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DEFINING AND ASSESSING PROBLEM SOLVING 

ACROSS A BIOCHEMISTRY CURRICULUM 

 

by 

Cheryl A. Sensibaugh 

 

BS, BIOCHEMISTRY 

PhD, BIOMEDICAL SCIENCES 

 

ABSTRACT 

 

 Undergraduate discipline-based education research has shown that scientific problem 

solving involves five domains, spanning the steps of the scientific method as well as 

metacognition:  Hypothesize, Investigate, Evaluate, Integrate, and Reflect.  Student performance 

in each domain is measured with the Individual Problem Solving Assessment (IPSA).  Others 

developed the Critical thinking Assessment Test (CAT) to measure critical thinking, with the 

view that problem solving is a component of critical thinking.  A third group took the perspective 

that student attitudes about learning science will influence performance, and developed the 

Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio) to detect student 

attitudes. 

 This study employed a framework of constructivism, cognitive dissonance, and scientific 

teaching to address the educational problem of facilitating process-oriented skills within an 

upper-level biochemistry curriculum.  During IPSA development, research goals centered on 

establishing instrument validity and reliability, as well as describing typical ranges of individual 

student performance in each domain of problem solving across the junior year of our 

biochemistry curriculum.  The evidence indicated that students could struggle in any IPSA 

domain, even after two semesters of deliberate practice of problem solving. 

 The next goal was to describe average performance across the junior and senior years of a 

biochemistry curriculum, and explain score variability using hierarchical linear regression to 

account for contributions from time, academic factors, and demographic factors.  The average 

student required two semesters to achieve the objectives for three domains of problem solving, 
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two years for Evaluate, but did not achieve the Investigate objective.  Regression equations 

explained that time, critical thinking, and learning attitudes promoted performance, yet in 

different ways across domains.  Based on these results, our main pedagogical recommendation is 

to model and scaffold the problem solving process. 

 Finally, we initiated a nomological network, or representation of relatedness among 

problem solving (IPSA), critical thinking (CAT), learning attitudes (CLASS-Bio), and 

biochemistry content knowledge (course exams), to visualize relationships among alternative 

perspectives of defining and assessing problem solving.  Score correlations determined that the 

three process-oriented assessments converged when asking students to form a conclusion, 

weakly converged with content knowledge, and diverged from content when measuring 

metacognition and critical thinking. 
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Chapter 1 

Introduction 

 

1.1 Study significance 

 The field of discipline-based education research (DBER) is grounded in a wide range 

of disciplines, including STEM (science, technology, engineering, and mathematics), 

educational psychology, and cognitive science.  According to a consensus report 

commissioned by the National Research Council (2012), DBER addresses research questions 

about learning and teaching within those disciplines.  Furthermore, high-quality DBER 

requires expertise in three areas:  the core discipline, learning and teaching in the discipline, 

and the science of learning and teaching.  All these areas are complex; therefore, 

collaborations among researchers with specific areas of expertise are recommended.  This 

work takes place within the core discipline of biochemistry, and is termed biochemistry 

education research. 

 Given the importance of training biochemists in the processes of scientific problem 

solving and discovery, as set forth by multiple broad communities of life science researchers 

and educators (American Association for the Advancement of Science, 2011; American 

Society for Biochemistry and Molecular Biology, 2012; Association of American Medical 

Colleges and AAMC-HHMI Committee, 2009), this study is significant in three main ways.  

First, the study develops and validates a novel approach to assessing student performance in 

problem solving.  Secondly, this work describes discipline-specific performance across 

undergraduate junior and senior years, and investigates putative contributors to performance, 

in an attempt to explain the observed performance.  Finally, the project generates new 

understandings of the relationships between biochemistry content knowledge, problem 

solving, critical thinking, and learning attitudes about science. 
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1.2 Rationale and Experimental Design for Research Goal I 

Goal I:  To develop and validate an assessment tool that measures student performance in 

scientific problem solving. 

 

 Research question I.A:  How closely related are the scores in each domain of problem 

solving to each other and to scores on content knowledge? 

 Specific aim I.A.1:  To determine the degree of correlation between IPSA domain 

scores and content exam scores. 

 Evidence:  Pearson correlation coefficients (r) 

 Method:  Score correlation analysis 

 Reasoning:  Students who are novice problem solvers could be quite skillful in one 

domain, while not demonstrating proficiency in others.  Additionally, content 

knowledge is integral to the tasks of stating results in the Evaluate domain, and of 

forming conclusions in the Integrate domain. 

 Hypothesis I.A:  Scores in domains that test independent problem solving skills (i.e., 

Hypothesize, Investigate, and Evaluate) will not correlate with each other or with 

scores of content knowledge.  However, scores in domains that are dependent upon 

content knowledge (i.e., Evaluate and Integrate) will correlate with scores of content 

knowledge and with each other. 

 

 Research question I.B:  Do the IPSA scoring rubrics promote consistent scoring, among 

faculty raters as well as graduate students? 

 Specific aim I.B.1:  To determine the degree of correlation between IPSA domain 

scores assigned by three different faculty raters and one graduate student. 

 Evidence:  Pearson correlation coefficients (r) 

 Method:  Score correlation analysis 

 Reasoning:  Rubrics that are clear enough to be applied by diverse experts will yield 

consistent scores, regardless of rater identity. 

 Hypothesis I.B:  Scores assigned by different raters will correlate strongly, with an r 

value greater than 0.5. 
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1.3 Rationale and Experimental Design for Research Goal II 

Goal II:  To describe individual student performance in problem solving, when no longer 

collaborating in the setting of a group activity. 

 

 Research question II.A:  Which domains of problem solving are most challenging for 

students to complete individually? 

 Specific aim II.A.1:  To identify the domains in which student performance is 

consistently less than acceptable. 

 Evidence:  Domain scores of individual students 

 Method:  Visual depictions of representative individual performance patterns 

 Reasoning:  Report common patterns in terms of whether domain scores were 

satisfactory or not, to maintain student confidentiality. 

 Hypothesis II.A:  Consistent with our findings during development of group activities to 

promote problem solving skills, the strengths and weaknesses of individual students 

will also be apparent in domain scores, but will vary according to student. 

 

 Research question II.B:  Are intervention strategies necessary for all students, when a 

two-semester course sequence incorporates multiple opportunities over time for 

deliberate practice of problem solving? 

 Specific aim II.B.1:  To determine whether students are able to implement successful 

problem solving strategies on their own, over time. 

 Evidence:  Representative longitudinal performance patterns 

 Method:  Summarize longitudinal performance of individuals 

 Reasoning: Some students will be able to reach acceptable performance. 

 Hypothesis II.B:  Not all students will require intervention to reach acceptable 

performance over time. 
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1.4 Rationale and Experimental Design for Research Goal III 

Goal III:  To quantitatively describe and explain student performance in problem solving 

across a two-year biochemistry curriculum. 

 

 Research question III.A: What is the longitudinal performance pattern of an average 

student, and when do most students begin maintaining satisfactory performance in 

each domain? 

 Specific aim III.A.1: Describe average student performance over two years. 

 Specific aim III.A.2: Describe rates of satisfactory performance over two years. 

 Evidence: Longitudinal IPSA domain score means and achievement rates 

 Method: Descriptive statistics 

 Reasoning:  Taken together, previous results on the ranges of individual performance 

along with results from a small pilot study reporting on means and achievement 

rates inform the hypothesis. 

 Hypothesis III.A: The average student struggles in all domains then improves to 

satisfactory performance over time, the duration of which varies by domain.  

Consistent satisfactory performance by most students (> 50%) begins in the second 

semester, but not in all domains. 

 

 Research question III.B:  Which contributors – among time, academic background, and 

demographic background – most consistently explain the observed problem solving 

performance, and how much do the contributors impact performance? 

 Specific aim III.B.1:  Explain the impact of various contributors to student 

performance 

 Evidence:  Multivariate linear regression equations 

 Method: Multivariate Hierarchical Linear Regression 

 Reasoning:   

 Hypothesis III.B:  The greatest contributor to IPSA domain performance is time, followed 

by academic backgrounds of students, then by demographic backgrounds.  Even in 

sum, these contributors will explain less than half of the variability in scores across 

students. 
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1.5 Rationale and Experimental Design for Research Goal IV 

Goal IV:  To initiate an understanding of the nomological network of various problem 

solving skills and biochemistry content knowledge. 

 

 Research question IV.A:  How closely related are the observable scores of problem 

solving, critical thinking, and learning attitudes about science, to each other as well as 

to scores of content knowledge? 

 Specific aim IV.A.1:  Determine the degree of convergence and divergence among 

assessment scores. 

 Evidence:  Pearson correlation coefficients (r) 

 Method:  Score correlations 

 Reasoning:  Scores from assessments that measure similar constructs would be 

expected to correlate at least moderately. 

 Hypothesis IV.A:  IPSA Hypothesize, Investigate, Evaluate, and Integrate domain scores 

will correlate at least moderately with CAT scores, while IPSA Reflect domain scores 

will correlate at least moderately with CLASS-Bio scores.  Previous findings also 

indicate that the IPSA Evaluate and Integrate scores will correlate with content exam 

scores. 
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Chapter 2 

What really matters:  Assessing individual problem-solving performance 

in the context of biological sciences 

 

Steven M. Mitchell1, William L. Anderson2, Cheryl A. Sensibaugh2, and Marcy Osgood2 

 
1 School of Medicine, University of New Mexico, Albuquerque, NM, USA 
2 Department of Biochemistry and Molecular Biology, University of New Mexico, 

Albuquerque, NM, USA 
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2.1 Abstract 

 The evaluation of higher-level cognitive skills can augment traditional discipline-

based knowledge testing by providing timely assessment of individual student problem-

solving abilities that are critical for success in any professional development program. 

However, the wide-spread acceptance and implementation of higher level cognitive skills 

analysis has been delayed by the lack of rapid, valid, and reliable quantified-scoring 

techniques. At the University of New Mexico School of Medicine, Department of 

Biochemistry & Molecular Biology, we have developed an examination format that can be 

routinely and sequentially implemented for both formative and summative assessments of 

individual students in large classes. Rather than providing results in terms of an individual 

student’s knowledge base in a single academic discipline or group of disciplines, this type of 

examination provides information on performance in the application of specific problem-

solving skills, which we term “domains,” to a contextual clinical or scientific problem. These 

domains, derived from the scientific method, are tested across various academic disciplines, 

and are reported in terms of the following: Initial and sequential hypothesis generation, 

investigation of these hypotheses, evaluation of newly acquired data, integration of basic 

science mechanisms with new information to explain the basis of the problem, and reflection 

on one’s own professional development in the context of the examination. The process for 

criterion- referenced quantified grading of the examination is outlined in this paper. This 

process involves relatively rapid scoring, and permits the timely use of the resulting 

information for individual student feedback as well as curricular improvement. Data 

regarding grading consistency and comparison with other measures of student performance is 

also presented in this paper. An analysis of the performance characteristics of this 

examination, which has been utilized for over 10 years in a variety of course settings, 

indicates that it is valid, reliable, and utilizable. As such, the methodology is now routinely 

used in several undergraduate and graduate level biochemistry classes to monitor the 

development of individual student problem-solving abilities. 

 

Keywords:  Problem-solving, critical-thinking, evaluation, assessment, performance. 
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2.2 Introduction 

 In 2003, the American Society of Biochemistry and Molecular Biology (ASBMB) 

published a recommended curriculum for undergraduate biochemistry and molecular biology 

students. A significant distinction of this curriculum was the inclusion of skills- or process-

based learning objectives, in addition to the more traditional requirement for students to 

master a body of content knowledge. While content-oriented knowledge reflects the body of 

facts learned about a subject, process-oriented knowledge reflects the ability to apply content 

knowledge within a contextual situation (Mayer, 2002). The ASBMB’s recommendation for 

an undergraduate biochemistry program (ASBMB, 2003) echoed the framework for reform 

of science education that was outlined in the Biology 2010 report (National Research 

Council, 2003). And more recently, the American Association of Medical Colleges (AAMC), 

in conjunction with the Howard Hughes Medical Institute (HHMI), proposed specific 

learning objectives for both medical and pre-medical students (AAMC, 2009), reiterating the 

importance of teaching and assessing problem-solving skills as one of several process-based 

learning objectives. The underlying message of all of these reports is that, while conceptual 

understanding, or discipline-specific content knowledge, is clearly one part of the 

development of a scientist, it needs to be paired with cognitive understanding, or knowledge 

about the (often) discipline-specific processes that govern appropriate and successful use of 

content (Mayer, 2002). Even more specifically, these reports all recommend that 

undergraduate students in the biomedical sciences be provided routine opportunities to 

develop and practice their scientific problem-solving strategies. 

 While the requirement for students to practice their problem-solving skills is a 

laudable goal, in the classroom this becomes a daunting task. Moreover, this endeavor 

requires that the faculty both detect defective problem-solving, and provide student-specific 

feedback about strategies for improvement. This is feasible when a faculty member works 

with a limited number of students, but when an instructor is charged with implementing such 

an analysis and intervention strategy in large lecture classes, the job of teaching and 

evaluating student problem-solving rapidly becomes overwhelming. Consequently, it is not 

uncommon for faculty to state that, “It can’t be done,” and they will not even attempt any 

quantitative assessment of problem-solving skills, sometimes saying “I will know it when I 

see it,” as their qualitative evaluation.  
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 For the past 10 years, our undergraduate biochemistry students at the University of 

New Mexico have been required to apply their biochemistry content knowledge and 

concurrently practice their problem-solving strategies through online small group discussions 

of scientific problems (Anderson et al., 2008; Osgood et al., 2008). In these discussions, 

group problem-solving is routinely evaluated and the contribution of individual students to 

the successful solution of a biochemical dilemma can be tracked. These exercises provide 

students with routine opportunities to practice their problem-solving strategies; however, 

feedback to individual students is limited. Moreover, we have routinely observed that some 

students, who had appeared successful in contributing to the group solution of a biochemistry 

puzzle, were not subsequently able to succeed as individual problem-solvers, even when 

presented with very similar conceptual challenges. When such a student’s contributions to 

the online group discussions were re-evaluated, it became evident that the student was not 

contributing broadly to the group solution, but instead tended to retreat to his/her “comfort 

zone” without confronting all aspects of an investigational strategy. We judged that it was 

necessary to provide regular opportunities for our students to address both group and 

individual problem-solving challenges within their biochemistry courses, thus encouraging 

them to apply the skills learned within the online group discussions to the solution of similar 

problems, but on their own. In order for these assignments to be useful, the assessment of the 

individual’s problem-solving skills should provide novel information to the student that 

he/she can then use to successfully modify his/her own investigational strategies. This article 

describes the multiple iterative cycles over the 10-year development of this Individual 

Problem-Solving Assessment (IPSA) tool, and includes data on validation of the current 

version. 

 The authors, STEM education specialists, have been working together in biomedical 

sciences education for 16 years. Currently, two authors are course directors (WLA and MPO) 

in upper-level biochemistry classes. One author is a graduate student (CAS) focusing 

research efforts in biochemistry education and is responsible for facilitating small group 

exercises. The fourth author (SMM) is a MD who works with medical students and is also 

involved in the development and implementation of critical thinking exercises in both 

medical school and biochemistry classes. 
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2.3 Methods 

 2.3.1 Structure of an Individual Problem-Solving Assessment 

 The goal in this endeavor was to develop an easily implemented, reproducible method 

for evaluating a student’s ability to apply content knowledge to the solution of a problem; in 

other words, this tool had to function as a novel means of evaluating process. Students should 

have multiple opportunities to practice their skills, succeed or fail, and then receive 

appropriate faculty feedback on their efforts. This iterative practice and assessment approach 

needed to allow students to develop a reliable and effective problem-solving strategy. The 

authors felt that in any problem-solving type of test, students should first, be able to learn 

process skills from the exam, and second, clearly see their content knowledge applied to the 

solution of a real-life problem. Finally, the authors wanted to ensure that any individualized 

problem-solving test would complement and enhance the student’s small group learning 

experience. 

 The tool that was developed in this capacity is the Individual Problem-Solving 

Assessment (IPSA). IPSAs are provided to students electronically as multi-part, progressive-

reveal essay exams, which are based on scientific dilemmas that capture student interest 

based on the contextuality of the problem. These scenarios are not discussed in other parts of 

the current course but require students to extrapolate their knowledge from online 

discussions, individual research, lecture material, and other components of the curriculum. 

The IPSAs require students to use the same problem-solving domains that are used in the 

online small group discussions and that are also integrated into the curriculum (Anderson et 

al., 2008; Osgood et al., 2008). The learning system development tool we use to construct our 

tests is Macromedia’s Authorware©. Multiple other software packages are also potentially 

appropriate. Figure 2.1 schematically illustrates the structure of the IPSA scenarios. A 

complete IPSA, grading rubrics, one student’s responses, and a corresponding visual 

representation of that student’s performance are provided in Appendix B. 
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Figure 2.1: Individual Problem-Solving Assessment Structure. Each of the five 
domains of problem-solving are incorporated into the IPSA. To assess each domain 
on its own merit, student responses are collected in sequence and stored in a 
database. The software only allows forward progression through the assessment. 

 

 Each IPSA begins with a vague, two- to three-sentence presentation of the problem, 

shown on the first screen of the electronic presentation. The remainder of the exam is based 

on the problem-solving domains (Anderson et al., 2008) of Hypothesize, Investigate, 

Evaluate, Integrate, and Reflect. Students are directed to identify their initial Hypotheses 

as to the underlying cause of the problem, and submit that answer electronically. As the next 

screen comes up, students are then provided with a specific hypothesis to test, and asked to 

identify the data they feel would be most important to acquire in order to Investigate this 

hypothesis. After the students have submitted their answers to the Investigate question, they 

continue to be provided data in a progressive-reveal manner on successive screens and they 

must Evaluate the graphs, charts and other data in the context of the situation, while taking 

into account all previously acquired information about the case. Once students have attained 

enough information (through prompts in the exam), they are asked to Integrate their basic 

understanding of key concepts with the new knowledge presented in the IPSA scenario, and 

to provide a detailed description of the scientific mechanisms involved in the problem. Often, 

this Integrate challenge is presented to the students in the form of a controversy that they 

must resolve. Finally, students are asked to Reflect on their performance by generating a plan 

by which they can improve their own performance on later similar assessments and a strategy 
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for the resolution of the given problem. This is an attempt on our part to help the students 

develop a more metacognitive approach to their individual learning (Flavell, 1976). 

 The exam is structured as a progressive-reveal evaluation. Each new part of the exam 

is presented only after an answer to the previous question is submitted. Students are 

prevented from returning to a previous answer to alter it after they have accessed new 

information. Early on, we discovered that when students make a single mistake in answering 

the first or second question, it sends them in the wrong direction for the rest of the exam. 

Subsequent responses, although potentially correct based on the initial (wrong) answer, will 

earn inaccurate and low scores. To address this issue, as each new part of the exam is 

presented, we build in a teaching element to bring all students back on track as the case is 

progressively revealed. 

 In order to reassure ourselves that the IPSA results are truly providing novel 

information about student performance, we compared our problem-solving domains 

assessment to a classic evaluation of content knowledge. Two hundred forty first-year 

medical students were challenged with 6 different IPSA scenarios over a 3-year period with 

paper-and-pencil versions of the exams. Each of the IPSAs focused on different content. 

Concurrently with the IPSAs, these students were also challenged with the AAMC Shelf 

Boards, which are a well-established measure of content knowledge. All of the scores for 

each of the IPSA domains, as well as the content knowledge exam scores, were used to 

construct a correlation coefficient matrix.  

 All subsequent experiments used electronic versions of the exams.  

  

 2.3.2 Implementation of the Exam 

 Typically four different IPSAs were presented to a class containing 80 to 100 students 

during one semester. Because of computer limitations we could only accommodate 30 

students per testing session, requiring the IPSAs to be scheduled over a two-day period. It 

was important to emphasize that the same problem-solving domains that students were 

practicing in the online discussion component of the course were incorporated into each 

IPSA, which led to a more cohesive curriculum. Although we believe that simply taking the 

IPSAs was instructive for our students, and was an experience that students did not typically 

gain from a traditional lecture-based course, we also believe in the necessity of timely 
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feedback on individual performance. Accordingly, all students received scores for their 

performance on the domains within a week of taking the exam.  

 

 2.3.3 Grading the IPSA 

 We typically collect student responses for each part of an IPSA electronically, and 

transfer the responses into a database for grading ease as depicted in Figure 2.2. The two 

course instructors are responsible for grading the exams and providing feedback to students 

as necessary. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2: Database grading. Student responses to an IPSA may be retrieved from 
the database and sorted either by domain or by student.  The grading rubric for each 
domain (red box) is also shown with the student records. 

 

 Using an electronic database to collect and grade student responses is preferable to 

grading hard copies because it increases speed, efficiency, and reproducibility in assigning 

grades. First and foremost, we can read the student responses without spending time 

deciphering cryptic handwriting. Moreover, we are able to limit student responses to a fixed 

number of characters which forces students to think first and then answer the specific 

question, rather than writing everything they know about the topic, hoping to produce an 

answer that will somehow include the correct response. Additionally, by taking advantage of 
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student name coding capabilities inherent to electronic databases, the element of bias is 

removed from scoring the essays.  

 Furthermore, using the database sorting capabilities, we can easily arrange responses 

either by domain or by students’ complete responses to an IPSA as a whole (Fig. 2.2). For 

example, it is possible to grade a single domain for an entire class, which is typically how we 

grade the Hypothesize, Investigate, Evaluate and Integrate domains. In our experience this 

method decreases the time required for grading and improves the grading consistency. 

However, due to its dependence on metacognition, the Reflect domain must be graded in the 

context of all of one student’s responses on that IPSA. Viewing the response in this way 

provides insight into the overall thinking of an individual student, which is particularly 

helpful when working with students who are having academic difficulty. 

 

 2.3.4 Development of Grading Rubrics 

 IPSAs are constructed around inherently difficult concepts and/or common 

misconceptions. These exams are not used for probing easily grasped items of content 

knowledge. The grading rubrics used to assess student performance on these complex exams 

thus require thoughtful development; as a result, this process is the most time-consuming and 

important step in the creation of an IPSA. Based on our own experience and on suggestions 

in the literature (Allen and Knight, 2009), we develop our grading rubrics in an iterative 

manner. The process involves multiple instructors, including some who are not involved in 

the initial construction of the IPSA scenario. In addition, upon the first use of a new IPSA, 

the students’ domain responses to the new scenario are also used to re-evaluate both the  

clarity of questions and the applicability of the rubrics. 

 Specific rubrics are designed for each problem-solving domain. Establishment of 

clear benchmarks for each domain is essential for ease and accuracy in grading. We first 

design rubrics that delineate outstanding, acceptable, and failing performance criteria; and 

then assign numerical values to each of these benchmarks. As our experience with each IPSA 

grows, scores for performances that fall between the benchmarks are also assigned. For 

example, “outstanding” answers for the Hypothesize domain would include at least 3 logical, 

context-specific hypotheses, and be assigned a 10/10 value; an “acceptable” answer might 

include only two appropriate hypotheses, and be scored as a 7/10; and a “failing” answer 
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either misses something critical to the understanding of the concept, or includes irrelevant or 

factually incorrect ideas, and will earn less than a 7/10. When multiple instructors grade a 

student essay very differently, both the specific question and the grading rubrics are re-

evaluated. 

 

 2.3.5 Evaluation of Rubrics 

 In order to evaluate the reproducibility and ease in applying the grading rubrics, a 

group of three faculty members independently graded all domain responses of 20 students in 

8 IPSA scenarios over two semesters of an intensive biochemistry curriculum. All three 

instructors were intimately involved in the development of the questions and grading rubrics, 

and all had extensive prior experience in the implementation of IPSAs. The mean, standard 

deviation, and students t-test were used to compare the assigned grades.  

 In order to further probe the effectiveness of using the grading rubrics, and to 

determine if graduate students who are not involved in the construction of the IPSA can be 

reliable graders, a graduate student was provided the grading rubrics for a single IPSA and 

asked to grade all 5 domains for 10 different students. The graduate student was given 30 

minutes training by a faculty member in the basic science of the case, and the grading rubrics 

were explained. Strict adherence to the rubrics was required. The student-grader was blinded 

to the instructor’s responses and the two response sets were statistically compared as was 

done with the previously described faculty evaluations. 

 

 2.3.6 Reporting Data  

 Early in our evaluation of IPSA student data, we decided that we did not want to 

compress student responses on all domains into a single score. We view the individual use of 

each of the domains (Hypothesize, Investigate, Evaluate, Integrate, and Reflect) as 

integral to the overall process: Application of each of the domains must be mastered in order 

for a student to become a successful scientific problem-solver. Therefore, like we do in the 

online case discussion (Anderson et al., 2008), we score each domain separately, which 

creates a more complete picture of a student’s problem-solving strategy. Reporting individual 

domain scores also provides the faculty with specific information that can be used to identify 

where students should focus in order to improve their skills. We present results from these 
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exams by using a radar plot in which each of the axes of the diagram represents the earned 

score within a single domain. This allows us, and our students, to see performance patterns 

on all five domains simultaneously. We find that students and instructors grasp a 

performance pattern more easily than a set of five different numerical scores. Figure 2.3 

illustrates how student problem-solving domain patterns, or profiles, are depicted.  

 

 

 

 

 

 

 

 

 
 
Figure 2.3: Radar Plot. A visual representation of the scoring ranges on an IPSA, 
with axes for each of the problem-solving domains (gray). Expected performance 
scores are indicated by the circular target (yellow dotted outline).  

 

 Low scores are at the periphery of the axes, and outstanding scores are in the center. 

Though this arrangement of scores may seem counterintuitive, we have found that students 

readily grasp the idea that they need to “try for the bull’s-eye” in their domain scores. A 

circumscribing line is used to connect the domain scores between the axes to create a shape 

profile. The faculty expectation (the score for each domain that represents an “acceptable” 

grade) is indicated by the dotted circle toward the center of the diagram. Although there are 

other methods to report this type of data, we have found that the graphical representation 

shown in Fig. 2.3 is the clearest, and changes in student performance over time are readily 

seen as changes in the pattern, so that students and faculty alike can follow progress. 

