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CHOLESTEROL REGULATION OF PULMONARY ENDOTHELIAL 

CALCIUM ENTRY FOLLOWING CHRONIC HYPOXIA 

 

by 

Bojun Zhang 

 

B.S. 

Ph.D. 

 

ABSTRACT 

Chronic hypoxia (CH)-induced pulmonary hypertension (PH) is associated with 

diminished ATP-induced endothelial Ca2+ entry as well as membrane cholesterol in 

pulmonary arteries. Store-operated Ca2+ entry (SOCE) and depolarization-induced Ca2+ 

entry are major components of the response to ATP and are similarly decreased after CH. 

Because endothelium-dependent vasodilation is closely associated with pulmonary 

endothelial [Ca2+]i, the blunted agonist-induced Ca2+ influx in pulmonary artery endothelial 

cells (PAEC) may contribute to the development of CH-induced PH. Interestingly, 

impaired agonist-induced Ca2+ influx in PAEC following CH can be restored by membrane 

cholesterol supplementation. In the current studies, we hypothesized that impaired Ca2+ 

entry in PAEC following CH is due to decreased membrane cholesterol. 

We demonstrated that substitution of cholesterol with its functionally inactive epimer 

epicholesterol, greatly attenuated ATP-induced Ca2+ influx in PAEC from control rats. 

Whereas epicholesterol similarly blunted endothelial SOCE in PAEC from both groups, 

cholesterol supplementation restored diminished SOCE in PAEC from CH rats while 

having no effect in controls. Similar effects of cholesterol manipulation on T-type Ca2+ 
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channel-mediated Ca2+ influx were observed in PAEC. Additionally, the role of cholesterol 

in SOCE mediated by Orai1, a Ca2+ selective ion channel, was examined in PAEC. 

Whereas cholesterol restored endothelial SOCE in CH rats, both epicholesterol and the 

Orai1 inhibitor, AnCoA4, attenuated SOCE only in normoxic controls. The Orai1 inhibitor 

had no further effect in cells pretreated with epicholesterol. In cultured pulmonary 

endothelial cells, using pharmacological inhibition and siRNA knockdown of Orai1, we 

found that epicholesterol, AnCoA4 and Orai1 siRNA each inhibited SOCE compared to 

their respective controls.  Epicholesterol had no additional effect following knockdown of 

Orai1. Finally, we found that endothelial stromal interaction molecule 1 (STIM1)-Orai1 

interaction, which is essential for SOCE, requires membrane cholesterol. Our studies 

support a novel regulatory role for membrane cholesterol in agonist-induced Ca2+ entry and 

its components. Our observation also demonstrated that altered membrane cholesterol 

homeostasis may contribute to impaired endothelial Ca2+ influx pathways following CH. 
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CHAPTER 1: Introduction 

Mechanisms of chronic hypoxia-induced pulmonary hypertension 

Pulmonary hypertension (PH) is the elevation of blood pressure in the pulmonary 

circulation and is a leading cause of morbidity and mortality in patients with a number of 

cardiovascular and respiratory diseases. Human PH is clinically defined as a mean arterial 

pressure ≥ 25 mmHg at rest (74). Multiple factors may lead to the development of PH, 

including genetic defects, disease, or environmental exposure. Interestingly, persistent or 

intermittent hypoxia is highly associated with many forms of PH, such as in chronic 

obstructive pulmonary disease, interstitial lung disease, and obstructive sleep apnea (65, 

96, 138). The chronic hypoxia (CH)-induced PH animal model is one of the most 

commonly used to mimic human disease (165). 

Under normal conditions, the pulmonary circulation is a low-resistance and low-

pressure system. These characteristics allow blood to easily travel from the right ventricle 

through the lungs for gas exchange. Pulmonary vascular resistance (R) can be calculated 

as the ratio of the pressure gradient (∆P) across all vessels to flow (Q):  

R = ∆P / Q 

Thus, increased pulmonary arterial resistance would lead to elevated pulmonary arterial 

pressure that must be overcome by the right heart to pump blood through pulmonary 

circulation. There are various factors that can influence vascular resistance. Assuming a 

vascular system consists of straight, non-distensible cylindrical tubes that have laminar 

flow, then vascular resistance R of a single tube is equal to the product of the length of the 

tube (l) and viscosity (η) and a constant divided by the product of π and the fourth power 

of the internal radius: 
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R = (l * η *8) / (π *r4) 

This is known as the Hagen-Poiseuille’s law. Under pathological conditions such as 

prolonged exposure to hypoxia, however, there are functional and structural changes in the 

pulmonary circulation, including polycythemia, acute hypoxia-induced vasoconstriction of 

small pulmonary arteries, and pulmonary arterial remodeling with medial hypertrophy (2, 

60). According to Hagen-Poiseuille’s law, all of these changes lead to increase in 

pulmonary vascular resistance. 

Polycythemia, an increase in the volume percentage of circulating red bloods cells 

in whole blood, results in increased in blood viscosity, thereby increasing vascular 

resistance.  Chronic exposure to hypoxia may activate hypoxia inducible factor (HIF)-1α 

which induces erythropoiesis that leads to the polycythemic response (34). CH-induced 

active pulmonary vasoconstriction and arterial remodeling are the consequences of several 

complex physiological mechanisms. One major cause of these changes to the pulmonary 

vasculature is pulmonary arterial endothelial dysfunction, which is usually observed in the 

development of PH (10; 35). The dysfunction of endothelial cells may be triggered by 

multiple sources: shear stress, inflammation, hypoxia, and other unknown factors. This 

impaired endothelial function is generally believed to result in imbalanced production of 

various vasoactive factors (20, 49, 153). The increased production of vasoconstrictors with 

decreased production of vasodilators is common in most forms of PH. Although the 

pulmonary endothelium plays a major role in PH, the mechanisms by which impaired 

endothelial function leads to the development of PH are not well defined. Understanding 

the mechanisms of endothelial dysfunction leading to and contributing to PH is central to 

designing effective and specific treatment for these pathologies. 
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Endothelium in the pulmonary circulation 

The vascular endothelium is the innermost layer of blood vessels and serves as a 

semi-selective barrier that allows exchange of fluid and macromolecules between the 

circulation and surrounding tissues. As a major part of the vascular system, the endothelium 

plays a crucial role in several physiological activities, such as maintaining tissue-fluid 

homeostasis, regulating angiogenesis and vascular tone, and preventing inflammation (54, 

75, 107, 125, 139). In the pulmonary circulation, endothelial cells help maintain low 

resistance and prevent proliferation/migration of smooth muscle cells.  

Pulmonary endothelial cells regulate vascular tone by the balanced production of 

various vasoactive compounds. Vascular tone reflects the result of smooth muscle 

contraction due to phosphorylation of myosin light chain (MLC). MLC phosphorylation is 

generally regulated by Ca2+-dependent and -independent pathways: activation of myosin 

light chain kinase via Ca2+/calmodulin or inhibition of myosin light chain phosphatase 

through activated small GTPase RhoA and Rho-associated protein kinase (15). 

Endothelium can produce vasoconstrictors like endothelin-1 and thromboxane that act as 

paracrine factors to stimulate G protein-coupled receptors and cause Ca2+ influx and 

subsequent contraction of smooth muscle cells (37, 131, 160). On the other hand, the 

pulmonary endothelium also releases vasodilators such as nitric oxide and prostacyclin in 

response to shear stress and agonist stimulation (52, 68). These vasodilators decrease both 

intracellular Ca2+ levels and Ca2+ sensitivity of smooth muscle cells, thereby causing 

vasorelaxation (86, 93). 
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NO is the most well studied vasodilator and plays an important role in maintaining 

low resistance in the pulmonary circulation (137). NO causes vasodilation primarily 

through activation of soluble guanylyl cyclase (cGC) in pulmonary artery smooth muscle 

cells (PASMC) (93), which leads to the production of cGMP from GTP. cGMP then 

activates protein kinase G (PKG). Intracellular calcium levels ([Ca2+]i) are crucial for 

myosin light chain (MLC) phosphorylation and contraction in PASMC. PKG activation 

causes smooth muscle relaxation primarily through lowering [Ca2+]i via various 

mechanisms including inhibition of IP3 receptors (129), activation of sarco/endoplasmic 

reticulum Ca2+-ATPase (SERCA) (93, 123), or activation of plasma membrane Ca2+-

ATPase (113). Stimulated PKG may also lead to activation of Ca2+ -dependent K+ channels 

(BKCa) and PASMC hyperpolarization (5, 40, 46, 167), which inhibits voltage-gated Ca2+ 

channel (VGCC) -mediated Ca2+ influx and promotes MLC dephosphorylation and 

subsequent vasorelaxation. cGMP may also inhibit calcium channels like TRPCs and 

VGCC thereby causing vasorelaxation. PKG activation also leads to vasorelaxation 

through Ca2+-independent mechanisms. Studies suggest that PKG activates MLC 

phosphatase, which inhibits MLC phosphorylation and subsequent contraction (78, 97). 

PKG may also phosphorylate RhoA, thereby inhibiting RhoA-mediated Ca2+ sensitization 

(16, 17, 127). In addition, NO could directly activate BKCa and potentially cause smooth 

muscle relaxation independent of PKG (15). Besides its role in regulating vascular tone, 

endothelium-derived NO is also known to inhibit smooth muscle cell (SMC) proliferation 

and migration (62, 126), which is important in preventing vascular remodeling in responses 

to stimuli such as inflammation, oxidative stress and apoptosis.  
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Production of many endothelium-dependent vasoactive substances as well as 

regulation of membrane potential are largely a function of pulmonary endothelial [Ca2+]i 

(1). The production of NO, for example, is catalyzed by endothelial nitric oxide synthase 

(eNOS) in the endothelium. Activation of eNOS requires increased endothelial [Ca2+]i and 

formation of a Ca2+/calmodulin complex (89). Along with other cofactors like NADPH and 

BH4, eNOS converts L-arginine into NO and L-citrulline (26, 89). Similarly, production 

of endothelium-derived prostacyclin requires intracellular Ca2+ and calmodulin (89, 130). 

The activation of cytosolic phospholipase A2, the key enzyme to release arachidonic acid 

from plasma membrane, is Ca2+-dependent. Once arachidonic acid is liberated, it could be 

enzymatically converted by cyclooxygenase-1 to prostacyclin after multiple reactions. 

Arachidonic acid is also substrate for production of vasoconstrictor metabolites, such as 

thromboxanes, leukotrienes, and epoxyeicosatrienoic acids. 

 

Regulation of endothelial Ca2+ levels 

Endothelial Ca2+ is important second messenger in various signaling cascades and 

is carefully regulated by complex and dynamic pathways. Endothelial [Ca2+]i reflects the 

sum of Ca2+ influx from extracellular space, Ca2+ release and sequestration by intracellular 

stores, and Ca2+ extrusion from the cell. Endothelial Ca2+ influx is mainly mediated by 

three mechanisms: 1) Ca2+ entry via receptor-mediated cation channels; 2) Ca2+ leak 

through cation channels down its electrochemical gradient; and 3) Ca2+ entry via stretch-

activated cation channels. Steady-state [Ca2+]i may be rapidly altered by stimuli such as 

shear stress or agonists, which activate membrane-bound receptors and cation channels and 

leads to Ca2+ entry (3, 161). This major Ca2+ influx signaling cascade also generates the 
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second messenger, IP3, which can activate downstream ionotropic IP3 receptors on the 

membrane of the ER, causing rapid and transient release of internal Ca2+ stores. Once  ER 

Ca2+ stores are depleted, the ATPase pump refills the intracellular Ca2+ pool by 

sequestering Ca2+ from the cytosol, which may also be facilitated by a Ca2+ leak through 

cation channels on the plasma membrane (1). Meanwhile, the Na+- Ca2+ exchanger on the 

plasma membrane helps remove excessive intracellular Ca2+ after agonist stimulation (23, 

39, 122). Overall, these pathways work together to maintain [Ca2+]i homeostasis in 

endothelial cells. 

 

Agonist-induced Ca2+ entry 

Receptor-mediated Ca2+ influx is one of the major pathways leading to increased 

[Ca2+]i. The binding of an agonist to its receptor mediates the activation of phospholipase 

C (PLC), which then leads to the production of diacylglycerol and IP3 from hydrolysis of 

phosphatidylinositol 4,5-bisphosphate (PIP2) (11). Cytosolic IP3 then binds to IP3 receptors 

on the membrane of the ER and causes Ca2+ efflux from the ER store. The depletion of ER 

stores triggers Ca2+ influx across the plasma membrane, which is known as store-operated 

Ca2+ entry (SOCE) (150). Agonist binding may also elicit Ca2+ entry through channels that 

are not activated by store emptying. This is known as receptor-operated calcium entry 

(ROCE) (120).  

ATP, as one of the important agonists that meditates endothelial [Ca2+]i, serves as 

a regulator of vascular tone. Studies found that red blood cells (RBCs) and endothelial cells 

(ECs) can release ATP under certain conditions to maintain blood flow. In RBCs, when 

acutely exposed to low PO2, low pH, or mechanical deformation, there is an increase of 
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ATP release (38, 92, 136). ATP then causes endothelium-dependent vasorelaxation in 

various species and tissues (25). It is likely that RBC- produced ATP binds to purinergic 

receptors on ECs and stimulates NO production (84). In endothelial cells, shear stress 

induces the production of ATP, which serves as an autocrine factor and stimulates 

endothelial NO production (4, 69). It is proposed that extracellular ATP binds to P2Y 

purinergic receptors on plasma membrane of ECs, which leads to IP3 production, internal 

Ca2+ store release, Ca2+ influx and subsequent increase in [Ca2+]i, leading to increased 

eNOS activation and NO production (50). Additionally, ATP may also enhance endothelial 

cell barrier function by Rac and cortactin-dependent activation of the cytoskeleton (59). 

 

Store-operated Ca2+ entry 

SOCE is a Ca2+ influx response when internal SR/ER Ca2+ stores are depleted. 

Under physiological conditions, agonists may bind to transmembrane receptors and 

activate PLC to produce IP3 from hydrolysis of PIP2. IP3 then activates IP3 receptors on 

membrane of SR/ER, leading to Ca2+ efflux, depletion of intracellular Ca2+ stores, and 

activation of cation channels on the plasma membrane (150). SOCE was first proposed in 

1986 by Putney and colleagues and was later found in many cell types. In rat parotid acinar 

cells, the intracellular Ca2+ store depletion by muscarinic-cholinergic agonists causes Ca2+ 

influx (144). If the intracellular Ca2+ store is depleted independent of activation of PLC, 

Ca2+ influx is still observed (143). Later in mast cells, in response to IP3 -induced Ca2+ 

store depletion, a highly Ca2+ selective inwardly rectifying current was found (57).  This 

store-operated current (Isoc) with a high Ca2+ selectivity is known as calcium release -

activated calcium (CRAC) current or Icrac.  
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SOCE has been demonstrated to be present in virtually all excitable and non-

excitable cells and is involved in mediating many important physiological activities such 

as neurotransmitter secretion, skeletal muscle contraction, lymphocyte activation, and 

vascular tone (41, 79, 110, 146). Although the physiological importance of SOCE has been 

recognized for some time, the molecular mechanism of SOCE remained unclear until 

recent years. A key finding was the identification of stromal interacting molecule (STIM) 

proteins on the membrane of the ER. STIM1, as one isoform of STIM, was first found in a 

library screen which was developed to identify molecules in stromal cells that bind to pre-

B lymphocytes (98). However, the role of STIM as the molecular component of SOCE was 

revealed more recently through RNA interference (RNAi) screens by two independent 

groups (83, 119). In Drosophila S2 cells, RNAi-mediated knockdown of STIM causes 

significantly reduction of Ca2+ entry induced by the SERCA inhibitor, thapsigargin (TG) 

(119). Similar observation that STIM1 and STIM2 are required for agonist- and TG- 

induced SOCE was found in human HeLa cell (83). Later, continued genome-wide RNAi 

screens in Drosophila S2 cells revealed Orai proteins as key components of the CRAC 

channel (111, 156, 164). The presence of STIM1 and Orai1 are sufficient to reconstitute 

functional SOCE in HEK293 cells (134).  

The exploration for other potential components of SOCE also identified the 

involvement of non-selective Ca2+ -permeable mammalian transient receptor potential 

canocical (TRPC) channels (155). All TRPC channels are activated via the PLC signaling 

pathway (155). However, only TRPC1, TRPC3, and TRPC4 are activated mostly by store 

depletion, whereas the activation TPRC2, TRPC5, TRPC6, and TRPC7 is mainly through 

store-independent mechanisms (155). The finding that STIM1 also gates TPRC1 in SOCE 
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(58) generates a new question in regard to the role of TRPC1 and Orai1 in SOCE. Later 

studies then demonstrated that activation of TRPC1/STIM1-mediated SOCE requires 

functional Orai1 (67, 73). In PAEC, TRPC1 and TRPC4 also form heteromultimeric 

channels and interact with Orai1 via protein 4.1 in caveolin-rich membrane fractions (32). 

This TRPC1/4 complex and Orai1 interaction is important for channel activation and 

calcium selectivity (32). With the identification of these key components of SOCE, the 

molecular mechanism of SOCE is better understood (27). The EF-hand motif in the N 

terminus of STIM1 is localized in the ER lumen and senses ER Ca2+ stores. Upon the 

depletion of the ER Ca2+ store, the SAM domain near the EF-hand motif mediates STIM1 

oligomerization and leads to translocation of STIM1 to the plasma membrane. This 

conformational change of STIM1 allows its interaction with Orai1 and forms ER-PM 

junctions, which are crucial in Ca2+ release-activated Ca2+ influx. 

SOCE in both SMC and ECs is important in regulating vascular tone. In vascular 

SMC, Ca2+ influx induced by SR Ca2+ store depletion via SR Ca2+ -ATPase inhibition is 

associated with increased vascular tone in different blood vessels (79). Interestingly, 

SOCE-mediated vascular tone shows varying sensitivity to voltage-gated Ca2+ channel 

inhibitors between vascular beds. For example, most of the SOCE -induced contraction is 

nifedipine-sensitive in the rat aorta, which is not found in the rat pulmonary artery (79). 

These observations suggest that SOCE may modulate vascular tone in a direct or indirect 

manner. Many studies also indicate that increased [Ca2+]i through SOCE contributes to 

smooth muscle proliferation and migration (13, 108, 141, 142). In cultured proliferative 

migratory rat aortic VSMCs, both SOCE and expression of STIM1 and Orai1 are elevated 

compared with non-proliferative controls (108). Knocking down STIM1 and Orai1 greatly 
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inhibits proliferation and migration of these active VSMCs (108). Besides its role in 

mediating vascular endothelial permeability (147), endothelial SOCE, as part of agonist-

induced Ca2+ entry, significantly contributes to the increase in [Ca2+]i and subsequent 

release of vasodilators like NO and prostacyclin (1, 70, 77, 82). In fact, pharmacological 

inhibition of SOC by SKF-96365 blunts the shear stress-induced NO response (4). 

Endothelial TRPC4 knockdown also impairs agonist-induced vasodilation by reducing 

SOCE (44).  

 

Depolarization-induced Ca2+ entry 

VGCCs are a group of Ca2+ permeable channels that are activated by depolarized 

membrane potential. Based on the requirement of a different level of depolarization for 

activation, these channels can be classified into two major groups, high voltage-activated 

(L-, P/Q-, N-, R- type) and low voltage-activated (T-type) calcium channels (150). These 

channels have been found in neurons, muscle, endocrine cells, and many other cell types 

(29, 145, 150, 162). They are involved in many different physiological activities including 

muscle contraction, excitation of neurons, upregulation of gene expression, release of 

hormones or neurotransmitters (28).  

L-type VGCC were first described in neurons and cardiac cells and later found 

widely expressed in all excitable and some non-excitable cells (152). Ca2+  influx through 

L-type VGCC is the major source of Ca2+ entry in cardiac, skeletal, and smooth muscles. 

In cardiac muscle, activation of L-type VGCC is required to initiate Ca2+-induced Ca2+ 

release and subsequent muscle contraction (14). In skeletal muscle, although L-type VGCC 

are not involved in the initiation of muscle contraction, they are important in mediating 
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Ca2+ release from intracellular stores, which then facilitates mobilization of the 

myofilaments and contraction (117). In vascular smooth muscle cells, Ca2+ influx through 

L-type VGCC also serves as one of the Ca2+ sources for Ca2+/calmodulin-dependent 

phosphorylation of MLC, which leads to smooth muscle contraction. Indeed, L-type 

VGCC are important in mediating blood pressure and myogenic tone (35, 92).  

Although L-type VGCC are considered the major VGCC that regulate the 

myogenic response, T-type VGCC in vascular smooth muscle cells are receiving more 

attention in recent years. In small resistance vessels, T-type VGCC are involved in 

regulating vascular tone (154). T-type VGCC are also involved in the development of CH-

induced PH. Either chronic treatment of a T-type VGCC inhibitor or global deletion of the 

T-type VGCC gene (Cav3.1) protects mice from developing CH-induced PH (30).  

T-type VGCC are normally found expressed in electrically excitable cells. 

However, their expression has also been described in pulmonary microvascular endothelial 

cells and PAEC from rats and mice (101, 157, 159, 166). In PMVECs, Wu et al (159) 

observed voltage-dependent currents with a more depolarized window current when 

compared to typical T-type channels. These currents were sensitive to pharmacological T-

type channel blockers. Wang et al (157) found that acute hypoxia induced membrane 

depolarization and a subsequent increase of endothelial [Ca2+]i in both alveolar capillaries 

and upstream arterioles. The endothelial [Ca2+]i response to acute hypoxia was inhibited 

by the T-type channel blocker mibefradil in both pulmonary capillaries and arterioles. They 

proposed that membrane depolarization induced by acute hypoxia in lung capillaries is 

conducted upstream to arterioles via gap junctions and activates T-type channels. Increased 

endothelial [Ca2+]i then leads to vasoconstriction by activation of Ca2+-dependent 
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phospholipase A2-mediated vasoconstrictor production. Although T-type VGCC are not 

found in cultured rat PAEC (159), their expression and function have been described in 

freshly dispersed rat PACEs (101). Paffett et al. (101) have shown that T-type VGCCs 

contribute to depolarization-induced Ca2+ entry and ATP-induced Ca2+ entry. These 

findings suggest that T-type VGCCs are important mediators of depolarization-induced 

Ca2+ entry in the pulmonary endothelium. 

 

Impaired pulmonary endothelial Ca2+ influx following CH 

Impaired NO release is often observed in diseases such as chronic obstructive 

pulmonary disease and congestive heart failure and is a key feature of pulmonary 

hypertension (8, 90, 115, 140, 148). However, eNOS protein expression is increased in 

pulmonary hypertensive patients and CH-induced pulmonary hypertensive rats (48, 51, 

116).  The controversial observation that increased eNOS protein expression and impaired 

endothelium-derived vasorelaxation simultaneously occur in CH-induced PH rats could be 

the result of blunted eNOS activity. Murata et al confirmed this assumption by reporting 

that CH impairs posttranslational regulation of eNOS activity via blunting agonist-induced 

Ca2+ influx (95).  

Previous work from our laboratory also shows that both basal [Ca2+] i and agonist-

induced Ca2+ influx are lower in PAEC from CH rats compared to those of control animals 

(99, 100). CH similarly inhibits endothelial SOCE and depolarization-induced Ca2+ influx 

through T-type VGCC, which are major components of agonist-induced Ca2+ entry in 

isolated PAEC (99, 101). These findings suggest that store-operated channels and T-type 

VGCC are important mediators of ATP-induced Ca2+ entry and that impaired Ca2+ entry 

and may contribute to reduced basal [Ca2+]i in PAEC after CH, which may lead to 
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dysfunction of posttranslational eNOS regulation and subsequent impairment of 

endothelium-derived NO production in CH-induced PH. 

