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ABSTRACT 

 
This dissertation explores the effects of heterogeneity across different biological 

scales in cancer as well as normal cells.  At the tissue scale, we investigated the 

variability present in the tumor microenvironment and its effect on patient 

chemotherapeutic outcomes using a mathematical model of drug transport. We found that 

parameters such as tumor blood perfusion and radius of blood vessel had an impact on 

the tumor cytotoxicity. This indicated that the physical microenvironment of the tumor is 

an important regulator of the tumor response to chemotherapy. At the cellular scale, we 

investigated the heterogeneity present on the membrane landscape of ErbB2 and ErbB3, 

two receptors that are upregulated in cancer, using a spatial stochastic model of receptor 

dimerization and phosphorylation. We found that membrane domains played an 

important role in regulating signaling emanating from this receptor dimer. In our next 

study, we developed a 3-D spatial stochastic model of pre-BCR, a receptor which is 



	 vi	

crucial in the development of B lymphocytes and also upregulated in a subset of patients 

with B-Cell Precursor Acute Lymphoblastic Leukemia, to investigate the effects of ligand 

independent (tonic signaling) originating from this receptor. We populated our model 

with single particle tracking data from two different leukemic cell lines which had 

different dimer off rates and diffusion coefficients, along with experimental 

measurements. Other important signaling molecules such as Lyn and Syk, which are 

active in this pathway, were also included in the model. We found that the variability in 

characteristics between the two cell lines led to differences in downstream signaling 

events from the receptor. The cell line with the lower dimer off rate formed higher order 

oligomers and had more overall molecule phosphorylation compared to the other. Thus, 

this spatial stochastic model was able to shed light on threshold signaling events which 

take place during tonic signaling. 
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CHAPTER 1: INTRODUCTION 

 

1.1 OVERVIEW 

Heterogeneity in form and function has been found to exist across multiple 

different scales in biological systems (Altschuler and Wu, 2010; Allison and Sledge, 

2014; Chang and Marshall, 2017). At the cellular scale, clonally identical cell populations 

have been found to exhibit differential gene expression of the same protein, thus giving 

rise to phenotypic diversity (Elowitz et al., 2002; Ozbudak et al., 2002). Stochastic 

generation and degradation of proteins and compartmentalization of molecules during 

cell division also contribute to non-genetic sources of heterogeneity in cells (Huh and 

Paulsson, 2011). At the organelle scale, rates of biochemical reactions occurring inside 

structures such as the mitochondria and endoplasmic reticulum can be affected by the 

size and shape of these structures (Marshall, 2012). At the tissue scale, the geometrical 

shapes of mammary epithelial tubules have been found to affect the positioning of ductal 

branches during pubertal mammary morphogenesis (Nelson et al., 2006). A 

computational model of prostate cancer exploring tumor growth has found that 

malignancy of tumors is affected by the geometry of the tumors, as well as the anatomy 

of the organ in which the tumor resides (Lorenzo et al., 2016).  Thus, heterogeneity has 

been found to exist across all scales in normal as well cancerous tissues (Editorial, 2010).  

 

1.2 MOTIVATION 

Since the existence of heterogeneity is well established, this poses some 

interesting questions such as to whether they are harmless or they render cells or groups 
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of cells with evolutionary or survival advantages (Editorial, 2010; Ackermann, 2015). 

Understanding the consequences of such heterogeneity is particularly important in 

diseases like cancer as tumor cells can exploit heterogeneity present in the tumor micro-

environment for growth and escape from patient therapies (Junttila and de Sauvage, 

2013; Allison and Sledge, 2014). Even patients with the same type of cancer can inherit 

or develop different tumor heterogeneities leading to varied response to chemotherapeutic 

drugs (Harry et al, 2010.; Tonkin et al., 1985; Wei et al., 2013). Thus, for optimal 

treatment outcomes, it is important to not only understand the consequences of such noise 

but also to develop methods to identify the heterogeneities as they can differ from patient 

to patient (Meacham and Morrison, 2013; Pascal et al., 2013a; Wang et al., 2016).  

Conversely, heterogeneity can also be a beneficial trait in normal cells, for example, non-

homogenous distribution of molecules or receptors in different domains on the plasma 

membrane can help to regulate signal transduction pathways in the cell (Lagerholm et al., 

2005). 

In this dissertation, we explore the heterogeneity present on the tissue scale 

(macroscopic) as well as at the cellular scale (microscopic) in the context of cancer. In 

Chapter 1, we explore the effects of heterogeneity present in the tumor micro-

environment of patients and its effect on the outcome of chemotherapy. The 

heterogeneity that exists is dependent upon the amount of blood vessel perfusion of the 

tumor as well as the geometry of the blood vessels. Using a mathematical model of drug 

transport, we predicted the fraction of dead tumor in patients who had been administered 

chemotherapy. We then retrospectively compared it to the actual fraction of dead tumor 

measured in these patients to validate the model. Patient histological samples that 
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displayed higher levels of blood vessel perfusion also exhibited higher fractions of dead 

tumor indicating that the patient vasculature, which is inherently varied between patients, 

affects treatment outcomes. Thus, this model highlighted the effects of a heterogeneous 

tumor microenvironment on tumor survival and consequently patient therapeutic 

outcomes.  

In Chapter 2, we investigate the effects of a heterogeneous membrane landscape 

on the signal transduction pathways of ErbB2 and ErbB3, two receptors belonging to the 

epidermal growth factor receptor (EGFR) family. These two receptors are often found 

upregulated in cancer and together form a potent oncogenic unit by activating key 

survival and proliferative cellular pathways. We found that in normal cells, spatial 

segregation of these two receptors into different in silico membrane domains 

downregulates the signals arising from dimer events between them. Additionally, we also 

found that strength of the confinement of domains affected receptor signaling based on 

the amount of overlap between the two receptor domains. Thus, in a non-cancerous 

setting, membrane domains add an additional layer of regulation of the potent 

ErbB2/ErbB3 signaling pathway.   

In Chapter 3, our focus was on generating a mathematical model of tonic 

signaling (ligand independent signaling) arising from the pre-BCR. The pre-BCR is 

expressed early in the developmental pathway of B lymphocytes, where it is crucial for 

the survival and differentiation of progenitor B lymphocytes. This receptor is also 

characteristic of a subset of patients with B-Cell Precursor Acute Lymphoblastic 

Leukemia (BCP-ALL), where the tumor exploits the tonic signaling pathway for its 

survival and proliferation. Single particle tracking (SPT) methods have revealed that 
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these receptors have transient, but frequent dimerization events with each other. We 

investigated tonic signaling emanating from this receptor using two different BCP-ALL 

cell lines and found characteristic differences between them in diffusion coefficients and 

dimer off rates. We created a spatial stochastic model of pre-BCR aggregation to explore 

the membrane landscape of pre-B cells during tonic signaling in more detail.  We found 

that the individual differences along with the presence of membrane domains impacted 

aggregate size, receptor phosphorylation and downstream activation of signaling 

molecules in both the cell lines.  

The overall goal of this work was to explore heterogeneity present at different 

biological scales and its impact on behavior of cells or tissues in cancerous or normal 

settings. Below is a more detailed description of the heterogeneity present in the tissue 

scale as well as the cellular scales in particular biological systems.  

 

1.3 HETEROGENEITY AT THE TISSUE SCALE IN TUMOR 

MICROENVIRONMENT  

Genetic variability has been established as a key feature among tumor cells and 

has been identified as the primary driver of oncogenic mutations (Hanahan and 

Weinberg, 2000; Meacham and Morrison, 2013). However, research in the past two 

decades has alluded to us other accessory participants that promote this cancerous 

phenotype, which include cells in the surrounding stroma as well as the vasculature and 

the lymphatic system (Hashizume et al., 2000; Nagy et al., 2009; Goel et al., 2011; 

Hanahan and Weinberg, 2011). Lymphocytes such as T and B cells and tumor associated 

macrophages (TAMs) have been found to be associated with tumor cells and a certain 
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subset of these cells such as the T regulatory (Tregs) and B regulatory cell (Bregs) have 

displayed tumor promoting capabilities by downregulating anti-tumor responses 

(Balkwill et al., 2012). Quiescent vascular endothelial or lymphatic endothelial cells can 

be activated to produce new blood or lymphatic vessels through the binding of growth 

factors secreted by the tumor cells as wells as through a hypoxic tumor 

microenvironment (Balkwill et al., 2012). This ensures the tumor a supply of nutrients 

while it proliferates and helps it to metastasize to distant locations in the body. Thus, the 

tumor microenvironment forms a dynamic heterogeneous spatial landscape, whose 

interactions with the tumor cells need to be investigated thoroughly as the 

microenvironment can significantly impact tumor growth and alter patient responses to 

therapies (Junttila and de Sauvage, 2013; Yuan, 2016).  

      In vitro and in vivo studies have shown that the microenvironment of the tumor 

plays a key role in drug penetration into the tumor and might be a potential reason for 

chemotherapeutic resistance or failure in patients (Kuh et al., 1999; Tunggal et al., 1999; 

Tannock et al., 2002; Kyle et al., 2004; Primeau et al., 2005; Grantab et al., 2006; Kyle et 

al., 2007; Sinek et al., 2009; Grantab and Tannock, 2012; Rejniak et al., 2013). Systemic 

delivery of drugs into the tumor sites involves the transport of drugs through the tumor 

vasculature, extravasation across the blood vessel and transport across the interstitium 

within the tumor (Jain, 1989; 2005). There are three main physiological barriers that 

hinder the transportation of drugs into the tumor and these are variations in the amount of 

blood supplied to the tumor, an increase in the interstitial fluid pressure (IFP) and large 

transport distances travelled by tumor drugs to reach the tumor site. These barriers play 

an important role in drug delivery as they can limit the amount of drug transported into 
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the tumor, thus, reducing the effectiveness of the chemotherapeutic treatment, leading to 

residual tumor cells and cancer regrowth (Au et al., 2001; Gottesman, 2002; Jang et al., 

2003; Minchinton and Tannock, 2006; Sanga et al., 2006; Junttila and de Sauvage, 2013). 

A heterogeneous vasculature in the tumor microenvironment can give rise to necrotic, 

semi-necrotic and well vascularized regions with irregular vessel diameters and leaky 

vessels leading to lower blood flow to the tumor site (Hobbs et al., 1998; Jang et al., 

2003; Minchinton and Tannock, 2006; Tredan et al., 2007; Stylianopoulos and Jain, 

2013). High IFP is often associated with solid tumors due to lack of lymphatics and 

leakiness of the tumor blood vessels leading to limited extravasation of drugs from the 

blood vessel and worse patient prognosis (Jain, 1987; Baxter and Jain, 1989; Curti et al., 

1993; Milosevic et al., 2001; Jang et al., 2003; Heldin et al., 2004; Minchinton and 

Tannock, 2006; Sven and Josipa, 2007; Li et al., 2011). Penetration of drugs into the solid 

tumor has been shown to be obstructed by high tumor cell density where tumors with a 

lower tumor cell fraction and more interstitial space had a more rapid diffusion of drugs 

into the tumor (Au et al., 2001).  

Systemic chemotherapy is a commonly used treatment strategy for various types 

of cancers (Carlson et al., 2009; Edwards et al., 2012; Kim et al., 2013; Wei et al., 2013). 

However, due to the existence of heterogeneity present in the microenvironment, 

response to chemotherapy has been variable even in the same type of cancer. For 

instance, response rates ranging from 8% to 85% have been observed for colorectal 

cancer treated with 5-fluorouracil and response rates ranging from 8% to 60 % have been 

observed for head and neck cancer treated with methotrexate (Tonkin et al., 1985). Thus, 

predicting chemotherapeutic outcomes is important to optimize treatment of cancer 
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patients as prolonged continuation with ineffective therapies can lead to an increased 

burden of toxicity and expense for the patients along with a delay in surrogate beneficial 

treatments (Dose Schwarz et al., 2005; Harry et al., 2010). Current methods for assessing 

tumor response to chemotherapy include unidimensional response evaluation criteria to 

solid tumors (RECIST) through the use of tumor imaging techniques such as magnetic 

resonance imaging (MRI), computed tomography (CT), ultrasound, chest X-ray etc. 

(Therasse et al., 2000). These methods have been modified from the previous 

bidimensional measurements recommended by the World Health organization (WHO) 

(Organization, 1979).  However, many of the techniques used for tumor assessment are 

proven to be inadequate, while others can only be utilized after sufficient time has passed 

at which changes in tumor can be evaluated (Rubbia-Brandt et al., 2007; Glazer et al., 

2010; Thoeny and Ross, 2010; Egger et al., 2013). Hence, there is a lack of robust 

quantitative measurements of tumor response that can predict chemotherapeutic 

outcomes even before the commencement of therapeutic regimen for patients.  

      In chapter 2 of this dissertation, we employ a “mathematical pathology” approach, 

a translational modeling approach emphasizing the development of mechanistic models 

that are able to predict chemotherapeutic outcomes dependent on patient-specific 

measurable parameters.  

 

1.4 HETEROGENEITY AT THE MEMBRANE LEVEL 

      Cell signaling is initiated through ligand-receptor or receptor-receptor binding on 

a cell’s surface. This surface known as the plasma membrane serves as a platform for 

initiating signaling events that have a variety of downstream effects on cell fate and 
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behavior (Groves and Kuriyan, 2010). Critical decisions to grow, survive, metastasize or 

undergo apoptosis are relayed through the plasma membrane into the cells 

(Radhakrishnan et al., 2012). Given the role that these surfaces play in cell signaling, it is 

important to investigate how the membrane themselves are regulated. While the 

composition of these membranes have been well defined, our understanding of their 

functioning and their effect on cell signaling remains rudimentary (Grecco et al.).  

      The membrane platforms were initially thought to be a homogenous signaling 

environment with receptors and other macromolecules randomly distributed on the cell 

surface. Singer and Nicolson in their landmark paper, described the membrane as a fluid 

mosaic of globular proteins embedded homogenously in a phospholipid by layer (Singer 

and Nicolson, 1972).  However, it was soon observed that the plasma membrane was a 

heterogeneous landscape containing “domains” or “patches”, ranging from 0.1 µm to 1.0 

µm, which could transiently trap specific proteins and lipids (Kaizuka et al., 2007; Chung 

et al., 2010; Treanor et al., 2010a; Wilson et al., 2011; Radhakrishnan et al., 2012; Goñi, 

2014). Domains enriched in increased levels of cholesterol and glycospingolipids are 

known as lipid rafts and they are estimated to have a diameter ranging from less than 

0.1µm to 0.2 µm (Pike, 2003; Lidke and Wilson, 2009).  Domains formed by the 

underlying actin cytoskeleton are known as corrals and they can range from 0.1 µm to 0.3 

µm (Kusumi et al., 1993; Kusumi and Sako, 1996; Kusumi et al., 2005; Hoppe and Low-

Nam, 2014).  These domains can trap a variety of receptors such as the G-protein-coupled 

receptor (GPCRs), epidermal growth factor receptors (EGFR), platelet derived growth 

factor (PDGF) receptors and endothelin receptors among others (Smart et al., 1999; Pike, 

2003).  
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Determining the role of these domains on regulating signal transduction pathways 

has been a major subject of interest in the field of membrane biology (Pike, 2003; 

Marguet et al., 2006; Day and Kenworthy, 2009; Owen et al., 2009). It has been 

postulated that membrane domains could positively or negatively inhibit reaction 

networks by compartmentalizing molecules belonging to specific pathways in different 

domains (Pike, 2003).  Experimental evidence for confinement of receptors and their 

signaling molecules in domains or clusters have been found in a variety of important 

receptor systems such as the T cell receptor (TCR) (Bunnell et al., 2002; Douglass and 

Vale, 2005; Gaus et al., 2005; Lillemeier et al., 2006; Kaizuka et al., 2007; Dinic et al., 

2015), the high affinity Immunoglobulin E receptor (FcϵRI) (Field et al., 1997; Andrews 

et al., 2009a),  the B cell receptor (BCR) (Tolar et al., 2009; Treanor et al., 2010b) and 

the Epidermal growth factor receptor (EGFR) family (Nagy et al., 2002; Yang et al., 

2007; Chung et al., 2010).  

In chapter 3 of this dissertation, we specifically investigated the consequences of 

a heterogeneous membrane landscape consisting of specific domains on two receptors 

belonging to the EGFR family- the ErbB2/HER2/NEU and ErbB3/HER3 receptors 

(Yarden, 2001). Other members of this family include the EGFR/ErbB1/HER1 and 

ErbB4/HER4 (Roskoski, 2014). The EGFR family are receptor tyrosine kinases (RTK) 

that contain an extracellular ligand binding domain, a transmembrane domain and an 

intracellular kinase domain (Ullrich and Schlessinger, 1990). There is no known ligand 

for ErbB2 and ErbB3 binds two ligands- Neuregulin-1 (Nrg-1) and Neuregulin-2 (Nrg-2) 

(Burden and Yarden, 1997; Roskoski, 2014). Seven different ligands including the 

epidermal growth factor (EGF) and transforming growth factor- a (TGF-a) bind to 
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ErbB1, while the ErbB4 also binds seven ligands including Nrg-1, Nrg-2, Neuregulin-3 

(Nrg-3), and Neuregulin-4 (Nrg-4) (Roskoski, 2014).  The EGFR family regulates cell 

growth, differentiation, apoptosis, adhesion and migration (Yarden and Sliwkowski, 

2001). Specifically, inactivation or deficiency of EGFR/ErbB1 can lead to impaired 

epithelial growth and differentiation, affecting the development of skin, lungs, 

gastrointestinal tracts, kidney, liver as well as impaired neural development during 

embryonic or post-natal growth  (Miettinen et al., 1995; Threadgill et al., 1995; Sibilia et 

al., 1998). Likewise, ErbB2, ErbB3 and ErbB4 have been implicated in development and 

differentiation of neural and cardiac tissue  (Gassmann et al., 1995; Lee et al., 1995; 

Meyer and Birchmeier, 1995; Burden and Yarden, 1997; Liu et al., 1998). Thus, the 

EGFR family plays a crucial role in normal development of tissues and organs in an 

organism.  

The EGFR family activates a variety of downstream signaling pathways that are 

involved in cell proliferation and survival such as the phosphatidylinositol 3-kinase 

(PI3)/Akt (PKB) pathway, the Ras/Raf/MEK/ERK1/2 pathway, and the phospholipase C 

(PLCg) pathway (Yarden and Sliwkowski, 2001; Roskoski, 2014). Upon ligand binding, 

the EGFR family can form homodimers and heterodimers with each other, followed by 

transphosphorylation of tyrosine residues by the kinase domains of the partner receptors 

(Hubbard and Till, 2000).   These phosphotyrosines then serve as docking sites for a wide 

variety of downstream signaling molecules such as the growth factor receptor bound 

protein 2 (Grb2), p85 and the Shc adaptor protein among others (Wilson et al., 2009; 

Roskoski, 2014). Amongst the four ErbB receptors, ErbB3 has a weak catalytic activity 

and it requires hetero-dimerization with another ErbB receptor, mainly ErbB2, for its 
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phosphorylation and upregulation of its kinase activity (Guy et al., 1994; Zhang et al., 

2009; Shi et al., 2010; Steinkamp et al., 2014). 

As crucial as the ErbB receptors’ roles remain in normal development, they have 

also been implicated in many cancers (Yarden and Sliwkowski, 2001). Overexpression of 

ErbB2 has been found in cancers of the breast, gastrointestinal tract, lung, ovaries, cervix 

and the salivary gland and has been associated with worse patient prognosis (Slamon et 

al., 1987; Ross and Fletcher, 1998; Yarden and Sliwkowski, 2001; Baselga and Swain, 

2009).  Aberrant signaling from the overexpressed ErbB2 receptors result in tumor 

survival and proliferation (Baselga and Swain, 2009). ErbB3 has been found to be co-

expressed with ErbB2 in breast cancers, as well as melanoma, and the ErbB2/ErbB3 

heterodimer has been implicated in transformations of normal cells in to tumor as well as 

increased cell spreading and motility (Alimandi et al., 1995; Wallasch et al., 1995; 

Chausovsky et al., 2000; Vaught et al., 2012; Zhang et al., 2013). ErbB3 expression in 

tumors have also been found to promote resistance to tyrosine kinase inhibitor therapies 

in patients (Sergina et al., 2007; Huang et al., 2013; Sato et al., 2013; Lee et al., 2014).  

Thus, the ErbB2/ErbB3 heterodimer pair is considered to be one of the most potent ErbB 

dimer pairs involved in carcinogenesis (Pinkas-Kramarski et al., 1996; Tzahar et al., 

1996; Baselga and Swain, 2009). 

Since the ErbB2/ErbB3 heterodimer plays an important role in cancer 

progression, we wanted to further study the dynamics of this signaling unit in the context 

of a heterogeneous membrane landscape. Images obtained from immunoelectron 

microscopy have showed that ErbB receptors localize distinctly to separate regions of the 

plasma membranes in breast cancer cells (Yang et al., 2007). Upon stimulation with a 
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ligand, receptors such as ErbB2 and ErbB3 were found to be co-clustered, indicating an 

increase in proximity for receptor binding events to occur (Yang et al., 2007). One 

possible explanation for the segregation of ErbB receptors in different compartments 

before stimulation would be to regulate any spurious signaling that might occur due to the 

proximity of signaling dimers with each other (Yang et al., 2007).  Yang et al. also 

postulated that in normal cells, separation of ErbB receptors in distinct areas or domains 

might serve to limit any unnecessary signaling originating from the ErbB heterodimers 

(Yang et al., 2007). In chapter 3, we have attempted to answer how confinement of 

receptors in different domains and the strength of the confinement in those domains 

affects ErbB signaling in an in silico membrane landscape.   

 

1.5 HETEROGENEITY AT THE RECEPTOR LEVEL  

The B lymphocytes belong to the adaptive immune system and perform important 

functions such as antibody and cytokine production and co-stimulation of T cells (LeBien 

and Tedder, 2008). Their development initiates in the bone marrow where progenitor B 

cells have to progress through various checkpoints to ensure their survival and 

differentiation into mature B cells (Rajewsky, 1996). The first checkpoint encountered by 

the progenitor B cells is at the pre-B cell stage where surface expression of a  precursor-B 

cell receptor (pre-BCR) is required for transition into the next developmental stage (von 

Boehmer and Melchers, 2010). The structure of the pre-BCR consists of the two 

immunoglobulin heavy chains (IgH) that pair with two surrogate light chains (SLC)- l5 

and VpreB, along with the heterodimeric signaling unit Iga (CD79a) and Igb (CD79b) 

(Benschop and Cambier, 1999). The immunoglobulin heavy chain gene locus undergoes 
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somatic recombination for the rearrangement of the variable (V), diversity (D) and 

Junction (J) gene segments to produce a wide repertoire of  antigen binding sites on the 

IgH (Tonegawa, 1983; Alt et al., 1984). Signaling from the transiently expressed pre-

BCR is necessary for the transition of early progenitor B cells from the pre-BI to the pre-

BII developmental stage, for the positive selection of early B cells that have successfully 

assembled the IgH and are capable of pairing with the light chains, Iga and Igb subunits 

for signaling, for the negative selection of cells that react to self-antigen and could give 

rise to potential autoimmune responses, for allelic exclusion to occur so that only one of 

the alleles of the IgH gene transcribes and translates the IgH protein in a given cell and 

for proliferation and downregulation of the SLC in a negative feedback loop (Herzog et 

al., 2009; Mårtensson et al., 2010). 

A recent study from Wilson’s group provided evidence for ligand independent 

aggregation and signaling of pre-BCRs that were mediated through their SLCs(Erasmus 

et al., 2016) . This signaling, also known as ‘tonic’ signaling, generates responses that 

lead to early B cell survival and proliferation (Monroe, 2006). Pre-BCR aggregation leads 

to recruitment of src family kinases (SFK) such as Fyn, Lyn and Blk which 

phosphorylate tyrosine residues on the immunoreceptor tyrosine-based activation motifs 

(ITAM) present on the Iga and Igb. Phosphorylation of the ITAMs create further 

docking sites for the SFKs and Syk family kinase along with other downstream adaptor 

proteins such as Grb2 and BLNK. This induces activation of the PLCg2 pathway which 

regulates calcium release from the endoplasmic reticulum (ER) and the entry of 

extracellular calcium into the cell (Kurosaki et al., 2000). Mobilization of calcium in 

these cells is essential for upregulation of enzymes such as calcineurin that are dependent 
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on calcium (Geier and Schlissel, 2006).  Calcineurin activates the family of transcription 

factors called nuclear factor of activated T cells (NFAT) proteins which are responsible 

for upregulation of genes involved in production of signaling proteins, cytokines, cell 

surface receptors and other molecules (Rao et al., 1997; Geier and Schlissel, 2006). 

Additionally, tonic signaling also activates the ERK/MAPK pathway for pre-B cell 

survival and proliferation (Fleming and Paige, 2001; Geier and Schlissel, 2006). 

There is a general failure in precursor B cell development in pre-B cell acute 

lymphocytic leukemia (B-ALL). This can be associated with downregulation of the 

expression of pre-BCR on the cell surface (Rickert, 2013; Müschen, 2015). It has been 

suggested that up to 85% of B-ALL cases lack pre-BCR expression on the cell surface 

and some studies have indicated a tumor suppressor role for this receptor as 

reconstitution of the receptor or its signaling unit (Iga) led to apoptosis (Trageser et al., 

2009; Chen et al., 2015; Müschen, 2015). However, there is a subset of ALL cases 

(~13.5%) where pre-BCR surface expression is maintained and the B cell tumor exploits 

the tonic signaling pathway to induce high expressions levels of B-cell lymphoma 6 

protein (BCL6), a protein which is critical for survival and proliferation of B cells (Duy 

et al., 2010). In these subsets, inhibitors against Syk, Src and Btk tyrosine kinases, all 

important players in the tonic signaling pathway, led to apoptosis of pre-BCR+ ALL cells 

(Bicocca et al., 2012; Geng et al., 2015). Therefore, understanding the regulation of this 

pathway might lead to more molecular targets for therapeutic intervention.  

In chapter 3 of this dissertation, we explore how tonic signaling emanating from 

two different BCP-ALL cell lines (697 and Nalm6) is affected by a heterogeneous 
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membrane landscape as well as different propensities for pre-BCR aggregation on the 

pre-B surface.   

 

1.6 SPATIAL STOCHASTIC MODELING OF BIOLOGICAL SYSTEMS  

As discussed in the above sections, existence of heterogeneity across multiple 

biological scales is more the norm than the exception. Powerful imaging techniques such 

as single particle tracking (SPT) have allowed us to observe the organization of 

molecules on the plasma membrane and enabled measurements of diffusional dynamics 

and protein interactions across temporal and spatial scales (Owen et al. 2009b; Saxton 

and Jacobson 1997; Lidke and Wilson 2009). Parameters generated from such imaging 

techniques can be combined with computational modeling to gain a deeper understanding 

of the processes that regulate signal transduction pathways. They can also enable the 

production of experimentally testable hypothesis of cell fate and behavior. Modeling of 

molecular events that are stochastic in nature and where the molecules occupy different 

spatial niches can be simulated using a variety of spatial stochastic methods (Andrews, 

Dinh, and Arkin 2009). In this section, we will review some of the modeling techniques 

that are employed for spatial stochastic modeling of molecular reaction and diffusion 

events. 

 

1.6.1 Spatial Gillespie method  

Daniel Gillespie, in his landmark papers, presented the stochastic simulation 

algorithm (SSA) for simulating reaction events in spatially homogenous chemical 

systems (Gillespie, 1976; 1977). In the SSA, after the initialization of the chemical 
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system, random numbers are generated to ascertain the type of reaction to occur as well 

as the time of the occurrence. The system is then updated with the reaction event and the 

time step. This process is repeated until the simulation time ends or the reactant 

molecules have been depleted such that no new reactions can occur. Lumsden and 

Stundzia extended the SSA by accounting for diffusion of molecules in a spatially 

inhomogeneous environment (Stundzia and Lumsden, 1996). The spatial inhomogeneity 

was achieved through segregation of the total volume into sub volumes or a coarse 

lattice, inside which the molecules could react and also diffuse across the lattice with a 

certain probability (Stundzia and Lumsden, 1996). Several simulation programs avail the 

spatial Gillespie method and include programs such as MesoRD, SmartCell and GMP 

(Ander et al., 2004; Hattne et al., 2005; Rodriguez et al., 2006; Andrews et al., 2010).  

 

1.6.2 The microscopic lattice method  

This method involves incorporation of reactant molecules into a much smaller 

lattice than the coarse lattice mentioned above, such that the lattice can have single 

reactants or be completely empty (Andrews et al., 2010). Simulation programs making 

use of this method include the GridCell and Spatiocyte (Boulianne et al., 2008; Andrews 

et al., 2010; Arjunan and Tomita, 2010). The reactants undergo random motion and can 

diffuse from their volume spaces into neighboring spaces for reaction events.  

 

1.6.3 Particle based methods  

In particle based methods, molecular species are represented as point like particles 

that occupy distinct spatial positions (Andrews et al., 2010). At each simulation time step, 
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Dt, molecules are randomly diffused using “jumps” or displacements that are generated 

from a Gaussian probability density function (Andrews et al., 2009b). Diffusion of 

molecules is followed by scanning of the landscape for binding events with other 

molecules. If a reaction is possible, a binding event is recorded, otherwise the particles 

are updated in the next time step. A number of publicly available software packages that 

use particle based method for simulation of reaction events include packages such as 

Smoldyn, MCell and Green’s function reaction dynamics (GFRD) (Stiles and Bartol, 

2001; Andrews and Bray, 2004; van Zon and Ten Wolde, 2005; Erban, 2014). However, 

GFRD is different from Smoldyn and MCell in that it uses a variable time step for its 

reaction events (van Zon and Ten Wolde, 2005; Andrews et al., 2010; Erban, 2014). In 

chapters 3 and 4 of this dissertation, we implemented a spatial stochastic algorithm based 

on the modeling approach used in Smoldyn (extension of the Smoluchowski model), 

where a fixed time step is used for each particle update (Andrews and Bray, 2004; Erban, 

2014). This approach has also been used previously by our group to study the dynamics 

of EGFR and ErbB2/ErbB3 receptors (Pryor et al., 2013; Pryor et al., 2015). Below is a 

description of the modeling technique used in this dissertation.  

 

1.6.3.1 Defining the simulation space and reaction network  

In our model, the 2D (chapter 3) and 3D (chapter 4) simulation spaces were 

generated using the software Matlab and populated with molecules with a specific density 

based on their cellular density and the simulation area/volume. The reactions between 

molecules consisted of first order reactions such as molecule dissociation, 

phosphorylation, dephosphorylation and domain escape reactions, as well as second order 
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reactions such as molecular associations. The rules representing reactions events between 

molecules were programmed in Fortran.   

 

1.6.3.2 Molecule diffusion 

We used Brownian dynamics (BD) to simulate particle diffusion in x, y and z 

plane. In BD, molecules are treated as point like particles which undergo random motion 

and can undergo reaction events upon collision (Andrews et al., 2010). For diffusion, 

particle “jumps” or displacement are generated, when random numbers chosen from a 

normal distribution are multiplied by the root mean square (RMS) of the molecule 

(Andrews and Bray, 2004; Erban, 2014). The RMS is denoted by taking the square root 

of the product of twice the diffusion coefficient of the molecule multiplied by the time 

step (𝑅𝑀𝑆 = 	 2 ∗ 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 ∗ Δt ) (Erban, 2014; Pryor et al., 2015).   

      In our simulation at time = t, a molecule has 3 spatial coordinates in the x, y and z 

plane: x(t), y(t), z(t). At the next increment of time (increased by Δt), the molecule will 

have positions: x(t+ Δt), y(t+ Δt) and z(t+ Δt). Thus, to calculate the new positions, we 

apply the following principles (Andrews and Bray, 2004): 

x(t+ Δt) = x(t) + 2 ∗ 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 ∗ Δt  * ξx 

y(t+ Δt) = y(t) + 2 ∗ 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 ∗ Δt  * ξy 

z(t+ Δt) =  z(t) + 2 ∗ 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 ∗ Δt  * ξz 

where, ξx, ξy and ξz are random numbers obtained from a normal distribution. For the 

initial set up for the simulations, coordinates for the molecules are generated randomly in 

Matlab at time 0. These initial coordinates are then fed into the code written in fortran, 

which is the main programming core and new coordinates are generated according to the 
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above principles at time increments of Δt.  In chapter 3, molecules diffuse in the x and y 

plane only whereas in chapter 4 molecules can also diffuse in the z plane.  

 

1.6.3.3 Confinement zones/domains  

The simulation space in our model contains coordinates for confinement zones or 

domains on the simulation membrane. These domains represent lipid rafts or corrals that 

might transiently trap receptors and affect their corresponding diffusion and signaling 

events. The coordinates for these domains are obtained by processing receptor trajectories 

through the domain reconstruction algorithm (DRA), developed and described in detail 

by Pryor et al., (Pryor et al., 2015). We have implanted the DRA in reconstruction of 

receptor domains in chapter 4. Briefly, the DRA ranks the receptor trajectories into “slow 

moving” (receptors confined in a domain) and “fast moving” (receptors not confined in 

any domain) trajectory points based on their jump sizes over various time frames. The 

slow moving points are further grouped together by comparing whether their distance 

from each other is less than the reference distance L. Once a group of slow moving points 

has been identified, contours can be built around them and coordinates of receptors 

domains extracted. The coordinates of the domains are then read into the main simulation 

program by Fortran, along with the initial coordinates of the receptors. Upon diffusion in 

the simulation membrane, a receptor can find itself trapped in these domains.  

 

1.6.3.4 Simulation boundary conditions 

In our simulations, two kinds of simulation boundaries exist: periodic boundary 

conditions and reflective boundary conditions (Pryor et al., 2015). Periodic boundary 
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conditions exist at the edges of the simulation space (x and y plane). If a molecule is 

close to the edge of the in silico membrane space and the jump is predicted to displace 

the molecule outside the simulation space, then the jump is divided between the distance 

travelled before (J1) and the distance travelled after the molecule crosses the edge (J2). In 

such cases, the molecule travels through the first distance (J1) and completes the rest of 

the jump distance (J2) by entering the simulation space from the opposite edge of the 

simulation space. This ensures that the molecules stay inside the simulation space.  

Reflective boundary conditions exist at the edges of the membrane domains. 

Receptors are free to enter their domains, but have to pay a “penalty” to leave their 

domains. This penalty is in the form of an escape rate probability, which is estimated 

through SPT data. If a receptor reaches the edge of a domain boundary, the receptor 

jumps are divided between the distance travelled before (J1) and the distance travelled 

after the receptor crosses the membrane boundary (J2). A random probability of escaping 

is generated and if it is not met, then the receptor is simply reflected back into the 

membrane domain with the second jump distance (J2). If, however, the probability of 

escape is met then the receptor crosses the membrane boundary.   

