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ABSTRACT 

 Ovarian cancer is the 5th leading cause of cancer death for women in the United 

States and is frequently diagnosed at an advanced stage with multiple metastases. Rho 

family GTPases contribute to metastasis through regulation of the actin cytoskeleton, cell 

motility, cell-cell and cell-extracellular matrix adhesion and these GTPases are altered in 

a number of human cancers.   

 High throughput screening and in silico modeling identified the R-enantiomer, but 

not S-enantiomer, of the non-steroidal anti-inflammatory drug ketorolac as a novel 

inhibitor of Rac1 and Cdc42. Ketorolac is administered as a racemic mix of both 

enantiomers and is used clinically for surgical pain relief. The analgesic effect of 

ketorolac occurs through cyclooxygenase inhibition by S-ketorolac. R- ketorolac is a poor 

inhibitor of cyclooxygenase, but little is known about its pharmacologic activities or 

targets.  
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 This project identified the expression of the Rho family GTPases Cdc42 and Rac1 

in ovarian cancer and inhibition of these GTPases by R-ketorolac. The effects of R-/S-

ketorolac, R-ketorolac, and S-ketorolac on Cdc42 and Rac1 regulated cellular events 

were investigated using SKOV3ip ovarian cancer cells. An intra-peritoneal xenograft 

mouse model of tumor implantation was used to determine the effects of ketorolac in 

vivo. A phase 0 clinical study examined ketorolac distribution to the peritoneal cavity of 

ovarian cancer patients following surgery. Additionally, primary ovarian cancer cells 

from these patients were examined ex vivo to determine GTPase activity and a 

retrospective analysis determined that patients who received ketorolac had improved 

clinical outcomes.  

 Together, this work identified Cdc42 and Rac1 as valid therapeutic targets in 

ovarian cancer. R-ketorolac is shown to inhibit Cdc42 and Rac1 regulated adhesion and 

migration related events. These results provide evidence to support the idea that the use 

of ketorolac in the clinic at the time of surgery will improve ovarian cancer patient 

outcome.  
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Chapter 1 

Introduction 

1.1 Ovarian Cancer 

1.1.1 Health Burden of Ovarian Cancer in the United States  

 In 2014, there were an estimated 22,000 newly diagnosed cases of ovarian cancer 

and 14,000 ovarian cancer related fatalities in the United States (1–3). Staging of ovarian 

cancer is based upon Federation Internationale de Ginecologie et d’Obstetrique (FIGO) 

guidelines. Patients with early stage disease (FIGO Stage I and II) have a 5 year survival 

rate of greater than 70%, while late stage disease (FIGO  stage III and IV) have a 5 year 

survival rate of approximately 30% (1–3). Ovarian cancer is a heterogeneous disease, 

with many different sites of origin (2,4–6). The term ovarian cancer traditionally refers to 

epithelial ovarian cancer, due to the fact that carcinomas appear to arise from the 

epithelial cell layer of the ovary (2,4–6). New immunohistochemical evidence of patient 

samples suggests that histological subtypes of ovarian cancer arise from extra-ovarian 

sources (7,8). Staging and histological typing of the disease are common ways of 

indicating the severity and metastatic potential of the disease (2,4–6). Staging of ovarian 

cancer is based on the level of involvement of the ovaries and surrounding viscera (Fig 

1.1) (1). Metastases in advanced disease are common at the omentum, intestinal 

mesentery, adipose tissue, lymph tissue, diaphragm, as well as spleen and liver surfaces. 

 

1.1.2 Contributors to Mortality and Recurrence of Ovarian Cancer  

 While patients with early stage disease have a better prognosis for progression 

free survival, the majority of the patient population presents with late stage disease (2).   
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Figure 1.1 

 

  

Figure 1.1 - Staging of ovarian cancer.  The illustration depicts levels of tumor 

dissemination (yellow masses) used to determine stage in ovarian cancer. Stage I disease 

is limited to one or both ovaries with no breach of the epithelial ovarian capsule. Stage II 

disease includes one of both ovaries with limited metastasis to surrounding pelvic tissue, 

such as the endometrium, fallopian tubes, or uterus. Stage Ic and IIc disease are early stage 

disease but include malignant ascites. Stage III disease includes above with distant 

metastases to the intestinal mesentery, kidneys, lymph tissue (blue network), omentum, 

peritoneal surfaces, and surface implantation of the diaphragm. Stage IV includes all the 

above metastases with the inclusion of liver metastases. Image adapted from Naora and 

Montell (19). 
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Late stage diagnosis is common due to a lack of symptoms, few reliable biomarkers, and 

insufficient screening techniques for early diagnosis. Overall, patients diagnosed with 

ovarian cancer have a survival rate of approximately 40%. By comparison, women 

diagnosed with breast or uterine cancer have survival rates of approximately 80% (2).  

There are several major factors that contribute to the mortality of this disease, a few of 

which will be discussed.  

 Advanced ovarian cancer presents with varying degrees of metastasis (1–4).  

Metastasis in the context of ovarian cancer is unique from other cancers (6,9). Typically, 

metastasis refers to the ability of tumor cells to degrade the basement membrane, 

extravasate into the vasculature, spread hematogeneously, and seed secondary sites of 

implantation. Due to the nature of ovarian cancer and structure of the peritoneal cavity, 

metastatic cancer cells rarely enter the vasculature. Instead, ovarian cancer metastasis 

involves individual cancer cells or small multicellular aggregates (MCAs) moving from 

the tumor of origin to secondary sites within the peritoneal cavity (9). Cells float within 

the peritoneal cavity until they are able to attach to secondary sites. Ovarian cancer cells 

preferentially adhere to mesothelium and adipose tissue during secondary implantation 

(9,10). Additionally, changes that induce metastatic spread may also increase the invasive 

potential of these tumors (11–13). There are a number of signaling pathways altered in 

ovarian cancer cells prior to metastatic spread, which will be further discussed in section 

1.1.4. Patients may not exhibit symptoms that allow for diagnosis of early stage ovarian 

cancer; however, increased tumor burden and strain on affected organs that comes with 

late stage disease, often leads to a cancer diagnosis.  
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Another factor leading to increased mortality is related to methods of treatment. 

Ovarian cancer patients are treated with surgery, chemotherapy, and/or radiotherapy 

(1,2,5).  Surgery during early stage of the disease involves oophorectomy to remove the 

primary tumor and may be given as the sole treatment (1). In advanced disease, 

cytoreductive tumor debulking occurs, removing visible tumors. This does not account 

for microtumors which may be present, or for any tumor cells that are dislodged during 

surgery (1,9,13,14). Following a post-surgery recovery period, patients are given 

chemotherapy with or without radiotherapy (14). The most common chemotherapies 

include a combination of platinum based compounds and taxanes (14).  Cisplatin and 

carboplatin are commonly prescribed platinum drugs, while paclitaxel is the most 

common taxane derivative (14,15). Many patients have tumors that are responsive to first 

line chemotherapy.  However, more than 50% of patients will suffer from recurrent 

disease, and of these, approximately 70% will be resistant to platinum or taxane based 

therapy (5,14–16).  Refractory disease leaves patients with few treatment options, the 

most common being liposomal doxorubicin (16). However, these alternative therapies are 

less successful and patients with refractory disease have a poor prognosis (5,16).  

A third factor contributing to ovarian cancer mortality is the high level of 

heterogeneity between tumors and metastases (1,2,4–8). It has been suggested that rather 

than using histological subtype for ovarian cancer, carcinomas should be classified as 

type I and type II tumors (7). Type I tumors are characterized by young age of diagnosis, 

low malignant potential (LMP), low resistance to chemotherapeutics, and prolonged 

survival time (5,7). Type I cancers are confined to or near the ovary, possess varying 

levels of differentiation, and have high levels of genetic variability, which likely 
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accumulate as the tumor develops (7). In contrast, type II tumors are prevalent in 

postmenopausal women, highly malignant, initially sensitive but later refractory to 

chemotherapy, and patients have a shorter median survival time. Type II cancers are 

highly metastatic, show less differentiation, and are less well understood genetically, but 

typically have copy number aberrations and high genetic instability. This high genetic 

variation, even within a single patient, increases chemoresistance, complicates treatment, 

and ultimately leads to increased mortality (5,7). 

Advanced disease at the time of diagnosis, multiple metastatic sites, organ 

involvement, peri- and post-surgical tumor environment, genetic and phenotypic 

variation between primary tumor and metastases within a patient, all potentially 

contribute to the high recurrence of ovarian cancer. With this in mind, development of 

new chemotherapies is needed to help increase the survival rate of women with ovarian 

cancer.  

 

1.1.3 Dissemination of Ovarian Cancer 

1.1.3.1 Peritoneal Fluid and Ascites in Ovarian Cancer 

Dissemination of ovarian cancer cells can occur either through direct organ/tumor 

contact, or through cells circulating within the peritoneal fluid (6,7,17–20). Exfoliation of 

ovarian cancer cells from the primary tumor allows either single cells or MCAs to travel 

through the peritoneal cavity. Peritoneal fluid, moved through active respiration, will 

flow from the pelvis, along the right side of the body, along the intestinal mesenteries, to 

the right hemidiaphragm and across the omentum (17,18). Cancer cells will flow with the 

peritoneal fluid and seed not only adjacent tissues but any site within the peritoneal 
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cavity. Metastases are typically seen along the peritoneal cavity wall, in adipose and 

lymph tissue, intestinal mesentery, diaphragm, along the spleen and liver capsule, and 

within the omentum (1,17,18). Dissemination through the lymphatic system is also 

common in malignant stages of the disease. Rates of ovarian cancer within the paraaortic 

lymph node have been reported between 18%-70% depending on disease stage (20). 

Hematogenous spread is possible, but has only been reported in 2-3% of patients and 

occurs in patients with advanced stage disease (18,19,21). Significant risk factors for 

distant metastases are malignant ascites, peritoneal carcinomatosis, large metastatic 

disease within the abdomen, and retroperitoneal lymph node involvement at the time of 

initial surgery.  

 One contributing factor to metastasis is the development of ascites within the 

peritoneal cavity (20,22). Ascites is a fluid buildup between the peritoneal wall and the 

organs within the peritoneum.  Under normal physiological conditions, a small amount of 

peritoneal fluid is produced from capillaries in the peritoneal wall to lubricate the viscera 

within the peritoneum. Fluid gets reabsorbed by blood vessels and the lymphatic system. 

In patients with ovarian cancer, leaky vasculature within the tumor and obstructed 

lymphatic vessels are unable to deal with the increased fluid production (20,22).  This 

causes the formation of ascites, which is associated with poor disease prognosis. Ascites 

fluid is rich in inflammatory cytokines, growth factors, and extracellular matrix 

components which inhibit immune system function, promote cancer cell survival and 

proliferation, and stimulate cell adhesion and migration.  
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1.1.3.2 Multicellular Aggregates in Ovarian Cancer Dissemination 

 Advanced ovarian cancer is characterized by distant peritoneal metastases (3–

5,18). Metastases occur because the primary tumor is able to breach the ovarian capsule 

and exfoliate cells into the peritoneal fluid. This leads to the formation of MCAs which 

circulate and implant at secondary sites (Fig 1.2) (5–7,11,13–15,19,23). Following 

release from the primary tumor, cancer cells will aggregate into MCAs. The formation of 

MCAs allows the cells to survive in an attachment independent manner (23). MCAs are 

able to evade radio- and chemotherapies (24,25) and their formation contributes to 

chemoresistance (26–28). Once formed, MCAs will home to specific sites in these tissues 

within the peritoneal cavity. This is consistent with the seed and soil hypothesis of cancer 

metastasis, and partially explains the pattern of ovarian cancer dissemination seen in late 

stage patients. The initial adhesion to secondary sites is mediated by integrin/extracellular 

matrix (ECM) interactions (23,29,30). Once MCAs have adhered to these preferred 

secondary sites, they disaggregate, and individual cells migrate along the mesothelial cell 

layer, away from the site of adhesion (9,13). Cancer cells then begin proteolytic digestion 

of the ECM, ultimately establishing metastatic tumors (5,7,9,11,23,30,31). Although 

these processes occur in primary dissemination of ovarian cancer, they also contribute to 

the high recurrence of this disease (2,5). Therapeutic targeting of MCA formation, 

adhesion, and disaggretation offers a novel approach to reduce recurrent ovarian cancer.   

 

1.1.4 Targeted Therapeutics in Ovarian Cancer 

 Therapeutics for ovarian cancer have changed little since the 1970s (1,32–36). 

Surgery, followed by platinum or taxane therapy is standard treatment, but has not  
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Figure 1.2 

 

  

Figure 1.2 – Distant peritoneal metastasis and dissemination in ovarian cancer due to 

the formation of multicellular aggregates.  Following a breach of the ovarian capsule, 

cancer cells are exfoliated from the primary tumor. Cells remaining as single cells will 

likely undergo apoptosis. Exfoliation of many cells may result in MCAs. MCA formation 

provides survival signals to the cells, are chemoprotective, and contribute to the 

development of chemoresistance. MCAs travel through the peritoneal cavity via the flow 

of peritoneal fluid. MCAs will home to specific tissues, typically mesothelium or adipose 

tissue. Adhesion of the MCA is mediated by integrin ECM interactions. MCA 

disaggregation leads to cell migration away from the site of implantation. Migrating cells 

express MMPs to break mesothelial cell contacts and to degrade ECM, establishing 

secondary metastatic tumors.  
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improved patient survival rates in over 20 years. Targeted therapeutics would provide 

alternatives during adjuvant chemotherapy that may reduce recurrence or to attack 

platinum-resistant recurrent disease (32). BRCA1 and p53 mutations are reliant on the 

action of poly(ADP-ribose) polymerase (PARP) to avoid apoptosis.  BRCA1 mutations 

have been identified in high grade serous carcinomas (37) and PARP overexpression has 

been recognized as a poor prognostic marker for overall survival and progression free 

survival (38). With this in mind, the use of PARP inhibitors is currently being explored 

and have promise for providing survival benefit to patients.  Immunotherapies looking at 

the use of the inflammatory cytokine interferon-γ is being explored as a possible first line 

treatment or in combination with current chemotherapies (39,40). Interferon-γ treatment 

has met with mixed results. When used in conjunction with cisplatin and 

cyclophosphamide, interferon-γ increased progression free survival time (39).  In another 

clinical trial, the use of interferon-γ prior to carboplatin and paclitaxel had no effect on 

survival (40). Perhaps the most promising alternative treatment for ovarian cancer is 

bevacizumab (41). Bevacizumab is an anti-angiogenic monoclonal antibody to VEGF 

receptor. Activation of VEGF increases angiogenesis, which contributes to ovarian 

cancer tumor development (19,20,42). When used alone, bevacizumab increases 

progression free survival in ovarian cancer patients and there is a synergistic effect when 

used in conjunction with other chemotherapeutics (41). A number of patients experience 

a severe adverse event in the form of gastrointestinal bleeds. This has prompted the 

search for biomarkers to predict which individuals may benefit from the use of 

bevacizumab (43). It is clear that the individuals who are not at risk from the therapy, 
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benefit from bevacizumab.  The difficulty is that not all patients who could benefit are 

able to receive this treatment. 

 

1.1.5 GTPases as Emerging Therapeutic Targets in Ovarian Cancer 

1.1.5.1 Ras Superfamily GTPases 

  The Ras Sarcoma (Ras) superfamily of GTPases are low molecular weight, 

monomeric, membrane bound, guanine nucleotide binding proteins (44–47). Ras 

GTPases possess an N-terminal G-domain consisting of G-box guanine nucleotide 

binding motif. Switch regions within the G-domain induce conformational changes 

depending on guanine nucleotide status. These proteins are localized to the cell 

membrane, where activation from G-protein coupled receptors (GPCRs), integrins, and 

receptor tyrosine kinases (RTKs) causes a nucleotide switch and activation (Fig 1.3) (46). 

Guanosine diphosphate (GDP) or guanosine triphosphate (GTP) binding determines 

GTPase interaction with regulator and effector proteins. Most Ras superfamily members 

possess a C-terminal CAAX (C=cysteine, A=aliphatic residue, X=any residue) box motif 

that permits the covalent addition of either an isoprenoid group, targeting the GTPase to a 

specific cellular membrane, where they interact with regulators and effector proteins (45).  

  

1.1.5.2 Ras GTPases in Cancer 

 The Ras superfamily is composed of over 150 GTPases that regulate signal 

transduction pathways (Fig 1.4) (44–47). Ras is divided into five subfamilies based on 

the sequence and function of the founding members (44–47). The Ras subfamily are 

proto-oncogenes which regulate cell functions related to gene expression, proliferation,   
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Figure 1.3 

 

 

  

Figure 1.3 – Rho GTPase activation and cycling. Guanine nucleotide dissociation 

inhibitors (GDIs) bind the isoprenoid moiety of inactive, GDP bound, Rho GTPases, 

preventing binding to the plasma membrane. Removal of the GDI allows association with 

the plasma membrane. Interaction with guanine nucleotide exchange factors (GEFs) 

replace guanosine diphosphate (GDP) with guanosine triphosphate (GTP). This induces a 

conformational change in GTPases and allows for interaction with effector proteins. 
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differentiation, and cell survival (45–47). The Ras-homolog (Rho) subfamily , which 

integrate signals from the cellular microenvironment, facilitate crosstalk between 

signaling networks, and largely control actin dynamics and related signaling (45–47). Ras 

(44–52), and the Rho members Cdc42, Rac1 and RhoA (53–71), have been identified as 

playing a role in a number of cancers. 

In ovarian cancer, mutations of Kirsten-Ras (KRAS) have been found in 

approximately half of the cases of mucinous and LMP tumors, but are uncommon in 

serous tumors (48,49). KRas regulates cell survival and gene expression related to 

tumorigenesis, making it a promising molecular target in ovarian cancer. Farnesylation of 

Ras proteins requires interaction with farnesyltransferase (44). It is thought that those 

ovarian tumors which have KRas mutations may be susceptible to treatment with 

farnesyltransferase inhibitors (FTIs), preventing association with the membrane and 

subsequent activation. While there has been success with FTI treatments in breast cancer 

(50) results have been mixed in ovarian cancer (51,52). The use of FTIs in conjunction 

with paclitaxel and gemcitabine was successful, initially, in increasing response rate and 

progression free survival of ovarian cancer patients (51). However, a more recent study 

saw no effect of the addition of FTIs to carboplatin and paclitaxel treatment (52).  

 Ras pathways make promising therapeutic targets because they regulate a number 

of cell signaling pathways (44). Inhibition of Ras signaling may be beneficial because of 

the disruption to other signaling pathways that may be linked to ovarian cancer. 

Development of targeted therapeutics is less problematic for most human cancers due to 

the homogeneity of the tumors and the distinct genetic or protein expression changes that 

are the hallmark of those diseases (2,3,32,37,50,72,73). Ovarian cancer is a 
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Figure 1.4 

 

  

Figure 1.4 –The Ras superfamily. The subfamilies that comprise the Ras superfamily and 

their respective functions.  
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heterogeneous disease with many histological subtypes, which have distinct molecular 

profiles (14,15,19,20). Even within a single patient, primary tumors and metastases can 

exhibit vastly different molecular profiles, making a single treatment for all patients 

implausible. Perhaps the best option for treatment is to use cell signaling pathways that 

are broad spectrum and more likely to apply to the pathways required for recurrence.   

  

1.1.5.3 Cd42 in Cancer 

 Aberrant signaling of Cdc42 has only been identified in a few cancers (53,74).  

Kamai et al identified Cdc42, Rac1, and RhoA as being overexpressed in testicular 

cancer (53). As disease stage progresses, expression of all three GTPases increases, 

leading the authors to suggest that they are necessary for disease progression of testicular 

cancer. Fritz et al have shown that there is an overexpression of Cdc42 in breast cancer 

(74). This overexpression also increases with disease progression. RhoGDIs that 

associate with Cdc42 have been shown to be overexpressed in ovarian cancer (75). This 

would prevent activation of Cdc42, and may cause other Rho GTPases to compensate, 

leading to tumorigenesis. This identifies Cdc42 as a viable target for therapy and 

potential dysregulated in ovarian cancer. 

 

1.1.5.4 Rac1 in Cancer 

Despite having no genetic alterations, Rac1 has been identified as playing a role 

in a number of cancers (54,58). Rac1 overexpression is known to occur in breast, colon, 

lung, gastric, testicular, oral squamous cell carcinoma, and ovarian cancer (53,59–65). 

Overexpression of Rac1 in cancer can lead to increased levels of metastasis through 
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epithelial–to-mesenchymal transition (EMT), decreased levels of apoptosis, increased 

angiogenesis, and has been identified as a marker of poor prognosis (53,59–66).   

A splice variant of Rac1, Rac1b, was initially identified as a neural-specific 

isoform of Rac1, and was thought to play a role in development (67). Since its 

identification, it has been described in breast (59), colon (61), lung (68), and ovarian 

cancer (65). Rac1b is unique from Rac1 in that, other than being present in developing 

neurons, it appears to be largely tumor specific. Rac1b is also constitutively active, 

having accelerated GDP/GTP exchange, decreased hydrolytic activity, and a decreased 

affinity for RhoGDI or GAPs. Because Rac1b is constitutively active, it has increased 

signaling, which promotes tumorigenesis and metastasis. Rac1b has been shown to 

protect cells from apoptosis through PI3K signaling, increase cell migration, and 

increases anchorage independent growth in breast and colon cancer cells (59). In relation 

to tumor progression, it has been shown to increase survival signaling through NF-κB 

(70) and can be induced through stimulation by MMP-3 during EMT (71). This implies 

that EMT may actually drive the production of this splice variant, providing a positive 

feedback loop for tumor progression. 

