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ABSTRACT  
 

Skin cancer is the one of the most diagnosed cancers in the United States with increasing 

incidence of 6% every year. In 2015, it is estimated 73,870 new cases of melanoma will 

be identified and 9,480 individuals will die of their disease. While melanoma only 

accounts for approximately 2.4% of all cancer related deaths and is the 5th leading 

diagnosed cancer (US) it is the one of the most common cancers in young adults, age 25-

29, particularly for young women. Of particular importance, the mean survival rate of 

patients diagnosed with metastatic melanoma is six months, with five-year survival rates 

of less than 5%.   

 One reason for the increasing incidence in young adults may be due to the use of 

indoor tanning. UV exposure causes DNA damage and can induce the activation of a 

metabolic pathway called autophagy. Autophagy is activated by stress, including DNA 

damage, and melanoma risk is associated with UV exposure. 
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 Here I present three studies investigating oncogene differences in rates of 

autophagy as well as the relationship of UV exposure and genotypic variants to 

autophagy.  In this project, I determine whether oncogene status in melanoma 

differentially regulates apoptosis by modifying autophagic flux.  The central hypothesis 

of this project is that cutaneous malignant melanomas (CMM) with BRAF mutations may 

be autophagy-addicted while tumors with NRAS mutations may be less dependent on 

autophagy.  

 I found that BRAF/NRAS mutations differentially alter autophagic flux to suppress 

apoptosis in melanoma.  Our results show that oncogene status in melanoma correlates 

with differential regulation of autophagic flux and that inhibition of autophagy in BRAF 

mutant melanoma cells results in apoptosis. These data suggest that BRAF mutant 

melanoma cells suppress apoptosis by modifying autophagic flux and that these cells may 

be autophagy addicted in order to promote survival. 

 I also determined that proxy autophagy markers LC3 and Beclin1 are associated 

with UV exposure and clinical stage when evaluating tissue sections from melanoma 

patients and controls. Surprisingly, the NRAS wide-type sections had elevated LC3 levels 

when compared to the NRAS mutant tissue sections suggesting that autophagy may be 

inhibited NRAS in melanoma tumors. These results indicate that autophagic flux varies by 

tumor stage and is associated with UVR exposure.  

 Finally, I also determined that several SNPs in autophagy related genes are 

melanoma prognostic indictors.   Of note, one SNP that has previously been shown to be 

inversely associated with other diseases, with a functional variant which increases disease 
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susceptibility was inversely associated with Breslow thickness, the most important 

indicator of melanoma outcome. 

 The work from my study helps address the inconsistencies in the literature 

regarding autophagy’s impact on melanoma progression.  Furthermore, these studies 

provide a basis to investigate the role ATG gene SNPs, UV exposure and in autophagy 

and melanoma.   
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CHAPTER ONE: INTRODUCTION 

 

APOPTOSIS AND AUTOPHAGY: THE YIN-YANG OF HOMEOSTASIS IN CELL 

DEATH IN CANCER 
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1.1 ABSTRACT 

 Apoptosis and autophagy are physiologically necessary pathways which are vital 

for cell homeostasis. Apoptosis facilitates type I programmed cell death, while 

autophagic survival mechanism counteracts apoptosis. Dysregulation in the homeostatic 

balance between these two essential cellular pathways has been linked to various 

diseases. We review relevant Janus molecules and their interactomes, as well as 

lysosomes which play multiple roles in apoptosis and autophagy, and to discuss how 

targeted interventions can be used in cancer prevention and/or therapy. 

1.2 INTRODUCTION 

 Apoptosis and autophagy are both normal, genetically and biochemically 

regulated, and physiologically necessary pathways which are vital for cell homeostasis.  

Like two sides of a coin, apoptosis facilitates purposeful suicide by tightly controlled 

reactions followed by phagocytosis, while autophagy usually counteracts apoptosis and 

affords a survival mechanism for stressed cells until exaggerated stress or nutrition 

depletion forces the cells to compromise. Interestingly, compromised cells may use 

autophagy as a type II programmed cell death mechanism to die. Dysregulation in the 

balance between these two essential cellular pathways has been reported to be significant 

in the onset and pathogenesis of almost all diseases.  Work from my laboratory research 

and others has shown that inhibition of autophagy induces cell death in many cancer cell 

types and chemical and genetic inhibition of autophagy increases apoptotic cell death. 

Disrupted regulation of autophagy creates an environment that facilitates the initiation 

and progression of many diseases including cancer. In addition, this deregulation is 

associated with increased cancer risk, particularly for pancreatic, colorectal, and breast 
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cancer (Gukovsky et al., 2013). The goal of this article is twofold:  (1) to review relevant 

Janus molecules and their interactomes, as well as lysosomes which play multiple roles in 

apoptosis and autophagy, and (2) to discuss how targeted interventions can be used in 

cancer prevention and/or therapy. 

1.3 APOPTOSIS (THE YIN) 

 Apoptosis or type I programmed cell death is an ATP-dependent, multi-step 

process which occurs in response to both internal (intrinsic) and external (extrinsic) 

signals and as part of normal cell development and homeostasis (Figure 1) (Elmore, 

2007). Hallmark characteristics of apoptosis in the conserved, late stage include the 

appearance of phosphatidylserine (PS) on the outer leaflet of the cell membrane that is 

recognized by neighboring cells/macrophages which then rapidly phagocytose cells 

displaying PS (Li et al.,2003). Other key features of late-stage apoptosis include an intact 

membrane with signs of blebbing/membrane protrusions, cellular condensation, 

chromatin condensation, and site-specific DNA fragmentation (Coleman et al., 2001). In 

so processing, apoptosis does not result in inflammation and/or tissue damage as is 

typical of necrosis which is acute, unregulated, and accidental cell death.  The intrinsic 

apoptotic signaling pathway is dependent on the formation of apoptosome, an 

interactome of apoptotic protease activating factor 1 (Apaf-1), (pro-) caspase 9, 

cytochrome C and (d) ATP (Zou et al., 1997). While the extrinsic pathway utilizes 

transmembrane death receptors (for example FasR, tumor necrosis factor receptor 1 

(TNFR1), DR3, and DR4/DR5) (Bazzoni and Beutler, 1996), and their corresponding 

ligands (for example, FasL, TNF-α, Apo3L, and Apo2L) (Elmore, 2007). Apoptosis takes 

place in four sequential stages: stimulus, signaling, regulation, and execution. Stimulus 
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occurs in response to ligand-receptor interaction, which is extrinsic, or intracellular stress, 

which is intrinsic; an example of which is genomic toxicity. Subsequently, regulatory 

proteins, such as p53, Bcl-2, Inhibitors of APoptosis (IAPs), and signaling interactomes, 

such as apoptosome, fine tune this dynamic process, and then a group of Cysteine-

activated ASPartate-specific proteASES (Caspases) will be activated and used for 

cleaving critical proteins in cell structure, survival and proliferation. The inability to 

eliminate cells with genomic instability or aberrant proliferation through apoptotic 

mechanisms can eventually lead to the development of cancer. This inability to eliminate 

cells is often associated with the loss of function of p53, a tumor suppressor protein 

which is important in the signaling stage of apoptosis (Yu and Zhang, 2005). When p53 

gets activated, it prevents the cell from replicating by stalling the cell at the G1 and G2/M 

cell cycle checkpoints. Characteristic uncontrolled cellular proliferation, known as 

hyperplasia, and a lack of clearance of these cells leads to accumulation of genetic and/or 

epigenetic mutations, to transform proliferating cells into invasive, malignant cells.  

1.4 AUTOPHAGY (THE YANG) 

 Autophagy is a catabolic process, which utilizes lysosomal hydrolases to recycle 

and degrade cytosolic components, proteins, and other macromolecules and organelles in 

response to nutrient depletion and other stresses (Figures 2 and 3) (Rikiishi, 2012). The 

word autophagy literally means “eating of the self”; this process involves the cell 

digesting its own intracellular components to reallocate nutrients as a means of survival 

during nutritional deprivation. Autophagy is important during normal development as 

well as in response to environmental stimuli and is vital to the maintenance of cellular 

homeostasis and, unlike apoptosis, can be reversible. Autophagy rids the body of aged 
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and damaged organelles and can help in the elimination of pathogens. While autophagy 

references typically focus on macroautophagy, other types of autophagy, including 

microautophagy and chaperone-mediated autophagy, share the same lysosomal 

degradation mechanism but differ in the way that material is delivered to the lysosome 

(Mizushima, 2007; Sahu et al., 2011). 

Similar to apoptosis, autophagy has several characteristic features, including the 

formation of distinct cellular interactomes and structures (e.g., isolation 

membrane/phagophore, autophagic vesicles).  It has three major phases: initiation, 

elongation and completion.  Initiation involves the formation of a double membrane 

structure (from isolation membrane to autophagosome) which captures both the 

cytoplasm and organelles and then fuses with endosomes and lysosomes (becoming the 

amphisome and the autolysosome, respectively) which degrades the contents of the 

vesicle. The formation of this double membrane structure is a complex process involving 

many AuTophaGy-related proteins (Atgs) (Schmid and Münz, 2007). Currently, over 30 

genes encoding Atgs have been identified, including the microtubule-associated protein 

light-chain 3 (LC3). LC3, a homologue of yeast Atg8, is required for the formation of 

autophagosomal membranes. LC3 is recruited to the isolation membrane, which will 

ultimately develop into the autophagosome where cellular targets are sequestered in 

preparation for degradation. The autophagosome will then fuse with endosomes/ 

lysosomes to create the autolysosome where cellular targets are degraded (Hippert, 

2006). Under nutrient-deprived conditions, autophagy can be induced at the 

transcriptional and post-translational level. With regard to post-translational protein 

modifications, LC3, for example, exists in both a (normal) cytoplasmic and a 
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(autophagic) membrane-associated form (Kirisako et al., 1999). The process of 

incorporating LC3 to the membrane is accomplished through LC3 cleavage, lipidation 

and translocation. The LC3 designation is modified once cleavage has occurred as well as 

when the protein is localized to the membrane. Under this nomenclature, LC3-I refers to 

cytosolic localization following cleavage and LC3-II refers to a membrane bound LC3 

(Kirisako et al., 1999). Atg4, a specific cysteine protease belonging to the caspase family, 

initiates LC3 processing by post-translationally cleaving LC3’s C-terminal amino acid 

(arginine) (Ichimura et al., 2000). This cleavage generates LC3-I. The newly exposed C-

terminal glycine (Gly 116) is bound by phosphatidylethanolamine (PE), a lipid 

constituent of plasma membranes, lipidation occurs next resulting in the formation of 

LC3-II. Atg4 can also act by delipidating LC3 at the lysosomal fusion step and during 

apoptosis Atg4 is cleaved by caspase-3 becoming highly toxic (Betin et al., 2009).  

LC3-II associates with both the inner and outer membranes of the isolation membrane. 