 

1.6.3.5 Reaction kinetics 

For reaction kinetics, we chose similar principles used in Smoldyn 

(Smoluchowski dynamics with revisions). Reaction kinetics are based on whether 

reactions are first order or second order reactions. First order reactions include molecule 

dissociation, phosphorylation and dephosphorylation. Second order reactions include 

molecule association (formation of dimers or higher order oligomers).  First order 
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reaction probabilities are calculated along using the following method (Pryor et al., 

2015): 

                             P(First order reaction) =First order reaction rate *Δt 

For second order reactions, we employ the use of a parameter called the binding 

radius. If two molecules are within the binding radius of each other, then the molecules 

can form dimers or higher order oligomers upon collision. The binding radius takes into 

account the reaction on rate, diffusion coefficient and the time step. The unbinding radius 

for two molecules is 5 times the binding radius and this is done the ensure that there are 

not too many rebinding events between molecules. 
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Chapter 2: Predicting chemotherapeutic outcomes in colorectal cancer 
(CRC) using a mathematical model of drug transport 

 
 

2.1 NOTES 

Data shown in this section, 2, was published in PLOS Computational Biology, 

titled, “Theory and Experimental Validation of a Spatio-temporal Model of 
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2.2 ABSTRACT 

The physiological barriers in a three dimensional microenvironment of the tumor 

play a significant role in transporting the drug molecules across the tumor. Herein, we 

describe a mathematical model of drug transport that takes into account these 

physiological barriers and based upon physical laws of diffusion, helps to predict 

chemotherapeutic outcomes in cancer patients. We retrospectively extracted data from 

histopathological sample of patients that had colorectal cancer (CRC) metastases in the 

liver. The extracted data were used to populate our mathematical model of drug transport 

that predicts the fraction of tumor killed based on the following measurable patient 

specific parameters: radius of blood vessels, blood volume fraction and diffusion 

penetration length traversed by drugs after extravasation from blood vessels. This 

predicted value of fraction of tumor killed indicates the effectiveness of the 

chemotherapy in cancer patients. To validate our model, the parameters radius of blood 

vessels and diffusion penetration length were derived by fitting our model to 

histopathological measurements of fraction of tumor killed after chemotherapeutic 

intervention in human patients with CRC metastatic to the liver (coefficient of 

determination R2 = 0.86). To test the model feasibility in clinical settings, blood volume 

fraction values obtained through in vivo contrast enhanced computed tomography from 

the same cohort of patients were used to calculate fraction of tumor killed, where our 

model was accurately able to predict patient outcomes (average relative error = 24%). 

Thus, in a clinical setting our model may help in devising patient specific treatment 

strategies that will help in improving chemotherapeutic outcomes as well as reducing 

patient expenditure and drug toxicity. 
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2.3 INTRODUCTION 

Predicting chemotherapeutic outcomes in cancer patients is an essential part of 

overall patient treatment strategy (Cianfrocca and Goldstein, 2004). Based on such 

predictions, patients who are responding to a certain treatment could be treated 

accordingly and alternative treatment strategies could be explored for others. This would 

help in ensuring patient centric care through reduced drug toxicity and optimized 

utilization of healthcare resources (van 't Veer and Bernards, 2008; Wei et al., 2013).  

The extent to which a chemotherapy is effective depends not only on the potency 

of drugs, but also on the transport of these agents into the tumor sites in effective doses 

(Kim et al., 2013). This transport of drugs into the tumor site is a complex process taking 

place over several temporal and spatial scales such as the organ, tissue and cells, and 

intracellular scales (Kim et al., 2013). At each of these scales, chemotherapeutic drugs 

face multiple physiological barriers such as variation in the amount of blood supplied to 

the tumor, an uneven extravasation from the blood vessels, high interstitial fluid pressure 

(IFP) and large transport distances that they need to overcome in order to reach the tumor 

site (Jain, 1990; Frieboes et al., 2009). The role of these physiological barriers in 

impacting the effectiveness of chemotherapies is not well understood. It has been 

suggested that in order to improve drug penetration into the tumor microenvironment, 

these physiological barriers must be targeted (Minchinton and Tannock, 2006; Tredan et 

al., 2007).  

Colorectal cancer (CRC) is the third leading cause of cancer related death in the 

United States (Siegel et al., 2014). Among patients with CRC, about 50% will develop 

hepatic metastases at some point during their disease (Kanas et al., 2012). Although 
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chemotherapy is routinely administered for the treatment of such metastatic cases, the 5 

year survival rates for these patients has been less than 1% and they often have to 

undergo liver sectioning to increase their chances of survival (Leonard et al., 2005; 

Gallinger et al., 2013). In such cases, it is important to predict the outcome of 

chemotherapy so that if a tumor is non-responsive, the treatment can be modified to 

ensure maximization of net treatment benefits (Cui et al., 2008; Schirin-Sokhan et al., 

2012). There is an unmet need for predicting tumor response to chemotherapy in patients 

with CRC liver metastases as most of the current techniques used for this purpose are 

ineffective or only applicable after chemotherapy is initiated (Rubbia-Brandt et al., 2007; 

Glazer et al., 2010; Egger et al., 2013). We have previously developed and validated a 

steady state diffusion barriers model of drug transport (Pascal et al., 2013b). Herein, we 

will further revise and validate this model by utilizing a larger set of patient data. 

Revising and validating our mathematical model will enable more accurate predictions of 

tumor responses before initiating a chemotherapeutic treatment, hence helping make 

evidence-based treatment decisions. The purpose of this study is to predict fraction of 

tumor killed (fkill) based on heterogeneous physiological barriers present in the tumor 

microenvironment that affect tumor response to chemotherapy using mathematical 

models of drug transport. We define tumor response to chemotherapy as fkill, which in our 

mathematical model is calculated through the following patient-specific parameters: 

radius of blood vessels (rb), blood volume fraction (BVF) and diffusion penetration 

length (L). We will use histopathological samples of cancer patients to help validate our 

mathematical model.  
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2.4 MATERIALS AND METHODS 
 
 
2.4.1 Steady state diffusion barriers model 

The steady state diffusion barriers model consists of differential equations that 

mathematically describe the process of diffusion and rate of uptake and their parameters. 

We acquired a biophysical description of the vasculature and tissue architecture present 

in the tissue surrounding a tumor to form the basis on which we could design our 

mathematical model that would show the transport of drug within a tumor.  

The liver consists of hexagonal shaped lobules and the portal triad (portal artery, 

portal vein and the bile duct) that transport blood, oxygen, nutrients and bile in the 

hepatocytes (Rubin E, 2009). We assume that the portal triad can be described effectively 

as a cylinder and the drug is transported from this cylinder through two physical 

processes- diffusion and drug uptake- into the surrounding tissue (Figure 2.1). In the 

model, concentration of local drug within the tumor is obtained by solving an equation 

that describes diffusion and uptake of drugs into the tumor after transport from the blood 

vessel has occurred. 𝑓89:: is dependent on the concentration as well as the effectiveness of 

the drug at this concentration within the tumor. Hence, 𝑓89:: is calculated by integrating 

the effectiveness of the drug around the cylindrical volume which envelopes the blood 

vessel/drug source. Here, the maximum predicted 𝑓89:: for each patient is dependent on 

only 3 parameters- 𝑟<, 𝐵𝑉𝐹 and 𝐿 - all of which can be obtained from patient 

histopathology data. We used the following equation on patients with CRC liver 

metastases (Pascal et al., 2013b): 

 

𝑓89:: = 2 ∙ 𝐵𝑉𝐹 ∙ 𝐿	 BCD	∙	EF	 GH I JEF	 GH I	∙ BCD
BCD	∙	GH	∙	EK	 GH I 	∙	 LJBCD

    (1) 
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where 𝐾N and 𝐾L are modified Bessel functions of the second kind of 0 and 1 orders 

respectively, 𝑓89:: is the fraction of tumor killed, 𝑟< is the radius of blood vessel, 𝐵𝑉𝐹	is 

the blood volume fraction and 𝐿	is the diffusion penetration length.  
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Figure 2.1:  A portal triad in the liver, described as a cylinder with radius r. Drug is transported into 
the surrounding tissue from the portal triad by diffusion and drug uptake by cells. 
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2.4.2 Extraction of data from histopathological samples 

H&E stained microscopic slides of randomly selected human liver specimen were 

obtained from a cohort of 27 patients with colorectal cancer (CRC) metastatic to liver at 

the MD Anderson Cancer Center (MDACC). Six patients were not included in the final 

analysis because they lacked dead tumor tissue. Based on the assumption that histologic 

sections are isotropic, fraction of tumor killed killf was directly measured as fraction of 

tumor killed in histologic assessments along with measurements of radius of blood 

vessels br , and blood volume fraction (BVF) for each patient (20 slides per patient). 

Measurements were manually performed using GNU Image Manipulation (GIMP) and 

illustrations of measurement of br  are in Figure 2.2. In order to calculate the fraction of 

dead tumor area, dead areas of tumor were colored red, live areas of tumor were colored 

blue and the portions that were not tumor i.e. normal were colored green. Fraction of 

dead tumor area was set as: 

            killf  = # of red pixels / (# of red pixels+ # of blue pixels+ # of green of pixels) 
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Figure 2.2: Example of measurements from histopathological specimens of patient data. (A) Example 
of portal triad with blood vessel measurements. (B) Example of a histologic section. (C) Segmentation 
of the histologic section B for calculation of the fraction of dead tumor area: dead tumor (red); live 
tumor (blue); no tumor (green). (D) Segmentation of a histologic section for calculation of blood 
volume fraction: blood vessels (red). 
 
 

 

 

 

 

 

 

 

 

 



	 31	

We compared killf  values between pathologist’s measurements and our 

measurement of killf . A cumulative Distribution Frequency (CDF) graph was generated 

to compare the killf  values (Figure 2.3A). From the graph we concluded that the 

pathologist killf values were shifted by some value to the right from our measurements 

because when pathologists take their measurements of killf , they don’t take into account 

whether normal tissue is destroyed and only see what is dead and live tumor. This needed 

to be corrected because our killf  values should correlate with what the pathologist 

measure in real life. That value by which our killf values needed to be shifted by was 

calculated by taking the difference between the average of the killf  measured by us and 

average of the killf measured by the pathologist and that value came to be 0.108411284. 

Another CDF graph was generated to compare our new killf , with the added value 

(Figure 2.3 B). These new killf  values were then further used to do the fitting in 

Mathematica. 
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Figure 2.3: Cumulative Distribution Frequency (CDF) graphs. (A) Cumulative Distribution 
Frequency (CDF) graph of fkill values comparing measurements from pathologist versus from 
computer program (GIMP). (B) Corrected Cumulative Distribution Frequency (CDF) graph of fkill 
values. 
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2.4.3 Test of model predictivity 

To test the model predictivity based on three parameters br , BVF, and 𝐿, the 

following mathematical equation was applied to this cohort of patients:   

                     fkill = BVF ⋅L ⋅
2 ⋅ BVF ⋅K1(rb L)− 2 ⋅K1(rb (L ⋅ BVF))

BVF ⋅ rb ⋅K0 (rb L) ⋅ (1−BVF)

#

$
%

&

'
(                  [1 

br and 𝐿 were obtained from the regression analysis of the MDACC cohort. The model 

was fitted to the measured killf  values and their corresponding BVFs and a graph was 

generated by comparing the predictions of Eq.1 to the direct measurements of kill (Figure 

2.4). Least-squares fitting of Eq. 1 was performed using Mathematica routine 

“NonlinearModelFit” to the kill fraction and BVF measured in liver metastasis in the 

MDACC patient cohort. This resulted in estimates of parameters br and 𝐿 (diffusion 

penetration length), which produced the best fit.  
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Figure 2.4 : Fitting the model to patient data demonstrates biological accuracy of the functional form 
of Eq. 1. Symbols: measurements with standard deviations from histopathology images of 21 patients 
with CRC metastatic to liver. Standard deviations calculated by measuring variability in patient 
data. Red: least-square fit of Eq. 1 to the data (R2 = 0.86). 
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2.4.4 Prospective application of the model based on pretreatment CT scans 

Contrast CT scans performed according to standard clinical protocols were 

acquired prior to chemotherapy on 18 scans performed according to standard clinical 

protocols were acquired prior to chemotherapy on 18 patients at MDACC according to 

institutional review board-approved protocols. The simple average of three Hounsfield 

Unit (HU) measurements in representative areas within the entire tumor was calculated at 

the each phase of the test for each patient i.e., a late arterial phase (30-35 s after start of 

contrast injection), a portal venous phase (50-55 s), and a delay phase (minutes, variable 

timing).   

     The pre-treatment CT measurements (HU) at the arterial phase were found by linear 

regression analysis to correlate to the measurements of BVF (blood volume fraction) 

performed from post-treatment histology (Figure 2.5):  

BVF = 0.00091672 CT (HU),     [2] 

with coefficient of determination R2 = 0.63 (Devore, 2011), p-value = 0.00008, from 

Mathematica routine “LinearModelFit” (Wolfram Research, 2008)  and GraphPad Prism 

(GraphPad Software, 2007). CT measurement error of 25% was estimated from 

corresponding data of contrast enhancement in the aorta, and thus represents variability in 

physiology and contrast dosing in CT protocol across patients. Even with a limited 

number of subjects, the statistical significance (p-value  = 0.00008) is expected since CT 

measurements reflect perfusion of tissue, which relies on the volume fraction of blood 

vessels. Analysis using the portal-venous measurements produced similar results. We 

multiplied the regression coefficient with the CT scan data to find the individual 

corresponding predicted BVF. The BVF, br , and L values were then inserted into Eq. 1 to 
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obtain the predicted killf  values (Figure 2.6). An error of 25% was found in the CT 

measurements and this was estimated by comparing the corresponding measurements 

from contrast enhancement of aorta (standard deviation in aorta/average of aorta). Thus 

error bars for the model predictions based on the CT scan data were calculated using this 

25% error estimated in CT measurements. The upper and lower limit came from ± 25% 

of the predicted BVFs and this gave rise to an upper and lower limit for killf , which were 

then used in the calculation of standard error in predicted killf  . The average relative error 

between the model prediction (P) and the measured kill value (M) was calculated 

as: kill kill kill( (P) (M)) / (M)f f f< - >. Outliers more than 2 SD away were removed from 

the calculation of the relative error. 
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Figure 2.5: Calculation of regression coefficient between CT scan data and 𝑩𝑽𝑭.  Regression 
coefficient = .00091672. 
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2.5 RESULTS  

 

2.5.1 Fitting the mathematical model to patient data by a regression Analysis 

identifies biologically realistic parameter values 

The regression analysis resulted in estimates of the two parameters:  and L from 

the MDACC cohort of patients. Each of these estimated values is consistent with 

measurements from human anatomy. The radius of the blood vessels in the portal triad, 

≈ 15.8 μm obtained from this fitting was consistent with published data (Wiedeman, 

1963; Muraca, 1994) and with our histopathology (Figure 2.2). The diffusion penetration 

length from regression analysis is L ≈ 151 µm. Using Mathematica (Wolfram Research, 

2008), statistically significant p-values were obtained for both  and L.  (Figure 2.4, 

inset).  

 

2.5.2 Prospective application of the mathematical model in vivo 

     To establish whether our model could predict chemotherapy outcome based only on 

standard pre-treatment contrast-CT imaging, we carried out the following series of steps. 

First we performed an analysis on the histopathology from post-treatment specimens on 

the MDACC cohort of patients. This validated the predictive power of Eq. 1 specifically 

for this cohort of patients (Figure 2.4, red curve: R2 = 0.86). Here we used the same value 

of diffusion penetration distance L and portal radius rb obtained from regression analysis 

on all patients, which again point to uniformity of these parameters across patients thus 

generating the hypothesis that future clinical translation would primarily rely on patient-

specific calculation of the parameter BVF. To test this hypothesis we calculated a linear 

rb

rb

rb
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correlation constant for histopathology BVF and contrast-CT Hounsfield units, which 

allowed us to obtain a BVF value from the contrast enhancement of the CT images for 

each individual (Eq. 2). Inputting this value into Eq. 1 produced accurate kill-ratio 

predictions (Figure 2.6, open circles) that compared well to the actual measurements from 

histopathology post-treatment (Figure 2.6, filled circles), with an average relative error of 

the predicted fraction killed of ≈ 24% (Methods). 
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Figure 2.6: Prospective, patient-specific model predictions match outcomes of fraction of tumor 
killed by chemotherapy in the MDACC cohort of patients with CRC metastatic to liver.  Predictions 
of Eq. 1 using 𝑩𝑽𝑭 parameter calculated from pre-treatment contrast-CT perfusion measurements 
(open circles). Multiple measurements from histopathology post-treatment per patient indicated by 
standard deviation (filled circles). Model input parameters 𝒓𝒃 (radii of blood vessels in liver portal 
triad) and 𝑳 (drug diffusion penetration distance) from Fig. 1.4 
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2.6 DISCUSSION 

The mathematical model presented here was able to predict fraction of tumor 

killed in patients with CRC metastatic to liver quite accurately. The average relative error 

between model predictions and fraction of tumor killed was only 24%, with patient 

parameters obtained directly from CT scan data. Given the pressing need for potential 

and robust biomarkers to predict chemotherapy outcomes in patients, our results here 

provide an unprecedented approach of mitigating this need at a much earlier stage in 

cancer treatment than some of the other techniques. Imaging techniques such as CT scan, 

magnetic resonance imaging (MRI) and positron emission tomography (PET) are used to 

detect changes in tumor in response to chemotherapeutic drugs, however, these changes 

are quantifiable only about halfway through the treatment, and the patient might have 

already by this time been exposed to a significant amount of toxicity from the drugs and 

incurred patient related expenses (Koh and Padhani, 2006; Cui et al., 2008). Other 

techniques like using Apparent Diffusion Coefficient (ADC) values obtained from 

diffusion weighted-MRI have the potential to gauge tumor response at an earlier stage 

(Koh and Padhani, 2006; Vandecaveye et al., 2006; Cui et al., 2008) and this technique 

has already been used to assess tumor response to chemotherapy in hepatic metastases 

(Theilmann et al., 2004; Koh et al., 2007; Cui et al., 2008). Our approach of using 

“mathematical pathology” not only helps to predict the tumor response to drugs before 

the start of any treatment, thus lessening the cost and toxicity that the patients might be 

exposed to, but also provides an understanding of the physiological barriers that are 

responsible for the resistance of drugs to chemotherapy. The model helps to highlight the 

biological barriers as important players that hamper drug delivery and ones that need a 
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further thorough investigation along with the genetic and cellular reasons for 

chemotherapy resistance. This model has shown that patient specific physiological 

features such as blood vessel radius and blood volume fraction play significant roles in 

determining the amount of drug supplied to the tumor and in a clinical setting these 

parameters can easily be measured through CT scans and used in the mathematical model 

for prediction of tumor killed. Thus, patient specific strategies can be developed and 

patient dosage and timing can be primed for optimal results for each individual. This 

model can be used alone in the clinical setting to predict the fraction of tumor killed or 

used with other methods of predicting tumor size such as using the ADC from diffusion 

weighted- MRI. This study also lays future groundwork to evaluate the effects of other 

drug carriers such as nanoparticles on drug delivery and tumor size since nanoparticles 

might prove to be more effective carriers of drugs than just free drug alone. Additional 

layers of complexity involving other factors or physiological barriers can be added to the 

model, as the research on physiological barriers continues, and this will result in even 

more accurate predictions of the tumor response to chemotherapy in the future. 
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CHAPTER 3: EFFECT OF SPATIAL INHOMOGENEITIES ON THE 
MEMBRANE SURFACE ON RECEPTOR DIMERIZATION AND 

SIGNAL INITIATION 
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3.2 ABSTRACT 

Important signal transduction pathways originate on the plasma membrane, where 

microdomains may transiently entrap diffusing receptors. This results in a non-random 

distribution of receptors even in the resting state, which can be visualized as “clusters” by 

high resolution imaging methods. Here, we explore how spatial in-homogeneities in the 

plasma membrane might influence the dimerization and phosphorylation status of ErbB2 

and ErbB3, two receptor tyrosine kinases that preferentially heterodimerize and are often 

co-expressed in cancer. This theoretical study is based upon spatial stochastic simulations 

of the two-dimensional membrane landscape, where variables include differential 

distributions and overlap of transient confinement zones (“domains”) for the two receptor 

species. The in silico model is parameterized and validated using data from single particle 

tracking experiments. We report key differences in signaling output based on the degree 

of overlap between domains and the relative retention of receptors in such domains, 

expressed as escape probability. Results predict that a high overlap of domains, which 

favors transient co-confinement of both receptor species, will enhance the rate of hetero-

interactions. Where domains do not overlap, simulations confirm expectations that homo-

interactions are favored. Since ErbB3 is uniquely dependent on ErbB2 interactions for 

activation of its catalytic activity, variations in domain overlap or escape probability 

markedly alter the predicted patterns and time course of ErbB3 and ErbB2 

phosphorylation. Taken together, these results implicate membrane domain organization 

as an important modulator of signal initiation, motivating the design of novel 

experimental approaches to measure these important parameters across a wider range of 

receptor systems. 
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3.3 KEYWORDS 

Spatial stochastic modeling, membrane domains, ErbB receptors, ErbB2, ErbB3 

 

3.4 INTRODUCTION 

The plasma membrane is the initiation site for signaling pathways that govern cell 

differentiation, proliferation and survival (Groves and Kuriyan, 2010; Radhakrishnan et 

al., 2012). The membrane provides a platform for the reversible binding of ligands to 

receptors, initiating critical processes such as dimerization, activation of catalytic activity 

and recruitment of binding partners (Groves and Kuriyan, 2010). Given its importance in 

cell signaling, the structure and composition of membranes have been probed by many 

different groups. Singer and Nicholson, in their landmark paper of the fluid mosaic 

model, proposed membranes to be largely homogenous with randomly distributed 

mixtures of integral membrane proteins and lipids (Singer and Nicolson, 1972). However, 

the authors also showed electron microscopy images of major histocompatibility antigen 

“patches,” providing early evidence for membrane organization. Since then, considerable 

evidence has accumulated showing that membrane proteins and lipids can be transiently 

confined in specific domains (Kaizuka et al., 2007; Chung et al., 2010; Treanor et al., 

2010; Radhakrishnan et al., 2012; Goñi, 2014). The anomalous diffusion of membrane 

constituents, observed through single molecule tracking methods (Fujiwara et al., 2002), 

is likely due, at least in part, to their transient entrapments within heterogeneous domains 

(Marguet et al., 2006). Multiple theories exist to explain the richness of the plasma 

membrane topography, including lipid rafts which are enriched in unsaturated fatty acids 

and cholesterol (Pike, 2003), corrals formed by the actin cortical cytoskeleton network 
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(Jaqaman et al., 2011; Kalay, 2012; Cambi and Lidke, 2015) and protein islands 

(Lillemeier et al., 2006). Even very short periods of confinement within domains give rise 

to lateral heterogeneity and an uneven distribution of proteins on the membrane surface 

that can be captured in “snap-shot” images by electron microscopy of membrane rip-flips 

(Wilson et al., 2000; Prior et al., 2001; Andrews et al., 2009). More recently, super-

resolution microscopy methods have also been employed to document the clustering of 

membrane proteins (van den Dries et al., 2013; Itano et al., 2014). The exchange of 

proteins between domains is highly variable, ranging from very low exchange rates 

observed in yeast membranes (Spira et al., 2012) to very rapid exchanges described for 

the EGFR in mammalian cell membranes (Low-Nam et al., 2011). 

Many important receptors exhibit varying degrees of clustering prior to ligand 

engagement, including members of the EGFR/ErbB family (Nagy et al., 2002; Yang et 

al., 2007) and the ITAM-bearing immunoreceptors (FcεRI, BCR, TCR) (Pike, 2003; 

Lillemeier et al., 2006; Andrews et al., 2009; Tolar et al., 2009; Treanor et al., 2010; 

Dinic et al., 2015). Experimental evidence has suggested that membrane domains can 

both enhance and inhibit signaling in different settings (Marmor and Julius, 2001; Miura 

et al., 2001; Douglass and Vale, 2005; Allen et al., 2007; Bénéteau et al., 2008; Ganguly 

et al., 2008). Computational studies have also supported the concept that membrane 

organization has cell and receptor-specific outcomes (Lim and Yin, 2005; Hsieh et al., 

2008; Costa et al., 2011; Abel et al., 2012; Kalay et al., 2012). For example, the 

formation of different signaling clusters has been proposed to support distinct TCR 

signaling patterns (Singleton et al., 2009). Vale and colleagues recently demonstrated in 

model membranes that phase separation of signaling partners can create distinct signaling 
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compartments (Su et al., 2016). Members of the ErbB family of receptor tyrosine kinases 

have been shown to have distinct distribution patterns on cancer cell membranes (Yang et 

al., 2007; Steinkamp et al., 2014), leading to computational studies from our group that 

predict the impact of critical variables such as receptor co-expression, density and dimer 

off-rates (Hsieh et al., 2008; Pryor et al., 2013, 2015). 

Deterministic models based upon Ordinary Differential Equations (ODEs) are not 

well suited to explore spatial aspects of signaling, since they assume molecules in a 

system are well mixed. Stochastic modeling approaches offer greater flexibility to 

consider effects of membrane topography, receptor clustering and diffusion dynamics on 

signaling events (Mayawala et al., 2006; Nicolau et al., 2006; Hsieh et al., 2008; Costa et 

al., 2009; Chaudhuri et al., 2011). These versatile mathematical models provide a 

platform for rapid exploration of key factors that are difficult to vary (and measure) 

experimentally. In this study, we take advantage of this powerful approach to consider 

the effect of two parameters, membrane domain overlap and domain retention, on ErbB3 

and ErbB2 homo-and heterodimerization. Our group previously evaluated the domain 

occupancy and distribution of ErbB2 and ErbB3 stably expressed as recombinant proteins 

in Chinese Hamster Ovary (CHO) cells (Steinkamp et al., 2014; Pryor et al., 2015). 

Analysis of dual-color single particle tracking data, which permitted independent 

observations of each species, indicated that domains confining the two ErbB receptors 

were only partially overlapping in the CHO cell membrane (Pryor et al., 2015). We then 

built a spatial stochastic model based upon this distribution, as well as experimentally 

measured values for dimer off-rates, kinase/phosphatase activity and receptor diffusion 

(Pryor et al., 2015). However, we speculate that the degree to which there is differential 
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segregation of these two closely related receptors will vary widely as a property of cell 

type, because of dissimilar receptor ratios, density, cytoskeletal features, membrane 

composition and on-going signal transduction from other cell surface receptors triggered 

by circulating or local ligands. In this paper, we focus on two specific parameters that 

affect the degree to which ErbB2 and ErbB3 experience periods of co-confinement: 

domain overlap and retention, where the latter is expressed as a function of escape 

probability. 

 

3.5 MATERIALS AND METHODS 

 

3.5.1 Spatial stochastic model for ErbB2 and ErbB3 homo- and hetero-

dimerization 

 

3.5.1.1 Reactions 

The spatial stochastic model of ErbB2 and ErbB3 interactions was described 

previously (Pryor et al., 2015). Briefly, the model includes two members of the EGFR 

family, ErbB2 and ErbB3, which diffuse within the simulation space and interact with 

each other.  

The following reactions are accounted for in the model: 

(i) Dimerization: Homo- and heterodimerization of ErbB2 and ErbB3 receptors. 

(ii) Phosphorylation: Receptors are phosphorylated through intrinsic phosphorylation 

rates. 
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(iii) Dephosphorylation: Receptors are dephosphorylated through experimentally 

determined  dephosphorylation rates. 

(iv) Dissociation: Dimer dissociation occurs through experimentally determined dimer 

off rates. 

We assume that the dimerization of receptors occurs through the interaction of the 

dimerization arms on the extracellular domain of receptors. In the absence of ligand, the 

ErbB3 extracellular domain fluxes from a closed (tethered) to an open (dimer-competent) 

conformation. The open conformation of ErbB3 is stabilized by ligand binding (Pryor et 

al., 2015). Unliganded ErbB3 is assumed to be predominately closed (99.99% closed). At 

any given time step, there is a 10−4 probability for unoccupied ErbB3 receptors to assume 

the upright dimer-competent state while all ligand-bound ErbB3 monomers are dimer-

competent (Hsieh et al., 2008). ErbB3 ligand concentrations vary in the simulations as 

described in the legends. ErbB2 receptors are assumed to be in open conformation and 

dimerization competent (Cho et al., 2003; Garrett et al., 2003). In the model, ErbB2 has a 

single representative tyrosine phosphorylation site based on uniform dephosphorylation 

kinetics over two tested phosphorylation sites (Pryor et al., 2015). ErbB3 has two 

representative phosphorylation sites based upon (Y1289; Y1197). Table 1 lists the 

reaction parameters used in our model including receptor dimerization, 

phosphorylation/dephosphorylation, and receptor dissociation as previously described 

(Pryor et al., 2015). For receptor phosphorylation events, the model takes into 

consideration the asymmetric orientation of kinase domains which occurs during ErbB 

receptor activation (Ward and Leahy, 2015). Reactions are governed by binding radii 

estimated using SMOLDYN, a software application that takes into consideration receptor 
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on-rates, diffusion coefficients and simulation time steps to construct a binding radius 

(Andrews and Bray, 2004). An unbinding radius of 5 times the binding radius was used 

to decrease rebinding events. 

 

   TABLE 1: Model parameters of receptor monomers and dimers 

 
aPryor et al. (2015). 
bSteinkamp et al. (2014).  
cPryor et al. (2013).  
d Kleiman et al. (2011).  
eShi et al. (2010). 
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3.5.1.2 Simulation landscape 

The simulation landscape contains receptor specific domains (Figure 3.1A) and 

receptors can diffuse across domains and domain-free areas. An exit penalty limits 

receptor escape from the domains. Figure 3.1A depicts domains that were identified in 

previous work (Pryor et al., 2015). Represented by a rectangular box measuring 0.1995 

µm2 in area (Figure 3.1A), the space contains 5 ErbB2 and 9 ErbB3 receptor domains. 

These domains were derived from domain analysis of two-color single particle tracking 

data where ErbB3 was labeled with HRG-conjugated quantum dot (QD) and HA-tagged 

ErbB2 was labeled with anti-HA Fab conjugated QD (Pryor et al., 2015). The total ErbB2 

domain area is 0.0502 µm2; the total ErbB3 domain area is 0.0274 µm2.The free area 

outside the domains is 0.1219 µm2. We then created three distinct domain overlap 

conditions for comparison: 

(i) 100% overlap: 100% of the ErbB3 domain area is overlapping with the ErbB2 

domain area. This resulted in complete mixing of ErbB3 and ErbB2 domains (Figure 

3.1D). 

(ii) 50% overlap: 50% of the ErbB3 domain area is overlapping with ErbB2 domain 

area. This resulted in partial overlapping of ErbB3 and ErbB2 domains (Figure 3.1C). 

(iii) 0% overlap: 0% of the ErbB3 domain area is overlapping with the ErbB2 domain 

area. This resulted in complete separation of ErbB3 and ErbB2 domains (Figure 3.1B). 
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Figure 3.1: Four domain configurations of the simulation space. Simulation space was partitioned 
into receptor-specific domains with defined domain overlaps. (A) A simulation space that mimics the 
domain properties of CHO cells overexpressing ErbB2 and ErbB3 based on domain analysis of SPT 
data. ErbB2 (light gray, shaded) and ErbB3 (dark gray, shaded) membrane domains overlap by 
42.4%. ErbB2 receptors (light gray, circled) and ErbB3 receptors (dark gray, circled) are randomly 
distributed within their own domains as well as outside the domains (white region). (B–D) Domains 
were rearranged to create a simulation space where the ErbB2 and ErbB3 domains are completely 
non-overlapping (0% overlap, B), partially overlapping (50% overlap, C) or completely overlapping 
(100% overlap, D). In the initial configuration, ErbB2 and ErbB3 receptors were positioned to 
randomly occupy their respective domains. 
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3.5.1.3 Number and density of receptors 

The model was populated with 50,000 ErbB2 and 50,000 ErbB3 receptors/cell. 

Since the total area of a cell is 314.16 µm2 (with a diameter of 10 µm), this translates into 

a receptor density of ∼159 receptors/µm2 for each receptor. Adjusted for a simulation 

area of 0.1995 µm2, the total number of receptors is 31 of each receptor species. 

 

3.5.1.4 Receptor diffusion 

Receptor diffusion occurs in the two dimensional membrane simulation space (x 

and y direction) through Brownian motion. Receptor jumps in these two directions are 

calculated using diffusion coefficients generated from SPT data and normally distributed 

random numbers. 

 

3.5.1.5 Boundary conditions 

As in Pryor et al. (2015) and Pryor et al. (2013), the periodic boundary condition 

is applied to the edges of the simulation space. If a receptor jump takes the receptor 

across the edge of the simulation space, the jump distance is divided between the 

distances covered before and after the boundary is crossed. The receptor then traverses 

the distance to the boundary and the remaining distance is calculated from the opposite 

edge of the simulation space. Hence, the receptor “re-enters” the simulation space from 

the opposite boundary. Reflective boundary conditions are applied when a receptor 

reaches the edge of a membrane domain. Like the periodic boundary conditions, the jump 

distance is divided between the distances covered before and after reaching the boundary. 

A probability for crossing/escaping from the membrane boundary is calculated and if the 
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probability of escaping is not met, then the receptor hits the boundary and is deflected 

back into the domain. If the probability of escape is met, then the receptor continues 

across the boundary. Escape rates in Pryor et al. (2015) were estimated by parameter 

fitting to the ratio of domain-confined receptors experimentally measured in CHO cell 

membranes; this rate is a key variable of the present study (Table 2). 

 

TABLE 2: Escape rates of receptor monomers and dimers 

   
aPryor et al. (2015). 
bSimulation data in this paper. 
 

 

3.5.1.6 Simulation code 

Input files containing the initial simulation space, receptor locations and ligand 

concentrations are generated in Matlab. These files are then accessed by a program 

written in Fortran, which simulates brownian diffusion and molecular interactions 

between the two receptors. At the end of the simulations, all output files are processed in 

Matlab for analysis of results. Code is available upon request. 
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3.6 RESULTS 

 

3.6.1 Domain overlap affects the frequency of hetero-interactions and receptor 

phosphorylation events 

It is unknown to what extent different receptors share the same membrane 

domains, how fluid these domains are over time, and whether activation of receptors alter 

domain overlap. Therefore, we explored these possibilities through simulations, reporting 

results as changes in homo- and hetero-dimerization and phosphorylation status. Unlike 

prior work fit to cells overexpressing ErbB family members (Pryor et al., 2013, 2015), we 

used receptor densities within the range of expression values expected for normal cells 

(50,000 receptors/cell). The simulation landscape included either no domains or ErbB2 

and ErbB3-specific domains with partial, full or no overlap (Figure 3.1). 

The rapid cycling of ErbB3 receptors through different states is illustrated in 

Figure 3.2, where simulations were initially performed in a landscape lacking domains. 

Here, ligand-bound ErbB3 freely diffuse, encountering other ErbB3 or ErbB2 monomers 

with no barriers imposed. They constantly cycle through homodimer (red), heterodimer 

(orange) and monomer (white) states by binding and unbinding to other receptors as they 

diffuse through the simulation space (Figure 3.2A). Off-rates for hetero- and homodimers 

are assigned probabilities based upon experimental measures for unoccupied and ligand 

bound dimers (Steinkamp et al., 2014). The catalytic activity of each monomer in a dimer 

is tracked throughout the simulation. Activity is dependent on the stochastically-governed 

orientation of the monomer in the asymmetric model, where one of the monomers is the 

“activator” and the other monomer is the “receiver.” Further, ErbB3 monomers are 
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assumed to require phosphorylation by a “receiver” ErbB2 in a prior hetero-dimerization 

event. A phosphorylated ErbB3 monomer remains a competent “receiver” during 

subsequent encounters only until it is dephosphorylated. Simulation time steps are 1 × 

10−6 s and observations are recorded every 0.05 s. Plots in Figure 3.2B show that 

dimerization is already occurring by the earliest observation interval and continues to rise 

over the first 10 s of the simulation. Phosphorylation kinetics are delayed, observable 

within 0.5 s of the simulation and rising to steady state values by 50 s. 
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Figure 3.2: Kinetics of ErbB3 dimerization and phosphorylation. (A) Representative plot of 
individual ErbB3 receptors showing changes in receptor state over time. ErbB3 receptors cycle 
between homodimer, heterodimer and monomer states. (B) Plot showing the kinetics of dimer 
formation and phosphorylation of ErbB2 and ErbB3. ErbB2/3 heterodimer and ErbB3/3 homodimer 
formation are plotted with total ErbB2 and ErbB3phosphorylation over time for 100% ligand in the 
absence of domains. Data in B are the averages of 4 runs.  
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In Figure 3.3, we report the effect of adding domains to these simulations. The 

extreme cases of completely overlapping vs. non-overlapping ErbB2 and ErbB3 domains 

are shown in Figures 3.3A–H. Color keys in these plots indicate shifting profiles of 

monomers and dimers, as well as report phosphorylation states. Clearly, confinement in 

shared domains favors heterodimer interactions with a corresponding decrease in ErbB3 

homodimers and ErbB2 monomers (Figures 3.3A,B). Phosphorylation kinetics is affected 

by co-confinement with a delayed but steep rise in phosphorylation (Figures 3.3C,D). 