 

1.2 Rho Subfamily GTPases 

1.2.1 Regulation of Rho Subfamily GTPases 

GTPases have limited ability to naturally cycle between GDP and GTP bound 

states so the intrinsic nucleotide exchange and hydrolysis capability are very low (45–

47). These processes are largely modulated by two classes of regulatory proteins, guanine 

nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). When 
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bound to GDP, GEFs interact with GTPases to promote the exchange of GDP for GTP. 

This functionally activates the protein, allowing for the interaction between GTPases and 

their effector proteins. To return to an inactive conformation, GAPs interact with 

GTPases to accelerate the hydrolysis of GTP to GDP. Rho family members are also 

regulated through interactions with Rho guanine nucleotide dissociation inhibitors (GDIs) 

(Fig 1.3) (44–47). GDIs associate with GDP-bound proteins and shield the isoprenoid 

moiety, and regulate plasma membrane localization. In response to a stimulus, GDIs 

bring the GTPase to the appropriate membrane.  Following a dissociation of the GDI, 

Rho GTPases integrate into the plasma membrane for GEF activation. 

 

1.2.2 Rho Subamily GTPase Functions 

 Rho GTPase is the founding member of the Rho family GTPases, and as 

mentioned previously, help to regulate actin dynamics, cell migration, cell adhesion and 

cell cycle (44–47). There are 20 members of the Rho family, divided into 5 subfamilies, 

based on function. Of the Rho GTPases, Cdc42, Rac1, and RhoA are the most well 

studied members. Together, they work in concert to direct the processes related to 

cellular migration (Fig 1.5). RhoA has a number of effectors, including the Rho- 

associated kinases (ROCK) (47).  Through ROCK, RhoA regulates actin stress fiber 

maturation during migration and the development of focal adhesion complexes. Activated 

RhoA signals to ROCK. Activated ROCK then signals LIM kinases, which deactivates 

cofilin.  Cofilin associates with filopodia and lamellipodia at the leading edge and trailing 

edge of a migrating cell, and one function is to destabilize actin for rapid turnover. At the 

leading edge, LIM kinase phosphorylated cofilin becomes inactive, stabilizing actin 
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Figure 1.5 

  

Figure 1.5 - Cdc42, Rac1, and RhoA interactions in cell migration. Extracellular stimuli 

initiate migration through integrins, GPCRs, and RTKs. Cdc42 begins actin 

polymerization, forming filopodia. This activates downstream effectors, forms nascent 

adhesions, and signals Rac1. Following Rac1 activation, actin polymerization progresses, 

amplifying filopodia and starting lamellipodia formation. Nascent formations within the 

lamellipodia mature into mature to focal adhesion complexes. Cdc42 and Rac1 activation 

at the leading edge of migration stimulates actin polymerization, actinomyosin contractility 

to move the cell forward, release of MMPs to degrade ECM, and inhibits RhoA activity, 

to prevent actin disassembly. In the middle of the cell, RhoA becomes activated. This 

stabilizes actin filaments into actin stress fibers, matures adhesion complexes into focal 

adhesion complexes, activates downstream signaling effectors, and inhibits Rac1 activity. 

RhoA is also active at the trailing edge of the cell, modulating actin disassembly.  
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filaments into actin stress fibers (46).  At the trailing edge, active cofilin destabilizes actin 

filaments and allows for actin depolymerization. RhoA is also partially responsible for 

the regulation of endocytosis, exocytosis, and vesicle trafficking. There is evidence that 

the interaction of Cdc42, Rac1, and RhoA during migration, is similar to the interaction 

that determines cell polarity. While there is no evidence for its dysregulation in cancers, 

the role of RhoA in actin dynamics and cell migration suggests it may be a potential 

target in cancer therapy. 

 

1.2.3 Cdc42 

 Cdc42 is a member of the Rho subfamily GTPases (44).  Although first identified 

in yeasts, human Cdc42 was identified in 1990 (76). The Cdc42 CAAX-box motif allows 

for geranylgeranylation (76).  This prenyl moiety anchors Cdc42 at the plasma membrane 

for rapid interaction with regulators and effectors (Fig 1.3). In conjunction with Rac1, 

Cdc42 regulates actin dynamics, cell adhesion, cell migration, and cell polarity in normal 

cells, as well as contributing to microtubule dynamics, gene expression, and lipid 

metabolism (44,76).  

 One of the main functions of Cdc42 is to regulate and maintain cell migration and 

adhesion (Fig 1.5) (47,76). Directed migration that occurs in vivo is a highly regulated 

process that requires the interaction of a number of the Rho GTPases as well as their 

effector proteins. Although Rac1 and Cdc42 interact with shared regulators, activate 

similar effectors, and have nearly identical structures, they have separate and distinct 

effects as well.  

  



19 

 

1.2.4 Rac1  

 Rac1 is a member of the Rho subfamily GTPases and was discovered in 1989 

(77). Since then, it has become one of the most widely studied members of the Rho 

GTPase family and has a number of physiological functions in normal cells (46). The 

Rac1 CAAX-box motif allows for farnesylfarnesylation.  This prenyl moiety anchors 

Rac1 at the plasma membrane for rapid interaction with regulators and effectors (Fig 1.3) 

(46). Rac1 is largely responsible for the regulation of actin dynamics, cell migration, and 

cell adhesion. Rac1 also contributes to stabilization of microtubules, gene regulation 

through transcription factors, reactive oxygen species (ROS) generation, cell growth and 

proliferation, adhesion independent anoikis, endo- and exocytosis, and nuclear signaling 

(78–85). 

 

1.2.5 Interaction Between Cdc42, Rac1 and RhoA in Cell Migration  

In the modulation of migration and adhesion, Cdc42, Rac1, and RhoA are 

differentially regulated within the cell (Fig 1.5) (44,47). Their respective roles in actin 

dynamics, as well as feedback from the other Rho GTPases, partially regulate the 

subcellular localization and activity of Cdc42, Rac1, and RhoA in migrating cells (45,46). 

Cdc42 and Rac1 are more active at the leading edge, where they inhibit RhoA activity. 

RhoA is more active within the maturing lamellipodium and trailing edge where it 

provides negative feedback to Cdc42 and Rac1. All three GTPases are integrated with the 

plasma membrane, unless prevented from integration by GDIs (47,76).   

Cdc42 functions as an environmental sensor following GTP loading in response 

to GEFs which have been activated by GPCRs, integrins, or RTKS (44). Following 
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activation, Cdc42 signals to PAK and Wiskott-Aldrich syndrome protein (WASP) to 

induce actin nucleation and branching, causing filopodia formation (86–88). Although 

they are activated by similar pathways, filopodia generated by Cdc42 have a less robust 

response than those by generated by Rac1, and do not lead to the formation of 

lamellipodia which are necessary for migration. Cdc42 generated filopodia also allow the 

formation of nascent adhesion complexes necessary for Rac1 activation (54).  Following 

filopodial generation, activation of Rac1 occurs, most likely through PAK-interacting 

exchange factor (PIX) (54,89).  PIX scaffolds to Cdc42 and possesses GEF activity for 

Rac1(89). Activated Rac1 accumulates at the leading edge of the cell, which is sustained 

through a positive feedback loop involving Rac1, phosphatidyl-inositol-3-kinase (PI3K) 

and its product phosphatidyl-inositol-3,4,5-trisphosphate (PIP3). Rac1 directly activates 

p21-activated kinases (PAK), WASP family Verprolin-homologous protein (WAVE), 

and actin-related proteins 2/3 (Arp 2/3) (90–96). Arp 2/3 and WAVE are scaffolding 

proteins which cause nucleation and branching of actin filaments, resulting in the creation 

of filopodia and lamellipodia (54,58,89).  

As lamellipodia form between filopodia, nascent adhesions mature to form focal 

adhesion complexes. Actinomyosin contractility pulls the cell forward, towards the 

leading edge. Cdc42 and Rac1 activity along the leading edge induces actin 

polymerization, adhesion complex formation and simultaneously provides negative 

feedback to inhibit Rho activity (86). In the mature lamellum, within the center of the 

cell, Rho is more active. Rho strengthens focal complexes and provides stability to actin 

filaments as the cell moves forward. Rho provides negative feedback to Rac1 in the 

center of the migrating cell to drive directed migration (45,84). At the trailing edge of the 
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cell, the majority of the actin filaments are being disassembled in a Rho dependent 

manner. While Rac1 activity has been reported at low levels at the trailing edge, its role 

remains unclear. 

 

1.3 Targeting GTPases 

1.3.1 GTPases as Therapeutic Cancer Targets 

 The Rho family GTPases lie at critical signaling points within cell migration, 

adhesion, and invasion signaling pathways. Rho GTPases are recognized as prognostic 

markers and lead to advanced disease for a number of cancers (44–47).  Rho GTPases 

contribute to tumorigenesis through mechanisms that are dependent on changes in actin 

dynamics.  Metastasis from primary tumors to secondary sites requires a loss of adhesion 

and an increase in migratory capacity, usually a result of EMT (19,20,22,97,98). EMT 

has a number of effects on cancer cells, primarily loss of adhesion signaling, which 

would normally induce apoptosis. However, in ascites, activators of Rho signaling 

pathways (19,20,22,42,71,99) may provide sufficient survival signals to avoid apoptosis 

(100,101). These activators also provide feedback loops to alter the expression of Rho 

GTPases. Increases in GAP and GEF expression and activity have also been found in 

some cancers (90,94).  This suggests that Rho GTPase signaling is more active during 

tumorigenesis. Taken together, these data suggest that the Rho family GTPases are valid 

potential targets in the treatment of cancer.  
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1.3.2 Therapeutic Strategies for Rho Family GTPase Inhibition 

There are three main strategies that have been explored for inhibiting Rho family 

GTPases as possible cancer adjuvant therapy (54,58,89,102–104). Inhibition of GEFs and 

effectors, inhibition of GTPases directly, or preventing the association of the GTPases 

with the plasma membrane have been investigated (Fig 1.6). These strategies for 

targeting GTPases will be discussed below.  

 

1.3.2.1 GEFs and Effector Proteins 

Inhibition of GEFs may abrogate the effects of increased GEF or GTPase activity 

(Fig 1.6). A number of GEF inhibitors have been identified, but few have been used in 

vivo or translated to human use as of yet (105). The inhibitor NSC23766 has been shown 

to inhibit Rac1 through binding the GEF groove, preventing Rac1 association with GEFs 

and activation (104). NSC23766 has been shown to inhibit the dissemination of 

lymphoma, as well as to induce cell-cycle arrest or apoptosis in some breast cancer cell 

lines (59). Despite the effective concentration being too high to be considered useful in 

vivo, the identification of NSC23766 has proven to be a useful tool in examining GTPase 

dynamics.  

Due to the intersection with Cdc42/Rac1/RhoA actin dynamics, a number of 

studies have looked at ROCK and PAK for utility in cancer therapy (102–105). ROCK 

proteins are a coiled-coil serine/threonine kinase which help to regulate the formation of 

actin stress fibers and focal adhesion complexes (104). The inhibitor Y-27632 is a potent 

inhibitor of ROCK proteins (105). Y-27632 inhibits the formation of actin stress fibers, 

progression of the cell cycle in G1-S, and cytokinesis. Inhibition occurs 
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Figure 1.6 

 

  

Figure 1.6 – Different methods of inhibition of GTPase activity in the treatment of 

cancer. 1. Effector inhibition reduces downstream signaling. Several attempt have been 

made to find inhibitors for GTPase effector proteins in the treatment of cancer. For 

example, a ROCK inhibitor, Y-27632, inhibits stress fiber formation in Swiss 3T3 cells. 2. 

Preventing GTPase posttranslational prenylation can prevent GTPase association with the 

membrane and therefore activation. Statins inhibit HMG-CoA reductase, the rate limiting 

step of cholesterol biosynthesis. This reduces the pool of farnesyl- and geranylgeranyl- 

isoprenoids necessary to prenylate GTPases but has had mixed results clinically. 

Farnesyltransferase inhibitors (FTIs) prevent prenylation of GTPases, but have not been 

successful clinically. 3. Direct GTPase inhibition reduces the activity of GTPases with their 

effectors. In colon and prostate cancer cell lines, AZA197 and AZA1 have been identified 

as Cdc42 only and Cdc42/Rac1 specific inhibitors, respectively. EHT1864 has been 

identified as a Rac1 specific inhibitor in Swiss 3T3 cells. ML141 has been identified as a 

Cdc42 specific inhibitor in ovarian cancer cells. 

 



24 

 

through competitive binding to the ATP for the active binding pocket in ROCK. PAK 

plays an important role in Akt activation, anchorage dependent and independent 

proliferation, and evasion of apoptosis in KRas driven cancer (84).While Ras pathway 

inhibitors have been ineffective in reduction of KRas driven cancers, there is evidence to 

suggest that the use of PAK inhibitors simultaneously may have a positive effect on 

tumor inhibition (103). Tiam1 is a Rac1 GEF and is known to induce cancer 

invasiveness. In a murine model of breast cancer, Tiam1 knockouts not only showed 

delayed tumor development, but fewer tumors overall (106). This genetic data supports 

the idea that GEF inhibition is a viable therapeutic option in the treatment of ovarian 

cancer. Unfortunately, GEF and PAK inhibitors are fairly new and still in the preclinical 

stage, with one currently being evaluated in clinic (54).  

 

1.3.2.2 Statin Therapy in Cancer 

Inhibition of GTPase function through the use of statins has been attempted (Fig 

1.6) (54,107–111). Statins have been used since the 1980s for the therapeutic reduction of 

cholesterol in patients with hypercholesterolemia (107,108). Statins inhibit the enzyme 3-

hydroxyl-3-methylglutaryl-coenzyme A (HMG-CoA) reductase at the rate limiting step 

of de novo cholesterol synthesis, thereby reducing the serum levels of cholesterol. By 

blocking cholesterol synthesis at this point, intermediate prenyl products necessary for 

GTPase membrane anchoring are not produced (108). Because Rho family GTPases 

require prenylation to integrate with the cell membrane and subsequent activation, 

decreasing the available prenyl pool attenuates GTPase activation (107,108). The use of 

statins in the treatment of cancers with Rho family dysregulation has met with mixed 
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results (51,83,109–111). Reduced cancer risk has been associated with breast, colorectal, 

and pancreatic cancers when patients received statins (109–111). In certain ovarian 

cancer subtypes, improved overall survival was seen in patients who received statins 

(111). This would imply pleiotropic effects of statins, specifically a reduction of plasma 

lipids, prevents GTPase activation, resulting in decreased risk or improved survival. 

However, similar results were not seen when GTPase prenylation was prevented using 

FTIs (51). Similar to statins, the use of zoledronic acid has been shown to inhibit Rac1 

activity in ovarian cancer cells (66). This inhibition is thought to be through a reduction 

of Rac1 prenylation (66). 

 

1.3.2.3 Direct GTPase Inhibition 

Direct inhibitors of Rho GTPases are further in development than ROCK and 

PAK inhibitors (Fig 1.6) (89–91,112–116). Direct inhibition of Rho family proteins that 

are overexpressed or have increased activity in cancer cells may provide therapeutic 

options to improve patient outcome. A collaborative research project between Drs. 

Angela Wandinger-Ness and Larry Sklar identified a Cdc42 specific inhibitor, ML141 

(112). This inhibitor functions by preventing GTP binding to Cdc42, thus preventing 

activation. This reduces Cdc42 dependent activities in filopodia formation, migration, 

and viral particle internalization and infection.  Two compounds, Aza1 and its derivative 

Aza197, have recently been identified as a Rac1/Cdc42 and a Cdc42 specific inhibitor 

respectively (113,114). Aza1 has been shown to suppress Rac1/Cdc42 dependent cell 

proliferation and cytoskeleton dynamics of prostate cancer cells in vitro and increase 

survival in an in vivo mouse model of prostate cancer (113). Similar results have been 
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seen in colon cancer cells using the Cdc42 specific inhibitor, Aza197 (40).  EHT1864 has 

been identified as a Rac1 specific inhibitor (115). It functions through nucleotide 

displacement and prevents nucleotide exchange by inhibiting interactions with the Rac1 

GEF, Tiam1. Inhibition of Rac1 in NIH 3T3 cells prevented lamellipodia formation, GTP 

binding, and PAK activation (115). EHT1864 has been shown to reduce estrogen receptor 

expression in ER+ breast tumors through an inhibition of Rac1 (116). While it has not 

been completely tested in a cancer setting, a Rho-specific inhibitor derived from a 

Clostridium botulinum enzyme, is currently being tested clinically in the treatment of 

spinal cord injury (117). The inhibitor is a fusion protein between C. botulinum 

exoenzyme C3 and a targeting peptide to increase cellular uptake. This fusion protein 

catalyzes ADP-ribosylation and creates a high affinity bond between Rho and Rho-GDI-

1, preventing association with GEFs and an association with the plasma membrane. 

Through Rho inhibition, Rac1 activation helps to drive wound healing of axons. Taken 

together, there is sufficient evidence to support the use of Cdc42, Rac, or Rho specific 

inhibitors in the treatment of cancer. However, these treatments are still in early 

development and not yet available for human use.  

With the identification of Rho family GTPase dysregulation in a number of 

cancers, it is desirable to look for Rho family inhibitors that can be used to decrease 

patient risk and improve patient survival (89,90). Cdc42, Rac, and Rho preclinical 

inhibitors have been identified, but most are unable to be used clinically. Those that can 

be used in the clinic have undesirable side effects and have shown only modest and non-

specific results. Clinically approved GTPase inhibitors need to be identified. High 

throughput screening (HTS) of FDA approved compounds is possible and has been 
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utilized to identify small molecules which are both Rho subfamily inhibitors and are 

available for immediate clinical trials.  

 

1.4 Drug Development 

1.4.1 High-Throughput Screening 

Development of novel therapeutic agents is an expensive and time consuming 

process. Since the early 1900s, pharmaceutical companies have used large numbers of 

small molecules in laborious experimentation to investigate new therapeutic options 

(118). Small molecules are usually described as chemical compounds that have a low 

molecular weight. Small molecule libraries are maintained and may contain hundreds of 

thousands of compounds. Traditional laboratory methods require a significant time and 

resource commitment to run tests on an entire library. Coupled with the high cost of 

testing for regulatory clearance, the cost of drug development becomes quickly 

prohibitive.  

In an effort to alter the cost-to-benefit ratio, the need for new testing methodologies 

was realized (118,119). HTS refers to the ability to quickly test hundreds or thousands of 

compounds using specially designed assays to look at cellular events of interest. One 

method of HTS involves the use of 96-, 384-, or 1536-well microwell plates to quickly 

examine compounds against highly sensitive chemical or cellular assays. This is done 

using any combination of manned workstations and robotic equipment, such as the 

HyperCyt®, developed by University of New Mexico Center for Molecular Discovery 

(UNM-CMD). These assays can be cell based or in vitro assays, but are designed by the 

investigator.  
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 The National Institutes of Health realized the benefit of having a small molecule 

library available to principal investigators who are not working in industry. To fill this 

need, the NIH Molecular Libraries Program (MLP) maintained HTS centers at 

institutions across the United States. A central resource of the MLP are small molecule 

libraries of thousands of small molecule compounds to be used in assays. The Prestwick 

library of Food and Drug Administration (FDA) approved compounds is a commercially 

available library which can be used for primary screening (119). The Prestwick library 

contains 1,280 compounds that are FDA approved for human use. This library allows for 

an investigator to rapidly translate active compounds from the screen to a clinical setting. 

  

1.4.2 Identification of Inhibitors of the Rho Family GTPases 

 The UNM-Center for Molecular Discovery was a Molecular Library Program 

funded center. Previously, the center, in a collaboration between and Drs. Wandinger-

Ness and Sklar, developed a cell-free multiplex polystyrene bead array that could be 

performed in a 384-well format (120–122). This array uses glutathione beads of different 

fluorescent intensities bound to GTPases as a quantitative measurement of GTPase 

activation. Ras family GTPases fused to glutathione-S-transferase were bound to the 

glutathione beads. Compounds within the small molecule libraries at UNM were tested 

for activation or inhibition of GTPase nucleotide binding activity using this system. 

Compounds were loaded into wells containing GTPase conjugated beads and then 

incubated with BODIPY-conjugated-GTP. Compounds were considered potentially 

active if there was a 20% change in fluorescence from baseline.  This study identified 2 

compounds, a Rho family selective inhibitor and a Cdc42 specific inhibitor (120–122).  
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1.4.3 Identification of Cdc42 and Rac1 Inhibitors 

 Drs. Wandinger-Ness and Sklar utilized the described small molecule screen to 

examine the Prestwick library for GTPase inhibition (120,123). This version of the 

Prestwick library contained 1208 compounds which have all been previously approved 

by the FDA and qualify for off patent use. The Prestwick library contained 24 

compounds classified as non-steroidal anti-inflammatory drugs which had activity in the 

primary screen (NSAIDs) (123). Of these, 11 NSAIDs were tested in a confirmatory dose 

response screen to test for activity against 8 GTPases: Cdc42 wild-type, Cdc42 activated 

mutant, Rab2, Rab7, Rac1 wild-type, Rac1 activated mutant, Ras wild-type, and Ras 

activated mutant (123).  There were 4 NSAIDs confirmed to have activity against the 

selected GTPases: R-naproxen, S-ibuprofen, S-naproxen, and sulindac sulfide. R-

naproxen was the only identified NSAID with an EC50 less than 3µM and selectively 

inhibited GTP-binding of Cdc42 and Rac1 (123). This effect was enantiomer specific, as 

S-naproxen did not exhibit the same inhibitory effect. This activity is notable because the 

anti-inflammatory activity of naproxen is due to the S-enantiomer, not the R-enantiomer 

(124). R-naproxen was previously thought to be largely inert, with no known 

pharmacologic activity (124). But further testing showed inhibition of Cdc42 and Rac1 

activation in NIH 3T3 cells and Cdc42 and Rac1 regulated cytoskeletal events in 

OVCA429 and OVCA433, two ovarian cancer cell lines (123). Because the Cdc42 and 

Rac1 inhibition was enantiomer specific, the UNM investigators postulated that the aryl 

ring structure and rotational constraints around the chiral center of R-naproxen, place it 

within a hydrophobic pocket on the GTPase surface (124). Using R-naproxen as the basis 

for an in silico query, another enantiomer specific compound, R-ketorolac, but not S-
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ketorolac was identified (123). Further docking studies suggested that mechanism of 

Cdc42 and Rac1 inhibition by R-ketorolac and R-naproxen is through the neutralization 

of a magnesium ion necessary for nucleotide release within the nucleotide binding 

pocket.  