 

Membrane cholesterol 

Cholesterol is a major component of the plasma membrane. The importance of 

membrane cholesterol has been shown in regulating neurotransmission, cell signaling, and 

protein sorting (85, 128, 132). Additionally, many diseases such as type II diabetes (31), 

Alzheimer’s disease (6), and cancer (91) are associated with abnormal cellular cholesterol 

levels. The homeostasis of cellular cholesterol levels is maintained mainly by four 

pathways: cellular cholesterol synthesis, cholesterol uptake from extracellular sources, 

cholesterol efflux, and esterification and storage in the lipid droplets (31). The ER is the 

major site of cholesterol de novo synthesis, which requires multiple enzymes and cofactors 

to covert acetyl-CoA to cholesterol in a complex series of reactions. Once synthesized, 

cholesterol is bound with caveolins and transported from the ER to plasma membrane. 

More than 90% of free cholesterol is located in the plasma membrane (66, 76) and is 

distributed to microdomains known as lipid rafts, which are rich in cholesterol, 

sphingolipids, and various proteins. Once in the plasma membrane, cholesterol maintains 

membrane integrity and regulates many signaling pathways. 

Membrane cholesterol also serves as an important structural component of the 

plasma membrane by regulating membrane fluidity and permeability. Cholesterol may help 

maintains membrane fluidity by interfering with the interactions between phospholipid 

fatty acid chains. However, cholesterol may also increase membrane rigidity by reducing 

the flexibility of phospholipid fatty acid chains (55). This regulation of membrane fluidity 
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is crucial in controlling solute movement across the membrane when membrane 

composition or temperature are altered. In addition, positive electrostatic potential in the 

plasma membrane is increased when cholesterol content is augmented, which may change 

the membrane composition of charged components and alter the permeability of cations 

and anions (55). Membrane cholesterol is also required for the formation of specific lipid 

rafts known as caveolae. Caveolae are flask-shape invaginations of the plasma membrane 

that contain caveolin, cholesterol, sphingolipid, and various signaling molecules and 

receptors. They are involved in endocytosis, cholesterol transport, and signal transduction 

(42, 106). Besides caveolins, which serve as the structural component of caveolae (36, 112, 

114), cholesterol is also essential in maintaining stable and functional caveolae. Both 

inhibition of cholesterol synthesis and acute membrane cholesterol depletion lead to 

caveolar disruption and inhibition of cell signaling (64, 94, 105, 124, 168). 

 

Membrane cholesterol regulates ion channel function 

Besides its structural role, membrane cholesterol is also important in regulating 

membrane-bound protein structure and function. Cholesterol is a polycyclic amphipathic 

molecule with a polar section consisting of a single β-hydroxyl group which can interact 

with membrane lipids or proteins through formation of hydrogen bonds (105). Various 

membrane-bound proteins have been shown to be regulated by membrane cholesterol, such 

as receptors, transporters, peptides, and ion channels (56, 80, 102, 151, 163).  

The effect of membrane cholesterol on ion channel function may vary depending 

on the type of ion channel. Many studies demonstrate an inhibitory role of membrane 

cholesterol on ion channel activity via decreased open probability, unitary conductance, 
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and the number of active channels (80). For example, cholesterol decreases the open 

probability of many K+ channels, as well as voltage-gated Na+ and Ca2+ channels (33, 81, 

149). In contrast, other ion channels such as nicotinic acetylcholine receptor, GABAA 

receptors, epithelial Na+ channels and TRPC channels are inhibited by removal of 

membrane cholesterol (7, 9, 10, 72, 135), indicating that cholesterol may have an essential 

functional role in regulating these channels.  

Cholesterol may additionally modulate the function of membrane proteins via 

either direct interaction or through altering the properties of lipid microdomains (80). 

Direct interaction between sterols and ion channels has been suggested by the sensitivity 

of inwardly rectifying potassium (Kir) channels (118) and large conductance, Ca2+-

activated potassium (BKCa) channels (24) to various sterol analogues. In addition, 

cholesterol binding regions exist in both Kir channels and BKCa channels (121, 133). 

Meanwhile, cholesterol may also indirectly regulate ion channels by modulating bilayer 

stiffness and hydrophobic interaction between the membrane proteins and the lipid bilayer 

(9). Thus, when determining the role of membrane cholesterol on channel function, 

extreme caution is needed to discriminate the different mechanisms by which cholesterol 

regulates certain types of ion channels. The enantiomer of cholesterol, epicholesterol, 

differs from cholesterol only in the stereochemistry of the hydroxyl group and has similar 

effects on membrane fluidity and lipid domain formation as those of cholesterol, but lacks 

the regulatory influences of cholesterol on membrane proteins (80). Thus epicholesterol 

has been used as a tool to distinguish the direct and indirect effect of cholesterol (80).  
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Membrane cholesterol regulates Ca2+ influx 

The importance of membrane cholesterol in regulating Ca2+ entry has been shown 

in many different types of cells. In VSMCs, membrane cholesterol depletion by methyl-β-

cyclodextrin reduces TRPC1-mediated Ca2+ entry in response to endothelin-1 (9). 

Similarly, cholesterol depletion decreases STIM1 clustering, prevents activation of 

TRPC1, and blunts SOCE in HSG and HEK293 cells (9). In addition, depletion of 

membrane cholesterol also disrupts the association of Orai1 with TRPC1 and STIM1, and 

attenuates SOCE in human platelets (61). This observation is also confirmed in 

lymphocytes, in which a reduction of membrane cholesterol decreases SOCE. Cholesterol 

enrichment, on the other hand,  increases agonist-induced Ca2+ influx in cultured VSMCs 

(12).  

Under pathological conditions, the importance of membrane cholesterol in 

regulating endothelial Ca2+ influx has also been revealed. Our laboratory’s previous studies 

show that both membrane cholesterol levels and ATP- induced Ca2+ entry are reduced in 

PAEC following CH (100).  Interestingly, cholesterol repletion restores CH-impaired 

endothelial ATP- induced Ca2+ influx  (100), suggesting that membrane cholesterol may 

facilitate endothelial agonist-induced Ca2+ entry. In PAEC, ATP induces both SOCE and 

T-type VGCC blocker-sensitive Ca2+ influx (101).  Although the role of membrane 

cholesterol in regulating SOCE has been implicated in many studies (10, 47), the effect of 

membrane cholesterol in regulation of endothelial depolarization-induced Ca2+ entry is 

unknown. Considering that SOCE and depolarization-induced Ca2+ entry are major 

components of ATP-induced Ca2+ entry, and that both Ca2+ influx pathways are blunted 
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following CH (99, 101), it is possible that membrane cholesterol also regulates these two 

components of the ATP-induced Ca2+ response. 

 

Rationale and specific aims 

As summarized above, endothelial dysfunction is closely associated with many forms 

of PH. In CH-induced PH, for example, increased pulmonary vascular resistance and 

myogenic tone are observed with decreased production of endothelial vasodilatory factors 

(21, 63, 95, 158). [Ca2+]i is a key regulator of the synthesis of many endothelial vasoactive 

factors. CH decreases [Ca2+]i by impairing Ca2+ influx in pulmonary artery endothelium 

(99–101). Diminished endothelial Ca2+ entry may contribute to elevated vascular tone by 

limiting the activity of eNOS and other Ca2+ -sensitive vasodilatory pathways (26, 43, 53, 

87, 88, 95). Many Ca2+ channels are localized in cholesterol-enriched lipid rafts (19, 45, 94, 

104). Cellular cholesterol homeostasis affects membrane lipid content and thus the function 

of Ca2+ channels and subsequent signaling pathways (10, 18, 22, 103, 109) by mechanisms 

that are not fully understood. 

There are multiple Ca2+ entry pathways that could directly affect intracellular Ca2+ 

levels in the endothelium. Agonist-induced calcium entry, as one of the major Ca2+ entry 

pathways, has several components including SOCE and receptor-operated Ca2+ entry 

(ROCE). Studies from our laboratory have shown that both endothelial SOCE and ROCE 

are reduced in CH-induced PH (99, 101). Our previous work also identified a membrane 

potential-sensitive Ca2+ entry pathway, which contributes to ROCE under control 

conditions, but is lacking in CH-induced PH (101). This depolarization-induced Ca2+ entry 

appears to involve T-type VGCCs which are expressed mesenteric and cerebral 
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endothelium but not reported in endothelium from other systemic vascular beds (71). 

Additionally, CH leads to diminished membrane cholesterol that can be restored by 

cholesterol supplementation (100). Interestingly, impaired agonist-induced Ca2+ entry is 

also rescued by cholesterol restoration (100). However, it is not clear if membrane 

cholesterol affects different Ca2+ entry pathways similarly. Furthermore, it is unknown 

whether the effect of membrane cholesterol on Ca2+ entry is due to altered interaction of 

channels with cholesterol directly or with other factors. Understanding the effect of CH on 

cholesterol homeostasis and its impact on endothelial function may lead to new treatment 

strategies for PH. Therefore, the proposed studies will test the central hypothesis (Figure 

1) that impaired Ca2+ entry in pulmonary artery endothelial cells following chronic 

hypoxia is due to decreased membrane cholesterol.  

To test this hypothesis, we addressed the following Specific Aims: 

Specific Aim 1: Determine the role of membrane cholesterol homeostasis in 

impaired pulmonary endothelial Ca2+ entry following CH (Figure 2).  

We hypothesized that 1) membrane cholesterol facilitates SOCE and depolarization-

induced Ca2+ entry in PAEC; and 2) reduced endothelial Ca2+ influx following CH is due 

to loss of membrane cholesterol. To test these hypotheses, we administered cholesterol or 

epicholesterol to acutely isolated PAEC from control and CH (4 wk, 380 Torr) rats to either 

supplement or replace native cholesterol, respectively. The efficacy of membrane 

cholesterol manipulation was confirmed by filipin staining. Ca2+ influx in PAEC was 

measured in response to ATP, store-depletion, or a depolarizing stimulus. Additional 

experiments examined the effect of cholesterol manipulation on endothelial caveolar 

number in cultured pulmonary endothelial cells. 
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Specific Aim 2: Identify the contribution of membrane cholesterol to regulation 

of Orai1-mediated SOCE in pulmonary endothelial cells (Figure 3).  

We hypothesized that cholesterol facilitates the interaction of Orai1 with STIM1 to 

mediate SOCE in PAEC. Experiments in this aim assessed the role of cholesterol in Orai1-

mediated SOCE using CH exposure in rats as a physiological stimulus to decrease PAEC 

cholesterol. Effects of Orai1 inhibition with AnCoA4 on SOCE were examined in isolated 

PAEC sheets from control and CH rats following cholesterol supplementation, 

epicholesterol substitution, or vehicle treatment. We further determined the role of 

cholesterol in Orai1-mediated SOCE by measuring SOCE in cholesterol-manipulated 

cultured pulmonary endothelial cells following either pharmacological inhibition of Orai1 

or Orai1 siRNA knockdown. In addition, the effect of cholesterol manipulation on STIM1-

Orai1 interaction was assessed by proximity ligation assay.  
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Figure 1: Schematic representation of the central hypothesis. We hypothesized that chronic 

hypoxia (CH) reduces membrane cholesterol levels in pulmonary artery endothelial cells 

and thus impairs agonist-induced Ca2+ entry and its components, store-operated Ca2+ entry 

and depolarization-induced Ca2+ entry. Changes of these Ca2+ entry pathways lead to 

reduced [Ca2+]i in pulmonary artery endothelial cells following CH. 
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Figure 2: Schematic representation of Aim 1. Cholesterol (Chol), endoplasmic reticulum 

(ER), inositol trisphosphate receptor (IP3R), store-operated Ca2+ channel (SOC), T-type 

voltage gated calcium channel (T-type VGCC), receptor (R). 
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Figure 3: Schematic representation of Aim 2. Cholesterol (Chol), endoplasmic reticulum 

(ER), inositol trisphosphate receptor (IP3R), agonist (A), receptor (R). 
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Abstract 

Chronic hypoxia (CH)-induced pulmonary hypertension is associated with diminished 

production of endothelium-derived Ca2+-dependent vasodilators such as nitric oxide. 

Interestingly, ATP-induced endothelial Ca2+ entry as well as membrane cholesterol (Chol) 

are decreased in pulmonary arteries from CH rats (4 wk, PB = 380 Torr) compared to 

normoxic controls. Store-operated Ca2+ entry (SOCE) and depolarization-induced Ca2+ 

entry are major components of the response to ATP and are similarly decreased after CH.  

We hypothesized that membrane Chol facilitates both SOCE and depolarization-induced 

pulmonary endothelial Ca2+ entry, and that CH attenuates these responses by decreasing 

membrane Chol. To test these hypotheses, we administered Chol or epicholesterol 

(Epichol) to acutely isolated pulmonary arterial endothelial cells (PAEC) from control and 

CH rats to either supplement or replace native Chol, respectively. The efficacy of 

membrane Chol manipulation was confirmed by filipin staining. Epichol greatly reduced 

ATP-induced Ca2+ influx in PAEC from control rats. Whereas Epichol similarly blunted 

endothelial SOCE in PAEC from both groups, Chol supplementation restored diminished 

SOCE in PAEC from CH rats while having no effect in controls. Similar effects of Chol 

manipulation on PAEC Ca2+ influx were observed in response to a depolarizing stimulus 

of KCl. Furthermore, KCl-induced Ca2+ entry was inhibited by the T-type Ca2+ channel 

antagonist, mibefradil, but not the L-channel inhibitor, diltiazem. We conclude that PAEC 

membrane Chol is required for ATP -induced Ca2+ entry and its two components, SOCE 

and depolarization-induced Ca2+ entry, and that reduced Ca2+ entry after CH may be due 

to loss of this key regulator.  
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Key Words: pulmonary hypertension, T-type calcium channels, ATP, store-operated Ca2+ 

entry, depolarization-induced Ca2+ entry. 

 

New & Noteworthy: This research is the first to examine the direct role of membrane 

cholesterol in regulating pulmonary endothelial agonist -induced Ca2+ entry and its 

components. The results provide a potential mechanism by which chronic hypoxia impairs 

pulmonary endothelial Ca2+ influx which may contribute to pulmonary hypertension. 
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Introduction 

Pulmonary vascular dysfunction resulting from chronic hypoxia (CH) leads to 

increased vascular resistance and pulmonary hypertension in patients with chronic lower 

respiratory diseases, sleep apnea, and in residents at high altitude. Vasoconstriction and 

vascular remodeling associated with dysregulation of endothelium-derived mediators are 

the major components of elevated vascular resistance in CH-induced pulmonary 

hypertension. Production of many endothelium-dependent vasoactive substances as well 

as regulation of membrane potential are largely a function of pulmonary endothelial 

intracellular calcium levels ([Ca2+]i). For example, [Ca2+]i is a key regulatory factor in the 

activity of endothelial nitric oxide synthase (9, 17, 35, 42) phospholipase 2 (PLA2) (52, 

53), and the small and intermediate conductance Ca2+-activated potassium channels (SKCa 

and IKCa, respectively) that are responsible for endothelial cell hyperpolarization upon 

activation by agonists (22, 30). Diminished pulmonary endothelial [Ca2+]i may limit 

production of endothelium-derived vasodilators and anti-mitogenic substances including 

nitric oxide, prostacyclin, and endothelium-derived hyperpolarizing factors. Although 

endothelial dysfunction and an associated reduction in pulmonary artery endothelial [Ca2+]i 

and endothelium-derived nitric oxide (33, 38–40) may be contributing factors to the 

development of CH-induced pulmonary hypertension, the mechanisms by which 

endothelial [Ca2+]i is reduced following CH are incompletely understood. 

Our previous studies demonstrate that both basal [Ca2+]i and agonist-induced Ca2+ 

influx are lower in pulmonary artery endothelial cells (PAEC) from CH rats compared to 

those of control animals (38, 39). CH similarly inhibits store-operated calcium entry 

(SOCE) and depolarization-induced Ca2+ influx through T-type voltage-gated Ca2+ 
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channels (VGCC), which are major components of agonist-induced Ca2+ entry in isolated 

PAEC (38, 40). Furthermore, agonist-induced Ca2+ influx along with membrane 

cholesterol levels are reduced in PAEC from rats exposed to CH. This impaired agonist-

induced Ca2+ influx in PAEC can be restored by both membrane cholesterol 

supplementation and by administration of a caveolin-1 (Cav-1) scaffolding domain peptide 

(39). The number and structure of caveolae, however, are not altered in PAECs from CH 

rats compared to controls (39). These data suggest that cholesterol per se may affect Ca2+ 

entry in these cells. However, questions remain as to whether cholesterol directly 

modulates endothelial agonist-induced Ca2+ entry and whether its major components, 

SOCE and depolarization-induced Ca2+ entry, are differentially affected. 

 The membrane cholesterol depleting agent, methyl-β-cyclodextrin (MβCD), has been 

used to investigate the importance of membrane cholesterol in cellular signaling pathways 

(58). However, by removing membrane cholesterol, MβCD can also disrupt caveolar 

structure (41). Consequently, this approach often raises the question of whether membrane 

cholesterol regulates signaling pathways by direct interaction with membrane proteins or 

rather by altering the properties of lipid microdomains. To address this problem, the 

enantiomer of cholesterol (epicholesterol), which has similar effects on membrane fluidity 

and lipid domain formation as those of cholesterol but lacks the regulatory influences of 

cholesterol on ion channel function, has been used as a tool to study cholesterol-ion channel 

interaction (1, 20, 29, 56). In the present study, we hypothesized that 1) membrane 

cholesterol facilitates SOCE and depolarization-induced Ca2+ entry in PAEC; and 2) 

reduced endothelial Ca2+ influx following CH is due to loss of membrane cholesterol. We 

tested this hypothesis by examining the effect of either membrane 
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cholesterol supplementation or cholesterol substitution with epicholesterol on endothelial 

Ca2+ entry in freshly isolated PAEC cells from normoxic and CH rats.  

 

Methods 

Animals and Chronic Hypoxic Exposure Protocol 

Male Sprague-Dawley rats (200-250 g) were used for all studies. Rats exposed to CH were 

placed in a hypobaric chamber with barometric pressure maintained at ≈380 Torr for 4 wk. 

Age-matched control rats were housed in similar cages under ambient barometric pressure 

(≈630 Torr). The hypobaric chamber was opened three times per week to provide fresh rat 

chow, water, and clean bedding. All animals were maintained on a 12:12-h light-dark cycle. 

All protocols used in this study were reviewed and approved by the Institutional Animal 

Care and Use Committee of the University of New Mexico Health Sciences Center. 

 

Preparation of cholesterol and epicholesterol solutions 

MβCD is a cyclic oligomer of glucose that when saturated with either cholesterol 

or epicholesterol, can effectively deliver these sterols to the plasma membrane (20). This 

approach has been used to enrich or substitute endogenous membrane cholesterol in 

neurons (50) and aortic endothelial cells (45). MβCD -cholesterol or -epicholesterol 

complexes were generated as described earlier (10). Briefly, the cyclodextrin-sterol 

solutions were prepared by the addition of sterols to MβCD (10 mM) in the molar ratio of 

1:5 and dissolution in HEPES buffer containing the following (in mM): 150 NaCl, 6 KCl, 

1 MgCl2, 1.8 CaCl2, 10 HEPES, and 10 glucose (pH 7.4). Each solution was vortexed and 

sonicated using a bath sonicator for 10-15 min. The saturated cyclodextrin-sterol solution 
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was then placed in a rotating incubator at 37 °C overnight. This stock solution was filtered 

through a 0.22 μm syringe filter, aliquoted, and stored at -80 °C. 

 

Isolation and preparation of pulmonary artery endothelial cells 

Following CH or normoxic exposure, rats were euthanized with pentobarbital 

sodium (200 mg/kg ip) and the heart and lungs were exposed by midline thoracotomy. The 

left lung was rapidly excised and placed in ice-cold HEPES buffer solution. Intrapulmonary 

arteries (3rd and 4th order, 200-400 μm inner diameter) were dissected from the superior 

region of the left lung, and the parenchymal lung tissue was carefully removed. Arteries 

were then cut longitudinally and treated with 0.2 mg/ml dithiothreitol and 2 U/ml papain 

in HEPES buffer for 45 min at 37 °C. Vessels were carefully removed from the digestion 

solution and placed in 1 ml of HEPES buffer containing 2 mg/ml bovine serum albumin. 

Pulmonary artery endothelial cell sheets were then released by gentle trituration with a 

small-bore fire-polished Pasteur pipette and stored at 4 °C. One to two drops of the solution 

containing freshly isolated rat PAEC were placed on a poly-L-lysine-coated glass cover 

slip and incubated at 37 °C in the presence vehicle, cholesterol, or epicholesterol. 

Cholesterol supplementation was performed in previously untreated endothelial sheets 

isolated from rats by incubation with cholesterol:MβCD (Chol:MβCD) solution for 30 min 

at 37 °C. Epicholesterol substitution was similarly achieved by incubating isolated PAEC 

with epicholesterol:MβCD (EpiChol:MβCD) solution for 30 min at 37 °C.   

 

Membrane cholesterol content  
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Rat PAEC were freshly isolated and prepared on poly-L-lysine-coated glass cover 

slips before treatment with vehicle, cholesterol, or epicholesterol. Briefly, cholesterol 

supplementation and epicholesterol substitution were performed by incubating PAEC with 

Chol:MβCD or EpiChol:MβCD solutions, respectively, for 30 min at 37 °C. Treated PAEC 

were then washed with PBS and fixed with 2% paraformaldehyde in PBS for 15 min at 

room temperature. Endothelial cell membrane cholesterol was detected by incubating cells 

with the fluorescent cholesterol marker filipin III (Sigma, 20 μg/ml) for 15 min at room 

temperature under light-protected conditions, and coverslips were mounted on the slides 

using mounting media (39). Slides were air-dried at 4 °C and stored at -20 °C until analysis. 

The samples were imaged by fluorescence confocal microscopy (Zeiss LSM 510 

AxioObserver; Göttingen, Germany) using 405-nm laser (excitation), a 420-nm long pass 

filter (emission), and a Plan-Neofluor X40/1.3 oil objective. Filipin staining was quantified 

using NIH Image J. A total of 25-100 cells per rat were analyzed. Fluorescence intensity 

was quantified by setting a threshold using blank control (filipin-untreated group). 

Fluorescence of each PAEC sheet was calculated and averaged to determine mean 

fluorescence for each animal.  

 

Endothelial caveolar number 

Cultured rat pulmonary microvascular endothelial cells (PMVEC, passage 6, 

cultured in MCDB-131 complete media, VEC Technologies) were treated with vehicle, 

MβCD, Chol:MβCD, or EpiChol:MβCD at 37 °C for 30 min. Cells were washed in HEPES 

buffer for 10 min and prepared for transmission electron microscopy (TEM) by fixation 

with 3% formaldehyde, 2% glutaraldehyde, and 1.5 mM CaCl2 in 0.1 M sodium cacodylate 
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buffer. Cells were post-fixed in reduced osmium tetroxide (1% OsO4 and 0.5% potassium 

ferrocyanide), dehydrated, embedded in epoxy resin, sectioned, and stained with uranyl 

acetate (saturated, aqueous). 

Caveolae between 60 and 100 nm in diameter were counted at the membrane of 

endothelial cells and divided by the length of cell membrane in μm using NIH Image J 

software. A total of 100 images encompassing 38 cells and 438 μm of membrane were 

analyzed by a person who was blinded to treatment. 

 

Endothelial fura-2 loading 

Following vehicle, cholesterol, or epicholesterol treatment, freshly isolated PAEC 

sheets were plated and loaded with fura-2 AM (3 μM and 0.05% pluronic acid) in HEPES 

buffer for 7 min at room temperature (≈23 °C) and washed for 15 min at 37 °C. Ratiometric 

changes in endothelial cell [Ca2+]i were determined by alternating a xenon arc lamp light 

source between 340- and 380- nm bandpass filters at 1 Hz (IonOptix Hyperswitch), and 

the interleaved fura-2 fluorescence emissions at 510 nm were detected with a 

photomultiplier tube.  

 

Agonist-induced Ca2+ influx and SOCE in freshly isolated endothelial cells 

Agonist-induced Ca2+ influx and SOCE were measured in PAEC sheets as 

described previously (39). After fura-2 loading and washing, fura-2-loaded endothelial 

sheets were superfused with Ca2+-free HEPES buffer for 5 min, then stimulated with ATP 

(20 μM) or cyclopiazonic acid (CPA, sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, 

10 μM) to deplete intracellular Ca2+ stores. Calcium entry was then induced by repletion 
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of extracellular Ca2+ (1.8 mM) in the continued presence of ATP or CPA. Ca2+ influx was 

quantified as the area under curve (AUC) for the 5 minutes following reintroduction of 

extracellular Ca2+.  