 To evaluate a change in student performance over time on this type of exam, the same 

twenty students were evaluated with 8 different IPSA scenarios over the course of two 

semesters in the same undergraduate biochemistry courses that were analyzed in the 

evaluation of the rubrics. All student essays were independently graded by the same three 

instructors. In an effort to minimize the effect of content familiarity on a single question, a 
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rolling average of student domain scores on the most recent three exams was used for this 

analysis. 

 

 2.3.7 Student Populations 

 Two different student populations participated in these studies: 60 undergraduate 

biochemistry majors and 240 pre-clinical medical students. All students were experiencing a 

hybrid curriculum, which employed both small group cooperative-learning opportunities 

along with standard lecture presentations. Student populations were evenly split between 

male and female students and contained approximately 45% under-represented minority 

students. All students had successfully completed the prerequisite courses. 

 

2.4 Results and Discussion 

 2.4.1 Exam Logistics 

 We have experimented with many different logistical ways of implementing the 

IPSAs that have ranged from paper and pencil execution to electronic assessment methods - 

either online or in a more secure computer center. All methods have worked, but we prefer 

the electronic format because it increases grading consistency and allows us to easily build in 

a teaching component into the exam. 

 Since IPSAs and their accompanying grading rubrics are difficult and time-

consuming to construct, the exams are kept secure so that we are able to use the same IPSA 

for several years. However, this is a new type of exam for most of our students, and they lack 

experience in solving problems. Moreover, for reasons discussed previously, the online group 

discussions do not always allow for individual problem-solving practice. To address this 

issue, we typically present multiple different practice IPSAs to our students throughout their 

coursework, and some of these practice scenarios then serve as the conceptual basis of course 

lectures. We also role-model problem-solving strategies based on the practice exams in order 

to help the students become comfortable with the process. Even given all of this preparation 

for the first graded IPSA, these first exam results are usually not weighted heavily for the 

students’ final grades as the approach to critical-thinking is often very novel to our students 

and may require multiple encounters in order to be conceptualized and utilized.  
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 Depending on the pedagogical nature of the course, the number of IPSAs varies 

between 4 and 6 per semester. Students have one hour in a computer-testing center to 

complete each exam. Because students are taking other courses at the same time and have 

different schedules, the IPSAs are typically scheduled over a 2 to 3 day period. An alternate 

approach that we have tried is to let the students take the IPSA during one of the scheduled 

lecture periods. Although that approach works well, it requires that all students come with 

their own computers, which has obvious limitations. 

 

 2.4.2 Evaluating IPSA Structure 

 As stated previously, the objective of this endeavor was to create an assessment that 

probed a student’s problem-solving strategies and did not simply provide the same kind of 

performance information that is available from tests of content knowledge.  In addition, we 

continue to view each of the domains as independent skills, all of which are necessary for 

problem-solving.  We hypothesized that students just beginning to practice problem-solving 

could be quite skillful in one domain, while not demonstrating proficiency in others. 

Consequently, we did not expect to find correlations between the student responses to the 

Hypothesize, Investigate and Evaluate domains, as we considered them to be independent 

skills. On the other hand, we found it difficult to imagine how a student could successfully 

Integrate their conclusions from an IPSA data set into their basic science understanding 

without first possessing an accurate comprehension of the relevant disciplinary content 

knowledge. This led us to predict a connection between the Evaluate and Integrate domains 

with each other, and with an independent measure of content knowledge. Table 2.1 presents a 

correlation matrix between student scores for the domains and scores from a content 

knowledge examination, the Comprehensive Basic Science Examination (CBSE), which was 

given to all of our pre-clinical medical students at this time. 
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Table 2.1: Correlation Coefficient Matrix Across Individual Problem-Solving Assessment 
Domain Scores and Content Knowledge Performance Scores 

 
Hypothesize Investigate Evaluate Integrate 

Content 
Knowledge 

(CBSEt) 

Hypothesize 1.00 0.21 ± 0.16 0.27 ± 0.07 0.24 ± 0.12 0.09 ± 0.03 

Investigate  1.00 0.20 ± 0.12 0.12 ± 0.05 0.12 ± 0.18 

Evaluate   1.00 0.37* ± 0.01 0.53* ± 0.05 

Integrate    1.00 0.44* ± 0.09 

Content 
Knowledge      1.00 

N = 240 medical students; 18 IPSAs each, 3 CBSEs each, administered over 18 months. 
* p < 0.02 
t Comprehensive Basic Science Exam 

 

 The results demonstrate little correlation between the Hypothesize, Investigate and 

Evaluate domains. As expected, there was a modest but significant correlation between the 

Evaluate and Integrate domains. Student responses on both the Evaluate and Integrate 

domains exhibited a correlation with the results for the test of content knowledge. 

 Because of the unique and variant skills involved in the Reflect domain, and because 

its grading criteria were different from the other domains, student results for the Reflect 

domain were not included in this analysis.  

 

 2.4.3 Evaluation of the Rubrics - Development 

 As described earlier, the development of IPSA rubrics was an iterative and team-

based process, which depended on the input from several disciplinary content experts. This 

was the most labor-intensive element of exam construction. This teamwork reinforced the 

cross-disciplinary nature of the IPSA scenarios, and improved the contextual relevance of the 

exams and helped students see the application of classroom training to their eventual careers.  
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 We have found that the iterative process of developing rubrics tends to provide a 

method for identifying problems in the IPSAs.  In the Biochemistry course for example, we 

have utilized the same 8 IPSAs for over 4 years.  We evaluate the IPSAs after each iteration 

and make alterations based on student responses. This process has reinforced the importance 

of obtaining student input (through their early responses) that can improve IPSA quality and 

allow the same IPSA to become easier to implement after each iteration. Finally, the 

developmental process provides us with the confidence to provide students with timely 

feedback to help them modify their problem-solving strategies. 

 

 2.4.4 Evaluation of the Rubrics - Effectiveness/Validity 

 The standard deviation in assigned grades from three different graders on 8 IPSA 

scenarios given to 20 different biochemistry students during a two-semester biochemistry 

course varied by less than 10% with a correlation coefficient greater than 0.75. This suggests 

that strict adherence to the grading rubrics leads to acceptable grading consistency.  Figure 

2.4 depicts the IPSA rubric-based scores assigned to two representative students by these 

three graders, with 2.4A and 2.4B showing differing levels of grading consistency.  The 

results are presented in the radar type format with the mean and standard deviation for the 

grading results indicated on the figure. 

 

 

 

 

 

 

 

 
Figure 2.4: Inter-grader Reliability. Radar plots show mean scores assigned by 
three faculty members (black) and standard deviations (gray) for two representative 
students’ IPSA results. The plot in (A) indicates standard deviations of less than 10%, 
while the plot in (B) indicates variability in grading the Evaluate domain. 

 

 Figure 2.4A illustrates an example of our typical grading consistency, with less than a 

10% standard deviation between multiple graders. On the other hand, Figure 2.4B shows the 
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pattern of a student for whom the three graders disagreed on the Evaluate domain.  In this 

case, the scores ranged from “acceptable” to “failure”.  When multiple student responses on 

this IPSA were evaluated using these rubrics, a similar lack of uniformity between instructor 

grades was persistently evident for the Evaluate domain. The rubrics were poorly defined in 

this case and the graders could not consistently apply the benchmarks. This led us to revisit 

our expectations, and also to use the student responses on the exam to help refine the grading 

rubrics. 

 We have identified three distinct reasons for a lack of grading consistency, and can 

now quickly recognize and rectify the problems. One reason, as illustrated in Fig. 2.4B, is 

that the rubrics are poorly defined. In such a case, the rubrics can be redefined and the 

question re-graded. A second reason for inconsistent grading is that the question itself is 

poorly worded, and is interpreted differently by students and graders. In this case, the 

question must be re-phrased for future use. The third source of grading inconsistency is an 

imprecise or ambiguous student response. In this case, the rubrics and question function 

acceptably for the majority of the class, but the graders have a difference in opinion on a 

single student’s contribution because they are forced to “read between the lines” in order to 

assign any grade. This illustrates the real power of the iterative process for the development 

of grading rubrics. 

 An additional verification of validity of the grading rubrics was provided by the 

results of the comparison between the faculty graders and the graduate student grader, as 

illustrated in Figure 2.5. The domain scores given by the graduate student to ten student-

generated performance patterns were within the experimental error set by the faculty. These 

data suggested to us that, once valid rubrics are established, graduate students or other 

instructors can assist in grading; and that it is not necessary to devote time of multiple faculty 

to grade student responses on the IPSAs.  The authors acknowledge that the experiences and 

abilities of graduate students may vary considerably and that this experiment was only done 

once.  However, coupled with our other experiences with multiple graders across various 

disciplines, this finding adds further evidence to the conviction that well-defined rubrics are 

the key to grading reliability, and that educators from different disciplines and varying levels 

of educational experiences can grade IPSAs accurately if sufficient time is spent developing 

the grading criteria. 
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Figure 2.5: Graduate Student Grader Reliability. The radar plot of one student’s 
IPSA grades, as assigned by a trained graduate student (black) and faculty (gray).  

 

 2.4.5 Reporting Grades 

 Because successful problem-solving requires mastery of all of the domains, we 

elected not to reduce all 5 domain scores into a single number as an indicator of performance. 

Instead, we reported student responses graphically as illustrated in Figures 2.4 and 2.5, which 

made clear student skills, or lack thereof, on individual domains. In order to provide the 

maximum reproducibility in pattern analysis from one IPSA to another, we standardized each 

domain axis independently, based on the rubrics, and defined minimal acceptable 

performance for each domain as “7”, producing a symmetrical pattern when student 

performance is similar in all domains. Thus, performance patterns provide an easily 

understood visual tool that allows students to see their own progress relative to goals set by 

faculty. 

 

 2.4.6 Common Performance Patterns 

 We used this analysis to identify students with difficulty in problem solving and then 

to assist them in addressing their individual impediments. It was necessary to define the skills 

that an individual student possessed and those skills that the student was missing.  Following 

this, appropriate intervention strategies were initiated.  A first step in this long-term goal is 

the recognition of archetypal performance patterns.  Four of the most common patterns that 

we have observed since the beginning of this endeavor are illustrated in Fig. 2.6.  A full 
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library of archetypal performance patterns has not yet been defined, and is under 

investigation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6: Four Common Student Performance Patterns on IPSAs.  In (A), 
students exhibit difficulty in the Hypothesize domain. In (B), the low Investigate 
domain score indicates a challenge with contextualizing hypotheses within the 
scenario. In (C), the low scores for both the Evaluate and Integrate domains 
correlate with a lack of content knowledge.  In (D), difficulty in the Reflect domain 
reflects poor metacognition.  

 

Figure 2.6A depicts the most common patterns of student performance that we have seen 

over a 10 year period of implementing IPSAs.  As shown by the low score on the 

Hypothesize axis, it is clear that one of the most difficult domains for our medical and 

biochemistry students to initially master is the generation of appropriate hypotheses.  

Fortunately, this appears to be an easily learnable skill.  In faculty discussions with individual 

students regarding their difficulties in this area, many students reported that they had simply 

never been asked to do this before.   Single Best Answer questions, which students have 

become accustomed to throughout their academic careers, present students with a concept 

and ask them to fill in the details.  IPSAs inherently require a different approach, presenting 
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students with the details and asking them to develop conceptual hypotheses. Intervention 

strategies used to date indicate that modeling performance may provide a simple remedy to 

poor performance on this domain, but further research is required.   

 Students who exhibit the pattern illustrated in Fig. 2.6B appeared to have a difficulty 

putting their hypotheses into the relevant context of the scenario, as shown by the low score 

on the Investigate axis. For example, a student exhibiting this pattern will, when presented 

with the sudden onset of an enzyme deficiency in an adult, develop a complicated 

investigational strategy to probe possible genetically inherited inborn errors in metabolism, 

completely ignoring the fact that the patient has reached adulthood without manifesting any 

common symptoms of that metabolic deficiency.  Like the student with difficulty defining 

relevant hypotheses, the intervention strategy for the problem-solving pattern illustrated in 

Fig. 2.6B was to increase the student’s sensitivity to the environment of the problem. 

 Students exhibiting the pattern illustrated in Fig. 2.6C, showing low scores on the 

Evaluate and Integrate axes, typically earned overall grades that placed them at the bottom 

of the class, and have had significant difficulty in improving their performance on IPSAs.  As 

discussed previously (Table 2.1), performance on the Evaluate and Integrate domains 

generally correlated with students’ fundamental understanding of basic science concepts.  

Deficiencies in these domains may therefore reflect either a problem with a grasp of the basic 

sciences behind the presented problem, or an inability to mechanistically relate these basic 

science concepts to the context of the problem.  Remediation of the academic difficulties 

underlying this pattern is potentially more problematic than those illustrated by Figures 2.6A 

and 2.6B.  The authors are continuing to identify strategies to address problems in this area, 

but feel that it is important to first work on the content knowledge issue. 

 In our experience, students who exhibit the pattern shown in Figure 2.6D, with a low 

score on the Reflect axis, tend to be the most difficult to remediate as this domain is heavily 

dependent on metacognition.  However, other work has suggested that deficiencies in this 

area can be remediated.  (Ref. Clayton)  Reflection, by definition, requires students to 

examine their own performance and develop appropriate strategies for improvement.  In 

discussions with the faculty about exam performance, students who exhibit difficulty in this 

area claim that the exam scenarios do not really represent real life and are “unfair” or 
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“unrealistic”. We have identified these students at all academic levels, and are continuing to 

explore new intervention strategies.   

 

 2.4.7 Change in Performance Patterns Over Time 

 When we began using the first version of these exams in the late 1990s, specific 

feedback on problem-solving domains was not provided to individual students; instead, 

training on problem-solving skills was a component of multiple course lectures. Improving 

our ability to recognize and more finely resolve symptomatic profiles is an ongoing 

investigation. We are continually refining and assessing remediation strategies to promote 

improved student performance, and this endeavor is currently our salient research objective. 

At this point, the authors believe that simply presenting students with their own performance 

profiles, and thus providing students with feedback on their individual strengths and 

weaknesses, gives them an initial and fundamental start in addressing difficulties in 

becoming successful at scientific problem-solving. 

 Figure 2.7 illustrates IPSA performance patterns for two representative students over 

the course of 2 semesters from the set of 20 students previously described. Neither student 

received specific feedback during this time. With the exception of an improvement of the 

Hypothesize domain, the student represented by Fig. 2.7A failed to achieve significant 

improvement in problem-solving skills. We have regularly identified students who do not 

improve their skills and do not seek advice. On the other hand, the student represented by 

Fig. 2.7B, was able, without intervention, to develop an individual strategy and to optimize 

an approach to problem-solving.  This type of analysis provides the basis for the evaluation 

of future intervention strategies.   
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Figure 2.7: Longitudinal Performance Patterns. The change in two students’ IPSA 
performance patterns over two semesters, at three points in time: initial (fine dashed 
line), midway (broad dashed line), and final (continuous line). Student (A) was only 
able to significantly improve in the Hypothesize domain, while student (B) made 
substantial strides and eventually exceeded expectations in all the domain scores.  

 

2.5 Conclusion 

 At the University of New Mexico, our curricular approaches emphasize the 

integration of process and content, both at the undergraduate biochemistry level and in the 

School of Medicine. This paper describes a novel assessment tool, the IPSA, which provides 

practice to students in problem-solving, is relatively easy for faculty to administer and grade, 

and provides individualized assessment information to the student. The IPSAs, and the online 

group discussions of biomedical problems that are connected to them (Anderson et al., 2008; 

Osgood et al., 2008), have become integral to our efforts to “multicontextualize” biomedical 

education (Ibarra, 2001). These pedagogies support learners with a diversity of thinking and 

learning styles. They promote each learner’s ability to recognize and develop their individual 

approach to problem-solving, in a context that honors the importance of content knowledge 

and its application to the career skills that will be needed by the student. 
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3.1 Abstract 

 Discipline-based education research has produced varied perspectives on defining and 

assessing scientific problem solving at the undergraduate level.  The goals of this study were 

to describe and explain longitudinal performance across two upper-level years of our 

biochemistry curriculum, and to initiate a nomological network of problem solving.  Student 

performance was measured using the Individual Problem Solving Assessment (IPSA), 

generating scores in five domains:  Hypothesize, Investigate, Evaluate, Integrate, and Reflect.  

Our average biochemistry student required two semesters to perform satisfactorily in three 

domains, two years for the Evaluate domain, and did not perform satisfactorily in the 

Investigate domain.  Hierarchical linear regression explained performance by identifying 

significant contributors to performance as time, critical thinking skills (measured by the 

Critical thinking Assessment Test, CAT), and attitudes about learning science (measured by 

the Colorado Learning Attitudes about Science Survey for Biology, CLASS-Bio).  All three 

contributors promoted problem solving, and accounted for up to eighteen percent of IPSA 

domain score variability.  First efforts at building a nomological network revealed that 

aspects of problem solving converged when probing the ability to synthesize results into a 

conclusion, but diverged from content knowledge.  Our primary pedagogical 

recommendations are to model successful problem solving and scaffold activities across 

time. 

 

Keywords:  Assessment, skills, problem solving, undergraduate, biochemistry 

 

 

3.2 Introduction 

 As a broad learning goal for undergraduate life science majors, the ability to apply the 

process of science (i.e., the scientific method) is an important competency for science 

students to develop, regardless of discipline (American Association for the Advancement of 

Science, 2011, p. 14).  The process of science is one form of problem solving, what we term 

“scientific problem solving.”  While science is based upon problem solving, there are 

“disciplinary differences in what problem solving entails,” (National Research Council, 

2012, p. 5-15).  For example, a biologist brings a different perspective, skills, and methods to 
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an observed problem than a chemist or physicist would bring.  While the learning objectives 

for the overall process of scientific problem solving may be similar across disciplines, the 

specific criteria for meeting the objectives may be different in biology than in chemistry or 

physics.  This work addresses problem solving as it occurs in the context of biochemistry and 

molecular biology (BMB). 

 This study is rooted in the evolving theory of constructivism, which asserts that 

learners construct their own learning from the building blocks of their own unique 

backgrounds (Bodner, 1986).  Constructivism guides studies that investigate “conceptual 

change over time or the construction of knowledge,” (Bodner and Orgill, 2007).  The concept 

of cognitive dissonance, which refers to the conflict created when new information 

contradicts prior knowledge (Festinger, 1957), has also been incorporated into constructivist 

educational contexts.  For example, a cross-disciplinary meta-analysis found that pedagogies 

that create cognitive dissonance between prior experience and new, contradictory 

information can effectively uncover alternative conceptions and thus stimulate learning in 

both reading and science (Guzzetti et al., 1993).  In order to resolve cognitive dissonance, it 

follows that both prior and new experiences must be reflected upon and explained.  During 

the process of problem solving, which is foundational to the nature of science, metacognition 

or reflection upon one’s learning is instrumental in developing a new approach to yield 

greater future success (Stroulia, 1994). 

 To round out the framework for this study, the practice of scientific teaching follows 

the principle that undergraduate education should be approached in the same manner as 

scientific research (Handelsman et al., 2004; Handelsman et al., 2006).  Specifically, learning 

objectives (aims) are aligned with assessments that measure attainment of the objectives 

(evidence), as well as with strategically designed learning activities (methods) for achieving 

the objectives.  Scientific teaching also advocates for applying the principle of backward 

design, which is to “start with the end in mind,” much as a scientist does during experimental 

design.  Educationally, this refers to defining specific learning objectives prior to developing 

assessments or activities (Wiggins and McTighe, 2005).  Scientific teaching thus implements 

the paradigm of science in order to further our educational efforts. 

 Undergraduate education researchers have taken varying perspectives on defining 

problem solving.  Stein and colleagues indirectly did so by stating that problem solving and 
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learning combine to form one dimension of the broader construct of critical thinking (2006).  

Overall, they assert that critical thinking is comprised of four dimensions, with the other 

three being evaluating information, creative thinking, and effective communication. 

 Researchers of student attitudes about learning science also employ an indirect 

method of defining problem solving.  For instance, based on statistical factor analysis of 

students’ self-reported attitudes about learning how to solve problems, Semsar and coworkers 

indirectly define problem solving as consisting of four dimensions:  reasoning, synthesis and 

application, strategies, and effort (2011).  Additionally, their analysis supports defining 

problem solving as one of four components to be considered with all learning attitudes about 

science.  The remaining attitudes relate to real world connection, enjoyment, and conceptual 

connections. 

 In our previous work, we more directly defined problem solving as consisting of the 

scientific method with a metacognitive component, and developed specific learning 

objectives aligned with that definition (Anderson et al., 2008).  Each objective addresses one 

aspect, or domain, of scientific problem solving.  Refined to be more explicit and updated 

according to the principles of scientific teaching, the objectives are as follows: 

• Hypothesize Domain – Given a set of observations, students should be able to 

generate hypotheses about potential biochemical mechanisms underlying biological 

phenomena. 

• Investigate Domain – Given a testable and falsifiable hypothesis regarding one 

distinct biochemical mechanism, students should be able to propose an 

experimental design to test that hypothesis. 

• Evaluate Domain – Given an experimental design and data, students should be able 

to deduce the experimental results. 

• Integrate Domain – Given an experimental result, students should be able to 

interpret the result within the context of the original observations, integrating 

pertinent evidence to form a conclusion. 

• Reflect Domain – Given a conclusion, students should be able to critically evaluate 

their own performance. 

 Researchers have also approached the assessment of problem solving in a variety of 

ways, aligned with their definitions.  The Critical thinking Assessment Test (CAT) generates 
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one score, which is a measure of critical thinking, on a scale of 0 – 38 points (Stein et al., 

2006).  The test is comprised of fifteen questions in multiple choice, short answer, and essay 

formats.  A major benefit of the CAT is that it focuses on critical thinking without 

embedding specific disciplinary content.  Thus, the score is indicative of the ability to 

transfer critical thinking processes across disciplines.  Further details about the CAT are 

available in supplementary information (Appendix C.I). 

 A second approach to assessing problem solving involves the affective domain of 

learning.  Previous work in physics and chemistry demonstrated that the learning of science 

is influenced by students’ attitudes about learning science (Adams et al., 2004; Adams et al., 

2006; Barbera et al., 2008; Perkins et al., 2004).  Semsar and colleagues modified surveys 

from those disciplines to develop the Colorado Learning Attitudes about Science Survey for 

Biology (CLASS-Bio; 2011).  Students indicate their level of agreement on a Likert scale 

with 31 statements such as, “I enjoy figuring out answers to biology questions.”  The overall 

CLASS-Bio score is calculated as a percentage of statements that students answered in the 

same way as experts.  Sub-scores can also be calculated for different categories of attitudes 

listed above, such as those related to learning problem solving.  All CLASS-Bio statements 

are available by category in supplementary information (Appendix C.II). 

 A third approach to assessing problem solving is embodied in the Individual Problem 

Solving Assessment (IPSA), developed by our group (Mitchell et al., 2011).  The IPSA is a 

computer-based summative assessment that measures individual student performance in 

problem solving.  Each IPSA follows one biochemistry problem explicitly through each of 

the five domains.  The mechanics of an IPSA involve progressively revealing each domain to 

students, with each domain containing its own part of the problem (Fig. 3.1).  Students enter 

an essay response to the prompt in each domain, and may review – but not go back and alter 

– completed domains at any time. 

 An IPSA opens with a scenario describing observations about a biochemical problem 

(Fig. 3.1A).  Only the Hypothesize domain is accessible to students at this point.  After 

providing minimal information to supplement the observations, the IPSA prompts students to 

generate multiple hypotheses that explain the observed phenomenon.  Once students enter 

their hypotheses, the Investigate domain becomes accessible, while subsequent domains 

remain inaccessible to students (Fig. 3.1B).  Here, students are prompted to design an  
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Figure 3.1: IPSA Mechanics. 

The progressive-reveal nature 

of an IPSA is captured in 

simplified versions of screen 

shots from each domain during 

computer administration.  (A) 

Hypothesize, (B) Investigate, 

(C) Evaluate, (D) Integrate, and 

(E) Reflect.  Black domain text 

on the left indicates the 

currently active domain, while 

gray text indicates inaccessible 

domains.  Students may review 

the content and responses from 

previously completed domains 

(blue text), but cannot edit 

responses. 
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experiment that will test a single given hypothesis, which is written into the body of the 

assessment by the instructor.  In the third section of an IPSA, the Evaluate domain, 

experimental results are provided in the form of figures, graphs, or tables, and students are 

prompted to evaluate the results (Fig. 3.1C).  Then in the Integrate domain, an interpretation 

of the previous results are given, more data are provided, and students are prompted to 

integrate all available IPSA information, plus their content knowledge from their 

coursework, into the original context of the problem to come to a conclusion concerning the 

biochemical problem (Fig. 3.1D).  Finally, when the Reflect domain is reached, the correct 

answer to the IPSA biochemical problem is provided, and students are asked to reflect on 

their responses (Fig. 3.1E). 

 Students typically complete an IPSA within 45-75 minutes.  Rubrics for instructors to 

grade the student responses contain specific criteria for scoring each domain on a scale of 0 – 

10, with a score of seven points defined as satisfactory performance (Appendix C.III).  In this 

way, domain scores are generated for each student, on each IPSA. 

 To provide students with formative opportunities to practice solving problems, we 

also used online cases (OLCs) as activities that require students to go through the same set of 

problem solving steps as in the IPSAs, but OLCs were implemented in a group setting, via a 

web-based asynchronous discussion forum (Anderson et al., 2008).  The case discussion 

boards are available for one to two weeks, with group facilitators guiding students through 

the scientific ways of thinking about problem solving.  OLC rubrics yield one overall case 

score for all members of a group, rather than domain scores for each student. 

 This study seeks to address some of the recommendations in the National Research 

Council’s report on discipline-based education research (2012).  The report states that the 

time is upon us to investigate more nuanced aspects of teaching and learning than the 

benefits of broadly-defined “active learning” over passive lecturing.  Indeed, overwhelming 

evidence has established the benefits of active learning (Freeman et al., 2014; Wieman, 

2014).  Specific areas of interest to the discipline-based education research community 

include generating evidence about learning that concerns:  (1) upper-level science courses, 

rather than focusing primarily on introductory courses, (2) entire science curricula, beyond 

single courses, and (3) student adeptness not only with factual knowledge, but also with 

applying it to the processes of science. 