Transient conjugation of LC3 to the autophagosomal membrane through an ubiquitin like 

system is essential for macroautophagy.  The conversion of LC3-I to LC3-II has been 

used as an indicator of autophagic state in in vitro model systems (Mizushima et al., 

2010). The biochemical reactions involved in LC3 cleavage, lipidation, and translocation 

to the isolation membrane are defining features of this type of autophagy. Autophagy 

uses two conjugation systems similar to the ubiquitin targeting system. For comparison, 

ubiquitin directs proteins targeted for degradation to the proteasome and is activated by 

an E1 enzyme. Following activation, E1 transfers the activated ubiquitin to E2 enzymes 

and then with E3 enzymes catalyzes the conjugation of ubiquitin to substrates. Important 

binding residues on LC3 can function in an ubiquitin-like fashion and LC3’s crystal 
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structure demonstrated folds similar to ubiquitin, illustrating the resemblance of these two 

proteins in structure (Sugawara et al., 2004; Suzuki et al., 2005). Therefore, terms 

ubiquitin-like, E1-like, E2-like and E3-like are applied to these autophagic ubiquitin-like 

systems that produce the conjugated proteins (LC3-II-PE and Atg5-Atg12-Atg16L), 

which play a role in autophagosome formation, elongation and completion. In brief, the 

LC3 targeting system works with LC3 acting as the ubiquitin-like protein that is 

transferred to phosphatidylethanolamine (PE), while Atg7 functions in the same manner 

as an E1 enzyme;  Atg3 like an E2 enzyme and the Atg12-Atg5-Atg16L complex like an 

E3 ligase for the LC3-II–PE complex (Figure 4).  Residues Phe 77 and Phe 79 are 

located on one surface of Atg8, and residues Tyr 49 and Leu 50 are on the opposite 

surface. Researchers have shown that Phe 77 and Phe 79 recognize Atg4, which can also 

act as a de-ubiquitination enzyme. Residues Tyr 49 and Leu 50 act downstream of 

lipidation (Amar et al., 2006) (Figure 5). In addition, these multi-complex interactions 

potentially facilitate the loading of large proteins into a developing autophagosome 

(Bjorkoy et al., 2005). Upstream of the LC3-II-PE linkage, Atg12 is conjugated to Atg5 

to form a stable Atg12-Atg5 conjunction. This process is mediated by Atg7, an E1-like 

activating enzyme, and Atg10, an E2-like conjugating enzyme. Atg16 then forms a 

complex with the Atg12–Atg5 conjugate (Mizushima et al., 2002). 

The isolation membrane structure serves as both a signaling platform and a compartment 

for holding targeted proteins. Autophagy requires precise signaling and sorting of cargo 

in order to transport the appropriate materials to the autophagosome for degradation and 

recycling. The induction of autophagy causes the translocation of proteins like LC3 to the 

isolation membrane from the cytosol. During the elongation of the isolation membrane, 
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the Atg5-Atg12-Atg16L complex localizes to the membrane to form a cup-shaped 

structure. LC3-II then localizes to the isolation membrane, while the Atg5-Atg12-Atg16L 

complex dissociates. Autophagosome formation occurs and finally the autophagosome’s 

outer membrane fuses with lysosomes to form the autolysosome which can then degrade 

targeted contents. LC3 is the only protein that remains associated with the completed 

autophagosome. Following autolysosomal formation, lysosomal hydrolases, including 

cathepsins, degrade the targeted proteins, while cathepsins degrade LC3-II on the inner 

autophagosomal surface.  Following target degradation, Atg4 is involved in separating 

outer membrane LC3-II from the autophagosome, although LC3-II is still present in late 

autophagic vesicles (Mizushima et al., 2010).  

 Derailed autophagy has been associated with many diseases including cancer, 

neurodegenerative disease, and cardiovascular disease (Shintani and Klionsky, 2004). 

Important crosstalk between apoptosis and autophagy has been identified in colorectal 

cancer with possible therapeutic implications including the use of a new class of 

anticancer agents, histone deacetylase (HDAC) inhibitors, which induce autophagy. 

Autophagy has been shown to be induced in hormone-sensitive prostate cancer cells 

either by incubation in androgen deficient medium or by treatment with an androgen 

inhibitor (Kaini et al., 2012). These findings suggest that autophagy protects prostate 

cancer cells during androgen deprivation allowing the cells to survive nutrient depletion. 

Conversely, investigators were able to show that induction of autophagy has a pro-death 

role in pancreatic cancer cells (Mujumdar and Saluja, 2010). Pancreatic tumors have been 

shown to have elevated autophagy under basal conditions and studies involving 

autophagy inhibition using either selective inhibitors (chloroquine) or RNA interference 
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of essential autophagy genes appear to influence sensitivity to chemotherapy. In addition, 

autophagy appears to play multiple roles in pancreatic cancer as a higher LC3 expression 

in pancreatic cancer tissue is associated with enhanced expression of the hypoxia marker 

carbonic anhydrase IX in the peripheral area, correlating with poor outcome and shorter 

disease-free period (Kang et al., 2012). Moreover, melanoma cell lines have also been 

shown to exhibit high basal levels of both p62 and LC3II (Xie et al., 2013) and cutaneous 

malignant melanoma cells display high overall levels of autophagy (Lazova et al., 2010) 

suggesting that autophagy may provide an active metabolic state for invasive melanoma 

tumors.  

1.5 P53 IN APOPTOSIS AND AUTOPHAGY 

 P53, a sequence-specific DNA binding protein, is a sensor of both DNA and 

cellular stress and is commonly called the guardian of the genome for its ability to 

regulate the cell cycle. The Janus or bi-functional role of p53 is illustrated by the ability 

of this protein to both trigger and inhibit apoptosis and autophagy based on its subcellular 

localization. Under normal low stress conditions, p53 is basally activated and promotes 

DNA repair and cell survival. However, under high stress conditions or in response to 

DNA damage, p53 is highly activated and upregulates cell cycle arrest and/or apoptosis. 

P53 directly affects the expression of two BH3-only proteins, Bad and (t)Bid, which are 

important regulators of both apoptosis as well as autophagy (Zhaorigetu et al., 2008).  

P53 also induces apoptosis through transcription independent mechanisms including the 

generation of reactive oxygen species (ROS) and through its direct associations with 

mitochondria. P53 interacts with several apoptogenic proteins including Bax and Fas and 

p53-dependent apoptosis typically follows the intrinsic apoptosis pathway. However, p53 
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can also influence cell death through the death receptors. P53 has the ability to activate 

the transcription of pro-apoptotic genes, including Bax, Noxa, and PUMA, and can also 

trigger apoptosis through the inhibition of anti-apoptotic genes including survivin (Mirza 

et al., 2002), which allows the activation of caspases. Conversely, in addition to its 

inhibitory characteristics, p53 also has the ability to upregulate several processes 

including the activation of the death domain receptor (DR5) for TRAIL (TNF-related 

apoptosis-inducing ligand), which is activated in response to DNA damage (Wu et al., 

1997) and induces apoptosis through caspase 8 activation. Once the TRAIL receptor 

binds its ligand, the receptor trimerizes facilitating the recruitment of pro-caspase 8 to the 

death domain as well as the Fas-associated death domain protein (FADD). These 

interactions cause the formation of a death inducing signaling complex or DISC which 

then assists in the cleavage of pro-caspase 8 into its active state (Sprick et al., 2000). An 

increase in p53 expression also enhances the levels of Fas on the cell surface by 

promoting its ability to translocate from the Golgi (Sionov and Haupt, 1999). In apoptosis 

p53 is important in the activation of the apoptosome. Upregulation of p53 is associated 

with an increase in Apaf-1 expression (Haupt et al., 2003), and can also trigger apoptosis 

through the upregulation of the pro-apoptotic Bcl-2 family members, such as Bax and 

PUMA (Fridman and Lowe, 2003). While p53 is a strong nuclear transcription factor it 

can also function in the cytoplasm where it increases mitochondrial permeability. In 

general, the basal level of cytosolic p53 is present and maintained through the ubiquitin 

proteasome pathway but at higher concentrations it may translocate into the 

mitochondria. Once in the mitochondria, p53 interacts with both Bcl-xL and Bcl-2, down 

regulating their ability to inhibit apoptosis (Tasdemir et al., 2008).  
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P53’s role in autophagy is also multifaceted. In the cytosol it operates at the 

mitochondrial level to suppress autophagy through its binding to Bcl-2 and Bax 

(Tasdemir et al., 2008), as well as potentially through its interactions with mTOR 

(Tasdemir et al., 2008). Nuclear p53 upregulates apolipoprotein L1 (ApoL1), a novel 

BH3-only, (phospho)lipid binding protein with high affinity for phosphatidic acid (PA), 

that directly interacts with mTOR to increase autophagy. P53 post transcriptionally 

down-regulates LC3 resulting in a reduction of autophagic flux (Figures 2 and 3). In 

tumors where p53 function is lost or altered through mutations, the accumulation of 

excessive LC3 may ultimately result in apoptosis. P53 helps sustain the viability of cells 

by helping to maintain homeostasis and adjusting the rate of autophagy to nutrient 

stimulus (Scherz-Shouval et al., 2010). Not only does the direct activation of p53 in cell 

lines induce autophagy but it also upregulates the expression of the Damage Regulated 

Autophagy Modulator (DRAM) gene. DRAM, a p53 target, encodes lysosomal proteins 

which upregulate autophagy (Zhaorigetu et al., 2008) (Figures 2 and 3). Chemical 

inhibition of p53 in cell lines results in the characteristic signs of autophagy including the 

depletion of p62, the presence of GFP-LC3 in the cytoplasmic vacuoles (puncta), and the 

presence of autophagosomes and autolysosomes (Tasdemir et al., 2008). In apoptosis, 

p53 can activate the pro-apoptotic proteins in a transcription-independent manner and 

DNA-damage leads to mitochondrial translocation of p53 and intrinsic pathway 

upregulation by increasing PUMA. P53 can bind directly to the Bcl-2 family member 

Bcl-xL and influence cytochrome c release through direct activation of Bax to upregulate 

apoptosis. P53 can release both pro-apoptotic multi-domain proteins and BH3-only 

proteins that are sequestered by Bcl-xL. Finally, the cross-talk between apoptosis and 
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autophagy is shown through the ability of p53 to post transcriptional inhibition LC3 by 

p53, which reduces the overall rate of autophagy ultimately causing excessive LC3 

accumulation resulting in apoptosis (Scherz-Shouval et al., 2010).  

 Targeting p53 in order to develop novel anti-cancer treatments has broad 

implications. The two major strategies include targeting of wildtype (wt.) p53 or mutant 

p53. With respect to wt. p53, drugs that activate endogenous p53 at protein or 

transcription levels through small molecules would be preferable. For example, 

Reactivation of p53 and Induction of Tumor cell Apoptosis (RITA), which binds to and 

activates p53 thereby inducing apoptosis, has shown promise in suppressing tumor 

growth in culture (Roh et al., 2010). CP-31398 was the first small molecule developed 

that increases expression of wt. p53 through the reduction of p53 ubiquitination.  In 

addition, small molecules which target p53 transcription may reduce the adverse effects 

of chemotherapy or radiation in normal proliferating cells. One such compound, Pifithrin, 

can reversibly inhibit p53 transcriptional activation, block p53 activation in normal cells, 

and thus reduce apoptosis. In targeting mutant p53, new compounds which re-activate wt. 

p53 activities through conformational changes of mutant p53 have been developed 

(Wang and Sun, 2010). For example, ellipticine, P53 Reactivation and Induction of 

Massive Apoptosis (PRIMA-1), and Mutant p53 reactivation and Induction of Rapid 

Apoptosis (MIRA-1) have been shown to induce a conformational change of mutant p53 

that revert the protein to wild type activity. Interestingly, UCN01, a bifunctional 

modulator of cyclin-dependent kinases, can arrest cancer cells harboring mutant p53 at 

the G2 checkpoint leading to cell death (Facchinetti et al., 2004). 