 HTS is an important tool that can be extremely beneficial (118). Using HTS, it 

was possible to identify FDA approved enantiomer specific NSAIDs which have 

previously unknown activity against Cdc42 and Rac1. NSAIDs can be protective in some 

cancers, suggested to be due to the anti-inflammatory effects (125–128)(153-156). 

However, NSAIDs may have COX independent effects, such as disruption of cell 

adhesion, cytotoxic or anti-proliferative effects which need to be explored. The 

enantiomer selective binding of R-ketorolac to Cdc42 and Rac1 shows that NSAIDs can 

affect proteins not related to inflammation (123).  

 

1.5 Ketorolac 

 NSAIDs are a heterogeneous group of drugs that are commonly used for their 

anti-inflammatory, antipyretic, and analgesic effects (128–131). NSAIDs function 

through the inhibition of eicosanoid synthesis (Fig 1.7) (128–131). In the arachidonic 

acid pathway, cyclooxygenase-1 and -2 (COX-1 and COX-2) generates prostaglandins 

which ultimately result in inflammation and pain (128). The anti-inflammatory effects of 

NSAIDs is a result of selective inhibition of COX-1/COX-2 (128–131).  

 Ketorolac is a heterocyclic acetic acid derivative class NSAID first described in 

1978 (Fig 1.8) (132). Ketorolac has the trade name Toradol® and is used primarily as an 

analgesic, but has exhibited some antibiotic and antipyretic abilities. It is a chiral, non-
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selective COX-1/-2 inhibitor (132–134). Ketorolac is administered as a racemic mixture, 

with approximately a 50:50 ratio of the R-/S- forms. COX inhibition by ketorolac is by 

the S-enantiomer only at similar levels for COX-1 (IC50 = 0.46µM) and COX-2 (IC50 = 

1.46µM), while R-ketorolac has no detectable COX at peak serum levels (IC50 > 100µM) 

(133,134). Administration is oral, intramuscular, intravenous, and as a topical ophthalmic 

solution (132). Ketorolac rapidly reaches a maximum plasma concentration following 

oral or intramuscular administration, and is mostly cleared within 6 hours, with a 

preferential clearance of the S-enantiomer over the R-enantiomer (134). Due to its potent 

analgesic affects, it is given perioperatively, intraoperatively, and postoperatively for pain 

management of moderate to severe surgical and cancer related pain. Despite a lack of 

inhibition of serotonin, δ-opioid, µ-opioid, or κ-opioid receptors, ketorolac treatment 

confers opioid level pain relief (133), being 3-30 times more potent than some NSAIDs 

(132). Ketorolac is non-habit forming, and patients do not develop tolerance. Coupled 

with its cost effectiveness relative to opioids or steroids, it is a popular choice for 

alternative short term pain relief. As an NSAID, long term use is associated with 

gastrointestinal bleeding, perforation, and peptic ulcers (132,135,136). These GI effects 

are assumed to be associated with the COX inhibition. However, there is evidence of long 

term, prophylactic use for pain relief in athletes with few adverse effects (137).  

 This project examines how R-ketorolac inhibition of Cdc42 and Rac1 alters 

ovarian cancer cell behaviors related to adhesion, migration and invasion. Because 

ketorolac is an FDA approved drug in current use, it is a strong candidate to be rapidly 

translated to clinical studies. Ketorolac is not often been used for off-label purposes, but 

based on our studies it may have promise in the treatment of ovarian cancer (132). 
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Figure 1.7 

  

Figure 1.7 – Pathway of prostanoid synthesis. Following extracellular stimulus, 

phospholipases generate arachidonic acid from the cleavage of membrane phospholipids. 

Cyclooxygenase 1 and 2 (COX-1 and COX-2) utilize arachidonic acid as a substrate to 

generate prostaglandin H2 (PGH2). PGH2 is then metabolized by tissue specific 

prostaglandin isomerases tissue specific prostanoids. These then bind their cognate 

receptors to initiate downstream signaling involved with inflammation and nociception. 

NSAIDs, such as naproxen and ketorolac, block this pathway through the inhibition of 

COX-1/COX-2. (adapted from Brune and Patrignani, 135) 
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Figure 1.8 

 

  

Figure 1.8 - Structure and in vivo IC50 values for ketorolac and naproxen enantiomers. 

Structure of each enantiomer is presented here. Red circles indicate chiral centers for the 

enantiomers. S-ketorolac exhibits COX inhibition at similar levels for COX-1 (IC50 = 

0.46µM) and COX-2 (IC50 = 1.46µM), R-ketorolac exhibits no inhibition of COX-1/2. S-

naproxen is a non-selective COX antagonist which inhibits COX-1 (IC50 = 35.48µm) and 

COX-2 (IC50 = 64.62µm), R-naproxen exhibits no inhibition of COX-1/2.  



34 

 

1.6 Study Significance and Hypothesis 

Women diagnosed with ovarian cancer have a tumor free survival rate of 

approximately 40% (2). The mortality due to ovarian cancer is partially due to women 

being diagnosed with advanced disease, which presents with multiple metastases within 

the peritoneal cavity (1).  The majority of metastases are surgically removed, but cellular 

exfoliation from the tumors and microtumors which are not removed contribute to 

recurrence. The process of surgical debulking initiates an inflammatory response that 

floods the peritoneal cavity with cytokines, growth factors, and extracellular debris that 

promotes cancer cell survival, migration, adhesion and invasion, contributing to 

recurrence (5,7,11).  

Rho family GTPases Cdc42, Rac1, and RhoA regulate actin dynamics and 

regulate cellular migration, adhesion, and invasion(45–47).  Cdc42 has been 

acknowledged as being overexpressed in a number of cancers (57,58).  Rac1 has been 

identified in promoting cancer progression and recurrence in a number of cancers (54–

61,70,95,96). RhoA effectors are known to be upregulated in some cancers (58). 

Upregulation of these GTPases and activation of their downstream effectors has also been 

shown to reduce apoptosis and be protective in chemotherapy (58,74). Taken together, 

these data indicate that Cdc42 and Rac1 may be valid therapeutic targets in the treatment 

of recurrent ovarian cancer.  

NSAIDs have been found to provide survival benefit to patients in some cancers 

(125,138–143). Collaborative efforts at UNM have identified an enantiomer specific 

inhibition of Cdc42 and Rac1 using the NSAIDs R-naproxen and R-ketorolac (123). 

NSAIDs primarily target COX-1 and COX-2 (127–129), however there is evidence of an 
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enantiomer-specific response to non-COX targets in cells (129,131,135,136) and in 

animal models (114,144,145). Ketorolac administered clinically has been shown to 

provide survival benefit in recurrent breast cancer (126) and it is known that there is 

benefit for ovarian cancer patients (65).  

The purpose of the present work is to elucidate the cellular mechanisms 

responsible for the protective effect of ketorolac treatment in breast and ovarian cancer 

patients. Use of in vivo models of ovarian cancer and patient data will identify the 

mechanisms driving ovarian cancer metastasis and recurrence. I hypothesize that the use 

of R-ketorolac will inhibit Cdc42 and Rac1, thereby inhibiting the cellular events related 

to migration, adhesion, and invasion, which provides survival benefit to ovarian cancer 

patients.  
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Chapter 2 

Characterization of R-ketorolac in an 

in vivo model of recurrent ovarian cancer 

Introduction  

In 2014, there were an estimated 22,000 newly diagnosed cases of ovarian cancer 

and 14,000 ovarian cancer related fatalities in the United States (1,2,5). Overall, patients 

diagnosed with ovarian cancer have a 5 year survival rate of less than 50%. The high 

mortality rate in later stages of the disease is influenced by numerous factors including 

multiple metastases and acquired resistance to chemotherapeutics, frequently leading to 

recurrence (5).   

Metastatic spread and the recurrence of ovarian cancer can be partially attributed 

to the formation and dissemination of MCAs (23,146). These structures form naturally 

within the peritoneal cavity and ascites fluids of patients. Extracellular components 

within the ascites fluid provides MCAs with growth factors, survival signals, adhesion 

signals, and may increase invasion potential (25,92,146,147). The formation of these 

structures also decreases sensitivity to chemotherapeutics and radiation (24,148).  The 

formation, development, adhesion and invasion of MCAs are widely used as an in vitro 

model of metastasis (9,146,149). MCAs and single cell suspensions of ovarian cancer 

cells consistently show preferential adhesion to specific ECM components through 

integrin signaling (10,23,31,148). Integrin signaling is known to activate the Rho family 

GTPase transduction pathways, which regulate actin dynamics and cellular adhesion 

(47,93,94).  
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Actin dynamics are regulated through interplay of the GTPases Cdc42, Rac1, and 

RhoA (47,93,94). These GTPases are responsible for cell-cell adhesion, cell-matrix 

adhesion, cell migration, and cell invasion. Cdc42 and Rac1 have both been identified as 

having aberrant expression or activity in a number of cancers (54–61,70,95,96). Most 

significantly, a recent study has linked Rac1 overexpression in ovarian cancer patients 

with poor prognostic outcome and increased recurrence (64). Similarly, our group 

identified Cdc42 and Rac1, but not RhoA, as being dysregulated in ovarian cancer (65). 

With these studies in mind, the promise of exploiting Cdc42 and Rac1 as therapeutic 

targets in cancer has been well recognized (54–61,70,95,96).  

R-ketorolac inhibits Cdc42 and Rac1 related events in ovarian cancer cells 

(65,123,150). Previous work has shown that R-ketorolac inhibits Cdc42 and Rac1 activity 

in vitro as well as in SKOV3ip and ex vivo primary ovarian cancer cells (65). In patients 

treated with racemic ketorolac, ex vivo cells show decreased Cdc42 and Rac1 activity 

(65). Additionally, R-ketorolac, but not S-ketorolac, was shown to inhibit filopodia 

formation, migration, adhesion, and invasion in SKOV3ip and primary ovarian cancer 

cells (150). These cell behaviors are necessary for ovarian cancer dissemination within 

the peritoneal cavity.  

Breast cancer (126,143) and ovarian cancer patients (65) who received racemic 

ketorolac for postoperative pain relief have improved 5 year survival. It has been 

postulated that this survival benefit is due largely to COX inhibition by ketorolac (126, 

143). Ketorolac is administered as a racemic mix, and at therapeutic concentrations, the 

S-enantiomer alone inhibits COX activity (123,133,134,151).  It is likely that survival 

benefit is conferred by a combination of COX inhibition by S-ketorolac and Cdc42/Rac1 
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inhibition by R-ketorolac (65, 123). This combined activity conferred by ketorolac 

explains why other NSAIDs do not improve patient survival (123,126,143). 

The goal of this work is to further investigate the impact of R-ketorolac in ovarian 

cancer. Because R-ketorolac inhibits Cdc42 and Rac1 related cellular events (150) and 

racemic ketorolac improves survival benefit in ovarian cancer (65), we investigated 

SKOV3ip ovarian cancer cell behavior in vivo and as MCAs in vitro. We find that Cdc42 

and Rac1 inhibition disrupts MCA adhesion and spreading events, and decreases tumor 

burden in vivo. This further demonstrates that R-ketorolac has activity against Cdc42 and 

Rac1 and suggests the anti-cancer benefits observed following administration of racemic 

ketorolac to ovarian cancer patients is partially due to the R-enantiomer.  
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Results  

Oral administration of ketorolac reduces tumor burden in vivo 

To determine the effects of ketorolac treatment in vivo, we utilized a xenograft 

mouse model of recurrent ovarian cancer. Mice were given intraperitoneal (IP) injections 

of GFP-expressing SKOV3ip ovarian cancer cells. Preliminary studies established that 

mice had significant tumor growth by 14 days post-injection (Fig 2.1A). Mice received 

either placebo, R-/S-ketorolac, R-ketorolac, or S-ketorolac pills twice daily. Tumor 

burden was assessed through image analysis of fluorescent tumors within the peritoneal 

cavity. Quantification of the images shows that racemic ketorolac and R-ketorolac treated 

animals possessed significantly fewer tumors compared to placebo treated animals 

(p<0.05) (Fig 2.1B). Initial HTS of NSAIDs identified R-naproxen, not S-naproxen, as 

having enantiomer selective activity against Cdc42 and Rac1.  Similar to ketorolac, mice 

treated with R-naproxen, but not S-naproxen, showed fewer tumors (Fig 2.2A).   

In humans, deposition of ovarian cancer metastases occurs at specific sites within 

the peritoneum (9,10,19). We observed that tumor growth and distribution in the animals 

was consistent with patterns of human metastasis. The largest tumor develops at, and then 

envelops, the omentum. The omental tumor appears to be smaller and less solid in 

ketorolac treated animals compared to placebo treated animals (Fig 2.2B). Smaller 

metastases formed at adipose or highly vascularized tissues (Fig 2.1A). However, in this 

model, it is unclear if the smaller metastatic sites form as a result of injection or as 

secondary deposition from the omental tumor.  

S-ketorolac is the active enantiomer for COX inhibition (133,134,151) while R-

ketorolac inhibits Cdc42 and Rac1 (123). However, pharmacokinetics are different 
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among species (151) and the distribution of ketorolac in these mice was examined. 

Studies in humans, mice, and rats, demonstrates that S-ketorolac is cleared more rapidly 

than R-ketorolac following single dose administration (133,134,151). We confirmed that 

there is no significant difference in the total ketorolac serum concentration between 

ketorolac treatment groups (Fig 2.1C, grey bars). However, there was a predominance of 

R-ketorolac over S-ketorolac in all ketorolac treated animals (Fig 2.1C, black bars). R-

ketorolac represented approximately 78%, 94%, and 62% of the total recovered ketorolac 

from racemic ketorolac, R-ketorolac, and S-ketorolac treated animals, respectively. 

Additionally, in mice there is spontaneous interconversion of S-ketorolac to R-ketorolac 

(151). Interconversion causes a shift to the R-enantiomer in racemic ketorolac and S-

ketorolac treated animals, with no change in R-ketorolac treated animals (Fig 2.1C) and 

does not occur outside of an in vivo setting (Fig 2.3).  

 

Ketorolac has no effect on SKOV3ip growth kinetics in culture 

There is evidence that specific NSAIDs can induce apoptosis, decrease 

proliferation, or induce cell cycle arrest (131,152,153). Therefore, the effects of ketorolac 

on cell proliferation and cell cycle were examined. SKOV3ip ovarian cancer cells were 

treated for 48h or 96h with R-/S-ketorolac, R-ketorolac, or S-ketorolac. Concentrations of 

ketorolac that spanned and exceeded the normal therapeutic serum concentrations were 

used (132). Cells treated with ML141 (10µM) or NSC23766 (30µM), specific inhibitors 

for Cdc42 and Rac1, respectively, were used as controls (112,147). These concentrations 

were selected based on approximate IC50 values obtained through migration studies (Fig 

2.4).  There was no significant difference in cell viability after 96h for any ketorolac 
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treatment (300µM) group, when compared to the no treatment control (Fig 2.5A).  

However, specific inhibition of either Cdc42 or Rac1 caused an approximately 20-30% 

decrease in viability (p<0.01). The Cdc42 inhibitor ML141 (112,139), and direct 

inhibition of Rac1 have been reported to inhibit cancer cell proliferation in other tumor 

models (113–115,130,154). 

The formation of MCAs is known to protect cells from radiation or taxane 

induced apoptosis (9), increase chemoresistance compared to cells grown in monolayer, 

and reduce proliferation compared to monolayer (13,30). SKOV3ip cells cultured as 

MCAs were counted using flow cytometry to determine the effect of ketorolac 

enantiomers on cell proliferation. After 96h growth, ketorolac treatments had no effect on 

basal cell proliferation or EGF-stimulated cell proliferation (Fig 2.5B). However, EGF-

stimulated proliferation of ML141 treated cells is inhibited compared to non-treated 

MCAs.  

COX inhibitors can cause cell cycle arrest in chondrocytes, osteoblasts, and 

osteoblasts (154–156). Cell cycle analysis was performed by Amanda Peretti to 

determine if this occurs in ovarian cancer cells. SKOV3ip cells were cultured for 48 

hours, with increasing concentrations of racemic ketorolac, and measured using flow 

cytometry (Fig 2.5C). Taxol, a mitotic inhibitor, was used as a positive control for cell 

cycle arrest at a concentration of 0.5µM. Taxol treated cells were significantly different 

than no treatment controls in all cell cycle populations. There is no significant change in 

the cell cycle populations of ketorolac treated cells when compared to the no treatment 

control group. Based on these data, above therapeutic concentrations, ketorolac does not 

inhibit cell proliferation or alter cell cycle in SKOV3ip ovarian cancer cells.  
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Ketorolac does not change growth kinetics in vivo 

 The peritoneal fluid contains a number of soluble factors that contribute to cancer 

cell survival through survival pathways to evade apoptosis (9,20,100). It is possible that 

changes in growth kinetics due to ketorolac treatment can occur in a biological setting. 

Ki-67 and TUNEL staining were performed on mouse omental tumors to determine the 

effects of ketorolac treatment on growth and apoptosis of ovarian cancer cells in vivo.  

 Sections of omental tumors and spleen with attached tumor were sectioned and 

subjected to immunohistochemical staining for the proliferation marker Ki-67 (Fig 2.6A-

B). Because we observed significant interconversion of S-ketorolac to R-ketorolac in the 

mice, further experiments did not include mice treated with S-ketorolac. Slides were 

scanned using an Aperio slide scanner and analyzed using Imagescope software. Area of 

analysis included tumor tissue only and not spleen tissue (Fig 2.6C). Nuclei were scored 

no staining, low, moderate, or strong positive staining for Ki-67. Low to strong Ki-67 

staining was considered positive, and data are presented as percent positive nuclei.  There 

is no statistically significant difference in levels of proliferation between treatment 

groups and placebo group (Fig 2.6D).  

 Because ketorolac has no effect on proliferation, TUNEL staining was performed 

to examine levels of apoptosis (Fig 2.7A-B).  Sections were counterstained using DAPI 

(4’,6-diamidino-2-phenylindole) and imaged with an Olympus IX70 inverted fluorescent 

microscope. Olympus CellSens software was used to analyze images. Total fluorescence 

intensities were captured for fluorescein and DAPI channels. Data are presented as 

percent positive fluorescein (Fig 2.7C). There is no significant difference between levels 

of apoptosis in treatment groups compared to placebo groups. Consistent with our 
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observation in ovarian cancer cells alone, use of ketorolac in vivo does not significantly 

reduce levels of proliferation in the tumor (Fig 2.6D) nor does treatment increase levels 

of apoptosis (Fig 2.7C).  

 

Impact of ketorolac on GTPase gene expression 

Increases of Rho family GTPase expression have been identified in multiple 

cancer types (54). Our own work has shown stage specific changes to Rac1 and Cdc42 at 

the mRNA and protein level in ovarian cancer, including the expression of the 

constitutively active splice variant of Rac1, Rac1b (65). We examined changes in Rho 

family GTPase gene expression following ketorolac treatment (Fig 2.8). Initial PCR 

analysis confirmed that a number of ovarian cancer cell lines, including SKOV3ip, 

express Rac1b (Fig 2.9). SKOV3ip cells were treated with ketorolac (100µM), or specific 

inhibitors, for 24h. Cells were changed to serum free medium containing drug for 24h, 

followed by the addition of 10nM EGF for 24h. RNA isolated from cells using Qiagen 

RNeasy kit and cDNA was generated using Applied Biosystems High Capacity cDNA 

kit. Quantitative PCR was performed using primers for Cdc42, Rac1, Rac1b, and RhoA. 

An apparent decrease of Rac1b occurred following treatment with R-ketorolac (Fig 

2.8A). Gene expression of Rac1b following R-/S-ketorolac or S-ketorolac alone showed a 

similar, although not as robust, decrease. EGF stimulated gene expression of RhoA, 

increased, but did not reach significance, following treatment with R-/S-ketorolac, R-

ketorolac, or S-ketorolac. Inhibition of Cdc42 with ML141 showed modest, but not 

significant, reduction in gene expression of all 4 targets compared to EGF stimulated, no 

treatment controls.  
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Long term treatment in vivo may result in a different gene expression profile. To 

examine this, a portion of the omental tumor collected from animals was used to evaluate 

gene expression. Isolation of RNA was performed as above, utilizing the QiaShredder 

column to lyse tumor cells. We observed that in ketorolac and R-ketorolac treated 

animals, there was a trend towards an increase in Cdc42 and RhoA expression compared 

to the placebo group which was not statistically significant (Fig 2.8B). There was no 

change in Rac1 or Rac1b expression in these animals.  