35 
 

 
 

 Accordingly, the research goals of this study are two-fold:  first, to quantitatively 

describe and explain student performance in scientific problem solving across a two-year 

biochemistry curriculum; and second, to initiate an understanding of the nomological 

network of various problem solving skills and biochemistry content knowledge.  We also 

discuss recommendations for pedagogical practice, to maintain student-centered learning as a 

crucial underpinning for the research and to inform scholarly educators. 

 The first research question regarding performance is, what is the longitudinal 

performance pattern of an average student, and when do most students begin maintaining 

satisfactory performance, in each domain of problem solving?  Longitudinal IPSA domain 

score means describe average performance over two years, while consistent satisfactory 

performance for most students (more than half) is better described by domain achievement 

rates across time.  The achievement rate is the proportion of students who perform 

satisfactorily. 

 Previous work (Mitchell et al., 2011) revealed two important findings about problem 

solving performance in our curriculum.  First, students exhibited difficulties in every domain 

of problem solving.  Second, some students made only limited improvements during their 

junior year (when they take multiple IPSAs), while others were able to reach satisfactory 

performance during that year without additional formal instructional strategies.  A 

preliminary analysis of eleven biochemistry majors during the second semester of their junior 

year started to probe likely means and achievement rates, at the beginning and end of that 

semester (Fig. C.IV.1).  Means were satisfactory by the end of the semester in the Integrate 

domain, and at both time points in the Reflect domain.  Achievement rates were most similar 

to those for content exams in the Integrate and Reflect domains, but were markedly lower in 

other domains.  Taken together, these findings inform our hypothesis that the average student 

struggles in all domains, and then improves to satisfactory performance over time, the 

duration of which varies by domain.  Furthermore, we expect that consistent satisfactory 

performance by most students would begin in the second semester, but not in all domains. 

 The second research question is:  Which contributors – among time, academic 

background, and demographic background – most consistently explain the observed problem 

solving performance, and how much do the contributors impact performance?  A major 

concern in studies of complex human subjects in open systems is that of examining the 
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impact of one variable at a time while controlling other variables.  Quantitatively, 

hierarchical linear regression provides a means to do so, by yielding regression equations that 

explain the variability in scores from student to student, along with determining how much of 

the score variability is explained by the equations.  For a more complete and practical 

explanation of the applications of regression analyses in science education research, see 

Theobald and Freeman (2014). 

 Our hypothesis is that the greatest contributor to IPSA domain performance is time, 

followed by academic backgrounds of students, then by demographic backgrounds.  We 

defined academic background as consisting of content knowledge (as measured by 

biochemistry course grades and content exam scores), critical thinking ability (as measured 

by the CAT), learning attitudes about science (as measured by the CLASS-Bio), and 

disciplinary major.  Demographic backgrounds take into consideration age, gender, race, and 

ethnicity.  In the absence of previous data on the interplay of these contributors with problem 

solving performance in the context of biochemistry, we can only estimate that the regression 

equations generated from the identified contributors will explain less than half of the 

variability in scores across students. 

 Our second main goal, initiating an understanding of the nomological network of 

scientific problem solving, has not previously been attempted using the assessments 

described here.  Similar in appearance to a concept map, a nomological network represents 

relationships between constructs (the characteristics intended to be measured) and what can 

actually be measured (Cronbach and Meehl, 1955).  In this study, the constructs are problem 

solving, critical thinking, learning attitudes about science, and content knowledge.  

Measurements are in terms of scores on the IPSA, CAT, CLASS-Bio, and content exams, 

respectively.  The network shows connections between related elements, with no links 

between unrelated elements, thus depicting areas of convergence and divergence in the 

network. 

 The third research question we address in this study is therefore:  How closely related 

are the observable scores of problem solving, critical thinking, and learning attitudes about 

science, to each other as well as to scores of content knowledge?  Scores from assessments 

that measure similar constructs would be expected to correlate at least moderately.  Based on 

a review of test content, we hypothesize that IPSA Hypothesize, Investigate, Evaluate, and 
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Integrate domain scores will correlate at least moderately with CAT scores, while IPSA 

Reflect domain scores will correlate at least moderately with CLASS-Bio scores.  Based on 

our previous work (Mitchell et al., 2011), we also expect that the IPSA Evaluate and 

Integrate scores will correlate with content exam scores. 

 

 

3.3 Methods 

 Data collection – The study was conducted at the University of New Mexico (UNM), 

pursuant to research protocol 12-634, approved by the Human Research Review Committee 

at the UNM Health Sciences Center.  As shown in the study design (Fig. 3.2), three cohorts 

of students were included in the study.  Each cohort entered the biochemistry curriculum in 

sequential academic years (i.e., Cohort A in the first year, B in the second, and C in the 

third).  Longitudinal data were collected across two years for Cohorts A and B (Fig. 3.2A), 

and across one year for Cohort C (Fig. 3.2B).  All students were pooled to maximize 

statistical power (Fig. 3.2C). 

 Students completed two core biochemistry courses:  one on structure and function 

(BIOC I), and the other on metabolism (BIOC II), taken during the junior year (Fig. 3.2A-C, 

timeline).  Within each course, four content exams were administered (Fig. 3.2A-C, squares).  

Content exams primarily measured lower-order cognitive skills; i.e., remembering and 

understanding, rather than higher-order cognitive skills, such as applying information.  Four 

IPSAs (Fig. 3.2A-C, pentagons) and four OLCs were also administered in each course, with 

the combined points from these problem solving assessments and activities comprising no 

more than ten percent of overall course grades.  At least ninety percent of course grades were 

determined by content exams, short quizzes, and content-oriented activities. 

 Students in Cohort C also took the CAT and CLASS-Bio at the beginning and end of 

their junior year (Fig. 3.2B-C, triangles and circles, respectively).  The senior year included 

biochemistry elective courses, which did not incorporate OLCs and IPSAs.  Then at program 

exit, Cohorts A and B completed the American Chemical Society’s 2003 Biochemistry 

Exam© (a nationally standardized content exam) along with an exit IPSA.  Assessment scores 

from the following time points were collected for Cohorts A and B:  entry into BIOC I, after 

one semester, after one year, and after two years (Fig. 3.2A).  For Cohort C, test-retest 
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reliability of the CAT limited data collection to the time points at entry and after one year 

(Fig. 3.2B). 

 

 
Figure 3.2:  Study Design.  Student cohorts and assessments are depicted for one- and two-year 
academic timelines.  (A) Two cohorts of biochemistry majors took nine content exams (squares) 
and nine IPSAs (pentagons) during the two-year program.  Scores were analyzed at four time 
points (filled polygons).  (B) A third cohort of students completed the one-year sequence of 
biochemistry courses, as well as the CAT (triangles) and CLASS-Bio (circles).  Due to limited 
test-retest reliability of the CAT, analyses were performed only at two time points (filled 
polygons). (C) All three cohorts were pooled for analyses, yielding the sample sizes shown for 
each time point.  (D) The putative regression model being tested includes three main components 
of student experience that may impact IPSA domain scores. 
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 Student backgrounds – Both academic (Fig. C.V.1) and demographic (Fig. C.V.2) 

aspects of student backgrounds were considered when evaluating IPSA performance.  

Approximately 86 percent of students in the study were biochemistry majors (Fig. C.V.1A).  

The mean biochemistry course grades were between 86 – 88 percent (Fig. V.1B), while mean 

scores on biochemistry content exams ranged more widely across time, between 57 – 82 

percent (Fig. C.V.1C).  Regarding demographics, most students were traditionally aged 

Caucasian males.  However, 17 percent of the sample was comprised of returning students 

(Fig. C.V.2A), and 42 percent of all students were female (Fig. C.V.2B).  The Hispanic or 

Latino/a population was represented by 31 percent of students, seven percent were Asian, 

two percent were African American, and two percent were American Indian (Fig. C.V.2C). 

 Statistical analyses – SPSS software (IBM Corp.) was used for all analyses, and the 

confidence level was set to 0.05 for tests of significance. 

 Instrument validity – One source of validity evidence is test content, which includes 

the scoring rubrics (American Educational Research Association et al., 2014).  Assessment 

scores are measurements, and the scales are an indicator of instrument sensitivity.  The IPSA 

scoring rubrics detailed ten criteria for each domain response, with one point available per 

criterion, thus maximizing the sensitivity of the IPSA.  The CAT is scaled similarly, with one 

point per criterion.  The broad range of 31 items on the CLASS-Bio contributes to its 

sensitivity in detecting students’ attitudes.  Other validity measures for the CAT and CLASS-

Bio were not determined in our study. 

 Longitudinal IPSA task variability – The entry IPSA was concerned with a protein 

purification protocol, unlike subsequent IPSAs that required experimental design in the 

Investigate domain.  Consequently, the scoring criteria were fundamentally different for the 

Investigate domain of the entry IPSA, and the scales were not comparable across IPSAs.  

Therefore, Investigate scores at program entry were excluded from analysis. 

 Inter-rater reliability – In the absence of resources for administering and expecting 

students to complete multiple isomorphic IPSAs, inter-rater reliability was the primary 

measure considered, as estimated by the intraclass correlation coefficient (ICC).  Pursuant to 

statistical power guidelines offered by Walter and colleagues (1998), two raters scored IPSA 

responses of 39 students at program entry, for calculating ICCs across IPSA domain scores.  

Inter-rater reliability was estimated with author MO as the true grader and author CS as the 
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additional grader.  ICCs guided further scoring methods, to determine whether CS applied 

the domain scoring rubrics as consistently as MO, and would therefore reliably score all the 

IPSA responses for this study.  To meet this expectation, a minimum ICC of 0.70 was 

established.  The reasoning behind this minimum stemmed from two sources.  Our previous 

work determined that scores assigned by three faculty raters (which included authors MO and 

WA) were strongly related, as evidenced by Pearson correlation coefficients greater than 0.75 

with less than ten percent standard deviations (Mitchell et al., 2011).  The same work also 

showed that a graduate student rater (CS) scored within tolerance of the faculty raters.  A 

second source of guidance was an interpretation of the range of ICC values (Cicchetti, 1994; 

Hallgren, 2012).  An ICC of 0.7 is at the high end of the range for good agreement, while 

excellent agreement is reached at an ICC value of 0.75.  Confidence intervals of 95% for the 

ICCs were also calculated. 

 The ICC was greater than 0.7 for all IPSA domains at entry (Fig. C.III.1).  The 95% 

confidence interval of the ICC contained 0.8 for all domains.  With excellent agreement 

between scores assigned by CS and MO, CS completed the scoring of all remaining IPSA 

responses, and scores assigned by CS were used in analyses. 

 Inter-rater reliabilities of the CAT and CLASS-Bio were not measured for this study.  

The CAT responses were scored by developers of that instrument; i.e., true raters.  For 

scoring of the CLASS-Bio, Likert scale responses are transformed to dichotomous scores to 

report whether or not students agreed with experts on each item. 

 Score means – Means were calculated with 95% confidence intervals for course 

grades, content exam scores, IPSA domain scores, CAT scores, and CLASS-Bio scores.  As 

previously described, satisfactory performance in an IPSA domain was defined by a score of 

at least seven points (Mitchell et al., 2011).  To interpret mean IPSA domain scores, one-

sample t-tests determined whether the scores were either at or below satisfactory levels at 

each time point.  The null statistical hypothesis was that domain scores were at least seven 

points; the alternative was that means were lower than seven points.  The assumption of 

normality was tested by visual inspection of distribution histograms. 

 Achievement rates – Achievement rates were calculated for IPSA domain scores, with 

95% confidence intervals, to represent the percentage of students with satisfactory scores at 

each time point.  To interpret achievement rates, binomial tests determined whether most 
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students performed satisfactorily.  The null statistical hypothesis was that at least fifty 

percent of students earned satisfactory scores; the alternative was that achievement rates were 

lower than fifty percent.  Normality was not assumed nor tested, in the context of this non-

parametric test. 

 Regression models – To explain performance in problem solving, linear regression 

analyses generated equations that quantitatively model the contribution of various factors to 

variability in IPSA domain scores.  A sequential hierarchical order of entry grouped the 

variables into three main qualities that may directly explain variability in IPSA scores:  time, 

academic background, and demographic background (Fig. 3.2D).  All three elements of the 

theoretical framework of this study contain elements of time, thus its contribution is 

accounted for first.  Constructivism implies an element of time during the gathering of 

previous knowledge and experience.  Resolving cognitive dissonance implies the need for 

time, especially with complex tasks such as problem solving.  Scientific teaching includes 

time by emphasizing active practice of learning objectives and formative feedback.  Student 

backgrounds, while also key, were intuitively secondary to time.  In the context of scientific 

problem solving, we reasoned that academics (one aspect of student background) were more 

likely to explain performance than demographics. 

 Variables included within academic background were major, overall performance as 

measured by biochemistry course grades, content knowledge as measured by content exam 

scores, critical thinking as measured by CAT scores, and learning attitudes as measured by 

CLASS-Bio scores.  Furthermore, the variable of research experience – as determined by 

enrollment in two semesters of honors research courses – was originally included as an 

academic factor for Cohorts A and B, yet it was not applicable for Cohort C as those students 

had not had a chance to complete the courses.  Therefore, when the cohorts were pooled, 

research experience was no longer included in the regression analyses. 

 For demographic background, the variables were age group, gender, race, and 

ethnicity.  Age groups were defined as either traditional (less than 26 years on September 1 

of junior year) or returning (26 years or older), in an attempt to quantify any effect of life 

experience or maturity.  For each domain model, R2, adjusted R2, and F values were reported, 

along with estimated regression coefficients (β), standard errors, and 95% confidence 

intervals of the coefficients. 
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 Score correlations – To determine the degree of convergence and divergence among 

scores of problem solving (IPSA), critical thinking (CAT), attitudes about learning science 

(CLASS-Bio) and content exams, Pearson’s correlation coefficients (r) were calculated and 

tested against the null hypothesis that the values equaled zero.  For interpreting the size of r 

within the context of discipline-based education research, values of at least 0.1 indicate a 

weak association, 0.3 is moderate, 0.5 is strong, and 0.7 is very strong (Maher et al., 2013). 

 

 

3.4 Results and Discussion 

 3.4.1 Problem solving performance fluctuates across time and domains. 

 Average problem solving performance – Mean IPSA domain scores were highly 

variable overall, both increasing and decreasing through time (Fig. 3.3).  To interpret IPSA 

scores, satisfactory performance in any domain is defined by a score of at least seven out of 

ten points (Mitchell et al., 2011).  In the Hypothesize domain, performance reached a 

satisfactory level for the average student only after one semester, then dropped.  In the 

Investigate domain, average scores were well below satisfactory performance regardless of 

time.  The Evaluate domain averages increased over time, reaching satisfactory levels only 

after two years in the program.  Integrate domain scores exhibited no such trend, however, 

with scores declining over the first semester, but rebounding well into the satisfactory range  

 

 
Figure 3.3: Longitudinal IPSA Domain Scores. Mean scores for each 
IPSA domain are shown across the two-year program.  Error bars indicate 
95% confidence intervals of the means.  To target means that were below 
satisfactory performance (dotted line), one-sample t-tests determined 
which means were significantly lower than seven points.  n.d., no data. 
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after two semesters, then declining again by program exit.  Finally, mean scores in the 

Reflect domain reached satisfactory levels within one semester and were maintained.  In  

summary, the average student in our biochemistry curriculum requires two semesters to 

achieve satisfactory performance in three domains of problem solving (Hypothesize, 

Integrate, and Reflect), two years for the Evaluate domain, but does not achieve satisfactory 

performance in the Investigate domain. 

 Problem solving achievement rates – Achievement rates for all domains were 

calculated to indicate the proportions of students who performed satisfactorily (Fig. 3.4).  

The trends mirror those seen in mean scores, with at least half the students in this study 

reaching satisfactory performance at least once in each domain, except the Investigate 

domain.  However, for most time points in most domains, achievement rates were less than 

thirty percent.  Most students maintained satisfactory performance after the first semester 

only in the Reflect domain, and after two semesters in the Integrate domain. 

 

 
Figure 3.4: Longitudinal IPSA Domain Achievement Rates. The 
proportions of students who achieved a satisfactory score in each IPSA 
domain are shown across time.  Error bars indicate 95% confidence 
intervals of the rates.  To target rates that were below those for content 
exams (dotted line; Fig. IV.1B), binomial tests determined which rates 
were significantly lower than fifty percent.  n.d., no data. 

 

 While IPSAs are designed to assess higher order cognitive skills, it is important to 

note that the cognitive level of an assessment (e.g., as classified by Bloom’s Taxonomy) is a 

different educational consideration from the difficulty of an assessment (Lemons and 

Lemons, 2013).  Classical test theory (CTT) is the analytical framework used in this study, 
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and defines item difficulty as the proportion of students who respond with the correct answer.  

Given the structure of the IPSAs, item difficulty can be estimated as the proportion of  

students who respond satisfactorily to a domain prompt.  Thus, the achievement rates 

reported here also serve as indices of the difficulty of each domain.  From this standpoint, the 

fluctuations demonstrate irregular item difficulty from one IPSA to another, thus implying a 

need for standardization of the tasks to be performed in each domain. 

 While IPSAs are designed to assess higher order cognitive skills, it is important to 

note that the cognitive level of an assessment (i.e., as classified by Bloom’s Taxonomy) is a 

different educational consideration from the difficulty of an assessment (Lemons and 

Lemons, 2013).  Classical test theory (CTT) is the analytical framework used in this study, 

and defines item difficulty as the proportion of students who respond with the correct answer.  

Given the structure of the IPSAs, item difficulty can be estimated as the proportion of 

students who respond satisfactorily to a domain prompt.  Thus, the achievement rates 

reported here also serve as indices of the difficulty of each domain.  From this standpoint, the 

fluctuations demonstrate irregular item difficulty from one IPSA to another, thus implying a 

need for standardization of the tasks to be performed in each domain. 

 

 3.4.2 Time, critical thinking, and learning attitudes promote performance in problem 

solving. 

 CAT Measurements of Critical Thinking – CAT scores were slightly above national 

averages at program entry and after two semesters (Fig. C.V.1D).  Entering the junior year, 

students scored 18.7 points on average.  At the end of that academic year, the mean increased 

to 20.9 points. 

 CLASS-Bio Measurements of Learning Attitudes – Biochemistry students scored 

similarly to other upper-level students on the CLASS-Bio, who were at the University of 

Colorado (CU) in the Departments of Integrative Physiology and Molecular, Cellular, and 

Developmental Biology (Fig. C.V.1E).  The design of this study only allowed comparison 

with CU students at program entry, since the study of Semsar and colleagues (2011) was 

designed with an end point of one semester rather than two.  The overall and subscale scores 

showed increasing trends across the junior year of our curriculum. 
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Table 3.1.  Regression values for IPSA domain score equations 
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a Significance levels for F test and two-sided t test:  *, p < 0.05; **, p < 0.01; ***, p < 0.001. 

 

 Quantitative Models of Problem Solving Performance – Regression equations to 

explain performance in problem solving ranged widely in their fit with the data.  Regression 

analyses yielded statistically significant models for all domains except Investigate.  

According to adjusted model R2 values, the proportion of variability in scores explained by 

the regression models ranged from six to eighteen percent (Table 3.1).  Time played a role in 

increasing Evaluate and Reflect domain scores.  Academic factors were significant in 

explaining all domain scores except Investigate.  Notably, demographic backgrounds did not 
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influence any IPSA domain score after accounting for time and academic factors.  These 

results are summarized into a visual representation of scientific problem solving performance 

(Fig. 3.5A). 

 
Figure 3.5:  Influences Upon Scientific Problem Solving Performance.  
(A) The visual model summarizes the current quantitative findings across 
two curricular years.  (B) Regression models are summarized for each 
IPSA domain score, when the model was statistically significant.  
Otherwise, only the intercept is included. 

 

 Regression equations provided quantitative models for performance (Fig. 3.5B).  The 

model for the Hypothesize domain explained six percent of the variability in scores (F = 

4.49, p = 0.013).  When all factors were held constant, a Hypothesize domain score of 2.6 

was predicted (p = 0.005).  Yet critical thinking abilities and learning attitudes both impacted 

this domain score.  For every point earned on the CAT (38 maximum), the Hypothesize score 

increased by 0.07 (p = 0.045).  For example, a CAT score of 20 would raise a Hypothesize 

score by 1.4 points.  Similarly, for each point on the CLASS-Bio (100 maximum), the 

Hypothesize score increased by 0.02 (p = 0.094); e.g., a CLASS-Bio score of 60 would raise 

a Hypothesize score by 1.2 points.  The model predicts a total domain score in this example 
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as 2.6 + 1.4 + 1.2 = 5.2 points (10 maximum). 

 For Investigate, none of the variables examined in this study were able to explain 

variability in these domain scores (F = 0.45, p = 0.505).  Only the estimated y-intercept is 

statistically different from zero.  The model predicts Investigate domain scores of 3.0 (p < 

0.001), without contributions from time, academics, or demographics. 

 In Evaluate, a stronger model emerged, explaining fourteen percent of the score 

variability (F = 9.39, p < 0.001).  When all else was equal, the model predicted Evaluate 

scores to be 2.4 (p = 0.012).  For each semester increase in time when other factors were 

controlled, a half point gain was anticipated (p = 0.001).  For each point on the CLASS-Bio, 

the Evaluate score was estimated to increase by 0.03 (p = 0.031); e.g., a CLASS-Bio score of 

60 would raise an Evaluate score by 1.8 points. 

 In Integrate, the model explained seventeen percent of the variability among scores (F 

= 12.01, p < 0.001).  The model predicted domain scores to be nearly zero when all else was 

equal (B = 0.5, p = 0.700).  Yet critical thinking made a large contribution to Integrate 

domain scores.  Controlling for other factors, Integrate scores were expected to increase by 

0.16 for every additional CAT point (p = 0.001).  Thus, a CAT score of 20 would add 3.2 

points to an IPSA Integrate domain score.  The largest contribution to a domain by learning 

attitudes was also demonstrated in Integrate (B = 0.04, p = 0.010).  Accordingly, a CLASS-

Bio score of 60 was expected to raise an Integrate score by 2.4 points. 

 Finally, the Reflect domain score was influenced by both time and learning attitudes.  

The model explained eighteen percent of score variability in this domain (F = 12.68, p < 

0.001).  Controlling for all examined variables, the Reflect score was predicted to be 4.6 (p < 

0.001).  The time coefficient matched that in Evaluate, at a half point increase per semester 

(p < 0.001), when all else was equal.  The model also predicted that for every CLASS-Bio 

point, the Reflect score would increase by 0.02 points (p = 0.115); e.g., a CLASS-Bio score 

of 60 would raise the Reflect score by 1.2 points. 

 To summarize our quantitative explanation of problem solving as measured by the 

IPSA, time, critical thinking, and learning attitudes all promoted performance, yet in different 

ways across domains.  Critical thinking ability (as measured by the CAT) impacted IPSA 

performance in only two domains, but with relatively large contributions.  The affective 

domain of learning, as measured by the CLASS-Bio, played a pervasive role throughout 
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problem solving, via attitudes about learning science. 

 

 3.4.3 The nomological network of problem solving converges when forming 

conclusions. 

 To determine the extent of convergence and divergence among IPSA, CAT, CLASS-

Bio, and content exam scores, score correlations are reported in Fig 3.6.  Only some of the 

hypothesized correlations were demonstrated.  First, the IPSA Evaluate score correlated 

moderately with a CLASS-Bio sub-score (Problem Solving, PS:  Synthesis & Application).  

Likewise, IPSA Integrate scores correlated moderately with both the CAT and CLASS-Bio 

scores, as well as with the PS:  Synthesis & Application sub-score of the CLASS-Bio.  

Additionally, CAT scores correlated moderately with one of the CLASS-Bio sub-scores, 

again that of PS:  Synthesis & Application. 

 Our hypothesis that correlations would be present between the IPSA Evaluate and 

Integrate domains, and content exam scores, was not supported.  No relationship was 

demonstrated for the Evaluate domain, and the Integrate domain only correlated weakly, 

which can be explained by the fact that biochemistry content is incorporated into the IPSAs.  

These results indicate that the IPSAs indeed assessed something different than the content 

measures assessed, which is consistent with our results during development (Mitchell et al., 

2011).   

 
Figure 3.6:  Score Correlations. Pearson's correlation coefficients are shown for correlations that 
were statistically different from zero.  Italics indicate moderate correlations (r > 0.3) and bold 
indicates strong correlations (r > 0.5). 
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 Taken together, our results indicate moderate relationships among problem solving 

(as measured by the IPSA), critical thinking (as measured by the CAT), and learning attitudes 

(as measured by the CLASS-Bio) when students are asked to integrate results to form a 

conclusion, thus demonstrating convergence across those skills.  Yet the otherwise weak 

convergence in other domains of problem solving reveals that the three constructs, and their 

corresponding assessments, are distinct from one another, and merit use as defined. 

 Correlations with zero or negative values identified areas of divergence in the 

nomological network of problem solving.  As predicted, CAT scores did not correlate with 

content scores, while CLASS-Bio scores were only weakly related to content scores, which 

may be due to the CLASS-Bio having been designed specifically for use in the discipline of 

biology.  No correlations existed when relating content exam scores to the IPSA 

Hypothesize, Investigate, and Evaluate domain scores.  Notably, the Reflect domain scores 

exhibited a weak, negative correlation with content exam scores.  These findings indicate that 

content knowledge (as measured by content exams) diverges from process-oriented skills, 

when those skills involve the scientific method and metacognition (as measured by the 

IPSA), and critical thinking (as measured by the CAT). 

 The lack of correlations with the Investigate domain was unexpected.  The CAT items 

minimally probed aspects of experimental design, yet enough to hypothesize that a 

correlation would exist, perhaps within the inherent skill of Evaluating Information.  Yet 

unlike the IPSA, the CAT did not explicitly prompt students to design an experiment.  A 

different approach would be to compare Investigate domain scores with those generated by 

the Experimental Design Ability Test (Sirum and Humburg, 2011), which is more closely 

aligned based on a review of test content.  The Investigate domain was expected to correlate 

with CLASS-Bio scores based partly on our experience with the IPSA:  Anecdotally, 

students expressed great, ongoing concern about their lack of laboratory experience, and 

what methods they should describe in an IPSA, and the level of detail to include in their 

descriptions.  Given these apprehensions, attitude was expected to relate in some way to the 

Investigate domain, yet our evidence does not support such a conclusion.   