Therefore, the overall signaling response is likely increased with shared domains. 

Results in Figure 3.4 report dimers at steady state (240 s) using the three distinct 

domain configurations shown in Figures 3.1B–D as well as no domain configuration. 

Simulations with completely overlapping domains produced the greatest number of 

heterodimers regardless of ligand concentration, although the greatest difference can be 

seen with 100% ligand (Figure 3.4A). At lower ligand concentrations, the effect of 

overlapping domains on dimer formations was diminished. This phenomenon is best 

explained by segregation of the few ligand bound receptors. ErbB3 homodimers 

displayed the opposite trend to that of heterodimers, where the highest number of 

homodimers were seen when ErbB3 domains did not overlap with ErbB2 (Figure 3.4B). 

This was notable for conditions of 100% and 50% liganded ErbB3. 

Steady state phosphorylation levels are also affected by the configuration of 

domains (Figures 3.4C,D). Phosphorylation levels of both ErbB2 and ErbB3 decreased as 

domain overlap decreased, highlighting the importance of heterointeractions for maximal 

signaling. ErbB2 phosphorylation was most affected by domain overlap, particularly in 

simulations with 100% liganded ErbB3 (Figure 3.4D). Note that ErbB3 phosphorylation, 
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which is heavily dependent on interactions with ErbB2 is not favored under conditions 

where ErbB2 homodimers are predominant. 
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Figure 3.3:  The effect of overlapping domains on ErbB2/ErbB3 dimerization and phosphorylation 
kinetics with 100% ligand-bound ErbB3. Plots for the completely overlapping domain configuration 
(A–D): The kinetics of dimer formation (A), representative plots of dimerization state for individual 
receptors over the simulation time (B), the kinetics of receptor phosphorylation (C), and a 
representative plot of phosphorylation state for receptors over time (D). (E–H): Plots for the non-
overlapping domain configuration. Plots are arrayed as in (A–D). 
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Figure 3.4: Overlapping domains influence dimer formation and phosphorylation. (A,B): Dimer 
counts across different ligand concentrations with 4 different membrane configurations- 100% (blue 
bars), 50% (orange bars), and 0% overlap (gray bars) as well as no domain simulations (yellow bars) 
for ErbB2/ErbB3 heterodimers (A) and ErbB3 homodimers (B). (C,D): Total receptor 
phosphorylation across different ligand concentrations and all four domain configurations for ErbB3 
(C) And ErbB2 (D). All bars are the averages of 4 runs ± standard deviation. 
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3.6.2 Stronger domain retention affects receptor dimerization and 

phosphorylation events only when the domains partially overlap or non-overlap 

Although the clustering of receptors in domains is important for signaling, little is 

known about the movement of receptors into and out of membrane domains or the extent 

to which this movement is altered with receptor activation. Since it is difficult to measure 

experimentally receptor residency times within domains, Pryor et al., estimated an escape 

rate based on the ratio of domain-confined to free receptors in CHO cells under low 

ligand conditions (Pryor et al., 2015). To examine the effect of this parameter on 

signaling outcome, we ran simulations where we varied the escape rate to model changes 

in domain retention. The affinity of receptors for their domains was increased by reducing 

the escape rate of both monomers and dimers. We compared simulations run with the 

original nominal escape rate, or with the escape rate reduced by ½ or ¼. The effect of 

these escape rates were examined with different ligand concentrations in the four domain 

overlap configurations (Figure 3.5). Reducing the escape rates had no effect on 

heterodimer formation for domains that were completely overlapping. However, when 

the domains were partially overlapping or non-overlapping, heterodimer formation was 

significantly reduced as the escape rate decreased. For instance, in the case of 100% 

liganded ErbB3, when the escape rate was reduced to ¼ and the domains were partially 

overlapping, the number of heterodimers at steady state was 35% lower than with the 

original escape rate. With non-overlapping domains, heterodimers were reduced by 70% 

(Figure 3.5A). Similar trends were seen in 50% and 20% ligand conditions (Figures 

3.5B,C). With unliganded ErbB3, heterodimerization was rare (Figure 3.5D). With 

completely overlapping domains, reducing the escape rates did not affect erbB3 
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homodimer formation either (Figures 3.5A–D). With overlapping domains, reducing the 

escape rate increased ErbB3 homodimers for partially and non-overlapping domains 

(Figures 3.5E–G). Escape rates ¼ of the original rate yielded maximum increase of 63%, 

which occurred with non-overlapping domains and 100% ligand (Figure 3.5E). Similar 

trends were seen with lower ligand concentrations (Figures 3.5F,G). Unliganded ErbB3 is 

not shown since there were no homodimers in this condition. 
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Figure 3.5: The effect of changes in domain retention on ErbB2/3 heterodimer and ErbB3/3 
homodimer counts across different ligand concentration and domains. Dimer counts across different 
membrane configurations, ligand concentration and three different escape rates- nominal escape rate 
(blue bars), escape rate reduced by ½ (orange bars), and escape rate reduced by ¼ (gray bars) as well 
as no domain simulations (yellow bars). (A) ErbB2/3 heterodimer for 100% liganded ErbB3. (B) 
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ErbB2/3 heterodimer for 50% liganded ErbB3. (C) ErbB2/3 heterodimer for 20% liganded ErbB3. 
(D) ErbB2/3 heterodimer for 0% liganded ErbB3. (E) ErbB3/3 homodimer for 100% liganded 
ErbB3. (F) ErbB3/3 homodimer for 50% liganded ErbB3. (G) ErbB3/3 homodimer for 20% liganded 
ErbB3. The ErbB3/3 homodimer count was 0 for 0% liganded ErbB3. All bars are the averages of 4 
runs ± standard deviation. 
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The significant changes in dimerization with increased domain retention had 

variable effects on downstream signaling as assessed by steady state phosphorylation 

levels of ErbB3 and ErbB2 (Figure 3.6). For ErbB3, phosphorylation levels are relatively 

stable with increased domain retention (Figures 3.6A–D). The greatest effect on 

phosphorylation levels occurred in the case of no domain overlap, where the ErbB3 

monomers were more restricted from encounters with ErbB2. In the case of fully-

liganded ErbB3, a four-fold reduction in escape rate led to a 28% reduction in 

phosphorylation (Figure 3.6A, gray bar for 0% overlap). For lower ligand concentrations, 

varying domain overlap had a greater effect on phosphorylation than domain retention 

(Figures 3.6C,D). 

ErbB2 phosphorylation was markedly sensitive to increases in domain retention. 

Reduced ErbB2 phosphorylation corresponded to decreases in heterodimer formation 

(Figures 3.6E–G). Once again, little change was seen with completely overlapping 

domains. However, increasing domain retention lowered ErbB2 phosphorylation with 

either partially or non-overlapping domains. Results were striking for simulations run 

with a four-fold lower escape rate and 100% liganded ErbB3. Here, ErbB2 

phosphorylation was reduced by 39% (partially overlapping domains) or 74% (non-

overlapping domains). 
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Figure 3.6: The effect of changes in domain retention on ErbB3 and ErbB2 phosphorylation across 
different ligand concentration and domains. Total receptor phosphorylation across different 
membrane configurations, ligand concentration and three different escape rates- nominal escape rate 
(blue bars), escape rate reduced by ½ (orange bars), and escape rate reduced by ½ (gray bars) as well 
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as no domain simulations (yellow bars). (A) Total ErbB3 phosphorylation for 100% liganded ErbB3. 
(B) Total ErbB3 phosphorylation for 50% liganded ErbB3. (C) Total ErbB3 phosphorylation for 
20% liganded ErbB3. (D) Total ErbB3 phosphorylation for 0% liganded ErbB3. (E) Total ErbB2 
phosphorylation for 100% liganded ErbB3. (F) Total ErbB2 phosphorylation for 50% liganded 
ErbB3. (G) Total ErbB2 phosphorylation for 20% liganded ErbB3. (H) Total ErbB2 
phosphorylation for 0% liganded ErbB3. All bars are the averages of 4 runs ± standard deviation. 
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3.7 DISCUSSION 

 ErbB2 and ErbB3 are members of the ErbB family of receptor tyrosine kinases 

that are often co-expressed in cells. Under physiological conditions, neither receptor is 

active on its own. However, through heterointeractions these receptors activate two key 

pro-survival pathways. ErbB3 primarily activates the PI3K/Akt pathway and ErbB2 

favors the MAP kinase pathway (Yarden and Sliwkowski, 2001). Activation of the 

ErbB2/ErbB3 signaling unit via overexpression of the receptors, gain-of-function 

oncogenic mutations, or autocrine release of the ErbB3 ligand, heregulin, have been 

identified in many types of cancer (Holbro et al., 2003; Wolf-Yadlin et al., 2006; Sheng 

et al., 2010; Jaiswal et al., 2013; Capparelli et al., 2015). Given the potency of this 

interaction, normal cells must maintain tight control over ErbB2/ErbB3 interactions. In 

the absence of ligand, dimerization is limited by the constant fluxing of the ErbB3 

extracellular domain from a tethered, inactive conformation to an upright, active 

conformation with the active conformation stabilized by ligand binding (Dawson et al., 

2007). Another way to control ErbB2/ErbB3 interactions may be through dynamic 

reorganization of membrane domains. Sequestration of ErbB2 and ErbB3 in separate 

domains could prevent spurious signaling in the absence of ligand, while reorganization 

into overlapping domains upon ligand binding could encourage the formation of 

signaling clusters (Vámosi et al., 2006). Evidence for reorganization can be seen in 

electron microscopy studies of SKBR3 breast cancer cell membranes. ErbB2 and ErbB3 

are dispersed in the absence of ligand, but in the presence of ligand, ErbB3 forms large 

clusters with areas of co-localized ErbB2 and ErbB3 (Yang et al., 2007). It has also been 

shown that ErbB2 clusters within lipid rafts and that disruption of these rafts reduces both 
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ErbB2 clustering and the association of ErbB2 and ErbB3 (Nagy et al., 2002). The 

remodeling of domains during active signaling has not yet been explored by simulation, 

in part due to difficulties in accurately measuring the dynamics of these changes. Here, 

we have examined how domain remodeling, represented in our model by varying domain 

overlap and domain retention, will effect heterodimer formation and signaling. 

Our spatial stochastic model of ErbB2/ErbB3 interactions provides a useful 

system in which to explore how changes in domain configuration might affect receptor 

activation. We began with a model parameterized based on single particle tracking data 

acquired under low (nanomolar) ligand conditions. We then explored how changes in 

domain characteristics, as well as ligand occupancy, influences dimerization and 

phosphorylation in this system. The sensitivity of the model to these parameters 

illustrates that variations in domain characteristics amongst different cell and tissue types 

are likely unappreciated modulators of signaling by these (and other) receptors. 

Previous spatial stochastic models have shed insight on the effect of domains on 

signaling (Hsieh et al., 2008; Costa et al.,2009, 2011; Chaudhuri et al., 2011; Kalay et al., 

2012). Kalay et al. evaluated movement of tracer molecules within lattice-based domains 

and found that confinement increased reaction rates (Kalay et al., 2012). Addressing 

ErbB receptor family interactions with rectangular subdomains, Hsieh et al., found that 

domains created local densities that favored EGFR interactions on the membrane surfaces 

(Hsieh et al., 2008). Our model increases the complexity by introducing two interacting 

receptor types with unique behaviors and overlapping, experimentally-defined domains. 

Thus, the model provides a mechanistic understanding of the interplay between domain 

overlaps and domain retention on the complex interactions of ErbB2 and ErbB3. The 
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model relies on previously described characteristics of these receptors. For example, 

ErbB2 homodimers are not favored due to evidence for electrostatic repulsion (Garrett et 

al., 2003); this translates in the model to a low probability for ErbB2 homointeractions. In 

addition, ErbB3 has very low kinase activity unless activated by ErbB2 (Steinkamp et al., 

2014). Thus, in cells where these are the two predominant ErbB species, they are 

predicted to be mutually dependent on each other for activation. It follows that 

differential preference of the two species for unique confinement zones or membrane 

domains should have a strong influence. 

Accordingly, we found that phosphorylation of the two ErbB species was 

differentially affected by domain overlap. This was particularly evident in the case of 

100% liganded ErbB3, where ErbB2 phosphorylation dropped by 50% between 

completely overlapping to non-overlapping domains (Figure 3.4D). At these 

physiological receptor levels, ErbB2 homo-encounters are largely unproductive due to 

the low on-rate. Simulations with more domain overlap had a larger number of 

heterodimer interactions than those with partial or no domain overlap. This was most 

notable when all ErbB3 were occupied with ligand (Figure 3.4). ErbB3 relies heavily on 

heterodimerization for activation. However, once ErbB3 receptors are activated by 

ErbB2, they can go on to homodimerize and activate other ErbB3 receptors. Therefore, 

steady state ErbB3 phosphorylation was less dependent on domain overlap.  

It should be noted that the amount of hetero- and homodimers and 

phosphorylation levels were nearly the same between no domain spatial stochastic 

simulations and 100% domain overlapping conditions. This finding differs from our 

previous work with EGFR which showed that domains greatly improved phosphorylation 
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of EGFR receptors, indicating that the introduction of multiple receptor types to these 

simulations further complicates outcome (Pryor et al., 2013). True domain overlaps are 

likely to fall somewhere between non-overlapping and completely overlapping 

configurations, indicating the need for spatial simulations that take this into account. 

Ligand binding to ErbB3 in SKBR3 breast cancer cell membranes leads to formation of 

large ErbB3 clusters with modest levels of co-localized ErbB2; this indicates that domain 

reorganization can occur during signaling (Yang et al., 2007). The remodeling of 

domains during active signaling has not yet been explored by simulation, in part due to 

difficulties in accurately measuring the dynamics of these changes. 

SPT has revealed a range of non-brownian motion for proteins on the membrane 

plane. Anomalous diffusion is a term often used to explain the characteristic restricted 

movements of proteins that “hop” between membrane domains. There are also reports of 

specific membrane proteins that undergo directed (motor-driven) motion (Kusumi and 

Sako, 1996; Saxton and Jacobson, 1997; Schütz et al., 1997; Kusumi et al., 2005). These 

different modes of motion can have a profound impact on reaction kinetics on the 

membrane surface by perturbing reaction rates (Saxton and Jacobson, 1997; Melo and 

Martins, 2006). Thus, it is important to continue evaluating factors, such as diffusion 

coefficients, corral sizes and escape probability of proteins from their confined domains 

(Saxton and Jacobson, 1997), that are expected to impact signal initiation and 

propagation. In this work, we used a simulation approach to study the effect of escape 

probabilities on the reaction kinetics of the ErbB2/3 signaling pathway. We show that 

membrane segregation can influence signaling in non-intuitive ways that are linked to the 

individual characteristics of receptors. Given the technical challenges associated with 
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measuring the dynamics of domain confinement, extent of mixing and escape rates in live 

cell membranes, simulation offers a powerful tool to explore these variables. 
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4.1 ABSTRACT 

Progenitors of B cells express the pre-B cell receptor (pre-BCR) early in the B 

lymphocyte development pathway. Expression of this receptor is critical for survival and 

proliferation of B cells. The pre-BCR undergoes ligand independent tonic signaling 

through frequent, but short lived, homodimer interactions. To investigate tonic signaling 

emanating from this receptor, we developed a rule-based spatial stochastic model of pre-

BCR aggregation and downstream signaling events. The model was populated with data 

from single particle methods from two different pre-BCR cell lines (697 and Nalm6), 

which exhibit characteristic differences in their diffusion coefficients and dimer off rates. 

We found that these differences affected pre-BCR aggregation and consequent signaling 

events in the pre-B cells. The Nalm6 cell line, which had a lower off rate and lower 
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diffusion coefficient, formed higher order oligomers than the 697 cell line. There was 

also an increase in the steady-state levels of receptor phosphorylation in the Nalm6 cell 

line. Thus, the spatial stochastic model of pre-BCR presented here was able to estimate 

aggregate sizes and predict the receptor phosphorylation landscape during tonic 

signaling.  

 

4.2 INTRODUCTION 

The precursor B cell receptor (pre-BCR) appears early in the developmental 

pathway of B lymphocytes and serves as a checkpoint for the progression of B cell 

progenitors into mature B lymphocytes (Rickert, 2013) . The pre-BCR is expressed on 

the surface of progenitor B cells and it is composed of a rearranged Immunoglobulin 

heavy chain (IgH) and non-polymorphic surrogate light chain (SLC) consisting of l5 and 

VpreB (Rickert, 2013). The pre-BCR is also non-covalently attached to Iga (CD79a) and 

Igb (CD79b), two heterodimeric subunits containing the immunoreceptor tyrosine-based 

activation motif (ITAM) that help to propagate signaling  downstream of the pre-BCR 

(Monroe, 2006). Signaling from the pre-BCR entails phosphorylation of the ITAMs on 

tyrosine residues by Src family kinases (SFK) such as Lyn;  the phosphotyrosines then 

serve as docking sites for the spleen tyrosine kinase (Syk) (Gauld and Cambier, 2004). 

Syk docks to the pre-BCR using its pair of Src homology 2 (SH2) domains and generates 

signaling responses that lead to remodeling of the cytoskeleton, intracellular calcium 

response and differential gene expression patterns necessary for B cell maturation 

(Cornall et al., 2000; Guo et al., 2000; Monroe, 2006).  
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The SLCs of the pre-BCR do not undergo gene rearrangements (Monroe, 2006). 

Since the SLC are non-polymorphic, the pre-BCR lack the ability to bind to conventional 

antigens of the BCR, hence, one of the major challenges in the field has been to identify 

the exact mechanism with which the pre-BCRs interact and activate signaling cascades 

that promote progenitor B cell differentiation and survival. There is limited evidence for 

ligand dependent pre-BCR signaling, that is mediated through reactivity to self-antigens; 

crosslinking can also be induced when  l5 components of the SLC bind to the dimeric 

stromal ligand galectin-1 (Gauthier et al., 2002; Kohler et al., 2008; Erasmus et al., 

2016). Basal signals may emanate from Iga and Igb on unaggregated receptors (Fuentes-

Panana et al., 2004).  Ubelhart and colleagues propose that pre-BCR signaling is 

dependent on a conserved asparagine (N)-linked glycosylation site on IgH (Ubelhart et 

al., 2010). However, there is growing evidence that ligand-independent pre-BCR homo-

interactions lead to induction of weak or ‘tonic’ signaling on progenitor B cells (Ohnishi 

and Melchers, 2003; Monroe, 2006; Bankovich et al., 2007; Erasmus et al., 2016b). 

Erasmus et al., used single particle tracking (SPT) methods to track the diffusional 

dynamics as we all as homodimer events between ligand independent pre-BCR on B-cell 

precursor acute lymphoblastic leukemia (BCP-ALL) cell lines. The pre-BCR on these 

cell lines undergo frequent but short lived dimerization events which lead to tonic 

signaling comprising of induction of pro-survival B cell lymphoma 6 protein (BCL6), a 

transcription repressor, necessary for pre-BCR to transition into the next developmental 

stage (Duy et al., 2010; Erasmus et al., 2016).  

Acute lymphoblastic leukemia (ALL) constitutes one of the most common 

childhood cancers and a majority of these neoplasms have been found to lack a functional 
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pre-BCR (~85%) (Müschen, 2015). However, there is a subset of ALL cases (13.5%), 

where the neoplasms express a functional pre-BCR and exploit the tonic signaling 

generated foirom this receptor to survive and proliferate (Geng et al., 2015; Müschen, 

2015). Inhibitors of Lyn and Syk tyrosine kinases, which are active participants in the 

pre-BCR pathway, have been shown to negatively affect survival of pre-BCR+ ALL 

cells, thus highlighting the therapeutic potential of these small molecules in combating 

BCP-ALL (Geng et al., 2015; Erasmus et al., 2016). Erasmus et al also observed that 

monovalent anti-VrepB antibody fragments could inhibit pre-BCR dimerization and 

interrupt survival signals from this receptor (Erasmus et al., 2016). 

Key parameters in our model are derived from Erasmus et al.,  This includes 

distinct values for pre-BCR diffusion coefficients, as well as homodimer off rates, for 

two BCP-ALL cell lines:  697 and Nalm6 (Erasmus et al., 2016). The pre-BCR on the 

surface of 697 cells dimers diffused considerably faster and had higher dimer off rates as 

compared to the Nalm6 cells.  These data led us to hypothesize the difference in dimer 

off rate could lead to existence of higher order oligomers in Nalm6 cell lines; the 

tendency to form slightly larger aggregates would explain the overall slower diffusion 

rate.  In support of this theory, some of the apparent dimer pairs observed through SPT of 

pre-BCR in the Nalm6 cell line were also more than 100nm apart, which was the 

theoretical distance between a single pair of dimerized receptors labeled with quantum 

dots.  One interpretation of these data is that the SPT captured cases of Nalm6 oligomers 

where the two quantum dots were bound to receptors located at the ends of a chain of a 

trimer or tetramer.   
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Since receptors are sparsely labeled in SPT experiments, aggregation beyond 

dimers is difficult to quantify. To investigate the existence of these higher order 

oligomers and the impact of the apparent diffusion coefficients and dimer off rates, we 

developed a spatial, stochastic model of pre-BCR aggregation and tonic signaling. We 

parameterized the model with coefficients directly measured from single particle tracking 

as well as from the available literature. Our motivation for creating a spatial model of 

tonic pre-BCR signaling pathway evolved from observing electron micrographs of 

labeled pre-BCR which were confined in domains formed by the actin cytoskeletons 

(Figure A.1). Using the spatial stochastic model, we found that receptor dimer off rates 

and domains affected aggregate sizes and consequent signaling events. 

 

4.3 MATERIALS AND METHODS 

We developed a rule-based spatial stochastic model of pre-BCR to investigate 

tonic signaling occurring downstream of receptor aggregation events. The two pre-BCR 

cell lines that were used for experimental measurements were Nalm6 and 697, each with 

specific pre-BCR diffusion coefficients as well as dimer off rates (Table 3). This model 

has been parameterized with data from SPT measurements and morphometric analysis of 

pre-B cell lines, as well as from the literature. The earliest tyrosine kinases in the signal 

transduction pathway, Lyn and Syk, are explicitly represented in the model. Details of 

reaction kinetics and rules specifying the interaction of molecules are given below. 
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4.3.1 The signal transduction pathway 

Although the pre-BCR and BCR occur at distinct time points in the lymphocyte 

development and contain structurally different light chains, both the receptors enlist the 

same set of Src and Syk family kinases to initiate signaling (Benschop and Cambier, 

1999; Meffre et al., 2000). The Pre-BCR propagates signaling through the non- 

covalently attached Iga and Igb units which each contain ITAMs (Monroe, 2006). The 

ITAMs contain tyrosine residues (Y182 and Y193 on Iga and Y195 and Y206 on Igb) 

that are substrates for phosphorylation by the kinases (Pao et al., 1998; Storch et al., 

2007). 

In the model, the pre-BCR receptors form linear dimers which may bind further to 

form higher order oligomers through their free receptor binding domains (Table 3). 

Receptor aggregation are triggered through molecule collision events and receptor 

unbinding is intrinsically triggered whose probability is determined by the experimentally 

measured dimer off-rate and the time step.  
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Table 3: Pre-B cell receptor cell line characteristics in the 
model 

 

   

  697 Nalm 6 
No of receptorsa 10000 
No of Lyn available to receptorb 10% of receptor 
No of Syka 48,290 274,302 
Binding radius (µm)c 0.000215 
Dimer off rate (/s)c 0.772 0.164 
Diffusion coefficient Receptors (µm2/s)d 0.16 
Diffusion coefficient Lyn (µm2/s)e 0.4 
Diffusion coefficient Syk (µm2/s)f 17 
aExperimental data in this paper   
bEstimated from Wofsy et al. 1997, Faeder et al. 2003  
cEstimated from Erasmus et al.  2016    
dErasmus et al.  2016   
eStone et al. 2015   
fBrock et al. 1999   

      

Ligand independent receptor aggregation in pre-BCR is followed by binding of 

Lyn to the ITAMs (Monroe, 2006; Erasmus et al., 2016). Lyn has four structurally 

distinct domains through which it interacts with the ITAMs (Boggon and Eck, 2004; 

Parsons and Parsons, 2004). The unique domain of Lyn is known to constitutively 

associate with receptors and bind to non-phosphorylated Iga whereas the SH2 domain 

binds to phosphorylated ITAMs on both Iga and Igb (Pleiman et al., 1994; Vonakis et al., 

1997). Although Lyn has been reported to bind ITAMs in both signaling subunits, it 

preferentially binds to Iga at least twice more likely than to Igb (Johnson et al., 1995).   

In the model, Lyn can bind to a free ITAM site on a receptor (Table 4). The 

receptor maybe a part of an aggregate or be a single receptor by itself. Lyn can bind to an 

unphosphorylated Iga through its unique domain and bind to a phosphorylated Iga or 
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phosphorylated Igb through its SH2 domain. Only one Lyn molecule is allowed to bind 

per Iga or Igb.  Just as receptor-receptor binding events occur, Lyn-receptor binding 

events are collision triggered and unbinding is based on a probability calculated through 

off rates and the time step. The two phosphorylation sites on Iga have been lumped 

together into one site and can have the phosphorylation status- 0, 1 or 2. The 

phosphorylation sites on Igb are treated similarly. 

 

Lyn association with the receptors is followed by receptor phosphorylation and 

one Lyn in an aggregate is sufficient for initiating phosphorylation of other receptors in 

an aggregate (Wofsy et al., 1999).  Lyn itself can also become transphosphorylated 

Table 4: Lyn and Syk molecule binding radii and dimer off 
rate 
     

Molecules ITA
M 

Phos. Status Binding radius 
(µm) 

Dimer	off	rate	(/s)	

Lyn  Ig⍺ 0 2.29E-04a 20b	
 ≥ 1 2.29E-04a 0.12b	

Igβ  ≥ 1 1.14E-04c 0.12b	
Syk Ig⍺ 1 1.31E-04d 2.6e	

2 1.57E-03d 0.3e	
Igβ 1 4.37E-05f 2.6e	

2 5.25E-04f 0.3e	
aEstimated from Faeder et al. (2003) and Smoldyn- Andrews et al. (2004) 
bFaeder et al. (2003)   
cEstimated according to observed experimental data (Lyn binding to Igb is approximately 1/2 of the 
binding observed to Ig⍺) in Johnson et al. (1995).  
dEstimated from Schwartz et al. (2017), Tsang et al. (2008) and Smoldyn- Andrews et al. (2004) 
eSchwartz et el. (2017)   
fEstimated from Schwartz et al. (2017), Tsang et al. (2008), Kurosaki et al. 1995 (Binding of Syk to Ig⍺ 
is 3x more than binding observed to Igb) and Smoldyn- Andrews et al. (2004) 
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(Y397) by other Lyn molecules, which results in an increase of Lyn kinase activity 

(Yamashita et al., 1994; Sotirellis et al., 1995; Wofsy et al., 1999; Ingley, 2012).  

In the model, Lyn on a receptor can phosphorylate Lyn on a nearby receptor, i.e. 

the two receptors must be bound to immediate neighbors in the same receptor complex 

(Table 5). Phosphorylation rates depend on the phosphorylation state of Lyn. Similar to 

Lyn-Lyn phosphorylation, Lyn must be on an immediately adjacent receptor in the same 

complex in order to phosphorylate the ITAMs. Phosphorylated Lyns are assumed to be 

activated and have a stronger kinase activity. The Lyn phosphorylation site can have the 

phosphorylation status- 0 or 1.  

 

Table 5: Kinase and substrate phosphorylation status and rates  
     

Kinase Phos. Status Substrate Phos. Status Rate (/s) 
Lyn         0 Ig⍺(Y182/Y19

3) 
0 30a 

0 1 15b 
1 Igβ(Y195/206) 0 100a 
1 1 50b 
0 Lyn(Y397) 0 30a 
1 100a 
0 Syk(Y342/Y34

6) 
0 30a 

1 100a 
Syk 0 Syk(Y519/Y52

0) 
0 100a 

1 200a 
aFaeder et al. (2003)    
bEstimated from Barua et al. (2012). Phosphorylation of 2nd site on the  
ITAM occurs at half the rate from first.  
 
 

The phosphorylated ITAMs form docking sites for the Syk (Kurosaki et al., 

1995). While Syk can bind to both mono-phosphorylated and doubly-phosphorylated 

ITAMS through its SH2 domains, the binding affinity is significantly higher for doubly 
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phosphorylated ITAMS; this is reflected by high dimer on-rate and lower off-rate (Tsang 

et al., 2008). Binding of Syk to Iga is three times more than the binding seen to Igb 

(Kurosaki et al., 1995).  

In the model, free Syk can bind to any one of the two ITAM (Iga and Igb)  sites 

on each receptor upon collision (Table 4). Each ITAM in an ITAM pair is regarded as a 

Syk binding site, and can bind Syk independently of each other. However, since Lyn 

binding is also possible on the same sites, Syk molecules cannot bind the ITAMs if they 

are occupied and the same rule is applied for Lyn molecules. Syk dissociation from the 

receptor also occurs through an intrinsically triggered unbinding probability which is 

determined through the Syk off rate and the time step. The Syk off-rate is higher for 

doubly phosphorylated ITAMS versus singly phosphorylated.  

Syk can undergo phosphorylation on specific tyrosine residues in its catalytic 

domain (Y519 and Y520) by another Syk docked on adjacent ITAMS in the same BCR 

or pre-BCR aggregate (Keshvara et al., 1998; Zhang et al., 2000). Syk can also undergo 

phosphorylation by a Lyn docked on adjacent ITAMs in the same BCR or pre-BCR 

aggregate molecule in its linker regions (Y342 and Y346) (Keshvara et al., 1998). 

In the model, Syk or Lyn molecules must be on an immediately adjacent receptor 

in the same complex in order to phosphorylate other Syk molecules (Table 5). Syk 

molecules can phosphorylate other Syk molecules in their catalytic domain and Lyn 

molecules can phosphorylate other Syk molecules in their linker regions. Syk molecules 

that have been phosphorylated in their catalytic domain are assumed to have stronger 

kinase activity. The two phosphorylation sites on the catalytic domain have been lumped 
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together and can have the phosphorylation status- 0 or 1. The two phosphorylation sites 

on the linker region have been treated similarly 

Receptor, Lyn and Syk dephosphorylations in the model are all intrinsically 

triggered from a dephosphorylating probability which takes into account the molecule 

dephosphorylations rate and the time step (Table 6).  

 

Table 6: Dephosphorylation rates  
   

Substrate Phos. Status Rate (/s) 
Ig⍺(Y182/Y193) 2 40a 

1 20b 
Igβ(Y195/206) 2 40a 

1 20b 
Lyn(Y397) 

1 20b Syk(Y342/Y346) 
Syk(Y519/Y520) 

aEstimated from Faeder et al. (2003) and Barua et al. 
(2012)(Dephosphorylation of doubly phosphorylated ITAMs 
occur at 2x the rate of singly phosphorylated ITAM)  
bFaeder et al. (2003)  
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4.3.2 Simulation Landscape  

 

 

 

     Figure 4.1:  3-D simulation space containing pre-BCR, pre-BCR domains, Lyn and Syk molecules 
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We created a 3-D simulation landscape in MATLAB to track interactions between 

the pre-BCR and Lyn, which are both plasma membrane residents, and Syk in the 

cytosol. Thus, the 2-D membrane is populated with transmembrane pre-BCR and inner 

leaflet-bound Lyn molecules, while the 3-D cytosol is populated with Syk molecules 

(Figure 4.1). The membrane contains pre-BCR receptor specific domains and receptors 

can diffuse across domains and domain-free areas. Figure 4.1 depicts domains that were 

identified through analysis of two-color SPT. For SPT measurements, monovalent Anti-

Igb Fabs’ against the Igb subunit were generated using hybridomas and labeled with 

streptavidin-conjugated QD585 and QD655. The monovalent QD probes were then 

allowed to tag Pre-BCR and their movement was tracked on a live membrane using SPT 

imaging (Erasmus et al., 2016). In order to extract the receptor domain sizes and contours 

from SPT, data sets containing the particle trajectories were subjected to the domain 

reconstruction algorithm (DRA), which was previously developed and used in Pryor et 

al., 2015 (Pryor et al., 2015). Briefly, the DRA reads in the SPT trajectories and ranks 

them into slow moving (confined) or fast moving points (free) using their jump sizes over 

different time intervals. The confined points are postulated to be in a domain (such as 

lipid rafts, protein domains or corrals) that impede the movement of the particles. We 

then cluster the slow moving points into groups based on whether their distance from 

each other is less than the reference distance, L. After cluster identification, we build 

contours around them that represent vertices of receptor domains.  

From morphometric measurements, pre-B cell was estimated to have a total cell 

surface area of 315.7 µm2 and a cytosolic volume of 321.8 µm3. The pre-B cell radius 

was 5 µm and nuclear radius was 3.7 µm. In our simulations, the pre-B cell membrane 
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landscape is represented by a rectangular cuboid with an area of 2.25 µm2 (1.5 µm x 1.5 

µm) and volume of 1.25 µm3 (depth of 0.5 µm). The total number of receptors is 

equivalent in both the cell lines (10,000 receptors) for a density of ~ 32 receptors/µm2. 

For our simulation area, this resulted in 71 receptors occupying the membrane landscape.     

The amount of Syk varied between the cell lines. Based upon calibrated western 

blotting experiments, we estimate that 697 cell line has ~ 48,000 Syk molecules while the 

Nalm6 cell line has 274,000. For our simulation volume, this resulted in 169 Syk 

molecules for the 697 cell line and 959 Syk molecules for the Nalm6 cell line.  The 

amount of Lyn available to the receptors is estimated to vary between 5% and 10% of the 

total receptors present in the cell (Yamashita et al., 1994; Wofsy et al., 1997). Faeder et 

al., in their investigation of signals emanating from FceRI, modeled the pool of Lyn 

available to the receptors as 7% of the total receptor concentration and assumed that all of 

the available Lyn is in a form, which when bound to the receptors, is capable of initiating 

phosphorylation events (Faeder et al., 2003). We apply the same principles in our model, 

where we assume that the total amount of Lyn available to the receptors would be at most 

10%. This would mean that at any given time in the pre-B cell, only 1000 Lyn molecules 

are available for interaction with the 10,000 pre-BCRs. For our simulation area, this 

amounts to 7 Lyn molecules available for interaction with a total number of 71 receptors. 

 

4.3.3 Molecule diffusion 

In our simulation molecules can undergo Brownian motion in the x, y and z plane. 

Lyn and pre-BCR undergo diffusion in the x and y plane only, whereas Syk molecules 

can also diffuse in the z plane. 
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Receptor jumps are generated by choosing a random number from a normal 

distribution and processing it with the root mean square (RMS) of the molecule to 

generate the new coordinates with the time increment of Δt. The RMS is given by: 

𝑅𝑀𝑆 = 	 2 ∗ 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡 ∗ Δt.		Following rules are applied for calculation 

of the new spatial coordinates (Andrews and Bray, 2004; Erban, 2014; Pryor et al., 2015): 

x(t+ Δt) = x(t) + RMS  * ξx 

y(t+ Δt) = y(t) + RMS  * ξy 

z(t+ Δt) =  z(t) + RMS  * ξz 

 

ξx, ξy, ξz are random numbers chosen from a normal distribution. x, y and z represent 

the molecule’s Cartesian coordinates.   

Since pre-BCRs form higher order oligomers, in the model we assume that the 

diffusion of a pre-BCR complex is inversely proportional to the size of the complex. The 

size of the complex reflects the number of receptors in an aggregate.  