We primarily examined these four GTPases because of their relationship to 

metastasis and cancer progression (54). It has been reported that inhibition of Rac1 can 

reverse a malignant phenotype (115). While not statistically significant, SKOV3ip cells 

exhibited a large but not significant decrease in Rac1b following 24h EGF stimulation. 

RNA from treated SKOV3ip cells was also used in a microarray containing known 

cytoskeletal regulators and markers of metastasis (Qiagen). There were no significant 

changes to any of the 192 genes assayed (data not shown). Although there were trends for 

inhibition of GTPase gene expression in vivo, there were no significant differences 

observed (Fig 2.8B).  

 

Ketorolac inhibits SKOV3ip MCA adhesion and spreading 

Inhibition of Cdc42 and Rac1 decreases cell adhesion, migration, and invasion in 

monolayer culture (150) and increases survival time in animal models of prostate and 

colorectal cancer (113,114). We used an organotypic cell culture model of ovarian cancer 

to test MCA adherence and spreading (31,157,158).  Mesothelial cells were cultured in 

the presence of collagen I and fibronectin in 96-well dishes. To test MCA adherence, 
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SKOV3ip MCAs were placed on top of a confluent mesothelial cell layer in the presence 

of the Cdc42 inhibitor, ML141, or the Rac1 inhibitor, NSC23766. At 4h, wells were 

washed with 1X phosphate buffered saline (PBS). The majority of the no treatment 

MCAs adhered and had begun to clear the mesothelial cells, while treated cells did not 

(Fig 2.10A). SKOV3ip MCAs were also allowed to spread and clear the mesothelial cell 

layer for 24h (Fig 2.10B). MCA area was measured prior to plating and the cleared 

mesothelial area was measured after 24h. The percent increase from MCA area to cleared 

mesothelial area was calculated. Inhibition of Cdc42 and Rac1, either by specific 

inhibitors or ketorolac enantiomers, reduced the increase in area (Fig 2.10C). It has been 

reported that, in GTPase activity assays, 10µM S-ketorolac is sufficient for 

approximately 30% inhibition of Cdc42 and Rac1 (150).  

Due to the level of ovarian cancer colonization of the mouse omental tumor, and 

the proximity to the spleen, we analyzed cancer cell attachment to the splenic capsule. 

Sections of spleen with attached tumor were H&E stained to look at cellular architecture 

(Fig 2.10D). There was a distinct difference between the human cancer cells and the 

mouse cell types. Red arrows identify SKOV3ip cells which are adhered to the splenic 

capsule. Donna Kusewitt, DVM, PhD and veterinary pathologist scored slides as positive 

for adhesion if there were ovarian cancer cells present on the splenic capsule. Chi square 

analysis of adhesion versus no adhesion for placebo, R-/S-ketorolac, R-ketorolac or S-

ketorolac was performed. There was a substantial, but not significant (p=0.052), decrease 

in the levels of adhesion in animals treated with a single enantiomer of ketorolac (Fig 

2.10E). This observation suggests that, despite not reaching significance, there may be an 

influence on adhesion that should be further explored.  
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Discussion 

 The use of NSAIDs in the treatment of cancer has provided mixed results in 

regards to survival benefit (60,125–127,129,138,159,160). Retrospective studies have 

shown that patients who receive ketorolac have early survival benefit in breast cancer 

recurrence (143) and our own studies show that ovarian cancer patients who have 

received ketorolac had a decreased risk of ovarian cancer related mortality within 5 years 

of treatment (65). Ketorolac is clinically administered as a strong, non-addictive 

analgesic (132) and is given as a 50:50 racemic mix of the R-enantiomer and S-

enantiomer (65). The pain relieving effects are attributed non-selective COX inhibition 

by S-ketorolac, while R-ketorolac, a Cdc42/Rac1 selective inhibitor, has no activity 

against COX-1/2 (123,132). R-ketorolac concentrations within the peritoneal cavity are 

sufficient to inhibit GTPase activity, resulting in reduced adhesion and filopodia 

formation (65,150). These data indicate that ketorolac given clinically could target 

multiple signaling pathways related to cancer recurrence.  

We provide evidence that oral administration of R-/S-ketorolac provides 

approximately 30% reduction of tumor burden in a mouse model of ovarian cancer (Fig 

2.1B). This effect was similar to what has been reported with Cdc42 and Rac1 inhibition 

in mouse models using subcutaneous injection of colorectal and prostate cancer 

cells(113,114). Treatment with R-ketorolac alone provides an approximately 20% 

reduction in tumor burden (Fig 2.1B). It has been postulated that the benefit of NSAIDs 

in cancer therapies is due to the anti-inflammatory properties conferred by COX-1/2 

inhibition (126).  COX inhibition with ketorolac is entirely from S-ketorolac, as R-

ketorolac does not reach a plasma concentration to provide COX inhibition (Fig 2.1C) 
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(132). In serum recovered from treated animals, we observe over 50% of the S-ketorolac 

undergoes interconversion to become R-ketorolac (Fig 2.1C). This is consistent with 

published data reporting a species specific interconversion of ketorolac (151). 

Pharmacokinetics studies show a preferential clearance of S-ketorolac over R-ketorolac, 

indicating that the time in the therapeutic window for COX inhibition in animals is fairly 

low (151). These data indicate that the decrease in tumor burden is largely due to the 

COX-independent effects of R-ketorolac. To explore COX-dependent events related to 

tumor burden, a different animal model would be required.  

In multiple cancer cell types, NSAIDs can induce apoptosis, impair proliferation 

and cause cell cycle arrest (131,152,153). These effects are both COX-dependent and 

COX-independent. In cell culture, we show that ketorolac has no effect on cell 

proliferation (Fig 2.5A-B). Ketorolac concentration presented in the live/dead assay is 

above therapeutic serum levels. After 96h monolayer culture in the presence of racemic 

ketorolac or single enantiomers, there is no decrease in cell proliferation (Fig 2.5A) and 

there is no cell cycle arrest observed (Fig 2.5C). When cells are cultured as MCAs, there 

is no difference in cell number when compared to no treatment controls (Fig 2.5B). 

However, in monolayer, specific inhibitors of Cdc42 or Rac1 show a small but significant 

decrease in cell proliferation after 96h (Fig 2.5A). The use of ketorolac in vivo does not 

have a significant effect on cancer cell proliferation (Fig 2.6D) or apoptosis (Fig 2.7C). 

Animals treated with R-ketorolac alone showed an increase in proliferation (Fig 2.6D) 

that is mirrored by a slight decrease in apoptosis (Fig 2.7C). If confirmed, these findings 

would be in opposition to the idea that NSAIDs induce apoptosis (refs). Further staining 

of animal tissues is required to determine if this is a significant effect. Animals which 
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received R-ketorolac alone, received a larger dose of R-ketorolac than R-/S-ketorolac 

treated animals (Fig 2.1C). The increase in proliferation (Fig 2.6D), along with a decrease 

in apoptosis (Fig 2.7C), following treatment with R-ketorolac alone, would account for 

the smaller decrease in tumor burden (Fig 2.1B). 

In a COX-independent effect, the use of some NSAIDS are known to inhibit the 

transcription factor NF-κB (70). Thus, the use of ketorolac may decrease Rho family 

GTPase gene expression. We observed that treatment with R-/S-ketorolac or R-ketorolac 

alone decreased EGF stimulated expression of Rac1b in cell culture, although this did not 

meet significance (Fig 2.8A). Interestingly, specific inhibition of Cdc42 using ML141 

decreased EGF stimulated expression of Cdc42, Rac1, Rac1b, and RhoA. These data 

suggest that Rho family GTPase expression is partially regulated by Cdc42. When 

examined in vivo, chronic treatment with R-/S-ketorolac or R-ketorolac alone appeared to 

stimulate expression of Cdc42 and RhoA, although this finding did not reach significance 

(Fig 2.8B).  

Cdc42 and Rac1 are largely responsible for the adhesion, migration and invasion 

events related to ovarian cancer metastasis (31,54,90,93). Inhibition of Cdc42 and Rac1 

can decrease the adhesion and migration of SKOV3ip cells grown in monolayer (151). 

MCAs are a model of ovarian cancer (9,13). We observe, in the presence of specific 

inhibitors of Cdc42 or Rac1, that adhesion of MCAs to an organotypic cell culture layer 

is decreased at 4h (Fig 2.10A). Similarly, MCA disaggregation and spreading is inhibited 

at 24h (Fig 2.10C). Decreased spreading following treatment with S-ketorolac was 

unexpected, but likely due to the concentration exceeding 10µM, the reported 

concentration of S-ketorolac inhibition of Cdc42 and Rac1 (150). MCA spreading was 
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performed at 100µM (Fig 2.10B) and it has been previously observed that 10µM S-

ketorolac is sufficient to inhibit GTPase activity by ~30% (150). Further studies with 

lower ketorolac concentrations will be needed to correctly assess the impact of GTPase 

inhibition by R-ketorolac. The in vivo correlate to MCA adhesion and spreading was 

SKOV3ip cell adhesion to the splenic capsule (Fig 2.10D). We observe that adhesion to 

the splenic capsule is reduced, but not significant, in R-ketorolac and S-ketorolac treated 

animals compared to placebo treated animals.  

The use of NSAIDs as anticancer agents has largely focused on their anti-

inflammatory effects, which are caused by inhibition of COX-1/2 and reduced 

prostaglandin synthesis (126,128,143). The significant decrease in tumor burden we see 

in the racemic and R-ketorolac treated animals cannot be attributed to COX inhibition 

alone, and is likely the result of COX-independent mechanisms. Because S-ketorolac is 

largely converted to R-ketorolac in the animals, the work presented in this chapter 

suggests that GTPase-dependent events largely contribute to a decrease tumor burden. 

Although we are unable to currently define this mechanism, our work may provide 

insight on what needs to be pursued next. Currently there are no inhibitors of Cdc42 or 

Rac1 being used in a clinical setting. The use of ketorolac in the treatment of ovarian 

cancer provides a unique opportunity to test whether Cdc42 and Rac1 inhibition can 

confer therapeutic benefit in humans. 
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Methods 

Ketorolac dosage  

 Racemic or single enantiomer ketorolac was orally administered to mice using 

transgenic dough diet (Bio-Serv, Flemington, NJ, cat #S3472) compressed into pills. 

(193) Briefly, R-/S-ketorolac tris salt (Sigma, St. Louis MO, cat# K1136) dissolved in 

water, R-Ketorolac (Toronto Research Chemicals, Toronto Canada, cat# K235600) or S- 

Ketorolac (Toronto Research Chemicals, cat# K235602) dissolved in 100% ethanol, at a 

concentration of 5mg/ml. Bromophenol blue was added to the ketorolac solution at a 

concentration of 0.1% to ensure even distribution into the dough. Pills were made using 

1ml of ketorolac solution and 30g of transgenic dough.  Solution was mixed with dough 

to ensure even incorporation. Placebo pills were made using an equivalent volume of 

100% ethanol containing 0.1% bromophenol blue. Dough was then pressed using 100mg 

pill forms (Gallipot, St. Paul, MN). Pills were allowed to dry at room temperature on the 

bench overnight. Pills were removed from the forms and stored at 4°C until used.  

 

Animal model  

 Foxn1nu NU /J athymic nude mice, aged 6-9 weeks, were purchased from The 

Jackson Laboratory (Bar Harbor, ME, stock number 002019). To condition mice to 

accept pills containing drug, they were given placebo pills every 12 hours for two days.  

On day 3, mice were switched to pills containing 20µg drug or left on placebo pills as 

appropriate. On day 4, mice were given IP injections of 1x106 SKOV3ip cells expressing 

GFP. On day 15 of receiving drug, mice were sacrificed and imaged using a Light Tools 

imaging system (Synopsys Optical Solutions, Westminster CO) with long pass GFP 
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filters. Three images per mouse were captured to ensure all tumors were counted. Using 

the images of the mice, green fluorescent tumors were identified as single tumors if there 

was a distinct border of non-fluorescent tissue. The omental tumor typically is a bundle 

of distinct tumors, and therefore was removed, counted separate from the images, but 

included in the total tumor counts. Blood was collected via cardiac puncture and used for 

HPLC analysis. Tumor and tumor adjacent tissue was collected and stored in 10% neutral 

buffered formalin, RNAlater (Qiagen, cat# 76104), RIPA buffer or snap frozen using 

liquid nitrogen for further analysis. Animal work has been approved by the University of 

New Mexico, Institutional Animal Care and Use Committee (protocol #12-100881-HSC). 

For tumor burden studies, data presented are combined from 3 separate trials, with 6 

animals/treatment group/trial (n=18).  

 

High performance liquid chromatography 

 Blood from mice was collected at sacrifice via cardiac puncture and stored at 4°C 

overnight. Samples were then centrifuged at 4000xg for 10 minutes.  Serum was 

separated from red cells into a fresh Eppendorf tube.  Serum was then mixed 1:1 with 

600mM sulfuric acid and vortexed for 30 seconds. Solution was vortexed with 3ml 

diethyl ether and separated by centrifugation at 1000xg for 5 minutes. The organic layer 

was removed and evaporated to dryness in a speedvac, then reconstituted in 37°C 200μl 

0.1% formic acid in water. 

 HPLC analysis was performed with a 50mm long 5μm silica guard column 

(Phenomenex, 03B-4053-N0) attached to a Partisil® 5 μm ODS(3) 85 Å LC Column 150 

x 4.6 mm (Phenomenex, 00F-0120-E0) followed by a reverse phase Lux 5 μm Cellulose-
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3 50 x 4.6mm column (Phenomenex, 00G-4493-E0). The columns are equilibrated with 

acetonitrile/0.1% Formic acid in water (25:75) at a flow rate of 2ml/min. A standard 

curve of racemic ketorolac in water was generated based on an injection volume of 10μl. 

Ketorolac was detected using a UV spectrometer set at UV310. Retention times for R-

ketorolac and S-ketorolac were 5.0 minutes and 5.9 minutes respectively, and were 

validated against each individual enantiomer. Data presented are combined from two 

animal studies (n=12).  

 

Cell migration assay  

 SKOV3ip cells were plated at 1x104 cells / well in 24-well Boyden chambers 

and allowed to attach for 4h. ML141, NSC23766, or ketorolac enantiomers were added to 

growth media at final concentrations ranging from 0.001 to 300 µM. After 48 h, inserts 

were removed and stained with DAPI. Membrane filters were imaged on an Olympus 

IX70 inverted fluorescent microscope using a 20x objective. Three representative fields 

were counted from each treatment group. One-way ANOVA followed by Dunnett’s 

multiple comparison analysis in Graphpad Prism were used to assess statistical 

significance (p<0.05). For each panel, data are combined from three independent trials, 

each trial was performed in triplicate. 

 

Cell culture fluorescent proliferation assay 

 SKOV3ip cells were seeded at a density of 1x104 cells/ml in a black-walled 96 

well plate. Cells were allowed to adhere for 4h then media was changed for media 

containing drug. Cells were cultured for 48h in the presence of R-/S-ketorolac, R-
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ketorolac, or S-ketorolac at varying concentrations (1-300µM). The Cdc42 specific 

inhibitor ML141 (Sigma-Aldrich, SML0407) was used at a concentration of 10µM.  The 

Rac1 specific inhibitor NSC23766 (Tocris Bioscience, #2161) was used at a 

concentration of 30µM. Media only wells were included on the plate for background 

subtraction.  After 48h, calcein AM dye (Invitrogen, C3100MP) was added to each well 

at a final concentration of 14µM and incubated at 37°C for 30m.  Plates were read using a 

plate spectrophotometer (Molecular Dynamics) at an excitation of 490nm and emission 

of 530nm.  Data were subjected to one-way ANOVA followed by Dunnett’s multiple 

comparison test to determine significance (p<0.01). 

 

MCA cytometry  

 SKOV3ip cells were resuspended in Eppendorf tubes at a concentration of 

2.5x104cells/ml. Cells were treated with R-/S-ketorolac, R-ketorolac, or S-ketorolac at 

300µM, ML141 at 10µM, or NSC23766 at 30µM.  Cells were seeded in triplicate into 

individual wells of a 96-well, U-bottom, non-adherent plate (Corning, cat# 7007) and 

incubated at 37°C for 48h. After 48h, MCAs were treated with DAPI (Invitrogen, D1306) 

at a final concentration of 300nM for 30m. Media was aspirated and MCAs were rinsed 

once using 1X PBS. MCAs were disaggregated using 50µl of 0.25% trypsin EDTA 

(Invitrogen, 25200-056) for 1m at 37°C. Media was added to each well and the 

disaggregated MCAs were transferred to Eppendorf tubes. Cells in each tube were 

quantified using a Becton Dickinson FACScan flow cytometer (Immunocytometry 

Systems). Data were subjected to one-way ANOVA followed by Dunnett’s multiple 

comparison test to determine significance (p<0.01). 
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Cell cycle assay 

 SKOV3ip cells were seeded at 2.5x105 cells/mL with 1 mL/well into 24-well 

plates and allowed to adhere overnight. After 24h, media was changed for media 

containing drug. Cells were treated with R-/S-ketorolac at 10µM, 30µM, 100µM, and 

300µM and 0.5 µM Taxol (Enzo Lifesciences, Cat# T-104). Old media was removed and 

new media containing drug was added to the wells in triplicate at 1 mL/well. Cells were 

incubated for 48 hours then washed once with 1X PBS. A few drops of trypsin were used 

in each well to detach adherent cells then neutralized with media. Samples were then put 

into 15 mL conical tubes, pelleted and supernatant was removed. Each sample was re-

suspended in 5 mL of PBS as a washing step and centrifuged at 2500 rpm for 5 minutes. 

Pellets were re-suspended in 1 mL of freshly made 30µM propidium iodide (PI) staining 

solution and incubated for 30 minutes. PI dye was made new every time the experiment 

was repeated by mixing 20 mL of 0.1% Triton X-100 in 1X PBS, 40 µL DNAse-free 

RNAse-A (100 mg/mL in PBS) (2 mg total) and 800 µL of 500 µg/mL PI stock. Samples 

were transferred to falcon tubes and analyzed on a Becton-Dickson C6 Accuri flow 

cytometer at 20,000 events. Three independent experiments were conducted and a two-

way ANOVA with a Bonferroni post-test was used to calculate significance. 

 

Immunohistochemical staining 

 Formalin fixed tissues which were stored in 70% ethanol were sent to the 

University of New Mexico Human Tissue Repository (UNM-HTR) for tissue processing. 

UNM-HTR embedded tissues in paraffin wax and sectioned blocks into 10µm sections. 

Tissue sections were mounted on hydrophobic slides for further staining. UNM-HTR 
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stained sections of omental tumor and omental tumor with spleen adjacent with human 

specific Ki-67 antibody to measure proliferation. UNM-HTR also performed hematoxylin 

and eosin (H&E) staining on sections. Slides stained at UNM-HTR were then imaged 

using the Aperio slide scanner. Ki-67 proliferation analysis was done using Aperio 

ImageScope slide software and proliferation macro. Nuclei were scored as no, low, 

intermediate or high staining. Low, intermediate, and high staining were considered 

positive for Ki-67. Data are presented as percent positive staining compared to total 

number of nuclei. TUNEL staining on tumor and tumor with adjacent tissue was 

performed using Millipore Apoptag® Fluorescein In Situ Apoptosis Detection kit 

(Millipore, cat #EMD-S7110) according to manufacturer protocol. Slides were 

counterstained and mounted in Vectashield Hardset Mounting media containing DAPI 

(Vector Labs, cat # H-1500). Images of TUNEL stained sections was captured using an 

Olympus IX70 inverted fluorescent microscope at 5.5x. Montage images of each section 

were created, and fluorescence threshold limits were set using DAPI nuclei. Count and 

measure module in CellSens software was used to count nuclei of the tumor sections in 

FITC and DAPI channels. Data presented as percent fluorescein positive nuclei. Data 

were subjected to one-way ANOVA followed by Dunnett’s multiple comparison test to 

determine significance. 

 

RNA isolation 

 SKOV3ip cells were seeded at a density of 1x105 cells/ml in a 6- well tissue 

culture dish and allowed to adhere 4h. Cells were treated with 10µM ML141, 30µM 

NSC23766, 100µM R-/S-ketorolac, 100µM R-ketorolac, or 100µM S-ketorolac and 
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incubated at 37°C for 24h. Cells were switched to serum free media containing drug and 

incubated at 37°C for 24h. After 24h, EGF was added to control wells to a concentration 

of 10nM and cells were incubated 24h. Media was aspirated and cells were rinsed with 

1X PBS. Cells were treated with 1ml TRIzol (Invitrogen, cat #15596-026), cells were 

scraped from the plate and transferred to a microcentrifuge tube. TRIzol isolation of RNA 

was performed according to Invitrogen protocol. Collected RNA was stored at -80°C. 

Animal tumor tissue was stored in RNAlater. From this tissue, 30mg of animal tumor 

tissue was weighed into a microcentrifuge tube. Tissue was flash frozen in liquid nitrogen 

and ground using RNase free microcentrifuge tissue homogenizer (Daigger, cat# 

EF2486Q). The tissue homogenate was resuspended in RLT buffer from the RNeasy kit 

(Qiaagen, cat# 74104) and centrifuged through a Qiashredder lysis column (Qiagen, cat# 

79654). Tissue homogenate was then processed using Qiagen RNeasy kit according to 

manufacturer protocols. RNA was stored at -80°C. cDNA was generated from 1µg cell 

and animal RNA using ABI High Capacity cDNA kit (Invitrogen, cat # 4368814).  