 The emergent nomological network represents the correlations visually (Fig. 3.7).  

Convergence is readily seen in the circular pattern of heavy arrows that connect all three 

process-oriented assessments.  Divergence of those assessments from tests of content 
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knowledge is apparent in the sole weakly negative correlation, as well as in the reduced 

number of connections.  These findings provide additional instrument validity evidence 

based on the relationships among scores, and inform how we, as discipline-based education 

researchers, can define and assess problem solving. 

 

 
Figure 3.7:  Nomological Network of Problem Solving. Relationships among problem solving, 
critical thinking, learning attitudes, and content knowledge (circles) are summarized based upon 
correlations among observable scores (boxes).  All moderate correlations were positive (thick 
arrows).  Most weak correlations were positive (black dotted arrows), with one weakly negative 
correlation between IPSA Reflect scores and content exam scores (orange dotted arrow). 
 

 

 

Reasoning

Synthesis & Application

Strategies

Effort

Problem
Solving

Hypothesize

Investigate

Evaluate

Integrate

Refect

Learning
Attitudes

Real World
Connection

Enjoyment

Conceptual
Connections

Problem
Solving

Content
Knowledge

Unit Content

Creative
Thinking

Learning
& Problem

Solving

Effective
Communi-

cation

Critical
Thinking

Critical
Thinking

Evaluating
Information

(–) Weak

(+) Weak

(+) Moderate



51 
 

 
 

3.5 Current Limitations and Future Research 

 Expanding IPSA implementation beyond its current environment promises multiple 

benefits.  Research questions regarding transferability across disciplines, course levels, and 

institutions could be addressed.  Analytically, item response theory (IRT) would be possible 

as a guiding framework only with larger samples, since it requires a minimum sample size of 

200 to 500 students.  Whereas CTT is primarily concerned with an overall assessment, the 

benefit of IRT is that it analyzes individual items within an assessment.  Under IRT, the 

mathematical function that emerges from the analysis contains parameters for both item 

difficulty and item discrimination. 

 Item difficulty is an important measure, and would be informative during 

standardization efforts.  Due to the faculty expectation of students accumulating scientific 

knowledge throughout a curriculum, it is likely that IPSA item difficulty increased over time.  

For example, the IPSA at program exit incorporates much more biochemistry than the early 

IPSAs.  Analytically, item difficulty could be used either to normalize IPSA scores, or as an 

additional factor that influences performance. 

 

 

3.6 Pedagogical Implications 

 A goal in using the IPSAs in this study was to describe and explain longitudinal 

student performance in problem solving.  Here, we discuss potential applications of our 

findings, for any scholarly educator interested in promoting improvement in student problem 

solving performance.  A key finding – demonstrated in three different ways – is that most 

students struggle with most domains of scientific problem solving across the entire upper-

level curriculum, rather than improving to satisfactory levels over time.  We suggest several 

explanations for this phenomenon. 

 A primary concern is that problem solving activities and assessments were not 

heavily weighted in course grades.  The impetus for this was to provide structure for practice 

and feedback in problem solving, while reducing the stakes to allow for mistakes to be made.  

Furthermore, the IPSA and content exam at program exit were required to be completed prior 

to graduation, but the scores were not incorporated into any course grade.  The importance of 
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this first concern is that sufficient incentives to motivate students’ best efforts (i.e., course 

points) were largely missing during this study. 

 Another explanation for these performance outcomes would be that our curriculum 

and course designs do not provide enough scaffolded practice attempts for full development 

of well-rounded expertise in all domains of problem solving.  These results may represent a 

lag phase that we as educators can work to shorten by incorporating more opportunities for 

deliberate practice of problem solving within our curricula.  Again within the framework of 

scientific teaching, it is essential to design learning activities that incorporate mechanisms for 

providing feedback to students.  That feedback should include information about where and 

how to improve in order to meet the targeted learning objective.  Furthermore, we understand 

that problem solving is a complex process; therefore, students will need additional 

opportunities for deliberate practice after receiving feedback, to determine whether they meet 

the objective yet in a low stakes setting. 

 This study provides a snapshot of performance over a two-year BMB curriculum, 

allowing scholarly educators to develop learning activities that target different domains at 

different times, to promote longitudinal improvements.  We recommend an approach that 

first models, then scaffolds, exemplary problem solving for students.  This aligns with the 

need to target the factor of time overall, and turn it to the advantage of students.  Modeling 

the problem solving process would provide a full example for students to study and dissect.  

Scaffolding the process would incorporate more intermediate steps at the beginning of the 

curriculum, which would be removed over time as students become more practiced.  Taken 

together, modeling and scaffolding would also be expected to reduce the item difficulty (as 

measured by achievement rates, discussed above), since those formative activities should 

better prepare students for successful completion of a summative IPSA. 

 Opportunities for students to make common mistakes are also recommended during 

the early phases of scaffolding.  Building in such opportunities to fail would be expected to 

reduce the lag time mentioned above (Cannon and Edmondson, 2005; Coelho and McClure, 

2005; Stroulia, 1994).  Furthermore, this type of structure has the potential to inform our 

understanding of student misconceptions about solving scientific problems. 

 Our exclusion of data for the Investigate domain at program entry was a final 

testament to the emerging need to standardize IPSA prompts and rubrics, while allowing for 
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different biochemical content in each IPSA scenario.  Accordingly, we have started creating 

a library of standardized IPSAs.  We envision that regardless of content, a domain prompt 

will be the same across IPSAs, and that a domain rubric for scoring responses will be the 

same for all IPSAs. 

 To pedagogically address the influence of critical thinking skills upon problem 

solving performance, we recommend incorporating these aspects into formative learning 

activities across a BMB curriculum.  One way to achieve this would be to develop CAT 

analogs (Stein and Haynes, 2011).  For the development of expert-like learning attitudes, 

short activities would not be expected to have an appreciable impact (Hansen and Birol, 

2014).  The work of Hansen and Birol interestingly culminated in a recommendation to 

include “activities that emphasize the nature of scientific knowledge, the scientific method, 

and metacognition,” in order to promote attitudes that are similar to those held by experts.  

This is consistent with the convergence demonstrated in our nomological network of 

scientific problem solving, and shows the utility of the network in pedagogical efforts. 

 In summary, this study provides some evidence necessary to promote improvement.   

At the course level, learning activities must go beyond practice to guided practice, with 

modeling and scaffolding of the problem solving process.  Scaffolding should also include 

opportunities for students to fail safely, and to learn from common mistakes.  Standardized 

IPSAs with rubrics based on problem solving criteria rather than on the content within each 

IPSA will provide more structure for students and make the requirements of each domain 

more transparent.  At the curricular level as well as the course level, problem solving 

activities and assessments should be incentivized similar to those for content knowledge, and 

offered with increased frequency.   

 

 

3.7 Conclusion 

 Our description of average student performance in problem solving, as measured by 

the IPSA, indicates that longitudinal trends in scores are inconsistent from domain to domain.  

Therefore, efforts to promote performance in this critical skill will need to be tailored to both 

domain and stage in the curriculum.  At exit from the curriculum, without deliberate practice 

incorporated into the senior year, the average student continued to employ strategies that 
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yielded less than satisfactory performance in three domains.  Based upon longitudinal 

achievement rates, we conclude that for most students, their own strategies were sufficient 

for achieving most objectives at least once during the two-year curriculum, but success was 

not widely maintained across domains. 

 While our regression equations modeling problem solving performance begin to 

explain the roles of time, academics, and demographics, much variability in domain scores 

remains to be explained.  Additional longitudinal variables are necessary to explain 

performance in problem solving, as well as to explain the impact of time.  Novel 

considerations are also necessary to identify variables that impact experimental design 

ability, as measured in the Investigate domain.   

 Finally, the nomological network of problem solving suggests that a definition of the 

construct extends beyond the scientific method and metacognition to include critical thinking 

and holding expert-like attitudes.  Since the main area of convergence among the IPSA, 

CAT, and CLASS-Bio was in the IPSA Integrate domain, where students form conclusions, 

this suggests that much more is going on with students’ reasoning at this stage of problem 

solving than is currently identified by the criteria in the IPSA scoring rubrics.  Our hope is 

that this network will continue to be refined in future collaborations, to inform our 

understanding of defining and assessing scientific problem solving. 

 

 

3.8 Additional materials 

 Supplementary information is available with this article as a separate file, which 

includes details about the CAT (Appendix C.I) and CLASS-Bio (Appendix C.II).  The topics, 

prompts, and scoring rubrics for the IPSAs used in this study are part of Appendix C.III, 

along with results on IPSA inter-rater reliability.  Additional sections are comprised of results 

of the preliminary study on IPSA performance (Appendix C.IV) and student backgrounds 

(Appendix C.V).  Methods and results on score distributions (Appendix C.VI) and cohort 

differences (Appendix C.VII) are also part of the materials. 
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Chapter 4 

Conclusion 

 

 This research produced a novel assessment tool, the IPSA, validated to measure 

student attainment of learning objectives that relate to understanding the process of scientific 

problem solving (Chapter 2).  Through a major effort spanning ten years, the instrument went 

through many iterative cycles of developing problems, gathering expert reviews of test 

content, collecting student responses, clarifying scoring rubrics, and monitoring inter-rater 

reliability.  My roles in this endeavor included all of the above during the last two years of 

IPSA development and validation.   

 In my leadership role during the next phase of the study (Chapter 3), longitudinal 

performance in problem solving within an upper-level biochemistry curriculum was 

described in detail, with snapshots of average student performance and achievement rates 

across two years.  These descriptions were necessary in order to (a) explain the observed 

performance in terms of elements that influence variability in student domain scores, and (b) 

to provide evidence that informs decisions faced by scholarly educators regarding the 

learning and teaching of scientific problem solving. 

 Finally, at a conceptual level, a nomological network of problem solving was 

assembled to understand relationships among the content and processes involved in learning 

biochemistry.  Armed with empirical evidence about the interplay of various components of 

scientific knowledge, educators can apply that information to their facilitation of student-

centered learning in biochemistry. 

 In the broadest context of DBER, this work combines findings about problem solving 

in biochemistry, critical thinking across disciplines, and learning attitudes about biology.  

The outcome is a view of defining and assessing scientific problem solving that can be 

adapted, transferred, and tested in additional disciplinary educational contexts. 
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Appendix A 

Statistical Procedures 

 These statistical procedures provide additional details, beyond those summarized in 

the methods of Chapter 3.  Specific steps for performing the analyses within SPSS software 

are included, along with relevant SPSS output. 

  

A.1  Inter-rater reliability 

 The population parameter of inter-rater reliability is estimated by various sample 

statistics, depending on the type of data analyzed (Table A.1).  The Intraclass Correlation 

Coefficient (ICC) is calculated for continuous variables when the reliability of one typical 

rater is in question.  The ICC compares the variability of different ratings of the same subject 

to the total variation across all ratings and all subjects. 

 

 

 
Table A.1. Statistics to Estimate Inter-Rater Reliability 

Qualitative Data Quantitative Data 
Measure 

Categorical Ordinal Continuous 

2 Raters 
Cohen’s kappa Cohen’s 

weighted kappa 
 

3+ Raters 
Fleiss’s kappa 
Conger’s exact 

kappa 

  

Correlation; 
not precise 
agreement 

 

 

 

 Pearson correlation 
Kendall’s tau 

 

1 Rater   Intraclass Correlation Coefficient (ICC) 
aka in SPSS:  Single measure intraclass correlation 

 
 

 
 

All Raters   Inter-rater Reliability Coefficient 
aka Spearman-Brown Correction of the ICC 

aka in SPSS:  Average measure intraclass correlation 
 

 
 

    

€ 

ICC =
sBetween

2

sBetween
2 + sWithin

2

    

€ 

nraters( ) ICC( )
1+ nraters −1( ) ICC( )

    

€ 

ICC =
MSStudents − MSRaters×Students

MSStudents + dfRaters( ) MSRaters×Students( ) +
nRaters MSRaters − MSRaters×Students( )

nStudents

=
sbetween

2

sbetween
2 + swithin

2
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SPSS Procedure for Inter-Rater Reliability: 

Use IPSA Scoring Comparison data file 
Analyze ! Scale ! Reliability Analysis 
 Move all raters into the Items box. 
Statistics:  descriptives, inter-item statistics, and summaries 
ANOVA Table by F test 
Intraclass correlation coefficient 
Model = Two-Way Random Effects ANOVA 
 One source of variability is due to differences in students 
 Second source of variability is due to differences in raters 
  Raters are considered a random sample from the population of raters 
Type = Absolute Agreement 
 (not just consistency) 
 Systematic differences in ratings ARE relevant  
Confidence Interval = 95%  
Test value = 0 
Continue, OK. 
 
 
SPSS Output for Hypothesize: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ANOVA

Sum of 
Squares df Mean Square F Sig

Between People
Within People Between Items

Residual
Total

Total

254.718 3 8 6.703
.628 1 .628 .773 .385

30.872 3 8 .812
31.500 3 9 .808

286.218 7 7 3.717

Grand Mean = 4.37

Intraclass Correlation Coefficient - Hypothesize

Intraclass 
Correlationb 95% Confidence Interval F Test with True Value 0

Lower Bound Upper Bound Value df1 df2 Sig
Single Measures
Average Measures

.785a .627 .881 8.251 3 8 3 8 .000
.879 .771 .937 8.251 3 8 3 8 .000

Two-way random effects model where both people effects and measures effects are random.
The estimator is the same, whether the interaction effect is present or not.a. 
Type A intraclass correlation coefficients using an absolute agreement definition.b. 

     

  RELIABILITY 
  /VARIABLES=INV_mo INV_cs 
  /SCALE('ALL VARIABLES') ALL 
  /MODEL=ALPHA 
  /STATISTICS=DESCRIPTIVE SCALE CORR COV ANOVA 
  /SUMMARY=MEANS VARIANCE COV CORR 
  /ICC=MODEL(RANDOM) TYPE(ABSOLUTE) CIN=95 TESTVAL=0.

Reliability

Page 3
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SPSS Output for Investigate: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SPSS Output for Evaluate: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reliability Statistics

Cronbach's 
Alpha

Cronbach's 
Alpha Based 

on 
Standardized 

Items N of Items
.873 .878 2

Item Statistics

Mean
Std. 

Deviation N
Investigate MO Rater
Investigate CS Rater

6.67 1.457 3 9
6.62 1.269 3 9

Inter-Item Correlation Matrix

Investigate 
MO Rater

Investigate 
CS Rater

Investigate MO Rater
Investigate CS Rater

1.000 .783
.783 1.000

Inter-Item Covariance Matrix

Investigate 
MO Rater

Investigate 
CS Rater

Investigate MO Rater
Investigate CS Rater

2.123 1.447
1.447 1.611

Summary Item Statistics

Mean Minimum Maximum Range
Maximum / 

Minimum Variance N of Items
Item Means
Item Variances
Inter-Item Covariances
Inter-Item Correlations

6.641 6.615 6.667 .051 1.008 .001 2
1.867 1.611 2.123 .511 1.317 .131 2
1.447 1.447 1.447 .000 1.000 .000 2

.783 .783 .783 .000 1.000 .000 2

Scale Statistics

Mean Variance
Std. 

Deviation N of Items
13.28 6.629 2.575 2

ANOVA

Sum of 
Squares df Mean Square F Sig

Between People
Within People Between Items

Residual
Total

Total

125.949 3 8 3.314
.051 1 .051 .122 .729

15.949 3 8 .420
16.000 3 9 .410

141.949 7 7 1.843

Grand Mean = 6.64

Page 5

Intraclass Correlation Coefficient - Investigate

Intraclass 
Correlationb 95% Confidence Interval F Test with True Value 0

Lower Bound Upper Bound Value df1 df2 Sig
Single Measures
Average Measures

.779a .617 .878 7.897 3 8 3 8 .000
.876 .763 .935 7.897 3 8 3 8 .000

Two-way random effects model where both people effects and measures effects are random.
The estimator is the same, whether the interaction effect is present or not.a. 
Type A intraclass correlation coefficients using an absolute agreement definition.b. 

     

  RELIABILITY 
  /VARIABLES=EVA_mo EVA_cs 
  /SCALE('ALL VARIABLES') ALL 
  /MODEL=ALPHA 
  /STATISTICS=DESCRIPTIVE SCALE CORR COV ANOVA 
  /SUMMARY=MEANS VARIANCE COV CORR 
  /ICC=MODEL(RANDOM) TYPE(ABSOLUTE) CIN=95 TESTVAL=0.

Reliability
Notes

Output Created
Comments
Input Data

Active Dataset
Filter
Weight
Split File
N of Rows in Working 
Data File
Matrix Input

Missing Value Handling Definition of Missing

Cases Used

09-JUL-2013 19:11:01

/Users/Cheryl/Dropbox
/Research/Dissertation/
06 Data/01 
Assessments/IPSA/IPSA 
Scoring/IPSA Interrater 
Correlation/IPSA Scoring 
Comparison 1 2013-
07-09.sav

DataSet0
<none>
<none>
<none>

3 9

User-defined missing 
values are treated as 
missing.
Statistics are based on 
all cases with valid data 
for all variables in the 
procedure.
RELIABILITY
   /VARIABLES=EVA_mo 
EVA_cs
   /SCALE('ALL 
VARIABLES') ALL
   /MODEL=ALPHA
   
/STATISTICS=DESCRIPTI
VE SCALE CORR COV 
ANOVA
   /SUMMARY=MEANS 
VARIANCE COV CORR
   /ICC=MODEL
(RANDOM) TYPE
(ABSOLUTE) CIN=95 
TESTVAL=0. Page 6

Inter-Item Covariance Matrix

Evaluate MO 
Rater

Evaluate CS 
Rater

Evaluate MO Rater
Evaluate CS Rater

8.629 4.989
4.989 4.167

Summary Item Statistics

Mean Minimum Maximum Range
Maximum / 

Minimum Variance N of Items
Item Means
Item Variances
Inter-Item Covariances
Inter-Item Correlations

4.295 3.872 4.718 .846 1.219 .358 2
6.398 4.167 8.629 4.462 2.071 9.953 2
4.989 4.989 4.989 .000 1.000 .000 2

.832 .832 .832 .000 1.000 .000 2

Scale Statistics

Mean Variance
Std. 

Deviation N of Items
8.59 22.775 4.772 2

ANOVA

Sum of 
Squares df Mean Square F Sig

Between People
Within People Between Items

Residual
Total

Total

432.718 3 8 11.387
13.962 1 13.962 9.909 .003
53.538 3 8 1.409
67.500 3 9 1.731

500.218 7 7 6.496

Grand Mean = 4.29

Intraclass Correlation Coefficient - Evaluate

Intraclass 
Correlationb 95% Confidence Interval F Test with True Value 0

Lower Bound Upper Bound Value df1 df2 Sig
Single Measures
Average Measures

.742a .505 .866 8.082 3 8 3 8 .000
.852 .671 .928 8.082 3 8 3 8 .000

Two-way random effects model where both people effects and measures effects are random.
The estimator is the same, whether the interaction effect is present or not.a. 
Type A intraclass correlation coefficients using an absolute agreement definition.b. 

     

  RELIABILITY 
  /VARIABLES=INT_mo INT_cs 
  /SCALE('ALL VARIABLES') ALL 
  /MODEL=ALPHA 
  /STATISTICS=DESCRIPTIVE SCALE CORR COV ANOVA 
  /SUMMARY=MEANS VARIANCE COV CORR 
  /ICC=MODEL(RANDOM) TYPE(ABSOLUTE) CIN=95 TESTVAL=0.

Reliability

Page 8
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SPSS Output for Integrate: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SPSS Output for Reflect: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reliability Statistics

Cronbach's 
Alpha

Cronbach's 
Alpha Based 

on 
Standardized 

Items N of Items
.892 .897 2

Item Statistics

Mean
Std. 

Deviation N
Integrate MO Rater
Integrate CS Rater

6.44 3.194 3 9
6.51 2.771 3 9

Inter-Item Correlation Matrix

Integrate MO 
Rater

Integrate CS 
Rater

Integrate MO Rater
Integrate CS Rater

1.000 .813
.813 1.000

Inter-Item Covariance Matrix

Integrate MO 
Rater

Integrate CS 
Rater

Integrate MO Rater
Integrate CS Rater

10.200 7.192
7.192 7.677

Summary Item Statistics

Mean Minimum Maximum Range
Maximum / 

Minimum Variance N of Items
Item Means
Item Variances
Inter-Item Covariances
Inter-Item Correlations

6.474 6.436 6.513 .077 1.012 .003 2
8.939 7.677 10.200 2.522 1.329 3.181 2
7.192 7.192 7.192 .000 1.000 .000 2

.813 .813 .813 .000 1.000 .000 2

Scale Statistics

Mean Variance
Std. 

Deviation N of Items
12.95 32.260 5.680 2

ANOVA

Sum of 
Squares df Mean Square F Sig

Between People
Within People Between Items

Residual
Total

Total

612.949 3 8 16.130
.115 1 .115 .066 .799

66.385 3 8 1.747
66.500 3 9 1.705

679.449 7 7 8.824

Grand Mean = 6.47

Page 10

Intraclass Correlation Coefficient - Integrate

Intraclass 
Correlationb 95% Confidence Interval F Test with True Value 0

Lower Bound Upper Bound Value df1 df2 Sig
Single Measures
Average Measures

.808a .663 .895 9.233 3 8 3 8 .000
.894 .798 .944 9.233 3 8 3 8 .000

Two-way random effects model where both people effects and measures effects are random.
The estimator is the same, whether the interaction effect is present or not.a. 
Type A intraclass correlation coefficients using an absolute agreement definition.b. 

     

  RELIABILITY 
  /VARIABLES=REF_mo REF_cs 
  /SCALE('ALL VARIABLES') ALL 
  /MODEL=ALPHA 
  /STATISTICS=DESCRIPTIVE SCALE CORR COV ANOVA 
  /SUMMARY=MEANS VARIANCE COV CORR 
  /ICC=MODEL(RANDOM) TYPE(ABSOLUTE) CIN=95 TESTVAL=0.

Reliability
Notes

Output Created
Comments
Input Data

Active Dataset
Filter
Weight
Split File
N of Rows in Working 
Data File
Matrix Input

Missing Value Handling Definition of Missing

Cases Used

09-JUL-2013 19:13:39

/Users/Cheryl/Dropbox
/Research/Dissertation/
06 Data/01 
Assessments/IPSA/IPSA 
Scoring/IPSA Interrater 
Correlation/IPSA Scoring 
Comparison 1 2013-
07-09.sav

DataSet0
<none>
<none>
<none>

3 9

User-defined missing 
values are treated as 
missing.
Statistics are based on 
all cases with valid data 
for all variables in the 
procedure.
RELIABILITY
   /VARIABLES=REF_mo 
REF_cs
   /SCALE('ALL 
VARIABLES') ALL
   /MODEL=ALPHA
   
/STATISTICS=DESCRIPTI
VE SCALE CORR COV 
ANOVA
   /SUMMARY=MEANS 
VARIANCE COV CORR
   /ICC=MODEL
(RANDOM) TYPE
(ABSOLUTE) CIN=95 
TESTVAL=0. Page 11

Inter-Item Covariance Matrix

Reflect MO 
Rater

Reflect CS 
Rater

Reflect MO Rater
Reflect CS Rater

4.815 3.424
3.424 3.358

Summary Item Statistics

Mean Minimum Maximum Range
Maximum / 

Minimum Variance N of Items
Item Means
Item Variances
Inter-Item Covariances
Inter-Item Correlations

5.038 4.641 5.436 .795 1.171 .316 2
4.086 3.358 4.815 1.457 1.434 1.062 2
3.424 3.424 3.424 .000 1.000 .000 2

.851 .851 .851 .000 1.000 .000 2

Scale Statistics

Mean Variance
Std. 

Deviation N of Items
10.08 15.020 3.876 2

ANOVA

Sum of 
Squares df Mean Square F Sig

Between People
Within People Between Items

Residual
Total

Total

285.385 3 8 7.510
12.321 1 12.321 18.594 .000
25.179 3 8 .663
37.500 3 9 .962

322.885 7 7 4.193

Grand Mean = 5.04

Intraclass Correlation Coefficient - Reflect

Intraclass 
Correlationb 95% Confidence Interval F Test with True Value 0

Lower Bound Upper Bound Value df1 df2 Sig
Single Measures
Average Measures

.781a .454 .901 11.334 3 8 3 8 .000
.877 .624 .948 11.334 3 8 3 8 .000

Two-way random effects model where both people effects and measures effects are random.
The estimator is the same, whether the interaction effect is present or not.a. 
Type A intraclass correlation coefficients using an absolute agreement definition.b. 

Page 13
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A.2  Hierarchical linear regression 
 
SPSS Procedure for Regressions: 
 
Use long form master data file 
Analyze ! Regression ! Linear 
DV: IPSA Domain Score 
IV Hierarchical Block 1 (Time): 
 Time 
IV Hierarchical Block 2 (Academics): 
 BIOC I Grade, BIOC II Grade, Content Exam Score, CAT Score, CLASS-Bio Score 
IV Hierarchical Block 3 (Academics, disciplinary major variables): 
 Non-major, Graduate 
IV Hierarchical Block 4 (Demographics): 
 Gender, Age Group 
IV Hierarchical Block 5 (Demographics, race/ethnicity variables): 
 Hispanic, Asian, American Indian, African American 
Method is “Enter” for all blocks 
Statistics: Estimates, 95% CI, Model fit, R squared change, Descriptives 
Plots:  Y=ZRESID, X=ZPRED, Histogram of standardized residuals, Normal probability plot 
Save:  Predicted Unstandardized & Standardized, Residuals Unstandardized & Standardized 
Options: Default entry .05 & removal .10, Include constant, Missing values exclude pairwise 
Case Labels: Study ID 
 
 
 
 
Two assumptions were not tested for any IPSA domain: 
 
• The correct IVs have been specified in the model, by evaluating scatter plots of: 

o Standardized residuals as a function of a putative predictor 
o Standardized residuals as a function of standardized residuals from a putative model 

No other data were available to consider, due to IRB restrictions. 
 
