

3,5-Dihydroxybenzoic acid (1) 7.10  0.60 2.00 0.00 0.00 0.57 0.00 0.00 0.00 

1,4-Phenyldiamine (2) 3.53  0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2-Aminobenzoic acid (2) 6.04  0.75 0.00 0.00 0.00 0.29 0.00 0.00 0.00 

2-Aminophenol (2) 4.70  0.30 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

3,4,5-Triethoxybenzoic acid (2) 0.99  0.10 0.00 0.00 0.00 0.38 0.00 3.00 0.00 

3,4,5-Trimethoxyacetophenone (2) 0.93  0.10 0.00 0.00 0.50 0.36 0.00 3.00 0.00 

3,4,5-Trimethoxybenzamide (2) 5.33  0.10 0.00 1.00 0.00 0.40 0.00 3.00 0.00 

3,4,5-Trimethoxyphenyl acetonitrile (2) 4.38  0.10 0.00 0.00 0.00 0.27 0.00 3.00 0.00 

3,4,5-Trimethoxyphenylacetic acid (2) 0.84  0.10 0.00 0.00 0.00 0.45 0.00 3.00 0.00 

4-(3,4,5-trimethoxybenzoyl) butyric acid (2) 2.01  0.10 0.00 0.00 0.00 0.43 0.00 3.00 0.00 

4-Allyl-2,6-dimethoxyphenol (2) 6.80  1.00 1.00 0.00 0.00 0.27 0.00 0.00 2.00 

4-Aminobenzoic acid (2) 7.90  1.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 

4-Hydroxybenzophenone (2) 8.94  1.00 1.00 0.00 0.00 0.15 0.00 0.00 0.00 

4-Methyl-2,6-dimethoxyphenol (2) 4.87  0.50 1.00 0.00 0.00 0.33 0.00 0.00 2.00 

Acetosyringone (2) 7.79  1.00 1.00 0.00 0.50 0.40 0.00 0.00 2.00 

Aniline  (2) 8.58  1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ethyl-(3,4,5-trimethoxybenzyl) acetate (2) 4.50  0.10 0.00 0.00 0.00 0.36 0.00 3.00 0.00 

Ferulic acid (2) 10.32  1.00 1.00 0.00 0.00 0.40 0.00 0.00 1.00 

Syringaldehyde (2) 8.38  1.00 1.00 0.00 0.00 0.44 0.00 0.00 2.00 

Syringic acid (2) 6.93  1.00 1.00 0.00 0.00 0.56 0.00 0.00 2.00 
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1,3-Dihydroxybenzene (3) 7.90  0.60 2.00 0.00 0.00 0.33 0.00 0.00 0.00 

3-Oxobutanedioic acid (3) 3.80  0.00 0.00 0.00 1.50 1.25 0.00 0.00 0.00 

4,6-dioxoheptanoic acid (3) 4.80  0.00 0.00 0.00 3.50 0.57 0.00 0.00 0.00 

4-Oxoheptanedioic acid (3) 1.25  0.00 0.00 0.00 1.00 0.71 0.00 0.00 0.00 

5,7-Dioxooctanoic acid (3) 6.00  0.00 0.00 0.00 3.50 0.50 0.00 0.00 0.00 

Phenol (3) 9.50  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

2,4,6-Trichlorophenol (4) 8.00  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

2,4-Dichlorophenol (4) 8.00  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

3-Chlorophenol (4) 9.50  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

4-Cyanophenol (4) 11.0  1.00 1.00 0.00 0.00 0.14 0.00 0.00 0.00 

Phenol (4) 9.50  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

Alanine (5) 3.90  0.00 0.00 1.00 0.00 0.67 0.00 0.00 0.00 

Arginine (5) 8.90  0.00 0.00 3.00 0.00 0.33 0.00 0.00 0.00 

Asparagine (5) 6.10  0.00 0.00 2.00 0.00 0.75 0.00 0.00 0.00 

Cysteine (5) 8.40  0.00 0.00 1.00 0.00 0.67 1.00 0.00 0.00 

Glutamine (5) 3.80  0.00 0.00 2.00 0.00 0.60 0.00 0.00 0.00 

Glycine (5) 3.40  0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 

Leucine (5) 6.60  0.00 0.00 1.00 0.00 0.33 0.00 0.00 0.00 

Lysine (5) 5.20  0.00 0.00 2.00 0.00 0.33 0.00 0.00 0.00 

Methionine (5) 6.20  0.00 0.00 1.00 0.00 0.50 1.00 0.00 0.00 

Phenylalanine (5) 5.20 3.82 0.00 0.00 1.00 0.00 0.22 0.00 0.00 0.00 

Serine (5) 4.50  0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 

Threonine (5) 5.80  0.00 0.00 1.00 0.00 0.75 0.00 0.00 0.00 
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Valine (5) 5.70  0.00 0.00 1.00 0.00 0.40 0.00 0.00 0.00 

4-Iodophenol (6) 12.5  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

Alanine (6) 2.81 3.56 0.00 0.00 1.00 0.00 0.67 0.00 0.00 0.00 

Asparagine (6) 4.1 5.21 0.00 0.00 2.00 0.00 0.75 0.00 0.00 0.00 

Aspartic acid (6) 5.50  0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 

Glutamic acid (6) 2.40 3.05 0.00 0.00 1.00 0.00 0.80 0.00 0.00 0.00 

Glycine (6) 5.60  0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 

Isoleucine (6) 2.60 3.30 0.00 0.00 1.00 0.00 0.33 0.00 0.00 0.00 

Phenylalanine (6) 2.70 3.43 0.00 0.00 1.00 0.00 0.22 0.00 0.00 0.00 

Proline (6) 5.40  0.00 0.00 1.00 0.00 0.40 0.00 0.00 0.00 

Tyrosine (6) 13.4  1.00 1.00 1.00 0.00 0.33 0.00 0.00 0.00 

1,2,4-Trihydroxybenzene (7) 3.90  0.30 3.00 0.00 0.00 0.50 0.00 0.00 0.00 

1,3-Dihydroxybenzene (7) 7.20  0.60 2.00 0.00 0.00 0.33 0.00 0.00 0.00 

1-Naphthol (7) 7.20  1.00 1.00 0.00 0.00 0.10 0.00 0.00 0.00 

2-Chlorophenol (7) 8.90  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

2-Hydroxybenzoic acid (7) 6.00  0.75 1.00 0.00 0.00 0.43 0.00 0.00 0.00 

2-Hydroxytoluene (7) 7.50  1.00 1.00 0.00 0.00 0.14 0.00 0.00 0.00 

2-Methoxylphenol (7) 7.70  1.00 1.00 0.00 0.00 0.29 0.00 0.00 1.00 

2-Oxoacetic acid (7) 1.10  0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.00 

3,4,5-Trichlorophenol (7) 5.2  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

3-Aminophenol (7) 7.70  0.60 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

3-Hydroxybenzaldehyde (7) 9.80  1.00 1.00 0.00 0.00 0.29 0.00 0.00 0.00 

3-Hydroxybenzoic acid (7) 9.10  1.00 1.00 0.00 0.00 0.43 0.00 0.00 0.00 
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3-Methoxylphenol (7) 8.10  1.00 1.00 0.00 0.00 0.29 0.00 0.00 1.00 

3-Nitroaniline (7) 8.50  1.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 

3-Nitrobenzoic acid (7) 0.10  0.00 0.00 0.00 0.00 0.57 0.00 0.00 0.00 

3-Nitrophenol (7) 9.20  1.00 1.00 0.00 0.00 0.50 0.00 0.00 0.00 

4,4-Dihydroxy biphenyl (7) 10.5  1.00 2.00 0.00 0.00 0.17 0.00 0.00 0.00 

4-Aminophenol (7) 5.40  0.50 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

4-Chloro-3,5-dimethylphenol (7) 4.70  0.50 1.00 0.00 0.00 0.13 0.00 0.00 0.00 

4-Chlorobenzoic acid (7) 0.10  0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 

4-Chlorophenol (7) 8.70  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

4-Hydroxyacetophenone (7) 9.80  1.00 1.00 0.00 0.50 0.25 0.00 0.00 0.00 

4-Hydroxybenzaldehyde (7) 8.80  1.00 1.00 0.00 0.00 0.29 0.00 0.00 0.00 

4-Hydroxybenzoic acid (7) 9.40  1.00 1.00 0.00 0.00 0.43 0.00 0.00 0.00 

4-Hydroxytoluene (7) 5.50 6.33 1.00 1.00 0.00 0.00 0.14 0.00 0.00 0.00 

4-Nitrophenol (7) 7.60  1.00 1.00 0.00 0.00 0.50 0.00 0.00 0.00 

Acetathiomide (7) 4.20  0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 

Acetic acid (7) 0.10  0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

Acetone (7) 0.10  0.00 0.00 0.00 0.50 0.33 0.00 0.00 0.00 

Acetylacetone (7) 4.00  0.00 0.00 0.00 2.50 0.40 0.00 0.00 0.00 

Anisole (7) 1.00  0.10 0.00 0.00 0.00 0.14 0.00 1.00 0.00 

Benzaldehyde (7) 0.10  0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 

Benzoic acid (7) 0.30  0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 

Benzothiomide (7) 4.00  0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 

Citric acid (7) 0.80  0.00 0.00 0.00 0.00 1.17 0.00 0.00 0.00 
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Ethanol (7) 0.10  0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 