 

Measurement of PAEC Membrane Potential (Em) 

Endothelial Em was measured in en face small pulmonary arteries superfused with 

physiological salt solution (37 °C, equilibrated with 10% O2, 6% CO2) using glass 

microelectrodes (tip resistance 40–80 MΩ) filled with 3 M KCl. A Neuroprobe amplifier 

(A-M Systems) was used for recording Em. Analog output from the amplifier was low pass 

filtered at 1 kHz and recorded and analyzed using Axoscope software (Axon Instruments). 

Em was measured under baseline conditions and in response to 10 μM ATP. Criteria for 

acceptance of Em  recordings included: 1) an abrupt negative deflection of potential as the 

microelectrode was advanced into a cell; 2) a stable membrane potential for at least 1 min; 

and 3) an abrupt change in potential to 0 mV after the electrode was retracted from the cell.  

 

Depolarization-induced Ca2+ influx in freshly isolated endothelial cells 

The ratiometric changes in fura-2 fluorescence represent the sum of changes in 

intracellular [Ca2+]i, which includes Ca2+ influx, Ca2+ uptake by organelles, and Ca2+ 

extrusion from the cell. To specifically assess Ca2+ entry, Mn2+ is used as a Ca2+ surrogate 

due to its unique property to traverse most Ca2+ -permeable channels (2), irreversibly bind 

to fura-2, and quench fura-2 fluorescence (wavelength at ~360 nm). Endothelial cell 

depolarization-induced Ca2+ influx was determined by Mn2+ quenching of fura-2 

fluorescence in freshly isolated PAEC sheets as describe previously (40). This preparation 
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was excited at the isosbestic wavelength (360 nm), and emission recorded at 510 nm. 

Similar to the previous protocol, fura-2-loaded endothelial sheets were superfused with 

Ca2+-free HEPES buffer for 5 min and administered KCL (60 mM) to elicit membrane 

depolarization. Calcium entry represented by the influx of the Ca2+ surrogate Mn2+ was 

then determined upon addition of extracellular Mn2+ (500 μM) in the continued presence 

of KCl. Depolarization-induced Ca2+ entry was quantified by the percentage of the Mn2+ 

quenched fluorescence at 120s after administration of Mn2+.  

 

Calculations and statistics 

All data are expressed as means ± SE. Values of n refer to the number of cells for 

experiment examining caveolar number or to the number of animals for other experiments. 

Percentage data were converted to normal distributions by arcsine transformation before 

parametric analysis. An unpaired t-test, one-way ANOVA, two-way ANOVA or Kruskal-

Wallis H test were used where appropriate for statistical comparisons. If differences were 

detected by ANOVA or the Kruskal-Wallis H test, individual groups were compared with 

the Student-Newman-Keuls or Dunn’s multiple comparison tests, respectively. A 

probability of < 0.05 was accepted as statistically significant for all comparisons. 

 

Results 

 

Effect of cholesterol manipulation on endothelial membrane cholesterol content 

Filipin is a polyene antibiotic that binds to membrane cholesterol via hydrophobic 

interaction (37), but cannot bind to epicholesterol (14). Consistent with our previously 

published data (39), filipin fluorescence was less in cells from CH rats compared with 
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normoxic rats (Fig. 1). Cholesterol supplementation restored diminished membrane 

cholesterol in cells from CH animals while having no effect in normoxic controls. 

Furthermore, epicholesterol treatment significantly reduced filipin fluorescence in freshly 

isolated PAEC from both control and CH rats. These data suggest that epicholesterol 

treatment is an effective approach to substitute endogenous membrane cholesterol for 

epicholesterol in this preparation. 

 

Effect of cholesterol manipulation on endothelial caveolar number  

Effects of cholesterol depletion, supplementation or substitution treatments on 

caveolar number and structure were examined in cultured rat PMVEC using transmission 

electron microscopy. MβCD, as a cholesterol carrier, can sequester membrane cholesterol 

and disrupt caveolar structure when used alone (21). Consistent with previous findings, 

MβCD decreased the incidence of caveolae (Fig. 2). In contrast, neither cholesterol 

supplementation nor epicholesterol substitution altered caveolar number compared to 

vehicle control. These results support an effect of epicholesterol treatment to substitute 

rather than deplete endogenous membrane cholesterol. 

 

Epicholesterol substitution attenuates endothelial ATP-induced Ca2+ entry 

ATP-induced Ca2+ entry and SOCE were assessed using ratiometric fura-2 

measurement as described previously (38, 39). Ca2+ entry was quantified as the AUC for 

the 5 minutes following reintroduction of extracellular Ca2+, in the continued presence of 

ATP or CPA (Fig. 3). ATP-induced Ca2+ entry was diminished in isolated PAEC from 

normoxic rats after EpiChol:MβCD treatment compared with vehicle controls, but was not 



57 
 

significantly altered by cholesterol supplementation (Chol:MβCD) (Fig.4). These data 

suggest that endothelial membrane cholesterol is necessary for agonist-induced Ca2+ entry. 

 

Cholesterol supplementation restores endothelial SOCE following CH 

To assess the importance of membrane cholesterol in SOCE, we examined effects 

of cholesterol supplementation and epicholesterol substitution on CPA-induced Ca2+ influx 

in isolated PAEC. SOCE was diminished in cells from CH rats compared with controls and 

was rescued by cholesterol repletion (Fig.5). Furthermore, epicholesterol substitution 

greatly inhibited CPA-induced Ca2+ entry in PAEC from both normoxic and CH rats when 

compared with their respective vehicle controls.   

 

ATP causes endothelial membrane depolarization 

We have previously demonstrated that CH inhibits depolarization-induced Ca2+ 

entry in PAEC (40). However, it is unclear if ATP elicits depolarization in these cells that 

could evoke this pathway. Consistent with this possibility, we found that ATP caused 

membrane depolarization in endothelium of freshly isolated pulmonary arteries from 

control rats (Fig. 6).  

 

Decreased membrane cholesterol leads to reduced endothelial depolarization-induced 

Ca2+ entry following CH 

Endothelial cell depolarization-induced Ca2+ influx was determined by Mn2+ 

quenching of fura-2 fluorescence in freshly isolated PAEC. Introduction of Mn2+ caused a 

steady decline in fura-2 fluorescence in the absence of KCl in PAEC from both control and 
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CH rats, indicative of basal Ca2+ entry (Fig. 7).  A depolarizing stimulus of KCl (60 mM) 

increased entry of the Ca2+ surrogate in isolated PAECs from control rats. However, this 

response to KCl was absent in in PAECs from CH rats.  

To confirm the involvement of T-type VGCCs in depolarization-induced Ca2+ 

influx (40), we repeated these experiments in the presence of the L-type Ca2+ channel 

inhibitor, diltiazem, or the T-type inhibitor, mibefradil. Whereas diltiazem did not affect 

responses to KCl in cells from either normoxic or CH rats, mibefradil abolished KCl-

induced Mn2+ quenching of fura-2 fluorescence in PAEC from normoxic controls, while 

having no effect in cells from CH rats (Fig. 8).  

Consistent with a requirement for membrane cholesterol in depolarization-induced 

Ca2+ entry, epicholesterol substitution prevented depolarization-induced Mn2+ entry in 

PAEC from normoxic rats, whereas cholesterol supplementation was without effect in 

these cells (Fig. 9). In addition, cholesterol repletion partially restored the KCl-induced 

Mn2+ influx in PAEC from CH rats, suggesting that reduced membrane cholesterol 

contributes to impaired depolarization-induced Ca2+ entry following CH. 

 

Discussion 

Our laboratory has previously shown that reduced membrane cholesterol following 

CH is associated with decreased ATP-induced Ca2+ entry in intrapulmonary artery 

endothelial cells. However, it is unclear if membrane cholesterol regulates endothelial Ca2+ 

entry through direct interaction with signaling molecules or through changes in physical 

properties of the plasma membrane. The goal of the present study was to determine the 

contribution of membrane cholesterol to agonist-induced Ca2+ entry and its major 

components, store-operated Ca2+ entry and Ca2+ entry through voltage-gated Ca2+ channels. 



59 
 

The major findings from this study are that substitution of endogenous membrane 

cholesterol with its epimer, epicholesterol, attenuates ATP-induced Ca2+ entry, SOCE and 

depolarization-induced Ca2+ entry in PAEC. In addition, decreased endothelial SOCE and 

depolarization-induced Ca2+ entry following CH are largely restored by cholesterol 

supplementation. However, neither cholesterol supplementation nor epicholesterol 

substitution alters endothelial caveolar number and structure. The results from this study 

suggest that membrane cholesterol directly regulates agonist-induced Ca2+ entry and its 

components and further demonstrate that impaired endothelial Ca2+ entry following CH is 

due to altered membrane cholesterol homeostasis. These findings provide an improved 

mechanistic understanding of factors that contribute to endothelial dysfunction and 

associated PH resulting from long-term hypoxic exposure.  

Many cells release ATP in response to mechanical signals including shear stress, 

extracellular fluid movement, and changes of cell volume (16, 51, 57). The activation of G 

protein-coupled purinergic receptors by released ATP may regulate myogenic tone and 

vascular remodeling (15, 25). In endothelial cells, shear stress-induced production of ATP 

serves as an autocrine factor and stimulates endothelial NO production (3). ATP as an 

agonist achieves its various roles through controlling intracellular Ca2+. Intracellular Ca2+ 

is a crucial second messenger affecting various cellular processes and is regulated by 

different pathways (6). Receptor-mediated Ca2+ influx is one of the major pathways to 

increase [Ca2+]i. The binding of an agonist to its receptor mediates activation of 

phospholipase C and production of inositol 1,4,5 trisphosphate (IP3). Cytosolic IP3 then 

binds to IP3 receptors on endoplasmic reticulum (ER), leading to depletion of the ER Ca2+ 

store and subsequent  SOCE (44). Agonist binding may also elicit Ca2+ entry through 
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receptor-operated cation channels that are not activated by store emptying (47). 

Interestingly, agonists like ATP may further mediate depolarization-induced Ca2+ entry 

through VGCC secondary to activation of various nonselective cation channels, including 

transient receptor potential canonical (TRPC) channels and the ionotropic P2X receptor 

(11).  

Cholestrol is one of the key components of the plasma membrane and may affect 

cellular signaling. Direct interaction between sterols and ion channels has been suggested 

by the sensitivity of inwardly rectifying potassium (Kir) channels (45) and large 

conductance, Ca2+-activated potassium (BKCa) channels (8) to various sterol analogues. In 

addition, cholesterol binding regions exist in both Kir channels and BKCa channels (48, 49). 

However, the effect of membrane cholesterol on ion channel function may vary depending 

on the type of ion channel. For example, cholesterol decreases the open probability of many 

K+ channels, as well as voltage-gated Na+ and Ca2+ channels (13, 27, 52). In contrast, other 

ion channels such as epithelial Na+ channels and TRPC channels are inhibited by removal 

of membrane cholesterol (4, 5, 26). Regulation of SOCE by membrane cholesterol has been 

implicated in different cell types in previous studies (5, 19), in which membrane cholesterol 

depletion by MβCD impaired SOCE. However, the effect of membrane cholesterol in 

regulation of endothelial depolarization-induced Ca2+ entry is unknown.  

The importance of membrane cholesterol in agonist-induced Ca2+ entry has been 

suggested in cultured vascular smooth muscle cells, in which cholesterol enrichment 

augments agonist-induced Ca2+ influx (7). Our previous findings that cholesterol repletion 

enhances impaired ATP- induced Ca2+ entry in PAECs following CH (39) also suggests 

that membrane cholesterol may facilitate endothelial agonist-induced Ca2+ entry. ATP 
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induces both SOCE and T-type VGCC blocker -sensitive Ca2+  influx in PAECs (40).  In 

this study, we confirmed that ATP causes membrane depolarization in pulmonary artery 

endothelium, which may lead to T-type channel activation and Ca2+ influx. Considering 

that SOCE and depolarization-induced Ca2+ entry are major components of ATP- induced 

Ca2+ entry, and that both Ca2+ influx pathways are blunted following CH (38, 40), it is 

possible that membrane cholesterol also regulates these two components of the ATP-

induced Ca2+ response. 

Considering the wide range of effects of MβCD such as altering caveolar structure 

and disrupting other lipid microdomains (21), the direct contribution of membrane 

cholesterol to regulation of ion channels remains unclear. To investigate the direct role of 

membrane cholesterol in mediating endothelial Ca2+ influx, we used epicholesterol, the 

enantiomer of cholesterol, to substitute membrane cholesterol. Although epicholesterol has 

effects similar to cholesterol on physical properties of the cell membrane (56), few studies 

have examined the effect of EpiChol:MβCD on caveolae. Here we provide evidence that 

MβCD alone nearly abolished the incidence of caveolae, whereas neither Chol:MβCD nor 

EpiChol:MβCD affected caveolar number in cultured PMVEC. It has previously been 

shown that administration of an EpiChol:MβCD solution to bovine aortic endothelial cells 

effectively substitutes epicholesterol for endogenous membrane cholesterol (46). To verify 

this observation in our preparation, we assessed effects of epicholesterol substitution on 

membrane cholesterol content in freshly isolated PAEC using the fluorescent cholesterol 

marker, filipin. Epicholesterol does not interact with filipin due to a different orientation 

of the 3-hydroxyl group compared to cholesterol (14, 37). As expected, we found that 

epicholesterol treatment greatly decreased filipin fluorescence intensity in isolated PAEC 
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from both normoxic and CH rats, consistent with epicholesterol substitution of endogenous 

membrane cholesterol. In addition, cholesterol treatment restored membrane cholesterol 

content in PAEC from CH rats to the level of normoxic controls, consistent with our 

previous findings (39). These findings suggest that EpiChol:MβCD treatment substitutes 

endogenous membrane cholesterol for epicholesterol without disrupting caveolae.  

Consequently, the observed effects of epicholesterol treatment on Ca2+ influx are likely due 

to loss of ion channel regulation by cholesterol, rather than to changes in caveolar density.  

Using epicholesterol to substitute endogenous cholesterol, we demonstrated a direct 

role of membrane cholesterol to facilitate ATP-induced Ca2+ entry in PAEC. Our data are 

consistent with findings that depletion of membrane cholesterol impairs this Ca2+ response 

in PAEC (39). We also provide evidence that SOCE, as the major component of the ATP- 

induced Ca2+ response, is similarly regulated by membrane cholesterol. This observation 

implies that membrane cholesterol may either directly affect store-operated cation channels 

(SOCs) or interact with a signaling pathway that activates SOCs. The finding that reduced 

endothelial SOCE in pulmonary arteries following CH was acutely restored by membrane 

cholesterol supplementation suggests that CH limits SOCE by reducing membrane 

cholesterol rather than by decreasing ion channel expression. Although this study has not 

identified the specific cation channel(s) involved in pulmonary endothelial SOCE, 

candidates ion channels include TRPC1, TRPC4 and Orai1, each of which have been 

implicated in endothelial SOCE and demonstrate cholesterol-sensitivity (5, 12, 23, 32).  

Wu et al (54) first demonstrated that cultured rat PMVECs express mRNA of 

CaV3.1 and possess voltage-dependent current that are sensitive to T-type channel blockers. 

They also reported that T-type VGCCs contribute to both agonist-induced Ca2+ entry and 
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SOCE in PMVECs. Although T-type VGCCs are not found in cultured rat PAECs (54), 

their expression and function are described in freshly dispersed rat PAECs (40). Paffett et 

al showed that T-type VGCCs contribute to depolarization-induced Ca2+ entry and 

receptor-operated Ca2+ entry in response to ATP. Following exposure to CH, the mibefradil 

sensitive component of ATP-induced Ca2+ entry is greatly reduced. The effect of CH on 

this Ca2+ entry is not due to altered membrane K+ permeability, since the impaired 

endothelial depolarization-induced Ca2+ entry following CH persists even when membrane 

K+ permeability is equivalently clamped by K+ ionophore, valinomycin. These findings 

suggest that T-type VGCCs are important mediators of depolarization-induced Ca2+ entry 

and that impaired Ca2+ entry via these channels may contribute to reduced basal [Ca2+]i in 

PAECs after CH (40). Using the Mn2+ quenching technique to selectively assess Ca2+ entry, 

we confirmed that depolarization-induced Ca2+ entry was sensitive to T-type VGCC 

inhibition and Ca2+ entry was eliminated following CH. Additionally, depolarization-

induced Ca2+ entry following CH was partially restored by cholesterol supplementation. A 

similar effect of cholesterol on VGCCs has been reported in other cell types (55). Although 

studies on cholesterol regulation of VGCC are limited, our finding that epicholesterol 

substitution abolished depolarization-induced Ca2+ entry in control cells suggests that there 

may be a direct interaction between membrane cholesterol and T-type VGCCs that controls 

channel activity.  

Two potential mechanisms of decreased membrane cholesterol following CH 

include: 1) CH inhibits de novo cholesterol biosynthesis; and 2) CH induces membrane 

cholesterol oxidation. Mukodani et al. first reported that hypoxia induces lipid 

accumulation and impairs cholesterol synthesis in cultured rabbit skin fibroblasts (31). The 
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mechanism by which hypoxia affects cholesterol synthesis was later explored by Nguyen 

et al (36). They reported that hypoxia induces accumulation of cholesterol biosynthetic 

intermediates and activates HIF1-α-mediated induction of ER membrane proteins called 

insulin-induced gene. These two signaling pathways lead to rapid degradation of HMG-

CoA reductase and subsequently limit synthesis of cholesterol (36). Chronic hypoxia can 

also increase the production of reactive oxygen species (ROS) (18, 28), which may 

facilitate membrane cholesterol oxidation. Because filipin cannot be used to label oxidized 

cholesterol (43), it is possible that reduced filipin staining in PAECs of CH group is the 

result of membrane cholesterol oxidation by hypoxia-induced ROS. Cholesterol oxidation 

not only has potential to disrupt the interaction between cholesterol and ion channels and 

many regulatory proteins, but may also to inhibit de novo cholesterol synthesis (34). Future 

studies are required to evaluate the potential contributions of these mechanisms to reduced 

PAEC membrane cholesterol following CH. 

Regulation of intracellular Ca2+ levels is a complex process. It is interesting that 

CH impairs agonist-induced Ca2+ entry in PAEC via altered cholesterol regulation of 

potential ion channels. This decreased endothelial ATP-induced Ca2+ influx following CH 

is not associated with changes in ATP-induced Ca2+ mobilization (39), suggesting that 

attenuated Ca2+ entry is not due to altered Ca2+ release of Ca2+ loading of the ER after CH 

exposure. However, whether CH similarly affect other intracellular Ca2+ handling 

pathways like Ca2+ sequestration and efflux remains to be determined. It should also be 

noted that the impaired Ca2+ entry following CH is limited to endothelial cells of large 

pulmonary arteries and may not reflect those of smaller arteries and arterioles that likely 

contribute more to regulating vascular resistance in hypertensive pulmonary circulation. 
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Besides, both SOCE and receptor-operated Ca2+ entry in response to P2Y receptor agonist 

UTP are also reduced in pulmonary artery smooth muscle cells (PASMC) following CH 

(24). It rises another interesting question that whether CH impairs agonist-induced Ca2+ 

influx in PASMC through similarly mechanism involving membrane cholesterol observed 

in PACE. Future studies are needed to evaluate whether these effects of CH to alter calcium 

influx pathways are conserved across the pulmonary circulation and the impact of these 

responses to the development of CH-induced PH. 

In conclusion, the current study provides evidence that membrane cholesterol 

facilitates pulmonary endothelial Ca2+ entry likely through interaction with membrane ion 

channels. Our findings also demonstrate that impaired SOCE and depolarization-induced 

Ca2+ entry following CH are associated with reduced membrane cholesterol levels and are 

restored by cholesterol supplementation. This membrane cholesterol associated decrease 

of endothelial Ca2+ entry following CH may not only affect regulation of vascular tone, but 

also contribute to physiological changes, such as endothelial migration/proliferation and 

apoptosis. Our studies contribute to the understanding of the effect of CH on membrane 

cholesterol homeostasis and subsequent impact on endothelial [Ca2+]i in pulmonary 

arteries, which could shed light on developing potential therapeutic treatments for PH that 

target membrane cholesterol. Future studies will focus on identifying specific ion channels 

that interact with membrane cholesterol in pulmonary endothelial cells. 
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Figure 1. Epicholesterol reduces endogenous membrane cholesterol of freshly isolated 

PAEC sheets from both normoxic (Nor) and CH rats. A) Representative images of 

membrane cholesterol indicated by filipin fluorescence in PAEC isolated from each group. 

Cells were pretreated with vehicle, cholesterol (Chol), or epicholesterol (Epichol). Scale 

bars = 20 μm.  B) Mean filipin fluorescence (arbitrary units; A.U.) in PAEC sheets from 

each group. Two-way ANOVA followed by the Student-Newman-Keuls post-hoc test was 

used to compare between groups. Values are means ± SE; n = 3 animals/group. *P < 0.05 

vs. Nor vehicle; #P < 0.05 vs. CH vehicle. 
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Figure 2. Caveolae number is reduced by cholesterol depletion with MΒCD, but not by 

cholesterol or epicholesterol treatment in cultured PMVEC. A) Representative images of 

caveolae in cultured PMVEC from each treatment group. B) Mean number of caveolae per 

length of cell membrane (caveolae/μm). Data were compared by the Kruskal-Wallis H test 

and Dunn’s multiple comparison test. Values are means ± SE; n=7-11 cells (indicated in 

bars); *P < 0.05 versus all other treatments. A total of 100 images encompassing 38 cells 

and 438 μm of membrane were analyzed. 
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Figure 3. Experimental protocol for measuring ATP- and CPA- induced Ca2+ entry in 

isolated PAEC sheets. Depletion of intracellular Ca2+ store was induced by 20 μM ATP or 

10 μM CPA in a Ca2+-free HEPES buffer. Intracellular Ca2+ is expressed as the fura-2 

340/380 nm emission ratio. Ca2+ entry was assessed by calculating area under the curve 

(AUC) for the 5 min following reintroduction of extracellular Ca2+ (indicated by rectangle). 
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Figure 4. Epicholesterol substitution reduces ATP-induced Ca2+ entry in PAEC sheets 

from normoxic rats. Ca2+ influx was assessed by ratiometric analysis of fura-2 

fluorescence. One-way ANOVA followed by the Student-Newman-Keuls test was used to 

compare between groups. Values are means ± SE; n = 5 animals/group. *P < 0.05 vs. 

vehicle. 
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Figure 5. Decreased membrane cholesterol leads to reduced endothelial SOCE following 

CH. Ca2+ influx was assessed by ratiometric analysis of fura-2 fluorescence in PAEC 

sheets. Cholesterol supplementation restored CPA-induced Ca2+ entry following CH, 

whereas epicholesterol substitution significantly inhibited CPA-induced Ca2+ entry in 

PAEC sheets from both normoxic and CH rats. Groups were compared by two-way 

ANOVA followed by multiple comparisons testing using the Student-Newman-Keuls test. 

Values are means ± SE; n = 5-10 animals/group (indicated in bars).  *P <0.05 vs. Nor 

vehicle; #P <0.05 vs. CH Vehicle.  
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Figure 6. ATP induces membrane depolarization in pulmonary artery endothelium. 

Endothelial membrane potential was measured under baseline conditions and in response 

to 10 μM ATP in en face small pulmonary arteries from control rats. An unpaired t-test 

was used to compare between two groups. Values are means ± SE; n = 7, Baseline; n=6, 

ATP (3-6 Em recordings were conducted per artery and averaged for an n=1).  *P <0.05 vs. 