 

4.3.4 Boundary conditions and probability of escape 

For any simulation space, boundary conditions need to be specified so that 

particles remain in the simulation area or volume. For the pre-BCR, we apply periodic 

boundary conditions at the edges of the simulation space. When a receptor reaches the 

edge of the simulation space (in x or y plane) and the receptor jump calculated displaces 

the receptor outside the simulation space, we divide the jump into two segments. The first 

segment displaces the receptor to the edge and the second segment is calculated from the 

opposite edge of the simulation space, such that the receptor re-enters the simulation 
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space from the opposite boundary. For receptors in domain we apply the reflective 

boundary conditions. As before, the receptor jump is divided into two segments: one 

segment displaces the receptor to the edge of the domain and the second displaces it 

outside of the domain.  When the receptor reaches the edge of the domain, a probability 

for escape from the domain is calculated and if the probability of escape is not met, then 

the receptor is reflected back into the domain with the remaining segment. If the 

probability of escape is met, then the receptor continues across the domain. An exit 

penalty limits receptor escape from the domains. The exit penalty was obtained by 

calculating the ratio of the membrane area explored by the slow moving points versus the 

membrane area explored by fast moving points. The exit probability for receptors in the 

pre-B cells was found to be 0.2. We apply the same periodic boundary conditions to Lyn 

and Syk molecules in the x and y plane. For Syk, we also apply reflective boundary 

condition in its z plane, such that when the receptor reaches edge of the simulation space, 

it is reflected back into the cytosol.  

 

4.3.5 Reaction kinetics 

For molecule reactions, we chose reaction kinetics similar to those used in the 

spatial stochastic simulator Smoldyn, which uses Smoluchowski dynamics with revisions 

to implement reaction events. In essence, there are two different ways to simulate 

reaction events depending on whether they are first or second order reactions. First order 

reactions include molecule phosphorylation, dephosphorylation and molecule 

dissociation. The probability of any of these first order reaction events occurring at time 

step Δt is given by (Andrews and Bray, 2004; Pryor et al., 2015):  
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                         P(First order reaction) =1− exp (−First order reaction rate *Δt) 

However, due to the very small time step, this probability has been reduced to the 

following: 

                                       P(First order reaction) =First order reaction rate *Δt 

Second order reactions include molecule association events such as receptor 

dimerization or aggregation into higher order oligomers and molecules such such as Lyn 

and Syk binding to the receptor. For these reactions, a parameter called the binding radius 

is used to determine the outcome of a collision event. If two molecules are within the 

binding radius of each other, then a binding event will take place. The binding radius for 

Lyn and Syk molecules were calculated using Smoldyn, which takes into account the on 

rate of the reaction, diffusion coefficients and the time step to determine a binding radius 

for molecular association events. The binding radius for a pair of receptors was 

determined using SPT data from Erasmus et al., well mixed Matlab simulations and 

spatial stochastic simulations with no domains. Briefly, we ran well mixed Matlab 

simulations with an estimated on rate and estimated dimer off rate for pre-BCR 

aggregation in the 697 cell line. This produced a ratio of monomers, dimers and higher 

order oligomers. We then used the estimated dimer off rate with varying binding radii in 

a spatial stochastic simulation (coded in Fortran) with no domains to obtain the same 

ratio of monomers, dimers and higher order oligomers as observed in the well mixed 

Matlab simulations. The binding radius which correctly reproduced the ratio of the 

oligomers in the spatial simulations was used in the simulations as the pre-BCR binding 

radius (Table 3). 
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4.4 RESULTS 

 

4.4.1 Impact of varying dimer off rate and domains on receptor aggregation 

From SPT measurements, Erasmus et al., had observed that the 697 cell line had a 

higher dimer off rate as compared to the Nalm6 cell line. This led to the speculation that 

Nalm6 was forming higher sized oligomers, supported by observed cases of SPT that 

captured apparent “dimers” of pre-BCR tagged quantum dots that exceeded the 

theoretical distance of 100 nm for a minimal pre-BCR dimer. We populated our spatial 

stochastic model with the estimated off rates in order to observe whether the two cell 

lines formed different sized aggregates. Figure 4.2A represents the aggregate sizes 

formed in the 697 cell line and Figure 4.2C represents the aggregate sizes formed in the 

Nalm 6 cell line. As observed from the Figures 4.2A and C, the Nalm6 cell line forms 

much higher order oligomers when compared to the 697 cell line. The number of 

monomers was also higher in the 697 cell line as compared to the Nalm6. Thus, the 

spatial stochastic models provides evidence for the existence of much higher order 

oligomers in Nalm6 cell line as compared to 697. 

From electron microscopy images of immune-gold labeled plasma membrane 

“rip-flips” (Figure A.1), we observed corral-like cortical cytoskeletal structures on the 

membrane of pre-B cells indicating that the receptors might be confined in domains. In 

order to investigate the effect of domains on receptor aggregation, we used data gathered 

from SPT measurements to re-create pre-BCR domains in our in silico membrane 

landscape. We found that the presence of domains increased the size of pre-BCR 

aggregates in both the cell lines (Figure 4.2A-D). Figure 4.2A displays the ratio of 
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aggregates in the 697 cell line with domains while Figure 4.2B displays the ratio of 

aggregates formed in the same cell line without domains. Clearly there is an increase in 

the oligomer size in simulations where domains were present. Figure 4.2C and Figure 

4.2D compare the aggregate sizes in the Nalm6 cell line, with and without domains 

respectively. A similar trend is seen where the simulations with domains had an impact 

on the aggregate sizes. Hence, as seen in our earlier studies (Kerketta et al., 2016), 

domains again prove to be important regulators of receptor aggregation and consequent 

signaling pathways. 
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Figure 4.2: Receptor aggregation on 697 and Nalm6 cell line. (A) 697, Domain. (B) 697, No Domain. 
(C) Nalm6, Domain. (D) Nalm6, No Domain. 
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4.4.2 Impact of varying dimer off rate and domains on ITAM phosphorylation  

It is known that receptor aggregation leads to phosphorylation of tyrosine residues 

on the ITAMs of pre-BCR by Lyn as well as Lyn transphosphorylation by other Lyn 

molecules (Wofsy et al., 1999; Ingley, 2012). In our model, Lyn can phosphorylate other 

receptors on the same aggregate and also be trans-phosphorylated by other Lyn 

molecules, provided they all reside on the same aggregate.  We simulate this relationship 

by providing a receptor bound Lyn access to receptors for phosphorylation that are one 

bond over on each side on an aggregate. This would indicate that as the size of an 

aggregate increases, we expect more Lyn to be associated with that aggregate, followed 

by more phosphorylation events. Since the sizes of the oligomers formed in the two 

different cell lines differed, we wanted to investigate the effect of aggregate sizes on 

ITAM phosphorylation. Figure 4.3 (A-D) display the amount of Iga and Igb 

phosphorylation observed in the 697 and Nalm6 cell lines. We found that the presence of 

domains had an impact on the amount of receptor phosphorylation in both the cell lines 

(Figure 4.3 and Figure. 4.4). There were overall more phosphorylated ITAMS in 697 cell 

line with domains as compared to no domains (Figure 4.3 A,B and Figure 4.4). Similar 

trends were seen when comparing Nalm6 cell line with domains and without domains 

(Figure 4.3 C, D and Figure 4.4).  

It was also interesting to note that the amount of single phosphorylated Iga and 

Igb were at similar levels in both the cell lines, however, there were differences in the 

amount of doubly phosphorylated ITAMs (Figure 4.4). The amount of doubly 

phosphorylated Iga ITAMS were considerably higher in the Nalm6 cell line with 

domains as compared to 697 (Figure 4.4).  
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Figure 4.3: Receptor Iga and Igb phosphorylation on 697 and Nalm6 cell line. (A) 697, Domain. (B) 
697, No Domain. (C) Nalm6, Domain. (D) Nalm6, No Domain. Iga-1: once phosphorylated, Iga-2: 
twice phosphorylated, Igb-1: once phosphorylated, Igb-2: twice phosphorylated. 
 
 
 
 
 
 
 
 

A 

D C 

B 



	 97	

 
Figure 4.4: ITAM (Iga and Igb) phosphorylation status of 697 and Nalm6 cell lines (with and without 
domains). All stacked bars are averages of 2 runs (± standard deviation) between 10 and 600 seconds. 
Nalm6D: Nalm6 with domains; Nalm6 ND: Nalm6 with no domain; 697 D: 697 with domains; 697 
ND: 697 no domains. 
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  4.4.3 Impact of varying dimer off rate and domains on Lyn binding and 

phosphorylation  

Lyn molecules can bind to receptors through their unique or SH2 domains 

(Boggon and Eck, 2004). Receptor bound Lyn can trans-phosphorylate other Lyn 

molecules and thus, activate other Lyn kinases (Barua et al., 2012). This causes an 

increase in the catalytic activity of Lyn when the Lyn gets phosphorylated in its 

activation loop (Ingley, 2012). In the model, Lyn can bind to the ITAMS on the pre-BCR 

depending on the phosphorylation status of the ITAMs. Lyn can bind to 

unphosphorylated Iga through its unique domain or phosphorylated Iga through its SH2 

domain. Lyn can also bind to Igb through its SH2 domain. Once bound, Lyn molecules 

can phosphorylate the ITAMS as well as other Lyn molecules, one receptor over, on the 

aggregate. Once Lyn molecules are phosphorylated in their activation loop tyrosine site, 

they are assumed to be activated kinases. We wanted to investigate whether the different 

dimer off rates between the cell lines and the presence of domains have an effect on the 

amount of Lyn recruited to the receptors as well as their phosphorylation/activation 

status. From our simulations, we observed that the average amount of Lyn molecules 

recruited to the receptors were the same in three of the simulation conditions- Nalm6 with 

domains, Nalm6 without domains and 697 with domains (Figure 4.5 and Figure 4.6A). 

However, the amount of Lyn activation was considerably higher in Nalm6 with domains, 

followed by Nalm6 without domains, 697 with domains and 697 without domains (Figure 

4.6B). Clearly, the different dimer off rate and the presence of domains were affecting the 

phosphorylation status of the Lyn molecules. 
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Figure 4.5: Receptor bound Lyn and activated on 697 and Nalm6 cell line. (A) 697, Domain. (B) 697, 
No Domain. (C) Nalm6, Domain. (D) Nalm6, No Domain. 
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Figure 4.6. Lyn bound and Lyn phosphorylation counts. (A) Amount of receptor bound Lyn.  (B) 
Amount of Lyn phosphorylated.  All bars are the averages of 2 runs (± standard deviation) between 
10 and 600 seconds. 
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4.4.4 Impact of varying dimer off rate and domains on Syk binding  

The phosphorylation of ITAMs by Lyn molecules leads to creation of docking 

sites for SH2 domain containing Syk molecules (Kurosaki et al., 1995). Syk can bind to 

both singly or doubly phosphorylated Iga and Igb, as they have two SH2 domains. 

Binding to doubly phosphorylated ITAMs is stronger than binding to singly 

phosphorylated ITAMs (Tsang et al., 2008). Binding is also affected by the preference of 

Syk molecules for Iga over Igb (Kurosaki et al., 1995). Once receptor bound, Syk 

molecules can be phosphorylated by other Lyn molecules in its linker regions or it can be 

phosphorylated by other Syk molecules in its catalytic domain (Keshvara et al., 1998). 

Syk is assumed to be an activated kinase upon phosphorylation of its catalytic 

domain(Keshvara et al., 1998). We wanted to investigate the effect of different dimer off 

rates and presence of domain on Syk associations with the receptor as well as Syk 

phosphorylation status. Apart from the differences in the dimer off rate between the two 

cell lines we also know from SPT and experimental measurements that the amount of Syk 

molecules varies markedly in the two different cell lines with Nalm6 having a much 

higher amount of Syk molecules. Our simulations accordingly predict higher levels of 

receptor bound Syk in the Nalm6 line, as compared to 697 cell line (Figure 4.7A,D and 

Figure 4.8A). Cell lines with domains also had higher levels of Syk bound to the receptor 

(Figure 4.7 and Figure 4.8A).  

We did not observe phosphorylation in the catalytic domain of Syk by other Syk 

molecules (Figure 4.7) in our simulations. We did ,however, find Syk phosphorylated in 

its linker regions by Lyn (Figure 4.7 and Figure 4.8B). The amount of Syk 
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phosphorylation was the highest in Nalm6 cell line with domains, followed by Nalm6 

without domains, 697 with domains and 697 without domains (Figure 4.8B). 
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Figure 4.7: Receptor bound Syk on 697 and Nalm6 cell line. (A) 697, Domain. (B) 697, No Domain. 
(C) Nalm6, Domain. (D) Nalm6, No Domain. Syk phosphorylation (site 1): Syk phosphorylated by 
other Syk molecules in the catalytic domain. Syk phosphorylation (site 2): Syk phosphorylated by 
other Lyn molecules in the linker region.  
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A 

 
 
B  

 
 
 
Fig 4.8. Syk bound and Syk phosphorylation counts. (A) Amount of receptor bound Syk.  (B) 
Amount of Syk phosphorylated by Lyn.  All bars are the averages of 2 runs (± standard deviation) 
between 10 and 600 seconds 
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4.5 DISCUSSION 

In this study, we developed a spatial stochastic model to explore tonic signaling 

between the two different cell lines (697 and Nalm6) of leukemic pre-BCR. We found 

differences in sizes of the aggregates and molecule phosphorylation levels based on the 

different dimer off rates and presence of domains. The presence of domains impacted the 

pre-BCR chain lengths with domains favoring formation of higher order oligomers 

(Figure 4.2). The different dimer off rates between the two cell lines also had a major 

impact on the size of the aggregates formed (Figure 4.2). The Nalm6 cell line with the 

lower dimer off rate increased receptor aggregate sizes. From SPT measurements, we had 

speculated that Nalm6 was forming larger aggregates as dimer pairs that were more than 

100 nm were often observed. Here, we provide strong evidence that the lower dimer off 

rate as measured in Nalm6 impacts the aggregate sizes in the pre-BCR leukemic cell line.  

 We also investigated receptor phosphorylation levels in these receptors. The 

overall phosphorylation level of receptors was found to be very low with the highest 

amount of phosphorylation seen in Nalm6 with domains. About 2.6% of Iga and 2.1% of 

Igb were found to be phosphorylated in these simulations. In the 697 cell line, we found 

about 1.8% of Iga and 1.6% of Igb phosphorylated. Thus, these numbers indicate that 

tonic signaling entails very low level of receptor phosphorylation. Low levels of receptor 

phosphorylation mean that the amount of important downstream signaling molecules 

such as Syk recruited to the receptor would also be very low since Syk docks to 

phosphorylated ITAMs. The amount of receptor phosphorylated might set up an upper 

limit for signaling activation of this pathway.  
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We also investigated the amount of Lyn molecules recruited to the pre-BCRs 

from the pool of available Lyns. The amount of receptor bound Lyn was seen to be at 

similar levels in Nalm6 with and without domains and 697 with domains. This amount 

varied between 25% and 23% in these three conditions. The lowest amount of receptor 

bound Lyns was seen in simulations of 697 with no domains. Here, the amount of Lyn 

bound was found to be about 18%. Thus, in tonic signaling, about a quarter percent of the 

pool of available Lyns seem to be receptor bound at steady state in both the cell lines. 

The total Lyn phosphorylation levels were also very low with about 2% of Lyn 

phosphorylated in Nalm6 with domains and 0.56% of Lyn phosphorylated in 697 with 

domains. Thus, activated Lyn was also present at a very low percentage during 

simulation of tonic signaling. This indicates that tight control of Lyn recruitment is 

implemented in these cells to keep subsequent receptor and Lyn phosphorylations at low 

levels. 

 The total amount of receptor bound Syk in Nalm6 with domains was 0.05% and it 

was 0.02% in 697 with domains. Syk receptor phosphorylation in the linker region by 

Lyn was also very low. About 0.02% of Syk molecules were phosphorylated on this site 

in Nalm6 with domains and 0.006% were phosphorylated in 697 with domains. We did 

not observe phosphorylation of Syk in its catalytic domain by Syk. Thus, recruitment 

along with phosphorylation of Syk molecules appears to be at very low levels in these 

cells.  

 Thus, from the simulations conducted in this study, it has become apparent that 

during tonic signaling, even though a large number of receptors might be involved in 

forming higher order aggregates, the total amount of Lyn and Syk molecules bound to 
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these receptors remain low. The receptor, Lyn and Syk phosphorylation were also 

observed to be at very low levels. A reason for such low level of signaling could be that  

pre-BCRs have to judiciously regulate their signaling during their early development as 

too little or too much signaling could lead to apoptosis and impediment of their 

development pathway (Erasmus et al., 2016).  

Erasmus et al., also obtained B cell progenitor cells from two BCP-ALL patients 

(patient# 238 and patient# 280) that were positive for the pre-BCR. Remarkably, pre-

BCR on the surfaces of cells from the two patient samples displayed diffusion 

characteristics that were similar either to 697 cells (patient# 238) or to Nalm6 cells 

(patient# 280). Cells from patient# 280 were found to have slightly higher levels of BCL6 

than from patient# 238 and were also more sensitive to antibodies against the VrepB 

region of the SLC which blocked pre-BCR dimerization. From experimental 

measurements, we know that Nalm6 has a higher number of Syk molecules. From the 

spatial stochastic model, we can observe that the Nalm6 cell line also forms higher order 

oligomers as well as more Lyn and Syk recruitment and phosphorylation. Thus, this 

could provide an explanation for the presence of higher amount of BCL6 in the patient 

pre-BCR cell line that behaved like Nalm6. The higher order oligomers in Nalm6, 

combined with an increased density of Syk molecules in the cell, led to increased BCL6 

production.  

This model can be used to further test knockouts of different protein for observing 

their effect on this signaling pathway. Obtaining the parameters for this pathway had 

proven to be very challenging. More experimental measurements are needed, so that the 

model can be fully biologically validated. We present here a model of basic tonic pre-
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BCR aggregation and signaling. Other acting proteins in this pathway can be added in the 

future as more parameters become available.  
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CHAPTER 5: DISCUSSION 
 
 

5.1 SUMMARY  

In this dissertation, we explored the heterogeneity that exists across different 

biological scales using a variety of mathematical and computational methods. We used 

both deterministic (differential equations based) and stochastic methods to build models 

that were populated with both patient and experimental data in order to make biologically 

relevant predictions. In this first section of the discussion, a summary of the biological 

insights gained through the use of these models is presented. 

In chapter 2 of this dissertation, we explored the heterogeneity that exists in the 

tumor microenvironment and its impact on patient therapeutic outcomes using a 

mathematical model of drug transport. This model considered patient specific parameters 

such as the blood vessel perfusion and radius of blood vessels, which tends to vary 

between patients, for predicting the effect of chemotherapy on patient tumors. We used 

H&E stained histological cross sections from patients as well as data from their CT scans 

to populate our model for making patient specific predictions. We found that patients 

who exhibited higher blood vessel perfusion in their tumors, also displayed a better 

prognosis in their treatment outcomes. This was because in well perfused tumors, drugs 

could easily reach the cancer cells whereas in tumors, where the blood vessel perfusion 

was low, cancer cells had a higher chance of escaping the toxic drugs. This study 

highlighted that even in patients who have the same type of cancer, treatment outcomes 

can very because each patient’s tumor microenvironment is differently shaped and 

formed. Not only are genetic and cellular markers necessary for making decisions 
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regarding patient treatment, but a patient’s overall tumor microenvironment also needs to 

be taken into consideration before any therapy is administered.   

In chapter 3 of this dissertation, we investigated the role of membrane domains in 

regulating cell signaling emanating from the ErbB2/ErbB3 receptor dimer. ErbB2 and 

ErbB3 receptors have been found to be overexpressed in many cancers and together form 

a very potent signaling unit. Since, unnecessary signaling from this receptor could be 

highly deleterious for a cell, we wanted to investigate how these receptors might be 

regulated by the membrane domains on the cell’s surface. We found that the amount of 

signaling from these receptors was dependent on the degree of overlap between their 

domains. Additionally, we also found that increasing the strength of the confinement of 

receptors in domains only affected signaling when the receptors were completely 

segregated. In essence, the domains tightly regulated the receptors’ proximity with each 

other to control cell signaling events. 

The pre-BCR appears at a critical junction in the development of B lymphocytes. 

This is where the progenitor B cells decide whether to undergo apoptosis or to continue 

to develop into a mature B cell.  A subset of patients with B-cell acute lymphoblastic 

leukemia also show expression of this receptor. In these patients, the leukemic cells 

exploit the tonic signaling pathway to survive and proliferate indefinitely. Therefore, 

understanding the regulation of this receptor is essential to devise strategies to combat 

this cancer. We investigated tonic signaling emanating from this receptor using two 

different BCP-ALL cell lines. In chapter 4, we created a spatial stochastic model of pre-

BCR aggregation and populated the model with data acquired through SPT. We found 
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differences in receptor aggregation and downstream signaling events based on the 

characteristic difference between the two cell lines.  

 

5.2 SIGNIFICANCE 

Our group has been involved in building lattice based and lattice free models of 

receptor signaling pathways with a focus on investigating the impact of spatial 

heterogeneity on membrane surfaces (Mayawala et al., 2005b; a; 2006; Hsieh et al., 2008; 

Costa et al., 2009; Hsieh et al., 2010; Costa et al., 2011; Pryor et al., 2013; Pryor et al., 

2015). In chapter 3 of this dissertation, we used and extended the 2-D spatial stochastic 

model developed by Pryor et al., to investigate varying domain overlaps and receptor 

confinement on ErbB2/ErbB3 signaling pathways (Pryor et al., 2015; Kerketta et al., 

2016).  In the previous study, static spatial data gathered from SPT was used to create 

confinement zones for receptors which represented membrane domains in which 

receptors were “trapped” and had to pay a penalty for escape. This gave rise to spatial 

inhomogeneity on the membrane surface by creating dense or sparse areas of receptor 

population. We used the same principles in chapter 4 to build receptor domains from 

static spatial data of pre-BCR that were specific for this cell type. These receptor domains 

were used in conjunction with a 3-D spatial stochastic model of pre-BCR that simulated 

receptor diffusion, aggregation and phosphorylation, thus shedding insight on tonic 

signaling associated with this receptor.  
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5.2.1 Lattice free model of immunoreceptor signaling 

Lattice based stochastic simulations, which take into account the spatial effect of 

receptor diffusion by displacing the molecules on a grid like membrane, have been used 

to investigate signaling in the mature B cell receptor (BCR) (Tsourkas et al., 2012; 

Mukherjee et al., 2013). However, spatial inhomogeneity existing on a biological 

membrane cannot be accurately represented by grid like confinement domains as these 

domains are dynamic with respect to time and are highly irregular in their shape and size. 

Hence, a more accurate representation of these domains can be built through 

reconstruction of some of the membrane domains observed during SPT. The pre-BCR 

spatial stochastic model presented in chapter 4 is a lattice free model, with receptor 

confinement zones recreated directly from experimental data, and hence might more 

accurately represent the spatial inhomogeneity present on the membrane surface of the 

immunoreceptors. Thus, this model can be used as a platform to simulate spatial 

inhomogeneity in other immunoreceptors including the BCR and T cell receptor (TCR).  

 

5.2.2 The 3-D spatial stochastic model   

The need for developing a 3-D model arose from the need to investigate the effect 

of spatial inhomogeneity on important cytoplasmic signaling molecules such as Syk in 

the pre-BCR pathway. Syk diffuses in the cytoplasm and transduces signal downstream 

of the pre-BCR. Thus, in order to capture the diffusion and reaction kinetics of Syk and 

its impact on the pre-BCR signaling, a 3-D spatial stochastic model had to be developed. 

This model holds the potential to simulate different cytoplasmic molecules important in 

either the pre-BCR pathway or other receptor signaling pathways. Therefore, this model 
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provides a platform for developing 3-D spatial stochastic models of other important 

receptor pathways. 

 

5.2.3 Aggregate sizes of immunoreceptor chains are directly obtained from the 

model 

Although SPT of receptors is extremely useful in generating data on the 

diffusional and reaction dynamics of receptors on a live cell membrane, the low level of 

receptor labeling renders some of the information such as sizes of higher order oligomers 

inaccessible. In order to gain access to such information, computational models, that 

simulate receptor reactions using basic parameters obtained through experimental 

measurements, can be used to extrapolate the aggregate sizes formed in such receptor 

systems. The pre-BCR spatial stochastic model presented here, uses basic parameters 

obtained from SPT and experimental data to model formation of different sized 

aggregates and present the oligomer size as a key output of the model. This is in contrast 

to recent modeling efforts investigating the B cell receptor (BCR), where aggregation of 

receptors was modeled implicitly and the actual oligomer sizes were unreported (Barua et 

al., 2012; Mukherjee et al., 2013).  Hence, this model can be used to simulate receptors 

which undergo aggregation and where reporting of the distinct oligomer sizes is a key 

requirement of the model simulations.  

 

5.3 FUTURE INVESTIGATIONS 

 As mentioned in the above sections the 3-D spatial stochastic model of pre-BCR 

can be used to explore other immunoreceptors that undergo aggregation. Moreover, other 
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cytoplasmic molecules can be added to further refine the model. Below is a description of 

potential future explorations in the pre-BCR signaling pathway. 

 

5.3.1 Addition of Lyn specific domains on the membrane  

 One of the avenues that can be investigated is the effect of Lyn domains on the 

pre-BCR signaling pathway. Since Lyn is a membrane bound molecule, there is likely to 

be existence of Lyn rich domains on the membrane. It would be interesting to explore the 

effect of both Lyn and receptor specific domains on the signaling pathway. However, in 

order to reproduce Lyn specific domains on the in silico membrane, SPT with quantum 

dots tagged to the membrane bound Lyn molecule will have to be utilized. This might be 

experimentally challenging, however, if this objective is achieved then it would further 

shed light on the recruitment of Lyn molecules from Lyn specific domains to pre-BCR 

specific domains upon receptor aggregation. 

 

5.3.2 Model parameter calibration with further experimental measurements 

 For the pre-BCR model, we relied heavily on data present in the literature for 

parameters such as phosphorylation and dephosphorylation rates for the receptors, Lyn 

and Syk molecules. To enable more accurate representation of tonic signaling, these 

model parameters need to be measured directly in the pre-BCR cell lines used in the 

experimental study. The model then needs to be recalibrated with the updated rates for 

more precise estimations of tonic signaling events.   
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APPENDICES 
 

APPENDIX A: CHAPTER 3 SUPPLEMENT 
 
 
 

 
 

Figure A.1: Electronmicroscopy image of pre-b cell 
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APPENDIX B:  RANDOM 3-D SIMULATION SPACE GENERATOR 
 

 
close all; clear all; clc 
datafilename = '08_25_17_Nalm6Run8' % save the simulation file with this 
name'03_07_17b 
%Receptor information 
%[pBCR Lyn Syk] % Lyn 
NP_rec = [71 7 959]; %  [697 Nalm6] % if z is 1[syk338 #syk1918] % if z is 0.5[syk169 
% syk959]  
numdomain= [0]   % domains, 
%For 2-D 
%NP_rec = [795] 
NP = sum(NP_rec) 
%Membrane information (in micrometer) 
xlimmin = 0 
xlimmax = 1.5 
ylimmin = 0 
ylimmax = 1.5 
zlimmax = 0 
zlimmin = -0.5 
Membranevolume = xlimmax*ylimmax*abs(zlimmax) 
% For 2_D  
%MembraneArea = xlimmax*ylimmax 
point_x = xlimmin + (xlimmax-xlimmin)*rand(NP,1) 
point_y = ylimmin + (ylimmax-ylimmin)*rand(NP,1) 
point_z = zlimmax + (zlimmin-zlimmax)*rand(NP_rec(3),1) 
  
pBCR = [point_x(1:NP_rec(1)) point_y(1:NP_rec(1)) zeros(NP_rec(1),1) 
zeros(NP_rec(1),1) ones(NP_rec(1),1)] 
Boss = (ones*(1:NP_rec(1)))' 
r_pBCR = [pBCR Boss zeros(NP_rec(1),1) zeros(NP_rec(1),1)] 
  
np   = NP_rec(1)+NP_rec(2) 
Lyn  = [point_x(NP_rec(1)+1:np) point_y(NP_rec(1)+1:np) zeros(NP_rec(2),1) 
zeros(NP_rec(2),1) ]  
Syk  = [point_x(np+1:NP(end)) point_y(np+1:NP(end)) point_z zeros(NP_rec(3),1)]  
  
pBCRdomainRec = 0 
  
%r_Lyn =  [Lyn 2*ones(NP_rec(2),1)] 
%r_Syk =  [Syk 3*ones(NP_rec(3),1)] 
  
figure(1)  
%plot(pBCR(:,1),pBCR(:,2),'or') 
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plot3(pBCR(:,1),pBCR(:,2), pBCR(:,3),'ro', Lyn(:,1),Lyn(:,2),Lyn(:,3),'b*', 
Syk(:,1),Syk(:,2),Syk(:,3),'go') 
box on 
xlabel('\mum, x','FontSize',20) 
ylabel('\mum, y','FontSize',20) 
zlabel('\mum, z','FontSize',20) 
title('Simulation space','FontSize',18) 
set(gca,'FontSize',10) 
hold on 
% set(gca,'xtick',linspace(xlimmin,xlimmax,3)) 
% set(gca,'XTickLabel',linspace(xlimmin,xlimmax,3)) 
%  set(gca,'ytick',linspace(ylimmin,ylimmax,3)) 
%  set(gca,'YTickLabel',linspace(ylimmin,ylimmax,3)) 
%  set(gca,'ztick',linspace(zlimmin,zlimmax,3)) 
%  set(gca,'ZTickLabel',linspace(zlimmin,zlimmax,3)) 
%set(gcf,'Position',[967   573   527   773]) 
%axis([xlimmin xlimmax ylimmin ylimmax zlimmin zlimmax]) 
 save (datafilename) 
  
 %DIFFUSION 
  
  
 % read the domains 
  
FIN=fopen('ContourInfo.txt','r'); 
  
NContour = fscanf(FIN,'%d',1); 
  
  
Contour = cell(NContour,1); 
  
CSize = fscanf(FIN,'%d',NContour); 
  
for iContour=1:NContour 
     
    Contour{iContour} =fscanf(FIN,'%f',[CSize(iContour), 2]); 
     
    Contour{iContour} = Contour{iContour} - repmat([15, 27.5],CSize(iContour),1); 
     
end 
  
fclose(FIN); 
  
%figure(1); 
%clf 
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MyColors = rand(5,3); 
  
for iContour=1:5 
     
plot(Contour{iContour}([1:end 1],1),Contour{iContour}([1:end 1],2),... 
    'Color',MyColors(iContour,:)); 
end 
  
xlim([-0.2 1.7]); 
ylim([-0.2 1.7]); 
axis equal 
  
legend('Pre-BCR','Lyn','Syk','Domain 1','2','3','4','5'); 
  
plot([0 1 1 0 0]*1.5,[0 0 1 1 0]*1.5,'k-'); 
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APPENDIX C: SCRIPT TO GENERATE INPUT FILES 
 
%% 
% Load data file 
load 08_25_17_Nalm6Run8 
%% 
% Number of runs desired 
q=8 
StartFileNum=q; 
EndFileNum=q; 
%% 
% Simulation Length [=] s 
t=600; 
%% 
% Simulation time step 
dt=0.00001; 
% Print Frequency 
printfreq=20; 
N=t/dt; 
%%  
time=clock; 
if time(2) < 10 
    savedir=strcat('',['0' num2str(time(2))],'_',num2str(time(3)),'_',num2str(time(1)-
2000),'/') 
elseif time(3) < 10 
    savedir=strcat('',num2str(time(2)),'_',['0' num2str(time(3))],'_',num2str(time(1)-
2000),'/') 
elseif time(2) < 10 && time(3) <10 
    savedir=strcat('',['0' num2str(time(2))],['0' num2str(time(3))],'_',num2str(time(1)-
2000),'/') 
else 
    savedir=strcat('',num2str(time(2)),'_',num2str(time(3)),'_',num2str(time(1)-2000),'/') 
end 
mkdir(savedir) 
%% 
for jj = StartFileNum:EndFileNum 
     numrun=strcat('Run_',num2str(jj),'/'); 
    if exist(strcat(savedir,numrun),'dir') == 0 
        mkdir(strcat(savedir,numrun)) 
    end 
     fid = fopen(strcat(savedir,numrun,'BMIP'), 'wt'); 
        fprintf(fid,'.\n'); 
        fprintf(fid,'%10.0f%10.0f%10.0f    # of 
Particles\n',NP_rec(1),NP_rec(2),NP_rec(3)); 
        fprintf(fid,'%10.7f     Time Step [s]\n',dt); 
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        fprintf(fid,'%7.4f%7.4f%7.4f%7.4f%7.4f%7.4f     Membrane 
Boundaries\n',xlimmax,ylimmax,xlimmin,ylimmin,zlimmin,zlimmax); 
        fprintf(fid,'%10.0f     Data Print Frequency\n',printfreq); 
        fprintf(fid,'%6.2f%3.0f  Length of Simulation [s], # of Domains\n',t,numdomain); 
        fclose(fid); 
        fid2 = fopen(strcat(savedir,numrun,'InitialParticleLoc'),'wt'); 
         for j = 1:size(pBCR,1) 
            fprintf(fid2,'%18.16f%18.16f%18.16f%2.0f%2.0f%3.0f%2.0f%2.0f\n',(r_pBCR(j,
1)),(r_pBCR(j,2)),(r_pBCR(j,3)),(r_pBCR(j,4)),(r_pBCR(j,5)),(r_pBCR(j,6)),(r_pBCR(j,
7)),(r_pBCR(j,8)))  
         end 
         fid3 = fopen(strcat(savedir,numrun,'InitialParticleLoc_lyn'),'wt'); 
         for j = 1:size(Lyn,1) 
            fprintf(fid3,'%18.16f%18.16f%18.16f%2.0f\n',(Lyn(j,1)),(Lyn(j,2)),(Lyn(j,3)),(Ly
n(j,4)))  
         end 
         fid4 = fopen(strcat(savedir,numrun,'InitialParticleLoc_Syk'),'wt'); 
         for j = 1:size(Syk,1) 
             fprintf(fid4,'%18.16f%18.16f%18.16f%2.0f\n',(Syk(j,1)),(Syk(j,2)),(Syk(j,3)),(Sy
k(j,4))) 
         end     
        mkdir(strcat(savedir,numrun,'Data_Files')) 
end         
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 121	

APPENDIX D: PRE-BCER SPATIAL STOCHASTIC SIMULATION PROGRAM 
 
 
MODULE ModelConstants 
 
  ! Variables defined in a module are accessible to any unit that uses the module 
 
  ! General Constants 
  DOUBLE PRECISION, PARAMETER :: Pi = 3.14159265 
 
  !*Diffusion-Reaction Model Parameters*! 
 