 

qPCR 

 Following cDNA generation, qPCR amplification of Cdc42, Rac1, Rac1b, RhoA, 

and GAPDH was performed. ABI Fast SYBR® Green Master Mix was diluted with 1µl 

Qiagen Quantitect primer per reaction. Primers used were Cdc42 (QT01674442), Rac1 

(QT00065856), and RhoA (QT00044723), and GAPDH (QT00079247). Rac1b primer 

set was custom designed and ordered from Invitrogen.  Rac1b forward primer, 5’-

TCCGCAAACAGTTGGAGA-3’, was coupled with Rac1 reverse primer, 5’-

CTACATGTTTGCGGATAGGATAGGG-3’. cDNA was diluted 1:5 in nuclease free 
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water. For qPCR, 6µl of PCR mastermix was added to 4µl cDNA in a 384-well plate, in 

quadruplicate, for each gene. qPCR was conducted on an ABI 7900HT Fast PCR system 

under the following conditions: 95°Cfor 10m, 40 cycles of (95°C for 15s, 60°C for 1m), 

followed by dissociation curve analysis. Ct values were used for gene analysis.  

 

MCA adhesion and spreading  

 To form MCAs, SKOV3ip cells were trypsinized from a culture dish and diluted 

in media to a density of 2.5x104 cells/ml. Cells were treated with 10µM ML141, 30µM 

NSC23766, or 100µM R-/S-ketorolac, R-ketorolac, or S-ketorolac, -/+ 10nM EGF 

simultaneously. For each treatment group, 100µl cell dilution/well was added to a 96-

well Ultra-low adhesion, U-bottom dish (Corning, cat#7007) and incubated for 24h. At 

24h prior to transferring MCAs, the organotypic cell culture system was setup.  

 LP9 cells were maintained in 1:1 M199 media (Gibco, cat# 11150-059):DMEM 

(Gibco, cat# 11965-092) supplemented with 10% fetal bovine serum (Gibco, 16000-044), 

0.4µg/ml hydrocortisone (Calbiochem 3867), and 10nm EGF. On ice, 8ng/µl each of rat 

tail collagen type I (Corning, cat# 354236) and fibronectin (Corning, cat# 356008) were 

mixed together in LP9 media. To each well of a 96-well flat bottom tissue culture dish, 

50µl ECM mix was added and incubated at 37°C for one hour. To a 10cm plate of LP9 

cells 2.5µM CellTracker™ CMTPX (Invitrogen, C34552) was added and incubated at 

37°C for 1h. LP9 cells were rinsed with 1X PBS and trypsinized.  Cells were resuspended 

to a concentration of 2x105 cells/ml and 100µl LP9 cell dilution was added to ECM 

coated wells. Plates were incubated at 37°C for 24h. MCAs were stained with 2.5µM 

CellTracker™ BODIPY (Invitrogen, C2102) and incubated 1h at 37°C. MCAs were 
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imaged and rinsed with 1X PBS. MCAs were suspended in 100µl LP9 media containing 

drug, -/+ 10nm EGF simultaneously. Media was aspirated from LP9 cells, MCAs were 

transferred to LP9 cell layers, and incubated at 37°C.  

 For the adhesion assay, MCAs were incubated on the organotypic cell layer at 

37°C for 4h. Wells were rinsed with 1X PBS, fixed with 4% paraformaldehyde for 5m, 

mounted in Vectashield hardset mounting media with DAPI (Vector labs, cat# H-1800). 

For the spreading assay, MCAs were incubated on the organotypic cell layer at 37°C for 

24h, rinsed with 1X PBS, fixed with 4% paraformaldehyde for 5m, mounted in 

Vectashield hardset mounting media with DAPI. MCAs were imaged using an Olympus 

IX70 inverted fluorescent microscope. MCAs and area of clearance were measured using 

Olympus CellSens Dimension software.  

 

Figure Legends  

Figure 2.1 - Oral administration of ketorolac reduces tumor burden in vivo. A. A 

xenograft mouse model of recurrent ovarian cancer indicates that ketorolac treatment can 

reduce tumor burden in mice. Mice injected with GFP-expressing SKOV3ip cells show 

abundant tumor formation after 14 days. Representative images of animals which 

received either placebo or R/-S-ketorolac pills. B. Tumor burden is decreased in racemic 

and R-ketorolac treated animals. There are significantly fewer tumors in animals that 

received either racemic ketorolac or R-ketorolac. Tumor burden was quantified by 

counting visible tumors images of the peritoneal cavity. Three images of each animal 

were captured to reveal tumors in each region of the peritoneal cavity. Total tumor counts 

from the peritoneal cavity were normalized to placebo treated animals within individual 
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experiments. These data are combined normalized tumor counts from three separate 

experiments, n=18. * indicates p<0.01 when compared to placebo group. C. Ketorolac 

recovered from mouse serum. There is no significant difference in the concentration of 

total ketorolac recovered from mouse serum. For each treatment group, grey bars 

represent total ketorolac recovered, black and white bars represent R-enantiomer and S-

enantiomer, respectively. A predominance of R-ketorolac in all treatment groups 

indicates that interconversion of the S-enantiomer to the R-enantiomer occurs in this 

strain of mice. 

 

Figure 2.2 – Animals treated with R-naproxen have decreased tumor burden. A. A 

xenograft mouse model of recurrent ovarian cancer indicates that R-naproxen, but not S-

naproxen, treatment can reduce tumor burden in mice. Mice injected with GFP-

expressing SKOV3ip cells show abundant tumor formation, 14 days post-injection (n=3). 

B. Omental tumor is smaller in R-/S-ketorolac and R-ketorolac treated animals. Omental 

tumor was removed from animals and weighed prior to being separated for RNA 

isolation, protein isolation, or histology. Animals treated with R-/S-ketorolac or R-

ketorolac had smaller omental tumors when compared to placebo treated animals. R-

naproxen treated animals appeared to have smaller tumors, but did not reach statistical 

significance (n=3, p<0.05).  

 

Figure 2.3 –Ketorolac racemates are stable in cell culture. There is no significant 

difference between area under the curve measurements for R-ketorolac or S-ketorolac 

peaks when compared to stock solutions.  Cells were treated with 100µM of R-/S-
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ketorolac, R-ketorolac, or S-ketorolac for 48h. HPLC chromatograms are representative 

of ketorolac treatments recovered from treated SKOV3ip cells, or conditioned media 

(shown). Racemates show no interconversion to the opposite enantiomer when compared 

to stock solutions.  

 

Figure 2.4 – OVCA429 and SKOV3ip cell lines have similar reductions in migration 

following treatment with ML141, NSC23766, or ketorolac. Inhibition of migration 

dose response curves following treatment with ML141, NSC23766, and R-/S-ketorolac, 

R-ketorolac, S-ketorolac. IC50 values for OVCA429 and SKOV3ip ovarian cancer cell 

lines are similar for each drug tested. Cells were plated at 1x105 cells/well in 24-well 

Boyden chambers and allowed to attach for 4h. Drug was then added at appropriate 

concentrations and cells were incubated at 37°C for 48h. After incubation, inserts were 

removed and stained with DAPI. Membrane filters were imaged on a Zeiss inverted 

microscope using a 20x objective.  Three representative fields were counted from each 

treatment group. IC50 values were obtained using GraphPad Prism 5.0 software. Data 

presented are combined from 3 independent trials.  

 

Figure 2.5 - Ketorolac has no effect on SKOV3ip cell proliferation or cell cycle. 

SKOV3ip cells are allowed to grow in culture for 48h in the presence of a CDC42 

specific inhibitor ML141 (10µM), a Rac1 specific inhibitor NSC23766 (30µM), R-/S-

ketorolac (300µM), R-ketorolac (300µM), or S-ketorolac (300µM). A. SKOV3ip cells 

plated in monolayer and allowed to grow in culture for 48h in the presence of either 

racemic or single enantiomers.  Cells were stained using 4mM calcein AM dye for 30 
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minutes at 37°C. Plates were read using an excitation of 490nm and emission of 530nm. 

Cells treated with ketorolac enantiomers showed no significant difference compared to no 

treatment control cells. A significant decrease was noted in cells treated with either 

ML141 or NSC23766. These data were normalized from three separate experiments. 

Significance was determined using a one-way ANOVA followed by Dunnett’s multiple 

comparisons post-test, * indicates p<0.01. B.  SKOV3ip cells were plated in a 96-well, 

non-adherent U-bottom plate and cultured for 96h. Cells were trypsinized for 3 minutes, 

triturated to disaggregate cells, and counted using an Accuri C6 cell analyzer.  There was 

no significant difference between ketorolac treatment groups and no treatment control, at 

basal or EGF stimulated levels. ML141 inhibition of Cdc42 does significantly decrease 

cell proliferation as compared to no treatment, EGF-stimulated levels. Significance was 

determined using a one-way ANOVA followed by Dunnett’s multiple comparisons post-

test.  * indicates significant increase in growth between basal and EGF stimulated levels, 

p<0.05. C. Cell cycle analysis performed by Amanda Peretti. Flow cytometry was 

performed to determine if racemic ketorolac causes cell cycle arrest. SKOV3ip cells were 

treated for 48h with racemic ketorolac or 0.5 µM taxol as a positive control. There was 

no difference in the cell cycle populations of ketorolac treated cells compared to the no 

treatment. Taxol treated cells were significantly different than no treatment group in all 

cell cycle populations. Significance was determined with two-way ANOVA followed by 

Bonferroni post-test. * indicates p<0.001. 

 

Figure 2.6 - Ketorolac has no effect on proliferation in vivo. Omental tumor and 

spleen tissue were collected from animals, fixed in 10% neutral buffered formalin for 24h 
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and transferred to 70% ethanol. Tissues were processed by the UNM-HTR and embedded 

in paraffin wax. Sections from placebo, R-/S-ketorolac, and R-ketorolac were analyzed 

for Ki-67 staining.  A-B. Tumor tissue was stained for Ki-67 proliferation marker. Tissue 

sections were stained by UNM-HTR for human Ki-67 and counterstained using 

hematoxylin. Slides were imaged using an Aperio slide scanner. Nuclei were stained blue 

and those positive for Ki-67 are brown. C. Images were analyzed using Aperio 

ImageScope. For analysis of proliferation, only tumor tissue was used. Tumor tissue is 

circled in green, adjacent tissue is spleen and was not used for analysis. Analysis was 

automated using a proliferation algorithm in ImageScope. Nuclei were scored as 

negative, low, moderate, or strong staining. D. Analysis of proliferation performed by 

ImageScope. Data are presented as percent Ki-67 positive nuclei, sampled from all three 

trials (placebo, n=4, R-/S-ketorolac, n=5, R-ketorolac, n=5). There is no difference 

between treatment groups. Groups were compared using One-way ANOVA followed by 

Dunnett’s multiple comparisons post-test.  

 

Figure 2.7 - Ketorolac has no effect on apoptosis in vivo.  Serial tissue sections from 

the tissue blocks used for Ki-67 staining were obtained from the UNM-HTR. Sections 

were 10µm thick, deparaffinized, and TUNEL staining was performed using Millipore 

Apoptag® Fluorescein In Situ Apoptosis detection kit and counterstained using DAPI. 

Sections were imaged using an Olympus IX70 inverted fluorescent microscope using 

CellSens Dimension software. Image montages were captured at 10x magnification A-B. 

Representative images of placebo section and R-/S-ketorolac treated animals analyzed for 

apoptosis. Positive nuclear staining is green and compared to total blue staining (not 
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shown). Similar to Ki-67 staining, only tumor tissue was analyzed. Due to non-specific 

staining of extracellular matrix and erythrocytes, a threshold was set for positive nuclear 

staining. C. There is no difference in levels of apoptosis between treatment groups (n=5). 

Data are presented as percent positive nuclei. Groups were compared using One-way 

ANOVA followed by Dunnett’s multiple comparisons post-test. 

 

Figure 2.8 - Cdc42 or Rac1 inhibition does not change GTPase gene expression in 

cells or in vivo. A. Inhibition of Cdc42 or Rac1 does not affect gene expression of 

GTPases after 24h EGF stimulation. Cells were plated and cultured for 24h in the 

presence of drug and switched to serum free media for 24h. After 24h, 10nM EGF were 

added cells and cultured for another 24h. RNA was isolated using TRIzol according to 

manufacturer protocol. Following isolation, cDNA was generated using ABI High 

Capacity cDNA kit. qPCR was performed with 4 replicates for each sample using primers 

for Cdc42, Rac1, Rac1b, RhoA, and GAPDH on an ABI7900HT fast real time PCR 

system. CT values were obtained using SDS2.2 software and relative expression to EGF 

stimulation was determined using ΔΔCT values. Data are combined from 4 separate 

collections (n=4). Gene expression for each gene was subjected to One-way ANOVA 

followed by Dunnet’s multiple comparisons post-test. B. Ketorolac treatment does not 

change gene expression in vivo. Tumor tissue preserved in RNAlater was homogenized 

using an RNAse free micropestle in liquid nitrogen. RNA isolation from tumor tissue was 

then performed using QIAshredder columns followed by RNeasy mini kit from Qiagen 

according to manufacturer protocol. Following isolation, cDNA was generated using ABI 

High Capacity cDNA kit. qPCR was performed with 4 replicates for each sample using 
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primers for Cdc42, Rac1, Rac1b, RhoA, and GAPDH on an ABI7900HT fast real time 

PCR system. CT values were obtained using SDS2.2 software and relative expression to 

placebo group was determined using ΔΔCT values. Data presented are from 4 animals 

from each treatment group. Gene expression for each gene was subjected to One-way 

ANOVA followed by Dunnett’s multiple comparisons post-test. 

 

Figure 2.9 – Ovarian cancer cell lines express the Rac1 splice variant Rac1b. DNA 

isolated from immortalized ovarian surface epithelium (IOSE), human keratinocytes 

(HACAT), and the ovarian cancer cell lines DOV13, OVCA3, SKOV3ip, OVCA433, and 

OVCA429, expressed the constitutively active Rac1 splice variant, Rac1b, at different 

levels. Primers used were Rac1 forward primer – 5’AACCAATGCATTTCCTGGAG,  

and Rac1 reverse primer, 5’-TACATGTTTGCGGATAGGATAGGG-3’. PCR product 

was run on a 1% agarose gel stained with SYBR Safe gel stain. Rac1 is identified as a 

band at 467bp, Rac1b is a band at 526bp. 

 

Figure 2.10 - Ketorolac treatment reduces adhesion and MCA spreading. A. 

Inhibition of Cdc42 and Rac1 using ML141 and NSC23766 prevents MCA adhesion at 

4h. LP9 mesothelial cells were cultured in a 96-well dish, on top of collagen and 

fibronectin for 24h to create an organotypic cell culture system. LP9s were stained using 

CellTracker™ CMTPX red fluorescent dye. SKOV3ip MCAs were cultured 48h in the 

presence of drug with 10nM EGF. MCAs were stained with CellTracker™ BODIPY 

green fluorescent dye and transferred to LP9 cell layer in the presence of drug and 

incubated 4h. Cell cultures were rinsed with 1x PBS. Cells were fixed in 4% 
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paraformaldehyde and covered with Vectashield mounting media with DAPI. Wells were 

imaged using an Olympus IX70 inverted fluorescent microscope at 5.5x magnification. 

MCAs treated with ML141, NSC23766, or ketorolac enantiomers were washed from LP9 

cell layer. No treatment MCAs were adherent after 4h. B. Inhibition of Cdc42 and Rac1 

impairs MCA spreading on organotypic cell layer after 24h. Cell culture was performed 

as in 2.10A, except MCAs were cultured on organotypic cell layer for 24h. Cells were 

rinsed and fixed as above. Images are mesothelial clearance and representative of no 

treatment and R-/S-ketorolac treated MCAs. C. Percent area increase from MCA to 

clearance area. MCAs were imaged prior to transfer to mesothelial cells. Mesothelial 

clearance was imaged after 24h incubation with MCAs. Area of MCAs and mesothelial 

clearance were calculated using Olympus CellSens software. Data from mesothelial 

clearance assay are presented as percent area increase and subjected to One-way ANOVA 

followed by Dunnett’s multiple comparisons post-test. All treatment groups showed 

decreased clearance compared to no treatment control, * indicates p <0.05. D. Ketorolac 

treatment does not affect SKOV3ip cell adhesion in vivo. Serial sections from tumor 

tissue stained for Ki-67 (Fig 2.6) were H&E stained and imaged using the Aperio Slide 

Scanner at the UNM-HTR. Slide images were scored by Dr. Donna Kusewitt for 

adhesion versus no adhesion to the splenic capsule. SKOV3ip cells are marked by red 

arrows. Analyzed sections had clear connective tissue between tumor and spleen. Images 

are representative of placebo and R-/S-ketorolac sections. E. Ketorolac treatment does 

not affect SKOV3ip cell adhesion in vivo, (p=0.052 in R-ketorolac and S-ketorolac 

groups). Treatment groups were placebo, n=10, R-/S-ketorolac, n=10, R-ketorolac, n=14, 
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S-ketorolac, n=11. Chi-square analysis compares adhesion vs no adhesion across 

treatment groups and is a measure of adhesion across different animal studies.  
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Figure 2.1 

 

  



68 

 

Figure 2.2 
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Figure 2.3 

 

  



70 

 

Figure 2.4 

 

  



71 

 

Figure 2.5 
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Figure 2.6 
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Figure 2.7 
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Figure 2.8 
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Figure 2.9 
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Figure 2.10 
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Chapter 3 

A novel pharmacologic activity of ketorolac 

for therapeutic benefit in ovarian cancer patients 

Introduction 

 Ovarian cancer is the leading cause of death from gynecologic malignancies and 

the second most common gynecologic cancer (2). Five year patient survival remains less 

than 50% and the mortality rate has not changed appreciably in two decades (2). The 

majority of women are diagnosed with metastatic disease, and although a substantial 

proportion of women respond to initial treatment, recurrence is common (161). Despite 

concerted efforts, identification of effective targeted therapies has remained elusive in 

this disease (162). There remains a great need to identify new strategies to treat and 

manage ovarian cancer.   

 The Ras-homologous (Rho) family of small GTPases (Rac, Cdc42 and Rho) are 

key regulators of cancer-relevant cellular functions including actin reorganization, cell 

motility, cell-cell and cell-extracellular matrix (ECM) adhesion and invasion 

(66,76,163,164). In many human tumors (including colon and breast), there is clinical 

and experimental evidence that aberrant Rho-family signaling contributes to tumor 

growth, survival, invasion and metastasis (76,96,162,165).  Based on these functions, 

Rac1 and Cdc42 have been recognized as attractive therapeutic targets (96,103) and 

inhibitors are effective in experimental systems (112–114,120,166,167) but specific 

inhibitors of Rac1 or Cdc42 have not been translated to clinical use.  

 A Cdc42 selective inhibitor effectively blocked migration of two ovarian tumor 

cell lines (112,120) suggesting that Rho-family GTPases may be potential therapeutic 
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targets in ovarian cancer. Using findings obtained from a high throughput screen of the 

Prestwick library of off patent, FDA-approved drugs and cheminformatics approaches, 

we identified the R-enantiomers of a limited number of non-steroidal anti-inflammatory 

drugs (NSAIDs) as inhibitors of Rac1 and Cdc42.  The corresponding S-enantiomers are 

considered the active component in racemic drug formulations acting as NSAIDs with 

selective activity against cyclooxygenases (COX). One candidate, R-ketorolac, inhibited 

ovarian tumor cell migration and adhesion without causing cytotoxicity (150,168). Our 

data indicate that the clinically administered racemic ketorolac (Toradol®) has two 

distinct pharmacologic activities; the well-established inhibition of COX 1 and 2 by S-

ketorolac serving as the basis of the FDA-approved indication for pain management, and 

a previously unrecognized property of Rac1 and Cdc42 inhibition conferred by the R-

enantiomer. Cell based measurement of GTPase activity demonstrated that R-ketorolac 

specifically inhibits epidermal growth factor stimulated Rac1 and Cdc42 activation at low 

micromolar concentrations. The GTPase inhibitory effects of R-ketorolac in cells mimic 

those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific 

inhibitors (150).  

  In this study we report that R-ketorolac achieved an effective concentration in 

peritoneal fluids and inhibited Rac1 and Cdc42 activity in cells retrieved from the 

peritoneal compartment of post-surgical ovarian cancer patients following administration 

of the racemic drug for postoperative pain management.  A medical record review to 

compare the ovarian cancer-specific survival of ovarian cancer patients who did or did 

not receive ketorolac for post-operative analgesia revealed increased survival of patients 

receiving ketorolac. This observation is in keeping with reports for improved clinical 
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outcomes associated with ketorolac usage, as compared to other NSAIDs, in breast 

cancer patients (126,143,150,160). Although it has been long recognized that R-

enantiomers of NSAIDs are poor inhibitors of cyclooxygenase activity (133,134,151), 

potential pharmacologic activities or benefits of the R-enantiomers has remained largely 

unexplored. Our findings show that Rac1 and Cdc42 are unrealized therapeutic targets in 

ovarian cancer and use of ketorolac may benefit ovarian cancer patients.      