Fumaric acid (7) 0.10  0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

Maleic acid (7) 0.10  0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

Malonic acid (7) 1.80  0.00 0.00 0.00 0.00 1.33 0.00 0.00 0.00 

N,N-Diethylbenzenamine (7) 8.30  1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Nitrobenzene (7) 0.10  0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 

Oxalic acid (7) 0.30  0.00 0.00 0.00 0.00 2.00 0.00 0.00 0.00 

Phenoxyacetic acid (7) 0.30  0.10 0.00 0.00 0.00 0.38 0.00 1.00 0.00 

Phenylthiourea (7) 12.4  1.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 

Propanal (7) 0.20  0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 

Succinic acid (7) 0.10  0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

Thiourea (7) 3.90  0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 

Tyrosine (7) 11.4  1.00 1.00 1.00 0.00 0.33 0.00 0.00 0.00 

3-(4-Hydroxy-3,5-dimethoxyphenyl)propanoic acid (8) 6.06  1.00 0.00 0.00 0.00 0.42 0.00 0.00 2.00 

3,5-Dihydroxytoluene (8) 6.26 6.39 0.60 2.00 0.00 0.00 0.29 0.00 0.00 0.00 

3,5-Dimethoxybenzoic acid (8) 3.00  0.10 0.00 0.00 0.00 0.44 0.00 2.00 0.00 

3,5-Dimethoxybenzoic acid (8) 3.00  0.10 0.00 0.00 0.00 0.44 0.00 2.00 0.00 

Sinapic acid (8) 6.09 8.77 1.00 1.00 0.00 0.00 0.45 0.00 0.00 2.00 

Vanillic acid (8) 5.38 7.75 1.00 1.00 0.00 0.00 0.50 0.00 0.00 1.00 
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Table S3.2. Leave-Many-Out cross validation data set (N = 50) for chlorine demand (mol-HOCl/mol-Cp) 

Compound name Source HOCl AdjHOCl RAI ArOH ACN CI OC AS ArORact ArORnact 

1,3-Dihydroxybenzene (1) 7.10  0.60 2.00 0.00 0.00 0.33 0.00 0.00 0.00 

1,3-Dihydroxynaphthalene (1) 5.10  0.30 2.00 0.00 0.00 0.20 0.00 0.00 0.00 

3,5-Dihydroxytoluene (1) 7.90  0.60 2.00 0.00 0.00 0.29 0.00 0.00 0.00 

3,4,5-Trimethoxybenzoic acid (2) 1.10  0.10 0.00 0.00 0.00 0.50 0.00 3.00 0.00 

4-Hydroxyacetophenone (2) 8.94  1.00 1.00 0.00 0.50 0.25 0.00 0.00 0.00 

4-Hydroxybenzaldehyde (2) 9.12  1.00 1.00 0.00 0.00 0.29 0.00 0.00 0.00 

Acetovanillione (2) 8.68  1.00 1.00 0.00 0.50 0.33 0.00 0.00 1.00 

Vanillic acid (2) 8.60  1.00 1.00 0.00 0.00 0.50 0.00 0.00 1.00 

2-Oxopentanedioic acid (3) 1.40  0.00 0.00 0.00 0.50 1.00 0.00 0.00 0.00 

3-Chlorophenol (3) 8.80  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

3-hydroxybutyric acid (3) 1.20  0.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 

3-Oxopentanedioic acid (3) 5.30  0.00 0.00 0.00 3.00 1.00 0.00 0.00 0.00 

Citric acid (3) 0.46  0.00 0.00 0.00 0.00 1.17 0.00 0.00 0.00 

Methylacetic acid (3) 0.79  0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

2,4-Dichlorophenol (4) 8.10  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

3,4,5-Trichlorophenol (4) 8.5  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

4-Chlorophenol (4) 9.80  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

4-Hydroxytoluene (4) 10.5  1.00 1.00 0.00 0.00 0.14 0.00 0.00 0.00 

4-Nitrophenol (4) 8.20  1.00 1.00 1.00 0.00 0.50 0.00 0.00 0.00 

Aspartic acid (5) 6.10  0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 

Glutamic acid (5) 5.6  0.00 0.00 1.00 0.00 0.80 0.00 0.00 0.00 
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Glutamine (5) 3.80  0.00 0.00 2.00 0.00 0.60 0.00 0.00 0.00 

Isoleucine (5) 6.60  0.00 0.00 1.00 0.00 0.33 0.00 0.00 0.00 

Proline (5) 5.60  0.00 0.00 1.00 0.00 0.40 0.00 0.00 0.00 

Tyrosine (5) 13.20  1.00 1.00 1.00 0.00 0.33 0.00 0.00 0.00 

Valine (5) 2.70 3.43 0.00 0.00 1.00 0.00 0.40 0.00 0.00 0.00 

Arginine (6) 8.20  0.00 0.00 3.00 0.00 0.33 0.00 0.00 0.00 

Cysteine (6) 6.20 7.87 0.00 0.00 1.00 0.00 0.67 1.00 0.00 0.00 

Leucine (6) 2.60 3.30 0.00 0.00 1.00 0.00 0.33 0.00 0.00 0.00 

Lysine (6) 3.80 4.83 0.00 0.00 2.00 0.00 0.33 0.00 0.00 0.00 

Methionine (6) 6.00  0.00 0.00 1.00 0.00 0.50 1.00 0.00 0.00 

Serine (6) 5.30  0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 

Threonine (6) 5.60  0.00 0.00 1.00 0.00 0.75 0.00 0.00 0.00 

1,3,5-Trihydroxybenzene (7) 9.10  0.50 3.00 0.00 0.00 0.50 0.00 0.00 0.00 

2,4,6-Trichlorophenol (7) 6.8 8.02 1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

2-Aminophenol (7) 3.9 4.02 0.30 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

2-Chlorophenol (7) 9.20  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

2-Naphthol (7) 4.40  0.50 1.00 0.00 0.00 0.10 0.00 0.00 0.00 

Alanine (7) 2.0 2.54 0.00 0.00 1.00 0.00 0.67 0.00 0.00 0.00 

Aniline  (7) 8.30  1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Asparagine (7) 5.60  0.00 0.00 2.00 0.00 0.75 0.00 0.00 0.00 

Butanal (7) 0.20  0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 

Malic acid (7) 0.75  0.00 0.00 0.00 0.00 1.25 0.00 0.00 0.00 

Methionine (7) 5.00 6.35 0.00 0.00 1.00 0.00 0.50 1.00 0.00 0.00 
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Phenol (7) 9.80  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

Phenylalanine (7) 2.0 2.54 0.00 0.00 1.00 0.00 0.22 0.00 0.00 0.00 

3,5-dihydroxybenzoic acid (8) 7.06  0.60 2.00 0.00 0.00 0.57 0.00 0.00 0.00 

Ferullic acid (8) 7.63 10.99 1.00 1.00 0.00 0.00 0.40 0.00 0.00 1.00 

Sinapic acid (8) 9.03  1.00 1.00 0.00 0.00 0.45 0.00 0.00 2.00 

Syringic acid (8) 5.10 7.46 1.00 1.00 0.00 0.00 0.56 0.00 0.00 2.00 
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Table S3.3. External validation data set (N = 42) for chlorine demand (mol-HOCl/mol-Cp) 

Compound name Source HOCl AdjHOCl RAI ArOH ACN CI OC AS ArORact ArORnact 

Manose (9) 1.30  0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

5-Methylfurfural (9) 0.80  0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 

Arabinose (9) 0.4  0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

3,4,5-Triethoxybenzyl alcohol (2) 0.55  0.10 0.00 0.00 0.00 0.31 0.00 3.00 0.00 

3,4,5-Trimethoxybenzyl alcohol (2) 1.52  0.10 0.00 0.00 0.00 0.40 0.00 3.00 0.00 

3-Aminobenzoic acid (2) 7.74  1.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 