1.6 THE BCL-2 FAMILY MEMBERS IN APOPTOSIS AND AUTOPHAGY 
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 Bcl-2 (B cell lymphoma/leukemia type 2) is a member of a family of proteins, 

with the same name, that convey either pro- or anti-death signaling.  The interactions of 

the Bcl-2 proteins determine the fate of a cell tipping the homeostatic balance to favor 

apoptosis, or autophagic survival.   The anti-death Bcl-2 members (e.g. Bcl-2 and Bcl-

xL) suppress apoptosis and promote cell survival and mutations in the Bcl-2 gene have 

been shown to be associated with many cancers.  The BH3-only proteins which contain a 

single Bcl-2 homology (BH) domain can interact with the anti-death Bcl-2 family 

members to induce apoptosis (Tuffy et al., 2010).  These interactions also trigger 

downstream events which can ultimately permeabilize the mitochondrial membrane, 

resulting in the release of the cytochrome c and resulting in the activation of caspases 

(Figure 1) (Shintani and Klionsky, 2004). The BH3-only proteins can also propagate 

stress signals and indirectly activate Bax and Bak, the pro-death members, responsible for 

the induction of apoptosis and/or blockage of autophagy.  For example, ApoL6, a newly 

identified members of the BH3-only proteins, when overexpressed, induces apoptosis and 

blocks Beclin 1-mediated autophagy simultaneously (Liu et al., 2005; Zhaorigetu et al., 

2011) (Figures 1 and 3).  Interestingly, Beclin 1 has also been shown to be a bona fide 

BH3-only protein, however, when overexpressed, it does not induce apoptosis but rather 

autophagy (Fan et al.,2013).  On the other hand, Bcl-2 interferes with Bax or Bak 

function by forming heterodimers with them. When separated from Bcl-2, Bax or Bak 

forms homodimers or heterodimers which allow permeabilization of the mitochondrial 

membrane (Ruvolo et al., 2001). Interestingly, the interplay of Bcl-2 kinase and 

phosphatase allows for rapid and reversible regulation of Bcl-2’s activity in response to 

stress signals or damage (Ruvolo et al., 2001). Bcl-2 interacts either directly or indirectly 
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with siblings including Bik, Bid, Bim and PUMA (see below) to affect cell death and 

survival.  

 Bcl-2 also plays a Janus role regulating both apoptosis and autophagy through its 

interactions with their common proteins linking these pathways, allowing for a more 

responsive cell survival/ cell death switching mechanism. Bcl-2 inhibits both autophagy 

and apoptosis through direct binding to Beclin 1 (Jegga et al., 2011). Beclin 1 is a core 

component in the enzymatic complex phosphoinositides-3-kinase class III (PI3KC3) 

which initiates the formation of autophagosomes (Moscat and Diaz-MecoSee 2009). Bcl-

2 binding to Beclin 1 allows the survival of cells when they are deprived of their growth 

factors. Disruption of this interaction by pro-apoptotic proteins such as Bad and ApoL6 

induces autophagy (Zhaorigetu et al., 2008, Li et al., 2007). Under starvation conditions, 

the stress activated signaling molecule, c-Jun N-terminal protein kinase 1 (JNK1) 

mediates the induction of multisite phosphorylation of cellular Bcl-2. This 

phosphorylation results in the dissociation of Bcl-2 from Beclin 1 and the subsequent 

activation of autophagy (Wei et al., 2008). Other research has indicated that cells 

containing mutations in Beclin 1 inhibit its ability to bind Bcl-2 and induce autophagy 

related cell death (Pattingre et al., 2005).  

 Other findings implicate autophagy as a mechanism of resistance to anti-

angiogenic therapies in colon cancer cells supporting the importance of investigations 

into inhibitory approaches in the management of this disease (Selvakumaran et al., 2013). 

In addition, researchers have shown that autophagosomes are actively produced in 

colorectal cancer cells under nutrient starvation, and treatment with autolysosome 

inhibitors like 3-methyladenine, which inhibits autophagy by blocking autophagosome 
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formation through inhibition of PI3KC3, enhances apoptosis. Overall it appears that 

autophagy is activated in colorectal cancers both in vitro and in vivo, and may contribute 

to the cancer cell survival (Sato et al., 2007, Prabhudesai et al., 2007). Overexpression of 

the pro-survival Bcl-2 family members, for example, Bcl-2 and Bcl-xL, is associated with 

tumor progression, as well as resistance to chemotherapy. Bcl-2 small molecule inhibitors 

(Figure 1), including mimics of BH3-only proteins and Bcl-2 antagonists, induce 

activation of pro-apoptotic proteins and overcome chemoresistance in cancer cells. 

Inhibitors like ABT-263 (Navitoclax) and AT-101, both mimics of the BH3-only domain, 

have a broader range of targets binding to both Bcl-2 and Bcl-xL. On the other hand, 

inhibitors, like GX15-070 (Obatoclax), are antagonists against only Bcl-2 and lower the 

apoptotic threshold in tumor cells already damaged by chemotherapy. Functions of 

several Bcl-2 drugs are listed in Table 1 and shown on Figure 3. Please refer to other 

outstanding reviews and articles for details (Azmi et al., 2011; Bodur and. Basaga 2012; 

Kamal et al., 2014; Bai and Wang 2014). 

1.7 ATG PROTEINS IN AUTOPHAGY AND APOPTOSIS 

 Atgs are regulated in response to the availability of nutrients and growth factors 

including amino acids. These signals are generated through a serine/threonine kinase 

known as the mammalian/mechanistic target of rapamycin (mTOR) (Kamada et al., 

2004). MTOR is an important negative regulator of autophagy that exists in two distinct 

complexes, mTORC1 and mTORC2. MTORC1 is typically active and serves as a 

nutrient deprivation sensor. MTORC2 is a regulator of AKT phosphorylation, thus 

inhibition of mTORC2 results in G1 cell cycle arrest as a consequence of the inhibition of 

AKT phosphorylation (Feldman et al., 2009). Under normal conditions mTOR signaling 
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results in the hyper-phosphorylation of several Atgs which leads to inhibition of the 

autophagic process. For example, mTOR phosphorylates Atg13 and disrupts its binding 

to two orthologs of Atg1, ULK1 and ULK2, which are required for autophagy (Grasso et 

al., 2012). ULK1/2 is essential for both the initial construction of the autophagosome as 

well as acting as a nutrient sensing center in a complex with Atg13 and Atg17. Atg13 in 

conjunction with a second protein, FIP200, is critical for correct localization of ULK1 to 

the isolation membrane and for the stability of ULK1 protein. Interestingly, ULK1 also 

has bi-functionality that can be unregulated in response to activated p53, resulting in cell 

death (Gao et al., 2011). 

1.8 P62 IN APOPTOSIS AND AUTOPHAGY 

 Other proteins can facilitate the targeting of LC3. Initiation signals from 

autophagy can recruit p62, a multi-domain ubiquitin-binding, signaling adaptor protein 

also known as sequestosome 1 (47). P62 can assemble proteins that have been tagged by 

ubiquitin through its polymerization with other p62 molecules. This ability to aggregate 

permits p62 clusters to recognize, assemble, and deliver the targeted cargo into the 

autophagosomes via binding to LC3. P62 aggregates are often termed speckles due to 

their cytosolic visibility and these speckles act as organizing centers where p62 is able to 

interact with caspase 8 as well as other factors (Sanz et al., 2000). Inhibition of autophagy 

results in larger p62 speckles which appear experimentally to co-localize with poly 

ubiquitinated proteins that are normally degraded by autophagy (Komatsu et al., 2007). It 

is postulated that in addition to its autophagic role in aggregation p62 functions to 

compact toxic proteins (Moscat and Diaz-MecoSee 2009). P62 is also implicated in the 

activation of NF-κB, a transcription factor (Baldwin, 2012) that plays an important role in 
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the inhibition of apoptosis. These results indicate that p62 plays a role in the apoptosis 

pathway as well as in autophagy. Further experiments suggest that p62 is required for the 

extrinsic apoptosis pathway in particular for the proper functioning of the death receptors 

DR4 and DR5 also needs p62. These data imply that p62 speckles are signaling centers 

which determine either cell survival through autophagy, triggering the NF-κB pathway, 

or by aggregating caspase-8 to signal the cell to undergo apoptosis.  

 Research has identified two caspase cleavage sites in Beclin-1 that once cleaved 

result in fragments which are unable to induce autophagy.  The cleavage site at the c-

terminus of Beclin 1 sensitizes cells to apoptosis once cleaved was able to induce the 

release of proapoptotic factors. These findings point to a mechanism by which caspase -

dependent generation of a cleaved Beclin-1 enhances apoptosis. In addition, growth 

factor withdrawal in a murine pro-B cell line (Ba/F3) results in caspase mediated 

cleavage of both Beclin-1 and PI3K (Moscat and Diaz-MecoSee 2009). Finally, research 

has shown that increased ApoL6 expression has been shown to induce the degradation of 

Beclin 1, which results in p62 accumulation, as well as reducing LC3-II formation and 

translocation, ultimately hindering autophagy (Zhaorigetu et al., 2008). 

 1.9 THE LYSOSOME IN APOPTOSIS AND AUTOPHAGY 

 The lysosome is one of the required organelles of autophagy, as well as a way to 

distinguish three different types of autophagy which are partially defined by the way the 

lysosome interact with cargo (Hotchkiss et al., 2009).  In general, the term autophagy 

typically refers to macroautophagy, where the double membrane autophagosome 

envelops its cargo, fuses with lysosomes and forms the autolysosome. Microautophagy 

refers to the second mechanism where the lysosome appears to bring cargo in from the 
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cytosol. Lastly, chaperone-mediated autophagy utilizes heat shock proteins to deliver 

substrates to lysosomes for degradation (Hotchkiss et al., 2009).  

 The lysosome, a major depot of non-specific hydrolases within the cell, has a 

single lipid-bilayer membrane. Changes in lysosomal structure or damage to its 

membrane can lead to lysosomal destabilization. Factors including ROS, proteases, p53, 

and Bcl-2 family proteins which contribute to the permeabilization of the lysosomal 

membrane are similar to those which can affect apoptosis and autophagy. Lysosomal 

destabilization or lysosomal membrane permeabilization (LMP) can occur in response to 

cell death signals resulting in the leakage or release of the lysosomal cathepsins. The 

release of cathepsins regulates apoptosis signaling and LMP can be triggered by a wide 

range of apoptotic and autophagic signals including death receptor activation, ER stress, 

DNA damage, and growth factor starvation (Boya and  Kroemer, 2008; Chwieralski et 

al.,2006; Guicciardi et al.,2004; Stoka et al.,2007). The induction of apoptosis can be 

dependent on this early release of cathepsins, but it can also occur late in the apoptotic 

process and amplify the death signal. The cysteine cathepsins and the aspartic protease 

cathepsin D are both very abundant in the lysosome and are involved in apoptosis 

signaling (66-69). Excess ROS may destabilize the lysosomal membrane resulting in the 

rapid release of cathepsins to the cytosol (Werneburg et al., 2007).  Cell death by LMP 

has also been linked to the direct activation of caspases by lysosomal proteases (Ishisaka 

et al., 1998). In addition, pro-apoptotic Bax relocates to the lysosomes and co-localizes 

with Bim suggesting that this localization may result in Bax-mediated LMP and 

ultimately apoptosis. Bcl-2 family members may also regulate LMP through the 

mitochondria (Yuan et al., 2002). There is also evidence that LMP may occur in p53-
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induced apoptosis where p53 actually localizes to the lysosomes and triggers LMP (Li et 

al., 2007). It may also upregulate LMP and Bax-mediated mitochondrial permeabilization 

without translocating to the lysosome but rather through the upregulation of the gene p53 

up-regulated modulator of apoptosis (PUMA) and Noxa (Oda et al., 2000; Yu et al., 

2001; Nakano and Vousden, 2001). Noxa encodes a Bcl-2 homology 3 (BH3)-only 

member of the Bcl-2 family of proteins. When ectopically expressed, Noxa localizes to 

the mitochondria where it interacts with and suppresses the anti-apoptotic Bcl-2 family 

members and also results in the activation of caspase-9.  

 Following the activation of apoptosis, another protein called lysosome associated 

apoptosis inducing protein (LAPF) associates with lysosomes and is essential for DNA 

damage induced LMP  (Li et al., 2007, Chen et al., 2005). Downregulation of either p53 

or LAPF prevents the induction of LMP (48). LMP may also occur during other types of 

cell death, including autophagic cell death (Kroemer et al., 2005). Transcriptional 

analysis has established common binding sites both in autophagy and on lysosomal genes 

showing an additional association (46). ApoL1 localizes in the cytosol and lysosomes 

suggesting that ApoL1 regulated autophagy, may involve the lysosomes (Zhaorigetu et 

al., 2008). The lysosome is an extremely important structure in both homeostasis and cell 

death. 