Baseline.  
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Figure 7. Exposure to CH abolishes endothelial depolarization-induced Ca2+ entry. A 

measure of endothelial Ca2+ entry was assessed by Mn2+ quenching of fura-2 fluorescence 

in PAEC sheets from control and CH rats treated with either vehicle (time control) or 60 

mM KCl (depolarizing stimulus). F, fluorescence intensity at 360 nm excitation; F0, 

fluorescence intensity at time zero. Two-way ANOVA and the Student-Newman-Keuls 

test were used to compare between groups at each time point. Values are means ± SE; n = 

5, Nor Vehicle; n = 5, CH Vehicle; n = 7, Nor KCl; n = 6, CH KCl. *P < 0.05 vs. Nor KCl 

over the range of 20 – 120 s. 
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Figure 8. CH attenuates depolarization-induced Ca2+ entry through T-type Ca2+ channels 

in PAEC. Data represent Mn2+-quenched fura-2 fluorescence (at 90 s time point) in 

response to KCl (60 mM) in PAEC sheets from control and CH rats. Diltiazem (50 μM) 

and mibefradil (10 μM) were used to selectively inhibit L-type and T-type Ca2+ channels, 

respectively. Data are expressed as ΔF/F0 (%) from time control. Two-way ANOVA and 

the Student-Newman-Keuls test were used to compare between groups. Values are means 

± SE; n = 4-7 animals/group (indicated in bars). *P < 0.05 vs. Nor vehicle; #P < 0.05 vs. 

Nor diltiazem. 
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Figure 9. Decreased membrane cholesterol leads to reduced endothelial depolarization-

induced Ca2+ entry following CH. Data represent Mn2+-quenched fura-2 fluorescence (at 

90 s time point) in response to KCl (60 mM) in PAEC sheets from control and CH rats. 

Cholesterol repletion partially restored depolarization-induced Ca2+ entry following CH. 

Epicholesterol greatly inhibited KCl-induced Ca2+ entry in PAEC from both normoxic and 

CH rats. Data are expressed as ΔF/F0 (%) from time control. Statistical comparisons were 

made using two-way ANOVA and the Student-Newman-Keuls post-hoc test. Values are 

means ± SE; n = 5-7 animals/group (indicated in bars). *P < 0.05 vs. Nor vehicle; #P < 

0.05 vs. Nor chol; ∆P < 0.05 vs. CH vehicle. 
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Abstract 

Endothelial dysfunction in chronic hypoxia (CH)-induced pulmonary hypertension 

is characterized by reduced store-operated Ca2+ entry (SOCE) and diminished Ca2+-

dependent production of endothelium-derived vasodilators.  We recently reported that 

SOCE in pulmonary arterial endothelial cells (PAEC) is tightly regulated by membrane 

cholesterol, and that decreased membrane cholesterol is responsible for impaired SOCE 

following CH.  However, the ion channels involved in cholesterol-sensitive SOCE are 

unknown.  We hypothesized that cholesterol facilitates SOCE in PAEC through the 

interaction of Orai1 and stromal interaction molecule 1 (STIM1).  The role of cholesterol 

in Orai1-mediated SOCE was initially assessed using CH exposure in rats (4 wk, 380 

mmHg) as a physiological stimulus to decrease PAEC cholesterol.  Effects of Orai1 

inhibition with AnCoA4 on SOCE were examined in isolated PAEC sheets from control 

and CH rats following cholesterol supplementation, substitution of endogenous cholesterol 

with epicholesterol (Epichol), or vehicle treatment. Whereas cholesterol restored 

endothelial SOCE in CH rats, both Epichol and AnCoA4 attenuated SOCE only in 

normoxic controls. The Orai1 inhibitor had no further effect in cells pretreated with 

Epichol.  Using cultured pulmonary endothelial cells to allow better mechanistic analysis 

of the molecular components of cholesterol-regulated SOCE, we found that Epichol, 

AnCoA4 and Orai1 siRNA each inhibited SOCE compared to their respective controls.  

Epichol had no additional effect following knockdown of Orai1.  Furthermore, Epichol 

substitution significantly reduced STIM1-Orai1 interaction assessed by proximity ligation 

assay.  We conclude that membrane cholesterol is required for the STIM1-Orai1 interaction 
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necessary to elicit endothelial SOCE. Furthermore, reduced PAEC membrane cholesterol 

following CH limits Orai1-mediated SOCE.  

Key Words: pulmonary hypertension, STIM1, store-operated Ca2+ entry. 

New & Noteworthy: This research demonstrates a novel contribution of cholesterol to 

regulate the interaction of Orai1 and STIM1 required for pulmonary endothelial agonist-

induced Ca2+ entry. The results provide a mechanistic basis for impaired pulmonary 

endothelial Ca2+ influx following CH that may contribute to pulmonary hypertension. 
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Introduction 

Endothelial dysfunction in pulmonary hypertension is characterized by imbalanced 

production of endothelium-derived vasocontrictors and vasodilators leading to 

vasoconstriction, vascular remodeling, and subsequent elevation of pulmonary vascular 

resistance (8, 21, 75). The production of many endothelium-derived vasodilators and anti-

mitogenic compounds, including nitric oxide (NO), prostacyclin, and endothelium-derived 

hyperpolarizing factors is closely regulated by endothelial intracellular calcium levels 

([Ca2+]i) (9, 17, 25, 45, 47). Diminished pulmonary endothelial [Ca2+]i and limited 

production of endothelium-derived NO are associated with the development of chronic 

hypoxia (CH)-induced pulmonary hypertension (51, 56). However, the mechanisms of 

reduced pulmonary endothelial [Ca2+]i following CH exposure are not well-investigated. 

Endothelial store-operated Ca2+ entry (SOCE) is required for endothelium-

dependent vasorelaxation in systemic arteries (28), in part through production of NO (3). 

SOCE is initiated when a stimulated G protein-coupled receptor activates phospholipase C 

(PLC), which produces inositol 1,4,5 trisphosphate (IP3) by hydrolyzing 

phosphatidylinositol bisphosphate (PIP2). IP3, as a second messenger, activates IP3 

receptors on the endoplasmic reticulum (ER) membrane, leading to rapid ER Ca2+ release. 

ER Ca2+ store depletion then activates store-operated cation channels (SOC), which leads 

to sustained Ca2+ influx (64). Stromal interaction molecule 1 (STIM1) has been identified 

as an ER Ca2+ sensor and was suggested as the essential link between Ca2+ store depletion 

and SOC activation (72). As ER Ca2+ levels fall, STIM1 molecules oligomerize on the ER 

membrane and interact with SOC on the cell membrane, which include Orai channels (15). 

Orai1, one of three isoforms of Orai found in mammalian cells, mediates SOCE when 
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activated by STIM1 (86). The STIM1-Orai1 interaction occurs in cholesterol-rich caveolae 

on the cell membrane. Interestingly, intact caveolae are required for activation of Orai1-

mediated SOCE in platelets (14). Depletion of membrane cholesterol not only inhibits 

SOCE, but also interupts STIM1 clustering near the cell membrane (59). However, whether 

membrane cholesterol directly faciliates STIM1-Orai1 interaction and SOCE activation or 

indirectly modulates this Ca2+ entry pathway by contributing to lipid raft integrity is not 

clear. 

We have previously reported that decreased endothelial SOCE following CH is 

associated with diminished membrane cholesterol  and this reduced SOCE is restored by 

cholesterol supplementation (56, 57, 84). Furthermore, to study the functional role of 

membrane cholesterol in regulating SOCE, epicholesterol (Epichol) was used to replace 

native cholesterol.  As the enantiomer of cholesterol, Epichol has similar effects on 

membrane fluidity and lipid domain formation as those of cholesterol but lacks the 

regulatory influences of cholesterol on ion channel function (22, 65, 83). Substitution of 

endogenous cholesterol with Epichol mimics the effect of CH in reducing endothelial 

SOCE while having no effect on caveolar number (84). However, the mechanisms by 

which reduced endothelial membrane cholesterol limits SOCE following CH are not clear. 

In the present study, we hypothesized that cholesterol facilitates the interaction of Orai1 

with STIM1 to mediate SOCE in PAEC. We tested this hypothesis by examining the effects 

of either cholesterol or Epichol treatment combined with Orai1 inhibition on SOCE in both 

freshly isolated pulmonary arterial endothelial cells (PAEC) from normoxic and CH rats 

and in cultured pulmonary microvascular endothelial cells (PMVEC).  
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Methods 

Animals and Chronic Hypoxic Exposure Protocol 

Male Sprague-Dawley rats (200-250 g) were used for in vivo and ex vivo studies. 

Rats exposed to CH were placed in a hypobaric chamber with barometric pressure 

maintained at ≈ 380 mmHg (inspired PO2 ≈ 70 mmHg) for 4 wk (84). Age-matched control 

rats were housed in similar cages under ambient barometric pressure (≈ 630 mmHg in 

Albuquerque, NM). The hypobaric chamber was opened three times per week to provide 

fresh rat chow, water, and clean bedding. All animals were maintained on a 12:12-h light-

dark cycle. All protocols used in this study were reviewed and approved by the Institutional 

Animal Care and Use Committee of the University of New Mexico Health Sciences Center. 

Isolation and preparation of pulmonary artery endothelial cells 

Following CH or normoxic exposure, rats were euthanized with pentobarbital 

sodium (200 mg/kg ip) and the heart and lungs were exposed by midline thoracotomy. The 

left lung was rapidly excised and placed in ice-cold HEPES buffer solution. Intrapulmonary 

arteries (3rd and 4th order, 200-400 μm inner diameter) were dissected from the superior 

region of the left lung, and the parenchymal lung tissue was carefully removed. Arteries 

were then cut longitudinally and treated with 0.2 mg/ml dithiothreitol and 2 U/ml papain 

in HEPES buffer for 45 min at 37 °C. Vessels were carefully removed from the digestion 

solution and placed in 1 ml of HEPES buffer containing 2 mg/ml bovine serum albumin. 

PAEC sheets were then released by gentle trituration with a small-bore fire-polished 

Pasteur pipette and stored at 4 °C. One to two drops of the solution containing freshly 

isolated rat PAEC were placed on a poly-L-lysine-coated glass cover slip and incubated at 
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37 °C for 30 min prior to experimentation (84). PAEC sheets collected using this approach 

are identified by their distinct morphology (57, 84) and uptake of Dil-Ac-LDL (56). 

Cell culture 

To complement experiments using freshly isolated PAEC sheets, cultured 

pulmonary microvascular endothelial cells (PMVEC; VEC Technologies) were also used 

in this study. Cultured cells permit the use of genetic manipulation with siRNA and 

determination of protein-protein interactions (Orai1-STIM1) using proximity ligation 

assay for better mechanistic analysis of the molecular components of cholesterol-regulated 

SOCE. PMVEC were maintained in a humidified incubator at 37 °C with 5% CO2 in 

MCDB-131 complete media (VEC Technologies).  Cultures were split every 4-6 days and 

cells studied between passages 5 and 10.  Depending on the experimental protocol, cells 

were seeded onto round poly-L-lysine-coated glass coverslips in 6-well plates, 6-well 

plates coated with attachment factors, or 18-well slides coated with attachment factors.  

Preparation of cholesterol and epicholesterol solutions 

Solutions were prepared by saturating methyl-β-cyclodextrin (MβCD) with either 

cholesterol or Epichol, as decribed previously (11). Briefly, the cyclodextrin-sterol 

solutions were prepared by the addition of sterols to MβCD (10 mM) in a molar ratio of 

1:5 and dissolution in HEPES buffer containing the following (in mM): 150 NaCl, 6 KCl, 

1 MgCl2, 1.8 CaCl2, 10 HEPES, and 10 glucose (pH 7.4). Each solution was vortexed and 

sonicated using a bath sonicator for 10-15 min. The saturated cyclodextrin-sterol solution 

was then placed in a rotating incubator at 37 °C overnight. This stock solution was filtered 

through a 0.22 μm syringe filter, aliquoted, and stored at -80 °C. 
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Endothelial cell membrane cholesterol manipulation 

Cholesterol supplementation was performed in untreated PAEC or PMVEC by 

incubation with the cholesterol/MβCD solution for 30 min at 37 °C (84). Epichol 

substitution was similarly achieved by incubating isolated PAEC or cultured PMVEC with 

the Epichol/MβCD solution under the same conditions. Preliminary studies revealed that, 

in contrast to effects of membrane cholesterol manipulation in freshly dispersed PAEC 

from normoxic rats (84), cholesterol supplementation increased SOCE in cultured PMVEC 

and conferred sensitivity to Epichol substitution (data not shown), suggesting that 

membrane cholesterol content is reduced under cell culture conditions compared to the 

native state. Therefore, cultured PMVEC were pretreated with cholesterol/MβCD solution 

prior to experimentation to mimic responses of native PAEC cells.  

Ca2+ influx in freshly isolated and cultured pulmonary endothelial cells 

Following vehicle, cholesterol, or Epichol treatment, freshly isolated PAEC sheets 

or cultured PMVEC (passages 5-10) were loaded with fura-2 AM (3 μM and 0.05% 

pluronic acid) in HEPES buffer for 7 min at room temperature (≈23 °C) and washed for 15 

min at 37 °C. SOCE, depolarization-induced Ca2+ influx, and receptor-operated Ca2+ influx 

were measured by Mn2+-quenching of fura-2 fluorescence in PAEC sheets or PMVEC as 

previously described (84). Mn2+ enters the cell as a Ca2+ surrogate and reduces fura-2 

fluorescence upon binding to the fluorophore. The preparation was excited at the isosbestic 

wavelength (360 nm) at 1 Hz (IonOptix Hyperswitch), and emission recorded at 510 nm 

with a photomultiplier tube. At this excitation wavelength, fura-2 fluorescence intensity is 

not influenced by changes in [Ca2+]i, thus providing a measure of Ca2+ influx as reflected 

by Mn2+ uptake independent of ER Ca2+ release, sequestration or efflux across the cell 
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membrane (31). Fura-2-loaded endothelial cells were superfused with Ca2+-free HEPES 

buffer in the presence of vehicle or AnCoA4 (20 μM, Orai1 inhibitor (67)) for 5 min and 

administered the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, cyclopiazonic acid 

(CPA, 10 μM) to deplete intracellular Ca2+ stores and activate store-operated channels. To 

confirm the specificity of AnCoA4 as an inhibitor of SOCE, KCl (60 mM) or 1-oleoyl-2-

acetyl-sn-glycerol (OAG, diacylglycerol analog, 50 μM) were applied in separate studies 

to examine the effect of AnCoA4 on depolarization-induced and receptor-operated Ca2+ 

influx (58), respectively. Ca2+ entry represented by influx of the Ca2+ surrogate Mn2+ was 

then determined upon addition of extracellular Mn2+ (500 μM) in the continued presence 

of AnCoA4 or vehicle. SOCE was quantified by the percentage of the Mn2+ quenched 

fluorescence at 120 s after administration of Mn2+. 

Membrane cholesterol content  

We have previously used the fluorescent cholesterol marker, filipin, to determine 

the efficacy of cholesterol manipulation protocols in freshly dispersed PAEC (84). To 

confirm similar effectiveness of cholesterol manipulation in PMVEC, cultures (passage 6) 

were treated with vehicle, MβCD, cholesterol:MβCD, or Epichol:MβCD at 37 °C for 30 

min, then washed with PBS and fixed with 2% paraformaldehyde in PBS for 15 min at 

room temperature. Endothelial cell membrane cholesterol was detected by incubating cells 

with filipin III (Sigma, 20 μg/ml) for 15 min at room temperature under light-protected 

conditions, and coverslips were mounted on the slides using mounting media (57). Slides 

were air-dried at 4 °C and stored at -20 °C until analysis. The samples were imaged by 

fluorescence confocal microscopy (Zeiss LSM 510 AxioObserver; Göttingen, Germany) 

using 405-nm laser (excitation), a 420-nm long pass filter (emission), and a Plan-Neofluor 
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X40/1.3 oil objective. Filipin fluorescence intensity was quantified using NIH Image J, and 

calculated as that above threshold assessed using a blank control (filipin-untreated group). 

Fluorescence of each PMVEC was calculated and averaged to determine mean 

fluorescence for each treatment group. Cellular cholesterol content was also examined 

using an Amplex Red cholesterol assay kit (Molecular Probes) following manufacturer 

instructions. 

Orai1 siRNA knockdown 

A cocktail of three different Orai1 siRNAs was used (Thermofisher, RSS357633-

357635). Transfection in PMVEC (passages 6-10) was achieved using lipofectamine 

(Invitrogen) according to the manufacturer’s instructions. A scrambled sequence 

(Dharmacon) was used as a non-targeting (NT) control. Cells seeded onto either round 

glass coverslips (for Ca2+ imaging) or 6-well plates (for Western blotting) were transfected 

with 9 μg of siRNA in each well and were assayed 72 hr after transfection. There were no 

apparent effects of either siRNA or NT treatments on cell morphology. 

Western blotting for Orai1 

PMVEC were homogenized in a buffered solution (255 mM sucrose, 10 mM Tris 

HCl, 2 mM EDTA, 12 μM leupeptin, 1 μM pepstatin A, and 0.3 μM aprotinin) and 

centrifuged at 500 x g for 5 min at 4 °C. Cell lysate protein content was quantified using a 

NanoDrop (NanoDrop 2000, Thermofisher) and 50 g of protein were separated by SDS-

PAGE (12% Tris/glycine) and transferred onto polyvinylidene fluoride membranes. After 

blocking with 5% nonfat milk dissolved in Tri-buffered saline with 0.1% Tween 20 (TBS-

T) for 1 hr at room temperature, the membrane was probed with primary antibody (1:400, 

rabbit anti-Orai1, ACC-062, Alomone Labs) in TBS-T containing 5% non-fat milk 
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overnight at 4 °C. After washing, the membrane was incubated with secondary antibody 

(IgG-horseradish peroxidase-conjugated goat anti-rabbit, 1:3000, Bio-Rad) in TBS-T 

containing 0.5% non-fat milk for 1 h at room temperature. Anti-β-actin (1:5000) was used 

for loading control experiments in which the same membrane probing for Orai1 above was 

washed and reprobed for β-actin. Detection was performed with the enhanced 

chemiluminescence reagent (ECL Western blotting detection reagents, Pierce) and 

chemiluminescence-sensitive film (GeneMate). All bands of targeted size were quantified 

by densitometry using the ImageJ software. 

Duolink proximity ligation assay 

STIM1-Orai1 interaction is required for the activation of Orai1 channels and 

SOCE. To determine whether cell membrane cholesterol regulates this pivotal step in 

SOCE, the interaction of STIM1 and Orai1 was assessed in PMVEC using the Duolink in 

situ proximity ligation assay (PLA) according to manufacturer’s instructions (Sigma-

Aldrich). Briefly, PMVEC were plated on 18-well slides (Ibidi) and grown to 80-90% 

confluency. PMVEC pretreated with cholesterol or Epichol were then treated with either 

vehicle or CPA (10 μM; 5 min) before fixing with 2% paraformaldehyde. PMVEC were 

incubated with Duolink blocking buffer for 30 min at 37°C then incubated overnight with 

rabbit anti-STIM1 (1:250; ab106531, Abcam) and goat anti-Orai1 (1:100; sc-74778, Santa 

Cruz Biotechnology). Cells were then incubated with anti-rabbit PLUS and anti-goat 

MINUS PLA probes (1:5) for 1 hr at 37°C. Negative controls were completed by 1) 

omission of primary antibody, and 2) incubation with each primary antibody individually. 

Samples were amplified with Duolink In Situ Detection Reagent Orange 

(excitation/emission: 554/579 nm; Sigma-Aldrich) for 100 min at 37°C. SYTOX Green 
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(1:5,000; Invitrogen) was used as a nuclear stain. Samples were mounted with Duolink 

mounting media and Z-stack images of the PLA interaction were acquired using a confocal 

microscope (TCS SP5; Leica). The number of puncta per cell were determined using Image 

J (NIH). 

Calculations and statistics 

All data are expressed as means ± SE. Values of n refer to the number of animals 

for experiments using freshly isolated PAEC or to the number of groups as indicated in 

figure legends for other experiments. Percentage data were converted to normal 

distributions by arcsine transformation before parametric analysis. An unpaired t-test, one-

way ANOVA, two-way ANOVA or Kruskal-Wallis H test were used where appropriate 

for statistical comparisons. If differences were detected by ANOVA or the Kruskal-Wallis 

H test, individual groups were compared with the Student-Newman-Keuls or Dunn’s 

multiple comparison tests, respectively. A probability of < 0.05 was accepted as 

statistically significant for all comparisons. 

 

Results 

Impaired pulmonary endothelial SOCE following CH is restored by cholesterol 

supplementation 

The importance of membrane cholesterol in diminished SOCE following CH was 

confirmed by examining effects of cholesterol supplementation and Epichol substitution 

on CPA-induced Ca2+ influx in freshly isolated PAEC from control and CH rats using the 

Mn2+ quenching technique. Although cholesterol treatment did not affect endothelial 

SOCE in normoxic rats, Epichol substitution greatly inhibited this Ca2+ entry pathway (Fig. 
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1A). In contrast, cholesterol repletion increased SOCE in PAEC of CH rats (Fig. 1B). 

Treatment with Epichol did not further attenuate SOCE in PAEC from CH rats compared 

to vehicle treated cells (Fig. 1B). These data are summarized in Figure 1C. Exposure to CH 

significantly blunted SOCE compared to normoxic controls, which was restored by 

cholesterol supplementation (Fig. 1C).  In cells from normoxic animals, treatment with 

Epichol reduced SOCE, mimicking the effects of CH exposure. 

Orai1 mediates pulmonary endothelial SOCE 

We initially assessed the contribution of Orai1 to pulmonary endothelial SOCE 

using the Orai1 inhibitor, AnCoA4 (REF). AnCoA4 was originally identified as an 

inhibitor of Orai1 using minimal functional domains of Orai1 and STIM1 to screen small-

molecule microarrays. This compound was found to directly bind to the C-terminus of 

Orai1 and interfere not only with channel gating but also with the interaction of Stim1 and 

Orai1.  The specificity of AnCoA4 to inhibit SOCE was confirmed by comparing its 

effectiveness to attenuate SOCE vs. other forms of Ca2+ entry not linked to Orai1, including 

depolarization-induced Ca2+ entry mediated by T-type voltage-gated Ca2+ channels (REF) 

and receptor-operated Ca2+ entry in response to the diacylglycerol analog, OAG (REF). In 

PAEC from normoxic rats. AnCoA4 significantly attenuated CPA-induced SOCE without 

affecting Ca2+ entry to a depolarizing stimulus of KCl (Fig. 2A). AnCoA4 similarly 

reduced SOCE without affecting receptor-operated Ca2+ influx elicited by OAG (Fig. 2B) 

in cultured PMVEC where this pathway of influx is more demonstrable.  Together, these 

data establish the specificity of AnCoA4 as a SOCE-specific inhibitor.  

CH impairs Orai1-mediated pulmonary endothelial SOCE: role of membrane cholesterol 
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The effect of CH on Orai1-mediated endothelial SOCE was examined using 

AnCoA4 in freshly isolated PAEC from normoxic and CH rats. Orai1 inhibition 

significantly reduced endothelial SOCE in PAEC from normoxic rats (Fig. 3A, B), while 

having no effect in cells from CH animals (Fig. 3A, C). However, AnCoA4-sensitive 

SOCE was restored by cholesterol supplementation in PAEC from CH rats (Fig. 3C), 

mirroring the efficacy of Orai1 inhibition in cholesterol-treated cells from normoxic rats 

(Fig. 3B). In contrast, Orai1 inhibition was without effect on Ca2+ influx following Epichol 

substitution in PAEC from either normoxic (Fig. 3B) or CH rats (Fig. 3C). 

Effect of cholesterol manipulation on membrane cholesterol content in cultured PMVEC. 

To further explore the mechanism by which membrane cholesterol regulates Orai1-

mediated endothelial SOCE, we focused on cultured PMVEC where genetic approaches 

and assessment of protein-protein association are technically more feasible. We first 

examined the effect of cholesterol manipulation on endothelial cell membrane cholesterol 

levels. Consistent with previous observations in freshly isolated PAEC (84), both MβCD 

and Epichol treatment significantly reduced filipin fluorescence (Fig.4A, B). Interestingly, 

cholesterol supplementation increased filipin fluorescence in cultured PMVEC (Fig.4A, 

B), which is different from our previous observation in freshly isolated PAEC where 

cholesterol treatment did not further augment filipin fluorescence (57). We also examined 

endothelial cholesterol content using an Amplex Red cholesterol assay. Consistently, 

cholesterol treatment augmented endothelial cholesterol content while MβCD and Epichol 

treatment reduced native cholesterol content (Fig.4C). Since these results suggest that 

cultured cells are relatively cholesterol deplete, PMVEC used in the following studies were 
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first supplemented with cholesterol prior to subsequent manipulation to better mimic native 

cells. 