4-Hydroxybenzoic acid (2) 9.48  1.00 1.00 0.00 0.00 0.43 0.00 0.00 0.00 

Coniferyl alcohol (2) 6.66  1.00 1.00 0.00 0.00 0.30 0.00 0.00 1.00 

Methylsyringate (2) 7.11  1.00 1.00 0.00 0.00 0.50 0.00 0.00 2.00 

p-Cummaric acid (2) 9.29  1.00 1.00 0.00 0.00 0.33 0.00 0.00 0.00 

Sinapyl alcohol (2) 6.14  1.00 1.00 0.00 0.00 0.36 0.00 0.00 2.00 

Trans-3,5-dimethoxy-4-hydroxycinnamate (2) 9.59  1.00 1.00 0.00 0.00 0.38 0.00 0.00 2.00 

Vanillin (2) 7.92  1.00 1.00 0.00 0.00 0.38 0.00 0.00 1.00 

2-Oxobutyric acid (3) 1.10  0.00 0.00 0.00 0.50 0.75 0.00 0.00 0.00 

3-Oxohexanedioic acid (3) 5.80  0.00 0.00 0.00 2.00 0.83 0.00 0.00 0.00 

N-Acetylneuraminic acid (3) 2.9  0.00 0.00 1.00 0.00 0.82 0.00 0.00 0.00 

Citraconic acid (3) 0.10  0.00 0.00 0.00 0.00 0.80 0.00 0.00 0.00 

2,3,4,6-Tetrachlorophenol (4) 7.20  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

Ornithinechlorohydrate (6) 4.60  0.00 0.00 2.00 0.00 0.40 0.00 0.00 0.00 

β-Alanine (6) 2.80  0.00 0.00 1.00 0.00 0.67 0.00 0.00 0.00 

1,2,3-Trihydroxybenzene (7) 6.90  0.50 3.00 0.00 0.00 0.50 0.00 0.00 0.00 
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1,2-Dihydroxybenzene (7) 4.10  0.30 2.00 0.00 0.00 0.33 0.00 0.00 0.00 

1,4-Dihydroxybenzene (7) 3.30  0.30 2.00 0.00 0.00 0.33 0.00 0.00 0.00 

2,3,6-Trichlorophenol (7) 6.90  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

2,3-Dichlorophenol (7) 8.00  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

2-hydroxyacetophenone (7) 9.90  1.00 1.00 0.00 0.50 0.25 0.00 0.00 0.00 

2-Hydroxybenzaldehyde (7) 9.70  1.00 1.00 0.00 0.00 0.29 0.00 0.00 0.00 

2-Nitrophenol (7) 9.60  1.00 1.00 1.00 0.00 0.50 0.00 0.00 0.00 

3,5-Dichlorophenol (7) 7.60  1.00 1.00 0.00 0.00 0.17 0.00 0.00 0.00 

3-hydroxyacetophenone (7) 11.00  1.00 1.00 0.00 0.50 0.25 0.00 0.00 0.00 

3-hydroxytoluene (7) 8.70  1.00 1.00 0.00 0.00 0.14 0.00 0.00 0.00 

4,6-Dichloro-1,3-dihydroxybenzene (7) 5.00  0.60 2.00 0.00 0.00 0.25 0.00 0.00 0.00 

4-Chloro-1,3-dihydroxybenzene (7) 6.10  0.60 2.00 0.00 0.00 0.33 0.00 0.00 0.00 

4-Methoxyphenol (7) 3.40  0.50 1.00 0.00 0.00 0.29 0.00 0.00 1.00 

Acetophenone (7) 0.50  0.00 0.00 0.00 0.50 0.13 0.00 0.00 0.00 

Benzamide (7) 2.50  0.00 0.00 1.00 0.00 0.14 0.00 0.00 0.00 

Ethylaceto acetate (7) 2.00  0.00 0.00 0.00 2.50 0.50 0.00 0.00 0.00 

Phenylacetic acid (7) 0.10  0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 

Pyruvic acid (7) 1.00  0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 

Urea (7) 3.80  0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 

3-(3,4,5-trimethoxyphenyl) propionic acid (8) 1.32  0.10 0.00 0.00 0.00 0.42 0.00 3.00 0.00 

3-(-4-hydroxy-3-methoxyphenyl)propanoic acid (8) 4.94  0.50 1.00 0.00 0.00 0.40 0.00 0.00 1.00 
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Table S3.4. Calibration statistics and coefficient of the 5-fold LMO QSPRs for chlorine demand. 

 Regression statistics Descriptors 

QSPRs  R R2 AdjR2 SDE RAI ArOH ACN CI OC AS ArORact ArORnact 

Set-1 0.93 0.87 0.85 1.26 7.81 0.92 3.08 1.19 0.85 1.96 0.40 -0.68 

Set-2 0.95 0.90 0.88 1.12 7.60 1.28 2.97 1.38 0.88 2.04 0.28 -0.67 

Set-3 0.91 0.82 0.80 1.35 7.62 1.04 2.87 0.87 1.36 2.85 0.63 -0.98 

Set-4 0.92 0.85 0.83 1.29 7.47 1.30 3.02 1.38 0.90 2.52 0.73 -0.60 

Set-5 0.94 0.88 0.86 1.20 7.52 1.25 3.05 1.31 1.06 2.50 0.40 -0.68 

Total 3.72 3.45 3.38 4.95 38.03 5.79 15.00 6.13 5.06 11.87 2.43 -3.62 

Mean 0.93 0.86 0.84 1.24 7.61 1.16 3.00 1.23 1.01 2.37 0.49 -0.72 

Stdev 0.02 0.04 0.04 0.10 0.13 0.17 0.08 0.21 0.21 0.37 0.19 0.15 

All (N = 159) 0.93 0.86 0.85 1.24 7.68 1.08 2.97 1.19 1.04 2.44 0.34 -0.64 

All (N = 201) 0.93 0.87 0.86 1.21 7.75 0.93 2.91 1.21 1.03 2.50 0.25 -0.68 
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Table S3.5. Standard errors of descriptors for the five-fold LMO calibration for chlorine demand  

 Descriptors 

QSPRs RAI ArOH ACN CI OC AS ArORact ArORnact Mean 

Set-1 0.34 0.25 0.22 0.19 0.28 0.55 0.15 0.25 5.51 

Set-2 0.30 0.22 0.19 0.19 0.25 0.49 0.14 0.22 5.60 

Set-3 0.33 0.23 0.20 0.31 0.31 0.58 0.22 0.42 6.04 

Set-4 0.41 0.31 0.19 0.23 0.28 0.51 0.22 0.28 5.58 

Set-5 0.34 0.27 0.21 0.21 0.29 0.57 0.15 0.24 5.62 

Total 1.72 1.28 1.00 1.13 1.41 2.70 0.87 1.41 28.35 

Mean 0.34 0.26 0.20 0.23 0.28 0.54 0.17 0.28 5.67 

Stdev 0.04 0.04 0.01 0.05 0.02 0.04 0.04 0.08 0.21 

Training (N = 159) 0.27 0.19 0.16 0.17 0.23 0.44 0.14 0.22 5.73 

All data (N = 201) 0.23 0.16 0.15 0.16 0.21 0.42 0.12 0.18 5.57 
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Table S3.6. Predictive power for 5-fold LMOCV and LOOCV for chlorine demand 

Data sets (N = 50) q2 MBD RMSE Ri
2 k Ro

2 k' Rt 

Set-1 0.83 -3.86 1.29 0.84 0.95 0.84 0.96 0.000 

Set-2 0.75 -2.23 1.50 0.77 0.89 0.76 0.96 0.008 

Set-3 0.90 3.41 1.19 0.91 0.80 0.86 0.95 0.057 

Set-4 0.86 4.03 1.25 0.87 0.85 0.83 1.00 0.038 

Set-5 0.81 3.69 1.35 0.82 0.81 0.77 0.99 0.060 

Total 4.17 5.03 6.58 4.21 4.30 4.07 4.85 0.163 

Mean 0.83 1.01 1.32 0.84 0.86 0.81 0.97 0.033 

Stdev 0.06 3.75 0.12 0.05 0.06 0.04 0.02 0.027 

LOOcv (N = 159) 0.85 -0.55 1.28 0.85 0.88 0.84 0.97 0.013 
 

Table S3.7. Predictive power for LMOCV using average QSPR for chlorine demand. 