 Targeting the lysosome by chemical inhibitors is typically accomplished using 

lysosomotropic agents. It is well known that intermittent use of the lysosomotropic weak 

bases like chloroquine or hydroxychloroquine can prevent cancer in mouse models. This 

data suggests that chemicals which target the lysosome may be effective in cancer 

prevention. Chloroquine, a weak base, functions through its preferential accumulation in 
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the lysosome where it becomes protonated and cannot diffuse out (Maclean et al., 2008). 

This accumulation results in the inactivation of lysosomal hydrolases, including 

cathepsins, which are necessary for lysosomal degradation.  

 Other drugs which target the lysosome include the macrolide antibiotic 

bafilomycins, particularly bafilomycin A1 (Baf-A1). This antibiotic derived from 

Streptomyces griseus is a specific inhibitor of vacuolar-type H+ ATPases (V-ATPase) 

and prevents maturation of autophagic vacuoles by preventing the fusion between 

autophagosomes and lysosomes (Yamamoto et al., 1989). Cancer cells overexpress V-

ATPase when compared to non-tumorigenic cells, and may be more sensitive to 

treatment with Baf-A1 or concanamycin A (ConA), another potent V-ATPase inhibitor 

(Figure 2; Morimura et al., 2008; Huss et al., 2002). Interestingly, am emerging drug, 

Concanavalin A (ConVA), induces lysosome- and mitochondria-mediated apoptosis. 

ConVA is a lectin or carbohydrate-binding protein which binds mannose displayed on 

cell surfaces. ConVA is then internalized preferentially to the mitochondria, although 

some endocytosed ConVA will accumulate in the lysosome and also changes the 

membrane permeability on the mitochondria and initiates apoptosis. Many tumors have 

increased expression of lectins on their plasma membrane, therefore ConVA 

preferentially binds to tumor cells (Alonso et al., 2006). Thus, through the identification 

of small molecules or chemical inhibitors that induce lysosomal permeabilization or 

increase lysosomal facilitated autophagy–associated cell death, targeting the lysosome 

may prove to be an effective strategy for treatment of cancer (Fehrenbacher and Jäättelä, 

2005; Figure 2; Table 1).  

1.10 PUMA IN APOPTOSIS AND AUTOPHAGY 

http://en.wikipedia.org/wiki/Lectin
http://en.wikipedia.org/wiki/Protein
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 PUMA, which is a BH3-only protein (Nakano and Vousden, 2001), has an 

expression pattern consistent with a causative role in p53-dependent apoptosis. PUMA is 

a pro-apoptotic protein and rapidly induces apoptosis through a Bax- and mitochondria- 

dependent pathway (Han et al., 2001). PUMA can be directly activated p53 through p53-

responsive elements in its promoter region and can also be induced by the 

chemotherapeutic (e.g., Adriamycin/doxorubicin) in a p53-dependent fashion (Yu et al., 

2003). Protein isoforms encoded by PUMA have also been shown to localize in the 

mitochondria where they interact with Bcl-2 and Bcl-xL via the BH3 domain (Yu et al., 

2003). Structural analysis has shown that PUMA directly binds to these anti-apoptotic 

Bcl-2 family proteins (Day et al., 2008) and is essential for apoptosis induced by both 

exogenous and endogenous p53. In cancer cell lines PUMA has been shown to dissociate 

Bax and Bcl-xL to induce apoptosis (Ming et al., 2006). Following chemicals and/or 

genotoxic-induced DNA damage (Yu and Zhang, 2008), both p53 and PUMA are 

activated. Independent of p53, PUMA expression can also be induced by oncogenic stress 

(Fernandez et al., 2003; Maclean et al., 2003), growth factor withdrawal, inhibition of 

kinases including FOXO (Han et al., 2001, Maclean et al., 2003, You et al., 2006), ER 

stress and altered redox (Reimertz et al., 2003;, Ward et al., 2004), as well as infection 

(Castedo et al., 2004) all resulting in apoptosis upregulation. It have been shown that 

nuclear factor-kB (NF-kB) can assist in p53-dependent PUMA induction through 

recruitment to the PUMA promoter during response to DNA damage (Yu and Zhang, 

2008). Additionally, many tumors possess p53 mutations (Vogelstein and Kinzler, 2004) 

which prevent PUMA induction during DNA damage response (Yu and Zhang, 2005). 

PUMA induces apoptosis through the generation of both superoxide and hydrogen 
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peroxide in a Bax-dependent manner. Mitochondrial translocation and multimerization of 

Bax is a critical event in mitochondrial-mediated apoptosis (Nakano and Vousden, 2001). 

Interestingly, hypoxia results in metabolic changes which induce p53 to transcriptionally 

activate genes including PUMA. After its activation, PUMA will interact with all the 

anti-apoptotic Bcl-2 family members, releasing Bax or Bak which induce apoptosis in the 

mitochondria (Yu and Zhang, 2008). The induction of PUMA causes Bax to form 

multimers resulting in mitochondrial dependent cell death. PUMA has recently been 

shown to induce autophagy which appears to lead to targeting of the mitochondria for 

removal by autophagy, or mitophagy (Yee et al., 2009), mediated through Bax and Bak. 

This is interesting since PUMA also induces apoptosis in a Bax-dependent manner (Yu et 

al., 2003). In addition, the inhibition of PUMA- or of Bax-induced autophagy results in a 

reduction in apoptosis suggesting that targeting mitophagy could enhance apoptosis. 

Because of its role in both apoptosis and autophagy, PUMA is extremely interesting and 

may provide a vital link in the communication between these two programmed cell death 

pathways.  

1.11 INHIBITORS OF APOPTOSIS (IAPS) 

 Inhibitor of apoptosis proteins (IAPs) are a family of anti-apoptotic proteins that 

promote cancer cell survival. IAPs exert a range of biological activities that promote cell 

survival and proliferation. X chromosome-linked IAP (XIAP) is a direct inhibitor of 

caspases whereas cellular IAPs block the assembly of pro-apoptotic protein signaling 

complexes and mediate the expression of anti-apoptotic molecules. In general, expression 

and function of IAPs are deregulated in human cancer cells due to genetic aberrations, 

increase of their mRNA or protein expression levels, or loss of endogenous inhibitors, 
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such as second mitochondria-derived activator of caspase (SMAC). As IAPs are 

expressed at high levels in various types of cancer and have been linked to tumor 

progression, treatment failure and poor prognosis, IAPs are promising targets for cancer 

therapeutic intervention (Stern et al., 2012). Several therapeutic targeting strategies that 

have been designed to target IAPs thus far, such as small-molecule IAP antagonists and 

antisense oligonucleotides. Among them, the most common approach is based on 

mimicking the IAP-binding motif of SMAC, an endogenous IAP antagonist. These 

antagonists include AT-406, and YM155. It has been shown that AT-406 selectively 

inhibits the activity of XIAP, cellular IAPs 1 (c-IAP1) and 2 (c-IAP2), and melanoma 

inhibitor of apoptosis protein (ML-IAP). This inhibition results in the promotion of 

apoptosis (Brunckhorst et al., 2012). AEG35156, a XIAP antisense oligonucleotide, has 

been shown to sensitize malignant cells to chemotherapies both in vitro and murine in 

vivo models (Schimmer et al., 2009) (Table 1). Preclinical studies have indicated that the 

therapeutic potential of IAP antagonists might best be exploited in combination protocols, 

including conventional chemotherapeutic drugs, signal transduction modulators, death 

receptor agonists or radiation therapy (Fulda and Vucic, 2012). 

 In conclusion, the environment encountered by tumor cells requires adaption to 

low blood supply, low nutrients, and hypoxic conditions that contributes to the cell’s 

avoidance of multiple cell death pathways. The loss of homeostasis between apoptosis 

and autophagy has been postulated as both a causative factor in tumorigenesis as well as 

an area for therapeutic intervention. In general, the autophagic survival mechanism 

blocks apoptosis in most cancer types (Stern et al., 2012; Rubinsztein et al. 2012; Yao et 

al., 2011; Harhaji-Trajkovic et al., 2012). In designing therapies to eliminate cancer cells, 
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specifically through apoptosis rather than necrosis, one might consider (a). targeting the 

activation of the cytosolic pro-apoptotic p53 interactome as well as inactivating the pro-

autophagic p53 interactome; (b). inducing degradation of Beclin 1 and Atg5 for the 

generation of pro-apoptotic form of Beclin 1-C and Atg5N; (c). mobilization of Bcl-2 and 

Bcl-xL from Bax/Bak interactome to Beclin 1 interactome; and (d). activation of PUMA, 

ApoL6, or ApoL1 in a cancer cell specific manner.  Thus, the crosstalk between 

apoptosis and autophagy remains a highly investigated and promising area for the 

identification of novel therapeutics and research into the interactions which maintain 

molecular homeostasis between these two death pathways will continue to further our 

understanding of the dynamics between cell death and cancer etiology. 

1.12 ABBREVIATIONS: 

ApoL1, Apolipoprotein L1;   ApoL6, Apolipoprotein L6; AMPK, AMP-activated protein kinase; 

Apaf-1, apoptotic proteinase-activating factor-1; Atg, Autophagy-related gene; BAD, Bcl-2-

associated death promoter; Bcl-2, B-cell lymphoma 2; Beclin 1, Bcl-2 interacting protein 1; BH3, 

Bcl-2-homology-3 domain; BH, Bcl-2 homology; BID, BH3 interacting-domain death agonist; 

DISC, death-inducing signaling complex; DR5, the death domain receptor; DRAM, damage-

regulated modulator of autophagy; FADD, FAS-associated death domain protein; FLICE, FADD-

like IL-1 β-converting enzyme; FIP200，focal adhesion kinase -interacting protein FIP 200 

fragment; HDAC, histone deacetylase; IAPs, inhibitors of apoptosis proteins; JNK, c-Jun N-

terminal kinase; LC3, microtubule-associated protein 1 light chain 3; MAPK, mitogen-activated 

protein kinase; MOMP, mitochondrial outer membrane permeabilization; mTOR, mammalian 

(mechanistic) target of rapamycin; PA, phosphatidic acid; PCD, programmed cell death; PE, 

phosphatidylethanolamine; PI3K, phosphoinositide 3-kinase; ROS, reactive oxygen species; 

SMAC, second mitochondrial-derived activator of caspase; TNF-α, tumor necrosis factor-α; 
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TRAIL, tumor necrosis factor-related apoptosis inducing ligand; TSC1/2; tuberous sclerosis 

complex1/2; ULK1, unc-51-like kinase 1; TNFR1 tumor necrosis factor receptor 1; Vps34, 

vacuolar protein sorting-34. 
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 1.15 Chapter Table and Figures. 

1.15.1 Table 1: Inhibitors of Therapeutic Targets in Autophagy and Apoptosis  

Inhibitors of autolysosome 
formation   
Compound: Mechanism of Action 
(Hydroxy) Chloroquine Lysosomotropic drug 

Bafilomycin A1 
Specific inhibitor of vacuolar H+ ATPase (V-
ATPase) 

Concanavalin A 
Apoptosis induction/immunomodulating 
activity 

Concanamycin A Specific inhibitor of V-ATPase 
    
Inhibitors of caspase inhibitors   

AT- 406 
A Smac mimetic and an antagonist of the 
inhibitor of apoptosis proteins (IAPs) 

AEG35156  An antisense oligo of XIAP 
YM155 Inhibits Survivin promoter activity  
    
 Inhibitors of Bcl-2   
Obatoclax (GX15-070) Antagonist of Bcl-2  
ABT-263 (Navitoclax)  Potent inhibitor of Bcl-xL and Bcl-2  
AT101 Binds with Bcl-2, Bcl-xL  
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1.15.2 Figure 1. Apoptosis (the Yin) 

 

Apoptosis is an ATP-dependent, multi-step process which occurs in response to both 

internal (intrinsic) and external (extrinsic) signals and as part of normal cell development 

and homeostasis. The intrinsic apoptotic signaling pathway is dependent on the formation 

of the apoptosome, an interactome of apoptotic protease activating factor 1 (Apaf-1), 

(pro-) caspase 9, cytochrome C and (d) ATP. The extrinsic pathway utilizes 
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transmembrane death receptors (FasR, TNFR1, DR3, and DR4/DR5) (6), and their 

corresponding ligands (FasL, TNF-α, Apo3L, and Apo2L). Apoptosis takes place in four 

sequential stages: stimulus, signaling, regulation, and execution. Stimulus occurs in 

response to ligand-receptor interaction (extrinsic) or intracellular stress (intrinsic). 