 

Results  

Expression of Rac1 and Cdc42 in ovarian cancer  

 Based on the established functions of Rho-family GTPases, ovarian cancer 

metastasis is predicted to be strongly dependent on Rac1/Cdc42-regulated pathways for 

exfoliation, formation of multicellular aggregates, mesothelial adhesion, and localized 

invasion into the interstitial collagen-rich submesothelial matrix (32,162,169).  To test if 

these GTPases are dysregulated in ovarian cancer, we examined grade dependent 

expression of Cdc42 and Rac1 protein by immunohistochemical staining of human tumor 

samples (Fig 3.1) and GTPase mRNA using quantitative PCR analysis of ovarian cancer 

tissue cDNA arrays (Fig 3.2, 3.3). Cdc42 protein overexpression levels were highly 

significant for malignant, high grade tumors (p<0.001) compared to lower grade tumors 

without an apparent increase in mRNA levels.  In contrast, there was little evidence of 

increased expression of Rac1 protein with increasing grade (Fig 3.1). However, 

significantly elevated expression of a constitutively active splice variant Rac1b (170–

172), was detected in ovarian tumors (Fig 3.2).  These findings provide evidence for 



80 

 

aberrant expression of Rac1 and Cdc42 in ovarian cancer and suggest that they may 

represent therapeutic targets for this disease.   

 

Study design and patient population  

 In previous work, we identified R-ketorolac as an inhibitor of Rac1 and Cdc42 at 

low micromolar concentrations (123,150). R-ketorolac is inactive against the enzyme 

targets of S-ketorolac, COX-1 and COX-2 (133,134,151), and the inhibitory 

concentration IC50 values for inhibition of Rac1 and Cdc42 by S-ketorolac were more 

than 100-fold greater than R-ketorolac (123).  Thus, the racemic R-/S-ketorolac possesses 

two distinct pharmacologic activities and our findings identify R-ketorolac as a novel 

inhibitor of Rac1 and Cdc42.    

 In this “Phase 0” feasibility study, ketorolac was administered for its FDA-

approved indication for post-operative pain management. Eligible patients had suspected 

advanced stage ovarian, fallopian tube or primary peritoneal cancer with planned optimal 

cytoreductive efforts. Secondary eligibility was met if the patient had confirmed ovarian 

cancer, was optimally cytoreduced and had an intraperitoneal (IP) port placed for planned 

peritoneal chemotherapy. The patients had no active post-operative bleeding, did not 

require therapeutic anticoagulation and had good post-operative organ function. Forty-

two patients met primary eligibility, and considering secondary eligibility requirements, 

twenty patient samples were collected at surgery.  Samples of blood and peritoneal fluids 

after ketorolac administration were obtained from thirteen patients. Pathologic analysis of 

the twenty surgical samples confirmed fifteen patients (75%) had stage III or IV disease. 

Histologically, 100% had high-grade carcinoma; one was a carcinosarcoma, 16/19 were 
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pure serous carcinomas, one was primary peritoneal and one fallopian tube primary, and 

the rest ovarian primary tumors. The average age was 60.8 (Range 33-81), race and 

ethnic distribution was 85% Caucasian (29.4% Hispanic), 5% American Indian and 10% 

Black or African American.  Ketorolac dosages administered based on clinical 

indications were 15 mg (33% of patients) or 30 mg (77% of patients).  As illustrated in 

Fig 3.4A, blood and peritoneal fluid were obtained at T=0, 1 h, 6 h and 24 h after 

administration of the recommended dose of ketorolac.   

 

Distribution of R- and S-ketorolac in peritoneal fluids.  

 Serum and peritoneal fluid samples were analyzed by HPLC to resolve and 

quantify R- and S-ketorolac enantiomers in order to determine enantiomeric ratios and 

distribution over time (Fig 3.4B,C). Clinical-grade ketorolac tromethamine is a 1:1 

mixture of R- and S-enantiomers (Fig 3.5); however, the racemic distribution favors the 

R-form in both serum and peritoneal fluids at each time point in keeping with the 

established shorter half-life of S-ketorolac in human serum based on differences in 

pharmacokinetic parameters for each enantiomer (134,151,173). Ketorolac distributes to 

the peritoneum within 1h after IV administration, and ketorolac levels in the peritoneal 

fluids are nearly equivalent to those present in the serum at 6 h and decline dramatically 

by 24 h in both serum and peritoneal fluids. Our results represent the first evidence of 

ketorolac distribution to peritoneal fluids. The half-maximal inhibitory concentration IC50 

for Rac1 and Cdc42 by R-ketorolac are 0.57 and 1.07 µM, respectively whereas the IC50 

values for S-ketorolac for these targets was >100 µM (123). The concentrations of R- and 

S-ketorolac in the peritoneal fluids were 0.98 µM and 0.32 µM respectively, 6 h after IV 
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ketorolac administration.  Thus, R-ketorolac achieved concentrations in the peritoneal 

fluids at or above the IC50 values for Rac1 and Cdc42 and is predicted to inhibit these 

GTPase targets in cells obtained from this compartment.  

 

Analysis of patient-derived cells.  

 Tumor cell enriched fractions were prepared from ascites samples obtained at the 

time of cytoreductive surgery from ovarian cancer patients and post-surgery immediately 

prior and 1 h, 6 h, and 24 h post IV ketorolac administration (Fig 3.4A). Both Rac1 and 

Cdc42 were highly activated in freshly isolated tumor cells from ascites and the activity 

level declined within 48 h in culture medium (Fig 3.6A) suggesting that the ovarian 

tumor environment fosters Rac1 and Cdc42 GTPase activation.  Post-surgery, we 

observed a statistically significant decrease in Rac1 and Cdc42 activity with time after 

ketorolac administration (Fig 3.6B,C). In contrast, RhoA activity was insensitive to 

ketorolac (Fig 3.8), further affirming the selectivity of the drug. R-ketorolac 

predominates in the peritoneal fluids at the S-enantiomer is virtually undetectable at 24 h 

(Fig 3.4C) indicating that the R-enantiomer is bioactive and accounts for the observed 

inhibition of the GTPases in vivo.    
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Retrospective patient outcomes review   

 Peri-operative ketorolac was used in 14% of the 123 women in the study. 

Younger women (<50 years) were more likely than older women to receive peri-

operative ketorolac (p<0.05); all other clinical and treatment characteristics were similar 

between the two groups. At 60 months of follow-up, 3/17 ketorolac treated patients 

(18%) and 40/92 non-treated patients (43%) had died of ovarian cancer. Stratified log-

rank tests for categorical factors such as age group, AJCC stage, completion of 

chemotherapy as planned, and receipt of neo-adjuvant chemotherapy as coded in Table 

3.1, showed a consistent ketorolac survival benefit in each strata (Figs 3.10-3.13). The 

better survival in women treated with ketorolac consistently found in the stratified 

analysis was also evident in the proportional hazards analysis when we adjusted for age at 

diagnosis, AJCC stage, completion of chemotherapy as planned, and receipt of neo-

adjuvant chemotherapy: the adjusted hazard ratio for ovarian cancer-specific mortality 

associated with perioperative ketorolac (yes vs. no) was 0.30 (95% CI 0.11-0.88) (Table 

3.1). On the basis of the proportional hazards model, an example survival plot is shown in 

Fig 3.9 for women who had AJCC stage III cancer, were 50-60 years at diagnosis, did not 

receive neoadjuvant therapy, and completed post-surgery chemotherapy as planned.  

Other survival plots are shown in Figs 3.10-3.13 and while these plots highlight the 

results for women who completed their post-surgery chemotherapy as planned, all 

combinations of women defined by stage of disease, age at diagnosis, neoadjuvant 

therapy, and post-surgery chemotherapy showed a consistently better survival with 

ketorolac versus without. These preliminary findings suggest that perioperative ketorolac 

reduces ovarian cancer-specific mortality.   
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Discussion   

 In many human cancers, aberrant Rho-family GTPase activity or downstream 

signaling pathways are associated with increased aggressiveness and poor patient 

prognosis (54,67,76,103,173). The specific mechanisms by which Rho-family GTPases 

modulate tumor development and progression remain under investigation 

(54,76,162,163,165,174); however, experimental evidence places Rac1 and Cdc42 within 

the metastatic cascade. Little is known regarding Rac1 and Cdc42 expression in ovarian 

cancer. We demonstrated elevated expression of Rac1 and Cdc42 in human ovarian 

cancer specimens and high activity of these GTPases in freshly isolated tumor cells from 

ascites obtained at surgery (Figs 3.1 and 3.6). In a recent study, high Rac1 protein 

expression in ovarian cancer was associated with early recurrence and poor prognosis 

(59). Furthermore, partial silencing of Rac1 by shRNA decreased tumor cell proliferation, 

migration and invasion in culture, and decreased growth of subcutaneous ovarian cancer 

xenografts in vivo (59). We find that R-ketorolac inhibits adhesion and invasion of 

primary human ovarian tumor cells from patient ascites (150) thereby indicating that 

pharmacologic inhibition of Rac1 and Cdc42 also blocks these tumor-relevant functions. 

The cumulative observations in conjunction with inhibition of ovarian tumor cell 

migration by a Cdc42 specific inhibitor (112) indicate the potential value of targeting 

Rac1 and Cdc42 in ovarian cancer.  

  In the present study, we show evidence that Rac1 and Cdc42 inhibition can be 

achieved in ovarian cancer patients following administration of racemic ketorolac 

(Toradol®).  Ketorolac is a 1:1 racemic mix of the R- and S-enantiomers. The S-form 

inhibits COX enzymes which confers the drug’s anti-inflammatory activities. The COX 
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inhibitory action of S-ketorolac supports its indication for post-operative pain 

management, but also limits its long term use due to COX-related toxicity (133,134,151). 

R-ketorolac has little activity against COX (133,134,151) and therefore is not functional 

as an NSAID, but is bioactive and inhibits Rac1 and Cdc42 (150). Importantly, the levels 

of R-ketorolac within the peritoneal fluids were sufficient to inhibit Rac1 and Cdc42 

activity in cells obtained from the peritoneal cavity following ketorolac administration.  

The innovative Phase 0 clinical trial design enabled real time sampling of fluids and cells 

from the peritoneal cavity. Direct demonstration of the difference in racemic distribution 

of ketorolac enantiomers illustrates the value of a study design that allows direct testing 

of drug and cell activities within peritoneal fluids rather than extrapolation from serum 

drug levels.   

  Furthermore, the peritoneal bioactivity of ketorolac is shown to have benefit for 

ovarian cancer patient outcomes. We found that perioperative use of ketorolac reduces 

ovarian cancer specific mortality (Fig 3.9). There is precedence in the literature that 

ketorolac usage in the perioperative period is associated with improved cancer outcomes. 

The first observation was made for breast cancer patients in 2010 (143). In this study, 

ketorolac use was associated with a decrease risk of breast cancer relapse (HR=0.37, 

95%CI=0.0-0.79).  Follow-up papers noted that this relapse reduction was most 

pronounced in the first 24 months post-surgery (126, 143).  No change in breast cancer 

recurrence was noted in patients who received sufentanil, clonidine, ketamine, or other 

intraoperative analgesics. Lung cancer patients receiving ketorolac displayed improved 

overall survival as well (175).  The authors hypothesize that the benefit is due to the anti-

inflammatory actions of ketorolac, particularly on the extravasation of circulating tumor 
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cells in the transient inflammatory environment stimulated by surgery (126). Ketorolac 

appears to have more pronounced positive outcomes than other NSAIDs (126), and this 

may be based on the combined impact of anti-inflammatory activity by the S-enantiomer 

and R-enantiomer effects on Rac1 and Cdc42 leading to decreased adhesion and 

implantation of circulating or residual tumor cells. Ketorolac is not cytotoxic to ovarian 

tumor cells (150), but predicted decreases in establishment or further development of 

micrometastases due to Rac1 and Cdc42 inhibition would be expected to improve 

response to subsequent chemotherapy, which cannot be initiated until patients have 

recovered from cytoreductive surgery.    

 Collectively, our findings support the potential repositioning of ketorolac as an 

addition to current ovarian cancer therapy.  Our work demonstrates that the R-enantiomer 

of ketorolac acts as a first-in-class drug for inhibition of the cancer-relevant targets Rac1 

and Cdc42 (123,150) and provides the first evidence that these therapeutic targets can be 

inhibited in humans using an approved drug. There is precedence for pharmacologic 

activities dictated by R-enantiomers of specific NSAIDs against novel (non-COX) targets 

(145,159,176). For example, R-etodolac and its analogs SDX-301 and SDX-308 display 

anti-tumor activity in chronic lymphocytic leukemia and activity against multiple 

myeloma in cell and animal models (145,159,160,176–178). R-etodolac also significantly 

suppressed tumors in a colitis-related mouse model colon cancer (145) and retarded 

tumor development and metastasis in a transgenic mouse model of prostate cancer (176). 

These examples and others demonstrate that R-enantiomers of NSAIDs can possess 

unanticipated anticancer activities based on interactions with non-COX targets. Further 

evidence that targeting Rac1 may provide therapeutic benefit in ovarian cancer was 
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recently reported (64). Zoledronic acid is a nitrogen containing bisphosphonate that 

inhibits prenylation of small GTPases.  

 Administration of this drug decreased growth of ovarian cancer peritoneal 

xenografts through inhibition of angiogenesis driven by a Rac1 mediated pathway (64). 

Collectively, our results suggest that racemic ketorolac may provide a survival benefit to 

ovarian cancer patients through inhibition of COX enzymes by the S-enantiomer and 

inhibition of the small GTPases Rac1 and Cdc42 by the R-enantiomer. Additional studies 

to determine whether clinical benefit can be observed in ovarian cancer patients through 

perioperative administration of ketorolac in a placebo-controlled clinical trial are in 

process. 

 

Patients and Methods   

Immunohistochemical analysis of GTPase targets  

 Immunohistochemical staining was performed using standard procedures. Rac1 

was stained with mAb (clone 102, BD Biosciences, 10155-1-AP) and Cdc42 was stained 

with rabbit pAb (Protein Tech Group). A Vectastain Ready-to-Use (RTU) 

ABCperoxidase kit and ImmPact DAB (SK-4105) were used to visualize primary 

antibody labeling with hematoxylin nuclear counterstain (H-3401) for tissue staining and 

samples were mounted in VectaMount (H-5000); (all from Vector Laboratories).  

 For large scale ovarian tumor profiling, tissue microarrays were purchased from 

US BioMax, Inc. (Rockville, MD, cat# OV1005 061 and OV8010 009).  In total 180 

unique tissue samples were included in the evaluation; ranging from stage I-IV and 

grades 1-3 (Table 3.2). All tumor types were validated and staining was scored by a 
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pathologist with gynecologic pathology specialty (Dr. Lesley Lomo) and evaluated for 

location (nuclear and cytoplasmic), as well as intensity of positive staining. Scoring was 

based on the product of the percentage of cells stained and the intensity of the staining in 

each localization (3+: strong, 2+: intermediate, 1+: weak and 0: no staining), resulting in 

a minimum of 0 (100% cells x 0) and a maximum of 300 (100% cells x 3+).      

  Specimens were deparaffinized and hydrated using xylene and graded ethanol 

solutions finishing with phosphate buffered saline. Epitopes were retrieved using a Tissue 

Tek decloaking chamber (Biocare Medical) at 120.5°C for 15 min and allowed to cool 

slowly to room temperature. Pretreatment with hydrogen peroxide (3%) in phosphate 

buffered saline was used to reduce background.  

  To optimize staining conditions, selected cases representing residual, deidentified 

specimens from patients who had undergone diagnostic and therapeutic surgery for 

malignant (primary ovarian cancer, or prostate, breast or colorectal cancer as case 

controls) and non-malignant diseases (benign ovarian neoplasms, or benign prostate, 

breast or colorectal neplasms as case controls) were obtained through the UNM Human 

Tissue Repository under an approved IRB protocol (SRC001-10). Colon cancers 

overexpressing Rac1 and Cdc42 served as a positive control and ovarian tumor tissue was 

comparatively evaluated against benign ovarian tissue.  
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Quantitative PCR (qPCR) of ovarian cancer cDNA arrays    

 qPCR analysis of Rho family GTPases was performed using Tissuescan Ovarian 

Cancer cDNA microarrays from Origene (Rockville, MD, cat# HORT301, HORT302, 

HORT303) and standard techniques (Table 3.3).  qPCR was performed using Origene 

SYBR Green I master mix solution diluted to a final concentration of 1X with primers at 

a concentration of 0.33μM.  PCR mix was added to each well of the microarray plate and 

incubated on ice for 15m to dissolve the cDNA. qPCR was conducted using a Bio-Rad 

iCycler (Hercules, CA) under the following conditions; 95° for 5m, 30 cycles of (95° for 

15s, 60° for 30s, 72° for 1m), followed by melt curve analysis, hold at 4°.  CT values 

obtained using iCycler software. Relative expression levels were determined using ΔΔCT 

values. Amplification utilized Qiagen Quantitect primers for Cdc42 (Valencia, CA, 

QT01674442), Rac1 (QT00065856), RhoA (QT00044723), and β-actin (Origene), and 

custom Rac1b forward primer, 5’-TCCGCAAACAGTTGGAGA-3’, was coupled with 

Rac1 reverse primer, 5’CTACATGTTTGCGGATAGGATAGGG-3’, synthesized by 

Invitrogen (Carlsbad, CA).  The identity of the PCR product as Rac1b was confirmed by 

sequence analysis.   

  

Patients, study design and treatment  

 A Phase 0 trial investigating the use of postoperative ketorolac was reviewed and 

approved by the University of New Mexico Health Sciences Center Human Research 

Review Committee (clinicaltrials.gov - NCT01670799). Patients presenting with a new 

diagnosis of ovarian, fallopian tube or primary peritoneal cancer were screened for 

eligibility. Eligible women were at least 18 years old, an ECOG Performance Status <2 
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and had consented to a planned debulking surgery- Consent was obtained prior to surgery 

if primary eligibility was met. Secondary eligibility after surgery included confirmed 

histologic diagnosis of epithelial ovarian, fallopian tube or primary peritoneal cancer; 

optimal cytoreduction and placement of an intraperitoneal port for planned 

chemotherapy; adequate renal function and no postoperative complications prohibiting 

ketorolac use. Patients with known bleeding disorders or other contraindications to 

NSAID use were excluded.  

 Subjects received a single IV dose of Toradol® (15 or 30 mg based on the patient 

age and creatinine clearance) within the first 72 hours of surgery when all clinical safety 

parameters were met. Use of other NSAIDs during the trial were not permitted; however 

narcotic regimens were allowed for postoperative pain management. All study protocols 

were reviewed by an independent data and safety monitoring board. Baseline ascites 

samples were obtained at surgery. Subsequent peritoneal fluid samples were collected 

from the intraperitoneal port prior to dosing and at 1, 6, and 24 h after single dose 

ketorolac administration.  Peripheral blood was collected at the same time points. Serum 

and peritoneal fluid were separated from cellular material via low speed centrifugation. 

Tumor cells were further purified on Ficoll gradients to remove red blood cells and 

negative selection with anti-CD45 beads to remove lymphocytes.  The resulting tumor 

cell fractions were analyzed by flow cytometry for EpCAM and MUC16/CA125 (Fig 

3.7).  

 

High performance liquid chromatography  

 R- and S-enantiomers of ketorolac were analyzed by high performance liquid 

chromatography (HPLC) using published procedures (179). HPLC performed with a 
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50mm long 5μm silica guard column (Phenomenex, 03B-4053-N0) attached to a 

Partisil® 5 µm ODS(3) 85 Å LC Column 150 x 4.6 mm (Phenomenex, 00F-0120-E0) 

followed by a Lux 5 µm Cellulose-3 50 x 4.6mm in reverse phase (Phenomenex, 00G-

4493-E0). The columns are equilibrated with acetonitrile/0.1% Formic acid in water 

(25:75) at a flow rate of 2ml/min. A standard curve of racemic ketorolac in water was 

generated based on an injection volume of 10μl and ketorolac was detected on a UV310 

detector. 500μl serum (or ascites) samples were mixed with 200μl of 600mM sulfuric 

acid then diluted and mixed in 3ml diethyl ether. The organic layer was separated by 

centrifugation at 2500 rpm for 5 min using a Hermle Z440K. The organic layer was 

removed and evaporated to dryness, then reconstituted in 200μl mobile phase. Retention 

times for R-ketorolac and S-ketorolac were 5.1 min and 6.1 min respectively, and were 

validated against each individual enantiomer.  The R-value for the standard curve of total 

ketorolac was 0.9997 and represented a concentration range that spanned established 

human serum concentrations (0.092 μg/ml to 6.0 μg/ml).   

 

Analysis of GTPase activity  

 Two methods were used to assess GTPase activity in cells based on effector 

binding. Commercial GLISA kits from Cytoskeleton, Inc., analyzed Rac1 (Denver, CO, 

cat# BK-128), Cdc42 (BK-127) or RhoA (BK-124) per manufacturer instructions.  

Alternatively, Rac1, Cdc42 and RhoA activities were measured using a flow cytometric 

effector binding assay (123,180). Briefly, active Rac1 and Cdc42 GTPases in prepared 

cell lysates were quantified individually based on binding to GST-PAK1-PBD from 

Millipore (Bellerica, MA, cat#14-864) immobilized on GSH beads and use of specific 



92 

 

antibodies for bound GTPase detection. Antibodies used to quantify the amount of active 

(GTP-bound) GTPases captured on the beads are listed in Supplemental Methods. 

Fluorescence intensity (mean channel fluorescence, MCF) was measured by flow 

cytometry (Accuri C6). GTPase activity was calculated by (MCF of sample group – MCF 

of unstimulated group) / MCF of stimulated group. Equal amounts of protein were used 

for each assay.    