Data sets q2 MBD RMSE Ri
2 K Ro

2 k' Rt 

Set-1 0.84 -1.69 1.26 0.85 0.95 0.85 0.98 0.001 

Set-2 0.78 -1.76 1.43 0.78 0.87 0.77 0.96 0.014 

Set-3 0.94 3.63 0.94 0.95 0.85 0.92 0.97 0.030 

Set-4 0.89 2.43 1.12 0.89 0.87 0.87 0.99 0.024 

Set-5 0.82 2.34 1.33 0.82 0.81 0.78 0.98 0.054 

Total 4.27 4.96 6.08 4.29 4.36 4.18 4.87 0.122 

Mean 0.85 0.99 1.22 0.86 0.87 0.84 0.97 0.024 

Stdev 0.06 2.53 0.19 0.06 0.05 0.06 0.01 0.020 

Training (N = 159) 0.86 -0.28 1.21 0.86 0.88 0.85 0.97 0.015 

All data (N = 201) 0.87 1.90 1.21 0.87 0.88 0.85 0.98 0.020 
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Table S3.8. Predictive power for the external data using QSPRs for chlorine demand  

Each QSPR  q2 MBD RMSE Ri
2 k Ro

2 k' Rt 

Set-1  0.90 8.56 1.09 0.91 0.91 0.89 1.03 0.026 

Set-2  0.88 11.64 1.16 0.91 0.93 0.88 1.06 0.027 

Set-3  0.88 10.60 1.22 0.89 0.86 0.84 1.03 0.054 

Set-4  0.86 13.22 1.27 0.89 0.89 0.85 1.06 0.053 

Set-5 0.88 12.45 1.19 0.91 0.91 0.87 1.06 0.041 

Total 4.40 56.47 5.92 4.51 4.50 4.33 5.24 0.201 

Mean 0.88 11.29 1.18 0.90 0.90 0.87 1.05 0.040 

Stdev 0.01 1.81 0.07 0.01 0.03 0.02 0.01 0.014 

Average QSPR 0.88 11.42 1.17 0.91 0.90 0.87 1.05 0.039 
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Table S4.1. TOX formation (mol-Cl/mol-Cp) for compounds in training data set (N = 49  

Compound name Source TOX CI ArOH:C √HeA logH:C 

1,3-Dihydroxybenzene (3) 3.00 2.00 0.33 1.41 0.00 

1,4-Phenyldiamine (2) 0.03 0.00 0.00 1.41 0.12 

2-Aminobenzoic acid (2) 0.45 0.00 0.00 1.73 0.00 

2-Oxobutanedioic acid (3) 0.55 1.50 0.00 2.24 0.00 

2-Oxobutyric acid (3) 0.30 0.50 0.00 1.73 0.18 

2-Oxopentanedioic acid (3) 0.34 0.50 0.00 2.24 0.18 

3-(3,4,5-trimethoxyphenyl) propionic acid (2) 1.19 0.00 0.00 2.24 0.12 

3,4,5-Triethoxybenzoic acid (2) 0.66 0.00 0.00 2.24 0.14 

3,4,5-Trimethoxyacetophenone (2) 0.60 0.50 0.00 2.00 0.10 

3,4,5-Trimethoxybenzamide (2) 0.30 0.00 0.00 2.24 0.11 

3,4,5-Trimethoxybenzoic acid (2) 0.97 0.00 0.00 2.00 0.08 

3,4,5-Trimethoxybenzyl alcohol (2) 0.99 0.00 0.00 2.00 0.15 

3,4,5-Trimethoxyphenyl acetonitrile (2) 0.85 0.00 0.00 2.00 0.07 

3-Hydroxybutyric acid (3) 0.93 0.00 0.00 1.73 0.30 

3-Oxohexanedioic acid (3) 2.30 2.50 0.00 2.24 0.12 

4-(3,4,5-trimethoxybenzoyl) butyric acid (2) 0.30 0.50 0.00 2.45 0.11 

4,6-dioxoheptanoic acid (3) 2.50 3.50 0.00 2.00 0.15 

4-Allyl-2,6-dimethoxyphenol (2) 0.72 0.00 0.10 1.73 0.15 

4-Aminobenzoic acid (2) 0.58 0.00 0.00 1.73 0.00 

4-Hydroxybenzaldehyde (2) 1.30 0.00 0.14 1.41 -0.07 

4-Hydroxybenzoic acid (2) 1.17 0.00 0.14 1.73 -0.07 

5,7-Dioxooctanoic acid (2) 2.80 3.50 0.00 2.00 0.18 

Acetovanillione (2) 0.96 0.50 0.11 1.73 0.05 

Alanine (6) 0.01 0.00 0.00 1.73 0.30 

Aniline  (2) 0.40 0.00 0.00 1.00 0.07 

Arginine (6) 0.11 0.00 0.00 2.45 0.37 

Citraconic acid (3) 0.10 0.00 0.00 2.00 0.08 

Coniferyl alcohol (2) 2.07 0.00 0.10 1.73 0.08 

Ethyl-(3,4,5-trimethoxybenzyl) acetate (2) 1.20 0.00 0.00 2.45 0.15 

Ferulic acid (2) 1.99 0.00 0.10 2.00 0.00 

Glutamine (6) 0.04 0.00 0.00 2.24 0.30 

Isoleucine (6) 0.02 0.00 0.00 1.73 0.34 
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Leucine (6) 0.00 0.00 0.00 1.73 0.34 

Lysine (6) 0.04 0.00 0.00 2.24 0.37 

Methionine (6) 0.14 0.00 0.00 2.00 0.34 

Methoxyacetic acid (3) 0.35 0.00 0.00 1.73 0.30 

Ornithine (6) 0.06 0.00 0.00 1.73 0.34 

p-Cummaric acid (2) 1.29 0.00 0.11 1.73 -0.05 

Phenylalanine (6) 0.02 0.00 0.00 1.73 0.16 

Proline (6) 0.32 0.00 0.00 1.73 0.26 

Serine (6) 0.01 0.00 0.00 2.00 0.37 

Sinapyl alcohol (2) 0.51 0.00 0.09 2.00 0.10 

Syringaldehyde (2) 2.07 0.00 0.11 2.00 0.05 

Syringic acid (2) 0.70 0.00 0.11 2.24 0.05 

Trans-3,5-dimethoxy-4-hydroxycinnamate (2) 0.95 0.00 0.08 2.24 0.07 

Tyrosine (6) 1.50 0.00 0.11 2.00 0.09 

Valine (6) 0.01 0.00 0.00 1.73 0.40 

Vanillin (2) 1.25 0.00 0.13 1.73 0.00 

β-Alanine (6) 0.07 0.00 0.00 1.73 0.37 

 

Table S4.2. TOX formation (mol-Cl/mol-Cp) for external validation data set (N = 12)  

Compound name Source TOX CI ArOH:C √HeA logH:C 

2-Aminophenol (2) 0.31 0.00 0.17 1.41 0.07 

3-Aminobenzoic acid (2) 0.45 0.00 0.00 1.73 0.00 

3-Oxopentanedioic acid (3) 2.90 3.00 0.00 2.24 0.08 

4-Hydroxyacetophenone (2) 1.56 0.50 0.13 1.41 0.00 

Acetosyringone (2) 2.02 0.50 0.10 2.00 0.08 

Cysteine (6) 0.46 0.00 0.00 2.00 0.37 

Glutamic acid (6) 0.03 0.00 0.00 2.24 0.20 

p-Cummaric acid (2) 1.29 0.00 0.11 1.73 -0.05 

Sinapic acid (2) 0.48 0.00 0.09 2.24 0.04 

Threonine (6) 0.29 0.00 0.00 2.00 0.30 

Vanillic acid (2) 1.26 0.00 0.13 2.00 0.00 

3,4,5-trimethoxyphenylacetic acid (2) 1.07 0.00 0.00 2.24 0.10 
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Table S5.1. LMO calibration data set (N = 60) for TCM formation (mol-TCM/mol-Cp)  