Subsequently, regulatory proteins (p53, Bcl-2, IAPs) and apoptosomes fine tune this 

dynamic process. A group of caspases are then activated and used for cleaving proteins 

critical to cell survival and proliferation. 

1.15.3 Figure 2. Autophagy (the Yang), Conjugation Pathways. 

 

Autophagy uses two conjugation systems similar to the ubiquitin targeting system. The 

process of attaching LC3 to the membrane is accomplished through LC3 cleavage, 

lipidation and translocation. The LC3 designation is modified once cleavage has occurred 



 
 

42 
 

as well as when the protein is localized to the membrane. Under this nomenclature LC3-I 

refers to cytosolic localization following cleavage and LC3-II refers to a membrane 

bound LC3. During the elongation of the isolation membrane, the Atg5-Atg12-Atg16L 

complex localizes to the membrane to form a cup-shaped structure. LC3-II then localizes 

to the isolation membrane, while the Atg5-Atg12-Atg16L complex dissociates.  

1.15.4 Figure 3. Autophagy (the Yang), Autophagic flux. 

 

Autophagy has three major phases: initiation, elongation and completion.  Initiation 

involves the formation of a double membrane structure (autophagosome). The formation 

of this double membrane structure is a complex process involving many Atg proteins. 

LC3 is required for the formation of autophagosomal membranes. LC3 is recruited to the 
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isolation membrane, which ultimately develops into the autophagosome where cellular 

targets are sequestered in preparation for degradation. LC3 is the only protein that 

remains associated with the completed autophagosome. The autophagosome then fuses 

with endosomes/lysosomes to create the autolysosome where cellular targets are 

degraded. Following autolysosomal formation, the lysosomal hydrolases, including 

cathepsins, degrade the targeted proteins, while the cathepsins degrade LC3-II on the 

inner autophagosomal surface. Following target degradation, Atg4 is involved in 

separating outer membrane LC3-II from the autophagosome, although LC3-II is still 

present in late autophagic vesicles. Crosstalk between the regulatory proteins, such as 

ApoL6, ApoL1, and DRAM, can dictate the outcome of autophagic flux. 

  



 
 

44 
 

1.15.5 Figure 4. Similar Molecules Between Two Protein Degradation 

Pathways. 

 

Transient conjugation of LC3 to the autophagosomal membrane through an ubiquitin like 

system is essential for macroautophagy. Ubiquitin directs proteins targeted for 

degradation to the proteasome and is activated by an E1 enzyme. Following activation, 

E1 transfers the activated ubiquitin to E2 enzymes and then with E3 enzymes catalyzes 

the conjugation of ubiquitin to substrates. LC3 binding residues can function in an 

ubiquitin-like fashion and terms ubiquitin-like, E1-like, E2-like and E3-like are applied to 

these autophagic ubiquitin-like systems producing the conjugated proteins (LC3-II-PE 

and Atg5-Atg12-Atg16L). LC3 targeting system works with LC3 acting as the ubiquitin-

like protein that is transferred to phosphatidylethanolamine (PE), while Atg7 functions in 

the same manner as an E1 enzyme;  Atg3 like an E2 enzyme and the Atg12-Atg5-Atg16L 
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complex like an E3 ligase for the LC3-II–PE complex. Upstream of the LC3-II-PE 

linkage, Atg12 is conjugated to Atg5 to form a stable Atg12-Atg5 conjunction. This 

process is mediated by Atg7, E1-like activating enzyme, and Atg10, an E2-like 

conjugating enzyme. Atg16 then forms a complex with the Atg12–Atg5 conjugate. 

1.15.6 Figure 5. Biochemical reactions in Atg8 lipidation. 

 

Atg8 in budding yeast Saccharomyces cerevisiae shares significant homology with 

mammalian LC3. In yeast Atg8, residues Phe 77 and Phe 79 are located on one surface, 

and residues Tyr 49 and Leu 50 are on the opposite surface. It has been shown that Phe 

77 and Phe 79 recognize Atg4, an endopeptidase and a de-conjugation enzyme. Atg4 is a 
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specific cysteine protease belonging to the caspase family, initiates LC3 processing by 

post-translationally cleaving LC3’s C-terminal amino acid (arginine). This cleavage 

generates LC3-I. The newly exposed C-terminal glycine (Gly 116) is bound by 

phosphatidylethanolamine (PE), a lipidation conjugation reaction catalyzed by Atg12-5-

16L complex, which results in the formation of LC3-II.  

1.16 Dissertation Summary: Background  

The American Cancer Society estimates that in 2015, 73,870 new melanomas will be 

diagnosed and 9,940 people will die from their disease. 1The 5-year survival rate for stage 

IV melanoma also remains unchanged at only 15-20% but the incidence continues to 

rise.1 Once melanoma has metastasized the available treatment options all have 

significant challenges. Immunotherapy with IL-2 and IFN-α offers some patients 

complete and long-lasting remission, but has a very low percentage of responders. 

2,3Chemotherapy, including alkylating agents (dacarbazine, temozolomide), platinum 

analogs, and microtubular toxins 4 have a larger percentage of responders. 2,5 However, 

these agents used alone or in combination still have less durability.6 Advances in the field 

of melanoma have successfully identified targeted therapies including selective oncogene 

inhibitors. Activating mutations in the BRAF and NRAS proto-oncogenes are found in 

approximately 58% of primary melanomas (43% BRAF V600E; 15% NRAS Q61R) and 63% 

of melanoma metastases (48% BRAF V600E; 15% NRAS Q61R) .7 Long term effective 

treatments for invasive melanoma typically use targeted immunotherapy combined with 

therapeutics that target the critical MAPK pathway through the inhibition of BRAF. 2,8 

However, inhibition of these targets has not significantly increased patient survival, as 

tumors eventually develop resistance. 1,9 Recently, immunotherapy has shown 
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encouraging advances in metastatic melanoma treatment through the recognition of 

neoantigens and through deactivation of immune checkpoint blockades, such as CTLA-4 

antagonist-antibodies, and PD-L1.  These have shown an increase in ten month survival 

in phase I and II clinical trials. 10,11  While activating mutations in BRAF/NRAS are 

critical mediators of melanomagenesis 12–14 and the most common somatic alterations in 

melanoma, the mechanisms by which these mutations promote tumorigenesis are still 

under investigation.  One potential pathway that may provide a mechanism to support 

tumorigenesis is the metabolic pathway of autophagy. Autophagy, or self-eating, is a 

catabolic process that assists the removal of unnecessary or dysfunctional components, 

damaged proteins and organelles through lysosomal degradation.15,16 A tightly regulated 

process autophagy, plays a role in a wide variety of normal physiological processes 

including energy metabolism, stress responses, growth regulation, and aging17,18 and can 

be induced in response to nutrient deprivation.19 Macroautophagy, the most widely 

discussed type of autophagy (referred to hereafter as autophagy) involves the initial 

formation of a double membrane structure (isolation membrane) which encapsulates 

organelles and targeted elements in the cell, separating these targets from the rest of the 

cytoplasm and fusing them into a circular autophagosome.  The autophagosome then 

fuses with the lysosomes (autophagolysosome), which degrades or recycles the contents 

of the vesicles. 20 Autophagy has been shown to play a Janus role in cancer,21 suppressing 

the early stages of tumor formation 22,23 yet enhancing tumorigenesis in the later stages of 

development.24–28  Research has shown that while autophagy plays similar roles in tumor 

cells as in normal cells, tumor cells’ energetic needs are greater and they have a more 

hypoxic environment, so dependence on autophagy may be greater. 29–31 Conversely, 
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deficiencies in autophagy in normal cells can promote cancer through the accumulation 

of damaged mitochondria and other components that autophagy normally degrades or 

recycles. 32,33 Finally autophagy has been reported to control other processes relevant to 

the etiology of cancer, including oxidative stress 32 inflammation 18,34,35 and both innate 

and acquired immunity.21,35–38  Tumor cells have increased levels of DNA and protein 

synthesis and require a constant nutrient source; autophagy appears to promote tumor 

survival by providing energy to the hypoxic tumor environment or in response to 

chemotherapy. 30,39–41 Autophagy also localizes to hypoxic tumor areas that occur far 

from blood vessels and supports tumor cell survival.30 Importantly, the mechanism by 

which BRAF and NRAS influence autophagy remains to be elucidated. Recent evidence 

for metabolic resistance to BRAF inhibitors and the speculation that some cancers are 

“autophagy addicted” suggests that activating mutations in BRAF may generate tumors 

with this phenotype.42  There is thus a need to investigate the mechanism and extent to 

which mutations in oncogenes affect the rate of autophagic flux and ultimately sensitivity 

to inhibition of this process. 

1.17 Single Nucleotide Polymorphisms (SNPs): 

1.17.1 SNP Definition  

A single nucleotide polymorphism is a DNA (germline) sequence variation that occurs 

commonly within a population; in which a single nucleotide (adenine, thymine, cytosine, 

or guanine) is altered. There are many types of SNPs and the most commons are those 

that occur in between genes in introns (intronic). SNPs, in a majority of cases have no 

clear effect on human health or development but some act as biological marker that allow 

for the identification of disease associated genes. Even intronic SNPs may have on 
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impact if they are located in enhancers, super enhancers, promoters or introduce splice 

variants. 43–47Some SNPs occurring near or within genes potentially play a more direct 

role, effecting the functioning of an associated gene or protein stability and impacting 

risk, progression or disease specific  survival. 48 

There is evidence that autophagy related genes have SNPs which impact the function of 

both promoters as well as protein stability.49,50 The role of autophagy-related SNPs in 

melanoma progression and survival has not been investigated and may provide insight 

into the interactions between this disease and the autophagy pathway.  

1.18 Purpose and Hypotheses 

Invasive melanoma is a complex disease with an increasing incidence of 6% each year 

and few clinical treatment options. The American Cancer Society estimates that in 2015 

the 5-year survival rate for stage IV melanoma will remain unchanged at only 15%, even 

with new therapies. One emerging hallmark of cancer is the reprogramming of energy 

metabolism 51 which includes the role of autophagy.  

Autophagy is a cellular recycling pathway involved in normal physiological processes 

including nutrient and/or stress responses, antigen presentation, and aging. In cancer, 

autophagy appears to be an important energy source for nutrient depleted tumors.29 

Studies of solid tumors have shown autophagy’s role is biphasic as it initially suppresses 

the early stages of tumor formation 22 and inhibits metastasis by promoting anti-tumor 

inflammatory responses but later promotes metastasis by enhancing the tumor’s ability to 

respond to environmental stress. 15,52  However, the mechanisms supporting the Janus 

nature of autophagy remain to be elucidated. 