Epicholesterol substitution reduces SOCE in PMVEC 

SOCE was assessed in cultured PMVEC after cholesterol manipulation. Similar to 

that observed in native cells, Epichol substitution significantly reduced endothelial SOCE 

compared to the cholesterol-treated group (Fig. 5).  

Orai1 siRNA knockdown inhibits membrane cholesterol-mediated SOCE in PMVEC 

Orai1 siRNA was employed as a genetic approach to complement pharmacological 

inhibition studies using AnCoA4 and further control for potential off-target effects of the 

inhibitor.  The efficacy of Orai1 siRNA knockdown was confirmed by western blotting. 

Orai1 siRNA had a moderate but significant effect to reduce Orai1 protein expression 

compared with the NT control siRNA (Fig. 6A, B). Consistent with pharmacologic Orai1 

inhibition in both native and cultured cells (Fig. 2A, B), Orai1 siRNA knockdown 

attenuated SOCE in PMVEC (Fig. 6C). Furthermore, Epichol substitution greatly reduced 

endothelial SOCE of the NT group without affecting that of Orai1 siRNA-treated cells 

(Fig. 6C). Together these findings confirm the involvement of Orai1 in cholesterol-

sensitive SOCE.    

Epicholesterol substitution reduces STIM1-Orai1 interaction in PMVEC 

The role of membrane cholesterol in regulating STIM1-Orai1 interaction was 

examined in PMVEC. CPA-induced ER store depletion increased STIM1-Orai1 co-

localization (i.e., increased the number of red puncta) (Fig. 7A, B). Epichol treatment, 

however, nearly abolished STIM1-Orai1 co-localization when compared to the cholesterol-
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treated group (Fig.7A, B), supporting a role for membrane cholesterol to facilitate the 

interaction of STIM1 and Orai1 in PMVEC.  

 

Discussion 

Our laboratory has previously shown that reduced membrane cholesterol following 

CH is associated with impaired SOCE in intrapulmonary artery endothelial cells, and that 

endothelial membrane cholesterol facilitates SOCE through direct interaction with 

signaling molecules. However, the mechanism by which membrane cholesterol-regulated 

endothelial Ca2+ entry via SOC has not previously been addressed. The goal of the present 

study was to determine the contribution of membrane cholesterol to Orai1-mediated SOCE 

in pulmonary endothelial cells. The major findings from this study are that 1) restoration 

of SOCE by cholesterol supplementation in PAEC from CH rats is sensitive to Orai1 

inhibition; 2) both substitution of endogenous membrane cholesterol with its epimer, 

Epichol, and inhibition of Orai1 by AnCoA4 attenuate SOCE without additive effects in 

isolated PAEC and cultured PMVEC; 3) Epichol treatment does not further reduce SOCE 

in PMVEC following Orai1 siRNA knockdown; and 4) membrane cholesterol is required 

for the interaction of STIM1 and  Orai1 in response to ER Ca2+ store depletion in PMVEC. 

The results from this study suggest that membrane cholesterol directly regulates Orai1-

mediated endothelial SOCE by facilitating the interaction of STIM1 and Orai1, and further 

demonstrate that impaired pulmonary endothelial Ca2+ entry following CH is due to altered 

membrane cholesterol homeostasis that limits Orai1 activity. 

One of the hallmarks of CH-induced pulmonary hypertension is pulmonary arterial 

endothelial dysfunction. Pulmonary arterial smooth muscle cell contraction and 
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proliferation is regulated by vasoactive factors secreted from the endothelium. The 

increased production of vasoconstrictors/proliferative factors and decreased synthesis of 

vasodilatory/anti-mitogenic factors contribute to enhanced vascular tone and remodeling 

in CH-induced pulmonary hypertension (71). Production of many endothelium-dependent 

vasodilators as well as regulation of membrane potential are largely a function of 

pulmonary endothelial intracellular calcium levels ([Ca2+]i). The activity of endothelial 

nitric oxide synthase (9, 17, 53, 62), phospholipase 2 (PLA2) (43, 69), and the small and 

intermediate conductance Ca2+-activated potassium channels (SKCa and IKCa, respectively) 

that are responsible for endothelial cell hyperpolarization upon activation by agonists (25, 

45) are regulated by [Ca2+]i. Thus, diminished pulmonary endothelial [Ca2+]i may limit 

production of these endothelium-derived vasoactive factors. In CH-induced pulmonary 

hypertension, for example, posttranslational regulation of eNOS activity is impaired due to 

reduced agonist-induced Ca2+ influx (51). Our previous work also shows that both basal 

[Ca2+]i and agonist-induced Ca2+ influx are lower in PAEC from CH rats compared to those 

of control animals (56, 57). CH similarly inhibits endothelial SOCE, receptor-operated 

Ca2+ entry, and T-type VGCC-mediated depolarization-induced Ca2+ influx, which are 

major components of agonist-induced Ca2+ entry in isolated PAEC (56, 58). These findings 

suggest that store-operated channels and T-type VGCCs are important in determining 

endothelial Ca2+ influx, and impaired Ca2+ entry through these channels may contribute to 

reduced basal [Ca2+]i in PAEC after CH. Previous studies from our laboratory suggest that 

CH inhibits endothelial Ca2+ influx through alterations in membrane lipid domains, which 

represent key regulatory sites of ion channel function in PAEC (57, 84).  
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Cholesterol is a polycyclic amphipathic molecule with a polar section consisting of 

a single β-hydroxyl group that can interact with membrane lipids or proteins through 

formation of hydrogen bonds (61). Cholesterol-enriched caveolar microdomains are signal 

transduction platforms where many ion channels and their regulatory factors reside (71). 

Membrane cholesterol can inhibit some ion channels by decreasing open probability, 

unitary conductance, and the number of active channels (38). In contrast, ion channels such 

as the nicotinic acetylcholine receptor, GABA receptors, epithelial Na+ channels and TRPC 

channels are inhibited by removal of membrane cholesterol (4–6, 32, 73), indicating an 

important role for cholesterol in normal channel function.  Consistent with this regulatory 

function, our previous studies show that membrane cholesterol facilitates major Ca2+ entry 

pathways in PAEC, including agonist-induced Ca2+ entry, SOCE, and depolarization-

induced Ca2+ entry, and that CH impairs endothelial Ca2+ influx by reducing membrane 

cholesterol levels (84). However, the mechanisms by which cholesterol regulates 

endothelial Ca2+ influx are not well-investigated.   

The current study focused on exploring the ion channel involved in membrane 

cholesterol-dependent endothelial SOCE, a major component of agonist-induced Ca2+ 

entry, in the pulmonary circulation. Orai1 and transient receptor potential canonical 

channels (TPRC) have been reported as putative SOC (18, 40, 60, 82, 87). Depletion of ER 

Ca2+ stores causes STIM1 oligomerization (15, 39), which recruits Orai1 into 

microdomains and ensures the physical interaction between STIM1 and Orai1, leading to 

Orai1 activation and Ca2+ influx (86). TRPC1 and TRPC4 channels also localize to 

caveolar microdomains and regulate endothelial Ca2+ entry in murine PMVEC (50). 

However, TRPC1-mediated SOCE is less Ca2+ selective compared to Orai1-mediated 
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SOCE (35) and requires functional Orai1 (34). Orai1 also interacts with TPRC4 and 

regulates TRPC1/4 heterotetramer channel activation and Ca2+ selectivity in lung 

endothelial cells (12). The current study investigated Orai1 as a candidate ion channel in 

mediating cholesterol-dependent endothelial SOCE. We found that either pharmacological 

inhibition or gene silencing of Orai1 significantly decreased endothelial SOCE, 

demonstrating that Orai1 contributes to SOCE in both PAEC and PMVEC. Furthermore, 

AnCoA4-sensitive SOCE was abolished in PAEC from CH rats, suggesting that the 

reduction in SOCE following CH results from impaired Orai1 activity. Interestingly, our 

finding that cholesterol replenishment rescues Ca2+ entry in PAEC from CH rats suggests 

that altered expression of Orai1 or STIM1 does not explain this deficit, but rather regulation 

of Orai1 activity by the molecular composition of the membrane. Such influences of 

cholesterol may occur through direct interaction with Orai1 and STIM1, indirectly through 

regulation of caveolin-1 or other lipid raft components, or by altering Orai1/STIM1 

trafficking and membrane localization. 

Although AnCoA4 is characterized as a selective inhibitor of Orai1 (ref), whether 

AnCoA4 similarly inhibits Orai2 or Orai3 is unknown.  These related Ca2+ channel 

isoforms have been implicated as store-operated channels in a variety of cell types (16, 33, 

68, 77), and mediate SOCE when over-expressed with STIM1 in heterologous expression 

systems (48).  However, in contrast to the established contribution of Orai1 to SOCE in 

pulmonary endothelial cells, store-depletion induced Ca2+ entry is independent of Orai2 

and Orai3 in endothelial cells from several vascular beds (30, 74, 85). Furthermore, 

whether these channels are expressed and play a functional role in PAECs remains to be 

established. Therefore, while we cannot exclude a possible inhibitory effect of AnCoA4 on 
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Orai2 or Orai3 in the present study, the similar effects of AnCoA4 and Orai1 siRNA to 

inhibit SOCE are supportive of a contribution of Orai1 to this response. 

Cholesterol may modulate the function of membrane proteins via either direct 

interaction or through altering the properties of lipid microdomains (38). Several groups 

have reported that membrane cholesterol depletion by MβCD attenuates SOCE in a variety 

of cell types (14, 20, 24, 29, 59). Interestingly, however, recent reports by Derler et al (13) 

and Pacheco et al (55) reported cholesterol-binding sites on Orai1 and STIM1, respectively, 

and demonstrated an inhibitory effect of membrane cholesterol on SOCE in cultured 

human embryonic kidney 293 cells and rat basophilic leukemia 2H3 cells. Both studies 

further showed that the cholesterol-Orai1 and cholesterol-STIM1 interaction was 

attenuated by mutating the cholesterol-binding site of the target protein. Although many 

studies have employed the cholesterol-depleting agents MβCD or filipin to evaluate 

functional roles for membrane cholesterol, an important limitation of these agents is that 

they may exert off-target effects by disrupting caveolar stucture, thereby altering 

biophysical properties of the plasma membrane (2, 61, 84). Thus, these approaches may 

interrupt SOCE in a non-specific manner unrelated to direct interaction of membrane 

cholesterol with ion channels, which may limit the interpretation of how cholesterol 

regulates SOC. In our current studies, we substituted endogenous cholesterol with Epichol, 

an approach that alters membrane cholesterol content without disrupting caveoli (84), and  

found that cholesterol is required for Orai1-mediated SOCE in both isolated PAEC and 

cultured PMVEC. We also showed that Epichol substitution significantly reduced the 

STIM1-Orai1 interaction, suggesting that membrane cholesterol regulates endothelial 

SOCE by facilitating this interaction that is required for Orai1 activation. The reason for 
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the conflicting observations of how membrane cholesterol regulates SOCE in our current 

studies and those of other groups (13, 55) is not clear, but may be due to heterogeneity 

between either different cell types or between transfected/cultured cells and native 

endothelial cells. Additionally, since SOCE is a complex muti-step signaling pathway, it is 

also possible that membrane cholesterol affects components of SOCE differently. Galan et 

al and Pani et al (20, 59) suggested that membrane cholesterol is required for STIM1 

oligmerization and subsequent interaction with and activation of Orai1. After the STIM1-

Orai1 complex is formed, however, cholesterol may inhibit SOCE through direct 

interaction with Orai1 and STIM1 (13, 20, 55). Additional experiments are required to 

investigate if membrane cholesterol directly regulates endothelial STIM1 clustering, 

STIM1-Orai1 interaction, and Orai1 activation in PAECs.   

Although our studies indicate that membrane cholesterol plays a functional role in 

Orai1-mediated SOCE in pulmonary endothelial cells, these findings do not preclude a 

potential role for cholesterol to regulate TRPC channels independent of Orai1 and STIM1. 

Despite a lack of evidence for direct regulatory cholesterol binding sites on TRPC channel 

sequences, the membrane cholesterol sensitivity of TRPC channels has been reported in 

several cell types (1, 6, 37, 50, 81). For example, the extraction of membrane cholesterol 

by cyclodextrins impairs TRPC1 signaling processes (6, 42). Although cholesterol may 

play a pivotal regulatory role in TRPC1-mediated SOCE by regulating membrane 

structure, direct effects of cholesterol on TRPC functions are possible.  

Our studies also suggest that loss of membrane cholesterol contributes to impaired 

endothelial SOCE in CH-induced pulmonary hypertension (84). Due to the limitation of 

the filipin staining approach to detect oxidized cholesterol (63), reduced membrane 
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cholesterol following CH is possibly the result of impaired cholesterol de novo synthesis 

(54), oxidative modification of cholesterol (52) or decreased membrane cholesterol 

trafficking. Nguyen et al (54) have explored the mechanism by which hypoxia affects de 

novo cholesterol biosynthesis. They reported that hypoxia induces accumulation of 

cholesterol biosynthetic intermediates and rapid degradation of HMG-CoA reductase, 

which contribute to a reduction of cholesterol production. Given the importance of reactive 

oxygen species to the development of CH-induced pulmonary hypertension (19, 26, 27, 

41), endothelial dysfunction in this setting may alternatively result from oxidative 

modifications to cholesterol that alter membrane lipid domains and interfere with ion 

channel function.    

Based on our findings that CH attenuates pulmonary endothelial Ca2+ entry by 

depleting membrane cholesterol, it may be predicted that targeted depletion of PAEC 

cholesterol would minimally or adversely affect the development of PH in this setting. In 

apparent contrast to this prediction, HMG-CoA reductase inhibitors (statins) have 

demonstrated beneficial effects in attenuating the development of CH-induced pulmonary 

hypertension in animal models (23, 36, 49). However, the mechanisms by which statins 

mediate this protective influence are thought to be independent of their cholesterol 

lowering properties (10, 46, 70, 78, 80). These include inhibition of RhoA that can not only 

decrease vascular smooth muscle contractility (76), proliferation and migration (79), but 

also increase eNOS expression and activity (70). Additional evidence suggests that statins 

increase NO production by inhibiting expression and activity of NADPH oxidase subunits, 

and thus production of endothelial reactive oxygen species (44, 78, 80), rather than through 

effects on endothelial cholesterol content. Such non-specific effects of statins likely result 
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from decreased production of intermediates of the mevalonate pathway that are necessary 

for posttranslational modification of many signaling proteins (7). In contrast to these 

animal studies, however, clinical trials of statin therapy in patients with pulmonary arterial 

hypertension have been largely inconclusive (66).  

In conclusion, the current study demonstrates a novel effect of membrane 

cholesterol to regulate pulmonary endothelial SOCE by facilitating the interaction of 

STIM1 and Orai1 (Figure 8). These observations advance our basic understanding of how 

membrane cholesterol regulates endothelial [Ca2+]i homeostasis, and have potentially 

broader implications for cholesterol-dependent regulation of a wide range of vasoactive 

and mitogenic pathways. These findings may additionally provide a mechanistic basis to 

explain the CH-induced diminution of endothelial Ca2+ influx and associated endothelial 

dysfunction that is central to the pathogenesis of pulmonary hypertension.  Challenges of 

future studies are to identify the potential contribution of reactive oxygen species to 

decreased endothelial cholesterol following CH, either through direct cholesterol oxidation 

or impaired sterol trafficking, and the contribution of these responses to increased 

vasoconstrictor reactivity, arterial smooth muscle mitogenesis, and the development of 

pulmonary hypertension.  
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Figure 1. Impaired pulmonary endothelial store-operated Ca2+ entry (SOCE) following 

chronic hypoxia (CH) is restored by cholesterol supplementation. Cyclopiazonic acid 

(CPA)-induced Ca2+ entry was assessed by Mn2+ quenching technique in freshly isolated 

pulmonary artery endothelial cell (PAEC) sheets from control and CH rats. Cells were pre-

treated with vehicle, cholesterol (Chol), or epicholesterol (Epichol). F, fluorescence 

intensity at 360 nm excitation; F0, fluorescence intensity at time zero. A) SOCE in PAEC 

from normoxic rats.; n = 5-8 animals/group. *P <0.05 vs. Veh and Chol over the range of 

30 - 120 s. B) SOCE in PAEC from CH rats. n = 4-8 animals/group. *P <0.05 vs. Veh and 

Epichol over the range of 60 - 120 s. C) SOCE in PAEC from each group 120 s after onset 

of quenching. *P <0.05 vs. Nor Vehicle; #P <0.05 vs. CH Vehicle. Values are means ± SE. 

A One-way ANOVA (A,B) or two-way ANOVA (C) followed by the Student-Newman-

Keuls test were used to compare between groups. 
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Figure 2. Orai1 mediates pulmonary endothelial SOCE. A) AnCoA4 inhibits SOCE but 

not depolarization-induced Ca2+ entry in freshly dispersed PAEC from normoxic rats. B) 

AnCoA4 attenuates SOCE but not OAG (diacylglycerol analog)-induced Ca2+ entry in 

cultured pulmonary microvascular endothelial cells (PMVEC).  An unpaired t-test was 

used to compare between groups at 120 s after onset of quenching. *P < 0.05 vs. Veh CPA. 
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Figure 3. Membrane cholesterol-sensitive Orai1 contributes to impaired SOCE in PAEC 

following CH. A) SOCE was assessed in PAEC from normoxic and CH rats pretreated 

with either the Orai1 inhibitor, AnCoA4, or vehicle. n = 6, Nor Veh; n = 8, CH Veh; n = 

5, Nor AnCoA4; n = 4, CH AnCoA4. *P < 0.05 vs. Nor-Veh over the range of 40 - 120 s.  

Effects of AnCoA4 on SOCE (120s after onset of quenching) in freshly dispersed PAEC 

from normoxic (B) and CH (C) rats following membrane cholesterol manipulation.  *P 

<0.05 vs. Veh within groups; #P <0.05 vs. Veh-Vehicle.   
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Figure 4. Epicholesterol reduces endogenous membrane cholesterol content of cultured 

PMVEC. A) Representative images of filipin fluorescence from PMVEC treated with 

vehicle, MβCD, cholesterol, or epicholesterol. B) Mean filipin fluorescence (arbitrary 

units; A.U.) in PMVEC from each group. Data were compared by the Kruskal-Wallis H 

test and Dunn’s multiple comparison test. n = 5 (filipin fluorescence of 4-16 cells were 

measured per field of interest and averaged for an n=1). *P < 0.05 vs. Vehicle; #P <0.05 

vs. MβCD and Epichol. C) Amplex Red cholesterol assay to detect cholesterol 

concentration in PMVEC. Data were compared by one-way ANOVA followed by the 

Student-Newman-Keuls test. n = 3. *P < 0.05 vs. Vehicle; #P <0.05 vs. MβCD and Epichol. 
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Figure 5. Epicholesterol substitution reduces SOCE in PMVEC pretreated with 

cholesterol. n = 5, Chol; n = 5, Epichol; n = 3, Time Control. *P < 0.05 vs. Chol over the 

range of 50 - 120 s. 
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Figure 6. Orai1 siRNA knockdown inhibits membrane cholesterol-dependent SOCE in 

PMVEC. A) Representative western blot of Orai1 and β-actin protein bands in PMVEC 

transfected with Orai1 siRNA or non-targeting (NT) siRNA. B) Mean western blot data of 

Orai1 expression from NT and Orai1 siRNA treated PMCEC. Orai 1 levels are normalized 

to those of β-actin. n = 4 /group. *P < 0.05 vs. NT. C) SOCE in cultured PMVEC. n = 3-4 

/group. *P < 0.05 vs. NT+Chol over the range of 60 - 120 s. 
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Figure 7. Epicholesterol substitution reduces STIM1-Orai1 interaction in PMVEC as 

assessed by in situ proximity ligation assay. A) Representative images of STIM1-Orai1 

interactions (red puncta) in response to CPA in cultured PMVEC with manipulated 

membrane cholesterol. Nuclei area labeled with SYTOX (green). B) Summarized data of 

STIM1-Orai1 interaction expressed as average number of puncta/cell in cultured PMVEC. 

Cholesterol supplementation increased the CPA-induced STIM1-Orai1 interaction, 

whereas epicholesterol substitution significantly inhibited this response. Groups were 

compared by two-way ANOVA followed by multiple comparisons testing using the 

Student-Newman-Keuls test. n = 5/group.  *P <0.05 vs. Chol Veh; #P <0.05 vs. Chol CPA. 
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Figure 8. Proposed mechanism by which reduced cell membrane cholesterol (Chol) 

following CH attenuates SOCE in PAECs. Cholesterol facilitates the interaction of STIM1 

and Orai1 in response to depletion of intracellular Ca2+ stores, e.g. by receptor (R)-

mediated activation of inositol trisphosphate receptors (IP3R), or inhibition of the 

sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA). CH inhibits this mechanism by 

depletion of cell membrane cholesterol. Endoplasmic reticulum (ER), agonist (A). 
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CHAPTER 4: DISCUSSION 

The goal of this dissertation was to investigate the role of membrane cholesterol in 

pulmonary endothelial Ca2+ entry in CH-induced pulmonary hypertensive rats. In the 

current studies we tested the hypotheses that 1) membrane cholesterol facilitates SOCE 

and depolarization-induced pulmonary endothelial Ca2+ entry; 2) membrane cholesterol 

regulates Orai1-mediated SOCE through facilitating STIM1-Orai1 interaction, and 3) 

reduced endothelial Ca2+ influx following CH is due to a loss of membrane cholesterol. 

We identified the role of membrane cholesterol in regulating agonist-induced Ca2+ entry 

and its components in PAECs following CH through measurement of [Ca2+]i  using a 

ratiometric fluorescent Ca2+ indicator in live cells with cholesterol supplementation or 

substitution of cholesterol with its epimer, epicholesterol. The rationale behind these 

studies emerges from the observation in CH-induced PH that dysregulation of 

endothelium-derived mediators contributes to elevated vascular resistance in the 

pulmonary circulation. The production of many endothelium-derived vasodilators and anti-

mitogenic substances like NO (18, 39, 89, 102) and prostacyclin (60, 144) are largely a 

function of endothelial [Ca2+]i. Therefore, it is possible that reduced endothelial [Ca2+]i 

limits the production of NO, prostacyclin, and other endothelium-derived hyperpolarizing 

factors. Our laboratory previously reported that both basal [Ca2+]i and agonist-induced Ca2+ 

influx are lower in PAECs from CH rats compared to their normoxic controls (95). Both 

endothelial SOCE and depolarization-induced Ca2+ entry through T-type VGCCs, two 

major components of ATP-induced Ca2+ influx, are also reduced following CH exposure 

(94, 96). Interestingly, membrane cholesterol levels along with the agonist-induced Ca2+ 

entry are decreased in PAECs of chronic hypoxic rats. This impaired Ca2+ influx is restored 
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simply by either membrane cholesterol supplementation or administration of caveolin-1 

scaffolding domain peptide (95). Because membrane cholesterol and caveolin-1 are major 

structural components of caveolae, the diminished Ca2+ influx could be the result of 

decreased caveolae after CH. However, the number of caveolae are not altered in PAECs 

from CH rats compared to controls (95). These observations suggest a role of membrane 

cholesterol in mediating endothelial Ca2+ influx.  

The major findings from the current studies are that substitution of endogenous 

membrane cholesterol with epicholesterol attenuates ATP-induced Ca2+ entry, SOCE and 

depolarization-induced Ca2+ entry in PAEC. In addition, decreased endothelial SOCE and 

depolarization-induced Ca2+ entry following CH are largely restored by cholesterol 

supplementation. Importantly, neither cholesterol supplementation nor epicholesterol 

substitution alters endothelial caveolar number. In addition, membrane cholesterol 

regulates Orai1-mediated SOCE in both native and cultured cells. Epicholesterol 

substitution greatly reduces SOCE and STIM1-Orai1 interaction in cultured PMVECs. 

These data suggest that membrane cholesterol directly regulates agonist-induced Ca2+ entry 

and its components. These observations also demonstrate that altered membrane 

cholesterol homeostasis may contribute to impaired endothelial Ca2+ entry following CH.  