• The IV scores are reliable, by evaluating: 

o Cronbach’s a, as a measure of the internal consistency of the scales 
o Cohen’s k, as a measure of the inter-rater agreement of observations 
o Pearson’s r, as a measure of correlation between test-retest scores 

The reliability of IV scores was not determined (Section 3.3.6). 
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SPSS Output for Hypothesize: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variables Entered/Removeda

Model Variables Entered Variables Removed Method
1
2
3
4
5

Time (semesters)b . Enter
BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Scoreb . Enter
Major - Graduate, Major - Non-Biochemistryb . Enter
Age Group, Genderb . Enter
Asian, American Indian, African American, Hispanicb . Enter

Dependent Variable: IPSA Hypothesize Domaina. 
All requested variables entered.b. 

Model Summaryf

Model R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

Change Statistics
R Square 
Change F Change df1 df2 Sig. F Change

1
2
3
4
5

.045a .002 - .007 1.760 .002 .212 1 106 .646
.313b .098 .044 1.714 .096 2.149 5 101 .066
.314c .099 .026 1.730 .001 .045 2 9 9 .956
.315d .100 .007 1.747 .001 .039 2 9 7 .961
.365e .133 .003 1.751 .034 .911 4 9 3 .461

Predictors: (Constant), Time (semesters)a. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Scoreb. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry

c. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry, Age Group, Gender

d. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry, Age Group, Gender, Asian, American Indian, African American, Hispanic

e. 

Dependent Variable: IPSA Hypothesize Domainf. 

Page 4

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression
Residual
Total

2 Regression
Residual
Total

3 Regression
Residual
Total

4 Regression
Residual
Total

5 Regression
Residual
Total

.657 1 .657 .212 .646b

328.263 106 3.097
328.920 107

32.228 6 5.371 1.828 .101c

296.692 101 2.938
328.920 107

32.496 8 4.062 1.357 .225d

296.424 9 9 2.994
328.920 107

32.736 1 0 3.274 1.072 .391e

296.184 9 7 3.053
328.920 107

43.902 1 4 3.136 1.023 .438f

285.018 9 3 3.065
328.920 107

Dependent Variable: IPSA Hypothesize Domaina. 
Predictors: (Constant), Time (semesters)b. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score

c. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry

d. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, Gender

e. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, Gender, Asian, 
American Indian, African American, Hispanic

f. 

Page 5
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Coefficientsa

Model
Unstandardized Coefficients

Standardized 
Coefficients

t Sig.
95.0% Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound
1 (Constant)

Time (semesters)
2 (Constant)

Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall

3 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate

4 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group

5 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

5.179 .263 19.698 .000 4.658 5.700
.053 .115 .045 .461 .646 - .175 .281
.836 2.171 .385 .701 -3 .471 5.142

- .117 .134 - .099 - .872 .385 - .383 .149
.021 .028 .087 .727 .469 - .035 .077
.014 .021 .088 .667 .506 - .027 .054

- .018 .014 - .190 -1 .339 .184 - .045 .009
.072 .034 .214 2.127 .036 .005 .140
.021 .011 .193 1.876 .064 - .001 .043
.846 2.231 .379 .705 -3 .581 5.272

- .114 .136 - .096 - .835 .405 - .384 .156
.020 .029 .086 .711 .479 - .036 .077
.014 .021 .092 .683 .496 - .027 .056

- .018 .014 - .185 -1 .285 .202 - .045 .010
.072 .034 .214 2.106 .038 .004 .141
.020 .012 .186 1.689 .094 - .004 .044

- .225 .770 - .029 - .292 .771 -1 .753 1.303
- .050 .630 - .008 - .079 .938 -1 .300 1.201

.942 2.282 .413 .681 -3 .586 5.471
- .110 .138 - .093 - .797 .427 - .384 .164

.020 .029 .086 .698 .487 - .037 .078

.013 .021 .086 .626 .533 - .029 .056
- .017 .014 - .178 -1 .207 .230 - .045 .011

.071 .035 .211 2.049 .043 .002 .141

.020 .012 .186 1.659 .100 - .004 .045
- .200 .783 - .026 - .256 .799 -1 .754 1.354
- .069 .647 - .011 - .106 .915 -1 .353 1.215
- .096 .356 - .027 - .271 .787 - .803 .610
- .029 .469 - .006 - .062 .951 - .959 .902
1.061 2.361 .449 .654 -3 .627 5.749
- .112 .139 - .094 - .803 .424 - .387 .164

.016 .030 .068 .542 .589 - .043 .076

.015 .022 .099 .711 .479 - .028 .059
- .017 .014 - .179 -1 .194 .235 - .046 .011

.073 .036 .217 2.037 .044 .002 .145

.020 .012 .185 1.649 .102 - .004 .045
- .186 .790 - .024 - .235 .815 -1 .755 1.384

.006 .675 .001 .010 .992 -1 .335 1.348
- .109 .357 - .031 - .306 .760 - .819 .600

.099 .480 .021 .206 .837 - .854 1.052

.047 .395 .012 .118 .906 - .738 .831

.749 .680 .112 1.102 .273 - .601 2.099
-1 .080 1.299 - .083 - .832 .408 -3 .661 1.500
-1 .556 1.329 - .120 -1 .170 .245 -4 .195 1.084

Dependent Variable: IPSA Hypothesize Domaina. 
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Excluded Variablesa

Model Beta In t Sig.
Partial 

Correlation

Collinearity 
Statistics
Tolerance

1 BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

2 Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

3 Gender
Age Group
Hispanic
Asian
American Indian
African American

4 Hispanic
Asian
American Indian
African American

.078b .806 .422 .078 1.000

.071b .727 .469 .071 1.000

.020b .192 .848 .019 .866

.233b 2.396 .018 .228 .955

.205b 2.121 .036 .203 .978
- .081b - .829 .409 - .081 1.000

.041b .422 .674 .041 1.000
- .076b - .779 .437 - .076 1.000

.013b .129 .897 .013 1.000

.028b .285 .776 .028 1.000

.074b .764 .447 .074 1.000
- .091b - .932 .353 - .091 1.000
- .135b -1 .395 .166 - .135 1.000
- .029c - .290 .772 - .029 .899
- .006c - .065 .949 - .006 .922
- .029c - .296 .768 - .030 .955
- .009c - .091 .927 - .009 .947

.013c .133 .895 .013 .958

.122c 1.263 .209 .125 .958
- .086c - .896 .372 - .089 .968
- .121c -1 .264 .209 - .125 .972
- .027d - .275 .784 - .028 .925
- .007d - .073 .942 - .007 .934

.012d .118 .906 .012 .943

.121d 1.237 .219 .124 .952
- .088d - .907 .367 - .091 .960
- .127d -1 .280 .203 - .128 .919

.010e .099 .921 .010 .923

.121e 1.227 .223 .124 .951
- .091e - .911 .365 - .093 .940
- .127e -1 .263 .210 - .128 .911

Dependent Variable: IPSA Hypothesize Domaina. 
Predictors in the Model: (Constant), Time (semesters)b. 
Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score

c. 

Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score, Major - Graduate, Major - Non-Biochemistry

d. 

Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, 
Gender

e. 
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Model fitting: CAT & CLASS-Bio only 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypothesize = 2.6 + (0.07)(CAT) + (0.02)(CLASS-Bio) 
 
R2 = 0.08, Adj. R2 = 0.06, F = 4.493, p = 0.013 
Intercept B = 2.6, p = 0.005, SE = 0.915, Lower = 0.8, Upper = 4.4 
CAT B = 0.07, p = 0.045, SE = 0.033, Lower = 0.00, Upper = 0.13 
CLASS-Bio B = 0.02, p = 0.094, SE = 0.011, Lower = 0, Upper = 0.04 
 
 
 

Variables Entered/Removeda

Model Variables Entered Variables Removed Method
1 CLASS-Bio Overall, CAT Scoreb . Enter

Dependent Variable: IPSA Hypothesize Domaina. 
All requested variables entered.b. 

Model Summaryb

Model R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

Change Statistics
R Square 
Change F Change df1 df2 Sig. F Change

1 .281a .079 .061 1.699 .079 4.493 2 105 .013
Predictors: (Constant), CLASS-Bio Overall, CAT Scorea. 
Dependent Variable: IPSA Hypothesize Domainb. 

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression
Residual
Total

25.930 2 12.965 4.493 .013b

302.990 105 2.886
328.920 107

Dependent Variable: IPSA Hypothesize Domaina. 
Predictors: (Constant), CLASS-Bio Overall, CAT Scoreb. 
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Coefficientsa

Model
Unstandardized Coefficients

Standardized 
Coefficients

t Sig.
95.0% Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound
1 (Constant)

CAT Score
CLASS-Bio Overall

2.627 .915 2.870 .005 .812 4.441
.066 .033 .195 2.026 .045 .001 .130
.018 .011 .163 1.693 .094 - .003 .039

Dependent Variable: IPSA Hypothesize Domaina. 

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N
Predicted Value
Residual
Std. Predicted Value
Std. Residual

3.82 6.18 5.27 .497 109
-3 .758 3.947 - .121 1.556 107
-2 .942 1.842 - .010 1.010 109
-2 .212 2.323 - .071 .916 107

Dependent Variable: IPSA Hypothesize Domaina. 
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Dependent Variable: IPSA Hypothesize Domain
 
Mean = -0 .07 
Std. Dev. = 0.916 
N = 107
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Variables Entered/Removeda

Model Variables Entered Variables Removed Method
1 CLASS-Bio Overall, CAT Scoreb . Enter

Dependent Variable: IPSA Hypothesize Domaina. 
All requested variables entered.b. 

Model Summaryb

Model R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

Change Statistics
R Square 
Change F Change df1 df2 Sig. F Change

1 .281a .079 .061 1.699 .079 4.493 2 105 .013
Predictors: (Constant), CLASS-Bio Overall, CAT Scorea. 
Dependent Variable: IPSA Hypothesize Domainb. 

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression
Residual
Total

25.930 2 12.965 4.493 .013b

302.990 105 2.886
328.920 107

Dependent Variable: IPSA Hypothesize Domaina. 
Predictors: (Constant), CLASS-Bio Overall, CAT Scoreb. 
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Assumptions Testing for Hypothesize: 
 
 To test the assumption that the relationship between the IVs and DV has been 
correctly specified (i.e., that a linear rather than non-linear model is appropriate), the 
following scatter plots may be evaluated: 

• DV as a function of each IV 
• Standardized residuals as a function of each IV 
• Standardized residuals as a function of predicted Y values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 If there is any relationship between predictor values and standardized residuals of the 
model, then it would indicate that the assumption has not been met.  In this case, there is no 
evidence of a linear relationship between the standardized residuals and any of the three 
scaled predictors or predicted Y values (R2 of the linear best fit lines < 0.01).  The Loess best 
fit lines also show that there do not appear to be any non-linear relationships.  Therefore, 
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BIOC II Grade
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without any type of relationship between these variables, the assumption holds that a linear 
rather than non-linear model is appropriate. 
 
 To test the assumption of constant variance of errors, or homoscedasticity, the same 
scatter plots may be evaluated: 

• Standardized residuals as a function of each IV 
• Standardized residuals as a function of predicted Y values 

 
 There are no relationships between standardized residuals and either the predictors or 
predicted values (R2 < 0.01), which supports the assumption overall.  The plots of residuals 
versus predictors show reasonable dispersions.  The plot against predicted values shows a 
slight wedge pattern, which indicates that the assumption of homoscedasticity may not have 
been met (heteroscedasticity may exist).  In this case, a weighted least squares (WLS) 
estimation could be applied, in order to reduce any bias in standard errors. 
 
 To test the assumption of normality of errors, a probability-probability (p-p) plot is 
evaluated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Comparing the normal distribution (diagonal) with the residual distribution (circular 
markers), the p-p plot shows only slight departures from normality.  Therefore, the 
assumption of normality of errors is met. 
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To test the assumption of independent errors, the following may be evaluated: 
• Index plots of standardized residuals for each member, with the index ordered by 

any potential nesting factor 
• Intraclass correlation coefficient (ICC), as a measure of the proportion of between-

group variance to total variance 
 

 
 
 Considering that Cohorts A and B have four time points plotted per participant, while 
Cohort C participants only have two data points, the plot shows reasonable dispersion.  The 
assumption of independent errors is met. 
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  DATASET ACTIVATE DataSet1. 
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SPSS Output for Investigate: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variables Entered/Removeda

Model Variables Entered Variables Removed Method
1
2
3
4
5

Time (semesters)b . Enter
BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Scoreb . Enter
Major - Graduate, Major - Non-Biochemistryb . Enter
Age Group, Genderb . Enter
Asian, American Indian, African American, Hispanicb . Enter

Dependent Variable: IPSA Investigate Domaina. 
All requested variables entered.b. 

Model Summaryf

Model R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

Change Statistics
R Square 
Change F Change df1 df2 Sig. F Change

1
2
3
4
5

.092a .008 - .010 1.862 .008 .451 1 5 3 .505
.200b .040 - .080 1.925 .032 .317 5 4 8 .900
.265c .070 - .092 1.935 .030 .742 2 4 6 .482
.277d .077 - .133 1.972 .007 .160 2 4 4 .853
.333e .111 - .200 2.029 .034 .386 4 4 0 .817

Predictors: (Constant), Time (semesters)a. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Scoreb. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry

c. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry, Age Group, Gender

d. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry, Age Group, Gender, Asian, American Indian, African American, Hispanic

e. 

Dependent Variable: IPSA Investigate Domainf. 

Page 13

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression
Residual
Total

2 Regression
Residual
Total

3 Regression
Residual
Total

4 Regression
Residual
Total

5 Regression
Residual
Total

1.562 1 1.562 .451 .505b

183.725 5 3 3.467
185.287 5 4

7.434 6 1.239 .334 .915c

177.854 4 8 3.705
185.287 5 4

12.991 8 1.624 .434 .895d

172.296 4 6 3.746
185.287 5 4

14.234 1 0 1.423 .366 .955e

171.053 4 4 3.888
185.287 5 4

20.588 1 4 1.471 .357 .980f

164.699 4 0 4.117
185.287 5 4

Dependent Variable: IPSA Investigate Domaina. 
Predictors: (Constant), Time (semesters)b. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score

c. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry

d. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, Gender

e. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, Gender, Asian, 
American Indian, African American, Hispanic

f. 
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Coefficientsa

Model
Unstandardized Coefficients

Standardized 
Coefficients

t Sig.
95.0% Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound
1 (Constant)

Time (semesters)
2 (Constant)

Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall

3 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate

4 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group

5 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

2.968 .391 7.594 .000 2.184 3.752
.115 .171 .092 .671 .505 - .228 .458
.092 3.432 .027 .979 -6 .808 6.992

- .008 .212 - .006 - .036 .972 - .434 .419
.030 .045 .121 .676 .502 - .060 .120
.018 .033 .113 .569 .572 - .047 .084

- .023 .021 - .225 -1 .060 .294 - .066 .020
.023 .054 .065 .435 .666 - .085 .132
.001 .018 .011 .073 .942 - .035 .037

- .388 3.512 - .110 .913 -7 .457 6.682
.002 .214 .002 .009 .993 - .429 .433
.031 .045 .124 .693 .492 - .059 .122
.024 .033 .144 .718 .477 - .043 .090

- .021 .022 - .208 - .968 .338 - .065 .023
.022 .054 .062 .409 .684 - .087 .131
.001 .019 .007 .043 .966 - .037 .039

- .870 1.213 - .108 - .718 .477 -3 .311 1.570
-1 .010 .992 - .151 -1 .018 .314 -3 .007 .987

- .188 3.624 - .052 .959 -7 .491 7.116
.011 .219 .009 .050 .960 - .431 .453
.033 .046 .133 .720 .475 - .060 .127
.021 .034 .128 .617 .540 - .047 .089

- .020 .023 - .195 - .880 .384 - .065 .026
.019 .055 .054 .348 .730 - .092 .131

1.578E-5 .019 .000 .001 .999 - .039 .039
- .808 1.244 - .100 - .649 .519 -3 .314 1.698

-1 .108 1.027 - .166 -1 .079 .287 -3 .179 .962
- .301 .566 - .080 - .533 .597 -1 .441 .839

.156 .745 .032 .210 .835 -1 .344 1.657
- .441 3.852 - .114 .910 -8 .226 7.345

.004 .227 .003 .019 .985 - .454 .462

.032 .049 .127 .651 .519 - .067 .130

.019 .035 .119 .550 .586 - .052 .091
- .019 .023 - .189 - .818 .418 - .066 .028

.033 .059 .092 .559 .580 - .086 .151

.000 .020 - .001 - .008 .994 - .041 .040
- .653 1.290 - .081 - .506 .616 -3 .259 1.954

-1 .151 1.102 - .172 -1 .045 .303 -3 .379 1.076
- .290 .583 - .077 - .498 .621 -1 .469 .888

.229 .783 .046 .293 .771 -1 .353 1.812

.358 .644 .089 .555 .582 - .944 1.660
1.263 1.109 .179 1.139 .262 - .978 3.504

.567 2.120 .041 .268 .790 -3 .718 4.852
- .442 2.169 - .032 - .204 .840 -4 .825 3.942

Dependent Variable: IPSA Investigate Domaina. 
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Use Model 1, but exclude time since it is not statistically significant: 
Investigate = 3.0 
 
R2 = 0.01, Adj. R2 = -0.01, F = 0.451, p = 0.505 
Intercept B = 3.0, p < 0.001, SE = 0.39, Lower = 2.2, Upper = 3.8 
 

Excluded Variablesa

Model Beta In t Sig.
Partial 

Correlation

Collinearity 
Statistics
Tolerance

1 BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

2 Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

3 Gender
Age Group
Hispanic
Asian
American Indian
African American

4 Hispanic
Asian
American Indian
African American

.079b .574 .569 .079 1.000

.058b .421 .676 .058 1.000
- .067b - .449 .655 - .062 .866

.044b .313 .755 .043 .955
- .009b - .063 .950 - .009 .978
- .095b - .692 .492 - .096 1.000
- .124b - .905 .370 - .125 1.000
- .092b - .667 .508 - .092 1.000
- .016b - .114 .910 - .016 1.000

.063b .460 .648 .064 1.000

.141b 1.032 .307 .142 1.000

.045b .325 .747 .045 1.000
- .091b - .659 .513 - .091 1.000
- .100c - .669 .507 - .097 .899
- .146c - .989 .328 - .143 .922
- .068c - .464 .645 - .067 .955

.008c .054 .957 .008 .947

.044c .302 .764 .044 .958

.158c 1.099 .277 .158 .958

.047c .324 .747 .047 .968
- .079c - .545 .588 - .079 .972
- .079d - .531 .598 - .079 .925

.028d .190 .850 .028 .934

.052d .352 .726 .052 .943

.158d 1.089 .282 .160 .952

.032d .218 .828 .033 .960
- .051d - .344 .733 - .051 .919

.055e .359 .722 .055 .923

.160e 1.082 .285 .163 .951

.025e .165 .869 .025 .940
- .054e - .349 .729 - .053 .911

Dependent Variable: IPSA Investigate Domaina. 
Predictors in the Model: (Constant), Time (semesters)b. 
Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score

c. 

Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score, Major - Graduate, Major - Non-Biochemistry

d. 

Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, 
Gender

e. 
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Assumptions Testing for Investigate: 
 
 To test the assumption that the relationship between the IVs and DV has been 
correctly specified (i.e., that a linear rather than non-linear model is appropriate), the 
following scatter plots may be evaluated: 

• DV as a function of each IV 
• Standardized residuals as a function of each IV 
• Standardized residuals as a function of predicted Y values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 If there is any relationship between predictor values and standardized residuals of the 
model, then it would indicate that the assumption has not been met.  In this case, there is no 
evidence of a linear relationship between the standardized residuals and any of the three 
scaled predictors or predicted Y values (R2 of the linear best fit lines ≤ 0.01).  The Loess best 
fit lines also show that there do not appear to be any non-linear relationships.  Therefore, 
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Content Exam Score
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without any type of relationship between these variables, the assumption holds that a linear 
rather than non-linear model is appropriate. 
 
 To test the assumption of constant variance of errors, or homoscedasticity, the same 
scatter plots may be evaluated: 

• Standardized residuals as a function of each IV 
• Standardized residuals as a function of predicted Y values 

 
 There are no relationships between standardized residuals and either the predictors or 
predicted values (R2 ≤ 0.01), which supports the assumption overall.  The plots of residuals 
versus predictors show reasonable dispersions.  The plot against predicted values shows a 
slight wedge pattern, which indicates that the assumption of homoscedasticity may not have 
been met (heteroscedasticity may exist). 
 To evaluate the magnitude of nonconstant variance, residuals were divided at the 
median into two levels:  low and high.  Computing the ratio of the variances of the two 
groups determines the magnitude; more than a ten-fold difference calls for an alternate 
approach. 

 
 
 With a ratio of 11.1 (0.687/0.062), a weighted least squares (WLS) regression could 
be performed, in order to reduce any bias in standard errors of the regression coefficients.  
However, the ordinary least squares (OLS) regression presented here is preferable to WLS 
with small sample sizes such as in this study.  Moreover, the meaning of the model R2 
generated by WLS is inconsistent with the meaning under OLS.  Therefore, WLS regression 
was not performed.  The coefficient estimates are not biased, but their significance tests and 
confidence intervals may be biased. 

Case Processing Summary

Investigate (C) 
Standardized 
Residual 
(Excluding T=0) 
(Binned)

Cases

Valid Missing Total

N Percent N Percent N Percent
Investigate (C) 
Standardized 
Residual 
(Excluding T=0)

<=  - .27204

- .27203+

2 6 100.0% 0 0.0% 2 6 100.0%

2 7 100.0% 0 0.0% 2 7 100.0%

Descriptives

Investigate (C) Standardized Residual (Excluding T=0) 
(Binned) Statistic Std. Error

Investigate (C) 
Standardized 
Residual 
(Excluding T=0)

<=  - .27204 Mean
95% Confidence 
Interval for Mean

Lower Bound
Upper Bound

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

- .27203+ Mean
95% Confidence 
Interval for Mean

Lower Bound
Upper Bound

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

-.6497031 .04899599
-.7506122
-.5487939
-.6289689
-.6124444

.062
.24983151

-1.44748
- .30958
1.13791

.29269
-1 .315 .456

3.015 .887
.6945170 .15946413
.3667338

1.0223002
.6425733
.6259393

.687
.82859993

- .27204
2.81556
3.08760
1.42542

.686 .448
- .209 .872

Explore

Evaluate (C) Standardized Residual (Binned)
Case Processing Summary

Evaluate (C) 
Standardized 
Residual (Binned)

Cases
Valid Missing Total

N Percent N Percent N Percent
Evaluate (C) 
Standardized 
Residual

<=  - .16988

- .16987+
5 3 100.0% 0 0.0% 5 3 100.0%

5 3 100.0% 0 0.0% 5 3 100.0%
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 To test the assumption of normality of errors, a probability-probability (p-p) plot is 
evaluated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Comparing the normal distribution (diagonal) with the residual distribution (circular 
markers), the p-p plot shows only slight departures from normality.  Therefore, the 
assumption of normality of errors is met. 
 
To test the assumption of independent errors, the following may be evaluated: 

• Index plots of standardized residuals for each member, with the index ordered by 
any potential nesting factor 

• Intraclass correlation coefficient (ICC), as a measure of the proportion of between-
group variance to total variance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Considering that Cohorts A and B have four time points plotted per participant, while 
Cohort C participants only have two data points, the plot shows reasonable dispersion.  The 
assumption of independent errors is met.
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SPSS Output for Evaluate: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variables Entered/Removeda

Model Variables Entered Variables Removed Method
1
2
3
4
5

Time (semesters)b . Enter
BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Scoreb . Enter
Major - Graduate, Major - Non-Biochemistryb . Enter
Age Group, Genderb . Enter
Asian, American Indian, African American, Hispanicb . Enter

Dependent Variable: IPSA Evaluate Domaina. 
All requested variables entered.b. 

Model Summaryf

Model R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

Change Statistics
R Square 
Change F Change df1 df2 Sig. F Change

1
2
3
4
5

.336a .113 .105 2.049 .113 13.508 1 106 .000
.421b .177 .129 2.022 .064 1.582 5 101 .172
.423c .179 .112 2.040 .001 .080 2 9 9 .923
.424d .180 .095 2.060 .001 .075 2 9 7 .928
.448e .201 .081 2.076 .021 .613 4 9 3 .654

Predictors: (Constant), Time (semesters)a. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Scoreb. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry

c. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry, Age Group, Gender

d. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry, Age Group, Gender, Asian, American Indian, African American, Hispanic

e. 