Studies have indicated that evaluated tumors differ in their sensitivity to chloroquine 
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(CQ), a potent inhibitor of autophagy.26,53 Currently, multiple clinical trials are underway 

using CQ and its derivatives to evaluate the effectiveness of these inhibitors in cancer 

therapies.54,55 In melanoma, basal levels of autophagy appear to vary by tumor stage, and 

higher levels of autophagic flux are associated with increased hypoxia and poor clinical 

prognosis.56 In 2010, Lazova and colleagues reported that melanoma cells contain high 

levels of autophagosomes, a cellular structure associated with autophagy, as measured by 

the proxy marker LC3, an autophagy related (ATG) protein.57 Ma et al. (2014) reported 

increased autophagy in BRAF inhibitor resistant cells.58 These findings suggest 

autophagy provides metabolic support for tumors.  

Other environmental and genetic factors also have an influence on autophagy. 

Ultraviolet-radiation (UVR) exposure increases autophagic flux59,60 and UVR is an 

established risk factor for melanoma. Furthermore, in oncogenic BRAF-mutated thyroid 

cancer a single nucleotide polymorphism (SNP) in a crucial ATG gene, ATG5, has been 

shown to have a positive association with cancer susceptibility and poor outcome.50 To 

date there are no studies examining ATG gene SNPs in melanoma outcomes, so the role 

of these variants is unclear, particularly in relation to the presence of BRAF/NRAS 

oncogenes. Variants identified in these patients could affect ATG gene expression and 

ultimately, influence the rate of autophagy.  

The objective of the present study is to determine whether in melanoma oncogene status 

and UV exposure are independently associated with levels of autophagy and if autophagy 

markers associate with increased melanoma survival. Our long term goal is to reduce 

mortality from melanoma by identifying novel targets for treatment using the autophagy 

pathway.  
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1.19 Rationale, Hypothesis, and Specific Aims:   

 

1.19.1 Rationale 

The rationale of the proposed research is that oncogene status in melanoma differentially 

suppresses apoptosis by modifying autophagic flux.  

 

1.19.2 Hypothesis 

Our hypothesis is that cutaneous malignant melanomas (CMM) with BRAF mutations 

may be autophagy-addicted while tumors with NRAS mutations may be less dependent 

on autophagy.  

 

I interrogated this hypothesis through the following specific and testable aims:  

 

1.19.3 Specific Aim 1  

Determine if BRAF/NRAS mutations alter autophagic flux at the cellular level in order to 

suppress apoptosis in melanoma.    

 

1.19.4 Specific Aim 2  

Determine if autophagic flux is associated with individual UV exposure and/or clinical 

stage and modified by oncogenic BRAF/NRAS in melanoma tumor. 

 

1.19.5 Specific Aim 3  
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Determine whether SNPs in ATG genes are associated with BRAF/NRAS mutations in 

melanoma patients.   

  

1.20 Overall Approach. 

In order to determine if BRAF/NRAS mutations alter autophagic flux to suppress 

apoptosis in melanoma, I used melanoma cell lines to quantify the complete process of 

autophagy (autophagic flux), beginning with the formation of an isolation membrane, 

autophagosome and eventually an autolysosome where unnecessary or dysfunctional 

cellular components are degraded. 61,62 The goal was to examine the model that metabolic 

stress caused by mutations in oncogenes leads to alterations in gene expression, as shown 

in tissue samples, increasing the rate of autophagy, and ultimately leading to melanoma 

progression. In addition, variants in autophagy genes may modify autophagic flux leading 

to melanoma progression. 

 Our long term goal is to reduce mortality from melanoma by identifying novel targets for 

treatment using the underexplored autophagy pathway. In six melanoma cell lines (e.g. 

SK-Mel 2, 19, 29, 94,103, and 147) containing BRAF or NRAS mutations, the sensitivity 

and cell viability associated with chloroquine (CQ) treatment were characterized by 

autophagic flux, to determine decreases in cellular viability caused by autophagy 

inhibition. Using quantification of LC3-II puncta and western blots, I evaluated the 

differential rate of autophagy by oncogene status. These two common CMM activating 

mutations, BRAF and NRAS, appear to have differential effects on the autophagy 

pathway. Our data indicate that the targeting of autophagy using CQ in the BRAF 

oncogenic cell lines increases apoptosis and leads to a significant decrease in viability 
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(Figure 1; Chapter 2).  In addition, BRAF cell lines appear to have higher basal protein 

expression of LC3-II (Figure 4; Chapter 2) and a higher number of basal LC3-II puncta 

when compared to NRAS cell lines (Figure 4; Chapter 2) indicating dependence on the 

autophagy pathway for survival.  Finally, the induction of autophagy through serum 

starvation results in differential LC3 expression as measured by number of puncta in the 

BRAF and NRAS cell lines (Figure 4; Chapter 2). These results indicate that BRAF mutant 

melanoma is more dependent on autophagy for survival than NRAS mutant melanoma 

and that oncogene status affects the sensitivity of melanoma cells to CQ by altering 

autophagic flux, subsequently increasing apoptosis. Ongoing experiments include the 

evaluation of autophagy in patient samples to quantify expression of known autophagy 

markers as well an evaluation of LC3-II expression correlated with oncogene status and 

autophagy SNPs.  These findings will be immediately translatable for patients who would 

benefit from CQ co-therapy, which is approved for clinical use. 

 

1.21 Significance of the Dissertation Study  

Long term survival remains a challenge for metastatic melanoma patients as there are few 

durable treatment options available. Melanoma treatment can be divided into four major 

types: surgery, chemotherapy, radiation therapy and biological therapy.63 Treatment of 

stage IV and recurrent melanoma may include the following: targeted therapy with 

ipilimumab or BRAF inhibitors (e.g. vemurafenib); biological therapy with interleukin-2 

(IL-2); chemotherapy including alkylating agents; or palliative therapy to relieve 

symptoms and improve the quality of life. 63,64 Unfortunately, in most cases, treatment 

fails to halt the advance of melanoma and patients do progress, typically within a few 
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months.9 Exciting immunotherapy treatment options including IL-2, 2,3,8 drugs that block 

Cytotoxic T lymphocytes (CTLs) inhibitory mechanism (CTLA-4) or Programmed cell 

death 1 (PD-1) boost the immune response against melanoma cells. These combinations 

which circumvent the tumor’s ability to evade immune destruction are resulting in tumor 

regression and increased survival, although there remains heterogeneity in responses to 

treatment.65–67 The Phase Ib study of MEDI4736 for a combinations of CTLA-4 and 

Programmed cell death ligand 1 (PD-L1) antagonist-antibodies have shown promising 

results while illuminating the relationship between melanoma progression and immune 

system.68  These results indicate that combining immunotherapy with oncogene (BRAF, 

NRAS)-targeted drugs may provide durable responses in melanoma for a larger number of 

patients.   

In addition to evading immune destruction, another hallmark of cancer is the 

reprogramming of pathways involved in energy metabolism to support continuous 

growth, development and progression of cancer using mechanisms including the 

autophagy pathway.51 Autophagy is often dysregulated in the hypoxic, low nutrient 

regions of tumors and can support cancer survival through its ability to provide tumors an 

energy source.15,18,29,34,69,70  Autophagy upregulation has been documented in lung, 

prostate and other cancer types but the mechanisms supporting its role in melanoma 

tumorigenesis have not been well characterized. In addition, the role of autophagy in 

modifying cancer cell death or survival remains controversial.71  Interestingly, it appears 

that oncogene status, an important contributor to cellular deregulation of proliferation and 

apoptotic pathways in melanoma also influences the rate of autophagic flux. BRAF V600E 

mutations have been reported to promote lung tumorigenesis by utilizing autophagy’s 
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ability to preserve mitochondrial function,72 and inhibition of autophagy in vemurafenib-

resistant melanoma decreases cell survival. The concept that oncogenes can directly 

influence autophagic rates has important implications for cancer development as well as 

the management of treatment options for this difficult disease. Furthermore, in non-

medullary thyroid cancers with activating BRAF mutations, a SNP in ATG5, a crucial 

ATG gene, has been shown to be associated with disease susceptibility and outcome. 73 

To date there are no studies examining ATG gene SNPs in melanoma progression or 

survival, so the role of these variants is unclear. Variants identified in these melanoma 

patients could affect ATG gene expression and ultimately influence the rate of autophagic 

flux.   

The significance of this proposal is that autophagy may represent a novel area for 

identifying biomarkers and potential targets for treatment in melanoma. Given that 

oncogenes influence autophagy and BRAFV600E melanoma cells appear to use late-stage 

autophagy to maintain an active metabolic state,57,74 the current study was designed to 

determine whether oncogenic mutations drive melanomas to become autophagy-addicted 

for survival and if inhibition of this pathway increases apoptosis in these cells. If this is 

so, we would anticipate finding that autophagy or oncogenically driven autophagy as an 

important factor in progression to metastasis and death.  Our study design is innovative as 

it combines both molecular epidemiology and molecular biology techniques allowing the 

proposed research to determine if oncogene status is an important modifier of autophagy 

in melanoma moving from bench to bedside.  Autophagy has been shown to promote 

tumor survival 21,58 and support survival of radiation and chemotherapy resistant tumor 

cells 54,57 thus highlighting the importance of investigating this process in melanoma. 
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Upon completion of the proposed aims, this research will clarify the relationships 

between autophagy, melanoma and oncogene status and will elucidate some of the 

molecular mechanisms/pathways contributing to this disease. This project has the 

potential to make a significant contribution because (i) it will characterize the cell death 

response to autophagy inhibition in the context of BRAF/NRAS oncogenic status; (ii) it 

will characterize the relationship at between autophagy and UV exposure in tissue 

sections and (iii) it is an important first step in identifying autophagy related SNPs that 

may influence autophagic flux and melanoma tumorigenesis. 

1.22 Limitations of Dissertation Study 

There are several limitations to this study.   

1.  While immortalized cells lines can provide some information about how metastasis in 

melanoma is facilitated, there are limitations to using them as a resource. Some of the 

strengths of cell lines are they often show similar allelic populations compared to the 

actual tumors and they provide a rich source of RNA which under other circumstances 

would be difficult to obtain. They also provide good model systems for evaluating 

invasion and the potential for the tumors to metastasize to distant sites. Weaknesses 

include an increase in chromosomal instability in many cancer cell lines as well as 

chromosomal gains and losses as the number of passages increase, which could affect 

experimental outcomes.  

2.  Problems with reliable labeling of autophagosomes have created controversies around 

using immunofluorescence.62,75 To address this potential issue, I used a proven 

colocalization experiment to identify the autolysosomes indicating true target degradation 

and autophagy completion. Staining protocols have been developed for quantitative 
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analysis using antibodies to LC3 (ATG8). In addition, quantitative fluorescent 

microscopy will be used to assess relative quantities of LC3 estimating the accumulation 

of autophagic vacuoles. Although my aims have little interdependence, this aim was 

limited by the reality that many cells use other mechanisms, such as methylation or 

acetylation, to regulate protein expression so LC3 may stay consistently expressed under 

variable conditions. Flow cytometry experiments have resulted in higher levels of cell 

death (Figure 2a-d Chapter 2), so I used an alternative method to examine cell death, 

Caspase activity, in order to obtain more definitive results. Furthermore, the use of the 

IHC could result in variable or incomplete staining and subjective quantification of 

protein expression. For this reason I developed a novel quantification method which 

removes the subjective component of IHC quantification. An alternative approach would 

be to use standard immunofluorescent techniques using anti-LC3 antibodies to quantify 

expression of tumor cells from tumor-associated melanophages. The immunofluorescent 

nature of melanoma samples makes this method a less desirable but still viable 

alternative.  
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CHAPTER TWO: 

Melanoma Cells Carrying BRAF V600E or NRAS Q61R Differ in Autophagy Status 

and Sensitivity   
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2.1 Abstract: Metastatic melanoma has no cure. Although mutations of BRAF or NRAS 

(BRAF* or NRAS*) are identified in 63 percent of melanomas, single inhibition of these 

targets has not increased survival. Recently, autophagy has been examined as a potential 

target for overcoming BRAF inhibitor resistance and there is evidence that survival of 

melanoma cells may be autophagy-dependent. Our study investigated whether BRAF or 

NRAS mutations alter autophagic flux to suppress apoptosis in melanoma, whether basal 

levels of autophagic flux differ based on oncogene status and whether chemical inhibitor 

of autophagy would differentially alter autophagy in BRAF* vs. NRAS* melanoma cells. 