  ! NOTE base units are: 
  !     length -- um (micrometer 1 um = 10^-6 m) 
  !     time   -- s (second) 
 
  ! ** Diffusion ** 
  DOUBLE PRECISION, PARAMETER :: DiffCoeff_Monomer = 0.16    ! receptor 
  DOUBLE PRECISION, PARAMETER :: EscapeProb = 0.2 !0.1; ! 0.0941  ! receptor 
escape prob 
  DOUBLE PRECISION, PARAMETER :: Syk_DiffCoeff_Monomer = 17  ! um^2/s ?? 
  DOUBLE PRECISION, PARAMETER :: Lyn_DiffCoeff_Monomer = 0.4 ! um^2/s   
Stone et al. Nature Comm 2015 
 
  ! ** Binding (dimerization) 
  ! NOTE UnbindRad_<...> are the Smoldyn-style unbinding radii used to separate the 
products of dissociation; they are normally set to 5x the BR 
  ! Rec-Rec 
  DOUBLE PRECISION, PARAMETER :: BindRad_Dimer = 0.000215 ! (rec-rec) (use 
0.000313  from e2/e3) and use sim area 25 nanometer square for 10. or 75 by 75 for 100 
  DOUBLE PRECISION, PARAMETER :: UnbindRad_RestDimer = BindRad_Dimer * 
5 ! UBR 
  ! Lyn-Rec 
  DOUBLE PRECISION, PARAMETER :: Lyn_BindRad_Dimer = 0.000228519!2.25e-4 
! unique domain binding to iga for sh2 binding BR^2 is scaled up by [100 (iga) 20 (igb)] 
!  (2D Smoldyn: 1.4e-2 /um^2) 
   ! value of BR=1.34e-5 um  (dt=1e-5) obtained by trial and error from Smoldyn to 
match the on-rate of 4.6e-5 /(s#/um^2)  
  double precision, dimension(3), parameter :: LynBindScaleFactor = [1.0, 1.0, 0.5] ![1.0, 
1.0, 0.5]! rel. rates [unique dom, Igalpha(Ph>0), Igbeta(Ph>0)] 
  DOUBLE PRECISION, PARAMETER :: Lyn_UnbindRad_RestDimer = 
Lyn_BindRad_Dimer * 5  ! the * 10 is for activated Ig sites; use it for all Lyn unbinding 
  double precision, parameter :: Lyn_available_fraction = 1 ! 1! only 3.5% of (un-
activated) Lyn is in a state where it is able to bind receptor 
  ! Syk-Rec 
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  DOUBLE PRECISION, PARAMETER :: Syk_BindRad_Dimer =0.00157424 ! 
represents Syk to Igb binding; others scaled in the code (see next line) 
  ! double precision, dimension(2), parameter :: SykBindScaleFactor = [1.0, 3.0] ! relative 
binding rates [Igalpha(Ph>0), Igbeta(Ph>0)] 
  ! TODO change to this 
   double precision, dimension(4), parameter :: SykBindScaleFactor = [1.0/12.0, 1.0, 
1.0/36.0, 1.0/3.0] ! relative binding rates [Igalpha(Ph=1,2), Igbeta(Ph=1,2)] 
  DOUBLE PRECISION, PARAMETER :: Syk_UnbindRad_RestDimer =  
Syk_BindRad_Dimer * 5 ! UBR 0.0000111 
 
  ! ** Dissociation (unbinding) 
  DOUBLE PRECISION, PARAMETER :: Dimer_off_rate= 0.164! Rec-Rec ! "true 
dimer lifetime" based rate from Adam - 0.772 /s (697) , 0.164 /s (Nalm6) 
  DOUBLE PRECISION, dimension(2), PARAMETER :: Lyn_dimer_off_rate = [20.0, 
0.12 ]! Lyn-Rec ! if Lyn_Site = 1, then first off rate, if Lyn_Site = 2, then second off rate 
  DOUBLE PRECISION, dimension(2), PARAMETER :: Syk_dimer_off_rate = [ 2.6, 
0.63]! Syk-Rec ! if Syk_Site = 1, then first off rate, if Syk_Site = 2, then second off rate 
 
  ! ** Phosphorylation ** 
  ! (Receptor) 
  ! Lyn mediated phos rates depend on (Lyn phos state (InActive,Active) x  substrate 
ITAM state (P0,P1) ) 
  ! !! CAUTION !! The rates below have a factor of 10x or 100x for the inactive Lyn case 
over the rate we estimated from Barua et al (4.93e-4 /s - 0.296 /s) 
  !               a factor of ~3-10 is justified by the inverse (Rec-Rec bond count):(total Rec 
count) ratio (i.e. only 10-30% of receptors are bound at all) 
  !               the rate is much higher in another paper (0.5 /s in Weiss and 100 /s in 
Tsourkas ) 
  double precision, dimension(4), parameter :: Phos_rate = [ 30,15,100,50 ] ! /s Lyn 
mediated phos rates by substrate and Lyn state: [IA(P0), IA(P1), A(P0), A(P1)] 
  double precision, dimension(2), parameter :: Phos_off_rate = [ 20, 40 ] ! receptor 
dephos rate (/s) depends on initial state [P1,P2] 
  !double precision, dimension(4), parameter :: Phos_rate = [ 
100*0.000985,100*0.000493,0.296,0.148 ] ! /s Lyn mediated phos rates by substrate and 
Lyn state: [IA(P0), IA(P1), A(P0), A(P1)] 
  !double precision, dimension(2), parameter :: Phos_off_rate = [ 1.0, 2.0 ] ! receptor 
dephos rate (/s) depends on initial state [P1,P2] 
  ! (Syk) 
  DOUBLE PRECISION, dimension(2), PARAMETER :: Syk_Phos_Rate = [100, 200] ! 
[IA,A] Syk-mediated for Unactivated syk & activated syk 
  !  DOUBLE PRECISION, dimension(3), PARAMETER :: Syk_Phos_Rate = [0.0148, 
1.48, 0.5]! [IA,A,self] Syk-mediated for Unactivated syk & activated syk + syk phos by 
itself 
  ! TODO (?) eliminate the self entry from Syk_Phos_Rate 
  ! TODO (?) introduce separate Syk phos by Lyn rate  
  DOUBLE PRECISION, PARAMETER :: Syk_DePhos_Rate = 20.0 ! /s 
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  ! (Lyn) 
  ! !! CAUTION !! The rates below have a factor of 10x or 100x for the inactive Lyn case 
  DOUBLE PRECISION, dimension(2), PARAMETER :: Lyn_Phos_Rate = [30,100] ! 
[100*0.000493, 0.148] ! Lyn mediated [IA,A] 
  DOUBLE PRECISION, PARAMETER :: Lyn_Dephos_Rate = 20.0 !  /s 
 
END MODULE ModelConstants 
 
MODULE ParticleInfo 
 
  INTEGER, PARAMETER :: MaxAgg = 50; ! Largest expected aggregate (chain) length 
  integer, parameter :: MaxContour = 500; ! largest expected number of points defining a 
contour 
  integer, parameter :: MaxDom = 20 ! maximum expected number of domains 
 
  ! Put generally relevant variables here instead of in the Sytem_Information struct 
  ! variables at-large relevant to the state of the system 
 
  integer :: NumDomains,DomainParticleCount(MaxDom) ! number of domains and 
particles in each of them 
 
  ! 
  double precision, dimension(2) :: XBox, YBox, ZBox ! to replace 
System_Info%SimSpace_Boundary 
  integer :: Syk_Pick_Count=0, Syk_Intrinsic_Count=0, & 
       Syk_PickNoReaction=0, Syk_FreePick=0, Syk_BoundPick=0, 
Syk_BoundPick_Unbound=0, & 
       Syk_DiffCall_Count=0, Syk_Diff_Reaction=0, Syk_Diff_NoReaction=0, & 
       Syk_BindCall_Count=0, Syk_Bind_Reaction=0, Syk_Bind_NoReaction=0, & 
       Enc_EligAggCount=0, Enc_BossCount=0 
  integer, dimension(2) :: Enc_SysPhosCount 
  double precision :: SysMinDist = 100 
   
  double precision, parameter :: SykLayerDepth = 1.0e-1 ! thickness of layer close to the 
membrane where Syk could possibly interact with membrane bound species 
 
  ! Variable types specific to the simulation : domains, molecule types (receptor, lyn, syk) 
 
  type Domain ! part of MODULE ParticleInfo 
 
     integer :: ContourLength ; ! number of points in the contour (last point is the same as 
the first) 
     double precision :: Contour(MaxContour,2) ;! contour defining the domain 
     ! double precision :: EscapeProb ! future; for now use a universal value 
     double precision :: Xlim(2) ! max and min x coordinates for quick checking 
     double precision :: Ylim(2) !  
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  end type Domain 
 
 
  TYPE Lyn ! part of MODULE ParticleInfo 
 
     DOUBLE PRECISION :: Position(3) ! (x1,y1) 
     INTEGER :: Receptor_ID !This will be zero if the Lyn is free; 
     INTEGER :: Phos ! 0= unactive, 1 = active 
     INTEGER :: Itam_site ! 0 = unbound, 1 = Igalpha, 2 = Ig beta 
     INTEGER :: Lyn_site  ! 0 = unbound, 1 = Unique, 2 = SH2 
 
  END TYPE Lyn  ! part of MODULE ParticleInfo 
 
 
  TYPE Syk ! part of MODULE ParticleInfo 
 
     DOUBLE PRECISION :: Position(3) ! (x1,y1) 
     INTEGER :: Receptor_ID ! !This will be zero if the Lyn is free 
     INTEGER :: Phos !   0 = unactive, 1 = active (catalytic site is activated by adjacent 
Syk) 
     INTEGER :: Phos_2 ! 0 = unactive, 1 = active (other phos site activated by adjacent 
Lyn) 
     INTEGER :: Itam_site ! 0 = unbound, 1 = Igalpha, 2 = Igbeta 
     INTEGER :: Syk_site  ! 0 = unbound, 1 = bound through 1 SH2 only, 2 = bound 
through 2 SH2s (tandem SH2s) 
 
     ! TODO: check that Syk_site correctly reflects underlying SH2 state 
     !       also check what happens if the ITAM site is phoshporylated AFTER Syk was 
bound 
     ! TODO? Syk type could be merged with the Lyn type 
 
  END TYPE Syk  ! part of MODULE ParticleInfo 
 
 
  TYPE Molecule !  = Receptors ! part of MODULE ParticleInfo 
 
     ! position - current 
     DOUBLE PRECISION :: Position(3) ! (x1,y1,z1) 
     DOUBLE PRECISION :: r_Squared ! r^2 of receptor calculated each pdt step 
 
     DOUBLE PRECISION :: LastOnOffTime ! the time this particle got into the current 
aggregate configuration 
 
     integer :: RecID  ! same as the index, useful for array manipulation 
     integer :: Domain ! domain ID consistent with current position 
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     ! binding configuration 
     INTEGER :: Bond       ! 0 = No bond, 1 = 1 bonds, 2 = 2 bonds  
     INTEGER :: BoundRec_1 ! ID of receptor bound on site 1  
     INTEGER :: BoundRec_2 ! ---------------------------- 2 
 
     ! containing aggregate 
     INTEGER :: Boss           ! ID of the boss receptor of the containing aggregate 
     INTEGER :: Agg_Size       ! size (number of receptors) of the containing aggregate 
 
     ! itam state 
     INTEGER :: Iga_Phos ! 0= unphosphorylated, 1 = singly phosphorylated, 2 = double 
phosphorylated 
     INTEGER :: Iga_Lyn  ! 0= no Lyn, some number is Lyn ID  
     INTEGER :: Iga_Syk  ! 0= no Syk, some number is Syk ID 
     INTEGER :: Igb_Phos ! 0= unphosphorylated, 1 = singly phosphorylated, 2 = double 
phosphorylated 
     INTEGER :: Igb_Lyn  ! 0= no Lyn, some number is Lyn ID 
     INTEGER :: Igb_Syk  ! 0= no Syk, some number is Syk ID 
 
  END TYPE Molecule  ! part of MODULE ParticleInfo 
 
  TYPE SystemInformation ! part of MODULE ParticleInfo 
 
     ! holds the current state of the system for handy access 
     ! 
     ! TODO -- these global variables could simply be declared as such 
     !         within the ParticleInfo module, I am not sure there is 
     !         a need to keep them bundled like this 
 
     CHARACTER(80) :: Save_Directory ! Parameter 
     INTEGER :: Num_Particles ! Parameter , number of receptors -- **duplicated** by 
Total_Rec_Count 
     integer :: Num_Aggregates ! Variable, number aggregates of receptors 
     INTEGER :: AggSizeCount(MaxAgg) ! Variable, keeps track of aggregate size 
distribution 
     DOUBLE PRECISION :: Time_Step !  Parameter 
     DOUBLE PRECISION :: SimSpace_Boundary(6) !  Parameter 
     INTEGER :: Print_Frequency ! Parameter,  
     DOUBLE PRECISION :: Simulation_Time ! Parameter  (?) 
     INTEGER :: Number_Domains ! Parameter 
     DOUBLE PRECISION :: Current_Simulation_Time ! variable, system time 
     LOGICAL :: Reaction  ! flag, indicates whether a reaction occurred in the latest 
update 
     INTEGER :: Total_Rec_Count, Total_Lyn_Count, Total_Syk_Count ! parameter 
(number of spatial particles, bound or not) 
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     INTEGER :: Free_Lyn_Count, Free_Syk_Count ! global state variable 
     INTEGER :: OutputLevel ! Parameter, switch 
 
  END TYPE SystemInformation  ! part of MODULE ParticleInfo 
 
  ! the state of the system is represented by instances of the above defined types 
  ! part of MODULE ParticleInfo 
 
  TYPE(Molecule), POINTER :: RecMolecule(:), RecMoleculeInitial(:), 
RecMoleculePrevious(:) 
  TYPE(Lyn),      POINTER :: LynMolecule(:), LynMoleculeInitial(:), 
LynMoleculePrevious(:) 
  TYPE(SYK),      POINTER :: SykMolecule(:), SykMoleculeInitial(:), 
SykMoleculePrevious(:) 
  type(Domain),   pointer :: Dom(:)     
  TYPE(SystemInformation) :: System_Info 
 
contains !  ! part of MODULE ParticleInfo 
 
  function InDomain(Coord,DomID) result(Inside) 
 
    implicit none 
 
    real*8,    intent(in) :: Coord(2) ! (x,y) to test 
    integer, intent(in) :: DomID    ! index of domain 
    logical :: OnBoundary ! rarely this might be true 
 
    logical :: Inside ! true if in the domain, false otherwise 
 
    integer :: Counter(2) ! counts intersections (left,right) 
    integer :: i1,i2 ! indices of the contour segment 
 
    real*8 :: Xa,Xb,Ya,Yb,XP,YP, Xint 
 
    ! NOTE: contours are assumed closed "by hand"  
    !       i.e. we pretend the first point in the list FOLLOWS the last point 
    !       but they SHOULD NOT be identical  
 
 
    ! check if there is a domain by the index specified 
 
    if (NumDomains < DomID) then 
       write(*,*) ' InDomain: requested domain ',DomID,' does not exist' 
       return 
    end if 
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    ! algorithm idea: 
    ! loop through the segments (12),(23),...(end-1 end),(end 1) 
    ! for segment (ij) check if 
    !     (a) YP between y(i), y(j) 
    !     (b) if (a), is XP to the left of point where the (ij) segment intersects the horizontal 
line y=YP 
    !   --> count the times (a)(b) are true 
    !   (XP,YP) is inside the  contour if and only if* the count is odd 
    ! 
    ! * caveat -- if YP equals one or more of the y(k)'s, special procedure 
 
    ! use these for clarity 
    XP = Coord(1) 
    YP = Coord(2) 
 
    ! count the left (Xint < Xp) and right (xint > Xp) intersections 
    Counter = 0 
 
    ! just in case the point is exactly on the boundary 
    OnBoundary = .false. 
 
    ! default answer is outside 
    Inside = .false. 
 
    do i1=1,Dom(DomID)%ContourLength 
 
       ! index of points in the contour segment 
       i2 = i1+1 
       if (i2>Dom(DomID)%ContourLength) i2=1 
 
       ! xy of the two ends of the segment 
       Xa = Dom(DomID)%Contour(i1,1) 
       Xb = Dom(DomID)%Contour(i2,1) 
 
       Ya = Dom(DomID)%Contour(i1,2) 
       Yb = Dom(DomID)%Contour(i2,2) 
 
       ! check for "YP between Ya,Yb 
       if ( (Yb - YP) * (YP - Ya) > 0 ) then 
 
          ! x coordinate of the intersection  
          Xint = Xa + (Xb - Xa) * (YP - Ya) / (Yb - Ya) 
 
          if(Xint < XP) then 
             Counter(1) = Counter(1) + 1 
          else if (Xint > XP) then 



	 128	

             Counter(2) = Counter(2) + 1 
          else 
             write(*,*) 'InDomain warning -- point ',XP,YP,' is on the boundary of domain 
',DomID 
             OnBoundary = .true. 
          endif 
          ! TODO: also figure out what to do when Ya=Yb or when 
          ! the product (Yb - YP) * (YP - Ya)=0 (i.e. YP = Ya or Yb)  
 
       end if 
 
    end do 
 
    if (modulo(Counter(1),2)==1) Inside = .true. 
 
  end function InDomain ! part of MODULE ParticleInfo 
 
END MODULE ParticleInfo 
 
!! NOTE: Moved subroutines to the end of the file, preferably in the order of 
dependencies 
!!       -- i.e. main program first, then subroutines called by the program, etc.  
 
PROGRAM Pre_BCR 
 
  USE mtmod  ! used to generate random numbers 
 
  USE ParticleInfo 
  USE ModelConstants 
  IMPLICIT NONE 
 
  ! Declare variables local to the main program 
 
  double precision :: DiffSTD, DiffSTD_Lyn, LynDiffSTD, DiffSTD_Syk!! diffusion 
standard deviation 
 
  DOUBLE PRECISION :: UnBindProb, LynBindProb, LynUnBindProb 
  double precision :: PhosProb(2), DePhosProb(2)  ! used for receptors and also for Syk 
(two sites, one act.by Lyn, one by Syk) 
  DOUBLE PRECISION :: SykBindProb, SykUnbindProb ! SykTotalPhosProb 
  double precision :: ProbVec(5), SumProb, Prob_1, Prob_2 ! used in choosing the 
phosphorylation / dephos site 
  integer :: PhosIndex, chosen_site                     ! used in choosing the phosphorylation / 
dephos site 
  integer :: PhosLevel                 ! use to count phosphorylation of ITAMs 
  ! 
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  DOUBLE PRECISION :: r1, r2, x1, y1, z1, w1, w2, rannum, r3  ! Random Numbers 
  INTEGER :: k, i, m, ii, w, lifecount, p, seed, seed_random(8), CurrentSpecies, next,size, 
ic, d, f ! counters 
 
  integer :: iBR, iITAM, BoundRecID, LynRecID, NeighborLynID, NeighborLynState, 
NeighborSykState, NeighborSykID,SykRecID ! 
 
  INTEGER :: iLyn, iSyk, B1_Lyn, B2_Lyn 
  INTEGER :: Boss, Bond_count_i,Bond_count_k, v, c,  NewBoss 
  INTEGER :: NP, Lyn_num, Syk_num, NPT ! number of particles (receptors only /Lyn, 
Syk / total) 
  INTEGER :: printfreq, nd, domainnum, BoundRec_1, BoundRec_2! data print 
frequency, number of frames, number of domains 
  INTEGER :: Current_bond, Bond_Count! Used for select case switching 
  DOUBLE PRECISION :: st, dt, t, pdt! time step, time, system time, timestep per particle  
  DOUBLE PRECISION :: xlimmax, ylimmax,xlimmin,ylimmin, zlimmin, zlimmax ! 
width of simulation (x axis), length (y axis) of simulation 
  DOUBLE PRECISION :: MSD ! MSD calculation  
  CHARACTER*200 fnstring ! Filename string 
  CHARACTER(80) :: outdir ! extra path info for HPC 
  LOGICAL :: Reaction 
  INTEGER*8 :: N, frames, datacut, moves, j,tt,o,y ! Number of moves, number of 
frames, cycles until print is needed, total number of moves, move counter 
 
  integer :: ParticleDomain(10) 
 
!!!!!!! DO NOT USE FILE # 5 (DEFAULT INPUT FILE NUMBER) OR 6 (DEFAULT 
OUTPUT FILE NUMBER) !!!!!! 
  WRITE(*,*) 'FORTRAN Simulation Started' 
 
  ! Open input files 
  OPEN (1,file='BMIP') 
  OPEN (2,file='InitialParticleLoc') 
  OPEN (3,file='DomainLimits') 
  OPEN (112,file = 'InitialParticleLoc_lyn') 
  OPEN (13,file = 'InitialParticleLoc_Syk') 
 
  open(17,file = 'ContourInfo.txt'); ! domain contours 
 
  print *, 'Initializing:' 
 
  print *, '    reading BMIP file..' 
 
  ! Read in values from input file 
  READ(1,107) outdir ! HPC Path info 
  write(*,*) outdir 



	 130	

  READ(1,100) NP,Lyn_num,Syk_num ! # of particles - for now, receptors only -- 
TODO : input lyn, syk counts in BMIP 
  write(*,*) NP,Lyn_num,Syk_num 
  READ(1,101) dt ! Time step [s] 
  READ(1,102) xlimmax,ylimmax,xlimmin,ylimmin, zlimmin, zlimmax ! simulation 
boundaries 
  ! write(*,*) 'Sim boundaries:',xlimmax,ylimmax,xlimmin,ylimmin, zlimmin, zlimmax 
  READ(1,105) printfreq ! data print frequency 
  READ(1,106) t, NumDomains ! simulation length [s], # of domains 
 
  ! write(*,*) t, NumDomains 
 
100 FORMAT(I10,I10,I10) 
101 FORMAT(F10.7) 
102 FORMAT(F7.4,F7.4,F7.4,F7.4,F7.4,F7.4) 
105 FORMAT(I10) 
106 FORMAT(F6.2,I3) 
107 FORMAT(a) 
 
  CLOSE(1) 
 
  ! Set System Info 
  System_Info%Save_Directory = outdir 
  System_Info%Num_Particles = NP ! NP, "Particles" refers to receptors for now 
  System_Info%Total_Rec_Count = NP 
  System_Info%Num_Aggregates = NP 
  System_Info%AggSizeCount = 0 
  System_Info%AggSizeCount(1) = NP 
  System_Info%Time_Step = dt 
  System_Info%SimSpace_Boundary(1) = xlimmax 
  System_Info%SimSpace_Boundary(2) = ylimmax 
  System_Info%SimSpace_Boundary(3) = xlimmin 
  System_Info%SimSpace_Boundary(4) = ylimmin 
  System_Info%SimSpace_Boundary(5) = zlimmin 
  System_Info%SimSpace_Boundary(6) = zlimmax 
  write(*,*) 'Simulation Box boundaries: ' 
  write(*,*) 'x [',xlimmin,xlimmax,']' 
  write(*,*) 'y [',ylimmin, ylimmax,']' 
  write(*,*) 'z [',zlimmin, zlimmax,']' 
  System_Info%Print_Frequency = printfreq 
  System_Info%Simulation_Time = t 
  System_Info%Current_Simulation_Time = 0 
  System_Info%Reaction = .false. 
  System_Info%Total_Lyn_Count = Lyn_num !1592 ! 
  System_Info%Total_Syk_Count = Syk_num !3844 ! 
  System_Info%Free_Lyn_Count = Lyn_num! 1592 ! 
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  System_Info%Free_Syk_Count = Syk_num! 3844 ! 
 
  ! *** domain stuff *** 
 
  allocate(Dom(NumDomains)) ! allocate memory for the required number of domains 
 
  read(17,*) nd  ! number of domains in the contour file 
 
  ! make sure there are enough contours  
  if(nd < NumDomains) then 
     write(*,*) 'Error: ', NumDomains, ' domains specified, found only ',nd 
     return 
  end if 
 
  ! write(*,*) 'There are ',nd,' contours in the input file.' 
  ! write(*,*) 'We are looking for ',NumDomains,' contours..' 
 
  read(17,*) Dom(:)%ContourLength 
 
  do i=1,NumDomains 
 
     write(*,*) 'Domain ',i,' has ', Dom(i)%ContourLength, ' points.' 
 
     read(17,*) Dom(i)%Contour(1:Dom(i)%ContourLength,1) 
     read(17,*) Dom(i)%Contour(1:Dom(i)%ContourLength,2) 
 
     ! shift the domains -- TODO take this out and put shited coordinates into a file 
     Dom(i)%Contour(1:Dom(i)%ContourLength,1) = 
Dom(i)%Contour(1:Dom(i)%ContourLength,1) - 15.0 
     Dom(i)%Contour(1:Dom(i)%ContourLength,2) = 
Dom(i)%Contour(1:Dom(i)%ContourLength,2) - 27.5 
 
 
     Dom(i)%Xlim(1) = minval(Dom(i)%Contour(1:Dom(i)%ContourLength,1)) 
     Dom(i)%Xlim(2) = maxval(Dom(i)%Contour(1:Dom(i)%ContourLength,1)) 
     Dom(i)%Ylim(1) = minval(Dom(i)%Contour(1:Dom(i)%ContourLength,2)) 
     Dom(i)%Ylim(2) = maxval(Dom(i)%Contour(1:Dom(i)%ContourLength,2)) 
 
     write(*,*) '     bounds -- x:',Dom(i)%Xlim(:),' y:',Dom(i)%Ylim 
 
!!$     do ii=1,Dom(i)%ContourLength 
!!$        write(*,*) '     Dom ',i,' point 
',ii,'x=',Dom(i)%Contour(ii,1),'y=',Dom(i)%Contour(ii,2) 
!!$     end do 
 
  end do 
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  close(17) 
 
 
 
  System_Info%OutputLevel = 1 
  ! Suggestion: 1 - one line per actual reaction, format for reading in matlab etc. 
  !             2 - details eg. agg membership 
  !             3 - debug stuff, what particle came in, intermediate steps etc 
 
  ! *** end of inputs  *** 
 
  ! Create output files 
  open(4, file=TRIM(outdir)//'/TrueDimerLifeTimes') ! dimer lifetimes from the actual 
simulation, not the frame rate 
  open(7, file=TRIM(outdir)//'/MSDData')            ! MSD info written to according to 
frame rate, calculated each dt 
  open(8, file=TRIM(outdir)//'/TimeToPhos')         ! time to phosphorylation for each 
dimer 
  open(9, file=TRIM(outdir)//'/PhosLifetimes')      ! Phosphorylation time 
  open(10,file=TRIM(outdir)//'//DomainExitInf')     ! Exit rate info 
 
  ! Output file header lines 
  WRITE(7,*) 'MSD' ! 
  WRITE(4,*) 'Reac  ','  Time Step  ', '  i  ', '  k  ', '  AggSize  ','  AggSize  ','  AggSize  ' 
 
  ! Calculate number of moves 
  N=t/dt 
 
  ! we select from among all rec,lyn,syk, so this is what sets the effective time step 
  NPT = System_Info%Total_Rec_Count + System_Info%Total_Lyn_Count + 
System_Info%Total_Syk_Count 
 
  ! Calculate number of data frames to record and store as an integer 
  frames = INT(printfreq*t)            ! Number of frames to write out 
  datacut = INT((N*NPT)/(printfreq*t))  ! Iterations (steps) one frame 
 
  ! Give dimensions for the arrays and matrices 
  ALLOCATE (RecMolecule(System_Info%Total_Rec_Count)) 
  ALLOCATE (LynMolecule(System_Info%Total_Lyn_Count)) 
  ALLOCATE (SykMolecule(System_Info%Total_Syk_Count)) 
  ALLOCATE (RecMoleculeInitial(System_Info%Total_Rec_Count)) 
  ALLOCATE (LynMoleculeInitial(System_Info%Total_Lyn_Count)) 
  ALLOCATE (SykMoleculeInitial(System_Info%Total_Syk_Count)) 
  ALLOCATE (RecMoleculePrevious(System_Info%Total_Rec_Count)) 
  ALLOCATE (LynMoleculePrevious(System_Info%Total_Lyn_Count)) 
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  ALLOCATE (SykMoleculePrevious(System_Info%Total_Syk_Count)) 
 
  ! Read intial position of Receptor Molecule 
  WRITE(*,*) '    read initial particle positions..' 
  DO k = 1,System_Info%Total_Rec_Count 
 
     READ(2,103) & 
          RecMolecule(k)%Position(1),RecMolecule(k)%Position(2), & 
          RecMolecule(k)%Position(3),RecMolecule(k)%Bond, 
RecMolecule(k)%Agg_Size, & 
          RecMolecule(k)%Boss, RecMolecule(k)%BoundRec_1, 
RecMolecule(k)%BoundRec_2 
 
     RecMolecule(k)%RecID = k ! restored 02-23-2017 
 
 
     ! use modulo to shift all initial positions into the simulation box 
     ! should work if (1) modulo is always non-negative (mod(5,3)=2 and mod(-1,3)=3) 
     !                (2) xlimmax > xlimmin, same for the y bounds 
     RecMolecule(k)%Position(1) = xlimmin + mod( RecMolecule(k)%Position(1), 
xlimmax-xlimmin) 
     RecMolecule(k)%Position(2) = ylimmin + mod( RecMolecule(k)%Position(2), 
ylimmax-ylimmin) 
     RecMolecule(k)%Position(3) = 0 !set z position to zero by hand  
 
 
 
1103 FORMAT(F18.10,F18.10,F18.10,I2,I2,I6,I6,I6) 
 
     if (System_Info%OutputLevel>=1) & 
          write(*,& 
          FMT="('RecID ',I3,' Coord ',3(' ',f10.6),' Bond Size Boss Buddies ',5(I3,' '))"),& 
          k, RecMolecule(k)%Position,& 
          RecMolecule(k)%Bond, RecMolecule(k)%Agg_Size,  RecMolecule(k)%Boss, & 
          RecMolecule(k)%BoundRec_1, RecMolecule(k)%BoundRec_2 
 
 
 
103  FORMAT(F18.16,F18.16,F18.16,I2,I2,I3,I2,I2) 
  END DO 
 
  CLOSE(2) 
 
  ! Reading of lyn paramters 
  WRITE (*,*) 'read lyn positions here' 
  DO iLyn = 1,System_Info%Total_Lyn_Count 
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     READ (112,1104) & 
          LynMolecule(iLyn)%Position(1), LynMolecule(iLyn)%Position(2), & 
          LynMolecule(iLyn)%Position(3), LynMolecule(iLyn)%Receptor_ID 
1104 FORMAT(F18.16,F18.16,F18.16,I2) 
 
     ! use modulo to shift all initial positions into the simulation box 
     ! should work if (1) modulo is always non-negative (mod(5,3)=2 and mod(-1,3)=3) 
     !                (2) xlimmax > xlimmin, same for the y bounds 
     LynMolecule(iLyn)%Position(1) = xlimmin + mod(LynMolecule(iLyn)%Position(1), 
xlimmax-xlimmin) 
     LynMolecule(iLyn)%Position(2) = ylimmin + mod(LynMolecule(iLyn)%Position(2), 
ylimmax-ylimmin) 
     LynMolecule(iLyn)%Position(3) = 0 
 
     LynMolecule(iLyn)%Phos = 0 
 
     LynMolecule(iLyn)%Itam_site = 0 
     LynMolecule(iLyn)%Lyn_site = 0 
 
     ! TODO -- really not much info here, this is just to avoid error messages 
     if (LynMolecule(iLyn)%Receptor_ID > 0) then 
        LynMolecule(iLyn)%Itam_site = 1 
        LynMolecule(iLyn)%Lyn_site = 1 
     endif 
 
 
     if (System_Info%OutputLevel>=1) & 
          write(*,FMT="('LynID ',I3,' Coord ',3(' ',f18.16),' Rec ',i2)"), iLyn, 
LynMolecule(iLyn)%Position,& 
          LynMolecule(iLyn)%Receptor_ID 
  END DO 
  CLOSE(112) 
 
  WRITE (*,*) 'read syk positions here' 
  DO iSyk = 1,System_Info%Total_Syk_Count 
     READ (13,1105) & 
          SykMolecule(iSyk)%Position(1), SykMolecule(iSyk)%Position(2), & 
          SykMolecule(iSyk)%Position(3), SykMolecule(iSyk)%Receptor_ID 
 
     ! use modulo to shift all initial positions into the simulation box 
     ! should work if (1) modulo is always non-negative (mod(5,3)=2 and mod(-1,3)=3) 
     !                (2) xlimmax > xlimmin, same for the y bounds 
     SykMolecule(iSyk)%Position(1) = xlimmin + mod(SykMolecule(iSyk)%Position(1), 
xlimmax-xlimmin) 
     SykMolecule(iSyk)%Position(2) = ylimmin + mod(SykMolecule(iSyk)%Position(2), 
ylimmax-ylimmin) 
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     SykMolecule(iSyk)%Position(3) = - mod(abs(SykMolecule(iSyk)%Position(3)), 
abs(zlimmax-zlimmin)) 
 
     SykMolecule(iSyk)%Itam_site=0; 
     SykMolecule(iSyk)%Syk_site=0; 
 
     if (SykMolecule(iSyk)%Receptor_ID > 0) then 
        ! TODO: this should be updated when the input files are 
        SykMolecule(iSyk)%Itam_site=1; 
        SykMolecule(iSyk)%Syk_site=1; 
     endif 
 
     SykMolecule(iSyk)%Phos = 0 
 
1105 FORMAT(F18.16,F18.16,F19.16,I2) 
     ! NOTE -- because the z coordinate is negative, you need 3 extra characters 
     !         using f18.16 shifts the read and the final decimal is read as the 
     !         next thing, i.e. the bound receptor 
 
     if (System_Info%OutputLevel>=1) & 
          write(*,FMT="('SykID ',I3,' Coord ',3(' ',f18.16),' Rec ',i2)"), iSyk, 
SykMolecule(iSyk)%Position,& 
          SykMolecule(iSyk)%Receptor_ID 
  END DO 
  CLOSE(13) 
 
 
 
  ! TODO: either read the initial positions of Lyn and Syk from a file (eg. two new input 
files) 
  !       or generate random initial positions right here 
  !       one way or another, positions of Lyn and Syk should be set up here 
 
  ! Calculate Diffusion Standard Deviation for each species type 
  DiffSTD = sqrt(2*DiffCoeff_Monomer*dt) ! only one type is wortth pre-calculating 
  DiffSTD_Lyn = sqrt(2*Lyn_DiffCoeff_Monomer*dt) 
  DiffSTD_Syk = sqrt(2*Syk_DiffCoeff_Monomer*dt) 
  !DiffSTD(1) = sqrt(2*DiffCoeff_Monomer*dt) ! Activated receptor: R 
  !DiffSTD(2) = sqrt(2*(DiffCoeff_Monomer/Agg_Size)*dt) ! Resting Receptor: RR 
 
  ! Define Initial Positions and states 
  ! .. as copies of the initial large particle structs 
  RecMoleculeInitial = RecMolecule 
  LynMoleculeInitial = LynMolecule 
  SykMoleculeInitial = SykMolecule 
  ! also the "Previous" set for comparing at periodic printouts 
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  RecMoleculePrevious = RecMolecule 
  LynMoleculePrevious = LynMolecule 
  SykMoleculePrevious = SykMolecule 
 
  ! initial Lyn, Syk and Phos states 
  ! TODO: This only works for the "everything off" initial condition 
  RecMolecule%Iga_Phos = 0 ! 0= unphosphorylated, 1 = singly phosphorylated, 2 = 
double phosphorylated 
  RecMolecule%Iga_Lyn = 0! 0 no Lyn, some number is Lyn ID 
  RecMolecule%Iga_Syk = 0 ! 0 no Syk, some number is Syk ID 
  RecMolecule%Igb_Phos = 0 ! 0= unphosphorylated, 1 = singly phosphorylated, 2 = 
double phosphorylated 
  RecMolecule%Igb_Lyn = 0! ! 0 no Lyn, some number is Lyn ID 
  RecMolecule%Igb_Syk = 0 ! 0 no Syk, some number is Syk ID 
 
  RecMolecule%Domain = 0! assume free 
 
  !Define initial boss 
  RecMolecule%Boss = RecMolecule(:)%Boss ! ?? 
 
  !Initialize the last on-off time 
  RecMolecule%LastOnOffTime = 0 !  
 