 

Isolation of patient derived cells  

 To purify ovarian cancer cells from ascites, cells were recovered from ascites 

samples by low speed centrifugation at 1000 rpm. The cell pellets were gently 

resuspended and overlaid on a Ficoll (density 1.077±0.001 g/ml; GE Helathcare 17-5442-

02) to separate red blood cells from lymphocytes and tumor cells per manufacturer's 

instructions.  Anti-CD45 beads (Life Technologies) were used to deplete lymphocytes 

and the resulting tumor cell fraction was analyzed visually and by flow cytometry. For 

flow cytometric analysis, cells suspended in phosphate buffered saline (PBS) were fixed 

with formaldehyde (2-4% final concentration) for 10 min, chilled for 20 min and then 

processed for immunostaining as described by Cell Signaling Technology 

{http://www.cellsignal.com/contents/resources-protocols/flow-cytometry-

protocol(flow)/flow; webpage Accessed July 22, 2014}. Briefly, non-specific mAb 

binding to human Fc receptor was blocked by pretreatment for 10 min at room 

temperature with human Fc receptor binding inhibitor (14-916, Affymetrix eBioscience).  

Antibody staining was performed in PBS containing 0.5% BSA using 0.5-1 x106 

cells/assay for one hour at room temperature.   
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  Tumor cell fractions were positive for EpCAM (detected with mAb against 

EpCAM clone BerEP4, Dako) and MUC16/CA125 (detected with a Cy5-labeled rabbit 

pAb directed against human MUC16/CA125; bs-0091R-Cy5, Bioss Antibodies) and 

negative for CD45 (detected with a PElabeled rabbit pAb directed against human 

CD45/LCA, 12-9459, Affymetrix eBioscience) (Fig 3.7).    

 For analysis of GTPase activity in patient-derived cells, active RhoA was 

quantified based on binding to GST-Rhotekin (RT01, Cytoskeleton, Inc.). Antibodies 

specific for Cdc42 (sc-8401, Santa Cruz Biotechnology, Inc.), Rac1 (610650, BD 

Transduction Labs) or RhoA (26C4, sc-418, Santa Cruz Biotechnology, Inc.) and Alexa 

Fluor 488 donkey anti-mouse lgG (A21202, Life Technologies) were also used. 

 

Retrospective patient outcomes review  

 A medical record review was conducted under institutional review board approval 

with a waiver of patient consent. Ovarian cancer patients were identified from the New 

Mexico Tumor Registry [NMTR] a member of the population-based Surveillance, 

Epidemiology, and End Results [SEER] Program of the National Cancer Institute (2). 

Inclusion criteria were as follows: invasive, epithelial ovarian cancer (any histology), age 

40-79 years at diagnosis, years of diagnosis 2004–2006, and receipt of surgery at an 

Albuquerque, NM hospital (only three hospitals in the metropolitan area provide this 

level of surgery).  Diagnosis years of 2004-2006 ensured at least 6 years follow-up 

(mortality followed through Dec 31, 2012) for each patient.  We abstracted the surgical 

medical records for all analgesics and anesthesia medications used before hospital 

admission, during surgery and hospital stay, and given at discharge. Of the 138 potential 
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cases, 6 women did not undergo surgery because of advanced disease/severe 

comorbidities or desired palliative care only, 1 woman had her surgery in another state, 2 

women died before surgery, and medical records were not located for 6 women, leaving 

123 women in the final analysis.   

 

Statistical analysis  

 qPCR findings for GTPase expression levels were analyzed using one-way 

ANOVA followed by Dunnett’s multiple comparisons test to determine differences 

between ovarian cancer grade. IHC data was analyzed using one-way ANOVA followed 

by Tukey's post test to determine significant differences between groups. Data obtained 

from patient fluid and cell samples was analyzed as a repeated measure ANOVA 

followed by Dunnett’s multiple comparisons test to determine significant differences 

between groups.  For the retrospective medical record review, information from the 

medical record was merged with information from the NMTR for final analysis. Clinical 

and treatment characteristics of patients who did and did not receive peri-operative 

ketorolac were compared with chi-square tests and t-tests. In a preliminary, crude 

analysis the Kaplan-Meier method was used to estimate the survival probabilities. The 

difference in survival based on receipt of peri-operative ketorolac was examined using 

the stratified log-rank test to adjust the effect of a single categorical factor such as age 

group, AJCC stage, etc. Because this was an observational study and not a randomized 

controlled trial, the final analysis was based on a Cox proportional hazards model to 

adjust for clinical and treatment characteristics that may have differed between those who 

did and did not receive peri-operative ketorolac. We estimated the hazard ratio (HR) for 
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ovarian cancer-specific mortality comparing those who did and did not receive peri-

operative ketorolac while adjusting for age at diagnosis (<50, 50-64, >65) AJCC stage (I, 

II, III, IV), completion of chemotherapy as planned (yes, no), and receipt of neoadjuvant 

chemotherapy (yes, no). Based on the Cox proportional hazards regression, an example 

survival plots are presented in Figs 3.9-3.13.  
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Table 3.1 

Table 3.1. Hazard ratios (HRs) for ovarian cancer specific mortality for each 
characteristic adjusted for the other characteristics in the table. 

Characteristic Number Hazard Ratio (95% 
Confidence Interval) 

p-value** 

Peri-operative ketorolac   

.013         No 106 1.00 (referent) 

        Yes 17 0.32 (0.11 – 0.90 ) 

AJCC* stage   

.048 

        I 26 1.00 (referent) 

        II 11 0.50 (0.11 – 2.39) 

        III 57 2.14 (0.96 – 4.80) 

        IV 29 1.60 (0.67 – 3.80) 

Age (years)   

.054 
        < 50 36 1.00 (referent) 

        50 – 60 55 2.39 (1.13 – 5.01) 

        60 + 32 1.74 (0.77 – 3.93) 

Neoadjuvant chemotherapy   

.040         No 101 1.00 (referent) 

        Yes 22 1.99 (1.07 – 3.73) 

*: AJCC = American Joint Committee on Cancer 
**: Likelihood Ratio Test p-value 
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Table 3.2   

Table 3.2. Patient Characteristics for IHC Microarrays OV1005 and OV8010  

Age#  46.6 +/- 13.7 (std. dev) 

Stage I#   12 

  A 5 

  B 5 

  C 4 

Stage II#   21 

  A 13 

  B 6 

  C 3 

Stage III#   1 

  C 31 

Stage IV#   11 

Stage undetermined#   51 

Normal stroma   20 

Benign/borderline    25 

Grade - Low* (1#)   13 

Grade - Intermediate* (1-2, 2#)   7 

Grade - High* (2, 2-3, 3#)   98 

*Diagnoses by board certified pathologist with gynecologic pathology specialization were as 
follows:  Clear cell carcinoma (4); endometrioid  carcinoma (13); endometrioid neoplasm (5); 
mucinous carcinoma (4); mucinous neoplasm (9); mucinous cystadenoma (5); normal stroma 
only-no epithelia (20); papillary serous carcinoma (78); serous neoplasm (5); serous 
cystadenoma (4); undifferentiated carcinoma (16). There was 77% agreement with #BioMax 
specification sheet, differences were confined to ID of rarer subtypes (endometrioid, clear cell, 
mucinous, transitional and serous). Samples included in analysis: 163 of 180 total (9% were 
excluded due to poor staining at edge of slide or no neoplasm in the section).   
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Table 3.3 

Table 3.3 - Patient Characteristics for cDNA Microarray  

Age  57.26 -/+ 14.85 (st. dev)  

Stage I  A  20  

  B  8  

  C  10  

Stage II  A  4  

  B  9  

  C  4  

Stage III  A  15  

  B  17  

  C  26  

Stage IV  A  10  

Grade Not Reported     10  

Grade I    9  

Grade II    32  

Grade III    60  

Grade IV    9  

Diagnoses were as follows:  Carcinoma of Ovary (2); Carcinoma of ovary, 
endometrioid (6); Carcinoma of ovary, papillary serous (8);  Carcinoma of 
ovary, clear cell (1); Adenocarcinoma of ovary, endometrioid (23); 
Adenocarcinoma of ovary, papillary serous (32); Adenocarcinoma of ovary, 
serous (28); Adenocarcinoma of ovary, metastatic (2); Adenocarcinoma of 
ovary, mucinous (4); Adenocarcinoma of ovary, clear cell (5); Tumor of ovary, 
borderline (2); Tumor of ovary, papillary serous, borderline (2); Tumor of 
ovary, serous, borderline (5). These microarray plates consisted of 19 normal, 
9 Grade I, 32 Grade II, 60 Grade III, 9 Grade IV, and 10 grade not reported 
patients. Patients with grade not reported were not included in grade analysis.  
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Table 3.4 

Table 3.4 - Ketorolac enantiomer concentration in 
serum or peritoneal fluids.  

Sample [R] μM [S] μM 

Serum 1h 3.97 1.65 

Serum 6h 1.44 0.33 

Serum 24h 0.40 0.02 

Ascites 1h 0.5 0.33 

Ascites 6h 0.98 0.32 

Ascites 24h 0.27 0.03 
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Figure Legends 

Figure 3.1 – Overexpression of Rac1 and Cdc42 protein in ovarian cancer 

specimens. A-C Representative images of ovarian serous cancer tissue are shown. 

Clinical characteristics of the samples in the array are provided in Supplemental Table 

S1. Magnification 200X. Scale bar 20µm.  A Hematoxylin/Eosin staining of normal 

ovarian tissue (H&E). B-C Samples were stained with antibodies against Rac1 or Cdc42 

and avidin/biotin horse radish peroxidase enzyme complex.  Controls and tissue samples 

were developed for identical times. D-E Tissue pathology and staining evaluated by 

board certified pathologist with gynecologic pathology specialization (Dr. Lesley Lomo, 

Dept of Pathology, UNM) and statistical analyses by statistician (Dr. Ed Bedrick, Dept of 

Biostatistics, University of Colorado). For Rac1 one way non-parametric ANOVA 

(p=0.0087) and Tukey's post-test shows normal stroma vs. intermediate to high grade 

carcinoma p<0.05 with all other comparisons non-significant. For Cdc42 one way non-

parametric ANOVA (p=0.0001) and Tukey's post-test shows normal stroma and benign 

to borderline tumor vs. intermediate to high grade carcinoma p<0.05 with all other 

comparisons non-significant.  

 

Figure 3.2 – Expression of constitutively active Rac1b mRNA is elevated in ovarian 

cancer specimens.  Tissuescan ovarian cancer cDNA microarrays (Origene) were 

amplified using primers against Rac1, Rac1b, Cdc42, RhoA, and β-actin as described in 

methods. As per the manufacturer's description, patients with endometriosis, leiomyoma 

of myometrium, follicular cysts, abscesses, or secretory endometrium, but otherwise 

healthy ovarian tissue, were considered normal (n=19). Tissues defined as low grade have 
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a FIGO score of 1 (n=19) or 2 (n=32). Tissues considered high grade have a FIGO score 

of 3 (n=60) or 4 (n=9).  The cDNAs of 10 patients were excluded due to a lack of grade 

information. Clinical characteristics of the samples in the array are provided in 

Supplemental Table S2.  Groups were compared to normal using a two-tailed t-test, and 

significant increase in Rac1b was detected.  * indicates significance is p<0.05. Serous 

only, analysis by grade is reported in Supplemental Figure S1.  

 

Figure 3.3 – Expression of Rho-family GTPases in primary patient cDNA samples 

analyzed by grade for serous cancer only. Tissuescan ovarian cancer cDNA 

microarrays (Origene) were amplified using primers against Rac1, Rac1b, Cdc42, RhoA, 

and β-actin as described in methods. This analysis does not include endometrioid tissue.  

As per the manufacturer description, patients with leiomyoma of myometrium, follicular 

cysts, abscesses, or secretory endometrium, but otherwise healthy ovarian tissue, were 

considered normal (n=11). Data from two normal patients were not included due to Grade 

3 carcinomas of adjacent tissues. Tissues are grade I (n=2), grade II (n=24), grade III 

(n=48), or grade IV (n=9). The cDNA of 10 patients were excluded due to a lack of grade 

information. Groups were compared to normal cDNA using a two-tailed t-test, * indicates 

significance is p<0.05.  

 

Figure 3.4 – Ketorolac distributes to peritoneal fluids and is enriched in the R-

enantiomer.   A Ascites samples were obtained at cytoreductive surgery and one to three 

days after surgery patients received a single dose of either 15 mg or 30 mg of clinical 

racemic ketorolac. Blood and peritoneal fluid from patients were collected prior to dosing 
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(T=0), and at 1 hour, 6 hours, and 24 hours after dosing as depicted by the arrows. B-C 

Ketorolac enantiomers (R and S) were measured in blood and peritoneal fluids using 

HPLC.  B Total ketorolac levels in sera and peritoneal fluids. C The levels of each 

ketorolac enantiomer (R or S) at each time point in sera and peritoneal fluids were 

measured. Concentration conversion to micromolar in serum and peritoneal fluids is 

provided in Table 3.3. Administered drug is a 1:1 ratio of R to S (Fig 3.5), but S-

ketorolac is eliminated more rapidly than R-ketorolac leading to a ratio favoring the R-

enantiomer in both serum and peritoneal fluids. The R-value for the standard curve used 

to calculate the ketorolac concentrations was 0.9997 and represented a concentration 

range that spanned established human serum concentrations [0.092 μg/ml to 4.0 μg/ml; 

3.0 μg/ml= 10 μM).  

 

Figure 3.5 – Racemic distribution of clinical drug. To confirm that this apparent shift 

in racemic ratio was not due to either 1) unequal distribution of the racemates in the 

administered drug or 2) differential extraction of each racemate from serum proteins, we 

conducted control experiments. A Racemic distribution of ketorolac enantiomers of the 

clinically administered drug was confirmed by HPLC. B Clinical grade ketorolac 

incubated with human serum (shown) and ascites fluid (not shown, but identical results) 

at 37°C for 1 hr and the samples were then processed as for samples obtained from 

patients. The equal distribution of R- and S-ketorolac in the extracted control sample 

indicates that the difference in enantiomer composition in patient samples is not due to 

differential extraction from serum proteins during sample processing and more likely 
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represents a pharmacokinetic parameter such as preferential binding of S-ketorolac to 

tissue proteins.   

 

Figure 3.6 – GTPases are activated in patient ascites and inhibited by ketorolac 

administration in vivo. A GTPase activity and target inhibition in patient derived cells.  

GLISA PAK-effector binding was used to individually detect activated Rac1-GTP or 

Cdc42GTP in tumor cells isolated from ovarian cancer patient ascites. Purified GTP-

loaded GTPases were used to calculate ng GTP-bound GTPase in the patient sample. 

Unpaired, two-tailed t-tests showed samples in culture for 48 h were statistically different 

from fresh ascites samples for both Rac1 and Cdc42 (p=0.0109). The levels of active 

GTPase declined sharply with 48 h in culture indicating that soluble factors in the ascites 

serve to upregulate Rac1 and Cdc42 GTPase activities. B-C Rac1 GTPase target 

inhibition following administration of racemic ketorolac to ovarian cancer patients post-

surgery. Cells isolated from patient ascites samples post-surgery were assayed for active 

Rac1 or Cdc42 using a flow based effector binding assay. Patient diagnoses were all 

stage III, high grade ovarian serous or papillary serous carcinoma, with one mixed serous 

endometrioid carcinoma and one suspected primary peritoneal carcinoma (Pt 20, 24, 35, 

39, 43).  Fluorescence readings were normalized to the 0 h time point drawn immediately 

prior to ketorolac administration. For Rac1, one way non-parametric ANOVA (p=0.0009) 

and Bonferroni multiple comparisons test *indicates p<0.05, ** indicates p<0.01 for: 0 h 

vs 6 h (**); 0 h vs 24 h (**); 1 h vs 6 h (*); 1 h vs 24 h (**). Differences between 0 h vs. 

1 h and 6 h vs. 24 h were non-significant.  For Cdc42, one way non-parametric ANOVA 

(p=0.0250) and Bonferroni multiple comparison test p<0.05 for 0 h vs 24 h (*) was 
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significant and all others were non-significant. RhoA was not responsive to ketorolac 

(Fig 3.8).  

 

Figure 3.7 – Purified Ovarian Tumor Cells Express EpCam and MUC16/CA125. 

Ovarian tumor cell identification by flow cytometry using patient ascites samples from 

three individuals (designated 29, 30, and 35). Tumor cells were purified from ascites 

using Ficoll gradients to remove red blood cells and CD45 microbead negative selection 

to remove leukocytes. The resulting cells (gated as R3) were negative for CD45 and 

positive for EpCAM and MUC16/CA125.  Marker analyses were tracked by flow 

cytometry on a Becton Dickinson FACScalibur Flow Cytometer.   

 

Figure 3.8 – RhoA activity is insensitive to ketorolac treatment.  

 A-B RhoA GTPase target inhibition assayed by quantification of active RhoA using a 

flow based Rhotekin effector binding assay. A Patient derived tumor cells purified from 

ascites fluids at the time of debulking surgery were treated in vitro for 1 h with 10 µM R-

ketorolac, S-ketorolac or CID2950007–a Cdc42 selective inhibitor (19, 20). Tumor cells 

incubated with 0.1% DMSO served as a negative control. B Results of administration of 

racemic ketorolac to ovarian cancer patients post-surgery. Cells isolated from patient 

ascites samples post-surgery were assayed as in (A). Patient diagnoses were stage II-III, 

high grade ovarian serous or papillary serous carcinoma, with one suspected primary 

peritoneal carcinoma (Pt 20, 21, 43). Fluorescence readings were normalized to 0.1% 

DMSO control or the 0 h time point drawn immediately prior to ketorolac administration. 
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One way non-parametric ANOVA and Bonferroni multiple comparison test showed no 

statistically significant differences between either the ex vivo or the in vivo samples. 

 

Figure 3.9 – Example Survival among ovarian cancer patients with and without 

perioperative ketorolac. Cox proportional hazards regression was used to estimate 

ovarian cancer specific survival probabilities for women who did (dashed line, 17 

women) and did not (solid line, 92 women) receive ketorolac among ovarian cancer cases 

with AJCC Stage III cancer, 5060 years of age at diagnosis, no neoadjuvant 

chemotherapy and completed chemotherapy as planned (overall adjusted Hazard Ratio = 

0.30, 95%CI = 0.11 – 0.88, likelihood ratio test p-value = 0.013).  

 

Figure 3.10 – Survival estimates based on Cox-regression for Stage I (AJCC) with 

completion of chemotherapy.  Cox proportional hazards regression was used to estimate 

ovarian cancer specific survival probabilities for women who did (dashed line) and did 

not (solid line) receive ketorolac among ovarian cancer cases with AJCC Stage I cancer, 

sorted by age group and -/+ neoadjuvant chemotherapy.  

 

Figure 3.11 – Survival estimates based on Cox-regression for Stage II (AJCC) with 

completion of chemotherapy. Cox proportional hazards regression was used to estimate 

ovarian cancer specific survival probabilities for women who did (dashed line) and did 

not (solid line) receive ketorolac among ovarian cancer cases with AJCC Stage II cancer, 

sorted by age group and -/+ neoadjuvant chemotherapy.  
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Figure 3.12 – Survival estimates based on Cox-regression for Stage III (AJCC) with 

completion of chemotherapy. Cox proportional hazards regression was used to estimate 

ovarian cancer specific survival probabilities for women who did (dashed line) and did 

not (solid line) receive ketorolac among ovarian cancer cases with AJCC Stage III cancer, 

sorted by age group and -/+ neoadjuvant chemotherapy.  

 

Figure 3.13 – Survival estimates based on Cox-regression for Stage IV (AJCC) with 

completion of chemotherapy. Cox proportional hazards regression was used to estimate 

ovarian cancer specific survival probabilities for women who did (dashed line) and did 

not (solid line) receive ketorolac among ovarian cancer cases with AJCC Stage IV 

cancer, sorted by age group and -/+ neoadjuvant chemotherapy.   
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Figure 3.1 
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Figure 3.2 
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Figure 3.3 
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Figure 3.4 

 

  



111 

 

Figure 3.5 
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Figure 3.6 
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Figure 3.7 
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Figure 3.8 
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Figure 3.9 
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Figure 3.10 
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Figure 3.11 
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Figure 3.12 
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Figure 3.13 
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Chapter 4 

Project Summary 

4.1 Overview 

 As the leading cause of death due to gynecological malignancy, ovarian cancer is 

a significant health problem in the United States (1-3). Advanced stage diagnosis, limited 

treatment options, high rates of recurrence, and refractory disease contribute to the high 

mortality rate, which has remained constant since the 1970s (2,3). Treatment for ovarian 

cancer involves cytoreductive surgery and a recovery period followed by chemotherapy 

to combat any residual disease. Chemotherapeutic drugs for the first-line treatment of 

ovarian cancer are limited to platinum based compounds and taxane derivatives. While 

these treatments are beneficial to the patients initially, recurrence is common (2,3,5) With 

these challenges in mind, there is a need to develop therapies that will improve patient 

survival.  

 Recently, collaborative work between Drs. Angela Wandinger-Ness and Larry 

Sklar (UNM) identified a single R-enantiomer of the chiral NSAID naproxen as having 

activity against the Rho family GTPases Cdc42 and Rac1 (123).  Further in silico 

modeling performed by Dr. Oleg Ursu (UNM) predicted that the single R-enantiomer of 

the chiral NSAID ketorolac would have similar activity against Cdc42 and Rac1 (123). 