Our study has shown that autophagy is upregulated in BRAF* melanoma cells compared 

to NRAS*. Interestingly, BRAF* melanoma cells demonstrated a four-fold decrease in 

cell viability following treatment with 20 µM chloroquine compared < 20 percent 

decreased in NRAS* cells.  In addition, knockdown of BRAF gene expression 

corresponded with a decrease in LC3 gene expression not seen in NRAS knockdown. Our 

research supports that BRAF* melanoma cell lines have a higher basal level of 

autophagic flux, are more sensitive to autophagy inhibition, and were less able to respond 

to autophagy induction than NRAS* melanoma cells. Findings from this study indicate 

that oncogene status influences autophagic flux and that BRAF mutant melanoma may be 

addicted to autophagy for survival while NRAS mutant melanoma may not be as 

dependent on this pathway.   

 

 

2.2 Keywords:  Autophagy; NRAS; BRAF; LC3; cell death; melanoma 
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2.3 Introduction: 

One of the emerging hallmarks of cancer is the reprogramming of pathways 

involved in energy metabolism to support continuous growth using mechanisms like 

autophagy.1  Autophagy, or self-eating, is a catabolic process that assists the removal of 

unnecessary or dysfunctional components, damaged proteins and organelles through 

lysosomal degradation.2 It is a tightly regulated process that plays a role in normal cell 

growth and development 3and  can be induced in response to nutrient deprivation.4 

Macroautophagy, the most widely discussed type of autophagy (hereafter referred to as 

autophagy), involves the initial formation of a double membrane structure (isolation 

membrane) which encapsulates cytoplasm, organelles and targeted elements in the cell, 

separating these targets from the rest of the cytoplasm and fusing them into a circular 

autophagosome.  The autophagosome is characterized by the microtubule-associated 

protein 1A/1B-light chain 3 (LC3) protein, which is proteolytically cleaved during 

autophagy and then the conjugated/ lipidated form (LC3-II) localizes to the 

autophagosome membrane. Subsequently, LC3-II can be used as a proxy marker for the 

rate of autophagy as Immunofluorescent punctate structures are visible using 

microscopy.5  The autophagosome then fuses with the lysosomes (autophagolysosome), 

which degrades or recycles the contents of the vesicles. 6 The dysregulation of autophagy 

has implications for many diseases including cancer. 3,7–11  

Autophagy has been shown to play a dual role in cancer11, suppressing the early 

stages of tumor formation12 yet having a pro-tumorigenic influence in the later stages of 

development. 13–16 Autophagic flux refers to the complete process of autophagy, 

beginning with the formation of an isolation membrane, autophagosome and eventually 
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an autolysosome where unnecessary or dysfunctional cellular components are degraded.17  

Autophagy is often upregulated in the hypoxic, low nutrient regions of tumors and can 

support cancer survival through its ability to provide tumors an energy source.18,19 This 

upregulation has been documented in lung, prostate and other cancer types but 

autophagy’s role in melanoma has not been well characterized.  

In addition, the rate of autophagic flux appears to vary by tumor type, and it has 

been reported that the effect of autophagy on cancer cells may be dependent upon the 

stage of the cancer.20 For example, in early primary melanomas, autophagy has been 

reported to play a role in suppression of melanoma tumorigenesis through the induction 

of senescence.21   

 Interestingly, it appears that oncogene status, an important contributor to cellular 

deregulation of proliferation and apoptotic pathways in melanoma also influences the rate 

of autophagic flux. BRAF V600E mutations have been reported to promote lung 

tumorigenesis by utilizing autophagy’s ability to preserve mitochondrial function.22 The 

concept that oncogenes can directly influence autophagic rates has important implications 

for cancer development as well as the management of treatment options for this difficult 

disease. 

Invasive melanoma is a complex disease with an increasing incidence and the 

cause of the majority of skin cancer deaths.  In 2015, the American Cancer Society 

estimates that 73,870 new melanomas will be diagnosed and 9,940 people will die from 

their disease. 23 The 5-year survival rate for stage IV melanoma also remains unchanged 

at only 15-20% but the incidence continues to rise, as it has for the past 30 years, at a rate 

of 6% every year. 24 Activating mutations in the BRAF and NRAS proto-oncogenes are 
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found in approximately 58% of primary melanomas (43% BRAF V600E; 15% NRAS Q61R) 

and 63% of melanoma metastases (48% BRAF V600E; 15% NRAS Q61R).25 Advances in the 

field of melanoma have successfully identified targeted therapies including selective 

oncogene inhibitors (BRAF/NRAS); however, single inhibition of these targets has not 

significantly increased patient survival, as tumors eventually develop resistance.26,27 

While activating mutations in BRAF are critical mediators of melanomagenesis28 and the 

most common genetic alterations in melanoma, the mechanisms by which these 

mutations promote tumorigenesis are still under investigation.  Importantly, many of the 

mechanism by which proto-oncogenes like BRAF influence autophagy are under 

investigation. 29,30 Recent evidence for metabolic resistance to BRAF inhibitors and the 

speculation that some cancers are “autophagy addicted” suggests that activating 

mutations in BRAF may generate tumors with this phenotype.31 These findings 

demonstrate the need to investigate the mechanism and extent to which mutations in 

proto-oncogenes affect the rate of autophagic flux and ultimately sensitivity to inhibition 

of this process.            

 Given that oncogenes influence the rate of autophagy and BRAF V600E -mutant 

melanoma cells, in particular, appear to use late-stage autophagy to maintain an active 

metabolic state,29,32,33  the current study was designed to determine whether proto-

oncogene mutations differentially drive metastatic melanomas to become autophagy-

addicted for survival.  

2.4 Materials and Methods: 

2.4.1 Cell Lines.  
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Six melanoma cell lines, authenticated using short tandem repeat loci profiling by ATCC 

(Table 1), were established from human metastatic melanomas at Memorial Sloan 

Kettering Cancer Center and were a generous gift from Dr. Paul Chapman  (SK-Mel 2, 

SK-Mel 19, SK-Mel 29, SK-Mel 94, SK-Mel 103, and SK-Mel 147) (Table1). Cells were 

maintained in Dulbecco's modified Eagle's medium (DMEM), supplemented with 10% 

heat-inactivated fetal bovine serum (FBS), penicillin (250 units/ml), and streptomycin 

(250 μg/ml) (Pen-Strep) and referred to as normal media (NM) or DMEM without FBS 

referred to as serum free media (SFM) at 37°C and 5% CO2.  

2.4.2 In Vitro Cytotoxicity Assay: Cell lines were seeded at a density 1.20X106 in 25 

cm2 flasks. Twenty-four hours after plating, cells were treated with 20µM chloroquine 

(CQ) and incubated at 37˚C and 5% CO2 for a period of 24 hours Synthetic CQ was 

purchased from Sigma-Aldrich (C6628) and prepared in H2O (vehicle). Control cells 

were treated with equivalent volume of vehicle.  Following treatment, floating cells were 

collected; adherent cells were washed with PBS, trypsinized and mixed with the 

corresponding floating cells before staining. Cells were stained with 0.4% trypan blue 

and counted to estimate the number of live and dead cells. Cell viability is expressed as 

the percentage of live cells compared to the total number of cells counted.  Comparisons 

of percent viability in vehicle vs. treated cells were determined using one way ANOVA 

with a cut-off of P<0.01. 

2.4.3 Annexin 5/PI Staining – Flow Cytometry:  BRAF V600E mutant melanoma cell 

lines and NRAS Q61R mutant melanoma cell lines were trypsinized and incubated with 

FITC-conjugated Annexin V (BD Biosciences) and propidium iodide. Ten thousand 

events were analyzed by flow cytometry with CellQuest Pro software. Data is presented 
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as the average percentage of viable cells +/- SD that was quantified 24 hours post 

treatment with either vehicle or 20 µM CQ. Statistical significance was set at 1%.   

2.4.4 Caspase Activity: Caspase 3/7 activity was quantified using the Caspase-Glo assay 

kit (Promega, Madison USA) following the manufactures instructions. 24 hrs. following 

vehicle or CQ treatment, the plates containing cells were removed from the incubator and 

allowed to equilibrate to room temperature. 100 μl of Caspase-Glo reagent was added to 

each well; the plate was gently mixed and then incubated at room temperature for 1 hour. 

The luminescence of each sample was measured in a plate-reading luminometer 

(Infinite® Tecan). The experiments were performed in triplicate on two separately-

initiated cultures. 

2.4.5 Immunofluorescent Staining of Lysotracker Red:  Autophagic flux was assessed 

using immunofluorescence imaging of LC3 as an indicator of the steady state level of 

autophagosomes and co-staining with LysoTracker (red-Cy3 dye) to examine the co-

localization of lysosomal vesicles and autophagosomes in the cell.  Cells were grown in 

normal media (NM) or serum free media (SFM), fixed, and examined by microscopy for 

the presence of autophagosomes and autolysosomes visualized by autophagosome 

membrane fluorescent LC3 or LysoTracker.  LysoTracker Red was used to visualize 

lysosomes in vehicle and CQ treated cells. Cells were grown on coverslips as described 

below and once 70% confluence was reached, pre-warmed (37°C) media containing 

LysoTracker Red DND-99 at 50nM concentration was added. Cells were incubated for 

30 minutes under normal growth conditions (37°C, 5% CO2), and then the media was 

replaced with normal media prior to imaging to ensure sufficient lysosomal staining prior 

to fixation and co-staining. 
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2.4.6 Immunofluorescent Staining of Microtubule-associated Protein 1 Light Chain 

3 (LC3):  Monolayers of cells were grown on coverslips to 70%confluence prior to 

experimental treatments.  Cells were grown in NM or SFM media containing DMEM 

only.  Cells were then treated with vehicle, 20 µM CQ, 20nmol/L Bafilomycin A1 (BAF) 

(Wako) or 1 μM Rapamycin (RAP) (Sigma, St. Louis, MO). Following treatment 

conditions, cells were washed twice in cold 1X PBS then fixed with 4% 

paraformaldehyde for 10 min, washed with 1X PBS and incubated in blocking buffer at 

room temperature for 30minutes.  Cells were incubated with a selective antibody against 

LC3 (Microtubule-associated protein1A/1B-light chain 3; MBL, Woburn, MA) to 

evaluate autophagic flux following treatment with 20 µm CQ, 20nmol/L BAF or 1 μM 

RAP or vehicle for 24 hours. Cells were labeled with LC3 primary antibody in blocking 

solution for 1 hour. After 40 minutes, media containing DAPI was added to the coverslips 

for the final 20 minute incubation of LC3. After washing with 1X PBS, coverslips were 

incubated in anti-goat FITC-conjugated secondary antibody in blocking buffer (1:1000) 

in the dark for 1 hour at room temperature and then mounted on microscope slides using 

prolong gold (Life Technologies, NY). Autophagic flux was determined using the 

percentage of cells displaying LC3 punctate (rather than diffuse) fluorescence out of a 

100 total cells counted in three biological replicates for each cell line and treatment type 

grown in cell line  in either NM or a SFM for 2 hours.   Formation of acidic vesicular 

organelles as an indication of autophagic flux was monitored by LysoTracker DND-99 

(Cy3 –red) and 4',6-diamidino-2-phenylindole (DAPI) staining was used to visualize 

nuclei.   BAF treatment was used to inhibit lysosomal function, resulting in a decrease in 

autophagic flux.  Conversely autophagic rate was increased by treating with RAP and the 
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change in flux was measured. Cells were examined by Zeiss Axioskop 2MOT 

microscope, magnification × 620 oil immersion objective lens, and representative images 

of cells were taken. Co-localization of punctate Anti-LC3 FITC, LysoTracker (Cy3) and 

DAPI staining is shown by the pink and yellow color in a composite panel. One-way 

repeated measures ANOVA were used to compare means among the experimental groups 

and vehicle control.  Pair wise comparisons between treatment groups and vehicle control 

were performed after adjusting for multiple tests to evaluate the effect of each treatment.  