  ! ***  identify the initial domain for each particle *** 
  DomainParticleCount = 0 ! set the counte to zero for each domain 
 
  do i=1,NP 
 
     ParticleDomain=0 
 
     do ii=1,NumDomains 
 
        if(InDomain(RecMolecule(i)%Position(1:2),ii)) then 
           ParticleDomain(ii)=1 
           RecMolecule(i)%Domain = ii 
 
        endif 
 
     end do 
 
     if (RecMolecule(i)%Domain>0) & 
          DomainParticleCount(RecMolecule(i)%Domain) = 
DomainParticleCount(RecMolecule(i)%Domain)+1 
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     ! formatted printout of initial receptor positions and containing domains 
     write(*,*) 'RecID=',i,' Coord ',RecMolecule(i)%Position(1:2),' Dom ', 
RecMolecule(i)%Domain, ' InDom',sum(ParticleDomain(1:5)) 
     !write(*,*) RecMolecule(i)%Position(1:2), RecMolecule(i)%Domain 
 
  end do 
 
  write(*,*) 'Total receptors: ', System_Info%Total_Rec_Count,' by domain: ', 
DomainParticleCount(1:NumDomains),& 
       ' untrapped: ', System_Info%Total_Rec_Count - 
sum(DomainParticleCount(1:NumDomains)) 
 
  ! Initialize Time counter 
  st=0 ! Time 
  m=0 ! writing filename counter 
  lifecount=0 ! lifetime update counter 
  p=0 ! print counter 
  ! Initialize dephosphorylation event counter 
  !dephosevent=0 
 
  ! Generate seed from system clock 
  CALL SYSTEM_CLOCK(COUNT=seed) 
  ! Seed grnd()  ! USE THIS FOR SIMULATIONS 
 
  seed=1234 ! fixed seed ensures the same random numers each time, USE FOR 
DEVELOPMENT ONLY 
  if (System_Info%OutputLevel >=1) write(*,*) 'WARNING: Using fixed random 
seed:',seed 
 
  CALL sgrnd(seed) 
 
 
  ! Calculate number of loop steps   
  moves=N*NPT 
  ! Calculate time step per particle 
  pdt=dt/NPT 
 
  ! Main simulation loop 
  DO j=1,moves 
 
     ! Update Time 
     st=j*pdt 
     System_Info%Current_Simulation_Time = st 
 
     ! *** Diffusion & Kinetic Portion of Code ***  
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     ! Pick particle to move/react from among ALL particles, 
     ! i.e. receptors, Lyn, Syk free or bound 
 
     tt = 
System_Info%Total_Rec_Count+System_Info%Total_Lyn_Count+System_Info%Total_
Syk_Count 
     if (System_Info%OutputLevel >=2) write(*,*) 'Main loop pass.. Particle counts:', & 
          'Total:',tt,& 
          'Rec:',System_Info%Total_Rec_Count,& 
          'Lyn:',System_Info%Total_Lyn_Count,& 
          'Syk:',System_Info%Total_Syk_Count 
 
     i = 1 + int(tt * real(grnd(), 16)) ! grnd() is simple "real", we convert it to double -- this 
version is ok on a Mac 
     !i = 1 + int(tt * real(grnd())) ! grnd() is simple "real", we convert it to double -- need 
this for PC ? 
     if (i>tt) i=tt 
 
     if (System_Info%OutputLevel >=2) write(*,*) 'Chosen particle: ', i 
 
     ! [re]set the reaction indicator to false 
     System_Info%Reaction=.false. 
 
     ! *** diffusion, binding, and unbinding (d/b/u) *** 
     if (i <= System_Info%Total_Rec_Count) then ! this branch for receptors 
 
        ! ** Receptor Branch (d/b/u) ** 
        if (System_Info%OutputLevel >=2) write(*,*) 'DBU - Receptor no.',i 
 
 
 
        ! diffusion, binding, and unbinding are implemented by aggregate (bosses only) 
        IF (RecMolecule(i)%Boss == i .AND. RecMolecule(i)%BoundRec_1 == 0) THEN 
 
           ! diffusion also checks for binding (if it occurs, System_Info%Reaction will be set 
to true) 
           CALL ParticleDiffuse(i, DiffSTD / RecMolecule(i)%Agg_Size ) 
 
           ! unbinding only happens for bosses that have not undergone binding 
           IF (RecMolecule(i)%Agg_Size > 1 .and. (System_Info%Reaction .eqv. .false.) ) 
THEN 
 
              rannum = grnd() 
              UnbindProb = Dimer_off_rate * (RecMolecule(i)%Agg_Size - 1) * dt 
 
              IF (rannum <= UnbindProb) THEN ! undimerize 
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                 CALL UnbindReaction(i) 
                 System_Info%Reaction=.true.  
              END IF 
 
           END IF 
 
        END IF ! if this particle is a boss 
 
        ! ** end of Receptor branch for diffusion, binding and unbinding (d/b/u) ** 
 
     else if  (i <= (System_Info%Total_Rec_Count + System_Info%Total_Lyn_Count)) 
then ! Lyn branch 
 
        ! ** Lyn d/b/u/ branch ** 
        iLyn = i-System_Info%Total_Rec_Count 
 
        if (System_Info%OutputLevel >=2) write(*,*) 'DBU - Lyn no.',iLyn 
 
        IF (LynMolecule(iLyn)%Receptor_ID == 0) THEN 
           ! if this Lyn is free, then it diffuses and may bind to a receptor 
           CALL LynDiffuse (iLyn, DiffSTD_Lyn) 
        ELSE 
           ! if bound to a receptor, it may unbind 
           rannum = grnd() 
 
           ! The lyn off-rate depends on how it is bound to the receptor- through it's unique 
domain or SH2 
           UnBindProb=Lyn_dimer_off_rate(LynMolecule(iLyn)%Lyn_site)*dt ! Lyn_site = 
1 (unique domain) OR Lyn_site =2 (SH2 domain) 
 
           IF (rannum <= UnbindProb) THEN ! unbind 
              CALL LynUnbindReaction(iLyn) 
              System_Info%Reaction=.true. 
           END IF 
 
        END IF 
 
        ! ** end of Lyn d/b/u branch ** 
 
     else if  (i <= (System_Info%Total_Rec_Count + System_Info%Total_Lyn_Count + 
System_Info%Total_Syk_Count)) then ! Syk branch 
 
        ! ** Syk d/b/u branch ** 
 
        iSyk = i-System_Info%Total_Rec_Count - System_Info%Total_Lyn_Count 
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        if (System_Info%Reaction .or. System_Info%OutputLevel >=2) write(*,*) 'DBU - 
Syk no.',iSyk 
 
        Syk_Pick_Count = Syk_Pick_Count + 1 
 
        IF (SykMolecule(iSyk)%Receptor_ID == 0) THEN 
           ! if this Syk is free, then it diffuses and may bind to a receptor 
           Syk_FreePick = Syk_FreePick+1 
           CALL SykDiffuse (iSyk, DiffSTD_Syk) 
 
        ELSE 
           ! if this Syk is bound to a receptor, it may unbind (diffusion triggered by the 
aggregate..) 
           ! TODO : check that probabilities are right 
           Syk_BoundPick = Syk_BoundPick+1 
           ! Syk dimer off rate will depend on SH2 binding site (1=Iga, 2=Igb) 
           UnbindProb = Syk_dimer_off_rate(SykMolecule(iSyk)%Syk_site) * dt 
 
           rannum = grnd() 
           IF (rannum <= UnbindProb) THEN ! undimerize 
              CALL SykUnbindReaction(iSyk) 
              System_Info%Reaction=.true. 
              Syk_BoundPick_Unbound = Syk_BoundPick_Unbound + 1 
           END IF 
 
        END IF 
 
        if (System_Info%Reaction .eqv. .false.) Syk_PickNoReaction = 
Syk_PickNoReaction + 1 
 
        ! ** end of Syk d/b/u branch ** 
        ! ** Rec, Lyn, Syk d/b/u branches meet ** 
 
     end if 
 
     ! done with diffusion, binding, unbinding  
     ! may have resulted in aggregate changes (System_Info%Reaction) 
 
     ! next, implement intrinsically triggered processes, OTHER THAN dissociation 
     ! each process type is visited when the PARTICLE THAT IT AFFECTS is chosen 
 
     if (System_Info%Reaction .eqv. .false.) then ! all intrinsic reactions are off if a 
binding/unbinding reaction has occurred 
 
        ! intrinsic reactions next ... 
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        if (i <= System_Info%Total_Rec_Count) then ! intrinsic branch for receptors only 
 
           ! Principle: Intrinsic reactions of receptors are triggered via receptors - 05-18-2017 
           ! ALL receptors picked will go through this branch (not only bosses) 
           ! the only reactions we are concerned with here are receptor phos and dephos 
           ! the rates depend on presence of and state of Lyn on an adjacent receptor 
           ! and of the phos state of each site 
 
           ! ** Compute probabilities for intrinsic reactions ** 
           ! they apply to all receptors, but are treated as mutually exclusive 
           ! with binding and unbinding   
 
           ! NOTE: Lyn and Syk binding are not intrinsic reactions (if Lyn and Syk are 
spatial) 
 
           ! * Phosphorylation  / Dephosphorylation probabilities * 
 
           ! gather some info on the aggregate containing this receptor 
 
           ! the probabilities below are vectors 
           ! default is zero, will enter nonzero values as needed 
           DePhosProb=0 
           PhosProb = 0  
 
           ! Receptor Phosphorylation (Lyn mediated) 
 
           ! 05-18-2017 -- requires presence of Lyn on an immediately ADJACENT receptor 
           !               number of Lyn's found does not matter, only whether 
           !               (1) there is a Lyn (2) there is an activated Lyn 
 
           ! * determine the presence and most active state of a Lyn on adjacent receptors * 
           NeighborLynState=0; ! 0 means no Lyn present 
           do iBR=1,2   ! loop over neighbor to  the left and right 
              BoundRecID = RecMolecule(i)%BoundRec_1 
              if (iBR==2) BoundRecID = RecMolecule(i)%BoundRec_2 
 
              if (BoundRecID > 0) then ! only go on if there is a receptor there 
                 do iITAM=1,2 ! loop over ig alpha ig beta 
                    NeighborLynID=RecMolecule(BoundRecID)%Iga_Lyn 
                    if (iITAM==2)  NeighborLynID=RecMolecule(BoundRecID)%Igb_Lyn 
 
                    if (NeighborLynID>0) then  
                       NeighborLynState = max(NeighborLynState,1) ! a Lyn is present so raise 
state to >=1; Inactive lyn 
                       ! check the state of the Lyn 
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                       if (LynMolecule(NeighborLynID)%Phos >0)  NeighborLynState =2;  
!Active Lyn 
                    endif 
 
                 enddo ! loop over itams 
              endif ! if there is a receptor bound 
           enddo ! loop over neighbors 
 
           if (System_Info%OutputLevel >=3) & 
                write(*,FMT="('RecID ',I3,' Intrinsic --  AggSize ',I3, '  Lyn status ', I2)"),& 
                i,RecMolecule(i)%Agg_Size,NeighborLynState 
 
           ! Phos probabilities depend on ITAM state and activity of neighboring Lyn, and 
the state of the substrate ITAM 
           ! Phos_rate[IA(0 phos), IA(1Phos), A(0 Phos), A(1 Phos)]; IA = Inactive Lyn, A= 
Active Lyn 
           if (NeighborLynState > 0) then ! Lyn is present (Inactive=1, Active=2) 
 
              ! Deal with Igalpha 
              if (RecMolecule(i)%Iga_Phos < 2) PhosProb(1) = 
Phos_rate(2*NeighborLynState - 1 + RecMolecule(i)%Iga_Phos) * dt 
              ! Deal with Igbeta 
              if (RecMolecule(i)%Igb_Phos < 2) PhosProb(2) = 
Phos_rate(2*NeighborLynState - 1 + RecMolecule(i)%Igb_Phos) * dt 
 
              if (System_Info%OutputLevel >=3) then 
                 write(*,FMT="('A RecID ',I3,' Intrinsic --  AggSize ',I3, '  Lyn status ', I2,' 
PhosProb=',2(e10.4,' '))"),& 
                      i,RecMolecule(i)%Agg_Size,NeighborLynState, PhosProb 
 
              endif 
           end if ! if NeighborLynState>0 
 
           ! Dephosphorylation probs are the same for IgA,IgB; depend on phos state (2->1 
or 1->0); docked Lyn or Syk protects 
           ! Dephos probablity [1P, 2P] 
           ! Deal with Igalpha 
           if  (RecMolecule(i)%Iga_Phos >= 1 .AND. RecMolecule(i)%Iga_Lyn == 0 .AND. 
RecMolecule(i)%Iga_Syk == 0) &! tyrosines are not protected 
                DePhosProb(1) = Phos_off_rate(RecMolecule(i)%Iga_Phos) * dt 
           ! Deal with Igbeta 
           if  (RecMolecule(i)%Igb_Phos >= 1 .AND. RecMolecule(i)%Igb_Lyn == 0 .AND. 
RecMolecule(i)%Igb_Syk == 0) &! tyrosines are not protected 
                DePhosProb(2) = Phos_off_rate(RecMolecule(i)%Igb_Phos) * dt  
 
           ! Put the phos/dephos probs into a vector 
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           ProbVec(1:2)=PhosProb !  (1 = Iga+, 2 = Igb+ 
           ProbVec(3:4)=DePhosProb !(3 = Iga-, 4 = Igb-) 
           ProbVec(5)=1-sum(ProbVec(1:4)) ! for the null event included explicitely to have 
a normalized probability vector 
 
           if (NeighborLynState > 0 .and. System_Info%OutputLevel >=3) then 
 
              write(*,FMT="('C RecID ',I3, '  Lyn status ', I2,' PhosProb=[',2(e12.4,' '),']')"),& 
                   i,NeighborLynState, PhosProb 
              write(*,FMT="('  cont  ProbVec = [ ',4(e12.4,' '),']')"), ProbVec 
 
 
           endif 
 
           ! TODOx -- only do the following if the probabilities are not all zero 
           ! choose exactly one outcome (including non-event) 
 
           if(sum(ProbVec)>0) then 
 
              rannum = grnd() 
 
              ! unfortunately this is necessary 
              do while(rannum > 1.0 .and. rannum < 0.0)  
                 rannum = grnd() 
              enddo 
 
              SumProb=0 
              PhosIndex=0 !  
              do while(rannum > SumProb) 
 
                 PhosIndex=PhosIndex+1 
                 SumProb = SumProb + ProbVec(PhosIndex) 
 
              enddo 
              ! TODO - check behavior when rannum=0 or 1 
              ! TODOx perhaps do this for safety -- 
              if(rannum<=0) PhosIndex=1 
              ! if(rannum>=1) PhosIndex=4 
 
              if (NeighborLynState > 0 .and.  System_Info%OutputLevel >=3) then 
                 write(*,FMT="('RecID ',I3,' NLS=',I2,' PV=[',5(e10.4,' '),'] Ind=',I1,' 
SP=',e10.4,' ran=',e10.4)"),& 
                      i,NeighborLynState,ProbVec,PhosIndex,SumProb,rannum 
              endif 
 
              ! p has the chosen event type 
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              if(PhosIndex<5) then  
 
                 if (System_Info%OutputLevel >=3) & 
                      write(*,FMT="('Phos Choice -- PV:',8(f8.6,'  '),' r=',f8.6,' p=',i0,' CP=',e10.6 
)") & 
                      ProbVec, rannum, PhosIndex, SumProb 
 
                 System_Info%Reaction = .true. 
 
                 if      (PhosIndex == 1) then ! Iga Phos 
                    RecMolecule(i)%Iga_Phos =  RecMolecule(i)%Iga_Phos + 1 
                    ! if Iga reached Ph=2, update the binding mode on any bound Syk 
                    if(RecMolecule(i)%Iga_Phos==2 .AND. RecMolecule(i)%Iga_Syk>0 ) & 
                         SykMolecule( RecMolecule(i)%Iga_Syk )%Syk_site = 2  
                 else if (PhosIndex == 2) then ! Igb Phos 
                    RecMolecule(i)%Igb_Phos =  RecMolecule(i)%Igb_Phos + 1 
                    ! if Igb reached Ph=2, update the binding mode on any bound Syk 
                    if(RecMolecule(i)%Igb_Phos==2 .AND. RecMolecule(i)%Igb_Syk>0 ) & 
                         SykMolecule( RecMolecule(i)%Igb_Syk )%Syk_site = 2  
                 else if (PhosIndex == 3) then ! Iga Dephos 
                    RecMolecule(i)%Iga_Phos =  RecMolecule(i)%Iga_Phos - 1 
                 else if (PhosIndex == 4) then ! Igb Dephos 
                    RecMolecule(i)%Igb_Phos =  RecMolecule(i)%Igb_Phos - 1 
                 end if 
 
 
 
                 ! log output 
                 if (System_Info%OutputLevel >=1) then 
                    if (PhosIndex<=2) then ! Phos 
                       write(*,FMT="('T=',f14.8,' RecPhos RecID=',i3,' Ig:',i1,'(',(2i1),') 
Agg=',i3,' Sz=',i0)") & 
                            
System_Info%Current_Simulation_Time,i,PhosIndex,RecMolecule(i)%Iga_Phos,RecMo
lecule(i)%Igb_Phos,& 
                            RecMolecule(i)%Boss,RecMolecule(i)%Agg_Size 
                    else  ! Dephos 
                       write(*,FMT="('T=',f14.8,' RecDeph RecID=',i3,' Ig:',i1,'(',(2i1),') 
Agg=',i3,' Sz=',i0)") & 
                            System_Info%Current_Simulation_Time,i,PhosIndex-
2,RecMolecule(i)%Iga_Phos,RecMolecule(i)%Igb_Phos,& 
                            RecMolecule(i)%Boss,RecMolecule(i)%Agg_Size 
                    endif 
                 endif 
 
              else ! non-event 



	 145	

              endif ! if PhosIndex < 5 
 
           endif ! if sum(ProbVec)>0 
 
           ! * end intrinsic reactions Rec branch * ! 
 
        else if  (i <= (System_Info%Total_Rec_Count + System_Info%Total_Lyn_Count)) 
then ! Lyn branch 
 
           ! ** Lyn phos/dephos branch ** 
           iLyn = i-System_Info%Total_Rec_Count!  ID of Lyn particle 
 
           IF (LynMolecule(iLyn)%Phos == 0) then !  phos site on lyn is 0 --> check for 
phos 
 
              ! EXPLANATION: Lyn phos must be mediated by another Lyn 
              !              substrate and activator Lyn's must be *bound to adjacent receptors* 
              !              the substrate Lyn is the one we are updating  
 
              if (LynMolecule(iLyn)%Itam_site> 0) then ! require lyn bound to a receptor 
 
                 ! phos possible only if nearby lyns are present 
 
                 ! id of receptor this Lyn is bound to 
                 LynRecID = LynMolecule(iLyn)%Receptor_ID 
 
                 ! * determine the presence and most active state of a Lyn on adjacent receptors 
* 
                 NeighborLynState=0; ! 0 means no Lyn present 
                 do iBR=1,2   ! loop over neighbor to  the left and right 
                    BoundRecID = RecMolecule(LynRecID)%BoundRec_1 
                    if (iBR==2) BoundRecID = RecMolecule(LynRecID)%BoundRec_2 
 
                    if (BoundRecID > 0) then ! only go on if there is a receptor there 
                       do iITAM=1,2 ! loop over ig alpha ig beta 
                          NeighborLynID=RecMolecule(BoundRecID)%Iga_Lyn 
                          if (iITAM==2)  NeighborLynID=RecMolecule(BoundRecID)%Igb_Lyn 
 
                          if (NeighborLynID>0) then  
                             NeighborLynState = max(NeighborLynState,1) ! a Lyn is present so 
raise state to >=1; Inactive lyn 
                             ! check the state of the Lyn 
                             if (LynMolecule(NeighborLynID)%Phos >0)  NeighborLynState =2;  
!Active Lyn 
                          endif 
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                       enddo ! loop over itams 
                    endif ! if there is a receptor bound 
                 enddo ! loop over neighbors  
 
 
                 if (NeighborLynState > 0) then ! if Lyn is present.. 
 
 
                    rannum = grnd() ! implement phos with appropriate rate 
 
                    if (System_Info%OutputLevel >=3) & 
                         write(*,FMT="('LynID ',I3,' RecID ',I3,' NLS=',I2,' Pr=',e10.4,' 
ran=',e10.4)"),& 
                         iLyn,LynRecID,NeighborLynState,Lyn_Phos_Rate(NeighborLynState) * 
dt,rannum 
 
                    if (rannum <= Lyn_Phos_Rate(NeighborLynState) * dt) then 
 
                       LynMolecule(iLyn)%Phos=1 ! phosphorylation 
 
                       System_Info%Reaction = .true. 
 
                       if (System_Info%OutputLevel >=1) & ! log output for Lyn 
phosphorylation 
                            write(*,FMT="('T=',f14.8,' LynPhos LynID=',i3,' RecID=',i3,' Agg=',i3,' 
Sz=',i0)") & 
                            System_Info%Current_Simulation_Time,iLyn,LynRecID,& 
                            RecMolecule(LynRecID)%Boss,RecMolecule(LynRecID)%Agg_Size 
 
                    endif ! if phos happens 
                 endif ! if activator present 
 
              endif ! if this Lyn is receptor bound 
 
           ELSE !phos site on lyn is >0 -- dephos possible 
 
              rannum = grnd() 
 
              if (rannum <= Lyn_Dephos_Rate * dt ) then 
 
                 LynMolecule(iLyn)%Phos = 0 ! lyn dephosphorylation 
 
                 System_Info%Reaction = .true. 
 
                 if (System_Info%OutputLevel >=1) & ! log output for Lyn de-phosphorylation 
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                      write(*,FMT="('T=',f14.8,' LynDeph LynID=',i3,' RecID=',i3,' Agg=',i3,' 
Sz=',i0)") & 
                      System_Info%Current_Simulation_Time,iLyn,LynRecID,& 
                      RecMolecule(LynRecID)%Boss,RecMolecule(LynRecID)%Agg_Size 
              endif 
 
           END if ! if Lyn phos state=0 
 
           ! * end intrinsic reactions Lyn branch * 
 
        else if  (i <= (System_Info%Total_Rec_Count + System_Info%Total_Lyn_Count + 
System_Info%Total_Syk_Count)) then ! Syk branch 
 
           ! ** intrinsic reactions (phos/dephos) Syk branch ** 
           Syk_Intrinsic_Count = Syk_Intrinsic_Count + 1 
 
           ! ID of the Syk being updated  
           iSyk = i-System_Info%Total_Rec_Count - System_Info%Total_Lyn_Count 
 
           ! SykPhos reactions..  
 
           !IF (SykMolecule(iSyk)%Phos == 0 .OR. SykMolecule(iSyk)%Phos_2 == 0 ) then 
!  phos site on syk is 0 --> check for phos 
 
           ! EXPLANATION: Syk phos possible only if 
           ! (1) nearby syks are present (on adjacent receptors, similar to Lyn) or 
           ! (2) syk_site = 2 (tandem SH2 domains are engaged with an ITAM) 
           ! both require substrate docked on receptor 
           ! boh lead to the same outcome, so probs will be added up 
 
           if (SykMolecule(iSyk)%Itam_site > 0) then ! is syk bound to a receptor ? 
              ! id of receptor this Syk is bound to 
              SykRecID = SykMolecule(iSyk)%Receptor_ID 
           else 
              ! Syk is free -- may still dephosphorylate  
              SykRecID = 0 
           endif 
 
 
           ! Syk has two phosphorylation sites: one is phosphorylated by Syk (phos) and the 
other by Lyn (phos_2) 
           !     there is a dephos. rate for each site 
           !   
           ! Calculate the probability of each [de]phosphorylation 
           ! (1) If site 1 is active --> DePhos1 
           !                inactive --> Phos1; may happen only if NeighborSykState > 0 
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           ! 
           ! (2) If site 2 is active --> DePhos2 
           !               inactive  --> Phos 2; may happen only if NeighborLynState > 0 
           ! 
           ! NOTE: we avoid implementing two transformations in the same update, so we 
           !       assign / split the (very small) prob. of both sites changing states back to 
           !       the prob. of one site changing 
 
           ! re-use PhosProb(2), DePhosProb(2), ProbVec(5) 
           PhosProb=0 
           DePhosProb=0 
           ProbVec=0 
 
 
           if (SykMolecule(iSyk)%Phos == 1) then 
              ! dephos - prob > 0 only if the site is active 
              DePhosProb(1) = Syk_DePhos_Rate * dt ! approximates 1 - exp( - 
Syk_DePhos_Rate * dt ) 
           else 
              ! phos 1 - site must be inactive and there must be an adjacent Syk 
              ! * determine the presence and most active state of a Syk on adjacent receptors * 
              NeighborSykState=0; ! 0 means no adjacent Syk present 
              if (SykRecID > 0) then  
                 do iBR=1,2   ! loop over neighbor to  the left and right 
                    BoundRecID = RecMolecule(SykRecID)%BoundRec_1 
                    if (iBR==2) BoundRecID = RecMolecule(SykRecID)%BoundRec_2 
 
                    if (BoundRecID > 0) then ! only go on if there is a receptor there 
                       do iITAM=1,2 ! loop over ig alpha ig beta 
                          NeighborLynID=RecMolecule(BoundRecID)%Iga_Syk 
                          if (iITAM==2)  NeighborLynID=RecMolecule(BoundRecID)%Igb_Syk 
 
                          if (NeighborSykID>0) then 
                             NeighborSykState = max(NeighborSykState,1) ! a Syk is present so 
raise state to >=1; Inactive Syk 
                             ! check the state of the Syk 
                             if (SykMolecule(NeighborSykID)%Phos >0)  NeighborSykState =2;  
!Active Syk 
                          endif 
 
                       enddo ! loop over itams 
                    endif ! if there is a receptor bound 
                 enddo ! loop over neighbors 
                 if (NeighborSykState>0) PhosProb(1) = Syk_Phos_Rate(NeighborSykState) * 
dt  
                 ! end Syk phos site 1 inactive case 
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              endif ! if SykRecID > 0  
           endif ! if Syk phos site 1 is active .. 
 
           if (SykMolecule(iSyk)%Phos_2 == 1) then 
              ! dephos - prob > 0 only if the site is active 
              DePhosProb(2) = Syk_DePhos_Rate * dt 
           else 
              ! phos 2 - site must be inactive and there must be an adjacent Lyn 
              ! * determine the presence and most active state of a Lyn on adjacent receptors * 
              ! LynRecID = LynMolecule(iLyn)%Receptor_ID! TODO change this to 
SykRecID  
              NeighborLynState=0; ! 0 means no Lyn present 
              if (SykRecID > 0 ) then  
                 do iBR=1,2   ! loop over neighbor to  the left and right 
                    BoundRecID = RecMolecule(SykRecID)%BoundRec_1 
                    if (iBR==2) BoundRecID = RecMolecule(SykRecID)%BoundRec_2 
 
                    if (BoundRecID > 0) then ! only go on if there is a receptor there 
                       do iITAM=1,2 ! loop over ig alpha ig beta 
                          NeighborLynID=RecMolecule(BoundRecID)%Iga_Lyn 
                          if (iITAM==2)  NeighborLynID=RecMolecule(BoundRecID)%Igb_Lyn 
 
                          if (NeighborLynID>0) then  
                             NeighborLynState = max(NeighborLynState,1) ! a Lyn is present so 
raise state to >=1; Inactive lyn 
                             ! check the state of the Lyn 
                             if (LynMolecule(NeighborLynID)%Phos >0)  NeighborLynState =2;  
!Active Lyn 
                          endif 
 
                       enddo ! loop over itams 
                    endif ! if there is a receptor bound 
                 enddo ! loop over neighbors 
                 if (NeighborLynState>0) PhosProb(2) = Lyn_Phos_Rate(NeighborLynState) * 
dt 
              endif ! if SykRecID>0 
              ! end Syk phos site 2 inactive case 
           endif ! if Syk phos site 2 is inactive ... 
 
           ! Put the phos/dephos probs into a vector 
           ProbVec(1:2)=PhosProb !  (1 = Phos1, 2=Phos2 
           ProbVec(3:4)=DePhosProb !(3 = DePhos1, 4 = DePhos2) 
           ProbVec(5)=1-sum(ProbVec(1:4)) ! for the null event included explicitely to have 
a normalized probability vector 
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           if(sum(ProbVec(1:4))>0) then ! only go through the random selection if there is at 
least one nozero prob 1:4 
 
              ! Choose the outcome using a random number 
              rannum = grnd() 
              ! hopefully this is not necessary this time 
              !do while(rannum > 1.0 .and. rannum < 0.0)  
              !   rannum = grnd() 
              !enddo 
 
              SumProb=0 
              PhosIndex=0 ! set to zero by default - note that the null event is 5 
              do while(rannum > SumProb .and. PhosIndex < 5) 
 
                 PhosIndex=PhosIndex+1 
                 SumProb = SumProb + ProbVec(PhosIndex) 
 
              enddo 
 
              ! TODO - check behavior when rannum=0 or 1 
              ! do this for safety -- strange ran() leads to null event 
              if(rannum<=0 .or. rannum>=1) PhosIndex=5  ! 5 is the null event here 
 
              ! endif 
 
              !***** 
 
              if (PhosIndex==1) then 
                 SykMolecule(iSyk)%Phos = SykMolecule(iSyk)%Phos + 1 ! phos and update 
              elseif (PhosIndex==2) then 
                 SykMolecule(iSyk)%Phos_2 = SykMolecule(iSyk)%Phos_2 + 1 ! phos and 
update 
              elseif (PhosIndex==3) then 
                 SykMolecule(iSyk)%Phos = SykMolecule(iSyk)%Phos - 1 ! dephos and 
update 
              elseif (PhosIndex==4) then 
                 SykMolecule(iSyk)%Phos_2 = SykMolecule(iSyk)%Phos_2 - 1 ! dephos and 
update 
              endif 
 
              System_Info%Reaction = .true. 
 
 
                 if (System_Info%OutputLevel >=1) then   !phosindex 1 = phos1, !phosindex 2 
= phos2, 
                   if (PhosIndex<=2) then ! Phos 



	 151	

write(*,FMT="('T=',f14.8,' SykPhos SykID=',i3,' RecID=',i3,' Phos',i1,' Phos1:',i1,' 
Phos2:',i1,' Agg=',i3,' Sz=',i0)") & 
                            
System_Info%Current_Simulation_Time,iSyk,SykRecID,PhosIndex,SykMolecule(iSyk)
%Phos, & 
                            SykMolecule(iSyk)%Phos_2, 
RecMolecule(SykRecID)%Boss,RecMolecule(SykRecID)%Agg_Size 
                else if (PhosIndex<=4) then! Dephos 
write(*,FMT="('T=',f14.8,' SykDeph SykID=',i3,' RecID=',i3,' Phos',i1,' Phos1:',i1,' 
Phos2:',i1,' Agg=',i3,' Sz=',i0)") & 
                            System_Info%Current_Simulation_Time,iSyk,SykRecID,PhosIndex-
2,SykMolecule(iSyk)%Phos, & 
                            
SykMolecule(iSyk)%Phos_2,RecMolecule(SykRecID)%Boss,RecMolecule(SykRecID)
%Agg_Size 
                    endif 
                 endif 
 
 
              !endif ! if Syk is bound to an ITAM 
 
           endif ! if sum(Prob(1:4) > 0 ) 
 
           ! * end intrinsic reactions Syk branch * 
 
        end if ! i <= receptor count 
 
     end if ! System_Info%Reaction .eqv. .false. (i.e. if no reaction happened) 
 
     ! ** done with intrinsic reactions for Rec,Lyn,Syk ** 
 
     !  write(*,*) '.. done with intrinsic reactions for all' 
 
     ! *** Record Keeping Portion of Code ***  
 
     p=p+1 ! counts the iterations from the last frame export 
 
     ! Check if the data should be written to a file 
     IF (p == datacut) THEN 
 
!        write(*,*) 'T=',System_Info%Current_Simulation_Time,& 
!             'Syk Picks:',Syk_Pick_Count, ' P-NoRxn:',Syk_PickNoReaction, & 
!             ' Bind:', Syk_BindCall_Count, ' B-Rxn:', Syk_Bind_Reaction, ' B-NoRxn:', 
Syk_Bind_NoReaction,& 
!             ' NoRxn-AvBossCt:',Enc_BossCount,float(Enc_BossCount)/float( 
Syk_Bind_NoReaction),& 
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!             ' NoRxn-
AvEligAggCt:',Enc_EligAggCount,float(Enc_EligAggCount)/float(Syk_Bind_NoReacti
on),& 
!             ' NoRxn-SysPhosSiteCt:',Enc_SysPhosCount,float(Enc_SysPhosCount)/ 
float(Syk_Bind_NoReaction),& 
!             ' MinDist:',sqrt(SysMinDist), sqrt(SysMindist) / Syk_BindRad_Dimer 
        !     '  --free:' , Syk_FreePick,  ' Intrinsic:',Syk_Intrinsic_Count 
        !  ' -- bound:', Syk_BoundPick, ' --bound-unbound:',Syk_BoundPick_Unbound, & 
 
        ! set all the above counters to zero 
        Syk_Pick_Count=0 
        Syk_Intrinsic_Count=0 
        Syk_PickNoReaction=0 
        Syk_FreePick=0 
        Syk_BoundPick=0 
        Syk_BoundPick_Unbound=0 
        Syk_DiffCall_Count=0 
        Syk_Diff_Reaction=0 
        Syk_Diff_NoReaction=0 
        Syk_BindCall_Count=0 
        Syk_Bind_Reaction=0 
        Syk_Bind_NoReaction=0 
        Enc_EligAggCount=0 
        Enc_BossCount=0 
        Enc_SysPhosCount=0 
        ! min distance - set to very large to begin the next pass 
        SysMinDist=100 
 
        if (System_Info%OutputLevel >=2) write(*,*) ' Printout ',m+1,'..' 
 