Compound name Source TCM CI OTactC EDCORH 

3-Oxopentanedioic acid (10) 0.9440 3.00 0.00 -0.20 

1,3-dihydroxybenzene (9) 0.9250 2.00 1.00 0.00 

2,6-Dihydroxybenzoic Acid (10) 0.9000 2.00 1.00 0.00 

1,3-Dihydroxybenzene (1) 0.8300 2.00 1.00 0.00 

3-Oxohexanedioic Acid (3) 0.8300 2.00 0.00 -0.17 

2,4-Dihydroxybenzoic Acid (1) 0.8000 2.00 1.00 0.00 

3,5-Dihydroxybenzoic Acid (10) 0.7800 2.00 1.00 0.00 

3,5-Dihydroxytoluene (1) 0.6900 2.00 1.00 0.00 

1,3-Dihydroxynaphthalene (1) 0.6800 2.00 1.00 0.00 

3-Chlorophenol (4) 0.3200 0.00 1.00 0.17 

2.3,4,6-Tetrachlorophenol (4) 0.2900 0.00 1.00 0.17 

2,4,5-Trichlorophenol (4) 0.2800 0.00 1.00 0.17 

Maleic acid (10) 0.1400 0.00 0.00 0.00 

4-Chlorophenol (4) 0.1100 0.00 0.00 0.17 

Phenol (4) 0.1100 0.00 0.00 0.17 

Acetovanillione (2) 0.0980 0.50 0.00 0.00 

Tyrosine (9) 0.0830 0.00 0.00 0.11 

Aniline  (2) 0.0690 0.00 0.00 0.17 

Phenol (3) 0.0600 0.00 0.00 0.17 

2-Aminobenzoic acid (4) 0.0570 0.00 0.00 0.14 

4-Iodophenol (4) 0.0500 0.00 0.00 0.17 

Ferulic acid (9) 0.0470 0.00 0.00 0.10 

Vanillic acid (2) 0.0400 0.00 0.00 0.13 

3-Aminobenzoic acid (2) 0.0370 0.00 0.00 0.14 

3-(4-Hydroxy-3,5-Dimethoxyphenyl) 
Propanoic Acid (8) 0.0330 0.00 0.00 0.09 

1,4-Cyclohexanedione (11) 0.0300 1.00 0.00 -0.25 

4-Hydroxybenzoic acid (2) 0.0300 0.00 0.00 0.14 

Sinapic Acid (9) 0.0300 0.00 0.00 0.09 

4-(3,4,5-Trimethoxybenzoyl) Butyric Acid (2) 0.0280 0.50 0.00 -0.07 

2-Aminophenol (2) 0.0240 0.00 0.00 0.33 

2-Hydroxybenzoic Acid (10) 0.0210 0.00 0.00 0.14 
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Syringaldehyde (2) 0.0210 0.00 0.00 0.00 

3-Oxobutanedioic acid (10) 0.0170 1.50 0.00 -0.25 

Trans-3,5-dimethoxy-4-hydroxycinnamate (2) 0.0170 0.00 0.00 0.17 

Sinapic acid (2) 0.0160 0.00 0.00 0.09 

1,2,3-Trihydroxybenzene (11) 0.0100 0.00 0.00 0.50 

Aspartic acid (6) 0.0080 0.00 0.00 0.00 

Threonine (6) 0.0070 0.00 0.00 0.00 

Syringic acid (8) 0.0050 0.00 0.00 0.11 

4-Oxoheptanedioic acid (3) 0.0050 1.00 0.00 -0.14 

Asparagine (6) 0.0050 0.00 0.00 0.00 

Lysine (6) 0.0050 0.00 0.00 0.00 

Citraconic acid (3) 0.0040 0.00 0.00 0.00 

3,4,5-Triethoxybenzyl alcohol (2) 0.0030 0.00 0.00 0.00 

Arginine (6) 0.0030 0.00 0.00 0.00 

Isoleucine (5) 0.0023 0.00 0.00 0.00 

Phenylalanine (5) 0.0023 0.00 0.00 0.00 

Leucine (5) 0.0021 0.00 0.00 0.00 

3,4,5-Trimethoxybenzoic acid (2) 0.0020 0.00 0.00 0.00 

3,4,5-Trimethoxyphenylacetic acid (2) 0.0020 0.00 0.00 0.00 

Serine (6) 0.0020 0.00 0.00 0.00 

Valine (5) 0.0016 0.00 0.00 0.00 

Lysine (5) 0.0011 0.00 0.00 0.00 

Alanine (6) 0.0010 0.00 0.00 0.00 

Glutamic acid (6) 0.0010 0.00 0.00 0.00 

Serine (5) 0.0006 0.00 0.00 0.00 

Cysteine (5) 0.0004 0.00 0.00 0.00 

Glutamine (5) 0.0003 0.00 0.00 0.00 

Proline (5) 0.0003 0.00 0.00 0.00 

Methionine (5) 0.0001 0.00 0.00 0.00 
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Table S5.2. LMO-cross validation data set (N = 30) for TCM formation (mol-TCM/mol-Cp)  

Compound name Source TCM CI OTactC EDCORH 

2,4-dihydroxybenzoic acid (10) 0.9200 2.00 1.00 0.00 

5,7-dioxooctanoic acid (3) 0.9100 3.50 0.00 -0.25 

1,3-dihydroxybenzene (8) 0.8770 2.00 1.00 0.00 

1,3,5-trihydroxybenzene (11) 0.8600 2.00 3.00 0.00 

3,5-Dihydroxytolune (8) 0.8520 2.00 1.00 0.00 

3,5 dihydroxybenzoic acid (11) 0.7400 2.00 1.00 0.00 

3-Oxopentanedioic acid (3) 0.7100 3.00 0.00 -0.20 

4-Hydroxyacetophenone (2) 0.1030 0.50 0.00 0.00 

2,4-Dichlorophenol (4) 0.1000 0.00 0.00 0.17 

4-Aminobenzoic acid (2) 0.0600 0.00 0.00 0.14 

4-Nitrophenol (4) 0.0500 0.00 0.00 0.17 

Tyrosine (5) 0.0414 0.00 0.00 0.11 

Vanilic acid (8) 0.0378 0.00 0.00 0.13 

3-Hydroxybutyric acid (3) 0.0290 0.00 0.00 0.00 

Ferulic acid (2) 0.0290 0.00 0.00 0.10 

Sinapic acid (8) 0.0228 0.00 0.00 0.09 

1,4-dihydroxybenzene (11) 0.0100 0.00 0.00 0.33 

3-(-4-hydroxy-3-methoxyphenyl) Propanoic acid (8) 0.0098 0.00 0.00 0.10 

3-Oxobutanedioic acid (3) 0.0060 1.50 0.00 -0.25 

Syringic acid (2) 0.0060 0.00 0.00 0.11 

3,4,5-Trimethoxybenzyl alcohol (2) 0.0030 0.00 0.00 0.00 

Aspartic acid (5) 0.0017 0.00 0.00 0.00 

Asparagine (5) 0.0010 0.00 0.00 0.00 

2-Oxobutyric acid (3) 0.0010 0.50 0.00 -0.25 

Isoleucine (6) 0.0010 0.00 0.00 0.00 

Leucine (6) 0.0010 0.00 0.00 0.00 

Glutamic acid (5) 0.0010 0.00 0.00 0.00 

Arginine (5) 0.0009 0.00 0.00 0.00 

Alanine (5) 0.0006 0.00 0.00 0.00 

Threonine (5) 0.0002 0.00 0.00 0.00 

 

 



 

192

Table S5.3. External validation data set (N = 27) for TCM formation (mol-TCM/mol-Cp) 

Compound name Source TCM CI OTactC EDCORH 

2,4,6-Trihydroxybenzoic acid (11) 1.1400 2.00 1.00 0.00 

2,4-Pentanedione (11) 0.9600 4.00 0.00 -0.33 

1,3-Cyclohexanedione (11) 0.9000 3.00 0.00 -0.25 

4,6-Dioxoheptanoic acid (3) 0.8900 3.50 0.00 -0.29 

Acetosyringone (2) 0.3070 0.50 0.00 0.00 

3,4,5-Trimethoxyacetophenone (2) 0.1210 0.50 0.00 -0.09 

2,4,6-Trichlorophenol (4) 0.1000 0.00 0.00 0.17 

2-Chlorophenol (4) 0.1000 0.00 0.00 0.17 

4-Cyanophenol (4) 0.0700 0.00 0.00 0.14 

Vanillin (2) 0.0400 0.00 0.00 0.00 

4-Allyl-2,6-dimethoxyphenol (2) 0.0310 0.00 0.00 0.10 

4-Hydroxybenzaldehyde (2) 0.0290 0.00 0.00 0.00 

3-(3,4,5-trimethoxyphenyl) Propionic acid (2) 0.0200 0.00 0.00 0.00 

4-Hydroxytoluene (4) 0.0200 0.00 0.00 0.14 

Coniferyl alcohol (2) 0.0140 0.00 0.00 0.10 

Sinapyl alcohol (2) 0.0140 0.00 0.00 0.09 

Citric acid (3) 0.0120 0.00 0.00 0.00 

p-Cummaric acid (2) 0.0090 0.00 0.00 0.11 

3,4,5-Trimethoxyphenyl acetonitrile (2) 0.0060 0.00 0.00 0.00 

3,4,5-Trimethoxybenzamide (2) 0.0040 0.00 0.00 0.00 

Ethyl-(3,4,5-trimethoxybenzyl) acetate (2) 0.0030 0.00 0.00 0.00 

Ornithine (6) 0.0030 0.00 0.00 0.00 

2-Oxopentanedioic acid (3) 0.0020 0.50 0.00 -0.25 

3,4,5-Triethoxybenzoic acid (2) 0.0020 0.00 0.00 0.00 

Β-Alanine (6) 0.0020 0.00 0.00 0.00 

1,4-Phenyldiamine (2) 0.0010 0.00 0.00 0.33 

Methoxyacetic acid (3) 0.0010 0.00 0.00 0.00 
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Table S5.4.  QSPR calibration by Leave-Many-Out and entire data for TCM formation 