There is evidence that the use of NSAIDs can provide survival benefit in colon and breast 

cancer patients (126, 143) and that ketorolac specifically improves 5 year survival rates in 

breast cancer patients (126, 143). Therefore, ketorolac was pursued as a candidate option 

for ovarian cancer patients.  
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 In this project, I demonstrated that the Rho family GTPases Cdc42 and Rac1 are 

viable therapeutic targets in the treatment of ovarian cancer. Additionally, I was able to 

show that the use of the R-enantiomer of the NSAID ketorolac inhibits cellular adhesion 

and migration events regulated by Cdc42 and Rac1. Finally, in a small phase 0 clinical 

study, I was able to determine that the NSAID ketorolac is distributed to the peritoneal 

cavity in sufficient concentrations to inhibit Cdc42 and Rac1.  

 

4.2 Ras GTPases in Cancer 

 Perhaps the most well studied GTPases in cancer are mutations of the Ras family 

of proto-oncogenes (79). Because Ras GTPases function as nodes in a number of 

different cell signaling pathways involved in tumorigenesis, they make promising targets 

for therapeutics. In addition to Ras, aberrant signaling of a number of other Ras family 

GTPases have been identified in cancer (58,76). Cdc42 is reported to be overexpressed in 

multiple cancer types, and levels of expression appear to drive disease progression 

(58,76). Similarly, Rac1 has been reported to be overexpressed in multiple cancer types, 

and has been linked to a number of cellular events related to cancer metastasis (58,76). 

Additionally, the constitutively active splice variant Rac1b has been reported in breast, 

colon, and lung cancer (59,61,68). Due to these findings, it was important to examine 

these GTPases in the context of ovarian cancer.  

 IHC performed by Elsa Romero and Dr. Lesley Lomo determined that Cdc42 and 

Rac1 are overexpressed at the protein level in ovarian cancer (Fig 3.1).  The increasing 

overexpression of Cdc42 with advanced disease is consistent with findings in testicular 

(53) and breast (74) cancers. Cdc42 is necessary for directed migration (87) and is known 
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to be involved in collective cell migration (87,88). Rac1 overexpression is well 

documented in cancer (76,163,164). While there was no change in the levels of Cdc42 or 

Rac1 mRNA, I identified mRNA expression of the splice variant Rac1b in low grade 

tumors when compared to normal tissue (Fig 3.2). Rac1b levels could not be determined 

in tissue sections as there are no validated antibodies available. Rac1b has increased 

nucleotide exchange ability, decreased GTPase activity, increased affinity for GTP, 

reduced interaction with regulators and enhanced binding to effectors. It has also been 

reported to have preferential binding to NF-κB (181). With preferential binding to NF-

κB, it is possible that Rac1b is driving gene transcription contributing to EMT, increasing 

cell migration, and cell adhesion. Because Rac1b is largely tumor specific, it is likely that 

ascites formed during early tumor development contains growth factors that lead to the 

expression of Rac1b. The expression of Rac1b mRNA in the low grade ovarian cancer 

suggests that it is contributing to tumor development and leads to metastatic events 

characteristic of advanced disease (5). These data support the hypothesis that Cdc42 and 

Rac1 are required for metastatic spread and are valid therapeutic targets, as they facilitate 

cell adhesion and migration to distant secondary sites within the peritoneal cavity.  

 

4.3 Effect of Ketorolac on Ovarian Cancer Cells in Culture 

 The initial objective of this project was to examine the cellular effects of 

ketorolac on ovarian cancer cells in culture (Table 4.1) and in vivo (Table 4.2). It has 

been reported that ketorolac can induce apoptosis, inhibit proliferation or induce cell 

cycle arrest in osteoblasts and chondrocytes (155,156). I observed that neither R-/S-  
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Table 4.1 

Table 4.1 – Summary of the effect of Cdc42 and Rac1 inhibition on SKOV3ip ovarian cancer 

cells 

 ML141 NSC23766 
R-/S-

ketorolac 
R-ketorolac S-ketorolac 

Cytotoxicity NC NC NC NC NC 

Proliferation ↓ ↓ NC NC NC 

Migration ↓ ↓ ↓ ↓ ↓ 

GTPase 

expression 
NC NC ↓ ↓ NC 

Organotypic 

Adhesion 
↓↓ ↓↓    

Organotypic 

Spreading 
↓ ↓ ↓ ↓ ↓ 

 

NC = No Change, ↓ = decrease, number of arrows indicates level of change  
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ketorolac nor single enantiomer ketorolac is cytotoxic to SKOV3ip cells at concentrations 

approximating therapeutic serum concentrations (data not shown). Similarly, R-/S-

ketorolac did not impair proliferation of SKOV3ip cells after 96h treatment (Fig 2.5A-B). 

Cells treated with 300µM S-ketorolac show a slight but not significant decrease in cell 

proliferation, consistent with observations of COX-1/-2 inhibition in other cell types 

(155,156). However, this concentration of S-ketorolac exceeded a normal therapeutic 

dose. These findings suggest that ketorolac improves survival benefit through a 

mechanism not related to cell apoptosis or proliferation. 

 Cellular adhesion is partially regulated by Cdc42 and Rac1 and is required for 

metastasis (76,163). We utilized MCAs cultured in the presence of EGF and an 

organotypic cell culture model (158) to mimic the specific adhesive environments 

(9,10,31) seen in vivo. This provides a preferred substrate for adhesion, migration, and 

invasion studies using single cells or MCAs.  As early as 4h, MCAs were able to adhere 

to the organotypic layer and begin disaggregation (Fig 2.10A). Specific inhibition of 

Cdc42 and Rac1 with ML141 or NSC23766 inhibited MCA adhesion and spreading at 

4h. It has been proposed that MCAs dislodged from tumors during surgery contribute to 

recurrence (23). Consistent with other reports (146), I observe that MCA adhesion occurs 

rapidly, but can be blocked through specific inhibition of Cdc42 and Rac1. It has been 

reported that ketorolac treatment of ovarian cancer cells can reduce Cdc42 and Rac1 

activity in as little as 15 minutes (150). These data suggest that early administration of 

ketorolac can reduce the number of metastatic implants that may occur in a patient, 

thereby improving patient outcome.  
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 MCAs cultured in the presence of specific inhibitors, R-/S-ketorolac, or a single 

ketorolac enantiomer did not spread on the organotypic layer as extensively as control 

MCAs (Fig 2.10C) consistent with an inhibition of migration (Fig 2.4). Cdc42 serves as 

an environmental sensor to the cell to initiate filopodia formation, causing nascent 

adhesions (76). Coordination with Rac1 allows maturation of the lamellipodia and 

migration to occur (76). Through selective inhibition of both Cdc42 and Rac1, I observed 

a decrease in overall migration. Because the formation of metastatic tumors necessitates 

adhesion, migration, and invasion, these data further support the idea that inhibition of 

Cdc42 and Rac1 conferred by R-ketorolac could benefit ovarian cancer patients. Taken 

together, these data suggest that inhibition of adhesion and spreading of MCAs is a 

possible mechanism for the reported improved survival in patients (Fig 2.10) (65).  

 

4.4 Effect of Ketorolac on Ovarian Cancer Cells in vivo 

 Human ovarian cancer metastases implant in a predictable manner (5,9). I used an 

intraperitoneal xenograft mouse model of recurrent ovarian cancer to assess the effect of 

ketorolac in vivo. Tumor deposition within the mouse peritoneal cavity is similar to what 

is seen in advanced stage human ovarian cancer (Fig 2.1A). Specifically, the omentum 

has a high level of cancer cell engraftment, with smaller metastases throughout the 

peritoneal cavity. We assessed overall tumor burden through the quantification of tumors 

within the peritoneal cavity. We found that R-/S-ketorolac and R-ketorolac treated 

animals had a significant decrease of approximately 30% and 20%, respectively, in tumor 

burden compared to placebo treated animals. S-ketorolac treated animals had slightly less  
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Table 4.2 

Table 4.2 – Summary of the effect of Cdc42 and Rac1 inhibition on 

SKOV3ip ovarian cancer cells in vivo 

 R-/S-ketorolac R-ketorolac S-ketorolac 

Tumor Burden ↓↓↓ ↓↓ ↓ 

Proliferation NC NC NC 

Apoptosis NC NC NC 

GTPase 

expression 
NC NC NC 

Splenic 

Adhesion 
NC NC, p=0.052 NC, p=0.052 

 

NC = No Change, ↓ = decrease, number of arrows indicates level of change 
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than 20% decrease in tumor burden, which did not reach significance. Administration and 

dosage of R-/S-ketorolac to the mice was similar to that administered to patients (132). 

The decrease in tumor burden observed in the animals The data collected from the 

animals reflects the survival data that have been reported following treatment with 

ketorolac for breast (126,143) and ovarian (65) cancers.    

 Serum collected from the animals indicated that the single enantiomer doses were 

not significantly different than R-/S-ketorolac (Fig 2.1C). Despite being more than 99% 

pure as stock solutions, serum recovered from the animals treated with single 

enantiomers did not contain the expected enantiomer ratio (Fig 2.1C). Serum from R-

ketorolac treated animals contained slightly elevated levels of S-ketorolac, while serum 

from S-ketorolac treated animals contained over 50% R-ketorolac. The predominance of 

the R-enantiomer in serum was not simply due to the recovery process favoring the R-

enantiomer over the S-enantiomer. In order to further investigate this finding, pooled 

normal human plasma samples were spiked with stock ketorolac solutions and submitted 

to the recovery protocol, and chromatograms from spiked plasma resembled stock 

solutions, suggesting an interconversion in the mouse. The interconversion from S- to R- 

enantiomers is a species specific response that has been well documented (151). The 

mouse model allows researchers to assess the effect R-ketorolac alone on tumor cell 

engraftment. However, other investigators have suggested that the mechanism by which 

ketorolac improves 5 year survival is COX-dependent (126,143). I believe that Cdc42 

and Rac1 inhibition by R-ketorolac contributes as well. Due to interconversion of S-

ketorolac to R-ketorolac by mice (Fig 2.1)(134), we are unable to fully assess the 

contribution of COX inhibition by S-ketorolac. However, the use of a COX knockout 
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mouse to mimic S-ketorolac function or an alternate COX inhibitor without GTPase 

inhibitory activity may allow us to evaluate the anti-inflammatory effects of NSAIDs on 

tumor burden.  

 To assess cellular effects of ketorolac, omental tumors were removed, along with 

adjacent tissue. These tissues were paraffin embedded and sectioned.  Apoptosis and 

proliferation within the tumors were examined using TUNEL and Ki-67 staining. Similar 

to what was seen in culture, treatment with ketorolac had no significant effect on 

apoptosis (Fig 2.8B) or proliferation (Fig 2.7D). Cellular architecture and distribution of 

SKOV3ip cells within the animals was visually assessed via H&E staining. R-ketorolac 

and S-ketorolac treated animals showed a reduction of adherent SKVO3ip cells to the 

exterior of the splenic capsule. However, there was no change in adhesion in animals 

treated with R-/S-ketorolac.  

 My cellular adhesion data indicates that treatment with R-/S-ketorolac or single 

enantiomers decreases adhesion of MCAs. When adhesion of SKOV3ip cells to the 

splenic capsule was examined, I observe that R-ketorolac or S-ketorolac decreases levels 

of adhesion while the racemic mix does not (Fig 2.10E). If we examine this in context of 

serum concentrations, it indicates that R-ketorolac treated animals had a higher serum 

concentration of R-ketorolac (4.85µM ± 1.2µM) than either R-/S-ketorolac (2.38µM ± 

0.78µM) or S-ketorolac (2.70µM ± 0.82µM) alone. This indicates that the effect is not 

due to saturation effect seen by higher concentrations of S-ketorolac exhibiting an effect 

on Cdc42 and Rac1 (150).  Because S-ketorolac interconverts to R-ketorolac and a longer 

exposure to R-ketorolac between doses. A partial exposure to R-ketorolac may explains 

why S-ketorolac treatment group did not have a significant reduction in tumor burden. 
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COX-1/2 inhibition has been reported to inhibit some cell-cell adhesions (129). It is 

possible COX inhibition by the S-ketorolac, coupled with Cdc42 and Rac1 inhibition by 

R-ketorolac, was sufficient to inhibit some early SKOV3ip adhesion, thus slowing tumor 

development.  

  

4.5 Limitations of the Mouse Model  

 Although useful, this tumor model does have some limitations. Images of these 

animals were captured using the Light Tools small animal imager, which allowed us to 

look at gross morphology and visualize tumors.  However, this instrument is mostly 

qualitative, and we experienced difficulties with quantification of tumor foci. The 

omental tumor was resected prior to imaging and was imaged separately. While generally 

a solid tumor, in some instances it appears as a loose bundle of tumors. These differences 

in structure change how the omental tumor was quantified and may be blunting the 

response of ketorolac on tumor burden. There may be additional data to be collected if we 

analyze the number of tumor foci in the omental tumor alone. One method to improve 

quantification was to measure overall fluorescence. However, post image processing on 

multiple platforms indicated there was no difference in levels of fluorescence. This was 

largely due to image saturation, or autofluorescence from the mice. As a result, we were 

unable to use the current images for fluorescence analysis. However, Dr. Mara Steinkamp 

at UNM Dept of Pathology has developed a far red fluorescing SKOV3ip cell line we can 

use for future studies. It would allow us to use the Perkin-Elmer IVIS platform, which 

can directly measure levels of fluorescence or bioluminescence. This would allow us to 

eliminate the majority of autofluorescence from mice, and allow for longitudinal studies.  
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 The use of the omental tumor also provides interesting alternatives to measure 

early tumor formation events. Preliminary work identified the NSAID R-naproxen was an 

inhibitor of Cdc42 and Rac1 (123). In an early animal study using naproxen, I observed 

that R-naproxen reduced tumor burden (Fig 2.7A). For this experiment, I was able to 

weigh the omental tumor prior to tissue preservation. I observed a trend to lower tumor 

weights with R-naproxen treated animals, and a significant decrease in tumor weight in 

R-/S-ketorolac and R-ketorolac treated animals (Fig 2.7B). However this analysis was not 

performed in subsequent animal studies. Additionally, a recent study describes an 

intraperitoneal injection of a large number of ovarian cancer cells, which are allowed to 

adhere for a short period of time (158). The omentum, bearing adherent ovarian cancer 

cells, is then collected. This method would allow us to recapitulate the early adhesion we 

see with MCAs in culture. We would be able to measure fluorescence of the omentum to 

obtain a quantitative measurement of the effect of ketorolac on early implantation within 

the omentum.  

 

4.6 Ketorolac in Ovarian Cancer Patients 

 It has been reported that ketorolac provides early survival benefit to breast cancer 

patients (126, 143) and the proposed mechanism is through COX-1/-2 inhibition of COX-

dependent events. It is has been postulated that ketorolac would have the same effect on 

ovarian cancer patients. However, I have been able to show there are COX-independent 

effects caused by R-ketorolac. As ketorolac is an approved analgesic treatment in patients 

undergoing gynecological surgery (65), a small phase 0 study to examine the effects of a 

single dose of ketorolac used perioperatively in ovarian cancer patients was undertaken.  
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 In our Phase 0 study, patients received a single dose of intravenous R-/S-

ketorolac, Toradol®, following cytoreductive surgery. Serum and peritoneal fluid were 

collected from patients to monitor ketorolac concentrations, determine distribution to the 

peritoneal cavity, and to isolate cells for GTPase activity assays. Toradol® at the time of 

administration, is a 50:50 mix of R-/S-ketorolac as measured by HPLC (Fig 3.8). 

Previous research shows no interconversion of ketorolac occurs in humans and there is a 

preferential elimination of S-ketorolac over R-ketorolac (133,134,151). Ketorolac in 

serum was detectable immediately following administration and was still present at 24h 

(Fig 3.3). Ketorolac was detectable in the peritoneal fluid at 1h after administration and 

persisted until 24h. In serum and peritoneal fluid, R-ketorolac was predominant over S-

ketorolac, indicating that S-ketorolac is preferentially eliminated before R-ketorolac. This 

is the first documented evidence of ketorolac distribution within the peritoneal cavity, 

indicating that it is possible to affect cancer cells directly within the peritoneal cavity, not 

just the surrounding tissue.  

 Work done by Yun Guo looked at GTPase activity in cells isolated from the 

peritoneal fluid (Fig 3.6). Cdc42 and Rac1 activity decreased in primary patient cells that 

had been in culture for 48h, compared to freshly isolated cells (Fig 3.6). Following 

administration of ketorolac, Cdc42 and Rac1 activity in cells collected from the 

peritoneal fluid decreased over 24h (Fig 3.4) but there was no effect on RhoA (Fig 3.13). 

These data indicate that the environment within the peritoneal cavity activates Cdc42 and 

Rac1 and following administration of ketorolac, peritoneal concentrations are sufficient 

to inhibit GTPase activity (Table 3.3). Taken together, these data suggest a potential 

mechanism by which ketorolac provides survival benefit to patients. Dr. Linda Cook 
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(UNM) performed a retrospective analysis of patients treated for ovarian cancer at the 

UNM Cancer Center, those patients who received ketorolac had reduced risk of cancer-

specific mortality within 5 years of treatment (Fig 3.5). Although more work is required 

to follow up on these findings, this study highlights the importance ketorolac may play in 

the treatment of ovarian cancer. Recently, it has been demonstrated that inhibition of 

Rac1 in angiogenesis reduces tumor burden in peritoneal xenografts (117). Additionally, 

inhibition of Cdc42 and Rac1 has improved outcome in animal models of colon and 

prostate cancer (113,114). Not all NSAIDs improve patient outcomes, indicating that 

there are likely non-COX targets that are being affected. The work presented here 

suggests that Toradol®, administered as R/S-ketorolac may have dual targets. S-ketorolac 

inhibition of COX-1/2 reduces pain and inflammation, while R-ketorolac inhibition of 

Cdc42 and Rac1 reduces adhesion related events. Used in conjunction with current 

cytoreductive surgery, chemotherapy, and other treatment strategies, I believe that the use 

of ketorolac may provide benefit to ovarian cancer patients through S-ketorolac inhibition 

of COX targets and R-ketorolac interaction with non-COX targets.  

  

4.7 Future directions 

 The use of NSAIDs as potential therapeutics in the treatment of cancer has been 

has been gaining support in recent years (129,131,154). When first examined, it was 

believed that an inhibition of COX-1/2, and COX-dependent events, was the main driver 

for the early success of NSAIDs. Work has gone into determining the molecular events 

responsible for NSAIDs improving clinical outcome (131,154). Ketorolac is an NSAID 

used to alleviate pain during surgery, including gynecological surgery. Our group and 
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others have established that ketorolac can provide survival benefit to cancer patients. I 

have demonstrated that R-ketorolac has COX independent effects that may be beneficial 

to the treatment of ovarian cancer. Although we have shown that R-ketorolac inhibits 

Cdc42 and Rac1 related events in ovarian cancer cells, the exact mechanism at work in 

vivo is still unclear.  

 Cdc42 and Rac1 regulate a number of different adhesion molecules, including 

integrins and cadherins. While we have been able to show that there are cellular effects 

when ovarian cancer cells are treated with ketorolac, we have not yet identified the 

cellular events in vivo that contribute to decreased tumor burden. Cdc42 and Rac1 both 

interact with integrins to form nascent adhesions during cell migration. It would be 

beneficial to know if these adhesions are disrupted. β-catenin is one protein that helps to 

regulate cell-cell adhesions. Rac1 interacts with β-catenin through IQGAP, although the 

exact interaction is not well understood. Examining these adhesive events, especially in 

the context of MCA formation and stability, may help elucidate the role R-ketorolac is 

playing in improving patient survival.  

 Thus far, animal work has only used R-ketorolac as a single compound. However, 

in the treatment of ovarian cancer patients, it would most likely be used in combination 

with traditional chemotherapies. Studying a synergistic response between ketorolac and 

typical chemotherapeutics will likely lead to improved outcomes in the animal model. It 

is known that the formation of MCAs leads to chemoresistance (25) and it has been 

postulated that the compact structure creates a gradient that protects the inner cells. It is 

known that R-ketorolac decreases adhesion, which will likely result in less compact 
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MCAs. If adhesion in MCAs can be sufficiently reduced, then it may be possible able to 

resensitize MCAs to chemotherapeutics. 

 The survival curves generated by Dr. Linda Cook (Fig 3.9-3.13) show as much as 

a 40% improved chance of survival based on the use of ketorolac. In an effort to explain 

this effect, this project has explored how R-ketorolac may confer survival benefit through 

inhibition of Cdc42 and Rac1 related cellular events required for metastasis. While the 

animal data is promising, it is not as robust as we would expect to see based on the 

survival data, suggesting there are other factors we have not accounted for. What remains 

unclear is the extent to which Cdc42 and Rac1/1b are required for ovarian cancer 

metastasis and recurrence. Is one more important than the other or is the synergy between 

the two required? If it is the cooperation between these GTPases that is important, then 

using a selective drug, such as R-ketorolac, to target both would be ideal. Identifying 

which is more essential to driving recurrence will dictate how to design derivatives for 

future drug development. It has recently been suggested that the perioperative 

environment plays a major role in determining cancer outcomes (perioperative paper). 

The effect of R-ketorolac on the peritoneal environment is currently unknown. It is clear 

ketorolac affects the perioperative environment of the peritoneal cavity enough to reduce 

recurrence, but the extent of that effect needs to be explored. My work has demonstrated 

a mechanism to account for the observed improved survival of breast and ovarian cancer 

patients following administration of ketorolac. Cdc42 and Rac1 inhibition by R-ketorolac 

decreases adhesion and migration events related to recurrence. Further work is required 

to optimize the animal model and fully explain the interaction between Cdc42 and Rac1 

as they relate to ovarian cancer recurrence. 
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