Dependent Variable: IPSA Evaluate Domainf. 
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ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression
Residual
Total

2 Regression
Residual
Total

3 Regression
Residual
Total

4 Regression
Residual
Total

5 Regression
Residual
Total

56.728 1 56.728 13.508 .000b

445.140 106 4.199
501.868 107

89.050 6 14.842 3.631 .003c

412.818 101 4.087
501.868 107

89.716 8 11.215 2.694 .010d

412.152 9 9 4.163
501.868 107

90.350 1 0 9.035 2.130 .029e

411.518 9 7 4.242
501.868 107
100.927 1 4 7.209 1.672 .075f

400.941 9 3 4.311
501.868 107

Dependent Variable: IPSA Evaluate Domaina. 
Predictors: (Constant), Time (semesters)b. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score

c. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry

d. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, Gender

e. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, Gender, Asian, 
American Indian, African American, Hispanic

f. 
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Coefficientsa

Model
Unstandardized Coefficients

Standardized 
Coefficients

t Sig.
95.0% Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound
1 (Constant)

Time (semesters)
2 (Constant)

Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall

3 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate

4 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group

5 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

4.350 .306 14.207 .000 3.743 4.957
.492 .134 .336 3.675 .000 .227 .757

- .473 2.561 - .185 .854 -5 .552 4.607
.435 .158 .298 2.749 .007 .121 .750
.020 .033 .069 .607 .545 - .046 .086
.003 .024 .016 .123 .902 - .045 .051
.004 .016 .031 .232 .817 - .028 .036
.055 .040 .131 1.366 .175 - .025 .134
.020 .013 .150 1.529 .129 - .006 .047

- .459 2.631 - .175 .862 -5 .679 4.760
.441 .161 .301 2.745 .007 .122 .759
.020 .034 .068 .590 .557 - .047 .087
.004 .025 .020 .158 .875 - .045 .053
.004 .016 .037 .272 .786 - .028 .037
.055 .041 .131 1.354 .179 - .026 .135
.019 .014 .141 1.343 .182 - .009 .047

- .354 .908 - .037 - .390 .698 -2 .156 1.448
- .081 .743 - .010 - .109 .913 -1 .556 1.393
- .553 2.689 - .206 .838 -5 .891 4.785

.436 .163 .298 2.680 .009 .113 .759

.019 .034 .064 .544 .588 - .049 .087

.005 .025 .027 .207 .836 - .045 .055

.004 .017 .032 .230 .818 - .029 .037

.056 .041 .135 1.369 .174 - .025 .138

.019 .014 .144 1.349 .181 - .009 .048
- .384 .923 - .041 - .416 .678 -2 .216 1.447
- .030 .762 - .004 - .040 .968 -1 .544 1.483

.150 .420 .034 .356 .722 - .684 .983
- .091 .553 - .016 - .164 .870 -1 .188 1.006
- .432 2.800 - .154 .878 -5 .992 5.129

.432 .165 .295 2.621 .010 .105 .759

.017 .035 .057 .469 .640 - .054 .087

.002 .026 .012 .088 .930 - .049 .053

.004 .017 .036 .248 .805 - .030 .038

.066 .043 .158 1.547 .125 - .019 .151

.019 .015 .139 1.288 .201 - .010 .048
- .281 .937 - .030 - .300 .765 -2 .143 1.581

.008 .801 .001 .010 .992 -1 .583 1.599

.186 .424 .042 .438 .662 - .656 1.027
- .171 .569 - .030 - .301 .764 -1 .302 .959

.241 .468 .051 .515 .608 - .689 1.172

.188 .806 .023 .234 .816 -1 .412 1.789
2.327 1.541 .145 1.510 .134 - .733 5.388

.277 1.577 .017 .175 .861 -2 .854 3.407
Dependent Variable: IPSA Evaluate Domaina. 
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Excluded Variablesa

Model Beta In t Sig.
Partial 

Correlation

Collinearity 
Statistics
Tolerance

1 BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

2 Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

3 Gender
Age Group
Hispanic
Asian
American Indian
African American

4 Hispanic
Asian
American Indian
African American

.118b 1.293 .199 .125 1.000

.103b 1.131 .261 .110 1.000

.153b 1.568 .120 .151 .866

.169b 1.828 .070 .176 .955

.199b 2.189 .031 .209 .978
- .067b - .733 .465 - .071 1.000

.047b .511 .611 .050 1.000

.007b .078 .938 .008 1.000

.017b .189 .850 .018 1.000

.025b .269 .788 .026 1.000
- .019b - .208 .836 - .020 1.000

.140b 1.546 .125 .149 1.000
- .011b - .123 .902 - .012 1.000
- .037c - .387 .700 - .039 .899
- .009c - .091 .928 - .009 .922

.030c .320 .750 .032 .955
- .016c - .176 .861 - .018 .947

.037c .402 .688 .040 .958

.006c .062 .950 .006 .958

.135c 1.481 .142 .147 .968

.006c .071 .944 .007 .972
.033d .352 .726 .035 .925

- .014d - .151 .881 - .015 .934
.036d .383 .702 .039 .943
.004d .039 .969 .004 .952
.134d 1.451 .150 .145 .960
.008d .083 .934 .008 .919
.036e .374 .709 .038 .923
.003e .030 .976 .003 .951
.141e 1.492 .139 .151 .940
.009e .091 .927 .009 .911

Dependent Variable: IPSA Evaluate Domaina. 
Predictors in the Model: (Constant), Time (semesters)b. 
Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score

c. 

Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score, Major - Graduate, Major - Non-Biochemistry

d. 

Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, 
Gender

e. 
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Model fitting:  Time, CAT, CLASS-Bio, American Indian 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Correlations

IPSA Evaluate 
Domain

Time 
(semesters) CAT Score

CLASS-Bio 
Overall

American 
Indian

Pearson 
Correlation

IPSA Evaluate Domain
Time (semesters)
CAT Score
CLASS-Bio Overall
American Indian

Sig. (1-tailed) IPSA Evaluate Domain
Time (semesters)
CAT Score
CLASS-Bio Overall
American Indian

N IPSA Evaluate Domain
Time (semesters)
CAT Score
CLASS-Bio Overall
American Indian

1.000 .336 .233 .245 .140
.336 1.000 .212 .149 .000
.233 .212 1.000 .227 - .096
.245 .149 .227 1.000 .061
.140 .000 - .096 .061 1.000

. .000 .006 .005 .008
.000 . .010 .061 .500
.006 .010 . .009 .150
.005 .061 .009 . .263
.008 .500 .150 .263 .
299 299 116 108 299
299 628 119 110 432
116 119 119 109 119
108 110 109 110 110
299 432 119 110 432

Variables Entered/Removeda

Model Variables Entered Variables Removed Method
1
2
3
4
5

Time (semesters)b . Enter
CLASS-Bio Overall, CAT Scoreb . Enter
American Indianb . Enter

.b CAT Scorec Remove

.b American Indianc Remove
Dependent Variable: IPSA Evaluate Domaina. 
All requested variables entered.b. 
All requested variables removed.c. 
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Model Summaryf

Model R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

Change Statistics
R Square 
Change F Change df1 df2 Sig. F Change

1
2
3
4
5

.336a .113 .105 2.049 .113 13.508 1 106 .000
.410b .168 .144 2.003 .055 3.449 2 104 .035
.435c .189 .157 1.988 .021 2.633 1 103 .108
.410d .168 .144 2.003 - .021 2.623 1 103 .108
.390e .152 .136 2.014 - .017 2.067 1 104 .153

Predictors: (Constant), Time (semesters)a. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, CAT Scoreb. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, CAT Score, American Indianc. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, American Indiand. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overalle. 
Dependent Variable: IPSA Evaluate Domainf. 

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression
Residual
Total

2 Regression
Residual
Total

3 Regression
Residual
Total

4 Regression
Residual
Total

5 Regression
Residual
Total

56.728 1 56.728 13.508 .000b

445.140 106 4.199
501.868 107

84.418 3 28.139 7.010 .000c

417.450 104 4.014
501.868 107

94.823 4 23.706 5.999 .000d

407.045 103 3.952
501.868 107

84.455 3 28.152 7.014 .000e

417.412 104 4.014
501.868 107

76.158 2 38.079 9.392 .000f

425.710 105 4.054
501.868 107

Dependent Variable: IPSA Evaluate Domaina. 
Predictors: (Constant), Time (semesters)b. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, CAT Scorec. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, CAT Score, American Indiand. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, American Indiane. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overallf. 
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Model Summaryf

Model R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

Change Statistics
R Square 
Change F Change df1 df2 Sig. F Change

1
2
3
4
5

.336a .113 .105 2.049 .113 13.508 1 106 .000
.410b .168 .144 2.003 .055 3.449 2 104 .035
.435c .189 .157 1.988 .021 2.633 1 103 .108
.410d .168 .144 2.003 - .021 2.623 1 103 .108
.390e .152 .136 2.014 - .017 2.067 1 104 .153

Predictors: (Constant), Time (semesters)a. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, CAT Scoreb. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, CAT Score, American Indianc. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, American Indiand. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overalle. 
Dependent Variable: IPSA Evaluate Domainf. 

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression
Residual
Total

2 Regression
Residual
Total

3 Regression
Residual
Total

4 Regression
Residual
Total

5 Regression
Residual
Total

56.728 1 56.728 13.508 .000b

445.140 106 4.199
501.868 107

84.418 3 28.139 7.010 .000c

417.450 104 4.014
501.868 107

94.823 4 23.706 5.999 .000d

407.045 103 3.952
501.868 107

84.455 3 28.152 7.014 .000e

417.412 104 4.014
501.868 107

76.158 2 38.079 9.392 .000f

425.710 105 4.054
501.868 107

Dependent Variable: IPSA Evaluate Domaina. 
Predictors: (Constant), Time (semesters)b. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, CAT Scorec. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, CAT Score, American Indiand. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overall, American Indiane. 
Predictors: (Constant), Time (semesters), CLASS-Bio Overallf. 
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Evaluate = 2.4 + (0.4)(Semester) + (0.03)(CLASS-Bio) 
 
R2 = 0.15, Adj. R2 = 0.14, F = 9.392, p < 0.001 
Intercept B = 2.4, p = 0.012, SE = 0.940, Lower = 0.5, Upper = 4.3 
Time B = 0.5, p = 0.001, SE = 0.133, Lower = 0.2, Upper = 0.7 
CLASS-Bio B = 0.03, p = 0.031, SE = 0.012, Lower = 0.00, Upper = 0.05 
 
 

Coefficientsa

Model
Unstandardized Coefficients

Standardized 
Coefficients

t Sig.
95.0% Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound
1 (Constant)

Time (semesters)
2 (Constant)

Time (semesters)
CAT Score
CLASS-Bio Overall

3 (Constant)
Time (semesters)
CAT Score
CLASS-Bio Overall
American Indian

4 (Constant)
Time (semesters)
CLASS-Bio Overall
American Indian

5 (Constant)
Time (semesters)
CLASS-Bio Overall

4.350 .306 14.207 .000 3.743 4.957
.492 .134 .336 3.675 .000 .227 .757

1.627 1.079 1.507 .135 - .513 3.768
.413 .135 .282 3.067 .003 .146 .680
.056 .039 .134 1.435 .154 - .021 .133
.023 .012 .172 1.865 .065 - .001 .048

1.574 1.072 1.469 .145 - .551 3.699
.410 .134 .280 3.071 .003 .145 .675
.063 .039 .151 1.620 .108 - .014 .141
.022 .012 .160 1.738 .085 - .003 .046

2.330 1.436 .145 1.623 .108 - .518 5.177
2.441 .936 2.609 .010 .586 4.296

.450 .132 .308 3.404 .001 .188 .713

.026 .012 .191 2.107 .037 .002 .050
2.067 1.438 .129 1.438 .153 - .784 4.918
2.401 .940 2.554 .012 .537 4.264

.449 .133 .307 3.374 .001 .185 .712

.027 .012 .199 2.189 .031 .003 .051
Dependent Variable: IPSA Evaluate Domaina. 

Excluded Variablesa

Model Beta In t Sig.
Partial 

Correlation

Collinearity 
Statistics
Tolerance

1 CAT Score
CLASS-Bio Overall
American Indian

2 American Indian
4 CAT Score
5 CAT Score

American Indian

.169b 1.828 .070 .176 .955

.199b 2.189 .031 .209 .978

.140b 1.546 .125 .149 1.000
.145c 1.623 .108 .158 .983
.151d 1.620 .108 .158 .905
.134e 1.435 .154 .139 .916
.129e 1.438 .153 .140 .996

Dependent Variable: IPSA Evaluate Domaina. 
Predictors in the Model: (Constant), Time (semesters)b. 
Predictors in the Model: (Constant), Time (semesters), CLASS-Bio Overall, CAT Scorec. 
Predictors in the Model: (Constant), Time (semesters), CLASS-Bio Overall, American Indiand. 
Predictors in the Model: (Constant), Time (semesters), CLASS-Bio Overalle. 

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N
Predicted Value
Residual
Std. Predicted Value
Std. Residual

3.10 5.99 4.87 .668 110
-4 .717 5.121 .094 2.100 108
-2 .502 .919 - .399 .792 110
-2 .343 2.543 .047 1.043 108

Dependent Variable: IPSA Evaluate Domaina. 

Page 19



83 
 

 
 

Assumptions Testing for Evaluate: 
 
 To test the assumption that the relationship between the IVs and DV has been 
correctly specified (i.e., that a linear rather than non-linear model is appropriate), the 
following scatter plots may be evaluated: 

• DV as a function of each IV 
• Standardized residuals as a function of each IV 
• Standardized residuals as a function of predicted Y values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 If there is any relationship between predictor values and standardized residuals of the 
model, then it would indicate that the assumption has not been met.  In this case, there is no 
evidence of a linear relationship between the standardized residuals and any of the three 
scaled predictors or predicted Y values (R2 of the linear best fit lines < 0.01).  The Loess best 
fit lines also show that there do not appear to be any non-linear relationships.  Therefore, 
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without any type of relationship between these variables, the assumption holds that a linear 
rather than non-linear model is appropriate. 
 
 To test the assumption of constant variance of errors, or homoscedasticity, the same 
scatter plots may be evaluated: 

• Standardized residuals as a function of each IV 
• Standardized residuals as a function of predicted Y values 

 
 There are no relationships between standardized residuals and either the predictors or 
predicted values (R2 < 0.01), which supports the assumption overall.  However, all plots 
show slight wedge patterns, which indicates that the assumption of homoscedasticity may not 
have been met (heteroscedasticity may exist). 
 To evaluate the magnitude of nonconstant variance, residuals were divided at the 
median into two levels:  low and high.  Computing the ratio of the variances of the two 
groups determines the magnitude; more than a ten-fold difference calls for an alternate 
approach. 

 
 
 With a ratio of 2.5 (0.562/0.226), a weighted least squares (WLS) regression is not 
necessary. 
 

Descriptives

Evaluate (C) Standardized Residual (Binned) Statistic Std. Error
Evaluate (C) 
Standardized 
Residual

<=  - .16988 Mean
95% Confidence 
Interval for Mean

Lower Bound
Upper Bound

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

- .16987+ Mean
95% Confidence 
Interval for Mean

Lower Bound
Upper Bound

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

-.7135899 .06523142
-.8444863
-.5826935
-.6848809
-.5348656

.226
.47489194

-1.86435
- .17923
1.68511

.63189
- .959 .327
- .296 .644

.6958028 .10301088

.4890964

.9025093

.6502868

.5242205
.562

.74993053
- .16052
2.46376
2.62429
1.25261

.803 .327
- .434 .644

Explore

Integrate (C) Standardized Residual (Binned)
Case Processing Summary

Integrate (C) 
Standardized 
Residual (Binned)

Cases
Valid Missing Total

N Percent N Percent N Percent
Integrate (C) 
Standardized 
Residual

<= .44525

.44526+
5 3 100.0% 0 0.0% 5 3 100.0%

5 4 100.0% 0 0.0% 5 4 100.0%
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 To test the assumption of normality of errors, a probability-probability (p-p) plot is 
evaluated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Comparing the normal distribution (diagonal) with the residual distribution (circular 
markers), the p-p plot shows only slight departures from normality.  Therefore, the 
assumption of normality of errors is met. 
 
 To test the assumption of independent errors, the following may be evaluated: 

• Index plots of standardized residuals for each member, with the index ordered by 
any potential nesting factor 

• Intraclass correlation coefficient (ICC), as a measure of the proportion of between-
group variance to total variance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Considering that Cohorts A and B have four time points plotted per participant, while 
Cohort C participants only have two data points, the plot shows reasonable dispersion.  The 
assumption of independent errors is met.
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SPSS Output for Integrate: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variables Entered/Removeda

Model Variables Entered Variables Removed Method
1
2
3
4
5

Time (semesters)b . Enter
BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Scoreb . Enter
Major - Graduate, Major - Non-Biochemistryb . Enter
Age Group, Genderb . Enter
Asian, American Indian, African American, Hispanicb . Enter

Dependent Variable: IPSA Integrate Domaina. 
All requested variables entered.b. 

Model Summaryf

Model R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

Change Statistics
R Square 
Change F Change df1 df2 Sig. F Change

1
2
3
4
5

.190a .036 .027 2.561 .036 3.950 1 106 .049
.475b .226 .180 2.351 .190 4.962 5 101 .000
.482c .232 .170 2.365 .006 .390 2 9 9 .678
.487d .237 .159 2.381 .005 .324 2 9 7 .724
.493e .243 .129 2.422 .006 .187 4 9 3 .945

Predictors: (Constant), Time (semesters)a. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Scoreb. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry

c. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry, Age Group, Gender

d. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry, Age Group, Gender, Asian, American Indian, African American, Hispanic

e. 

Dependent Variable: IPSA Integrate Domainf. 
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ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression
Residual
Total

2 Regression
Residual
Total

3 Regression
Residual
Total

4 Regression
Residual
Total

5 Regression
Residual
Total

25.907 1 25.907 3.950 .049b

695.224 106 6.559
721.130 107
162.997 6 27.166 4.916 .000c

558.133 101 5.526
721.130 107
167.361 8 20.920 3.740 .001d

553.769 9 9 5.594
721.130 107
171.033 1 0 17.103 3.016 .002e

550.098 9 7 5.671
721.130 107
175.418 1 4 12.530 2.135 .016f

545.712 9 3 5.868
721.130 107

Dependent Variable: IPSA Integrate Domaina. 
Predictors: (Constant), Time (semesters)b. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score

c. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry

d. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, Gender

e. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, Gender, Asian, 
American Indian, African American, Hispanic

f. 
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Coefficientsa

Model
Unstandardized Coefficients

Standardized 
Coefficients

t Sig.
95.0% Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound
1 (Constant)

Time (semesters)
2 (Constant)

Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall

3 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate

4 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group

5 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

5.883 .383 15.375 .000 5.125 6.642
.332 .167 .190 1.987 .049 .001 .664

-2 .990 2.977 -1 .004 .318 -8 .896 2.916
.276 .184 .157 1.497 .138 - .090 .641
.039 .039 .112 1.016 .312 - .037 .116

- .011 .028 - .049 - .399 .691 - .067 .045
.021 .019 .147 1.119 .266 - .016 .058
.143 .047 .286 3.072 .003 .051 .236
.028 .015 .172 1.802 .075 - .003 .058

-2 .622 3.049 - .860 .392 -8 .672 3.429
.272 .186 .155 1.463 .147 - .097 .641
.038 .039 .109 .983 .328 - .039 .116

- .014 .029 - .063 - .506 .614 - .071 .042
.020 .019 .141 1.062 .291 - .017 .057
.144 .047 .288 3.072 .003 .051 .238
.027 .016 .169 1.662 .100 - .005 .060
.406 1.053 .036 .386 .700 -1 .683 2.495
.700 .861 .075 .812 .419 -1 .009 2.409

-2 .288 3.110 - .736 .464 -8 .460 3.884
.282 .188 .161 1.498 .137 - .091 .655
.035 .040 .100 .884 .379 - .044 .114

- .016 .029 - .071 - .557 .579 - .074 .042
.022 .019 .158 1.163 .248 - .016 .061
.143 .048 .285 3.003 .003 .048 .237
.029 .017 .177 1.720 .089 - .004 .062
.475 1.067 .042 .445 .658 -1 .643 2.592
.730 .882 .078 .828 .410 -1 .020 2.480

- .164 .485 - .031 - .337 .737 -1 .127 .800
- .458 .639 - .066 - .716 .476 -1 .726 .810

-2 .593 3.267 - .794 .429 -9 .080 3.894
.272 .192 .155 1.415 .160 - .110 .654
.038 .041 .107 .907 .367 - .045 .120

- .016 .030 - .071 - .544 .588 - .076 .043
.022 .020 .152 1.087 .280 - .018 .061
.150 .050 .299 3.011 .003 .051 .249
.029 .017 .179 1.709 .091 - .005 .063
.530 1.094 .047 .484 .629 -1 .642 2.702
.623 .935 .066 .667 .507 -1 .233 2.479

- .164 .495 - .031 - .333 .740 -1 .147 .818
- .534 .664 - .077 - .805 .423 -1 .853 .784
- .078 .546 - .014 - .142 .887 -1 .163 1.007

.342 .940 .035 .363 .717 -1 .526 2.209

.596 1.798 .031 .332 .741 -2 .974 4.167
1.240 1.839 .064 .674 .502 -2 .413 4.892

Dependent Variable: IPSA Integrate Domaina. 
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Excluded Variablesa

Model Beta In t Sig.
Partial 

Correlation

Collinearity 
Statistics
Tolerance

1 BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

2 Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

3 Gender
Age Group
Hispanic
Asian
American Indian
African American

4 Hispanic
Asian
American Indian
African American

.183b 1.943 .055 .186 1.000

.152b 1.608 .111 .155 1.000

.284b 2.869 .005 .270 .866

.340b 3.680 .000 .338 .955

.286b 3.079 .003 .288 .978
- .010b - .108 .914 - .011 1.000

.144b 1.524 .130 .147 1.000
- .064b - .667 .506 - .065 1.000

.000b .000 1.000 .000 1.000
- .042b - .444 .658 - .043 1.000
- .019b - .195 .845 - .019 1.000

.020b .212 .832 .021 1.000

.035b .368 .713 .036 1.000
.032c .347 .729 .035 .899
.073c .798 .427 .080 .922

- .039c - .434 .665 - .043 .955
- .057c - .630 .530 - .063 .947
- .015c - .164 .870 - .016 .958

.034c .377 .707 .038 .958

.014c .158 .874 .016 .968

.070c .783 .435 .078 .972
- .034d - .367 .714 - .037 .925
- .067d - .734 .465 - .074 .934
- .020d - .219 .827 - .022 .943

.033d .369 .713 .037 .952

.021d .236 .814 .024 .960

.057d .621 .536 .063 .919
- .031e - .334 .739 - .034 .923

.032e .350 .727 .036 .951

.029e .321 .749 .033 .940

.064e .690 .492 .070 .911
Dependent Variable: IPSA Integrate Domaina. 
Predictors in the Model: (Constant), Time (semesters)b. 
Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score

c. 

Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score, Major - Graduate, Major - Non-Biochemistry

d. 

Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, 
Gender

e. 
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Model fitting:  CAT, CLASS-Bio 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Integrate = 0.5 + (0.16)(CAT) + (0.04)(CLASS-Bio) 
 
R2 = 0.19, Adj. R2 = 0.17, F = 12.012, p < 0.001 
Intercept B = 0.5, p = 0.700, SE = 1.274, Lower = -2.0, Upper = 3.0 
CAT B = 0.16, p = 0.001, SE = 0.045, Lower = 0.07, Upper = 0.25 
CLASS-Bio B = 0.04, p = 0.010, SE = 0.015, Lower = 0.01, Upper = 0.07 
 

Correlations

IPSA Integrate 
Domain CAT Score

CLASS-Bio 
Overall

Pearson 
Correlation

IPSA Integrate Domain
CAT Score
CLASS-Bio Overall

Sig. (1-tailed) IPSA Integrate Domain
CAT Score
CLASS-Bio Overall

N IPSA Integrate Domain
CAT Score
CLASS-Bio Overall

1.000 .364 .308
.364 1.000 .227
.308 .227 1.000

. .000 .001
.000 . .009
.001 .009 .
299 116 108
116 119 109
108 109 110

Variables Entered/Removeda

Model Variables Entered Variables Removed Method
1 CLASS-Bio Overall, CAT Scoreb . Enter

Dependent Variable: IPSA Integrate Domaina. 
All requested variables entered.b. 
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Model Summaryb

Model R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

Change Statistics
R Square 
Change F Change df1 df2 Sig. F Change

1 .432a .186 .171 2.364 .186 12.012 2 105 .000
Predictors: (Constant), CLASS-Bio Overall, CAT Scorea. 
Dependent Variable: IPSA Integrate Domainb. 

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression
Residual
Total

134.273 2 67.137 12.012 .000b

586.857 105 5.589
721.130 107

Dependent Variable: IPSA Integrate Domaina. 
Predictors: (Constant), CLASS-Bio Overall, CAT Scoreb. 
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Coefficientsa

Model
Unstandardized Coefficients

Standardized 
Coefficients

t Sig.
95.0% Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound
1 (Constant)

CAT Score
CLASS-Bio Overall

.492 1.274 .386 .700 -2 .033 3.018

.156 .045 .311 3.438 .001 .066 .246

.038 .015 .237 2.624 .010 .009 .067
Dependent Variable: IPSA Integrate Domaina. 

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N
Predicted Value
Residual
Std. Predicted 
Value
Std. Residual

3.15 8.59 6.45 1.132 109
-6 .611 6.762 .578 2.464 107

-2 .955 1.893 - .010 1.010 109

-2 .796 2.860 .244 1.042 107
Dependent Variable: IPSA Integrate Domaina. 

Charts
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Assumptions Testing for Integrate: 
 
 To test the assumption that the relationship between the IVs and DV has been 
correctly specified (i.e., that a linear rather than non-linear model is appropriate), the 
following scatter plots may be evaluated: 

• DV as a function of each IV 
• Standardized residuals as a function of each IV 
• Standardized residuals as a function of predicted Y values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 If there is any relationship between predictor values and standardized residuals of the 
model, then it would indicate that the assumption has not been met.  In this case, there is no 
evidence of a linear relationship between the standardized residuals and any of the three 
scaled predictors or predicted Y values (R2 of the linear best fit lines < 0.01).  The Loess best 
fit lines also show that there do not appear to be any non-linear relationships.  Therefore, 
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without any type of relationship between these variables, the assumption holds that a linear 
rather than non-linear model is appropriate. 
 
 To test the assumption of constant variance of errors, or homoscedasticity, the same 
scatter plots may be evaluated: 

• Standardized residuals as a function of each IV 
• Standardized residuals as a function of predicted Y values 

 
 There are no relationships between standardized residuals and either the predictors or 
predicted values (R2 < 0.01), which supports the assumption overall.  However, all plots 
show slight wedge patterns, which indicates that the assumption of homoscedasticity may not 
have been met (heteroscedasticity may exist). 
 To evaluate the magnitude of nonconstant variance, residuals were divided at the 
median into two levels:  low and high.  Computing the ratio of the variances of the two 
groups determines the magnitude; more than a ten-fold difference calls for an alternate 
approach. 

 
 
 With a ratio of 2.1 (0.677/0.328), a weighted least squares (WLS) regression is not 
necessary. 
 

Descriptives

Integrate (C) Standardized Residual (Binned) Statistic Std. Error
Integrate (C) 
Standardized 
Residual

<= .44525 Mean
95% Confidence 
Interval for Mean

Lower Bound
Upper Bound

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

.44526+ Mean
95% Confidence 
Interval for Mean

Lower Bound
Upper Bound

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

-.3792484 .11304319
-.6060861
-.1524106
-.3214519
-.1060665

.677
.82296687

-2.60556
.41660

3.02216
1.13674

-1 .120 .327
.022 .644

1.1393581 .07792934
.9830516

1.2956645
1.1014336

.9844933
.328

.57266137
.44525

2.59391
2.14865

.80394
.955 .325
.101 .639

Explore

Reflect (C) Standardized Residual (Binned)
Case Processing Summary

Reflect (C) 
Standardized 
Residual (Binned)

Cases
Valid Missing Total

N Percent N Percent N Percent
Reflect (C) 
Standardized 
Residual

<= .58216

.58217+
5 4 100.0% 0 0.0% 5 4 100.0%

5 4 100.0% 0 0.0% 5 4 100.0%

Page 4
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 To test the assumption of normality of errors, a probability-probability (p-p) plot is 
evaluated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Comparing the normal distribution (diagonal) with the residual distribution (circular 
markers), the p-p plot shows only slight departures from normality.  Therefore, the 
assumption of normality of errors is met. 
 