 Statistics of model fit Coefficients of descriptors Standard errors 

 R2 AdjR2 SDE CI OTactC EDCORH CI OTactC EDCORH 

Model-1 0.91 0.89 0.09 0.29 0.23 0.33 0.02 0.04 0.10 

Model-2 0.94 0.92 0.07 0.27 0.30 0.34 0.01 0.03 0.09 

Model-3 0.94 0.92 0.08 0.27 0.27 0.33 0.02 0.04 0.09 

Model-4 0.93 0.91 0.08 0.27 0.27 0.40 0.02 0.04 0.10 

Model-5 0.95 0.94 0.07 0.28 0.26 0.37 0.01 0.03 0.09 

Sum 4.68 4.58 0.39 1.38 1.33 1.76 0.08 0.18 0.48 

Mean 0.94 0.92 0.08 0.28 0.27 0.35 0.02 0.04 0.10 

Stdev 0.02 0.02 0.01 0.01 0.03 0.03 0.00 0.00 0.01 

All (N = 90) 0.92 0.90 0.09 0.26 0.29 0.24 0.01 0.03 0.08 

 

Table S5.5. Cross validation of each QSPR and average QSPR for TCM formation 

 Q2 MBD RMSE Ri
2 ki b Ro

2 ko’ Rt 

Model-1 0.95 6.25 0.08 0.95 0.94 0.03 0.95 0.98 0.004 

Model-2 0.90 11.25 0.11 0.90 0.94 0.04 0.89 0.99 0.010 

Model-3 0.91 7.58 0.09 0.91 0.92 0.03 0.91 0.96 0.007 

Model-4 0.93 0.53 0.09 0.93 0.87 0.02 0.93 0.90 0.006 

Model-5 0.88 5.29 0.11 0.88 0.84 0.03 0.87 0.89 0.014 

Sum 4.57 30.91 0.46 4.58 4.52 0.15 4.54 4.72 0.041 

Mean 0.91 6.18 0.09 0.92 0.90 0.03 0.91 0.94 0.008 

Stdev 0.03 3.89 0.01 0.03 0.04 0.01 0.03 0.04 0.004 

Avg model          

LMOCV (N = 90) 0.92 6.90 0.09 0.92 0.91 0.03 0.91 0.95 0.007 

LOOCV (N = 90) 0.92 5.25 0.08 0.92 0.91 0.03 0.92 0.94 0.006 
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Table S5.6. External validation using each QSPR and average QSPR for TCM formation 

 Q2 MBD RMSE Ri
2 ki b Ro

2 ko Rt 

Model-1 0.94 -10.22 0.08 0.95 0.88 0.00 0.95 0.89 0.0001 

Model-2 0.94 -13.97 0.08 0.96 0.85 0.00 0.96 0.85 -0.0012 

Model-3 0.94 -13.37 0.08 0.96 0.85 0.00 0.96 0.86 0.0000 

Model-4 0.93 -14.78 0.09 0.96 0.82 0.01 0.96 0.83 0.0004 

Model-5 0.94 -13.00 0.08 0.96 0.84 0.00 0.96 0.85 0.0001 

Sum 4.70 -65.35 0.42 4.78 4.25 0.02 4.78 4.27 -0.0006 

Mean 0.94 -13.07 0.08 0.96 0.85 0.00 0.96 0.85 -0.0001 

Stdev 0.00 1.73 0.00 0.01 0.02 0.00 0.01 0.02 0.0006 

Avg model          

N = 27 0.94 -13.40 0.08 0.96 0.85 0.00 0.96 0.85 0.0003 
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Table S5.7. Change in statistics of regression and predictive power upon deletion of compounds with SDR > 2.5 or SDR < -2.5. 

 Regression statistics  Coefficients of descriptors  Standard errors  

 R R2 AdjRc
2 SDE  CI OTactC EDCORH  CI OTactC EDCORH 

Mean (90) 0.97 0.95 0.93 0.07  0.281 0.223 0.357  0.014 0.027 0.085 

Mean (89) 0.97 0.94 0.92 0.07  0.265 0.281 0.350  0.015 0.034 0.089 

Mean (87) 0.97 0.95 0.93 0.07  0.281 0.223 0.357  0.014 0.027 0.085 

Int validation             

Each QSPR Q2 MBD RMSE Ri
2 k b Ro

2 k’ R-ratio    

Mean (90) 0.91 6.18 0.09 0.92 0.90 0.03 0.91 0.94 0.01    

Mean (89) 0.93 12.37 0.08 0.92 0.90 0.03 0.91 0.94 0.01    

Mean (87) 0.95 6.38 0.06 0.96 0.96 0.02 0.96 0.98 0.00    

             

Avg QSPR q2 MBD RMSE Ri
2 k b Ro

2 k’ R-ratio    

N = 90 0.92 6.90 0.09 0.92 0.91 0.03 0.91 0.95 0.01    

N = 89 0.94 6.47 0.07 0.94 0.93 0.02 0.94 0.96 0.00    

N = 87 0.96 0.89 0.06 0.94 0.93 0.02 0.94 0.96 0.00    

Ext Validation             

Avg QSPR q2 MBD RMSE Ri
2 k b Ro

2 k’ Ratio    

N = 90 0.93 -12.31 0.09 0.95 0.85 0.00 0.95 0.86 0.00    

N = 89 0.93 -15.79 0.09 0.96 0.82 0.00 0.96 0.83 0.00    

N = 87 0.93 -12.31 0.09 0.95 0.85 0.00 0.95 0.86 0.00    
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Table S5.8. QSPR calibration using logTCM LMO data splitting and entire data 

 Statistics of model fit Coefficients of descriptors Standard errors 

 R R2 AdjR2 StdE HC CI ArORact ƩHeA/C HC CI ArORact ƩHeA/C 

Model-1 0.84 0.70 0.66 0.59 -1.06 0.55 -0.16 -0.58 0.14 0.09 0.08 0.29 

Model-2 0.87 0.75 0.72 0.55 -1.08 0.56 -0.16 -0.68 0.12 0.08 0.09 0.26 

Model-3 0.87 0.75 0.72 0.56 -0.90 0.59 -0.18 -1.06 0.15 0.08 0.08 0.30 

Model-4 0.86 0.75 0.72 0.56 -1.00 0.55 -0.14 -0.84 0.13 0.08 0.08 0.26 

Model-5 0.89 0.79 0.76 0.52 -1.02 0.57 -0.22 -0.82 0.12 0.07 0.08 0.25 

Sum 4.33 3.74 3.59 2.77 -5.06 2.81 -0.86 -3.97 0.65 0.40 0.41 1.35 

Avg 0.87 0.75 0.72 0.55 -1.01 0.56 -0.17 -0.79 0.13 0.08 0.08 0.27 

Stdev 0.02 0.03 0.04 0.03 0.07 0.02 0.03 0.18 0.01 0.01 0.00 0.02 

             

All (90) 0.85 0.73 0.71 0.57 -0.99 0.57 -0.17 -0.85 0.11 0.07 0.07 0.22 
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Table S5.9. LogTCM Cross validation of each QSPR and average QSPR 

 
q2 MBD RMSE Ri

2 K B Ro
2 k’ R-ratio 

Model-1 0.21 -13.80 1.02 0.33 0.49 -0.64 0.19 0.75 0.41 

Model-2 0.38 -1.07 0.87 0.44 0.64 -0.53 0.35 0.88 0.20 

Model-3 0.26 -1.25 0.89 0.38 0.57 -0.67 0.27 0.89 0.30 

Model-4 0.17 -2.75 0.97 0.30 0.51 -0.82 0.11 0.85 0.63 

Model-5 0.29 3.73 0.85 0.41 0.64 -0.64 0.30 0.93 0.27 

Sum 1.30 -15.14 4.60 1.86 2.85 -3.30 1.22 4.28 1.81 

Avg 0.26 -3.03 0.92 0.37 0.57 -0.66 0.24 0.86 0.36 

Stdev 0.08 6.50 0.07 0.06 0.07 0.10 0.09 0.07 0.17 

Avg QSPR          

All (90) 0.73 -2.13 0.56 0.74 0.79 0.32 0.71 0.93 0.04 
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Table S5.10. LogTCM External validation using each QSPR and average QSPR 

 
q2 MBD RMSE Ri

2 K B Ro
2 K’ R-ratio 

Model-1 0.80 -10.99 0.90 0.25 0.45 -0.71 0.08 0.78 0.69 

Model-2 0.77 -1.56 0.96 0.24 0.46 -0.76 0.05 0.81 0.77 

Model-3 0.78 -8.26 0.95 0.22 0.46 -0.74 0.06 0.80 0.74 

Model-4 0.80 -7.75 0.91 0.25 0.46 -0.75 0.06 0.81 0.76 

Model-5 0.79 -4.88 0.94 0.22 0.46 -0.80 0.03 0.83 0.89 

Sum 3.94 -33.44 4.67 1.19 2.29 -3.77 0.28 4.04 3.85 

Avg 0.79 -6.69 0.93 0.24 0.46 -0.75 0.06 0.81 0.77 

Stdev 0.01 3.59 0.03 0.01 0.00 0.03 0.02 0.02 0.07 

Avg QSPR          

 n = 27 0.80 -10.99 0.90 0.25 0.45 -0.71 0.08 0.78 0.69 
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Table S6.1. TCAA formation (mol-TCAA/mol-Cp) for compounds in training data set (N = 47)  