Effect of hypoxia on pulmonary endothelial [Ca2+]i
 

The mechanisms by which hypoxia affects endothelial [Ca2+]i are not well-

investigated. Studies investigating the effect of acute hypoxia on endothelial [Ca2+]i in vitro 

show similar results in cells from the systemic and pulmonary vasculatures. In human 

umbilical vein endothelial cells (HUVEC) (6, 11), as well as in bovine (53) and porcine 

(58) PAECs, acute hypoxia increases endothelial [Ca2+]i. The significant increase of [Ca2+]i 
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in HUVECs is due to energy deficiency and subsequent influx of extracellular Ca2+ (6). 

Berna et al (11) later discovered that the Na+/ Ca2+ exchanger is involved in this hypoxia-

induced Ca2+ influx. By using an inhibitor of Na+-glucose cotransport, they proposed that 

energy deficiency activates glycolysis and subsequent activation of Na+-glucose 

cotransport, which leads to a series of actions including Na+ influx, Na+/ Ca2+ exchanger 

activation, and Ca2+ influx. In PAECs, however, although acute hypoxia (5 min) causes a 

rapid and transient increase in [Ca2+]i by releasing Ca2+ from ER stores (53), a longer 

duration of hypoxia (15 min) decreases [Ca2+]i likely by causing membrane depolarization 

and reducing the electrochemical driving force for Ca2+ entry (124). While it is certainly 

possible that hypoxia has a dual-phase effect of releasing Ca2+ from internal stores and 

inhibiting Ca2+ influx in bovine PAECs, it should be noted that Hampl et al (53) used 

bovine cells of high passage (16-25), whereas Stevens et al (124) used primary bovine 

PAECs. The increased passage number of cells may cause changes in ion channel 

expression and activity (55, 70). In rat PAECs, for example, although T-type VGCCs are 

not found in cultured cells (145), their expression and function are described in freshly 

dispersed PAECs (96). This difference may lead to opposite effects of hypoxia on 

endothelial Ca2+ entry, as hypoxia-induced membrane depolarization may blunt Ca2+ influx 

driven by electrochemical gradient in cultured PAECs while increasing Ca2+ entry through 

T-type VGCCs in native PAECs. 

In human PAEC, prolonged exposure to hypoxia (3% O2, 60-72h) causes an 

increase in basal [Ca2+]i, which is due to enhanced expression of TRPC-encoded SOC 

channels and Ca2+ influx (53). However, it is possible that exposure of hypoxia to cultured 

cells may not mimic the in vivo effect of CH on PAECs. It is also likely that CH impairs 



131 
 

the regulation of pulmonary endothelial [Ca2+]i as PH develops. Murata et al (87) showed 

that in 1 week CH-induced pulmonary hypertensive rats, agonist-induced Ca2+ influx in the 

pulmonary endothelium is significantly less compared to normoxic control rats. 

Consistently, in rats exposed to 4 weeks CH, our previous data demonstrate that, in PAECs, 

both basal [Ca2+]i and agonist-induced Ca2+ influx with its major components, SOCE and 

depolarization-induced Ca2+ influx through T-type VGCCs, are lower compared to those 

of normoxic control animals (94–96). In addition, membrane cholesterol levels are also 

reduced in PAEC from rats exposed to CH. The most exciting discovery is that the impaired 

agonist-induced Ca2+ influx in PAEC can be restored by both membrane cholesterol 

supplementation and by administration of a caveolin-1 (Cav-1) scaffolding domain peptide 

(95). This finding suggests that the reduced endothelial agonist-induced Ca2+ influx 

following CH is not likely due to reduced expression of the relevant Ca2+ channels. In the 

current studies, we found that the diminished SOCE and depolarization-induced Ca2+ 

influx can also be restored by membrane cholesterol supplementation (Figure 5 and 9: 

Chapter 3). These data suggest that cholesterol per se may affect Ca2+ entry in these cells. 

By using epicholesterol, we also determined that cholesterol directly modulates endothelial 

agonist-induced Ca2+ entry, SOCE and depolarization-induced Ca2+ entry independent of 

its structural role in the plasma membrane, which will be discussed later in “Membrane 

cholesterol: structural component vs. signaling mediator”.  

Although we did not examine the change of [Ca2+]i in early stages of CH-induced 

PH, it is possible that hypoxia augments Ca2+ influx and [Ca2+]i in PAEC during the early 

stages of hypoxic exposure (135). However, after prolonged hypoxia, endothelial Ca2+ 

entry may be gradually diminished due to altered cholesterol homeostasis, leading to 
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decreased [Ca2+]i in PAECs. The finding that reduced endothelial Ca2+ entry in pulmonary 

arteries following CH was acutely restored by membrane cholesterol supplementation 

suggests that CH limits Ca2+ entry in PAECs by reducing membrane cholesterol rather than 

by decreasing ion channel expression. The physiological consequences of these changes in 

pulmonary endothelial Ca2+ influx and [Ca2+]i will be discussed in detail later in 

“Physiological significance of current studies”. 

 

Pulmonary endothelium-mediated vasodilation following CH 

The results of our current and previous studies (94) show that agonist-induced Ca2+ 

entry as well as basal [Ca2+]i are reduced in PAECs following CH. Although we did not 

examine the physiological consequences of decreased pulmonary endothelial [Ca2+]i, the 

reduction of [Ca2+]i may limit the synthesis and release of vasodilators such as NO, which 

would impair endothelium-dependent vasodilation in pulmonary arteries. However, 

opposite to this assumption, early studies from our and other laboratory demonstrated that 

CH enhances pulmonary artery endothelium-derived nitric oxide (EDNO)-dependent 

vasodilation (32, 59, 108, 115). In these studies using isolated perfused lungs, there was an 

increase in AVP/histamine/ET-1-induced EDNO-dependent vasodilation in rats exposed 

to 4 weeks of CH (32, 108). However, CH did not affect the vasodilation to an exogenous 

NO donor, suggesting that the change of agonist-induced vasodilatory responses after CH 

was due to reduced bioavailability of NO. Later studies also found that eNOS protein 

expression is elevated in CH rats compared to their normoxic controls (107). Thus, the 

apparent contradictory observation of impaired pulmonary endothelial [Ca2+]i and 

augmented EDNO-dependent vasodilation following CH warrants discussion.  
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Because endothelium-derived NO is the result of multiple signaling cascades 

involving Ca2+-dependent and Ca2+-independent pathways, receptor stimulation by 

agonists may lead to NO production through different mechanisms. In addition, since the 

production of other endothelium-derived vasodilators like prostacyclin and EDHF are also 

closely regulated by endothelial [Ca2+]i (56, 79, 117), NO may not fully responsible for 

agonist-induced endothelium-dependent vasodilation. The receptors responsible for 

AVP/histamine/ET-1 -induced EDNO are mainly V1-receptors (114)/H1 and H2-receptor 

(115, 126)/ETB receptors (33). V1-receptors, H1-receptors, and ETB receptors are Gq-

protein coupled receptors (27, 69, 127, 128), the activation of which leads to Ca2+ entry 

though similar pathways as ATP-induced Ca2+ influx described in the introduction. V2- 

and H2-receptors are Gs-protein coupled receptors that may be involved in NO production 

through Ca2+-independent mechanisms (65, 66). The stimulation of Gs-protein coupled 

receptors activates adenylyl cyclase and subsequently produces cyclic AMP (cAMP) from 

ATP. cAMP may phosphorylate eNOS-Ser (bovine eNOS-Ser1179 or human eNOS-Ser1177) 

through AMP-activated protein kinase (22) or protein kinase B (PKB) (149) signaling 

pathways. Phosphorylation of eNOS-Ser increases the activity of eNOS by reducing the 

relative requirement of Ca2+ for its activation, which is achieved by increasing the rate of 

electron flux from the reductase to the oxygenase domain of the protein and reduces (82). 

Thus, with multiple signaling pathways leading to vasodilation, the physiological effect of 

reduced agonist-induced Ca2+ entry after CH may not be reflected when potential 

compensatory mechanisms are present. In fact, H2-receptor -mediated vasodilatory 

responses to histamine were augmented in the pulmonary circulation following CH (115). 

Besides, since EDHF also mediates histamine-induced vasodilation in the pulmonary 
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circulation (54), it is also possible that this vasodilatory pathway is augmented after CH, 

which may explain why non-EDNO-mediated vasodilation by histamine was increased 

after CH (108).  

Despite the potential compensatory mechanisms by which CH increases agonist-

induced NO production and vasodilation, Ca2+-dependent EDNO production may still be 

increased as a result of enhanced expression of eNOS (107) and receptors for agonists (122) 

in PAECs from CH rats. Because endothelial ROS production is elevated following CH 

(62), enhanced Ca2+-dependent EDNO production may be a compensatory mechanism to 

increase NO bioavailability. In addition, based on studies by Murata et al (87), in rats 

exposed to 1 week chronic hypoxia, agonist-induced Ca2+ entry and NO production are 

significantly reduced in pulmonary endothelium while no change of eNOS expression is 

detected. The reduced NO production could be the result of both decreased Ca2+-dependent 

eNOS activation and impaired eNOS activity due to tight coupling of eNOS/caveolin-1. 

This evidence suggests that endothelial Ca2+ entry and associated NO production are 

impaired in the early stage of CH-induced PH, which may activate potential compensatory 

mechanisms that increase agonist-induced EDNO production.  

 

Membrane cholesterol: structural component vs. signaling mediator 

The role of membrane cholesterol in regulating ion channel function has received 

considerable attention during the last decade. It is now well-accepted that cholesterol is a 

crucial regulator of various ion channels and plays different roles depending on the type of 

ion channel. In general, membrane cholesterol may decrease the number of active channels 

or the activity of several K+ channels, voltage-gated Na+ and Ca2+ channels, and volume-
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regulated anion channels (25, 74, 112, 130). However, other ion channels such as the 

nicotinic acetylcholine receptor, GABAA receptors, epithelial Na+ channels and TRPC 

channels are inhibited by removal of membrane cholesterol (8–10, 71, 123). These dynamic 

roles of membrane cholesterol in regulating ion channel function are possibly achieved 

through two mechanisms: 1) indirect regulation by altering the properties of lipid 

microdomains; and 2) direct interaction with ion channels. The first mechanism was 

proposed by Lundbaek et al (78) that membrane cholesterol may affect ion channels by 

modulating bilayer stiffness and hydrophobic interactions between membrane proteins and 

the lipid bilayer. The stiffer membrane may lead to increased membrane deformation 

energy that affects the conformational change of ion channels when transitioning between 

open and closed states (78). A change in the lipid bilayer properties may also affect other 

signaling cascades within the lipid raft microdomains, which could indirectly modulate ion 

channel function. The concept of direct interaction between cholesterol and ion channels 

was first proposed by Marsh and Barrantes in a “lipid belt” model (78). The direct 

interaction between membrane cholesterol and ion channels was not demonstrated until the 

use of the enantiomer of the sterol, epicholesterol (111) and the identification of a 

cholesterol binding motif in several ion channels (30, 113, 120). Considering that direct 

and indirect effects of cholesterol on ion channels may exist simultaneously, discrimination 

between these two possibilities is challenging but important when exploring the 

mechanisms of cholesterol regulation of ion channels. 

Many studies have shown that membrane cholesterol is important in regulating Ca2+ 

channels and that its effects on Ca2+ influx are diverse (14, 17, 104). In HSG and HEK293 

cells, cholesterol depletion by MβCD blunts SOCE by suppression of STIM1 clustering 
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and activation of TRPC1 (97). In VSMCs, MβCD also reduces endothelin-1-induced Ca2+ 

entry through TRPC1 (10). Our previous and current findings showed that, in PAECs, 

agonist-induced Ca2+ influx along with membrane cholesterol levels are reduced following 

CH (95, 148). This impaired endothelial Ca2+ influx was restored by membrane cholesterol 

supplementation (95, 148). Our current studies also show that cholesterol directly 

modulates endothelial agonist-induced Ca2+ entry and its major components, SOCE and 

depolarization-induced Ca2+ entry. The direct functional effect of cholesterol was examined 

by replacing cholesterol with its enantiomer, epicholesterol, that has similar effects on 

membrane fluidity and lipid domain formation but differential effects on ion channel 

function. We found that substitution of endogenous membrane cholesterol with its epimer 

attenuates ATP-induced Ca2+ entry, SOCE and depolarization-induced Ca2+ entry in PAEC 

(Figure 4, 5 and 9: Chapter 3). In addition, decreased endothelial SOCE and 

depolarization-induced Ca2+ entry following CH are largely restored by cholesterol 

supplementation (Figure 5 and 9: Chapter 3). These data suggest that membrane 

cholesterol directly regulates agonist-induced Ca2+ entry and its components and further 

demonstrate that impaired endothelial Ca2+ entry following CH is due to altered membrane 

cholesterol homeostasis. 

It should be noted that the rationale of using epicholesterol in this aim is based on the 

assumption that epicholesterol should have very similar effects to cholesterol on the 

physical properties of the plasma membrane but interact with Ca2+ channels differently. 

Our observation that neither cholesterol supplementation nor epicholesterol substitution 

alters endothelial caveolar number (Figure 2: Chapter 3) support this rationale. However, 

although other studies also showed that cholesterol and epicholesterol have similar effects 
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on membrane fluidity (46) and lipid domain formation (146), these two sterols may still 

have differential effects on the properties of plasma membrane (28, 29, 84). Parallel studies 

using the other enantiomer, ent-cholesterol that differs from cholesterol in the 

configuration of each of the eight stereocenters, might provide additional insight to how 

membrane cholesterol directly modulates pulmonary endothelial Ca2+ entry. 

 

Caveolae, caveolin-1, and membrane cholesterol regulation of Ca2+ channels 

Caveolae are small (50-100 nm) invaginations of the plasma membrane that are rich 

in cholesterol and the structural protein Cav-1. They are one type of lipid raft with dynamic 

assemblies of proteins, ion channels, and high levels of cholesterol and glycosphingolipids. 

Due to their unique characteristics as a platform for various signaling molecules, caveolae 

regulate many signaling pathways, including Ca2+ entry. In fact, Ca2+ signaling 

components such as G-protein coupled receptors, PLC, IP3R, and SOC are found in lipid 

raft domains/caveolae (15, 43, 86, 99). Both TRPC1 and 4, as SOCs, are not only located 

in caveolae, but also interact with Cav-1, which is crucial for SOCE (15, 86).  

Cav-1, as one of three isoforms of caveolin, is abundantly expressed in endothelial 

cells (116). Cav-1 is localized to caveolae and serves as one of the basic structural 

components of caveolae (36, 106). Besides its structural role in caveolar formation, Cav-1 

also plays a regulatory role in mediating Ca2+ influx, as suggested by studies using mutated 

Cav-1 in cultured cells or Cav-1 knockout mice indicating that Cav-1 is required for SOCE 

by interacting with Ca2+ channels (15, 86). Thus, similar to membrane cholesterol, Cav-1 

may regulate endothelial Ca2+ influx through its structural modulation of caveolae and its 

functional interaction with ion channels. What makes the interpretation of how Cav-1 
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affects endothelial Ca2+ influx more complicated is that Cav-1 may also regulate cholesterol 

homeostasis via cholesterol influx/efflux and intracellular trafficking (38, 40, 151). As 

reported in our previous studies (95), agonist-induced Ca2+ entry is diminished in PAECs 

of CH rats and can be restored to levels of normoxic controls by either cholesterol 

supplementation or administration of the Cav-1 scaffolding domain peptide, AP-Cav. 

Because there is no change of caveolae number in pulmonary endothelium after CH 

exposure (95), any structural changes in caveolae may have minimal effects on endothelial 

Ca2+ channel function. Based on the findings of our current studies, membrane cholesterol 

may directly regulate Ca2+ channels or signaling pathways leading to channel activation. 

Because indirect measurements of Cav-1 expression by immunofluorescence labeling 

show no obvious changes in Cav-1 levels after CH (95), AP-Cav may restore the 

diminished endothelial Ca2+ influx in CH rats by facilitating cholesterol trafficking from 

ER lipid droplets to the plasma membrane. This potential mechanism of ion channel 

regulation is supported by studies of Toselli et al (130). They found that Cav-1-transfected 

NG108-15 cells have increased membrane cholesterol content and significantly reduced 

N-type Ca2+ current compared to wild-type control. This effect was mimicked in wild-type 

cells by cholesterol supplementation, suggesting that membrane cholesterol, not Cav-1, is 

required for N-type Ca2+ channel inhibition.  

Nevertheless, with evidence that Cav-1 may interact with large conductance, Ca2+-

activated K+ channels (BK) (136), we cannot exclude the possibility that Cav-1 may also 

directly modulate certain Ca2+ channels function in PAEC. Besides, membrane cholesterol 

not only regulates Cav-1 expression (52) but also affects Cav-1 trafficking between the 

plasma membrane and Golgi apparatus (101, 121). Membrane cholesterol may also help 
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stabilize Cav-1 on the plasma membrane (41). Thus, membrane cholesterol may indirectly 

affect endothelial Ca2+ influx through regulation of Cav-1 expression and trafficking. This 

regulation of Cav-1 by membrane cholesterol may be observed in PASMC, in which both 

SOCE and ROCE, as well as agonist-induced contraction in pulmonary artery rings are 

augmented due to increased Cav-1 following CH (63). These Ca2+ entry pathways appear 

to be independent of membrane cholesterol as cholesterol supplementation does not 

increase these responses. The disruption of caveolae by MβCD, however, inhibits all Ca2+ 

responses, potentially through reduction of cholesterol-mediated surface expression of 

Cav-1. Considering the regulatory effect of membrane cholesterol and Cav-1 on each other, 

it is very likely that both components of caveolae are involved in the changes of pulmonary 

endothelial Ca2+ homeostasis during CH exposure.  

 

Cholesterol regulation of STIM1, Orai1, and TRPC. 

The essential role of membrane cholesterol in regulating SOCE has been shown in 

many cell types as membrane cholesterol depletion by MβCD attenuates SOCE (31, 45, 51, 

64, 97). In the present studies, we substituted endogenous cholesterol with epicholesterol, 

and found that cholesterol is required for Orai1-mediated SOCE in both isolated PAEC and 

cultured PMVEC. We also showed that epicholesterol substitution significantly reduced 

the STIM1-Orai1 interaction, suggesting that membrane cholesterol regulates endothelial 

SOCE by facilitating this interaction that is required for Orai1 activation. Interestingly, 

Derler et al (30) and Pacheco et al (93) reported cholesterol-binding sites on Orai1 and 

STIM1, respectively, and demonstrated an inhibitory effect of membrane cholesterol on 

SOCE in cultured human embryonic kidney 293 (HEK293) cells and rat basophilic 
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leukemia 2H3 cells. Both studies further showed that the cholesterol-Orai1 and cholesterol-

STIM1 interaction was attenuated by mutating the cholesterol-binding site of the target 

protein. The reason for the conflicting observations of how membrane cholesterol regulates 

SOCE in our current studies and those of other groups (30, 93) is not clear, but may be due 

to heterogeneity between either different cell types or between transfected/cultured cells 

and native endothelial cells. Additionally, since SOCE is a complex multi-step signaling 

pathway, it is also possible that membrane cholesterol affects components of SOCE 

differently. Galan et al (45) showed that membrane cholesterol depletion by MβCD 

attenuates SOCE and STIM1-Orai1 association in HEK293 cells. However, if stores are 

depleted prior to MβCD treatment, SOCE is enhanced while STIM1-Orai1 association 

remain unaffected by cholesterol depletion. Pani et al (97) found that MβCD treatment 

attenuates store depletion-induced STIM1 clustering and SOCE. Together, these findings 

suggest that plasma membrane cholesterol is required for STIM1 oligmerization and 

subsequent interaction with and activation of Orai1. Whether the cholesterol regulation of 

STIM1 clustering is achieved through maintaining caveolar structure or direct modulation 

of trafficking is not clear. However, since the silencing of Cav-1, which reduces the number 

of caveolae (26), does not affect STIM puncta formation in response to ER store depletion 

(98), it is possible that cholesterol on the plasma membrane or ER membrane directly 

affects STIM1 oligmerization. After the STIM1-Orai1 complex is formed, however, 

cholesterol may inhibit SOCE through direct interaction with Orai1 and STIM1 (30, 45, 

93).  

TRPC channels are also activated by stimuli that lead to PIP2 hydrolysis, and are 

identified as components of SOCE. Our current findings do not preclude a potential role 
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for cholesterol to regulate TRPC channels independent of Orai1 and STIM1. Despite a lack 

of evidence for direct regulatory cholesterol binding sites on TRPC channel sequences, the 

membrane cholesterol sensitivity of TRPC channels has been reported in several cell types 

(1, 10, 73, 86, 140). For example, the extraction of membrane cholesterol by cyclodextrins 

impairs TRPC1 signaling processes (10, 77). In addition, both TRPC1 and TRPC4 are 

expressed in murine lung endothelial cells (86). In these cells, Cav-1 regulates the 

subcellular distribution of TRPC1 and 4 to a low-density cholesterol-enriched membrane 

fraction. Cav-1 has also been shown to modulate surface expression of TRPC1 in cultured 

HSG cells (98). In endothelial cells from endothelium-specific Cav-1 knockout mice, 

SOCE is significantly blunted, which is restored in cells from Cav-1 reconstructed mice 

(86). Considering the regulatory role of Cav-1 on cholesterol homeostasis, although 

cholesterol may play a pivotal regulatory role in TRPC1-mediated SOCE by regulating 

membrane structure, direct effects of cholesterol on TRPC trafficking and functions are 

possible. 

Cholesterol may regulate surface expression of many membrane-bound proteins and 

ion channels. It has been shown that endocytosis (13, 138), proteins distribution in 

membrane microdomains (129), and endosomal mobility (20) are closely associated with 

membrane cholesterol levels. In rat atrial myocytes, lowering of membrane cholesterol by 

MβCD enhances outward potassium current by recruiting Kv1.5 channels from recycling 

endosomes (7). In addition, the role of membrane cholesterol in ion channel surface 

expression may vary depending on the channel isoform (44). In our previous and current 

studies, CH significantly reduced membrane cholesterol in PAECs (95, 148). It is not clear 

if chronic hypoxia changes the surface expression of certain Ca2+ channels through 
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membrane cholesterol-regulated pathways. Current literature does, however, demonstrate 

the inhibitory effect of hypoxia on K+ channel trafficking to the plasma membrane (23, 90). 

With the possibility that cholesterol modulates trafficking of cation channels, whether the 

effect of cholesterol supplementation of restoring diminished Ca2+ entry in PAECs is 

achieved through facilitating Ca2+ channel surface expression remains to be determined. 

 

Potential Mechanisms of diminished membrane cholesterol by CH 

Dietary uptake of cholesterol and endogenous biosynthesis are two major sources of 

cholesterol for mammalian cells. Cholesterol is synthesized in the ER and cytoplasm from 

acetyl coenzyme A (acetyl-CoA) to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) in the 

initial steps (49). Then HMG-CoA is converted to mevalonic acid by the rate-limiting 

enzyme, HMG-CoA reductase, which is the target of cholesterol lowering drugs like statins 

(61). Mevalonic acid is converted to squalene, and then to lanosterol through multiple steps. 

An additional 19 steps are required before cholesterol is synthesized from lanosterol. After 

its synthesis, cholesterol is either transferred to the plasma membrane or is converted to 

cholesterol esters, which prevent over-accumulation of intracellular free cholesterol (19). 