        DO ii=1,NP 
           RecMolecule(ii)%r_Squared=& 
                (RecMolecule(ii)%Position(1)-RecMoleculePrevious(ii)%Position(1))**2 + & 
                (RecMolecule(ii)%Position(2)-RecMoleculePrevious(ii)%Position(2))**2 
        END DO 
 
        ! Calculate OVERALL MSD (MSDx and MSDy too?) for specific dt 
        MSD=SUM(RecMolecule(:)%r_Squared)/NP 
 
        ! Keep the current state for comparison during the next printout 
        RecMoleculePrevious = RecMolecule 
        LynMoleculePrevious = LynMolecule 
        SykMoleculePrevious = SykMolecule 
 
        ! Restart dt counter 
        m=m+1 
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        ! generate filename for data storage 
        write(fnstring, fmt="(i0)") m 
        open(77, file=trim(outdir)//'/Data_Files/ParticleData.'//trim(fnstring)) 
        WRITE(77,*) 'Rows: Particle Columns: Particle #, x, y, dx, dy, d, B1, & 
             & B2, Bond, Agg_size, Boss' 
        !& PhosEvent, # dephosphorylation events, RR Dimer Attempts, RR Dimmer 
Successes' 
        !WRITE(88,*) 'r^2 (Combined x and y moves), species'  
        ! Write data to file 
        DO i = 1,NP 
           write(77,fmt="(& 
                'RecID=',i4,' XYZ=[',3(f7.4,' '),'] BoundRec:',i3,' ',i3,' BondCt:',i1,' 
AggBoss:',i4,& 
                ' AggSz:',i2,' LynBound:',2(I3,' '),' SykBound:',2(I3,' '),' Ph:',i1,' ',i1,' 
Dom:',i2)")& 
                i,RecMolecule(i)%Position,& 
                
RecMolecule(i)%BoundRec_1,RecMolecule(i)%BoundRec_2,RecMolecule(i)%Bond,& 
                RecMolecule(i)%Boss, RecMolecule(i)%Agg_Size,& 
                RecMolecule(i)%Iga_Lyn, RecMolecule(i)%Igb_Lyn, 
RecMolecule(i)%Iga_Syk, RecMolecule(i)%Igb_Syk, & 
                RecMolecule(i)%Iga_Phos, RecMolecule(i)%Igb_Phos,  & 
                RecMolecule(i)%Domain 
 
        END DO 
 
        CLOSE(77) 
 
 
        ! also write out Lyn and Syk 
        ! -- in separate files (..?) 
        ! * Lyn output * 
        open(77, file=trim(outdir)//'/Data_Files/ParticleData_Lyn.'//trim(fnstring)) 
        write(77,*) 'Lyn section: LynID, x, y, z, RecID (if bound), Phos, ITAM site 
(Iga/Igb), Lyn site (none/UD/SH2)' 
        do i=1, Lyn_num 
           write(77,fmt="('LynID=',i4,' XYZ=[',f8.4,' ',f8.4,' ',f8.4,'] Rec=',i4,' Ph=',i1,' Site 
Ig:',i1,' Lyn:',i1)")& 
                
i,LynMolecule(i)%Position,LynMolecule(i)%Receptor_ID,LynMolecule(i)%Phos,& 
                LynMolecule(i)%Itam_site,LynMolecule(i)%Lyn_site 
        end do 
        close(77) 
 
        ! * Syk output * 
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        open(77, file=trim(outdir)//'/Data_Files/ParticleData_Syk.'//trim(fnstring)) 
        write(77,*) 'Syk section: SykID, x, y, z, RecID (if bound), Phos, ITAM site 
(Iga/Igb), Syk site (none/one SH2/two SH2)' 
        do i=1, Syk_num 
           write(77,fmt="('SykID=',i4,' XYZ=[',f8.4,' ',f8.4,' ',f8.4,'] Rec=',i4,' Ph=',i1,' Site 
Ig:',i1,' Syk:',i1)")& 
                
i,SykMolecule(i)%Position,SykMolecule(i)%Receptor_ID,SykMolecule(i)%Phos,& 
                SykMolecule(i)%Itam_site,SykMolecule(i)%Syk_site 
        end do 
        close(77) 
 
 
 
 
        ! dimer lifetimes from the actual simulation, not the frame rate 
        open(11,file=trim(outdir)//'/AggSizeCounts')  
 
        WRITE(11,*) 
System_Info%Current_Simulation_Time,System_Info%Num_Aggregates, 
System_Info%AggSizeCount 
 
        WRITE(7,*) MSD ! This is the mean square displacement from frame to frame 
        p=0 
 
        if (System_Info%OutputLevel >=2) write(*,*) '  done with printouts' 
 
     END IF 
 
     ! END SELECT 
     ! write(*,*) 'Loop' 
 
  END DO 
  CLOSE(4) 
  CLOSE(7) 
  CLOSE(8) 
  CLOSE(9) 
  CLOSE(10) 
  CLOSE(11) 
 
  WRITE(*,*) 'FORTRAN Simulation Ended'  
 
END PROGRAM Pre_BCR 
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!***********************************************************************
************************************************************************
********** 
 
SUBROUTINE LynDiffuse (iLyn, MyDiffSTD) 
  ! 
  ! 
  USE ParticleInfo 
  USE ModelConstants 
  USE mtmod 
  ! 
  ! 
  IMPLICIT NONE 
  ! 
  !! Declare variables 
  INTEGER, INTENT (IN) :: iLyn ! chosen particle 
  DOUBLE PRECISION, INTENT (IN) :: MyDiffSTD !   diffusion standard deviation 
  DOUBLE PRECISION :: r1, r2, w1, w2, x1, y1,z1, rannum 
  integer :: CanReact=0 
  ! 
  ! 
  !! randomly make a trajectory for particles using mtmod.f90 for random numbers !!! 
  !! Generate random number & Normally distribute random number ! 
http://www.taygeta.com/random/gaussian.html 
  !!* Generate x move 
  r1=2*grnd()-1 
  r2=2*grnd()-1 
  !! Check unit circle, if not in reject and try again 
  w1=r1*r1+r2*r2 
  DO WHILE (w1 > 1) 
     !! Generate random number again 
     r1=2*grnd()-1 
     r2=2*grnd()-1 
     !! Unit circle check 
     w1=r1*r1+r2*r2 
  END DO 
  w2=sqrt((-2*log(w1))/w1) 
  !! Normally distributed random # for distance 
  x1=r1*w2 
  ! 
  !! Generate y move 
  r1=2*grnd()-1 
  r2=2*grnd()-1 
  !! Check unit circle, if not in reject and try again 
  w1=r1*r1+r2*r2 
  DO WHILE (w1 > 1) 
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     !! Generate random number again 
     r1=2*grnd()-1 
     r2=2*grnd()-1 
     !! Unit circle check 
     w1=r1*r1+r2*r2 
  END DO 
  w2=sqrt((-2*log(w1))/w1) 
  y1=r2*w2 
  ! 
  !! Account for diffusion coefficient based on species type 
  y1=y1*MyDiffSTD 
  x1=x1*MyDiffSTD 
  z1=0        ! Lyn does not move in the z direction 
 
 
 
  ! call periodic boundary condition 
!!$  CALL 
PeriodicBC(LynMolecule(iLyn)%Position(1)+x1,LynMolecule(iLyn)%Position(2)+y1, 
& 
!!$       LynMolecule(iLyn)%Position(3)+z1, LynMolecule(iLyn)%Position(1), & 
!!$       LynMolecule(iLyn)%Position(2),LynMolecule(iLyn)%Position(3)) 
 
  CALL PeriodicBC2(& 
       LynMolecule(iLyn)%Position(1)+x1,LynMolecule(iLyn)%Position(2)+y1, & 
       LynMolecule(iLyn)%Position(1), LynMolecule(iLyn)%Position(2)) 
 
  LynMolecule(iLyn)%Position(3)=0 
 
  ! activated Lyn is always able to bind  
  CanReact = LynMolecule(iLyn)%Phos 
  ! un-activated Lyn reacts with a probability 
  if ( LynMolecule(iLyn)%Phos==0) then 
     rannum=grnd() 
     if (rannum <= Lyn_available_fraction) CanReact=1 
  endif 
 
  if(CanReact==1) CALL LynBindReaction(iLyn) 
 
END SUBROUTINE LynDiffuse 
 
!***********************************************************************
************************************************************************
***************** 
 
SUBROUTINE LynBindReaction(iLyn) 
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  USE ParticleInfo 
  USE ModelConstants 
  USE mtmod 
 
  IMPLICIT NONE 
 
  INTEGER, INTENT(IN) ::  iLyn ! specific particle 
  INTEGER :: receptor_ID, num, add_lyn, Free_Lyn_Site_Count, LuckyRec, 
LuckyRecIndex 
  DOUBLE PRECISION :: distsq, rannum 
  ! arrays to hold aggregate info Lyn_Agg is actually a list of receptors 
  INTEGER,DIMENSION(MaxAgg) :: Lyn_Agg=0 ! list of receptors in a given 
aggregate 
 
  real, dimension( 5, MaxAgg  ) :: array_1=0 ! 5 x NumParticles - probabilities of binding 
or similar 
  real, dimension( 5 * MaxAgg ) :: array_2=0, CumSum=0 ! same as above but vector 
  integer :: d, CurrentParticle, ip, k, h, j, u,m_lyn,rv,cv, i 
  integer :: AggRecCount ! number of receptors on the current aggregate 
 
  if (System_Info%OutputLevel >=3) write(*,*) 'LynBind begin -- LynID ',iLyn 
 
  System_Info%Reaction = .FALSE. 
 
  ! Check for reaction 
  do k = 1,System_Info%Num_Particles ! loop over particles (receptor monomers) 
 
     ! Check if one of available receptors is close enough to react 
 
     if (RecMolecule(k)%Boss == k) then 
 
        !  need to know how many free Lyn binding domains on this aggregate 
 
        AggRecCount = RecMolecule(k)%Agg_Size  ! number of receptors on this 
aggregate 
        !AggRecCount = count( RecMolecule(:)%Boss==k ) ! this should match %AggSize 
 
        Lyn_Agg = pack(RecMolecule(:)%RecID, RecMolecule(:)%Boss==k)! holding the 
recs in an aggregate 
 
        !count each type of binding- each receptor- whether general lyn binding is possible 
through Iga, Igb 
        if (System_Info%OutputLevel >=3) then 
           WRITE(*,*) ' Lyn_Agg has size ',size(Lyn_Agg),' AggRecCount=',AggRecCount 
           do j=1,size(Lyn_Agg) 
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              write(*,*) 'entry',j,':',Lyn_Agg(j) 
           end do 
        endif 
 
        !count each type of binding- each receptor- whether general lyn binding is possible 
through Iga, Igb 
 
        array_1 = 0! sets all the elements to 0 
 
        Do j = 1,AggRecCount ! this follows the receptor 
           ! TODO: merge branches (1,2,3) and (4,5) in a() 
           ! This block will check for the Igalpha branch 
           if (RecMolecule(Lyn_Agg(j))%Iga_Lyn == 0 .and. 
RecMolecule(Lyn_Agg(j))%Iga_Syk == 0) then ! This will check if Iga has any Lyn at 
all 
              if (RecMolecule(Lyn_Agg(j))%Iga_Phos == 0) then 
                 array_1(1,j)= LynBindScaleFactor(1)! unique domain on lyn binds to site 1 on 
receptors 
              else if (RecMolecule(Lyn_Agg(j))%Iga_Phos == 1) then ! 
                 array_1(2,j)=  LynBindScaleFactor(2) 
              else 
                 array_1(3,j)=  LynBindScaleFactor(2)!(RecMolecule(Lyn_Agg(j))%Phos == 
2)the probability of binding to a twice phosphorylated itams sould be twice as much 
              end if 
           end if 
           ! This block will check for Igbeta branch 
           if (RecMolecule(Lyn_Agg(j))%Igb_Lyn == 0 .and. 
RecMolecule(Lyn_Agg(j))%Igb_Syk == 0) then !This will check if Igb has any Lyn at all 
              if (RecMolecule(Lyn_Agg(j))%Igb_Phos == 1) then 
                 array_1(4,j)= LynBindScaleFactor(3)! unique domain on lyn binds to site 1 on 
receptors 
              else if(RecMolecule(Lyn_Agg(j))%Igb_Phos == 2)  then 
                 array_1(5,j)=  LynBindScaleFactor(3) !if (RecMolecule(Lyn_Agg(j))%Phos 
== 2) 
              end if 
           end if 
 
        End Do 
 
        ! Decide 
        distsq=&  ! Calculate the distance between lyn and receptor 
             (RecMolecule(k)%Position(1)-LynMolecule(iLyn)%Position(1))**2+& 
             (RecMolecule(k)%Position(2)-LynMolecule(iLyn)%Position(2))**2 
 
        if (distsq <= SUM(array_1(:,1:AggRecCount))*Lyn_BindRad_Dimer**2) THEN    
! Lyn is within binding radius 
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           ! implement the binding .. 
           array_1 = array_1/SUM(array_1(:,1:AggRecCount)) 
           array_2(1:5*AggRecCount) = 
reshape(array_1(:,1:AggRecCount),(/5*AggRecCount/)); !array 3 hold them in one 
dimensional vector 
 
           CumSum(1)= array_2(1) 
           Do i= 2,5*AggRecCount 
              CumSum(i)= array_2(i)+CumSum(i-1) 
           End do 
 
 
           rannum = grnd() 
           m_lyn = 0 
           Do u = 1,5*AggRecCount 
              if (rannum <= CumSum(u)) then 
                 m_lyn = u ! element in array 2 
                 exit 
              end if 
           End do 
 
 
           cv= ceiling(REAL(m_lyn)/5)! this will give receptor number 
 
           rv= mod(m_lyn,5) ! this will give row number 
           if (rv == 0) rv=5! this is to make sure that row vector is never 0 
 
           ! ** updates for successful binding go here ** 
 
           ! update the Lyn and the receptor 
 
           LynMolecule(iLyn)%Receptor_ID = Lyn_Agg(cv) 
           LynMolecule(iLyn)%Position = RecMolecule(Lyn_Agg(cv))%Position ! may not 
need this - set Position to zero instead ? 
 
           ! identify the ITAM and binding mode 
           If (rv <= 3) then ! Iga .. 
              RecMolecule(Lyn_Agg(cv))%Iga_Lyn = iLyn 
              LynMolecule(iLyn)%Itam_site = 1        ! Lyn is bound to Igalpha 
              If (rv == 1) then 
                 LynMolecule(iLyn)%Lyn_site  = 1        ! Lyn is bound through it's unique 
domain 
              else 
                 LynMolecule(iLyn)%Lyn_site  = 2 
              end if                                  ! Lyn is bound through it's SH2 domain 
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           else if (rv >= 4) then ! Igb  
              RecMolecule(Lyn_Agg(cv))%Igb_Lyn = iLyn 
              LynMolecule(iLyn)%Itam_site = 2        ! Lyn is bound to Igbeta 
              LynMolecule(iLyn)%Lyn_site  = 2        ! Lyn is ALWAYS bound to Igbeta 
through it's SH2 domain 
           end if 
 
           ! log output 
           if (System_Info%OutputLevel >=1) & 
                write(*,FMT="('T=',f14.8,' LynBind LynID=',i3,'.',i1,' RecID=',i3,'.',i1,' 
Agg=',i3,' Sz=',i0,' Free Lyn ',i0)") & 
                System_Info%Current_Simulation_Time,iLyn,LynMolecule(iLyn)%Lyn_site, 
Lyn_Agg(cv),LynMolecule(iLyn)%Itam_site,& 
                RecMolecule(Lyn_Agg(cv))%Boss,& 
                RecMolecule(Lyn_Agg(cv))%Agg_Size,System_Info%Free_Lyn_Count 
 
           ! free Lyn count 
           System_Info%Free_Lyn_Count = System_Info%Free_Lyn_Count - 1 
 
           ! flag to end the update pass 
           System_Info%Reaction = .true. 
 
        end if ! if receptor is within BR 
 
     end if ! only if there are free lyn binding domains on the aggregate 
 
     if (System_Info%Reaction) exit ! break the loop / so only one binding reaction  
 
  end do ! loop over all receptors  
 
  if (System_Info%OutputLevel >=3) write(*,*) 'LynBind end' 
 
 
END SUBROUTINE LynBindReaction 
!***********************************************************************
************************************************************************
***************** 
 
 
SUBROUTINE LynUnbindReaction(iLyn) 
 
  USE ParticleInfo 
  USE ModelConstants 
  USE mtmod 
 
  IMPLICIT NONE 
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  INTEGER, INTENT (IN) :: iLyn 
  DOUBLE PRECISION :: placeangle, x1, y1, z1, rannum 
  INTEGER :: Receptor_bound_lyn 
 
 
  ! receptor lyn is bound to 
  Receptor_bound_lyn = LynMolecule(iLyn)%Receptor_ID 
 
  ! make sure the current position is set to that of the [boss of] the binding receptor 
  LynMolecule(iLyn)%Position = 
RecMolecule(RecMolecule(Receptor_bound_lyn)%Boss)%Position 
 
  placeangle = 2*Pi*grnd() 
 
  x1 = cos(placeangle)*Lyn_UnbindRad_RestDimer 
  y1 = sin(placeangle)*Lyn_UnbindRad_RestDimer 
  z1 = 0 
 
 
  !this will update lyn position 
!!$  CALL 
PeriodicBC(LynMolecule(iLyn)%Position(1)+x1,LynMolecule(iLyn)%Position(2)+y1, 
& 
!!$       LynMolecule(iLyn)%Position(3)+z1, LynMolecule(iLyn)%Position(1), & 
!!$       LynMolecule(iLyn)%Position(2),LynMolecule(iLyn)%Position(3)) 
  CALL 
PeriodicBC2(LynMolecule(iLyn)%Position(1)+x1,LynMolecule(iLyn)%Position(2)+y1, 
& 
       LynMolecule(iLyn)%Position(1), LynMolecule(iLyn)%Position(2)) 
   
  ! Update Receptor first 
  If (LynMolecule(iLyn)%Itam_site==1) then ! if lyn was on Igalpha 
     RecMolecule(Receptor_bound_lyn)%Iga_Lyn = 0 ! update Igalpha on receptor 
  else if (LynMolecule(iLyn)%Itam_site==2) then  ! if lyn was on Igbeta 
     RecMolecule(Receptor_bound_lyn)%Igb_Lyn = 0 ! update Igbeta on receptor 
  End if 
 
  ! update lyn now 
  LynMolecule(iLyn)%Receptor_ID = 0 
  System_Info%Free_Lyn_Count = System_Info%Free_Lyn_Count + 1 
  LynMolecule(iLyn)%Itam_site = 0  ! 0 = unbound, 1 = Igalpha, 2 = Igebta 
  LynMolecule(iLyn)%Lyn_site = 0   ! 0 = unbound, 1 = Unique domain, 2 = SH2 
 
 
!!$  if (System_Info%OutputLevel >=1) & 
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!!$       write(*,*) 'LynUnBi:  LynID=',iLyn, 
'RecID=',Receptor_bound_lyn,'Boss=',RecMolecule(Receptor_bound_lyn)%Boss 
 
  if (System_Info%OutputLevel >=1) & 
       write(*,FMT="('T=',f14.8,' LynUnBi LynID=',i3,' RecID=',i3,' Agg=',i3,' Sz=',i0 ' 
Free Lyn ',i0)") & 
       System_Info%Current_Simulation_Time,iLyn, 
Receptor_bound_lyn,RecMolecule(Receptor_bound_lyn)%Boss,& 
       RecMolecule(Receptor_bound_lyn)%Agg_Size,System_Info%Free_Lyn_Count 
 
END SUBROUTINE LynUnbindReaction 
 
!***********************************************************************
************************************************************************
***************** 
 
 
SUBROUTINE ParticleDiffuse(i, DiffSTD) 
 
  ! box boundaries are in ParticleInfo, no need to give them again 
  ! the particle number (NP) is also in ParticleInfo, under System_Info%Num_Particles 
 
  USE ParticleInfo 
  USE ModelConstants 
  USE mtmod 
 
  ! TODO: (optional) update the position of Lyn and Syk bound to receptors being 
updated  
 
 
  IMPLICIT NONE 
 
  ! Declare variables 
  INTEGER, INTENT (IN) :: i ! chosen particle 
  DOUBLE PRECISION, INTENT (IN) :: DiffSTD ! diffusion standard deviation 
  !double precision, intent (in) :: xlimmax,ylimmax,xlimmin,ylimmin, st 
  !double precision, intent (in) :: st 
  INTEGER :: ParticleSpecies, BoundBud, domainnum, 
Initial_domain_check,Suspected_domain,k 
  DOUBLE PRECISION :: r1, r2, w1, w2, x1, y1, rannum, escape_probability 
  double precision :: NewCoord(3) ! tentative new position of the particle (replaces 
MoveDistance) 
  integer :: DomainEscape ! will be true (+1) if a comain escape occurs 
  integer :: NewDomain, EscapeAttempt,DomainChange 
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!!! randomly make a trajectory for particles using mtmod.f90 for random numbers !!! 
  !! Generate random number & Normally distribute random number ! 
http://www.taygeta.com/random/gaussian.html 
  !* Generate x move 
  r1=2*grnd()-1 
  r2=2*grnd()-1 
  ! Check unit circle, if not in reject and try again 
  w1=r1*r1+r2*r2 
  DO WHILE (w1 > 1) 
     ! Generate random number again  
     r1=2*grnd()-1 
     r2=2*grnd()-1 
     ! Unit circle check 
     w1=r1*r1+r2*r2 
  END DO 
  w2=sqrt((-2*log(w1))/w1) 
  ! Normally distributed random # for distance 
  x1=r1*w2 
 
  ! Generate y move 
  r1=2*grnd()-1 
  r2=2*grnd()-1 
  ! Check unit circle, if not in reject and try again 
  w1=r1*r1+r2*r2 
  DO WHILE (w1 > 1) 
     ! Generate random number again  
     r1=2*grnd()-1 
     r2=2*grnd()-1 
     ! Unit circle check 
     w1=r1*r1+r2*r2 
  END DO 
  w2=sqrt((-2*log(w1))/w1) 
  y1=r2*w2 
 
  ! Account for diffusion coefficient based on species type 
  y1=y1*DiffSTD 
  x1=x1*DiffSTD 
 
 
   
  ! New position (tentative for now) 
  ! Before dealing with the domains, we need to satisfy the periodic BC 
  call PeriodicBC2(& 
       RecMolecule(i)%Position(1)+x1,RecMolecule(i)%Position(2)+y1,& 
       NewCoord(1),NewCoord(2)); 
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  NewCoord(3)=0 ! no move off the membrane for a receptor 
   
  ! Check if receptor is in free space and whether it is anticipated to move ---> into a 
domain OR another free space 
 
  Initial_domain_check = RecMolecule(i)%Domain   ! Could be domains --> 0, 1, 2 ,3, 4, 
5 
 
  DomainEscape  = 0; ! assume no domain change 
  EscapeAttempt = 0; !  
  DomainChange  = 0; ! zero if domain ID does not change in the end 
 
  ! 4 possibilities: 
  ! 1.      domain -> free space   : Reflective BC, if escaped then periodic BC 
  ! 2.      domain -> domain       : No BC 
  ! 3.  free space -> domain       : No boundary check required 
  ! 4.  free space -> free space   : Periodic BC 
 
 
  if (RecMolecule(i)%Domain>0) then 
     ! Case 1+2 .. particle is in a domain before the move 
 
     if (InDomain(NewCoord(1:2),Initial_domain_check)) then 
        ! Case 2: stays in the domain, all is well 
     else 
        ! wants to leave the domain 
        ! used to call DomainEscape() here 
        EscapeAttempt = 1 
 
        if(grnd()<=EscapeProb) then 
           ! Case 1: move will be accepted - escape success 
           DomainEscape = 1 
        else 
           ! move is rejected, particle should be reflected off the boundary 
           NewCoord(1:2) = NewCoord(1:2) - 2*[x1,y1]; 
           ! paranoid check on whether the reflected move would constitute an escape 
           if(InDomain(NewCoord(1:2),Initial_domain_check)) then 
              ! the reflected move is in the domain, hence accepted 
           else 
              ! the particle is stuck in a narrow section 
              NewCoord = RecMolecule(i)%Position 
           endif 
        endif 
 
        ! at this point, we have a definite new position (NewCoord) 
        ! which is verified within the simulation box (did BC first thing) 
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        ! the particle may have escaped its initial domain in which case it is 
        ! assumed in free space ; we need to take care of the case when this 
        ! new position immediately puts it into another domain 
 
     endif! new position in domain or not 
 
     ! at this point: 
     ! NewCoord has the accepted new position 
     ! DomainEscape = 1 if and only if the particle was allowed to leave its initial domain 
     ! EscapeAttempt = 1 iff the proposed move was to leave (accepted or not) 
 
     if(DomainEscape==1) then 
        DomainChange=1 
        ! update domain info to free  
        where(RecMolecule(:)%Boss==i) 
           RecMolecule(:)%Domain = 0 
        end where 
     endif 
 
 
     ! all of the above was for when the particle was initially in a domain 
  endif 
 
  ! NewCoord is valid now whether the particle was free or not and escaped or not 
  ! time to update the position for this receptor and its subordinates 
  where(RecMolecule(:)%Boss==i) 
     RecMolecule(:)%Position(1)=NewCoord(1) 
     RecMolecule(:)%Position(2)=NewCoord(2); 
  end where 
  RecMolecule(:)%Position(3)=0 ! receptors never leave the membrane 
 
  ! still need to check if the new position puts the particle in a NEW domain 
  if(Initial_domain_check == 0 .or. DomainEscape > 0 ) then 
 
     NewDomain=0; 
 
     do k=1,NumDomains 
 
        if ((NewCoord(1) >= Dom(k)%Xlim(1))  .AND. (NewCoord(1)<= 
Dom(k)%Xlim(2))  & 
             .AND.(NewCoord(2) >= Dom(k)%Ylim(1)) .AND. 
(NewCoord(2)<=Dom(k)%Ylim(2)))  then 
 
           if(InDomain(NewCoord(1:2),k)) NewDomain=k 
 
        endif 
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     end do 
 
     if (NewDomain>0) then 
 
        if (Initial_domain_check > 0 .and. NewDomain == Initial_domain_check) then 
           write(*,*) 'Error - domain escape and not' 
        else 
           ! legit trapping in NewDomain 
           DomainChange = 1 
           ! update domain info to free  
           where(RecMolecule(:)%Boss==i) 
              RecMolecule(:)%Domain = NewDomain 
           end where 
        endif 
 
     endif 
 
  endif ! if initially free or escaped 
 
  ! now 
  ! DomainEscape=1 if escape from a domain 
  ! DomainChange=1 if escaped and/or entered a new domain 
  ! NewDomain is correct in both cases above 
 
 
  if (DomainChange==1) then 
 
     DomainParticleCount(Initial_domain_check) =  
DomainParticleCount(Initial_domain_check) - RecMolecule(i)%Agg_Size 
     DomainParticleCount(NewDomain) =  DomainParticleCount(NewDomain) + 
RecMolecule(i)%Agg_Size 
 
     if (System_Info%OutputLevel >=1) & 
          write(*,FMT="(& 
          'T=',f14.8,' DomChg  Rec1 =',i3,& 
          ' Dom ',I1,' --> ',I1,& 
          ' Boss ',i3,' AggSize ',i2,' DomCounts:', 5(i3,' '))") & 
          System_Info%Current_Simulation_Time,i,Initial_domain_check,NewDomain,& 
          RecMolecule(i)%Boss,RecMolecule(i)%Agg_Size,& 
          DomainParticleCount(1:NumDomains) 
  endif 
 
 
  CALL BindReaction(i) 
 
END SUBROUTINE ParticleDiffuse 
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!***********************************************************************
************************************************************************
************ 
SUBROUTINE ReflectiveBC (i,x1,y1) 
 
  USE ParticleInfo 
  USE mtmod 
  USE ModelConstants 
 
  IMPLICIT NONE 
 
 
  DOUBLE PRECISION, INTENT(IN) :: x1, y1 
  INTEGER, INTENT(IN) :: i ! Current receptor 
  DOUBLE PRECISION :: x, y ! Proposed move 
 
 
  x=RecMolecule(i)%Position(1)-x1 
  y=RecMolecule(i)%Position(2)-y1 
 
  RecMolecule(i)%Position(1) = x 
  RecMolecule(i)%Position(2) = y 
 
END SUBROUTINE  ReflectiveBC 
 
 
!***********************************************************************
************************************************************************
************ 
 
SUBROUTINE PeriodicBC2(x,y,xnew,ynew) 
 
  USE ParticleInfo 
 
  ! 2-d verions ot be used for membrane bound species (Rec, Lyn) 
   
  IMPLICIT NONE 
 
  DOUBLE PRECISION, INTENT(IN) :: x, y ! Proposed new x, Proposed new y 
  DOUBLE PRECISION, INTENT(OUT) :: xnew, ynew ! New BC satisfied coordinates 
 
  DOUBLE PRECISION ::  xmax, ymax, ymin, xmin 
 
  ! Limits on x and y coordinates defined by system boundaries 
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  xmin=System_Info%SimSpace_Boundary(3) 
  xmax=System_Info%SimSpace_Boundary(1) 
  ymin=System_Info%SimSpace_Boundary(4) 
  ymax=System_Info%SimSpace_Boundary(2) 
 
 
  ! Check & Apply Periodic Boundary Condition 
 
  ! Check x move 
  IF (x < xmin) THEN ! Add width of box 
     xnew=x+(xmax-xmin) 
  ELSE IF (x > xmax) THEN ! Subtract width of box 
     xnew=x-(xmax-xmin) 
  ELSE ! remains unchanged 
     xnew=x 
  END IF 
 
  ! Check y move 
  IF (y < ymin) THEN ! Add length of box 
     ! Define Y New Coordinate 
     ynew=y+(ymax-ymin) 
  ELSE IF (y > ymax) THEN ! Subtract length of box 
     ! Define Y New Coordinate 
     ynew=y-(ymax-ymin) 
  ELSE ! remains unchanged 
     ! Define Y New Coordinate 
     ynew=y 
  END IF 
 
END SUBROUTINE PeriodicBC2 
 
SUBROUTINE PeriodicBC3(x,y,z,xnew,ynew,znew) 
 
  ! to be used for 3d species (Syk) 
  ! NOTE: (1) BC in the z-direction are REFLECTIVE 
  !       (2) the simulation boundaries in z are 0 (top) and -Depth (bottom) 
   
  USE ParticleInfo 
 
  IMPLICIT NONE 
 
  DOUBLE PRECISION, INTENT(IN) :: x, y, z ! Proposed new x, Proposed new y 
  DOUBLE PRECISION, INTENT(OUT) :: xnew, ynew, znew ! New BC satisfied 
coordinates 
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  DOUBLE PRECISION ::  xmax, ymax, ymin, xmin, zmin, zmax 
 
  ! Limits on x and y coordinates defined by system boundaries 
 
  xmin=System_Info%SimSpace_Boundary(3) 
  xmax=System_Info%SimSpace_Boundary(1) 
  ymin=System_Info%SimSpace_Boundary(4) 
  ymax=System_Info%SimSpace_Boundary(2) 
 
  zmin = System_Info%SimSpace_Boundary(5) 
  zmax = System_Info%SimSpace_Boundary(6) 
 
  ! Check & Apply Periodic Boundary Condition 
 
  ! Check x move 
  IF (x < xmin) THEN ! Add width of box 
     xnew=x+(xmax-xmin) 
  ELSE IF (x > xmax) THEN ! Subtract width of box 
     xnew=x-(xmax-xmin) 
  ELSE ! remains unchanged 
     xnew=x 
  END IF 
 
  ! Check y move 
  IF (y < ymin) THEN ! Add length of box 
     ! Define Y New Coordinate 
     ynew=y+(ymax-ymin) 
  ELSE IF (y > ymax) THEN ! Subtract length of box 
     ! Define Y New Coordinate 
     ynew=y-(ymax-ymin) 
  ELSE ! remains unchanged 
     ! Define Y New Coordinate 
     ynew=y 
  END IF 
 
 
  ! Check z move only if z > 0 
  ! the z (vertical) direction must have REFLECTIVE BC 
 
  if (z/=0) then 
 
     ! reflect by zmin 
     if (z<zmin) then 
        znew=zmin + (zmin - z) 
     end if 
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     if (z>zmax) then 
        znew=zmax - (z-zmax) 
     end if 
 
  endif 
 
END SUBROUTINE PeriodicBC3 
 
!***********************************************************************
************************************************************************
************ 
 
 
SUBROUTINE BindReaction(i) 
 
  ! TODO : add collision check and binding with Lyn and Syk 
 
  ! the particle number (NP) and system time (st) are available in ParticleInfo, 
  ! under System_Info%Current_Simulation_Time and System_Info%Num_Particles 
 
  USE ParticleInfo 
  USE ModelConstants 
  USE mtmod 
 
  IMPLICIT NONE 
 
  INTEGER, INTENT(IN) ::  i ! specific particle 
 
  ! LOGICAL :: Reaction -- using System_Info%Reaction 
  INTEGER :: Bond_Count, Bond_Count_i, k, Bond_count_k 
  INTEGER :: Agg1(System_Info%Num_Particles), 
Agg2(System_Info%Num_Particles),& 
       AggT(System_Info%Num_Particles), size, next, d, f 
  INTEGER :: NewBoss, NewAggSize, CurrentParticle, ip, c 
  INTEGER :: OldAggSize_i, OldAggSize_k 
  DOUBLE PRECISION :: distsq 
  double precision :: BeginTime_i, BeginTime_k ! begin times of the merging aggregates 
 
 
 
 
  if (System_Info%OutputLevel >= 3) write(*,*) & 
       'BindReaction begin: st:',System_Info%Current_Simulation_Time,& 
       ' NP:', System_Info%Num_Particles,' i=',i, & 
       ' size:', RecMolecule(i)%Agg_Size 
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  System_Info%Reaction = .FALSE. 
  !Reaction = .FALSE. 
 
 
  ! Check for reaction 
  DO k = 1,System_Info%Num_Particles ! loop over particles (receptor monomers) 
 
     ! Check if one of available monomers is close enough to react 
     IF (k /= i .AND. RecMolecule(k)%Boss == k ) THEN 
 
        ! Calculate distance between particle of interest and compared particle 
        distsq=sqrt((RecMolecule(k)%Position(1)-RecMolecule(i)%Position(1))**2+& 
             (RecMolecule(k)%Position(2)-RecMolecule(i)%Position(2))**2) 
 
        Bond_count_i = RecMolecule(i)%Bond 
        Bond_count_k = RecMolecule(k)%Bond 
 
        IF (distsq <= BindRad_Dimer) THEN  !LR-RL 
 
           System_Info%Reaction = .TRUE. 
 
           OldAggSize_k = RecMolecule(k)%Agg_Size 
           OldAggSize_i = RecMolecule(i)%Agg_Size 
           NewAggSize  = RecMolecule(i)%Agg_Size + RecMolecule(k)%Agg_Size 
 
           BeginTime_k = RecMolecule(k)%LastOnOffTime 
           BeginTime_i = RecMolecule(i)%LastOnOffTime 
 
 
 
           System_Info%Num_Aggregates = System_Info%Num_Aggregates - 1 
 
           System_Info%AggSizeCount( OldAggSize_k) = 
System_Info%AggSizeCount(OldAggSize_k) - 1 
           System_Info%AggSizeCount( OldAggSize_i) = 
System_Info%AggSizeCount(OldAggSize_i) - 1 
           System_Info%AggSizeCount(NewAggSize) = 
System_Info%AggSizeCount(NewAggSize) + 1 
 
           if (System_Info%OutputLevel >=3) & 
                write(*,*) 'BindReaction - success ',i,k 
 
 
        END IF 
 
        f = RecMolecule(i)%Agg_Size ! same as OldAggSize_i 



	 172	

 
 
 
        if(System_Info%Reaction)then 
 
           ! Go down chain k  
           CurrentParticle=k ! k is the binding partner we just found 
           AggT(1)=CurrentParticle 
           d = RecMolecule(k)%Agg_Size ! same as OldAggSize_k 
           DO ip=2,OldAggSize_k 
              CurrentParticle=RecMolecule(CurrentParticle)%BoundRec_2 
              AggT(ip) = CurrentParticle 
           END DO 
 
           ! Go down chain i 
           CurrentParticle=i ! i is the originally chosen particle 
           Agg1(1)=CurrentParticle 
           DO ip=2,OldAggSize_i 
              CurrentParticle=RecMolecule(CurrentParticle)%BoundRec_2 
              Agg1(ip) = CurrentParticle 
           END DO 
 
           next=CurrentParticle 
 
           ! Make the bond: 
           ! head of partner chain (k) 
           ! connected to tail of incoming chain (next) 
           RecMolecule(k)%BoundRec_1 = next ! head of partner chain front link 
           RecMolecule(next)%BoundRec_2 = k ! tail of incoming chain back link 
 
 
           ! increment bond counts  
           RecMolecule(k)%Bond = RecMolecule(k)%Bond + 1 
           RecMolecule(next)%Bond = RecMolecule(next)%Bond + 1 
 
           ! Particle(k)%Position(:)=Particle(i)%Position(:) ! position of partner particle -- 
why only this one ??? 
 
           !Particle(i)%Agg_Size = Particle(i)%Agg_Size+Particle(k)%Agg_Size ! agg size 
update -- why only this one ??? 
 