Compound name Source TCAA logTCAA √TCAA H:C ArOR:C ArED:C ArOH:C √HeA √RAI √ArOH 

Syringaldehyde (2) 0.47600 -0.32 0.690 1.11 0.22 0.11 0.11 2.00 1.00 1.00 

Phenol (3) 0.36000 -0.44 0.600 1.00 0.00 0.17 0.17 1.00 1.00 1.00 

Vanillin (2) 0.30500 -0.52 0.552 1.00 0.13 0.13 0.13 1.73 1.00 1.00 

Vanillic acid (2) 0.29000 -0.54 0.539 1.00 0.13 0.13 0.13 2.00 1.00 1.00 

4-Hydroxybenzoic acid (2) 0.27300 -0.56 0.522 0.86 0.00 0.14 0.14 1.73 1.00 1.00 

4-Hydroxybenzaldehyde (2) 0.26300 -0.58 0.513 0.86 0.00 0.14 0.14 1.41 1.00 1.00 

Ferulic acid (2) 0.26000 -0.59 0.510 1.00 0.10 0.10 0.10 2.00 1.00 1.00 

4-Hydroxyacetophenone (2) 0.25900 -0.59 0.509 1.00 0.00 0.13 0.13 1.41 1.00 1.00 

Sinapyl alcohol (2) 0.11100 -0.95 0.333 1.27 0.18 0.09 0.09 2.00 1.00 1.00 

Syringic acid (2) 0.10400 -0.98 0.322 1.11 0.22 0.11 0.11 2.24 1.00 1.00 

4-Allyl-2,6-dimethoxyphenol (2) 0.10200 -0.99 0.319 1.40 0.20 0.10 0.10 1.73 1.00 1.00 

1,3-Dihydroxybenzene (3) 0.07700 -1.11 0.277 1.00 0.00 0.33 0.33 1.41 0.77 1.41 

2-Aminobenzoic acid (2) 0.05700 -1.24 0.239 1.00 0.00 0.14 0.00 1.73 0.87 0.00 

Acetovanillione (2) 0.05500 -1.26 0.235 1.11 0.11 0.11 0.11 1.73 1.00 1.00 

3,4,5-Trimethoxyphenyl acetonitrile (2) 0.04900 -1.31 0.221 1.18 0.27 0.00 0.00 2.00 0.32 0.00 

3,4,5-Triethoxybenzyl alcohol (2) 0.03300 -1.48 0.182 1.54 0.23 0.00 0.00 2.00 0.32 0.00 

2-Oxobutyric acid (3) 0.03200 -1.49 0.179 1.50 0.00 0.00 0.00 1.73 0.00 0.00 

3,4,5-Trimethoxybenzyl alcohol (2) 0.02900 -1.54 0.170 1.40 0.30 0.00 0.00 2.00 0.32 0.00 

3-Hydroxybutyric acid (3) 0.02900 -1.54 0.170 2.00 0.00 0.00 0.00 1.73 0.00 0.00 

Aniline  (2) 0.02500 -1.60 0.158 1.17 0.00 0.17 0.00 1.00 1.00 0.00 

Citric acid (3) 0.02100 -1.68 0.145 1.33 0.00 0.00 0.00 2.83 0.00 0.00 

4-(3,4,5-trimethoxybenzoyl) butyric acid (2) 0.02000 -1.70 0.141 1.29 0.21 0.00 0.00 2.45 0.32 0.00 

4-Aminobenzoic acid (2) 0.01900 -1.72 0.138 1.00 0.00 0.14 0.00 1.73 1.00 0.00 
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2-Aminophenol (2) 0.01700 -1.77 0.130 1.17 0.00 0.33 0.17 1.41 0.55 1.00 

3-Aminobenzoic acid (2) 0.01500 -1.82 0.122 1.00 0.00 0.14 0.00 1.73 1.00 0.00 

3-Oxopentanedioic acid (3) 0.01400 -1.85 0.118 1.20 0.00 0.00 0.00 2.24 0.00 0.00 

3,4,5-Trimethoxybenzoic acid (2) 0.00900 -2.05 0.095 1.20 0.30 0.00 0.00 2.00 0.32 0.00 

3-Oxohexanedioic acid (3) 0.00800 -2.10 0.089 1.33 0.00 0.00 0.00 2.24 0.00 0.00 

Phenylalanine (5) 0.00639 -2.19 0.080 1.44 0.00 0.00 0.00 1.73 0.00 0.00 

3-(3,4,5-Trimethoxyphenyl) propionic acid (2) 0.00600 -2.22 0.077 1.33 0.25 0.00 0.00 2.24 0.32 0.00 

3,4,5-Triethoxybenzoic acid (2) 0.00600 -2.22 0.077 1.38 0.23 0.00 0.00 2.24 0.32 0.00 

Ethyl-(3,4,5-trimethoxybenzyl) acetate (2) 0.00500 -2.30 0.071 1.43 0.00 0.00 0.00 2.45 0.32 0.00 

4,6-Dioxoheptanoic acid (3) 0.00200 -2.70 0.045 1.43 0.00 0.00 0.00 2.00 0.00 0.00 

Methoxyacetic acid (3) 0.00200 -2.70 0.045 2.00 0.00 0.00 0.00 1.73 0.00 0.00 

Proline (5) 0.00181 -2.74 0.043 1.80 0.00 0.00 0.00 1.73 0.00 0.00 

5,7-Dioxooctanoic acid (3) 0.00100 -3.00 0.032 1.50 0.00 0.00 0.00 2.00 0.00 0.00 

Citraconic acid (3) 0.00100 -3.00 0.032 1.50 0.00 0.00 0.00 2.00 0.00 0.00 

Arginine (5) 0.00048 -3.32 0.022 2.33 0.00 0.00 0.00 2.45 0.00 0.00 

Cysteine (5) 0.00045 -3.35 0.021 2.33 0.00 0.00 0.00 2.00 0.00 0.00 

Methionine (5) 0.00026 -3.59 0.016 2.20 0.00 0.00 0.00 2.00 0.00 0.00 

Glutamine (5) 0.00007 -4.15 0.008 2.00 0.00 0.00 0.00 2.24 0.00 0.00 

Isoleucine (5) 0.00007 -4.15 0.008 2.17 0.00 0.00 0.00 1.73 0.00 0.00 

Leucine (5) 0.00007 -4.15 0.008 2.17 0.00 0.00 0.00 1.73 0.00 0.00 

Glutamic acid (5) 0.00006 -4.22 0.008 1.80 0.00 0.00 0.00 2.24 0.00 0.00 

Valine (5) 0.00003 -4.52 0.005 2.50 0.00 0.00 0.00 1.73 0.00 0.00 

Serine (5) 0.00001 -5.00 0.003 2.33 0.00 0.00 0.00 2.00 0.00 0.00 

Threonine (5) 0.00001 -5.00 0.003 2.00 0.00 0.00 0.00 2.00 0.00 0.00 
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Table S6.2. TCAA formation (mol-TCAA/mol-Cp) for external validation data set (N = 15) 

Compound name Source TCAA logTCAA √TCAA H:C ArOR:C ArED:C ArOH:C √HeA √RAI √ArOH 

2-Oxobutanedioic acid (3) 0.03 -1.52 0.21 1.00 0.00 0.00 0.00 2.24 0.00 0.00 

2-Oxopentanedioic acid (3) 0.01 -2.22 0.17 1.20 0.00 0.00 0.00 2.24 0.00 0.00 

3,4,5-Trimethoxyacetophenone (2) 0.10 -1.00 0.08 1.27 0.27 0.00 0.00 2.00 0.32 0.00 

3,4,5-Trimethoxybenzamide (2) 0.03 -1.60 0.31 1.30 0.30 0.00 0.00 2.24 0.32 0.00 

3,4,5-Trimethoxyphenylacetic acid (2) 0.01 -2.00 0.07 1.27 0.27 0.00 0.00 2.24 1.00 0.00 