Excessive cholesterol is also prevented by negative feedback control mechanisms, one of 

which involves rapid degradation of HMG-CoA reductase through ER membrane proteins 

known as insulin-induced gene (Insig) -1 and -2 (118). An accumulation of sterol in the 

ER membrane causes binding of HMG-CoA reductase to Insigs and subsequent 

ubiquitination of reductase to degradation (118). Two potential mechanisms of decreased 

membrane cholesterol following CH include: 1) inhibition of de novo cholesterol 

biosynthesis; and 2) membrane cholesterol oxidation. Mukodani et al. first reported that 
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hypoxia induces lipid accumulation and impairs cholesterol synthesis in cultured rabbit 

skin fibroblasts (83). The mechanism by which hypoxia affects cholesterol synthesis was 

later explored by Nguyen et al. (92), who reported that hypoxia induces both accumulation 

of cholesterol biosynthetic intermediates and activation of HIF1-α-mediated induction of 

Insigs. These two signaling pathways lead to rapid degradation of HMG-CoA reductase 

and subsequently limit synthesis of cholesterol (92). In addition, CH can also increase the 

production of reactive oxygen species (ROS) (42, 75), which may facilitate membrane 

cholesterol oxidation. Because filipin cannot be used to label oxidized cholesterol (103), it 

is possible that reduced filipin staining in PAECs of CH group is the result of membrane 

cholesterol oxidation by hypoxia-induced ROS. Cholesterol oxidation not only has 

potential to disrupt the interaction between cholesterol and ion channels and many 

regulatory proteins, but may also inhibit de novo cholesterol synthesis (88). In addition, 

cholesterol oxidation causes Cav-1 accumulation in the Golgi apparatus (121), which may 

contribute to impaired Ca2+ channel function. With very limited evidence of how 

cholesterol oxidation by ROS may lead to endothelial dysfunction in pulmonary arteries, 

future studies are required to evaluate the potential contributions of this mechanism to 

reduced PAEC membrane cholesterol and Ca2+ entry following CH. 

 

Membrane cholesterol and hypercholesterolemia 

In addition to effects on serum cholesterol, hypercholesterolemia also leads to the 

increase of membrane choleterol levels of vascular endothelial cells (34), smooth muscle 

cells (21), and erythrocytes (131). Studies suggest that hypercholesterolemia increases 

[Ca2+]i of VSMCs and augments contraction (24, 142). Increased [Ca2+]i of VSMCs could 
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be the result of excessive membrane cholesterol in hypercholesterolemia, as suggested by 

studies looking into the effect of cholesterol enrichment on basal and agonist-induced Ca2+ 

entry in these cells (12, 48). Augmented sensitivity of VSMCs to contractile stimuli may 

also be associated with ROS produced during hypercholesterolemia (109, 125). 

Meanwhile, hypercholesterolemia is also reported to impair endothelium-dependent 

relaxation (119, 147), which may also be caused by excessive membrane cholesterol added 

during hyperchoelsterolemia that reduces SOCE, eNOS phosphorylation, and NO 

production (4).  

However, our current observation that cholesterol supplementation rescues blunted 

endothelial Ca2+ entry in PAEC from CH rats suggests a different role of cholesterol in 

regulating Ca2+ entry pathways. Although it is reported that CH does not affect total 

cholesterol levels in blood of pulmonary hypertensive rats (85), our studies do show the 

reduction of both serum cholesterol (unpublished data) and membrane cholesterol in 

PAECs after CH exposure (95, 148). This observation generates an interesting question of 

whether inhibition of cholesterol synthesis by HMG-CoA reductase inhibitors may mimic 

the effect of CH in reducing Ca2+ entry in PAECs. Rather, studies from other groups using 

statins, HMG-CoA reductase inhibitors to treat hypercholesterolemia, demonstrate a 

beneficial effect of this cholesterol-lowering drug in attenuating the development of CH-

induced PH (47, 85). Statins could promote endothelial function through several 

mechanisms (80). For example, statin treatment may restore the reduced endothelial NO 

through multiple mechanisms including increasing eNOS expression (72), enhancing 

eNOS activity (37, 85), or antioxidant effects (134, 139). Studies also suggests that, by 

decreasing cholesterol synthesis and Cav-1 expression, statins reduce the inhibitory effect 
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of caveolin on eNOS and enhance NO release (37). Since chronic treatment of statins does 

not reduce NO production and endothelium-dependent vasodilatory responses to agonist 

under normoxic conditions (85) and they have pharmacological actions other than just 

inhibiting cholesterol synthesis, statins may not serve as a useful tool to investigate the 

mechanism by which cholesterol regulate Ca2+ entry in PAECs. However, the antioxidant 

effects of statins that increase NO bioavailability in pulmonary endothelium during CH-

induced PH suggest their potential role in preventing cholesterol oxidation (76, 88, 100). 

Considering the fact that ROS are also associated with the development of atherosclerosis, 

it is possible that oxidized cholesterol may contribute to impaired endothelial Ca2+ entry in 

these diseases. 

 

Physiological significance of current studies 

The current studies advance our mechanistic understanding of impaired Ca2+ entry in 

PAECs as a key feature of endothelial dysfunction during CH-induced PH. Since agonist-

induced Ca2+ entry, SOCE, and depolarization-induced Ca2+ entry are important in 

mediating pulmonary endothelial [Ca2+]i, restoring Ca2+ influx in PAECs may help increase 

endothelial Ca2+-dependent vasodilation in pulmonary arteries following CH. The 

discovery that membrane cholesterol is important in mediating these Ca2+ entry pathways 

thus provides membrane cholesterol as a potential new therapeutic target in treating CH-

induced PH.  

Our current studies also add potential insights in understanding the mechanisms of 

acute hypoxic pulmonary vasoconstriction (HPV). Pulmonary arteries constrict in response 

to acute hypoxia, which is responsible for limiting the ventilation-perfusion ratio mismatch 
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during localized alveolar hypoxia. One of the hypothesized mechanisms suggests that HPV 

is achieved primarily through activation of voltage-dependent L-type Ca2+ channels in 

VSMCs in response to membrane depolarization as a result of inhibition of KV channels 

by hypoxia (5, 81, 141). However, studies using isolated perfused lungs and isolated 

pulmonary arteries show that HPV is not very sensitive to blockers of L-type Ca2+ channels 

(110, 137). In addition, because VSMCs are located in pulmonary arterioles and arteries 

that are rather remote from the capillaries adjacent to alveoli, the connection between 

oxygen sensing in areas of gas exchange and vasoconstriction remained undefined. Studies 

from Kuebler group in recent years filled this gap between oxygen sensor and effector in 

HPV (50, 135). In their proposed mechanism of HPV, alveolar capillaries sense hypoxia 

and conducts the depolarization response retrogradely along the endothelial cell layer 

through connexin-40 gap junctions to upstream arterioles and large arteries. Membrane 

depolarization activates T-type VGCCs and increases production of arachidonic acid (AA) 

metabolites epoxyeicosatrienoic acids (EETs) in a Ca2+-dependent manner. EETs then 

diffuse to VSMC and cause vasoconstriction potentially through activation of TRPC6 and 

TPRV4. In CH-induced PH, HPV is greatly reduced (132, 143, 150). Given the importance 

of endothelial T-type VGCCs in HPV, our observations that CH impairs T-type channel-

mediated Ca2+ entry by reducing membrane cholesterol suggest that the loss of T-type 

channel function may be one of causes to diminished HPV in CH-induced PH (148). 

In addition to hypoxia, other physiological stimulus may also cause membrane 

depolarization and activate T-type channel. Shear stress, for example, induces the 

production of ATP in endothelial cells (3, 67), which may serve as an autocrine factor that 

depolarizes endothelial cells. In addition, shear stress may initiate SOCE though increased 
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IP3 production (105). Since store depletion leads to Ca2+ entry through T-type channels 

(145) in PMVECs, shear stress could potentially activate T-type channels indirectly. 

Another source of endothelial depolarizing stimuli is the membrane depolarization of 

VSMC. This is achieved by direct electrical communication between these two type of 

cells through gap junctions (2). In pulmonary arteries, depolarized VSMC may activate T-

type channels on endothelial cells and Ca2+-induced endothelium-dependent 

vasorelaxation to relieve the tone. However, in spite of increased shear stress (133) and 

PASMC depolarization (16) after CH, these potential mechanisms of vasodilation could be 

impaired in pulmonary arteries due to reduced cholesterol-mediated T-type channel 

function. 

Cholesterol is rarely considered “good” in many diseases (35, 91), especially in 

atherosclerosis (57). Adding cholesterol to endothelial cells from aorta reduces both ATP-

induced Ca2+ entry and SOCE, along with flow-induced NO production (4), which is the 

opposite of what we found in PAECs. Our findings suggest that the contribution of 

membrane cholesterol to endothelial dysfunction during development of various vascular 

diseases may be different between the pulmonary circulation and systemic vasculature.  

 

Limitations of studies 

In our current studies, isolated native PAECs and cultured PMVECs were investigated. 

PAECs were isolated in normoxic conditions, which removed the hypoxic stimulus to cells 

from CH animals and enables us to study effects of CH independent of acute hypoxic 

influences. Although these changes may not affect expression or synthesis of ion channels, 

proteins, and lipids, they do have potential impact to trafficking and compartmentation of 
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these components involved in the endothelial Ca2+ entry. It should also be noted that by 

studying cells, the effect of many physiological stimuli, such as stretch of pulmonary 

arteries associated with lung movement during breathing and vasoactive compounds 

released by erythrocytes, were not included, which may also influence the endothelial Ca2+ 

influx.  

We used fura-2-AM as a fluorescent Ca2+ indicator to measure endothelial Ca2+ influx. 

The ratiometric measurement of fura-2 only provides information in global change of 

[Ca2+]i without indication of localized Ca2+ events, which may be important in regulating 

the production of EDHF through activation of small and intermediate conductance Ca2+-

activated K+ channels (68). Thus, how a change of membrane cholesterol would affect Ca2+ 

responses in caveolae or areas close to lipid rafts is unknown. Although Mn2+ quenching 

technique is a clean approach in measuring Ca2+ entry, limited information of kinetics of 

stimulated Ca2+ influx was acquired. Additionally, all cells were stimulated in the absence 

of extracellular Ca2+ for a period of time, and Ca2+ responses were examined afterwards. 

This approach certainly did not mimic native agonist-induced Ca2+ influx, which happens 

immediately upon stimulation and store depletion. Overall, these limitations of approaches 

should be considered when interpreting findings of current studies.  

 

Summary 

To summarize, membrane cholesterol contributes to the normal function of many Ca2+ 

influx pathways in PAECs. The stimulation with an agonist like ATP not only initiates 

SOCE by activating Orai1 through clustered STIM1 in response to ER Ca2+ store depletion, 

but also causes membrane depolarization and subsequent Ca2+ entry via T-type VGCCs. 
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These agonist-induced Ca2+ influx components become inactive following CH due to 

reduced membrane cholesterol levels and the loss of functional regulation of ion channels. 

Impaired cholesterol-dependent endothelial Ca2+ influx may contribute to decreased 

production and release of endothelium-derived vasodilators and anti-mitogenic factors 

following CH. These features of endothelial dysfunction may additionally contribute to 

increased vasoconstrictor reactivity, arterial smooth muscle mitogenesis, and development 

of PH.  

Challenges of future studies are to identify the potential contribution of ROS to 

decreased endothelial cholesterol following CH, either through direct cholesterol oxidation 

or impaired sterol trafficking, and the potential impact of these responses to trafficking and 

surface expression of Cav-1 and Ca2+ channels including TRPC1 and Orai1. Additionally, 

it is important to explore the effect of CH on ER STIM1 clustering in pulmonary artery 

endothelium. Finally, the physiological effect of cholesterol supplementation on NO 

production and endothelium-mediated vasodilation in pulmonary arteries after CH 

exposure remains to be identified.  

To conclude, elevated cellular membrane cholesterol has been linked to many 

diseases (35, 57, 91). In contrast, CH-induced PH appears to be associated with 

diminished membrane cholesterol in PAECs. Our current studies clearly establish a 

prominent role of membrane cholesterol in the regulation of agonist-induced Ca2+ entry in 

PAECs. These studies also support a role for reduced membrane cholesterol in impaired 

Orai1-mediated SOCE following CH. These findings may provide a mechanistic basis to 

explain CH-induced diminution of endothelial Ca2+ influx and associated endothelial 

dysfunction that is central to the pathogenesis of pulmonary hypertension.  



150 
 

References 

1.  Alkhani H, Ase AR, Grant R, O Donnell D, Groschner K, Séguéla P. 

Contribution of TRPC3 to store-operated calcium entry and inflammatory 

transductions in primary nociceptors. Mol Pain 10: 43, 2014. 

2.  Allen T, Iftinca M, Cole WC, Plane F. Smooth muscle membrane potential 

modulates endothelium-dependent relaxation of rat basilar artery via myo-

endothelial gap junctions. J Physiol 545: 975–86, 2002. 

3.  Andrews AM, Jaron D, Buerk DG, Barbee KA. Shear stress-induced NO 

production is dependent on ATP autocrine signaling and capacitative calcium 

entry. Cell Mol Bioeng 7: 510–520, 2015. 

4.  Andrews AM, Muzorewa TT, Zaccheo KA, Buerk DG, Jaron D, Barbee KA. 

Cholesterol enrichment impairs capacitative calcium entry, eNOS phosphorylation 

& shear stress-induced NO production. Cell Mol Bioeng 10: 30–40, 2017. 

5.  Archer S, Michelakis E. The mechanism(s) of hypoxic pulmonary 

vasoconstriction: potassium channels, redox O(2) sensors, and controversies. News 

Physiol Sci 17: 131–137, 2002. 

6.  Arnould T, Michiels C, Alexandre I, Remacle J. Effect of hypoxia upon 

intracellular calcium concentration of human endothelial cells. J Cell Physiol 152: 

215–21, 1992. 

7.  Balse E, El-Haou S, Dillanian G, Dauphin A, Eldstrom J, Fedida D, 

Coulombe A, Hatem SN. Cholesterol modulates the recruitment of Kv1.5 

channels from Rab11-associated recycling endosome in native atrial myocytes. 



151 
 

Proc Natl Acad Sci U S A 106: 14681–14686, 2009. 

8.  Barberà JA, Peinado VI, Santos S. Pulmonary hypertension in chronic 

obstructive pulmonary disease. Eur Respir J 21: 892–905, 2003. 

9.  Barrantes FJ. Cholesterol effects on nicotinic acetylcholine receptor: Cellular 

aspects. Subcell Biochem 51: 467–487, 2010. 

10.  Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, 

Hellstrand P, Swärd K. Cholesterol depletion impairs vascular reactivity to 

endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ 

Res 93: 839–847, 2003. 

11.  Berna N, Arnould T, Remacle J, Michiels C. Hypoxia-induced increase in 

intracellular calcium concentration in endothelial cells: role of the Na(+)-glucose 

cotransporter. J Cell Biochem 84: 115–131, 2001. 

12.  Bialecki RA, Tulenko TN, Colucci WS. Cholesterol enrichment increases basal 

and agonist-stimulated calcium influx in rat vascular smooth muscle cells. J Clin 

Invest 88: 1894–1900, 1991. 

13.  Borroni V, Baier CJ, Lang T, Bonini I, White MM, Garbus I, Barrantes FJ. 

Cholesterol depletion activates rapid internalization of submicron-sized 

acetylcholine receptor domains at the cell membrane. Mol Membr Biol 24: 1–15, 

2007. 

14.  Bowles DK, Heaps CL, Turk JR, Maddali KK, Price EM. 

Hypercholesterolemia inhibits L-type calcium current in coronary macro-, not 



152 
 

microcirculation. J Appl Physiol 96: 2240–2248, 2004. 

15.  Brazer SW, Singh BB, Liu X, Swaim W, Ambudkar IS. Caveolin-1 contributes 

to assembly of store-operated Ca2+ influx channels by regulating plasma 

membrane localization of trpc1. J Biol Chem 278: 27208–27215, 2003. 

16.  Broughton BRS, Jernigan NL, Norton CE, Walker BR, Resta TC. Chronic 

hypoxia augments depolarization-induced Ca2+ sensitization in pulmonary 

vascular smooth muscle through superoxide-dependent stimulation of RhoA. Am J 

Physiol Lung Cell Mol Physiol 298: L232-42, 2010. 

17.  Brownlow SL, Sage SO. Transient receptor potential protein subunit assembly 

and membrane distribution in human platelets. Thromb Haemost 94: 839–845, 

2005. 

18.  Busse R, Mülsch A. Calcium-dependent nitric oxide synthesis in endothelial 

cytosol is mediated by calmodulin. FEBS Lett 265: 133–136, 1990. 

19.  Chang TY, Chang CC, Cheng D. Acyl-coenzyme A:cholesterol acyltransferase. 

Annu Rev Biochem 66: 613–638, 1997. 

20.  Chen H, Yang J, Low PS, Cheng J-X. Cholesterol level regulates endosome 

motility via Rab proteins. Biophys J 94: 1508–20, 2008. 

21.  Chen M, Mason RP, Tulenko TN. Atherosclerosis alters the composition, 

structure and function of arterial smooth muscle cell plasma membranes. Biochim 

Biophys Acta 1272: 101–12, 1995. 

22.  Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, 



153 
 

Witters LA, Power DA, Ortiz de Montellano PR, Kemp BE. AMP-activated 

protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443: 285–9, 

1999. 

23.  Chimote AA, Kuras Z, Conforti L. Disruption of Kv1.3 channel forward 

vesicular trafficking by hypoxia in human T lymphocytes. J Biol Chem 287: 2055–

2067, 2012. 

24.  Cox DA, Cohen ML. Selective enhancement of 5-hydroxytryptamine-induced 

contraction of porcine coronary artery by oxidized low-density lipoprotein. J 

Pharmacol Exp Ther 276: 1095–103., 1996. 

25.  Crowley JJ. Cholesterol antagonizes ethanol potentiation of human brain BKCa 

channels reconstituted into phospholipid bilayers. Mol Pharmacol 64: 365–372, 

2003. 

26.  D’Alessio A, Kluger MS, Li JH, Al-Lamki R, Bradley JR, Pober JS. Targeting 

of tumor necrosis factor receptor 1 to low density plasma membrane domains in 

human endothelial cells. J Biol Chem 285: 23868–23879, 2010. 

27.  Deliu E, Brailoiu GC, Mallilankaraman K, Wang H, Madesh M, Undieh AS, 

Koch WJ, Brailoiu E. Intracellular endothelin type B receptor-driven Ca2+ signal 

elicits nitric oxide production in endothelial cells. J Biol Chem 287: 41023–41031, 

2012. 

28.  Demel RA, Bruckdorfer KR, van Deenen LLM. Structural requirements of 

sterols for the interaction with lecithin at the air-water interface. BBA - Biomembr 

255: 311–320, 1972. 



154 
 

29.  Demel RA, Bruckdorfer KR, Van Deenen LLM. The effect of sterol structure 

on the permeability of lipomes to glucose, glycerol and Rb+. BBA - Biomembr 

255: 321–330, 1972. 

30.  Derler I, Jardin I, Stathopulos PB, Muik M, Fahrner M, Zayats V, Pandey 

SK, Poteser M, Lackner B, Absolonova M, Schindl R, Groschner K, Ettrich 

R, Ikura M, Romanin C. Cholesterol modulates Orai1 channel function. Sci 

Signal 9: 1–11, 2016. 

31.  Dionisio N, Galán C, Jardín I, Salido GM, Rosado JA. Lipid rafts are essential 

for the regulation of SOCE by plasma membrane resident STIM1 in human 

platelets. Biochim Biophys Acta - Mol Cell Res 1813: 431–437, 2011. 

32.  Eichinger MR, Walker BR. Enhanced pulmonary arterial dilation to arginine 

vasopressin in chronically hypoxic rats. Am J Physiol Hear Circ Physiol 267: 

H2413–H2419, 1994. 

33.  Fagan KA, McMurtry IF, Rodman DM. Role of endothelin-1 in lung disease. 

Respir Res 2: 1, 2001. 

34.  Fang Y, Mohler ER, Hsieh E, Osman H, Hashemi SM, Davies PF, Rothblat 

GH, Wilensky RL, Levitan I. Hypercholesterolemia suppresses inwardly 

rectifying K+ channels in aortic endothelium in vitro and in vivo. Circ Res 98: 

1064–1071, 2006. 

35.  Félix-Redondo FJ, Grau M, Fernández-Bergés D. Cholesterol and 

cardiovascular disease in the elderly. Facts and gaps. Aging Dis 4: 154–69, 2013. 



155 
 

36.  Fernandez I, Ying Y, Albanesi J, Anderson RGW. Mechanism of caveolin 

filament assembly. Proc Natl Acad Sci U S A 99: 11193–11198, 2002. 

37.  Feron O, Dessy C, Desager J, Balligand J. Hydroxy-methylglutaryl–coenzyme 

A reductase inhibition promotes endothelial nitric oxide synthase activation 

through a decrease in caveolin abundance. Louv Med 103: 113–118, 2001. 

38.  Fielding PE, Fielding CJ. Plasma membrane caveolae mediate the efflux of 

cellular free cholesterol. Biochemistry 34: 14288–14292, 1995. 

39.  Förstermann U, Pollock JS, Schmidt HH, Heller M, Murad F. Calmodulin-

dependent endothelium-derived relaxing factor/nitric oxide synthase activity is 

present in the particulate and cytosolic fractions of bovine aortic endothelial cells. 

Proc Natl Acad Sci 88: 1788–1792, 1991. 

40.  Frank PG, Cheung MW, Pavlides S, Llaverias G, Park DS, Lisanti MP, 

Philippe G, Pav- S. Caveolin-1 and regulation of cellular cholesterol homeostasis. 

Am J Physiol Circ Physiol 19107, 2006. 

41.  Frank PG, Marcel YL, Connelly MA, Lublin DM, Franklin V, Williams DL, 

Lisanti MP. Stabilization of caveolin-1 by cellular cholesterol and scavenger 

receptor class B type I. Biochemistry 41: 11931–11940, 2002. 

42.  Fresquet F, Pourageaud F, Leblais V, Brandes RP, Savineau JP, Marthan R, 

Muller B. Role of reactive oxygen species and gp91phox in endothelial 

dysfunction of pulmonary arteries induced by chronic hypoxia. Br J Pharmacol 

148: 714–723, 2006. 



156 
 

43.  Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K. Localization of 

inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. J Cell 

Biol 119: 1507–1513, 1992. 

44.  Furst O, D’Avanzo N, Fürst O, D’Avanzo N. Isoform dependent regulation of 

human HCN channels by cholesterol. Sci Rep 5: 14270, 2015. 

45.  Galan C, Woodard GE, Dionisio N, Salido GM, Rosado JA. Lipid rafts 

modulate the activation but not the maintenance of store-operated Ca2+ entry. 

Biochim Biophys Acta - Mol Cell Res 1803: 1083–1093, 2010. 

46.  Gimpl G, Burger K, Fahrenholz F. Cholesterol as modulator of receptor 

function. Biochemistry 36: 10959–10974, 1997. 

47.  Girgis RE, Li D, Zhan X, Garcia JGN, Tuder RM, Hassoun PM, Johns RA. 

Attenuation of chronic hypoxic pulmonary hypertension by simvastatin. Am J 

Physiol Heart Circ Physiol 285: H938-45, 2003. 

48.  Gleason MM, Medow MS, Tulenko TN. Excess membrane cholesterol alters 

calcium movements, cytosolic calcium levels, and membrane fluidity in arterial 

smooth muscle cells. Circ Res 69: 216–227, 1991. 

49.  Goedeke L, Fernández-Hernando C. Regulation of cholesterol homeostasis. Cell 

Mol Life Sci 69: 915–930, 2012. 

50.  Goldenberg NM, Wang L, Ranke H, Liedtke W, Tabuchi A, Kuebler WM. 

TRPV4 is required for hypoxic pulmonary vasoconstriction. Anesthesiology 122: 

1338–1348, 2015. 



157 
 

51.  Gwozdz T, Dutko-Gwozdz J, Schafer C, Bolotina VM. Overexpression of Orai1 

and STIM1 proteins alters regulation of store-operated Ca2+ entry by endogenous 

mediators. J Biol Chem 287: 22865–22872, 2012. 

52.  Hailstones D, Sleer LS, Parton RG, Stanley KK. Regulation of caveolin and 

caveolae by cholesterol in MDCK cells. J Lipid Res 39: 369–79, 1998. 

53.  Hampl V, Cornfield DN, Cowan NJ, Archer SL. Hypoxia potentiates nitric 

oxide synthesis and transiently increases cytosolic calcium levels in pulmonary 

artery endothelial cells. Eur Respir J 8: 515–522, 1995. 

54.  Hasunuma K, Yamaguchi T, Rodman DM, O’Brien RF, McMurtry IF. 

Effects of inhibitors of EDRF and EDHF on vasoreactivity of perfused rat lungs. 