           ! update the entire merged aggregate 
           WHERE (RecMolecule(:)%Boss == i .OR. RecMolecule(:)%Boss == k) 
              RecMolecule(:)%Position(1) = RecMolecule(i)%Position(1) 
              RecMolecule(:)%Position(2) = RecMolecule(i)%Position(2) 
              RecMolecule(:)%Position(3) = RecMolecule(i)%Position(3) 
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              RecMolecule(:)%Agg_Size = NewAggSize 
              RecMolecule(:)%Boss = i 
              RecMolecule(:)%LastOnOffTime = System_Info%Current_Simulation_Time 
           END WHERE 
 
!!$           if (System_Info%OutputLevel>=1) then 
!!$              write(*,*) 'Time',System_Info%Current_Simulation_Time,& 
!!$                   'RecBind ','RecID ',i,k,& 
!!$                   'OldAggSizes ', OldAggSize_i, OldAggSize_k, & 
!!$                   'NewAggSize ',NewAggSize 
 
           if (System_Info%OutputLevel >=1) & 
                write(*,FMT="(& 
                'T=',f14.8,' RecBind Rec1 =',i3,' Rec2 =',i3,& 
                ' Aggs [',I3,',',I3,'] --> [',I3,']',& 
                ' Size ',i2,'+',i2,'=',i2,' AggCount ',i3,' Dom ',i1,' ',i1)") & 
                System_Info%Current_Simulation_Time,k,next,i,k,i,& 
                OldAggSize_i,OldAggSize_k,NewAggSize, 
System_Info%Num_Aggregates,& 
                RecMolecule(i)%Domain,RecMolecule(k)%Domain 
 
        endif ! if a reaction occurs 
 
 
     end if ! if k is a boss 
 
     if (System_Info%Reaction) exit ! break the loop / so only one reaction per mini update 
 
  end do ! loop over possible reaction partners (k) 
 
  if(System_Info%Reaction) then 
 
 
     ! check the aggregate by walking down the list 
     CurrentParticle=i; 
     do 
        if (System_Info%OutputLevel >= 2) write(*,1003) CurrentParticle, & 
             RecMolecule(CurrentParticle)%BoundRec_1,  
RecMolecule(CurrentParticle)%BoundRec_2,& 
             RecMolecule(CurrentParticle)%Bond,& 
             RecMolecule(CurrentParticle)%Agg_Size, 
RecMolecule(CurrentParticle)%Boss,& 
             RecMolecule(CurrentParticle)%Position(1:2) 
1003    format('    ',6I5,2F8.3) 
        if( RecMolecule(CurrentParticle)%BoundRec_2==0) exit 
        CurrentParticle = RecMolecule(CurrentParticle)%BoundRec_2    
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     end do 
 
  else 
 
     if (System_Info%OutputLevel >=3) write(*,*) 'BindReaction -- no reaction this time' 
 
  endif 
 
  if (System_Info%OutputLevel >= 3) WRITE(*,*) 'BindReaction end' 
 
  ! output for "dimer lifetime" record  
  if(System_Info%Reaction)then 
 
     ! we need to output enough information to completely define the aggregates that 
     ! are ending with this reaction 
 
     ! Metadata (for each ending aggregate): Length, Begin and end times, Boss ID 
     ! List of member receptors beginning with the Boss, on a single line 
 
     WRITE(4,*) 'Bind', System_Info%Current_Simulation_Time,& 
          'Ksize',OldAggSize_k,'kagg',    AggT(1:OldAggSize_k),& 
          'Isize',OldAggSize_i,'oldiagg', Agg1(1:OldAggSize_i) 
 
     ! post mortem aggregate entry: Length, Boss, DescendantBoss1, DescendantBoss2, 
BeginTime, EndTime, <Receptor list> 
     write(4,*), OldAggSize_i,i,k,0, BeginTime_i, 
System_Info%Current_Simulation_Time, Agg1(1:OldAggSize_i) 
     write(4,*), OldAggSize_k,i,k,0, BeginTime_k, 
System_Info%Current_Simulation_Time, AggT(1:OldAggSize_k) 
 
 
     !WRITE(4,*) 'Bind', System_Info%Current_Simulation_Time, i, k, OldAggSize1, 
OldAggSize2, NewAggSize 
  end if 
 
 
END SUBROUTINE BindReaction 
 
 
!***********************************************************************
************************************************************************
************ 
 
SUBROUTINE UnbindReaction(i) 
 
  ! i identifies the aggregate the breaks (the boss of it is receptor i) 
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  USE ParticleInfo 
  USE ModelConstants 
  USE mtmod 
 
  IMPLICIT NONE 
 
  integer, intent(in) :: i 
 
  DOUBLE PRECISION :: placeangle, x1, y1, z1, rannum 
  INTEGER :: LigandCount, domainnum, BoundBuddy 
  INTEGER :: BondToBreak, BondToBreakPlusOne, Break_Particle_1, 
Break_Particle_2, CurrentParticle, ip 
  INTEGER :: Agg2(System_Info%Num_Particles), 
Agg3(System_Info%Num_Particles),ic 
  integer :: OldAggSize,NewAggSize1,NewAggSize2, NewBoss 
  integer :: OldDomain,NewDomain,iDom 
  double precision :: BeginTime 
  double precision :: OldPosition(3),NewPosition(3) 
 
  ! INTEGER, PARAMETER :: OutputLevel = 0 
 
 
  if (System_Info%OutputLevel >= 2) write(*,1002) i,RecMolecule(i)%Agg_Size 
1002 format('UnBindReaction Input: Agg:',I3,' size ',I3); 
 
  BeginTime = RecMolecule(i)%LastOnOffTime 
 
  ! check the aggregate by walking down the list 
  CurrentParticle=i; 
  do 
     if (System_Info%OutputLevel >= 2) write(*,1003) CurrentParticle, & 
          RecMolecule(CurrentParticle)%BoundRec_1,  
RecMolecule(CurrentParticle)%BoundRec_2,& 
          RecMolecule(CurrentParticle)%Bond,& 
          RecMolecule(CurrentParticle)%Agg_Size, RecMolecule(CurrentParticle)%Boss,& 
          RecMolecule(CurrentParticle)%Position  
1003 format('    ',6I5,2F8.3) 
     if(RecMolecule(CurrentParticle)%BoundRec_2==0) exit 
     CurrentParticle = RecMolecule(CurrentParticle)%BoundRec_2    
  end do 
 
  !Break_bond = floor(rannum*(Agg_Size-1))  
  !k = Break_bond 
 
  ! This will give me bond to break 
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  rannum = grnd() 
  BondToBreak = ceiling(rannum*(RecMolecule(i)%Agg_Size-1)) 
 
  if (System_Info%OutputLevel >= 2) write(*,*) 'UnBindReaction: Agg ',i,' size 
',RecMolecule(i)%Agg_Size, ' break at ', BondToBreak 
  !write(*,*) 'Breaking bond',BondToBreak,' of ', RecMolecule(i)%Agg_Size-1 
 
  ! walk down the chain k steps 
 
  CurrentParticle=i 
  Agg2(1)=CurrentParticle 
  if (System_Info%OutputLevel >= 2) write(*,*) '   Chain start ',CurrentParticle,& 
       ' bonds: ',RecMolecule(CurrentParticle)%BoundRec_1, 
RecMolecule(CurrentParticle)%BoundRec_2 
  DO ip=2,RecMolecule(i)%Agg_Size 
     CurrentParticle=RecMolecule(CurrentParticle)%BoundRec_2 
     Agg2(ip) = CurrentParticle 
     if (System_Info%OutputLevel >= 2) write(*,*) '          next ',CurrentParticle,& 
          ' bonds: ',RecMolecule(CurrentParticle)%BoundRec_1, 
RecMolecule(CurrentParticle)%BoundRec_2 
     !WRITE(*,*) 'LOOP' 
  END DO 
 
 
  ! identifiers of the particles where the chain breaks 
  Break_Particle_1 = Agg2(BondToBreak) 
  BondToBreakPlusOne = BondToBreak + 1 
  Break_Particle_2 = Agg2(BondToBreakPlusOne)  
 
  OldAggSize = RecMolecule(i)%Agg_Size 
  NewAggSize1 = BondToBreak 
  NewAggSize2 = OldAggSize - BondToBreak 
  NewBoss = Agg2(BondToBreakPlusOne) 
 
  !first chain is Agg2(1:NewAggSize1) 
  !second chain is Agg2(NewAggSize1+1 : OldAggSize) or 
Agg2(BondToBreakPlusOne:OldAggSize) 
 
  ! Deal with chain 1 
  ! Update BoundRec_2 
  RecMolecule(Break_Particle_1)%BoundRec_2 = 0 
  ! Update Bond (0 or 1) 
  IF (RecMolecule(Break_Particle_1)%BoundRec_1 == 0) THEN 
     RecMolecule(Break_Particle_1)%Bond= 0 
  ELSE 
     RecMolecule(Break_Particle_1)%Bond= 1 
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  END IF 
 
  ! first piece 
  !Particle(Agg2(1:NewAggSize1))%Boss=i ! unnecessary 
  !Update Aggsize of first aggregate 
  RecMolecule(Agg2(1:NewAggSize1))%Agg_Size=NewAggSize1 
 
 
 
  !Deal with chain 2 
  RecMolecule(Break_Particle_2)%BoundRec_1 = 0  !update boundrec_1 
  IF (RecMolecule(Break_Particle_2)%BoundRec_2 == 0) THEN  ! update bond 
     RecMolecule(Break_Particle_2)%Bond = 0 
  ELSE 
     RecMolecule(Break_Particle_2)%Bond = 1 
  END IF 
 
 
 
  ! second piece 
  RecMolecule(Agg2(BondToBreakPlusOne:OldAggSize))%Boss = NewBoss  ! update 
Boss 
  RecMolecule(Agg2(BondToBreakPlusOne:OldAggSize))%Agg_Size = NewAggSize2 
!update agg size 
 
  ! figure out the ejected piece's position 
  OldPosition = RecMolecule(Break_Particle_2)%Position 
  OldDomain   = RecMolecule(Break_Particle_2)%Domain 
  NewDomain = OldDomain ! not really necessary, it may change only if OldDomain=0 
 
  ! Add new x and y coordinates 
  placeangle=2*Pi*grnd() ! Pick a number between 0 and 2*Pi 
 
  x1=cos(placeangle)*UnbindRad_RestDimer 
  y1=sin(placeangle)*UnbindRad_RestDimer 
  z1= 0 
 
  ! impose periodic BC on the ejected particle's proposed position 
  ! call 
PeriodicBC(OldPosition(1)+x1,OldPosition(2)+y1,OldPosition(3),NewPosition(1),NewP
osition(2),NewPosition(3)) 
  call 
PeriodicBC2(OldPosition(1)+x1,OldPosition(2)+y1,NewPosition(1),NewPosition(2)) 
   
  ! now check if there is a domain escape involved 
  if(OldDomain > 0) then 
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     ! if this move goes outside the domain, try the opposite direction  
     if(.not. InDomain(NewPosition(1:2),OldDomain)) & 
          call PeriodicBC2(OldPosition(1)-x1,OldPosition(2)-
y1,NewPosition(1),NewPosition(2)) 
     ! if this move goes out, try the perpendicular direction  
     if(.not.InDomain(NewPosition(1:2),OldDomain)) & 
          call PeriodicBC2(OldPosition(1)-
y1,OldPosition(2)+x1,NewPosition(1),NewPosition(2)) 
     ! if this move goes out, try the opposite perpendicular direction  
     if(.not.InDomain(NewPosition(1:2),OldDomain)) & 
          call PeriodicBC2(OldPosition(1)+y1,OldPosition(2)-
x1,NewPosition(1),NewPosition(2)) 
     ! if this move still goes out, give up 
     if(.not.InDomain(NewPosition(1:2),OldDomain)) & 
          NewPosition = OldPosition 
  else 
     ! if particle was initially free, it may end up in a domain 
     NewDomain = 0 
     do iDom=1,NumDomains 
        if(InDomain(NewPosition(1:2),iDom)) NewDomain=iDom 
     end do 
  endif 
 
  ! record the ejected position 
  RecMolecule(Break_Particle_2)%Position = NewPosition 
 
  ! if trapping occurred 
  if(OldDomain==0 .and. NewDomain>0) then 
     RecMolecule(Break_Particle_2)%Domain = NewDomain 
     DomainParticleCount(NewDomain) = DomainParticleCount(NewDomain) + 
NewAggSize2 
  endif 
 
  ! update Position in 2nd chain 
  RecMolecule(Agg2(BondToBreakPlusOne:OldAggSize))%Position(1) = 
RecMolecule(Break_Particle_2)%Position(1) 
  RecMolecule(Agg2(BondToBreakPlusOne:OldAggSize))%Position(2) = 
RecMolecule(Break_Particle_2)%Position(2) 
  RecMolecule(Agg2(BondToBreakPlusOne:OldAggSize))%Position(3) = 
RecMolecule(Break_Particle_2)%Position(3) 
  RecMolecule(Agg2(BondToBreakPlusOne:OldAggSize))%Domain      = 
RecMolecule(Break_Particle_2)%Domain 
 
  ! update the last reaction time for all receptors in the original aggregate 
  RecMolecule(Agg2(1:OldAggSize))%LastOnOffTime = 
System_Info%Current_Simulation_Time 
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  System_Info%Num_Aggregates = System_Info%Num_Aggregates + 1 
 
  System_Info%AggSizeCount(OldAggSize)  = 
System_Info%AggSizeCount(OldAggSize) - 1 
  System_Info%AggSizeCount(NewAggSize1) = 
System_Info%AggSizeCount(NewAggSize1) + 1 
  System_Info%AggSizeCount(NewAggSize2) = 
System_Info%AggSizeCount(NewAggSize2) + 1 
 
  WRITE(4,*) 'UnBi', System_Info%Current_Simulation_Time,& 
       i,NewBoss,OldAggSize,NewAggSize1,NewAggSize2 
 
  ! post mortem aggregate entry: Length, Boss, DescendantBoss1, DescendantBoss2, 
BeginTime, EndTime, <Receptor list> 
  write(4,*) OldAggSize, i, i, NewBoss,& 
       BeginTime, System_Info%Current_Simulation_Time, Agg2(1:OldAggSize) 
 
  if (System_Info%OutputLevel >= 1) & 
       write(*,1004)  System_Info%Current_Simulation_Time,& 
       Break_Particle_1, Break_Particle_2,& 
       i,i,NewBoss,OldAggSize,NewAggSize1,NewAggSize2, 
System_Info%Num_Aggregates, & 
       OldDomain, NewDomain 
 
1004 format('T=',F14.8,' RecUnBi Rec1 =',i3,' Rec2 =',i3,& 
       ' Aggs [',I3,'] --> [',I3,',',I3,']',& 
       ' Size ',I2,'=',I2,'+',I2,' AggCount ',I3,' Dom ',i1,' ',i1) 
 
  if (System_Info%OutputLevel >= 2) write(*,*) '    One   ' 
  ! check the aggregate by walking down the list 
  CurrentParticle=i; 
  do 
     if (System_Info%OutputLevel >= 2) write(*,1003) CurrentParticle, & 
          RecMolecule(CurrentParticle)%BoundRec_1,  
RecMolecule(CurrentParticle)%BoundRec_2,& 
          RecMolecule(CurrentParticle)%Bond,& 
          RecMolecule(CurrentParticle)%Agg_Size, RecMolecule(CurrentParticle)%Boss,& 
          RecMolecule(CurrentParticle)%Position  
     if( RecMolecule(CurrentParticle)%BoundRec_2==0) exit 
     CurrentParticle = RecMolecule(CurrentParticle)%BoundRec_2    
  end do 
 
 
  if (System_Info%OutputLevel >= 2) write(*,*) '    Two   ' 
  ! check the aggregate by walking down the list 
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  CurrentParticle=Break_Particle_2; 
  do 
     if (System_Info%OutputLevel >= 2) write(*,1003) CurrentParticle, & 
          RecMolecule(CurrentParticle)%BoundRec_1,  
RecMolecule(CurrentParticle)%BoundRec_2,& 
          RecMolecule(CurrentParticle)%Bond,& 
          RecMolecule(CurrentParticle)%Agg_Size, RecMolecule(CurrentParticle)%Boss,& 
          RecMolecule(CurrentParticle)%Position  
     if( RecMolecule(CurrentParticle)%BoundRec_2==0) exit 
     CurrentParticle = RecMolecule(CurrentParticle)%BoundRec_2    
  end do 
 
  if (System_Info%OutputLevel >= 2) write(*,*) '  done with this unbinding ' 
 
 
  ! Record time of undimerization 
  !RecMolecule(i)%DimOffTime=st 
  !Particle(BoundBuddy)%DimOffTime=st 
  ! Record who was in the dimer 
  !Particle(i)%PrevBuddy=BoundBuddy 
  !Particle(BoundBuddy)%PrevBuddy=i 
  ! Record dimer lifetime and type 
  !WRITE(4,*) Particle(i)%Lifetime, LigandCount, Particle(i)%DimerOnTime, & 
  !     &Particle(i)%DimOffTime, i, boundbuddy ! Dimer_liftime 
Ligands/Dimer, dimer on time, dimer off time, receptor, bound receptor 
  ! Reset dimer lifetime  
  !Particle(i)%Lifetime=0 
  !Particle(BoundBuddy)%Lifetime=0 
  ! Reset time of undimerization 
  !Particle(i)%DimOffTime=0 
  !Particle(BoundBuddy)%DimOffTime=0 
  ! Reset time of dimerization 
  !Particle(i)%DimerOnTime=0 
  !Particle(BoundBuddy)%DimerOnTime=0 
  ! Reset Time to Phosphorylation 
  !Particle(i)%PhosTime=0 
  !Particle(BoundBuddy)%PhosTime=0 
  ! Reset Phosphorylation Event 
  !Particle(i)%PhosEvent=0 
  !Particle(BoundBuddy)%PhosEvent=0 
  ! Seperate dimer in to orignal monomer species 
  !Particle(i)%Species=Particle(i)%OriginalSpecies 
  !Particle(BoundBuddy)%Species=Particle(BoundBuddy)%OriginalSpecies 
 
 
  ! Update species back to monomers and erase partners 
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  !Particle(i)%DomPartner = 0 
  !Particle(BoundBuddy)%DomPartner = 0 
  ! Particle(BoundBuddy)%BoundBuddy = 0 
  ! Particle(i)%BoundBuddy = 0 
  ! BoundBuddy=0 
 
  if (System_Info%OutputLevel >= 2)  write(*,*) 'UnBindReaction end' 
 
 
END SUBROUTINE UnbindReaction 
 
!***********************************************************************
************************************************************************
************ 
 
SUBROUTINE SykDiffuse (iSyk, SykDiffuse_std) 
 
 
  USE ParticleInfo 
  USE ModelConstants 
  USE mtmod 
 
  IMPLICIT NONE 
 
  ! Declare variables 
  INTEGER, INTENT (IN) :: iSyk ! chosen particle 
  DOUBLE PRECISION, INTENT (IN) :: SykDiffuse_std ! diffusion standard deviation 
  DOUBLE PRECISION :: r1, r2, r3, w1, w2, w3, x1, y1, z1, rannum 
 
  if (System_Info%Reaction .or. System_Info%OutputLevel >=2) write(*,*) 'SykDiffuse 
begin -- SykID ',iSyk, 'Coords: ',& 
       SykMolecule(iSyk)%Position 
 
  Syk_DiffCall_Count = Syk_DiffCall_Count + 1 
 
!!! randomly make a trajectory for particles using mtmod.f90 for random numbers !!! 
  !! Generate random number & Normally distribute random number ! 
http://www.taygeta.com/random/gaussian.html 
  !* Generate x move 
  r1=2*grnd()-1 
  r2=2*grnd()-1 
  ! Check unit circle, if not in reject and try again 
  w1=r1*r1+r2*r2 
  DO WHILE (w1 > 1) 
     ! Generate random number again 
     r1=2*grnd()-1 



	 182	

     r2=2*grnd()-1 
     ! Unit circle check 
     w1=r1*r1+r2*r2 
  END DO 
  w2=sqrt((-2*log(w1))/w1) 
  ! Normally distributed random # for distance 
  x1=r1*w2 
 
  ! Generate y move 
  r1=2*grnd()-1 
  r2=2*grnd()-1 
  ! Check unit circle, if not in reject and try again 
  w1=r1*r1+r2*r2 
  DO WHILE (w1 > 1) 
     ! Generate random number again 
     r1=2*grnd()-1 
     r2=2*grnd()-1 
     ! Unit circle check 
     w1=r1*r1+r2*r2 
  END DO 
  w2=sqrt((-2*log(w1))/w1) 
  y1=r2*w2 
 
 
  !Generate z move 
  r1=2*grnd()-1 
  r2=2*grnd()-1 
  ! Check unit circle, if not in reject and try again 
  w1=r1*r1+r2*r2 
  DO WHILE (w1 > 1) 
     ! Generate random number again 
     r1=2*grnd()-1 
     r2=2*grnd()-1 
     ! Unit circle check 
     w1=r1*r1+r2*r2 
  END DO 
  w2=sqrt((-2*log(w1))/w1) 
  z1=r2*w2 
 
  ! Account for diffusion coefficient based on species type 
  y1=y1*SykDiffuse_std 
  x1=x1*SykDiffuse_std 
  z1=z1*SykDiffuse_std 
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  if (System_Info%Reaction .or. System_Info%OutputLevel >=2) write(*,*) 'SykDiffuse        
- call PBC' 
 
  ! call periodic boundary condition 
  CALL PeriodicBC3( & 
       SykMolecule(iSyk)%Position(1)+x1,SykMolecule(iSyk)%Position(2)+y1, 
SykMolecule(iSyk)%Position(3)+z1, & 
       SykMolecule(iSyk)%Position(1), 
SykMolecule(iSyk)%Position(2),SykMolecule(iSyk)%Position(3)) 
 
  if (System_Info%Reaction .or. System_Info%OutputLevel >=2) write(*,*) 'SykDiffuse       
SykID ',iSyk, 'New Coords: ',& 
       SykMolecule(iSyk)%Position(1:3) 
 
  ! Check for (dimerization) reactions 
  if(abs(SykMolecule(iSyk)%Position(3))<SykLayerDepth) & 
       CALL SykBind(iSyk) 
 
  if (System_Info%Reaction .or. System_Info%OutputLevel >=2) write(*,*) 'SykDiffuse       
end ',iSyk  
 
  if (System_Info%Reaction) then 
     Syk_Diff_Reaction = Syk_Diff_Reaction + 1 
  else 
     Syk_Diff_NoReaction = Syk_Diff_NoReaction + 1 
  end if 
 
END SUBROUTINE SykDiffuse 
 
!***********************************************************************
************************************************************************
************ 
 
SUBROUTINE SykBind (iSyk) 
 
 
  USE ParticleInfo 
  USE ModelConstants 
  USE mtmod 
 
  IMPLICIT NONE 
 
  INTEGER, INTENT(IN)::iSyk 
  INTEGER, DIMENSION(MaxAgg) :: Syk_Agg=0 ! list of receptors in a given 
aggregate  
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  real, dimension(MaxAgg) :: IgABindProb, IgBBindProb 
  real, dimension(2*MaxAgg) :: SykBindProbVec 
  real :: CumSum=0 
 
  DOUBLE PRECISION :: distsq, rannum 
  INTEGER :: j, u, m_syk, k, i, rv_syk,cv_syk,ip,h, i_syk 
 
  integer, dimension(System_Info%Num_Particles) :: BossList 
  integer :: BossCount2 
   
  integer :: AggRecCount ! number of receptors on the current aggregate 
 
  ! counters for partners (eligible aggregates), docking sites (one- and two-SH2) 
  integer :: BossCount, EligibleAggCount=0 ! count per each sub call 
  integer :: ThisAggEligible=0 ! by agg 
  integer, dimension(2) :: AggPhosCount=0, SysPhosCount=0 ! count per agg then add up 
  double precision :: MinDistNow ! closest square dist to an eligible aggregate 
 
  if (System_Info%OutputLevel >=2) write(*,*) 'SykBind begin -- SykID ',iSyk 
 
  ! counters.. 
  Syk_BindCall_Count = Syk_BindCall_Count + 1 ! counts each call to this sub 
  BossCount = 0 ! count bosses in this sub call 
  EligibleAggCount=0 
  SysPhosCount=0 
  MinDistNow=100 
 
  ! TODO: try to identify the receptors that have docking sites, and their bosses 
  !       those are the only receptors that should be checked in the main loop below 
  ! 
 
!!$  BossCount2 = count(RecMolecule(:)%Iga_Phos > 0 .and. 
RecMolecule(:)%Iga_Lyn==0 .and. RecMolecule(:)%Iga_Syk==0) 
!!$  BossList = pack(RecMolecule(:)%Boss, RecMolecule(:)%Iga_Phos > 0 .and. 
RecMolecule(:)%Iga_Lyn==0 .and. RecMolecule(:)%Iga_Syk==0) 
!!$ 
!!$  if(BossCount2==10) then 
!!$     do j=1,10 
!!$        write(*,*) 'BOSSLIST!! ', j,BossList(j),RecMolecule(BossList(j))%Agg_Size 
!!$     end do 
!!$     stop 
!!$  end if 
!!$   
!!$   
!!$   
  ! Check for reaction (collision) 
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  do k = 1,System_Info%Num_Particles ! loop over particles (receptor monomers) 
 
     if (RecMolecule(k)%Boss == k) then ! this will only check for the bosses 
 
        BossCount = BossCount+1  ! count bosses in this sub call 
 
 
        AggRecCount = RecMolecule(k)%Agg_Size ! number of receptors on the aggregate 
 
        Syk_Agg = pack(RecMolecule(:)%RecID, RecMolecule(:)%Boss==k)! holding the 
recs in an aggregate 
 
        !count each type of binding- each receptor- whether general syk binding is possible 
through Iga, Igb 
        if (System_Info%OutputLevel >=3) then 
           WRITE(*,*) 'ending -- Syk_Agg has size ',size(Syk_Agg),' 
AggRecCount=',AggRecCount 
           do j=1,size(Syk_Agg) 
              write(*,*) 'entry',j,':',Syk_Agg(j) 
           end do 
        endif 
 
 
        ! initialize the prob vectors  
        IgABindProb=0; 
        IgBBindProb=0; 
 
        ! to count eligible (at least one site unoccupied and phos>0) aggs 
        ThisAggEligible=0 
        ! count open (un-occupied) phos sites by phos level 1 or 2 
        AggPhosCount=0  
 
        do j = 1,AggRecCount ! this follows the receptors down the aggregate 
           ! Iga binding requires three conditions.. no Lyn or Syk bound anf phos>0 
           if (RecMolecule(Syk_Agg(j))%Iga_Syk == 0 .and.  
RecMolecule(Syk_Agg(j))%Iga_Lyn == 0 .and. & 
                RecMolecule(Syk_Agg(j))%Iga_Phos>0) then 
              IgABindProb(j)=SykBindScaleFactor(RecMolecule(Syk_Agg(j))%Iga_Phos) 
 
              ! count available sites by phos level (1 or 2) 
              
AggPhosCount(RecMolecule(Syk_Agg(j))%Iga_Phos)=AggPhosCount(RecMolecule(Sy
k_Agg(j))%Iga_Phos)+1 
              ThisAggEligible=1 
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           endif 
           ! same for Igb 
           if (RecMolecule(Syk_Agg(j))%Igb_Syk == 0 .and.  
RecMolecule(Syk_Agg(j))%Igb_Lyn == 0 .and. & 
                RecMolecule(Syk_Agg(j))%Igb_Phos>0) then 
              IgBBindProb(j)=SykBindScaleFactor(2+RecMolecule(Syk_Agg(j))%Igb_Phos) 
 
              ! count available sites by phos level (1 or 2) 
              
AggPhosCount(RecMolecule(Syk_Agg(j))%Igb_Phos)=AggPhosCount(RecMolecule(Sy
k_Agg(j))%Igb_Phos)+1 
              ThisAggEligible=1 
 
           endif 
        end do ! loop through recs in this agg 
 
        ! counting eligible aggs in the system 
        EligibleAggCount = EligibleAggCount + ThisAggEligible 
        SysPhosCount = SysPhosCount + AggPhosCount 
 
        distsq=& 
             (RecMolecule(k)%Position(1)-SykMolecule(iSyk)%Position(1))**2+& 
             (RecMolecule(k)%Position(2)-SykMolecule(iSyk)%Position(2))**2+& 
             (RecMolecule(k)%Position(3)-SykMolecule(iSyk)%Position(3))**2 
 
        if(distsq < MinDistNow .and. 
sum(IgABindProb(1:AggRecCount))+sum(IgBBindProb(1:AggRecCount))>0) & 
             MinDistNow=distsq / 
(sum(IgABindProb(1:AggRecCount))+sum(IgBBindProb(1:AggRecCount)))  
         
        ! compare the sq distance with the BR^2 scaled by the factors 
        if(distsq <= 
(sum(IgABindProb(1:AggRecCount))+sum(IgBBindProb(1:AggRecCount)))*Syk_Bind
Rad_Dimer**2 ) then 
           ! ** implement the binding ** 
 
           !choose the site (rec+itam) according to the relative probs 
           ! build a vector of probs 
           SykBindProbVec(1:AggRecCount)=IgABindProb(1:AggRecCount) 
           
SykBindProbVec(1+AggRecCount:2*AggRecCount)=IgBBindProb(1:AggRecCount) 
           SykBindProbVec = SykBindProbVec / 
sum(SykBindProbVec(1:2*AggRecCount)) ! normalize 
 
           ! pick a kosher random number (guaranteed in [0,1]) 
           rannum=grnd() 
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           ! unfortunately this is necessary 
           do while(rannum > 1.0 .and. rannum < 0.0)  
              rannum = grnd() 
           enddo 
 
           CumSum=SykBindProbVec(1); 
           j=1 
           do while(CumSum < rannum .and. j <= 2*AggRecCount) 
              j = j + 1 
              CumSum = CumSum + SykBindProbVec(j) 
           end do 
 
           if (j <= AggRecCount) then 
              ! ** Syk binds to Iga on Syk_Agg(j) ** 
              ! update Syk molecule 
              SykMolecule(iSyk)%Receptor_ID = Syk_Agg(j) 
              SykMolecule(iSyk)%Position = RecMolecule(Syk_Agg(j))%Position 
              SykMolecule(iSyk)%Itam_site = 1 
              SykMolecule(iSyk)%Syk_site = RecMolecule(Syk_Agg(j))%Iga_Phos ! binding 
state of Syk given by phos level of dock site 
              ! update receptor 
              RecMolecule(Syk_Agg(j))%Iga_Syk = iSyk ! record Id of Syk molecule 
           elseif (j <= 2*AggRecCount) then 
              ! ** Syk binds to Igb on Syk_Agg(j - AggRecCount) ** 
              j = j - AggRecCount ! rec location on the chain 
              ! update Syk molecule 
              SykMolecule(iSyk)%Receptor_ID = Syk_Agg(j) 
              SykMolecule(iSyk)%Position = RecMolecule(Syk_Agg(j))%Position 
              SykMolecule(iSyk)%Itam_site = 2 
              SykMolecule(iSyk)%Syk_site = RecMolecule(Syk_Agg(j))%Igb_Phos ! binding 
state of Syk given by phos level of dock site 
              ! update receptor 
              RecMolecule(Syk_Agg(j))%Igb_Syk = iSyk ! record Id of Syk molecule 
           endif 
 
           System_Info%Free_Syk_Count = System_Info%Free_Syk_Count - 1 
 
           if (System_Info%OutputLevel >=1) & 
                write(*,FMT="('T=',f14.8,' SykBind SykID=',i4,' RecID=',i3,'.',i1,' Agg=',i3,' 
Sz=',i0,' Free Syk ',i0)") & 
                System_Info%Current_Simulation_Time,iSyk, 
SykMolecule(iSyk)%Receptor_ID ,SykMolecule(iSyk)%Syk_site,& 
                RecMolecule(Syk_Agg(j))%Boss,& 
                RecMolecule(Syk_Agg(j))%Agg_Size,System_Info%Free_Syk_Count 
 
           System_Info%Reaction = .true. 
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        endif ! if distance is less than scaled BR^2 
 
     end if ! only check if receptor is a bossgregate 
     ! TODO: randomize the order receptors are picked 
 
     if (System_Info%Reaction) exit ! break the loop / so only one binding reaction is 
possible 
 
  end do ! loop over all receptors 
 
  if(System_Info%Reaction) then 
     Syk_Bind_Reaction =  Syk_Bind_Reaction + 1 
  else 
     Syk_Bind_NoReaction =  Syk_Bind_NoReaction + 1 ! calls that didn't lead to a 
reaction 
     ! report aggs and phos sites in the system but missed 
     Enc_BossCount=Enc_BossCount+BossCount ! aggregates in the system  (add for 
each call) 
     Enc_EligAggCount = Enc_EligAggCount + EligibleAggCount ! eligible aggregates 
by call 
     Enc_SysPhosCount = Enc_SysPhosCount + SysPhosCount ! ph=1 and 2 phos sites in 
the system this time (add for each call) 
     if(MinDistNow < SysMinDist) SysMinDist=MinDistNow 
  endif 
 
 
 
  if (System_Info%OutputLevel >=2) write(*,*) 'SykBind end' 
 
 
END SUBROUTINE SykBind 
 
!***********************************************************************
************************************************************************
************ 
 
SUBROUTINE SykUnbindReaction(iSyk) 
 
  USE ParticleInfo 
  USE ModelConstants 
  USE mtmod 
 
  IMPLICIT NONE 
 
  INTEGER, INTENT(IN)::iSyk 
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  DOUBLE PRECISION :: placeangle_one,placeangle_two, x1, y1, z1, rannum 
  INTEGER :: Receptor_bound_syk, Rec_Site 
 
  ! receptor lyn is bound to 
  ! SykMolecule(iSyk)%Receptor_ID = Receptor_bound_syk 
  Receptor_bound_syk = SykMolecule(iSyk)%Receptor_ID 
  Rec_Site = SykMolecule(iSyk)%Itam_site 
 
 ! make sure the current position is set to that of the [boss of] the binding receptor 
  SykMolecule(iSyk)%Position = 
RecMolecule(RecMolecule(Receptor_bound_syk)%Boss)%Position 
   
  if (System_Info%OutputLevel >=2) & 
       write(*,*) 'SykUnBind begin -- SykID ',iSyk, ' RecID', Receptor_bound_syk 
 
 
  placeangle_one = 2*Pi*grnd() ! full circle, in the xy plane 
  placeangle_two = (Pi/2)*grnd() ! angle from vertical to the direction of the velocity 
 
  x1 = sin(placeangle_two)*cos(placeangle_one)*Syk_UnbindRad_RestDimer 
  y1 = sin(placeangle_two)*sin(placeangle_one)*Syk_UnbindRad_RestDimer 
  z1 = cos(placeangle_two)*Syk_UnbindRad_RestDimer 
 
 
  !this will update Syk position 
  CALL PeriodicBC3(& 
       SykMolecule(iSyk)%Position(1)+x1,SykMolecule(iSyk)%Position(2)+y1, & 
       SykMolecule(iSyk)%Position(3)+z1, SykMolecule(iSyk)%Position(1), & 
       SykMolecule(iSyk)%Position(2),SykMolecule(iSyk)%Position(3)) 
 
  ! Update Receptor first 
  If (SykMolecule(iSyk)%Itam_site==1) then 
     RecMolecule(Receptor_bound_syk)%Iga_Syk = 0 
  else if (SykMolecule(iSyk)%Itam_site==2) then 
     RecMolecule(Receptor_bound_syk)%Igb_syk = 0 
  End if 
 
  ! update Syk now 
  SykMolecule(iSyk)%Receptor_ID = 0 
  System_Info%Free_Syk_Count = System_Info%Free_Syk_Count + 1 
  SykMolecule(iSyk)%Itam_site = 0 
  SykMolecule(iSyk)%Syk_site = 0 
 
 
  if (System_Info%OutputLevel >=1) & 
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       write(*,FMT="('T=',f14.8,' SykUnBi SykID=',i3,' RecID=',i3,'.',i1,' Agg=',i3,' Sz=',i0' 
Free Syk ',i0)") & 
       System_Info%Current_Simulation_Time,iSyk, Receptor_bound_syk,Rec_Site,& 
       RecMolecule( Receptor_bound_syk)%Boss, RecMolecule( 
Receptor_bound_syk)%Agg_Size,& 
       System_Info%Free_Syk_Count 
 
  if (System_Info%OutputLevel >=2) & 
       write(*,*) 'SykUnBind end -- SykID ',iSyk, ' RecID', Receptor_bound_syk 
 
END SUBROUTINE SykUnbindReaction 
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