 To test the assumption of independent errors, the following may be evaluated: 

• Index plots of standardized residuals for each member, with the index ordered by 
any potential nesting factor 

• Intraclass correlation coefficient (ICC), as a measure of the proportion of between-
group variance to total variance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Considering that Cohorts A and B have four time points plotted per participant, while 
Cohort C participants only have two data points, the plot shows reasonable dispersion with 
only a minimal wedge.  The assumption of independent errors is met. 
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SPSS Output for Reflect: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variables Entered/Removeda

Model Variables Entered Variables Removed Method
1
2
3
4
5

Time (semesters)b . Enter
BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Scoreb . Enter
Major - Graduate, Major - Non-Biochemistryb . Enter
Age Group, Genderb . Enter
Asian, American Indian, African American, Hispanicb . Enter

Dependent Variable: IPSA Reflect Domaina. 
All requested variables entered.b. 

Model Summaryf

Model R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

Change Statistics
R Square 
Change F Change df1 df2 Sig. F Change

1
2
3
4
5

.418a .175 .167 1.741 .175 22.506 1 106 .000
.451b .204 .156 1.753 .029 .723 5 101 .608
.458c .210 .146 1.764 .006 .381 2 9 9 .684
.477d .227 .148 1.762 .018 1.115 2 9 7 .332
.497e .247 .134 1.776 .020 .608 4 9 3 .658

Predictors: (Constant), Time (semesters)a. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Scoreb. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry

c. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry, Age Group, Gender

d. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, Content Exam Score, Major 
- Graduate, Major - Non-Biochemistry, Age Group, Gender, Asian, American Indian, African American, Hispanic

e. 

Dependent Variable: IPSA Reflect Domainf. 
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ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression
Residual
Total

2 Regression
Residual
Total

3 Regression
Residual
Total

4 Regression
Residual
Total

5 Regression
Residual
Total

68.238 1 68.238 22.506 .000b

321.394 106 3.032
389.632 107

79.344 6 13.224 4.304 .001c

310.288 101 3.072
389.632 107

81.715 8 10.214 3.284 .002d

307.917 9 9 3.110
389.632 107

88.636 1 0 8.864 2.856 .004e

300.996 9 7 3.103
389.632 107

96.304 1 4 6.879 2.181 .014f

293.328 9 3 3.154
389.632 107

Dependent Variable: IPSA Reflect Domaina. 
Predictors: (Constant), Time (semesters)b. 
Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score

c. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry

d. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, Gender

e. 

Predictors: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, BIOC I Grade, 
Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, Gender, Asian, 
American Indian, African American, Hispanic

f. 
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Coefficientsa

Model
Unstandardized Coefficients

Standardized 
Coefficients

t Sig.
95.0% Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound
1 (Constant)

Time (semesters)
2 (Constant)

Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall

3 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate

4 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group

5 (Constant)
Time (semesters)
BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

5.848 .260 22.481 .000 5.333 6.364
.540 .114 .418 4.744 .000 .314 .765

4.231 2.220 1.906 .059 - .173 8.635
.440 .137 .342 3.208 .002 .168 .713

1.684E-5 .029 .000 .001 1.000 - .057 .057
.009 .021 .052 .416 .678 - .033 .050

- .011 .014 - .108 - .808 .421 - .039 .016
.026 .035 .069 .734 .465 - .044 .095
.018 .012 .153 1.580 .117 - .005 .041

3.979 2.274 1.750 .083 - .532 8.491
.444 .139 .344 3.199 .002 .169 .719
.001 .029 .002 .022 .983 - .057 .058
.011 .021 .066 .522 .603 - .031 .053

- .011 .014 - .101 - .749 .455 - .038 .017
.025 .035 .068 .711 .479 - .045 .094
.018 .012 .154 1.496 .138 - .006 .043

- .345 .785 - .041 - .439 .662 -1 .902 1.213
- .498 .642 - .072 - .775 .440 -1 .772 .776
4.494 2.300 1.954 .054 - .072 9.059

.460 .139 .357 3.307 .001 .184 .736
- .003 .029 - .011 - .096 .924 - .061 .055

.008 .022 .046 .361 .719 - .035 .051
- .007 .014 - .066 - .483 .630 - .035 .021

.022 .035 .059 .617 .539 - .048 .092

.020 .012 .167 1.608 .111 - .005 .044
- .231 .789 - .028 - .292 .771 -1 .797 1.336
- .498 .652 - .072 - .763 .447 -1 .792 .797
- .333 .359 - .086 - .927 .356 -1 .045 .380
- .535 .473 - .105 -1 .132 .260 -1 .473 .403
5.114 2.395 2.135 .035 .358 9.871

.448 .141 .348 3.183 .002 .169 .728
- .010 .030 - .039 - .335 .738 - .070 .050

.013 .022 .079 .609 .544 - .030 .057
- .010 .015 - .093 - .670 .505 - .039 .019

.021 .037 .056 .564 .574 - .052 .093

.020 .012 .166 1.584 .117 - .005 .045
- .326 .802 - .039 - .406 .685 -1 .918 1.267
- .297 .685 - .043 - .433 .666 -1 .657 1.064
- .351 .363 - .091 - .968 .336 -1 .071 .369
- .577 .487 - .113 -1 .185 .239 -1 .544 .390
- .549 .401 - .133 -1 .370 .174 -1 .345 .247

.047 .690 .006 .068 .946 -1 .322 1.416
- .351 1.318 - .025 - .266 .791 -2 .969 2.267

-1 .065 1.348 - .075 - .790 .432 -3 .743 1.612
Dependent Variable: IPSA Reflect Domaina. 
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Excluded Variablesa

Model Beta In t Sig.
Partial 

Correlation

Collinearity 
Statistics
Tolerance

1 BIOC I Grade
BIOC II Grade
Content Exam Score
CAT Score
CLASS-Bio Overall
Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

2 Major - Non-Biochemistry
Major - Graduate
Gender
Age Group
Hispanic
Asian
American Indian
African American

3 Gender
Age Group
Hispanic
Asian
American Indian
African American

4 Hispanic
Asian
American Indian
African American

.004b .041 .967 .004 1.000

.012b .132 .895 .013 1.000
- .010b - .105 .916 - .010 .866

.089b .987 .326 .096 .955

.141b 1.590 .115 .153 .978
- .076b - .862 .391 - .084 1.000
- .039b - .439 .662 - .043 1.000
- .103b -1 .175 .243 - .114 1.000
- .090b -1 .026 .307 - .100 1.000
- .090b -1 .020 .310 - .099 1.000

.021b .238 .812 .023 1.000
- .022b - .248 .805 - .024 1.000
- .079b - .895 .373 - .087 1.000
- .038c - .402 .688 - .040 .899
- .070c - .758 .450 - .076 .922
- .082c - .903 .369 - .090 .955
- .116c -1 .273 .206 - .126 .947
- .105c -1 .159 .249 - .115 .958

.039c .432 .667 .043 .958
- .020c - .221 .825 - .022 .968
- .080c - .885 .378 - .088 .972
- .090d - .972 .333 - .098 .925
- .108d -1 .172 .244 - .118 .934
- .102d -1 .114 .268 - .112 .943

.040d .432 .666 .044 .952
- .027d - .298 .766 - .030 .960
- .069d - .736 .464 - .074 .919
- .123e -1 .327 .188 - .134 .923

.038e .412 .681 .042 .951
- .017e - .187 .852 - .019 .940
- .058e - .622 .536 - .063 .911

Dependent Variable: IPSA Reflect Domaina. 
Predictors in the Model: (Constant), Time (semesters)b. 
Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score

c. 

Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score, Major - Graduate, Major - Non-Biochemistry

d. 

Predictors in the Model: (Constant), Time (semesters), BIOC II Grade, CLASS-Bio Overall, CAT Score, 
BIOC I Grade, Content Exam Score, Major - Graduate, Major - Non-Biochemistry, Age Group, 
Gender

e. 
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Model fitting:  Time & CLASS-Bio only 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Reflect = 4.6 + (0.5)(Semester) + (0.02)(CLASS-Bio) 
 
R2 = 0.20, Adj. R2 = 0.18, F = 12.679, p < 0.001 
Intercept B = 4.6, p < 0.001, SE = 0.807, Lower = 3.0, Upper = 6.2 
Time B = 0.5, p < 0.001, SE = 0.114, Lower = 0.3, Upper = 0.7 
CLASS-Bio B = 0.02, p = 0.115, SE = 0.011, Lower = 0.00, Upper = 0.04 
 
 

Variables Entered/Removeda

Model Variables Entered Variables Removed Method
1 CLASS-Bio Overall, Time (semesters)b . Enter

Dependent Variable: IPSA Reflect Domaina. 
All requested variables entered.b. 

Model Summaryb

Model R R Square
Adjusted R 

Square
Std. Error of 
the Estimate

Change Statistics
R Square 
Change F Change df1 df2 Sig. F Change

1 .441a .195 .179 1.729 .195 12.679 2 105 .000
Predictors: (Constant), CLASS-Bio Overall, Time (semesters)a. 
Dependent Variable: IPSA Reflect Domainb. 

ANOVAa

Model
Sum of 
Squares df Mean Square F Sig.

1 Regression
Residual
Total

75.795 2 37.898 12.679 .000b

313.837 105 2.989
389.632 107

Dependent Variable: IPSA Reflect Domaina. 
Predictors: (Constant), CLASS-Bio Overall, Time (semesters)b. 

Page 31

Coefficientsa

Model
Unstandardized Coefficients

Standardized 
Coefficients

t Sig.
95.0% Confidence Interval for B

B Std. Error Beta Lower Bound Upper Bound
1 (Constant)

Time (semesters)
CLASS-Bio Overall

4.633 .807 5.741 .000 3.033 6.233
.513 .114 .398 4.489 .000 .286 .739
.017 .011 .141 1.590 .115 - .004 .038

Dependent Variable: IPSA Reflect Domaina. 

Residuals Statisticsa

Minimum Maximum Mean Std. Deviation N
Predicted Value
Residual
Std. Predicted Value
Std. Residual

5.07 7.33 6.41 .615 110
-3 .605 3.252 .011 1.575 108
-2 .048 .643 - .457 .731 110
-2 .085 1.881 .006 .911 108

Dependent Variable: IPSA Reflect Domaina. 

Charts

Regression Standardized Residual
210- 1- 2- 3

Fr
eq

ue
nc

y

1 5

1 0

5

0

Histogram

Dependent Variable: IPSA Reflect Domain
 
Mean = 0.01 
Std. Dev. = 0.911 
N = 108
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Assumptions Testing for Reflect: 
 
 To test the assumption that the relationship between the IVs and DV has been 
correctly specified (i.e., that a linear rather than non-linear model is appropriate), the 
following scatter plots may be evaluated: 

• DV as a function of each IV 
• Standardized residuals as a function of each IV 
• Standardized residuals as a function of predicted Y values 

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 If there is any relationship between predictor values and standardized residuals of the 
model, then it would indicate that the assumption has not been met.  In this case, there is no 
evidence of a linear relationship between the standardized residuals and any of the three 
scaled predictors or predicted Y values (R2 of the linear best fit lines < 0.01).  The Loess best 
fit lines of the IV plots also show that there do not appear to be any non-linear relationships.  
However, the Loess line of the predicted value plot indicates that a quadratic model may be a 
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better fit.  Overall though, the assumption holds that a linear rather than non-linear model is 
appropriate. 
 
 To test the assumption of constant variance of errors, or homoscedasticity, the same 
scatter plots may be evaluated: 

• Standardized residuals as a function of each IV 
• Standardized residuals as a function of predicted Y values 

 
 There are no relationships between standardized residuals and either the predictors or 
predicted values (R2 < 0.01), which supports the assumption overall.  However, all plots 
show slight wedge patterns, which indicates that the assumption of homoscedasticity may not 
have been met (heteroscedasticity may exist). 
 To evaluate the magnitude of nonconstant variance, residuals were divided at the 
median into two levels:  low and high.  Computing the ratio of the variances of the two 
groups determines the magnitude; more than a ten-fold difference calls for an alternate 
approach. 

 
 
 With a ratio of 1.0 (0.381/0.370), a weighted least squares (WLS) regression is not 
necessary. 
 

Descriptives

Reflect (C) Standardized Residual (Binned) Statistic Std. Error
Reflect (C) 
Standardized 
Residual

<= .58216 Mean
95% Confidence 
Interval for Mean

Lower Bound
Upper Bound

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

.58217+ Mean
95% Confidence 
Interval for Mean

Lower Bound
Upper Bound

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

-.2556345 .08401262
-.4241425
-.0871265
-.2171228
-.1882649

.381
.61736414

-2.22869
.57994

2.80864
.86440

- .924 .325
.723 .639

1.4558611 .08280990
1.2897655
1.6219568
1.4383674
1.3335663

.370
.60852602

.58437
2.74966
2.16529
1.08099

.385 .325
-1 .063 .639
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 To test the assumption of normality of errors, a probability-probability (p-p) plot is 
evaluated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Comparing the normal distribution (diagonal) with the residual distribution (circular 
markers), the p-p plot shows only slight departures from normality.  Therefore, the 
assumption of normality of errors is met. 
 
 To test the assumption of independent errors, the following may be evaluated: 

• Index plots of standardized residuals for each member, with the index ordered by 
any potential nesting factor 

• Intraclass correlation coefficient (ICC), as a measure of the proportion of between-
group variance to total variance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Considering that Cohorts A and B have four time points plotted per participant, while 
Cohort C participants only have two data points, the plot shows reasonable dispersion, with 
only a slight wedge pattern.  The assumption of independent errors is met. 
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Appendix B 
Supplementary Information 

 

What really matters:  Assessing individual problem-solving performance 

in the context of biological sciences 

 

Steven M. Mitchell1, William L. Anderson2, Cheryl A. Sensibaugh2, and Marcy Osgood2 

 
1 School of Medicine, University of New Mexico, Albuquerque, NM, USA 
2 Department of Biochemistry and Molecular Biology, University of New Mexico, 

Albuquerque, NM, USA 

 

 

 

Computer screen captures of an Individual Problem-Solving Assessment (IPSA) which was 

used in 2008 with a class of 70 students in an advanced intermediary metabolism class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

International Journal for the Scholarship of Teaching and Learning, 2011, 5(1) 
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 This appendix presents a more detailed introduction to the computer-based Individual 

Problem-Solving Assessment (IPSA) and how we use a database for grading student 

responses. It should be stresses that computer administration of the exam is not necessary as 

we have also used these exams in a paper and pencil format.  

 This case, evaluating problems surrounding the catabolism of phenylalanine, is from 

an advanced intermediary metabolism course. Following the initial screens that require 

students to log into the testing system, students are presented with a short incomplete case 

scenario and then asked to list their hypotheses to explain the nature of the problem in the 

case scenario. This hypothesize screen is shown in Fig. B.1. Note that the initial case 

presentation is in a scrolling box to permit the possibility of using large or small case 

presentations. 

 

 
Figure B.1:  Initial case scenario and hypothesize question. 

 

 

16 

 

 

Fig.1:  Initial case scenario and hypothesize question 

 
  

  

 

Students are then given a more detail case history and are asked to begin investigating 

their leading hypothesis by identifying the key words they will use in their literature search. 

Once these key words are entered, the students are presented with the results of a 

literature search (Fig. 2). The electronic case format allows students to be given learning 

materials during the test and prohibits them from going back and changing a previous 

answer. 
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 Students are then given a more detail case history and are asked to begin investigating 

their leading hypothesis by identifying the key words they will use in their literature search. 

Once these key words are entered, the students are presented with the results of a literature 

search (Fig. B.2). The electronic case format allows students to be given learning materials 

during the test and prohibits them from going back and changing a previous answer.  

 

 
Figure B.2:  Results of a literature search. 

 

  

 
Fig. 2:  Results of a literature search 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As the case progresses, students are sequentially asked to investigate a specific hypothesis 
by designing an experiment, to evaluate data that results from an experiment, and 
eventually to solve a dilemma related to the experimental data that requires the student to 
integrate the basic science knowledge about the topic in order to argue in support on one 
side of the dilemma or the other side. Figure 3 illustrates how graphical data is presented to 
the student. It should be noted that in addition to tables and graphical data, this format is 
capable of presenting photographs, video or audio data for the student’s analysis. For 
example medical school cases have used video tapes of simulated patient encounters and 
presents data in the form lung and cardiac sounds. It should be noted that there are 
problems with the experimental design described below and it will be the student’s 
responsibility to point out the design flaws in the presented experiments. 

17

Mitchell et al.: What Really Matters: Assessing Individual Problem-Solving Performance

Published by Digital Commons@Georgia Southern, 2011
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 As the case progresses, students are sequentially asked to investigate a specific 

hypothesis by designing an experiment, to evaluate data that results from an experiment, and 

eventually to solve a dilemma related to the experimental data that requires the student to 

integrate the basic science knowledge about the topic in order to argue in support on one side 

of the dilemma or the other side. Figure B.3 illustrates how graphical data is presented to the 

student. It should be noted that in addition to tables and graphical data, this format is capable 

of presenting photographs, video or audio data for the student’s analysis. For example 

medical school cases have used video tapes of simulated patient encounters and presents data 

in the form lung and cardiac sounds. It should be noted that there are problems with the 

experimental design described below and it will be the student’s responsibility to point out 

the design flaws in the presented experiments.  

 

 
Figure B.3:  Presentation of graphical data. 
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Fig. 3:  Presentation of graphical data 

 
  

 

 

 

The student’s responses to these questions are entered into textboxes, as illustrated in 

Fig.4. These text boxes can be set to limit the number of words available to the student. 

This has been found to be very effective in preventing students from writing everything they 

know about a topic in a “shotgun” type of answer and forces them to focus on answering a 

specific question.  
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 The student’s responses to these questions are entered into textboxes, as illustrated in 

Fig. B.4. These text boxes can be set to limit the number of words available to the student. 

This has been found to be very effective in preventing students from writing everything they 

know about a topic in a “shotgun” type of answer and forces them to focus on answering a 

specific question.  

 

 
Figure B.4:  Student answers entered into a text box. 
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Fig. 4:  Student answers entered into a text box 

 
  

  

 

 

Once the students have completed the examination, their responses are automatically saved 

to a database for grading. Figure 5 shows an example of the database screen for grading 

the Integrate question. At the right of the screen, the grading rubrics are provided for the 

faculty-grader. It should be noted that there are two different approaches to grading. One 

approach is to set the database tab on one domain and then grade the entire class on that 

domain. The second approach is to select one student and sequentially follows a single 

student’s responses through all five problem-solving domains. The first approach appears 

results in the most consistent grading while the second approach is preferable for grading 

the Reflect domain.  
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 Once the students have completed the examination, their responses are automatically 

saved to a database for grading. Figure B.5 shows an example of the database screen for 

grading the Integrate question. At the right of the screen, the grading rubrics are provided 

for the faculty-grader. It should be noted that there are two different approaches to grading. 

One approach is to set the database tab on one domain and then grade the entire class on that 

domain. The second approach is to select one student and sequentially follows a single 

student’s responses through all five problem-solving domains. The first approach appears 

results in the most consistent grading while the second approach is preferable for grading the 

Reflect domain.  

 

 
Figure B.5:  Database grading screen with grading rubrics. 
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Fig. 5:  Database grading screen with grading rubrics  
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Appendix C 

Supplementary Information 

 

Scientific problem solving within an undergraduate 

biochemistry and molecular biology curriculum 

 

Cheryl A. Sensibaugh, William L. Anderson1, Marcy Osgood 

 

Department of Biochemistry and Molecular Biology, University of New Mexico, 

Albuquerque, NM, USA 
1 Professor emeritus 
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Appendix C.I 

Critical thinking Assessment Test (CAT) 
 

The CAT measures four critical thinking skills, defined by developers.  This is a secure 
instrument; therefore, it is not made publicly available.  It is administered in hard copy, with 
testing time limited to 60 minutes.  There are fifteen questions total, some with multiple 
parts. 
 
Critical Thinking Skills 

1. Evaluating Information 
• Separate factual information from inferences. 
• Interpret numerical relationships in graphs. 
• Understand the limitations of correlational data. 
• Evaluate evidence and identify inappropriate conclusions. 

 
2. Creative Thinking 

• Identify alternative interpretations for data or observations. 
• Identify new information that might support or contradict a hypothesis. 
• Explain how new information can change a problem. 

 
3. Learning and Problem Solving 

• Separate relevant from irrelevant information. 
• Integrate information to solve problems. 
• Learn and apply new information. 
• Use mathematical skills to solve real-world problems. 

 
4. Communication 

• Communicate ideas effectively 
 
 
Sample Question 
A scientist working at a government agency believes that an ingredient commonly used in 
bread causes criminal behavior.  To support his theory, the scientist notes the following 
evidence. 
 

• 99.9% of the people who committed crimes consumed bread prior to committing 
crimes. 

• Crime rates are extremely low in areas where bread is not consumed. 
 
Do the data presented by the scientist strongly support their theory?  Yes ____    No ____ 
 
Are there other explanations for the data besides the scientist’s theory?  If so, describe. 
_________________________________________________________________________ 

 
What kind of additional information or evidence would support the scientist’s theory? 
_________________________________________________________________________
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Appendix C.II 

Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio) 

The CLASS-Bio measures eight factors, determined by statistical factor analysis, that 
contribute to perceptions about learning biology.  Students select their degree of agreement 
with 31 statements on a Likert scale with five levels:  strongly agree, agree, neutral, disagree, 
and strongly disagree.  Testing time is typically 10 minutes. 
 

Table C.II.1.  CLASS-Bio Statements by Category 
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1 My curiosity about the living world led me to study biology.  ✔       
2 I think about the biology I experience in everyday life. ✔ ✔       
3 After I study a topic in biology and feel that I understand it, I have 

difficulty applying that information to answer questions on the same 
topic. 

    ✔    

4 Knowledge in biology consists of many disconnected topics.        ✔ 
5 When I am answering a biology question, I find it difficult to put 

what I know into my own words. 
    ✔    

6 I do not expect the rules of biological principles to help my 
understanding of the ideas. 

  ✔  ✔    

7 To understand biology, I sometimes think about my personal 
experiences and relate them to the topic being analyzed. 

     ✔   

8 If I get stuck on answering a biology question on my first try, I 
usually try to figure out a different way that works. 

  ✔ ✔  ✔ ✔  

9 I want to study biology because I want to make a contribution to 
society. 

 ✔       

10 If I don’t remember a particular approach needed for a question on 
an exam, there’s nothing much I can do (legally!) to come up with it. 

    ✔    

11 If I want to apply a method or idea used for understanding one 
biological problem to another problem, the problems must involve 
very similar situations. 

  ✔  ✔    

12 I enjoy figuring out answers to biology questions. ✔ ✔     ✔  
13 It is important for the government to approve new scientific ideas 

before they can be widely accepted. 
       ✔ 
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Table C.II.1.  CLASS-Bio Statements by Category 
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14 Learning biology changes my ideas about how the natural world 
works. 

✔   ✔     

15 To learn biology, I only need to memorize facts and definitions.   ✔      
16 Reasoning skills used to understand biology can be helpful to my 

everyday life. 
✔   ✔     

17 It is a valuable use of my time to study the fundamental experiments 
behind biological ideas. 

✔   ✔     

18 If I had plenty of time, I would take a biology class outside of my 
major requirements just for fun. 

 ✔       

19 The subject of biology has little relation to what I experience in the 
real world. 

✔  ✔      

20 There are times I think about or solve a biology question in more 
than one way to help my understanding. 

     ✔ ✔  

21 If I get stuck on a biology question, there is no chance I'll figure it 
out on my own. 

    ✔    

22 When studying biology, I relate the important information to what I 
already know rather than just memorizing it the way it is presented. 

     ✔ ✔  

23 There is usually only one correct approach to solving a biology 
problem. 

  ✔      

24 When I am not pressed for time, I will continue to work on a biology 
problem until I understand why something works the way it does. 

   ✔   ✔  

25 Learning biology that is not directly relevant to or applicable to 
human health is not worth my time. 

✔        

26 Mathematical skills are important for understanding biology.        ✔ 
27 I enjoy explaining biological ideas that I learn about to my friends.  ✔     ✔  
28 We use this statement to discard the surveys of people who are not 

reading the statements, so select agree only, not strongly agree, for 
this statement. 

N/A 

29 The general public misunderstands many biological ideas.        ✔ 
30 I do not spend more than a few minutes stuck on a biology question 

before giving up or seeking help from someone else. 
    ✔  ✔  

31 Biological principles are just to be memorized.   ✔      
32 For me, biology is primarily about learning known facts as opposed 

to investigating the unknown. 
  ✔      
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Appendix C.III 

IPSA Scoring Rubrics and Inter-Rater Reliability 

 

Hypothesize Domain at 0 Semesters (Protein purification) 
What are your top five hypotheses for the function of the protein? 
 

10: Three hypotheses with rationales 
 9: Three hypotheses 
 8: Two hypotheses with rationales 
 7: Two hypotheses about the following functions: 
   muscle contraction or repair 
   catabolism, oxidation, or energy production 
   protein synthesis or translation of mRNA 
   oxygen binding or transport 
 6: One hypothesis with rationale 
 5: One hypothesis or all are part of the same function 
 4: Unacceptable hypotheses: 
   DNA replication or transcription 
   ion binding or transport (calcium, iron, etc.) 
   same function as the rRNA to which it binds 
   signaling 
   localization of the protein 
 3: Pattern-matching (the protein is hemoglobin) 
 2: Restating the problem: 
   structural properties (soluble, polar, not membrane-bound) 
   interacts with ribosomes 
   reacts with oxygen 
 1: Off-topic 
 0: No response 

!
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Hypothesize Domain at 1 Semester (Carbohydrate metabolism) 
What are your top four hypotheses to explain this situation? 
 