Am J Physiol 260: L97-104, 1991. 

55.  Hdud IM, El-Shafei AA, Loughna P, Barrett-Jolley R, Mobasheri A. 

Expression of transient receptor potential vanilloid (TRPV) channels in different 

passages of articular chondrocytes. Int J Mol Sci 13: 4433–4445, 2012. 

56.  Hinton JM, Langton PD. Inhibition of EDHF by two new combinations of K+ -

channel inhibitors in rat isolated mesenteric arteries. Br J Pharmacol 138: 1031–

1035, 2003. 

57.  HS K. Lipoprotein cholesterol and atherosclerosis. Curr Mol Med 1: 633–53, 

2001. 

58.  Hu QH, Wang DX. Hypoxia increases cytosolic free calcium in porcine 

pulmonary arterial endothelial cells [Online]. J Tongji Med Univ 13: 14–17, 1993. 



158 
 

http://www.ncbi.nlm.nih.gov/pubmed/8392110. 

59.  Isaacson TC, Hampl V, Weir EK, Nelson DP, Archer SL. Increased 

endothelium-derived NO in hypertensive pulmonary circulation of chronically 

hypoxic rats. J Appl Physiol 76: 933–940, 1994. 

60.  Jaffe E a, Grulich J, Weksler BB, Hampel G, Watanabe K. Correlation 

between thrombin-induced prostacyclin production and inositol trisphosphate and 

cytosolic free calcium levels in cultured human endothelial cells. [Online]. J Biol 

Chem 262: 8557–65, 1987. http://www.ncbi.nlm.nih.gov/pubmed/3110148. 

61.  Jasińska M, Owczarek J, Orszulak-Michalak D. Statins: A new insight into 

their mechanisms of action and consequent pleiotropic effects. Pharmacol. Reports 

59: 483–499, 2007. 

62.  Jernigan NL, Walker BR, Resta TC. Endothelium-derived reactive oxygen 

species and endothelin-1 attenuate NO-dependent pulmonary vasodilation 

following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol 287: L801-8, 

2004. 

63.  Jiao H-X, Mu Y-P, Gui L-X, Yan F-R, Lin D-C, Sham JSK, Lin M-J. Increase 

in caveolae and caveolin-1 expression modulates agonist-induced contraction and 

store- and receptor-operated Ca2+ entry in pulmonary arteries of pulmonary 

hypertensive rats. Vascul Pharmacol 84: 55–66, 2016. 

64.  Kato N, Nakanishi M, Hirashima N. Cholesterol depletion inhibits store-

operated calcium currents and exocytotic membrane fusion in RBL-2H3 cells. 

Biochemistry 42: 11808–11814, 2003. 



159 
 

65.  Kaufmann JE, Iezzi M, Vischer UM. Desmopressin (DDAVP) induces NO 

production in human endothelial cells via V2 receptor- and cAMP-mediated 

signaling. J Thromb Haemost 1: 821–828, 2003. 

66.  Kishi F, Nakaya Y, Ito S. Histamine H2-receptor-mediated nitric oxide release 

from porcine endothelial cells. J Cardiovasc Pharmacol 32: 177–82, 1998. 

67.  Korenaga R, Ando J, Tsuboi H, Yang W, Sakuma I, Toyo-oka T, Kamiya A. 

Laminar flow stimulates ATP- and shear stress-dependent nitrix oxide production 

in cultured bovine endothelial cells. Biochem. Biophys. Res. Commun. 198: 213–

219, 1994. 

68.  Kroigaard C, Dalsgaard T, Nielsen G, Laursen BE, Pilegaard H, Kohler R, 

Simonsen U. Activation of endothelial and epithelial K(Ca) 2.3 calcium-activated 

potassium channels by NS309 relaxes human small pulmonary arteries and 

bronchioles. Br J Pharmacol 167: 37–47, 2012. 

69.  Kühn B, Kühn B, Schmid A, Schmid A, Harteneck C, Harteneck C, 

Gudermann T, Gudermann T, Schultz G, Schultz G. G proteins of the Gq 

family couple the H2 histamine receptor to phospholipase C. Mol Endocrinol 10: 

1697–1707, 1996. 

70.  Kurejová M, Uhrík B, Sulová Z, Sedláková B, Križanová O, Lacinová L. 

Changes in ultrastructure and endogenous ionic channels activity during culture of 

HEK 293 cell line. Eur J Pharmacol 567: 10–18, 2007. 

71.  Kwiatek AM, Minshall RD, Cool DR, Skidgel RA, Malik AB. Caveolin-1 

regulates store-operated Ca 2+ influx by binding of its scaffolding domain to 



160 
 

transient receptor potential channel-1 in endothelial cells. Mol Pharmacol 70: 

1174–1183, 2006. 

72.  Laufs U, Fata V La, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide 

synthase by HMG-CoA reductase inhibitors. Circulation 97: 1129–1135, 1998. 

73.  Lei L, Lu S, Wang Y, Kim T, Mehta D, Wang Y. The role of mechanical tension 

on lipid raft dependent PDGF-induced TRPC6 activation. Biomaterials 35: 2868–

2877, 2014. 

74.  Lin M-W, Wu AZ, Ting W-H, Li C-L, Cheng K-S, Wu S-N. Changes in 

membrane cholesterol of pituitary tumor (GH3) cells regulate the activity of large-

conductance Ca2+-activated K+ channels. Chin J Physiol 49: 1–13, 2006. 

75.  Liu JQ, Zelko IN, Erbynn EM, Sham JSK, Folz RJ. Hypoxic pulmonary 

hypertension: role of superoxide and NADPH oxidase (gp91phox). AJP - Lung 

Cell Mol Physiol 290: L2-10, 2006. 

76.  Liu Z-Q, Shan H-Y. Cholesterol, not polyunsaturated fatty acids, is target 

molecule in oxidation induced by reactive oxygen species in membrane of human 

erythrocytes. Cell Biochem Biophys 45: 185–193, 2006. 

77.  Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS. 

Assembly of Trp1 in a signaling complex associated with caveolin- scaffolding 

lipid raft domains. J Biol Chem 275: 11934–11942, 2000. 

78.  Lundbæk JA, Birn P, Girshman J, Hansen AJ, Andersen OS. Membrane 

stiffness and channel function. Biochemistry 35: 3825–3830, 1996. 



161 
 

79.  Marrelli SP, Eckmann MS, Hunte MS. Role of endothelial intermediate 

conductance KCa channels in cerebral EDHF-mediated dilations. Am J Physiol 

Hear Circ Physiol 285: H1590-9, 2003. 

80.  Mason RP, Walter MF, Jacob RF. Effects of HMG-CoA reductase inhibitors on 

endothelial function: role of microdomains and oxidative stress. Circulation 109: 

II34-41, 2004. 

81.  Mauban JRH, Remillard C V, Yuan JX-J. Hypoxic pulmonary 

vasoconstriction: role of ion channels. J Appl Physiol 98: 415–20, 2005. 

82.  McCabe TJ, Fulton D, Roman LJ, Sessa WC. Enhanced electron flux and 

reduced calmodulin dissociation may explain “calcium-independent” eNOS 

activation by phosphorylation. J Biol Chem 275: 6123–6128, 2000. 

83.  Mukodani J, Ishikawa Y, Fukuzaki H. Effects of hypoxia on sterol synthesis, 

acyl-CoA:cholesterol acyltransferase activity, and efflux of cholesterol in cultured 

rabbit skin fibroblasts. Arteriosclerosis 10: 106–110, 1990. 

84.  Murari R, Murari MP, Baumann WJ. Sterol Orientations in 

Phosphatidyleholine Liposomes As Determined by Deuterium NMR. Biochemistry 

25: 1062–1067, 1986. 

85.  Murata T, Kinoshita K, Hori M, Kuwahara M, Tsubone H, Karaki H, Ozaki 

H. Statin protects endothelial nitric oxide synthase activity in hypoxia-induced 

pulmonary hypertension. Arterioscler Thromb Vasc Biol 25: 2335–2342, 2005. 

86.  Murata T, Lin MI, Stan R V., Bauer PM, Yu J, Sessa WC. Genetic evidence 



162 
 

supporting caveolae microdomain regulation of calcium entry in endothelial cells. 

J Biol Chem 282: 16631–16643, 2007. 

87.  Murata T, Sato K, Hori M, Ozaki H, Karaki H. Decreased endothelial nitric-

oxide synthase (eNOS) activity resulting from abnormal interaction between eNOS 

and its regulatory proteins in hypoxia-induced pulmonary hypertension. J Biol 

Chem 277: 44085–44092, 2002. 

88.  Murphy RC, Johnson KM. Cholesterol, reactive oxygen species, and the 

formation of biologically active mediators. J Biol Chem 283: 15521–15525, 2008. 

89.  Nakane M, Mitchell J, Förstermann U, Murad F. Phosphorylation by calcium 

calmodulin-dependent protein kinase II and protein kinase C modulates the activity 

of nitric oxide synthase. Biochem Biophys Res Commun 180: 1396–1402, 1991. 

90.  Nanduri J, Bergson P, Wang N, Ficker E, Prabhakar NR. Hypoxia inhibits 

maturation and trafficking of hERG K+ channel protein: Role of Hsp90 and ROS. 

Biochem Biophys Res Commun 388: 212–216, 2009. 

91.  Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 

40: 195–211, 2014. 

92.  Nguyen AD, McDonald JG, Bruick RK, DeBose-Boyd RA. Hypoxia stimulates 

degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase through 

accumulation of lanosterol and hypoxia-inducible factor-mediated induction of 

insigs. J Biol Chem 282: 27436–27446, 2007. 

93.  Pacheco J, Domingu L, Bohórquez-herná A, Asanov A, Vaca L. OPEN A 



163 
 

cholesterol-binding domain in STIM1 modulates STIM1-Orai1 physical and 

functional interactions. Sci Rep 6: 1–16, 2016. 

94.  Paffett ML, Naik JS, Resta TC, Walker BR. Reduced store-operated Ca2+ entry 

in pulmonary endothelial cells from chronically hypoxic rats. Am J Physiol Lung 

Cell Mol Physiol 293: L1135-42, 2007. 

95.  Paffett ML, Naik JS, Riddle MA, Menicucci SD, Gonzales AJ, Resta TC, 

Walker BR. Altered membrane lipid domains limit pulmonary endothelial 

calcium entry following chronic hypoxia. Am J Physiol Hear Circ Physiol 301: 

1331–1340, 2011. 

96.  Paffett ML, Riddle MA, Kanagy NL, Resta TC, Walker BR. Altered protein 

kinase C regulation of pulmonary endothelial store- and receptor-operated Ca2+ 

entry after chronic hypoxia. J Pharmacol Exp Ther 334: 753–760, 2010. 

97.  Pani B, Hwei LO, Liu X, Rauser K, Ambudkar IS, Singh BB. Lipid rafts 

determine clustering of STIM1 in endoplasmic reticulum-plasma membrane 

junctions and regulation of store-operated Ca2+ entry (SOCE). J Biol Chem 283: 

17333–17340, 2008. 

98.  Pani B, Ling H, Brazer S-CW, Liu X, Rauser K, Singh BB, Ambudkar IS, 

Ong HL. Activation of TRPC1 by STIM1 in ER-PM microdomains involves 

release of the channel from its scaffold caveolin-1. Proc Natl Acad Sci U S A 106: 

20087–92, 2009. 

99.  Pani B, Singh BB. Lipid rafts/caveolae as microdomains of calcium signaling. 

Cell Calcium 45: 625–633, 2009. 



164 
 

100.  Peterson TE, Poppa V, Ueba H, Wu A, Yan C, Berk BC. Opposing effects of 

reactive oxygen species and cholesterol on endothelial nitric oxide synthase and 

endothelial cell caveolae 2. CircRes 85: 29–37, 1999. 

101.  Pol A, Martin S, Fernández MA, Ingelmo-Torres M, Ferguson C, Enrich C, 

Parton RG. Cholesterol and fatty acids regulate dynamic caveolin trafficking 

through the Golgi complex and between the cell surface and lipid bodies. Mol Biol 

Cell 16: 2091–2105, 2005. 

102.  Pollock JS, Förstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane 

M, Murad F. Purification and characterization of particulate endothelium-derived 

relaxing factor synthase from cultured and native bovine aortic endothelial cells. 

Proc Natl Acad Sci U S A 88: 10480–4, 1991. 

103.  Pörn MI, Slotte JP. Localization of cholesterol in sphingomyelinase-treated 

fibroblasts. Biochem J 308 (Pt 1): 269–74, 1995. 

104.  Pouvreau S, Berthier C, Blaineau S, Amsellem J, Coronado R, Strube C. 

Membrane cholesterol modulates dihydropyridine receptor function in mice fetal 

skeletal muscle cells. J Physiol 555: 365–81, 2004. 

105.  Prasad  a R, Logan S a, Nerem RM, Schwartz CJ, Sprague E a. Flow-related 

responses of intracellular inositol phosphate levels in cultured aortic endothelial 

cells. Circ Res 72: 827–836, 1993. 

106.  Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, 

Macalusol F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H, Kneitz B, 

Lagaud G, Christ GJ, Edelmann W, Lisanti MP. Caveolin-1 null mice are 



165 
 

viable but show evidence of hyperproliferative and vascular abnormalities. J Biol 

Chem 276: 38121–38138, 2001. 

107.  Resta TC, Gonzales RJ, Dail WG, Sanders TC, Walker BR. Selective 

upregulation of arterial endothelial nitric oxide synthase in pulmonary 

hypertension. Am J Physiol - Cell Physiol Hear Circ Physiol 272: H806–H813, 

1997. 

108.  Resta TC, Walker BR. Chronic hypoxia selectively augments endothelium-

dependent pulmonary arterial vasodilation. Am J Physiol 270: H888-96, 1996. 

109.  Del Rio M, Chulia T, Ruiz E, Tejerina T. Action of probucol in arteries from 

normal and hypercholesterolaemic rabbits. Br J Pharmacol 118: 1639–1644, 1996. 

110.  Robertson TP, Dipp M, Ward JP, Aaronson PI, Evans AM. Inhibition of 

sustained hypoxic vasoconstriction by Y-27632 in isolated intrapulmonary arteries 

and perfused lung of the rat. Br J Pharmacol 131: 5–9, 2000. 

111.  Romanenko VG, Rothblat GH, Levitan I. Modulation of endothelial inward-

rectifier K+ current by optical isomers of cholesterol. Biophys J 83: 3211–3222, 

2002. 

112.  Romanenko VG, Rothblat GH, Levitan I. Sensitivity of volume-regulated anion 

current to cholesterol structural analogues. J Gen Physiol 123: 77–87, 2004. 

113.  Rosenhouse-Dantsker A, Noskov S, Durdagi S, Logothetis DE, Levitan I. 

Identification of novel cholesterol-binding regions in Kir2 channels. J Biol Chem 

288: 31154–31164, 2013. 



166 
 

114.  Russ RD, Resta TC, Walker BR. Pulmonary vasodilatory response to 

neurohypophyseal peptides in the rat. JApplPhysiol 73: 473–478, 1992. 

115.  Russell PC, Wright CE, Barer GR, Howard P. Histamine induced pulmonary 

vasodilation in the rats: site of action and changes in rate of hypoxia. Eur Respir J 

7: 1138–1144, 1994. 

116.  Schlegel A, Volonté D, Engelman JA, Galbiati F, Mehta P, Zhang XL, Scherer 

PE, Lisanti MP. Crowded little caves: Structure and function of caveolae. Cell. 

Signal. 10: 457–463, 1998. 

117.  Seid M, Macneil S, Tomlinson S. Calcium, calmodulin, and the production of 

prostacyclin by cultured vascular endothelial cells. Biosci Rep 3: 1007–1015, 

1983. 

118.  Sever N, Yang T, Brown MS, Goldstein JL, DeBose-Boyd RA. Accelerated 

degradation of HMG CoA reductase mediated by binding of insig-1 to its sterol-

sensing domain. Mol Cell 11: 25–33, 2003. 

119.  Shimokawa H, Vanhoutte PM. Impaired endothelium-dependent relaxation to 

aggregating platelets and related vasoactive substances in porcine coronary arteries 

in hypercholesterolemia and atherosclerosis. Circ Res 64: 900–914, 1989. 

120.  Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM. 

Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs 

in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and 

voltage-gated K+ (BK) channels. J Biol Chem 287: 20509–20521, 2012. 



167 
 

121.  Smart EJ, Ying YS, Conrad PA, Anderson RGW. Caveolin moves from 

caveolae to the Golgi apparatus in response to cholesterol oxidation. J Cell Biol 

127: 1185–1197, 1994. 

122.  Soma S, Takahashi H, Muramatsu M, Oka M, Fukuchi Y. Localization and 

distribution of endothelin receptor subtypes in pulmonary vasculature of normal 

and hypoxia-exposed rats. Am J Respir Cell Mol Biol 20: 620–630, 1999. 

123.  Sooksawate T, Simmonds MA. Influence of membrane cholesterol on 

modulation of the GABA A receptor by neuroactive steroids and other 

potentiators. Br J Pharmacol 134: 1303–1311, 2001. 

124.  Stevens T, Cornfield DN, McMurtry IF, Rodman DM. Acute reductions in PO2 

depolarize pulmonary artery endothelial cells and decrease [Ca2+]i. Am J Physiol 

266: H1416-21, 1994. 

125.  Stewart-Lee AL, Ferns GA, Anggard EE. Differences in onset of impaired 

endothelial responses and in effects of vitamin E in the hypercholesterolemic 

rabbit carotid and renal arteries. J Cardiovasc Pharmacol 25: 906–13., 1995. 

126.  Szarek JL, Bailly DA, Stewart NL, Gruetter CA. Histamine H1-receptors 

mediate endothelium-dependent relaxation of rat isolated pulmonary arteries. Pulm 

Pharmacol 5: 67–74, 1992. 

127.  Tang L, Luo B, Patel R. Modulation of pulmonary endothelial endothelin B 

receptor expression and signaling: implications for experimental hepatopulmonary 

syndrome. Am J … 5: 1467–1472, 2007. 



168 
 

128.  Thibonnier M, Goraya T, Berti-Mattera L. G protein coupling of human 

platelet V1 vascular vasopressin receptors. Am J Physiol 264: C1336-44, 1993. 

129.  Tikku S, Epshtein Y, Collins H, Travis AJ, Rothblat GH, Levitan I. 

Relationship between Kir2.1/Kir2.3 activity and their distributions between 

cholesterol-rich and cholesterol-poor membrane domains. Am J Physiol Cell 

Physiol 293: C440-50, 2007. 

130.  Toselli M, Biella G, Taglietti V, Cazzaniga E, Parenti M. Caveolin-1 expression 

and membrane cholesterol content modulate N-type calcium channel activity in 

NG108-15 cells. Biophys J 89: 2443–57, 2005. 

131.  Vayá A, Martínez Triguero M, Réganon E, Vila V, Martínez Sales V, Solá E, 

Hernández Mijares A. Erythrocyte membrane composition in patients with 

primary hypercholesterolemia. Clin Hemorheol Microcirc 40: 289–294, 2008. 

132.  Voelkel NF, Morris KG, McMurtry IF, Reeves JT. Calcium augments hypoxic 

vasoconstriction in lungs from high-altitude rats. J Appl Physiol 49: 450–455, 

1980. 

133.  Voelkel NF, Tuder RM. Cellular and molecular mechanisms in the pathogenesis 

of severe pulmonary hypertension. Eur. Respir. J. 8: 2129–2138, 1995. 

134.  Wagner AH, Köhler T, Rückschloss U, Just I, Hecker M. Improvement of 

nitric oxide-dependent vasodilation by HMG-CoA reductase inhibitors through 

attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc 

Biol nicht bekannt 20: 61–69, 2000. 



169 
 

135.  Wang L, Yin J, Nickles HT, Ranke H, Tabuchi A, Hoffmann J, Tabeling C, 

Barbosa-Sicard E, Chanson M, Kwak BR, Shin HS, Wu S, Isakson BE, 

Witzenrath M, De Wit C, Fleming I, Kuppe H, Kuebler WM. Hypoxic 

pulmonary vasoconstriction requires connexin 40-mediated endothelial signal 

conduction. J Clin Invest 122: 4218–4230, 2012. 

136.  Wang XL, Ye D, Peterson TE, Cao S, Shah VH, Katusic ZS, Sieck GC, Lee 

HC. Caveolae targeting and regulation of large conductance Ca 2+-activated K+ 

channels in vascular endothelial cells. J Biol Chem 280: 11656–11664, 2005. 

137.  Ward JPT, Aaronson PI. Mechanisms of hypoxic pulmonary vasoconstriction: 

Can anyone be right? Respir Physiol 115: 261–271, 1999. 

138.  Wasser CR, Ertunc M, Liu X, Kavalali ET. Cholesterol-dependent balance 

between evoked and spontaneous synaptic vesicle recycling. J Physiol 579: 413–

429, 2007. 

139.  Wassmann S, Laufs U, Muller K, Konkol C, Ahlbory K, Baumer AT, Linz W, 

Bohm M, Nickenig G. Cellular Antioxidant Effects of Atorvastatin In Vitro and 

In Vivo. Arter Thromb Vasc Biol 22: 300–305, 2002. 

140.  Weerth SH, Holtzclaw LA, Russell JT. Signaling proteins in raft-like 

microdomains are essential for Ca2+ wave propagation in glial cells. Cell Calcium 

41: 155–167, 2007. 

141.  Weir EK, Archer SL. The mechanism of acute hypoxic pulmonary 

vasoconstriction: the tale of two channels. FASEB J 9: 183–189, 1995. 



170 
 

142.  Weisbrod RM, Griswold MC, Du Y, Bolotina VM, Cohen RA. Reduced 

responsiveness of hypercholesterolemic rabbit aortic smooth muscle cells to nitric 

oxide. Arterioscler Thromb Vasc Biol 17: 394–402., 1997. 

143.  Weissmann N, Nollen M, Gerigk B, Ardeschir Ghofrani H, Schermuly RT, 

Gunther A, Quanz K, Fink L, Hanze J, Rose F, Seeger W, Grimminger F. 

Downregulation of hypoxic vasoconstriction by chronic hypoxia in rabbits: effects 

of nitric oxide. Am J Physiol Hear Circ Physiol 284: H931-8, 2003. 

144.  Whorton AR, Willis CE, Kent RS, Young SL. The role of calcium in the 

regulation of prostacyclin synthesis by porcine aortic endothelial cells. Lipids 19: 

17–24, 1984. 

145.  Wu S, Haynes J, Taylor JT, Obiako BO, Stubbs JR, Li M, Stevens T. CaV3.1 

(α1G) T-type Ca2+ channels mediate vaso-occlusion of sickled erythrocytes in 

lung microcirculation. Circ Res 93: 346–353, 2003. 

146.  Xu X, London E. The effect of sterol structure on membrane lipid domains 

reveals how cholesterol can induce lipid domain formation. Biochemistry 39: 843–

849, 2000. 

147.  Zeiher AM, Drexler H, Wollschläger H, Just H. Modulation of coronary 

vasomotor tone in humans. Progressive endothelial dysfunction with different 

early stages of coronary atherosclerosis. Circulation 83: 391–401, 1991. 

148.  Zhang B, Naik XJS, Jernigan NL, Walker BR, Resta TC. Reduced membrane 

cholesterol limits pulmonary endothelial Ca 2+ entry after chronic hypoxia. Am J 

Physiol - Hear Circ Physiol 312: 1176–1184, 2017. 



171 
 

149.  Zhang X-P, Hintze TH. cAMP signal transduction induces eNOS activation by 

promoting PKB phosphorylation. Am J Physiol Heart Circ Physiol 290: H2376-84, 

2006. 

150.  Zhao L, Crawley DE, Hughes JM, Evans TW, Winter RJ. Endothelium-

derived relaxing factor activity in rat lung during hypoxic pulmonary vascular 

remodeling. J Appl Physiol 74: 1061–1065, 1993. 

151.  Zhou M, Parr RD, Petrescu AD, Payne HR, Atshaves BP, Kier AB, Ball JM, 

Schroeder F. Sterol carrier protein-2 directly interacts with caveolin-1 in vitro and 

in vivo. Biochemistry 43: 7288–7306, 2004. 

 

 

 

  

 

 