4-Oxoheptanedioic acid (3) 0.00 -3.00 0.03 1.43 0.00 0.00 0.00 2.24 0.00 0.00 

Acetosyringone (2) 0.02 -1.66 0.15 1.20 0.20 0.10 0.10 2.00 1.00 1.00 

Alanine (5) 0.00 -3.68 0.01 2.33 0.00 0.00 0.00 1.73 0.00 0.00 

Asparagine (5) 0.00 -3.32 0.07 2.00 0.00 0.00 0.00 2.24 0.00 0.00 

Aspartic acid (5) 0.00 -2.50 0.06 1.75 0.00 0.00 0.00 2.24 0.00 0.00 

Coniferyl alcohol (2) 0.01 -1.89 0.11 1.20 0.10 0.10 0.10 2.00 1.00 1.00 

Lysine (5) 0.00 -3.28 0.02 2.33 0.00 0.00 0.00 2.00 0.00 0.00 

p-Cummaric acid (2) 0.04 -1.44 0.19 0.89 0.00 0.11 0.11 1.73 1.00 1.00 

Sinapic acid (2) 0.08 -1.10 0.28 1.09 0.18 0.09 0.09 2.24 1.00 1.00 

Tyrosine (5) 0.04 -1.39 0.20 1.22 0.00 0.11 0.11 2.00 1.00 1.00 
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Table S.7.1. Relative amounts of TOX formation to chlorine demand for model compounds  

 
 Chlorinedemand TOX formation  

Compound Name 
Source mol/mol mol-Cl2/mol-C mol/mol Mol-Cl/mol-C %TOX 

3-(3,4,5-trimethoxyphenyl)Propionic 
acid 

(2) 

1.32 1.32 1.19 1.19 90.00 
3,4,5-Trimethoxybenzoic acid (2) 

1.10 1.32 0.97 1.16 88.18 
3,4,5-Triethoxybenzoic acid (2) 

0.99 0.91 0.66 0.61 66.87 
3,4,5-Trimethoxybenzyl alcohol (2) 

1.52 1.82 0.99 1.18 64.80 
3,4,5-Trimethoxyacetophenone (2) 

0.93 1.01 0.60 0.65 64.19 
1,4-Phenyldiamine (2) 

0.06 0.12 0.03 0.07 54.10 
Coniferyl alcohol (2) 

6.66 7.99 2.07 2.48 31.08 
Ethyl-(3,4,5-trimethoxybenzyl) 
acetate 

(2) 

4.50 3.86 1.20 1.03 26.70 
Acetosyringone (2) 

7.79 9.35 2.02 2.43 25.98 
Syringaldehyde (2) 

8.38 11.17 2.07 2.76 24.71 
3,4,5-Trimethoxyphenyl acetonitrile (2) 

4.38 4.77 0.85 0.92 19.31 
Ferulic acid (2) 

10.32 12.39 1.99 2.38 19.23 
4-Hydroxyacetophenone (2) 

8.94 13.41 1.56 2.34 17.49 
Vanillin (2) 

7.92 11.88 1.25 1.88 15.81 
Vanillic acid (2) 

8.60 12.90 1.26 1.89 14.68 
4-(3,4,5-trimethoxybenzoyl) butyric 
acid 

(2) 

2.01 1.73 0.30 0.25 14.65 
4-Hydroxybenzaldehyde (2) 

9.12 15.64 1.30 2.23 14.26 
p-Cummaric acid (2) 

9.29 12.39 1.29 1.72 13.89 
p-Cummaric acid (2) 

9.29 12.39 1.29 1.72 13.89 
4-Hydroxybenzoic acid (2) 

9.48 16.25 1.17 2.01 12.35 
Acetovanillione (2) 

8.68 11.58 0.96 1.27 11.01 
4-Allyl-2,6-dimethoxyphenol (2) 

6.80 8.15 0.72 0.86 10.58 
Syringic acid (2) 

6.93 9.24 0.70 0.93 10.10 
Trans-3,5-dimethoxy-4-
hydroxycinnamate 

 
 

(2) 9.59 9.59 0.95 0.95 9.95 
Sinapyl alcohol (2) 

6.14 6.70 0.51 0.56 8.37 
2-Aminobenzoic acid (2) 

6.04 10.36 0.45 0.77 7.43 
4-Aminobenzoic acid (2) 

7.90 13.54 0.58 0.99 7.29 
2-Aminophenol (2) 

4.70 9.39 0.31 0.62 6.58 
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3-Aminobenzoic acid  
(2) 7.74 13.27 0.45 0.77 5.78 

3,4,5-Trimethoxybenzamide (2) 
5.33 6.40 0.30 0.35 5.53 

Sinapic acid (2) 
9.03 9.85 0.48 0.53 5.35 

Aniline   
(2) 8.58 17.16 0.40 0.80 4.65 

Citraconic acid (3) 
0.10 0.24 0.10 0.24 100.00 

3-hydroxybutyric acid (3) 
1.20 3.60 0.93 2.79 77.50 

3-Oxopentanedioic acid (3) 
5.30 12.72 2.90 6.96 54.72 

4,6-dioxoheptanoic acid (3) 
4.80 8.23 2.50 4.29 52.08 

5,7-dioxooctanoic acid (3) 
6.00 9.00 2.80 4.20 46.67 

Methoxyacetic acid (3) 
0.79 3.16 0.35 1.40 44.30 

3-Oxohexanedioic acid (3) 
5.80 11.60 2.30 4.60 39.66 

1,3-dihydroxybenzene (3) 
7.90 15.80 3.00 6.00 37.97 

2-Oxobutyric acid (3) 
1.10 3.30 0.30 0.90 27.27 

2-Oxopentanedioic acid (3) 
1.40 4.20 0.34 1.02 24.29 

2-Oxobutanedioic acid (3) 
3.80 11.40 0.55 1.65 14.47 

Tyrosine 
(6) 13.40 17.87 1.50 2.00 11.19 

Proline (6) 
5.40 12.96 0.32 0.76 5.89 

Cysteine (6) 
8.43 33.72 0.46 1.84 5.44 

Threonine (6) 
5.60 16.80 0.29 0.87 5.20 

β-Alanine (6) 
2.80 11.20 0.07 0.26 2.36 

Methionine (6) 
6.00 14.40 0.14 0.33 2.27 

Arginine (6) 
8.20 16.40 0.11 0.21 1.30 

Ornithine (6) 
4.60 11.04 0.06 0.14 1.26 

Glutamine (6) 
3.80 9.12 0.04 0.08 0.92 

Glutamic acid (6) 
3.26 7.82 0.03 0.06 0.77 

Lysine (6) 
5.17 10.34 0.04 0.08 0.75 

Phenylalanine (6) 
3.67 4.89 0.02 0.03 0.65 

Isoleucine (6) 
3.54 7.08 0.02 0.03 0.42 

Alanine (6) 
3.80 15.20 0.01 0.05 0.32 

Serine (6) 
5.30 21.20 0.01 0.05 0.23 

Valine (6) 
3.67 11.01 0.01 0.02 0.14 

Leucine (6) 
3.54 7.08 0.00 0.01 0.11 
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Table S.7.2. Relative amounts of TOX formation to chlorine demand fulvic acid (FA) and 
humic acid (HA) fractions (12). 

  Chlorine demand TOX 

Water source Fraction mg-Cl2/mg-TOC mol-Cl2/mol-C mg-Cl/mg-TOC Mol-Cl/mol-C %TOX 

Black Lake FA 1.28 0.22 0.21 0.07 32.50 

 HA 2.28 0.39 0.29 0.10 25.26 

Coal Creek FA 1.64 0.28 0.23 0.08 28.29 

 HA 2.02 0.34 0.27 0.09 26.53 

Ogeechee River FA 1.52 0.26 0.22 0.07 28.42 

 HA 2.12 0.36 0.26 0.09 24.72 

Ohio River FA 1.24 0.21 0.16 0.05 25.97 

 HA 2.14 0.36 0.23 0.08 21.68 

Missouri River FA 1.1 0.19 0.14 0.05 24.73 

 HA 2.14 0.36 0.23 0.08 21.50 
 

Table S.7.3. Relative amounts of TOX formation to chlorine demand in raw water from 
different water systems (12). 

 Chlorine demand TOX 

Water system Mg-Cl2/mg-TOC mol-Cl/mol-C mg-Cl/mg-TOC mol-Cl/mol-Cl %TOX 

1 2.01 0.34 0.30 0.10 29.75 

1 1.66 0.28 0.20 0.07 24.10 

2 1.77 0.30 0.24 0.08 27.57 

3 1.87 0.32 0.17 0.06 18.40 

4 1.77 0.30 0.17 0.06 19.21 

5 2.01 0.34 0.22 0.07 21.49 

6 2.14 0.36 0.30 0.10 27.85 

7 1.58 0.27 0.19 0.07 24.43 
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