 10: Three hypotheses with rationales 
 9: Three hypotheses 
 8: Two hypotheses with rationales 
 7: Two hypotheses about the following: 
   Genetics (metabolism, energy, diabetes type I) 
   Diet (nutrition, co-factors, vitamins, etc.) 
   Signaling (hormones, neurotransmitters, diabetes type II) 
   Oxygen transport or delivery (RBCs, hemoglobin) 
   Environment (infection or toxin) 
   Trauma 
   Cancer 
   Autoimmune 
   Psychiatric disorder (bi-polar, schizophrenia) 
  6: One hypothesis with rationale 
  5: One hypothesis or all are part of the same function 
  4: Unacceptable hypotheses: 
   abuse, neglect, sleep/social/learning disorder 
  3: Pattern-matching 
  2: Restating the problem 
  1: Off-topic 
  0: No response 
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Hypothesize Domain at 2 Semesters (Amino acid metabolism) 
List your top four mechanistic hypotheses that Paul needs to consider as an underlying cause 
for Kenny’s elevated metabolites. 
!
 10: Three hypotheses with rationales 
 9: Three hypotheses 
 8: Two hypotheses with rationales 
 7: Two hypotheses about the following: 
   (need to be specific about areas of metabolism; given a lot) 
   Phe processing deficiency: phenylalanine hydroxlase/mfo 
   Cofactor deficiency: BH4 synthesis or oxygen for mfo 
   environment (infection/toxin/medication) 
   cancer 
   autoimmune 
 6: One hypothesis with rationale 
 5: One hypothesis 
 4: Unacceptable hypotheses: 
   transaminase deficiency (2014-01:ok if upregulated) 
   focus on nitrogen disposal 
 3: Pattern-matching, OR no specific hypothesis 
   enzyme/co-factor deficiency 
   genetics 
   diet 
 2: Restating the problem (Kenny has PKU) 
 1: Off-topic 
 0: No response!
!
!
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Hypothesize Domain at 4 Semesters (Carbohydrate and Lipid Metabolism) 
What are your top four biochemical hypotheses to explain the Lorrat’s unique physiological 
abilities? 
 
 10: Three hypotheses with rationales 
 9: Three hypotheses 
 8: Two hypotheses with rationales 
 7: Two hypotheses about the following: 
   Altered genetics/genetic processing of metabolic proteins 
   Altered regulation of body temperature 
   Altered cellular structure (more mitochondria) 
   Oxygen transport/delivery (lung capacity, Hb, Mb, BPG) 
   Nutritional deficiency 
   Environment (infection or toxin) 
   Trauma 
   Cancer 
   Autoimmune  
 6: One hypothesis with rationale 
 5: One hypothesis 
 4: Unacceptable hypotheses: 
   Teleological conceptions (outcomes) 
   Increased/fast metabolism 
   Increased energy needed for proliferation 
 3: Pattern-matching 
 2: Restating the case/problem (something functions differently) 
 1: Off-topic 
 0: No response 
!
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Investigate Domain at 0 Semesters (Protein Purification) 
Based upon the information you currently possess about the protein, outline your proposed 
first TWO steps to achieve the best separation of the crude muscle homogenate. 
 
  Not scored; prompt is not an experimental design task. 

 
 
Investigate Domain at 1 Semester (Carbohydrate Metabolism) 
Your mentor wants you to evaluate Brian’s fructose-bisphosphate phosphatase enzyme for a 
possible enzyme defect, without purifying and characterizing the enzyme, which may take 
years. Your task is to design an experimental approach to elucidate the molecular basis for a 
putative enzyme defect in fructose-bisphosphate phosphatase. In your experiment you need 
to clearly identify both your dependent and independent variables. 
 
 10: As for 7, with three of the below 
 9: As for 7, with two of the below 
 8: As for 7, with one of the below: 
   rationale = to determine enzyme functionality 
   expected results 
   interpretation of expected results 
 7: Kinetics analysis with: 
   positive control (reference sample) 
   IV = Δ[S] 
   DV = rate of product formed 
 6: One of the above missing/incorrect 
 5: Two of the above missing/incorrect 
 4: Three of the above missing/incorrect 
 3: Proposal doesn’t test enzyme function (metabolite levels and in vivo approaches) 
 2: Proposal will not yield useful information in this case 
 1: Off-topic 
 0: No response 
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Investigate Domain at 2 Semesters (Amino Acid Metabolism) 
What experiment do you recommend that Kenny’s physician carry out, so that the physician 
can help Paul understand how to best care for Kenny? 
 
 10: As for 7, with three of the below 
 9: As for 7, with two of the below 
 8: As for 7, with one of the below: 
   rationale = to distinguish between putative pathways 
   expected results 
   interpretation of expected results 
 7: EITHER a Dietary study: 
   Neg. Control = low phe (without BH4) 
   Pos. Control = increased phe (without BH4) 
   IV = supplemental BH4 
   DV = serum levels of phe metabolites 
  OR Kinetics analyses: 
   Run for phe hydroxylase or BH2 reductase 
   Positive Control = certified reference enzymes 
   IV = Δ[S] 
   DV = rate of products formed 
 6: One parameter missing/incorrect 
 5: Two parameters missing/incorrect 
 4: Three parameters missing/incorrect 
 3: Four parameters missing/incorrect 
 2: Proposal will not yield useful information in this case OR measure [metabolite] 
 1: Off-topic; no experiment proposed 
 0: No response 
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Investigate Domain at 4 Semesters (Carbohydrate and Lipid Metabolism) 
Briefly describe your proposed experimental design, with appropriate controls, to test this 
hypothesis.  DO NOT simply name a technique, but rather explain the reasoning for your 
design and how the methods will provide supportive evidence. 
 
 10: As for 7, with three of the below 
 9: As for 7, with two of the below 
 8: As for 7, with one of the below: 
   rationale = to detect transcription 
   expected results 
   interpretation of expected results 
 7: All four of the following: 
   Method 
    Quantitative RT-PCR, luciferase/beta-gal reporter assay, 
    electrophoresis/northern blot, hybridization techniques 
    (cDNA microarray measuring hybridization of mRNA is theoretically logical) 
   (Negative) Control – small mammal reference sample 
   IV - differences in transcription 
   DV – PEPCK mRNA in muscle tissue 
 6: One of the above missing/incorrect 
 5: Two of the above missing/incorrect 
 4: Three of the above missing/incorrect 
 3: Four of the above incorrect 
 2: Proposal is not aligned with hypothesis (kinetics) 
 1: Off-topic 
 0: No response 
 
 



117 
 

 
 

Evaluate Domain at 0 Semesters (Protein Purification) 
In the space below, write a brief report to your advisor in which you critically evaluate this 
purification protocol. You must support your recommendations with data. 
 
 10: As for 9, with explanation of reasoning behind SA (normalization) 
 9: Recommend eliminating two steps based on SA 
 8: Recommend eliminating two steps based on SA, but wrong math 
 7: Recommend eliminating one step based on SA: 

 Procedure Specific Activity (SA; units"mg-1"ml-1) 
 Initial homogenate 200 
 Differential centrifugation 600 
 *Salt precipitation 250 
 Ion exchange chromatography 4,000 
 Size exclusion chromatography 15,000 
 *Affinity chromatography 14,444 
 6: Report SA but do not make recommendations 
  OR recommend eliminating one step based on SA, but wrong math 
 5: Make recommendations without SA (raw data only) 
 4: Claim that SA increased without quantifying 
 3: Need an improved protocol or another purification step 
  OR no consideration of SA, re-stating raw data 
 2: Explain methods 
 1: Off-topic 
 0: No response 
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Evaluate Domain at 1 Semester (Carbohydrate Metabolism) 
What conclusions do you draw from these data?  Your answer must describe, using proper 
biochemistry terminology, the characteristics of Brian’s pyruvate carboxylase enzyme in as 
much detail as is justified by the data. 
 
 10: As in 7, with three of the below 
 9: As in 7, with two of the below 
 8: As in 7, with one of the below: 
   Explain there is no evidence to claim inhibition 
   Describe inhibition analysis (add putative inhibitor) 
   Vary inhibitor concentration 
 7: BOTH of the following: 
   1-Increased Km (lower affinity/need more S) 
   2-Same Vmax 
   ok - "consistent with" competitive inhibition* 
 6: One of the above missing/incorrect 
 5: Both of the above missing/incorrect 
 4: *Claim that a competitive inhibitor is present (even if both parameters correct) 
 3:  
 2: Explain methods 
 1: Off-topic 
 0: No response 
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Evaluate Domain at 2 Semesters (Amino Acid Metabolism) 
What is the result of the dietary study?  In other words, what evidence have you acquired? 
 
 10: As for 9, and allude to or describe proper investigation 
 9: As for 7, with explanation that mechanism has not been attributed to either BH4 synthesis 
  or phe hydroxylase 
 8: As for 7, and pinpoint that BH2 reductase not tested 
 7: BOTH of the following: 
   1-Flawed experiment 
   2-Evidence only that serum phenylacetate increased with increased phe intake, 
   which was already known. 
 6: Only describe flawed experiment (but correctly) 
 5: Only describe evidence (but correctly) 
 4: Describe both incorrectly 
 3: Describe one incorrectly 
 2: Summarize and assume methods suffice as given 
 1: Off-topic 
 0: No response 
 
 
Evaluate Domain at 4 Semesters (Carbohydrate and Lipid Metabolism) 
How do the parameters of interest compare across the two species? 

 10: As in 7, with specific activity AND value of aldolase control 
 9: As in 7, with specific activity OR value of aldolase 
 8: As in 7, with specific activity (same) 
  OR value of aldolase (validity of result), but incorrect or vague 
 7: All of the following: 
   For Lorrat compared to control 
   Increased [PEPCK] 
   Increased PEPCK activity 
   Equivalent Km 
 6: One of the above missing/incorrect 
 5: Two of the above missing/incorrect 
 4: Three of the above missing/incorrect 
 3: Four of the above incorrect 
 2: Explain methods 
 1: Off-topic 
 0: No response 
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Integrate Domain at 0 Semesters (Protein Purification) 
How can you explain these molecular weight data, going on the assumption that you do 
actually have a pure protein after the size exclusion chromatography step? 
 
 10: Chromatography shows dimer (2x38) and SDS shows one subunit (38) comprised of two 

peptides joined by disulfide bonds (15+23) 
 9: Chromatography shows dimer and SDS shows one subunit comprised of two peptides 

joined by disulfide bonds 
 8: As for 7, with calculations (15+23=38, 38x2 = 76) 
 7: Protein has two subunits, and subunits each contain two peptides 
 6: The protein is comprised of multiple peptides 
 5: Different weights are due to different protein conformations 
  OR protein with at least 4 disulfide bonds 
 4: Disulfide bonds get trapped in the gel 
  OR sds (a detergent) broke disulfide bonds 
 3: The weight of the SDS adds to the protein weight 
 2: Performic acid hydrolyzed peptide bonds or disulfide bonds within a single peptide 
  OR single peptide split by diff techniques 
  OR single peptide + other molecules 
 1: Off-topic, or the assumption of purity is invalid (multiple impure proteins) 
 0: No response 
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Integrate Domain at 1 Semester (Carbohydrate Metabolism) 
Even given the normal kinetics, your mentor is unwilling to give up on the defective enzyme 
hypothesis. He claims that it is still a possibility that one of the enzymes of gluconeogenesis 
could be defective leading to Brian’s condition. With supporting arguments, explain why you 
either agree or disagree. 
 
 10: Agree and provide four alternatives 
 9: Agree and provide three alternatives 
 8: Agree and provide two alternatives 
 7: Agree and provide one possible alternative: 
   gene expression 
   protein synthesis 
   protein stability 
   protein targeting 
 6: Agree but no other mechanistic possibilities specified 
 5: Agree but incorrect reasoning: 
   regulatory mechanisms 
   co-factor deficiencies 
   inhibitor 
   disregard assumption 
 4: Disagree and/or argue that nothing else could cause the gluconeogenic enzymes to be 

defective 
 3: Disagree and/or discuss alternatives outside of the gluconeogenic enzymes 
 2: Disagree 
 1: Off-topic 
 0: No response 
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Integrate Domain at 2 Semesters (Amino Acid Metabolism) 
(1) What additional evidence have you acquired from the kinetic analysis? 
(2) Based on all of the information available in this case, what is your recommendation to 
Paul for Kenny’s future diet and care? 
 
 10: BOTH of the following: 
  (1) Evidence that BH2 reductase is dysfunctional, and cite increased Km/lower affinity 

for BH2 substrate 
  (2) Treat per Dr. Tecall 
 9: Both addressed but Vmax is lower 
 8: Both addressed but without mention of higher Km 
 7: Both addressed - one incorrectly  
 6: Both addressed - both incorrectly 
 5: Only one addressed - correctly 
 4: Only one addressed – incorrectly 
 3:  
 2: Main interpretation is that Kenny has PKU; not focused on determining mechanism (even 

if correct treatment) 
 1: Off-topic 
 0: No response 
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Integrate Domain at 4 Semesters (Carbohydrate and Lipid Metabolism) 
How do you interpret the data collected throughout this investigation, to explain any role that 
PEPCK might have in the lorrat achieving its unique physiological abilities?  Be sure to 
address the results of the previous protein assays, these new metabolic assays, and any other 
relevant information. 
 
 10: All eight of the following: 
   Increased muscle PEPCK expression/concentration 
   → high PEPCK activity  
   → high DHAP (some reference to glycerol) 
   → high TAGs  
   → aerobic catabolism  
    → (a) low lactate 
    → (b) high ATP yield  
   → unique abilities 
 9: Seven of the above 
 8: Six of the above 
 7: Five of the above 
 6: Four of the above 
 5: Three of the above 
 4: Two of the above 
 3: One of the above 
 2: Incorrect interpretation 
 1: Off-topic 
 0: No response 
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Reflect Domain at 0 Semesters (Protein Purification) 
Cohorts A & B 
Part 1: What functional aspects of the protein 
led your advisor to this hypothesis? 
Part 2: And, what further experiments will you 
carry out to test that hypothesis? 

Cohort C 
Part 1: What functional aspects of the protein 
led your advisor to this hypothesis? 
Part 2: And, what further experiments will you 
carry out to test that hypothesis? 
Part 3: Critically evaluate your performance on 
this Individual Problem Solving Assessment. 
 

 
 
 

5: 
 

4: 
3: 
2: 

 
 
 
 

1: 
0: 

 
 

5: 
4: 
3: 

 
 

2: 
1: 
0: 

Sum of Parts 1 & 2 
 
Part 1: 
Interacts with negatively-charged 
nucleic acid 
Nucleic acid AND reacts with oxygen 
 
Unacceptable aspects: 
 hydrophilic, soluble, 
 found in muscle, results from 
 Integrate, ion exchange chrom., 
 reacts with oxygen 
Off-topic; no functional aspects 
No response 
 
Part 2: 
Two methods with rationale 
Two methods, or one with rationale 
One method: 
 ion exchange, sequencing, or 
 isoelectric focusing 
Irrelevant methods 
Off-topic; no method 
No response 

 
 
 

3: 
 

2: 
1: 

 
 
 

0: 
 
 

3: 
2: 

 
1: 
0: 

 
 

4: 
 

3: 
 
 

2: 
1: 

 
0: 

Sum of Parts 1, 2, & 3 
 
Part 1: 
Interacts with negatively-charged 
nucleic acid 
Nucleic acid AND reacts with oxygen 
Unacceptable aspects: 
 hydrophilic, soluble, found in  
 muscle, results from Integrate,     
 reacts with oxygen 
No response or off-topic 
 
Part 2: 
Two methods, or one with rationale 
One method: 
 ion exchange, sequencing, or IEF 
Irrelevant or no method 
No response 
 
Part 3: 
Cognitive dissonance resolved 
 (Thought x, but now y.) 
Plans for next time 
 (preparation, not rush, fully  
 explain) 
Self-assessment (accurate or not) 
Discuss IPSA structure, problem 
solving, scientific method 
No response, questions weren’t 
specific, IPSAs are invalid, etc. 
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Reflect Domain at 1 Semester (Carbohydrate Metabolism) 
Since you now know the metabolic basis of Brian’s problem, how do you evaluate your 
performance on this exam? Have you identified any areas of your current knowledge that 
need refreshing? 
 
 10: Four aspects and assessment is accurate 
 9: Four aspects 
 8: Three aspects 
 7: Two of the following aspects: 
   self-assessment 
   area of good performance 
   area of improvement 
   method for improving 
 6: One of the above 
 5: 
 4: Unsupported self-assessment (Only, “I did okay.”) 
 3: 
 2: 
 1: Off-topic 
 0: No response 
 
 
Reflect Domain at 2 Semesters (Amino Acid Metabolism) 
Critically evaluate your performance on this IPSA. 
 
 10: Four aspects and assessment is accurate 
 9: Four aspects 
 8: Three aspects 
 7: Two of the following aspects: 
   self-assessment 
   area of good performance 
   area of improvement 
   method for improving 
 6: One of the above 
 5: 
 4: Unsupported self-assessment (Only, “I did okay.”) 
 3: 
 2: 
 1: Off-topic 
 0: No response 
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Reflect Domain at 4 Semesters (Carbohydrate and Lipid Metabolism) 
1) Were you able to meet each of the tasks required in this case? 
2) What aspects of your undergraduate education helped you the most for solving this case? 
3) In one sentence or less, describe any personal relevance of working through this case 
study. 
 
 10: As for 7, with three of the below 
 9: As for 7, with two of the below 
 8: As for 7, with one of the below: 
   Self-assessment is accurate 
   Describe method for improvement 
   Helped learn process not just facts 
 7: Addressed all three of the following: 
   Self-assessment (do not accept “I hope so.”) 
   Most helpful program aspect 
   Personal relevance is helped learn content, saw improvement over time, need for 

future profession, etc. (it counts as long as it's addressed) 
 6: Two of the above 
 5: One of the above 
 4: 
 3: 
 2: 
 1: Off-topic 
 0: No response 
 
 
 

Figure C.III.1:  Inter-Rater 
Reliability.  The intraclass 
correlation coefficient (ICC) 
estimated inter-rater reliability 
for IPSA domain scores 
generated by two raters.  Error 
bars indicate 95% confidence 
intervals.  Cut-off values for 
interpreting the ICC with regard 
to rater agreement are depicted 
by dashed lines (Cicchetti, 1994; 
Hallgren, 2012). 
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Appendix C.IV 

Preliminary Study on IPSA Performance 

 

Methods 

 A small subset of biochemistry majors (N = 11) was randomly selected from Cohort 

A.  Means and standard deviations were generated for the first and last IPSAs taken during 

the second semester of the junior year, at T=1 and T=2, respectively.  Achievement rates 

were also calculated, along with rates for corresponding content exams for comparison. 

 

Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure C.IV.1:  Preliminary Description of Problem Solving Performance.  A pilot sample 
informed hypotheses of (A) the average student and (B) most students.  Error bars indicate s.d. 
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Appendix C.V 

Academic and Demographic Student Backgrounds 

 

 
Figure C.V.1:  Academic Backgrounds.  The following aspects were evaluated as academic factors 
that may impact performance in problem solving:  (A) academic major, (B) biochemistry course 
grades, (C) scores on biochemistry content exams, (D) scores on the critical thinking instrument, and 
(E) scores on the learning attitudes instrument.  In addition to overall attitude scores, those on subsets 
of the assessment are also included.  (D-E) The charts include mean scores reported during 
development (Dev) of the CAT (Stein et al., 2010) and CLASS-Bio (Semsar et al., 2011).  (B-E) 
Error bars indicate 95% confidence intervals. 
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Figure C.V.2:  Demographic Backgrounds.  The following aspects were evaluated as demographic 
factors that may impact performance in problem solving:  (A) age, (B) gender, and (C) race and 
ethnicity. 
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Appendix C.VI 

Score Distributions 

 

Methods 

 Descriptive statistics – To summarize the spread of scores across pooled students, 

distributions were represented as boxplots, with the following reference points:  minimum 

score; the 25th, 50th, and 75th percentiles; and maximum score.  Measures included course 

grades, content exam scores, CAT scores, CLASS-Bio scores, and IPSA domain scores. 

 

Results 

 Distributions of course grades and content exam scores were as expected, based on 

prior experience (Fig. C.VI.1A-B).  CAT score distributions shifted upward during the first 

year of the biochemistry program (Fig. C.VI.1C).  Distributions of CLASS-Bio scores also 

shifted upward across time, for most sub-scores as well as for the overall score (Fig. 

C.VI.1D).  These outcomes were consistent with our emphasis on problem-based learning. 

 IPSA domain score distributions were inconsistent across both time and domains 

(Fig. C.VI.2).  In many cases, the spread spanned most of the scale.  These distributions will 

also be informative during future efforts to standardize the IPSA prompts and rubrics. 
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Figure C.VI.1:  Academic Score Distributions.  Boxplots summarize the score distributions of (A) 
course grades, (B) content exams, (C) CAT, and (D) CLASS-Bio.  The bottom and top of the 
whiskers indicate minimum and maximum scores, respectively.  The 25th percentile is at the bottom 
of the box, the 50th percentile is in or on the box (blue line), and the 75th percentile is at the top of the 
box. 
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Figure C.VI.2:  IPSA Score Distributions.  Boxplots depict the 
spreads of IPSA scores across four semesters in each domain:  (A) 
Hypothesize, (B) Investigate, (C) Evaluate, (D) Integrate, and (E) 
Reflect.  n.d., no data. 
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Appendix C.VII 

Cohort Differences 

 

Methods 

 Analyses of variance (ANOVAs) – Differences between the cohorts occurred during 

the three years of this study.  Regarding instructors, WA taught the BIOC II course for 

Cohorts A and B, while MO taught the course for Cohort C.  Assessment differences also 

occurred.  Content exams were slightly modified from year to year, since past exams were 

made available to students.  One IPSA prompt was modified in the third year, the Reflect 

prompt of the IPSA at T=0, to ask students to evaluate their performance (Appendix III).  

Finally, active learning was incorporated into both biochemistry courses for all cohorts, yet 

to an increasing degree across time. 

 ANOVAs determined whether the cohorts exhibited statistically significant 

differences in mean scores, for the scores analyzed.  Course grades, content exam scores, and 

IPSA domain scores were dependent variables.  The independent variable was the cohort.  

The assumption of normality was tested by visual inspection of distribution histograms, and 

the assumption of homogeneity was tested using Levene’s statistic.  Fisher’s LSD pairwise 

comparisons maintained the significance level at 0.05.  Cohen’s d values were calculated to 

estimate the effect size of statistically significant differences.  Values of at least 0.2 are 

considered small differences, at least 0.5 are medium differences, and at least 0.8 are large 

differences. 

 

Results 

 Among the three student cohorts, the assumption of normality was reasonably met, 

yet a few measures did not meet the assumption of homogeneity of variance, specifically:  

the BIOC II course grade (Levene’s = 18.876, p < 0.001), the IPSA Integrate score at T=1 

(Levene’s = 15.427, p < 0.001), and the IPSA Reflect score at T=2 (Levene’s = 3.559, p = 

0.032).  To assume homogeneity of variance is to say that the scores of each cohort have 

equal variances.  Since course grades were expected to be different due to a change of 

instructor, the assumption’s violation is not a serious practical concern.  Also, the cohorts 

were pooled since we expected some differences across cohorts, and took an approach to 
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include more broadly diverse students.  Therefore, the apparent violation in two IPSA 

domain scores is not of practical significance. 

 ANOVAs showed that statistically significant differences existed among cohort 

means for all measures except the IPSA Investigate domain score.  Pairwise comparisons of 

mean scores revealed among which cohorts the differences existed (Table C.VII.1).  Most 

prominently, BIOC II course grade means differed among all three cohorts (Fig. C.VII.1A).  

Fewer differences existed across cohorts for content exam scores (Fig. C.VII.1B) and IPSA 

domain scores (Fig. C.VII.2). 

 

Table C.VII.1.  Effect Sizes of Cohort Differences 

Measure Cohorts F p d Size 

BIOC I B/C 
A/C 

5.931 
6.248 

0.017 
0.014 

0.58 
0.62 

Medium 
Medium 

BIOC II A/B 
B/C 
A/C 

14.322 
58.874 

7.104 

< 0.001 
< 0.001 

0.009 

1.14 
1.82 
0.69 

Large 
Large 

Medium 

Content Exam, T=0 B/C 
A/C 

23.334 
7.603 

< 0.001 
0.007 

1.15 
0.69 

Large 
Medium 

Content Exam, T=2 B/C 19.536 < 0.001 1.10 Large 

IPSA Hypothesize, T=0 A/C 7.292 0.008 0.80 Large 

IPSA Hypothesize, T=1 A/B 9.747 0.003 0.60 Medium 

IPSA Evaluate, T=0 B/C 4.806 0.031 0.52 Medium 

IPSA Evaluate, T=4 A/B 7.931 0.007 0.65 Medium 

IPSA Integrate, T=2 B/C 8.440 0.004 0.69 Medium 

IPSA Reflect, T=2 B/C 8.392 0.005 0.69 Medium 

 

 Despite these findings, we do not consider the differences to be practically significant 

in terms of this study.  Some differences would be expected due to student variability in 

relatively small cohorts (under 100 students).  Yet the disciplinary focus remained upon a 

biochemistry curriculum across multiple semesters.  Cohorts A and B were comprised 

entirely of two-year biochemistry majors, and 75 percent of one-year students in Cohort C 

were biochemistry majors. 

 When researching a convenience sample of biochemistry majors at our institution, we 

argue that the variability seen within this study’s pooled group would also be detected in a 

single cohort of more than 100 students, if it existed.  By pooling the cohorts, our analytical 
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results are more broadly generalized to our population of biochemistry students than results 

for any single cohort of the study.  We concluded that the statistical differences found when 

comparing cohorts were not meaningful in terms of research implications. 

 

 
Figure C.VII.1: Academic Scores Across Cohorts.  Mean scores for each cohort in the study were 
compared by ANOVA.  Cohorts that exhibited statistically significant differences on a particular 
measure are marked with a bracket.  The measures included (A) course grade and (B) content exam 
score.  Error bars indicate 95% confidence intervals for the mean. 
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Figure C.VII.2: IPSA Scores Across Cohorts.  
Mean scores for each cohort in the study were 
compared by ANOVA.  Cohorts that exhibited 
statistically significant differences are marked 
with a bracket.  Error bars indicate 95% 
confidence intervals for the mean.  n.d., no data. 
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