Statistical significance was set at 1%  

2.4.7 Quantification of Co-localized Puncta: SlideBook version 5.0 software, which 

analyzes the entire three-channel images by measuring the intensity of each label, was 

used to quantify the number of cells displaying autophagosomes.  The quantification of 

cells with higher levels of LC3 puncta per cell is represented by area in microns 

compared to background. Mask segments of the low- and high- FITC/Cy3 fluorescents 

were created in SlideBook using in both channel images and the background was 

corrected using the same threshold values for all images to be analyzed. The merged 

images were then statistically analyzed using cross-mask and cross-channel functions. 

The ratio of fluorescence was then calculated allowing for quantification of the number 

of fluorescently-labeled co-localized puncta in fixed cells.   

2.4.8 Cell Transfection and RNA Interference: For RNA interference experiments, 

cells were grown in 12-well plates at a density of 1 × 105 cells/well for 24. The cells were 

then transfections with siRNA using Lipofectamine 2000 (Thermo Fisher Scientific, 

Waltham, MA)  following the manufacturer's recommendations using a final 

concentration of 10 nM siRNA against BRAF (Origene SR300470)  or NRAS (Origene, 
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SR303236). siRNA transfected cells were collected 24, 48 and 72 hours following 

transfections. Efficiency of knockdown of the target mRNA was evaluated by real-time 

PCR. 

2.4.9 RNA Isolation and Real-Time PCR with SYBR Green Assay: Total RNA (1 μg) 

was isolated with RNeasy Mini Kit from Qiagen  (Valencia, CA) and  reverse transcribed 

in 50 μl at 48 °C for 2 h using High Capacity cDNA Archive Kit from Applied 

Biosystems (Foster City, CA, USA). Amplification of cDNA was carried out using the 

following primers and SYBR green PCR master mix in an Applied Biosystems 7900 

Real-Time PCR System. The primers used for amplification are: MAP1 LC3B forward 

primer (AGCAGCATCCAACCAAAATC) and reverse primer 

(CTGTGTCCGTTCACCAACAG). For both BRAF and NRAS gene expression pre-

designed KiCqStart™ SYBR green primers were purchased (Sigma St. Louis, MO). The 

threshold cycle (Ct) values, as defined by the default setting, were measured by an ABI 

Prism 7900 Sequence Detection System. B-actin was used as an internal control. 

Triplicate samples were measured and averaged. 

2.4.10 Western Blot Analysis of LC3 Protein Expression: Cells were washed twice 

with PBS and lysed for 30 min at 4°C in RIPA buffer (Sigma-Aldrich, France) prior to 

harvesting by scraping. After an ultra-centrifugation at 16,000 ×g for 10 min at 4°C, 

protein concentration was determined using the BCA Protein Assay Kit (Pierce, IL).  

Proteins were electrophoresed on a4-20% SDS–polyacrylamide gel for 45 minutes at 

200 V. Proteins were then transferred onto nitrocellulose membranes (30 min, 100 mA) 

(BioRad Laboratories, France). Membranes were blocked with 3% bovine serum albumin 

(BSA), 0.1% Tween 20 in 10 mM Tris–HCl pH 7.5, 0.1 M NaCl for 1 hour at room 
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temperature. Incubation was overnight at 4°C with primary polyclonal rabbit anti-human 

LC3 at 1:500 (Cell Signaling Technology, MA) and monoclonal anti-actin at 1:1,000 

(Sigma-Aldrich, France) (loading control).   Subsequently the membranes were washed 

and incubated with 0.02 μg/ml Horseradish peroxidase–conjugated secondary antibody 

(HRP)-conjugated IgG (Cell Signaling, MA) for 1 hour and visualized using Super Signal 

West Fempto Chemiluminescent Substrate System (Pierce Biotechnology, IL). The 

intensity of bands was analyzed by FluorChem™ R System and AlphaView Analysis 

Software (Protein Simple, California). Three biologic replicates were generated for each 

endpoint. LC3-I/LC3-II ratio has been previously used as a surrogate of autophagic flux. 

However, documented differences in across cell lines and tissue dependent expression 

levels of LC3-I and LC3-II as well as differences in antibody affinities for LC3-I and 

LC3-II have indicated that this type of analysis has produced false-positive or false-

negative results. Additionally, as LC3-II itself is subject to autophagic degradation at the 

lysosome, the current study is in agreement with the consensus to utilize overall levels of 

LC3-II normalized to loading control as a measure of autophagic flux (30). One-way 

repeated measures ANOVA were used to compare means among the experimental groups 

and vehicle control.  Pair wise comparisons between treatment groups and vehicle control 

were performed after adjusting for multiple tests to evaluate the effect of each treatment.  

Statistical significance was set at 1%.   

2.5 Results: 

2.5.1 In vitro Viability Assessments: Melanoma cell lines treated for 24 hours with 

CQ demonstrated a decrease in percent cell viability as measured by trypan blue 

exclusion (Figure 1). Further, differential sensitivity to this chemical inhibition of 
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autophagy appeared to be influenced by BRAF/NRAS status in these cell lines. When 

cultured in NM and treated with CQ, BRAF V600E cell lines (SK-MEL 2, 19 and 29) had 

significantly decreased viability when compared to cells treated with vehicle (SK-MEL 

19, P=0.00014; SK-MEL 29, P=0.0013; SK-MEL 94, P= 0.0008) (Figure 1A).  NRAS 

Q61R cell lines (SK-MEL 2, SK-MEL 103 and SK-MEL 147) treated with the same dose 

of CQ had a significantly less pronounced response with <20% decrease in viability 

compared to vehicle (SK-MEL 2, P= 0.003; SK-MEL 103, P= 0.937; SK-MEL147, 

P=0.005 (Figure 1B).  This data suggests that oncogenic status may influence the level of 

autophagic flux utilized by these cells.    

2.5.2 Characterization of Apoptotic Cell Death:  We used Annexin V/PI staining 

and a capase3/7 activity assay in order to characterize the type of cell death associated 

with the observed decrease in cell viability after treatment with CQ (Figure 2a-e; Figure 

3).  Overall, there was a high rate of cell death (15-20%) in the control samples 

potentially due to the adherent cell removal. Despite this baseline, following CQ 

treatment of BRAF cell lines, a significantly larger subpopulation of apoptotic cells was 

present when compared to vehicle treated cells (21.2% vs. 48.6%).  Conversely, the 

NRAS cell population was predominantly composed of viable cells subsequent to CQ 

treatment. Further, when compared to NRAS treated cells, BRAF treated cells had a 

greater percentage of cells undergoing apoptosis demonstrating that the decrease in cell 

viability seen following CQ treatment was a consequence of inhibiting autophagy rather 

than overt toxicity.  In addition, the activity of caspase 3/7 was over 5X greater in the 

cells with 20 μM CQ compared to untreated BRAF* cells, while there was no significant 

difference between the NRAS* treated or untreated cells (Figure 3) 
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2.5.3 Effect of Serum Starvation on Oncogenic BRAF and NRAS Melanoma Cells. 

Under nutrient-deprived conditions, autolysosomes become more acidic as demonstrated 

by an increase in Cy3-red lysosomal staining of the cells. Following incubation for 0.5 

hour in SFM, both NRAS and BRAF showed a marked increase in LC3-puncta co-

localizing with lysosomal staining, indicating an increase in the number of autolysosomes 

(Figure 4). Quantification by SlideBook software of LC3 positive puncta (~ 100 cells/ 

triplicate experiment) from either BRAF* and NRAS* melanoma cells grown in NM or 

SFM indicated that serum deprivation induces LC3 puncta to form large structures at 0.5 

hour in BRAF* cells (Figure 4a and c). Serum deprivation also induces LC3 puncta 

formation at 0.5 and at 2 hours in NRAS cells (Figure 4b and c).  Note that although 

serum starvation induces both autophagosomes (green) and autolysosomes (yellow) in 

BRAF* melanoma cells, indicating autophagic induction, the quantity of autolysosomes 

are inhibited at 2 hours of serum starvation. In addition, in BRAF* cells extended serum 

deprivation (2 hours) shows a decrease in LC3 size and number with continued starvation 

(Figure 4a). As shown in the quantification of LC3 immunofluorescence puncta, as a 

ratio of the percentage of cells displaying punctate fluorescence out of 100 cells, 

compared to control cells in an average of three independent experiments the attenuated 

response in BRAF* cells lines shortly after serum starvation suggesting an exhaustion of 

the autophagy pathway (Figure 4).  

2.5.4 Effect of Autophagy Inhibition and Induction on Oncogenic BRAF and 

NRAS Melanoma Cells. Following treatment with autophagy inhibitors (BAF or CQ) or 

an inducer of autophagy (RAP) BRAF* and NRAS* cells displayed differential 

autophagic responses to these chemical treatments (Figure5a-e). Following CQ or BAF 
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treatment BRAF cell lines reveal an up-regulation of LC3-II protein expression, 

indicating a higher rate of autophagy in these melanoma cell lines as indicated by the 

numerous, large LC3 puncta. These large LC3 puncta are indicative of impaired 

autophagic flux and demonstrate decreases co-localization with lysosomes (red) which 

represent a higher basal autophagic flux in BRAF* cells.  Conversely, in the NRAS* cells 

autophagic inhibition by CQ or BAF addition induces very few LC3 puncta to form large 

structures.  For autophay induction, RAP addition results in an increase in lysosome/LC3 

co-localization as well as LC3 puncta indicating autophagy induction in both types of cell 

lines. Figure 5a-e). BRAF* cells display a much higher basal level of autophagic flux as 

indicated by large number of autophagosomes (green) and autolysosomes (yellow) while 

RAP addition induced a substantial increase in lysosome/LC3 co-localization. The large 

statistical increase in NRAS autolysosomes following RAP induction confirms the 

capacity of these cells to utilize autophagy (Figure 5c) but indicates low levels of basal 

autophagy. 

2.5.5 Differential Rates of Autophagic Flux:  Differential rates of autophagic flux 

were validated using LC3 protein quantification and the LC3-II turnover assay by 

western blot (Figure 6 a-e). BRAF LC3-I and LC3-II protein levels were higher than the 

expression levels in represented in the NRAS cell lines. BRAF cell lines also demonstrated 

significantly increased level of LC3-II expression after CQ treatment, suggesting a break 

in autophagy flux.  A subsequent accumulation of LC3-II that would have otherwise been 

degraded following conjugation into the inner autophagosomal membrane during the 

completion of autophagic flux may explain the eventual increase in LC3-II levels. 

Conversely, NRAS cell lines demonstrated a negligible change in LC3-II expression 
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following inhibition of autophagy, suggesting that these cells are not as dependent on this 

process.   

2.5.6 Association of LC3 Gene Expression with NRAS/BRAF Expression: Gene 

expression experiments examining the relationship between NRAS, BRAF and LC3 using 

RT-PCR indicate a trend between BRAF expression and LC3 expression in our cell lines. 

LC3 gene expression decreased at 24, 48 and 72 hours following BRAF knockdown. 

While LC3 gene expression did decrease slightly at 24 hours following NRAS knockdown 

there was no continued trend with NRAS expression. 

2.6 Discussion. 

 

2.6.1 BRAFV600E or NRASQ61R Genotype Determines Melanoma Sensitivity to CQ 

Treatment. 

 In this study, our data demonstrated CQ attenuated cell viability in BRAFV600E cell 

lines when compared to NRAS Q61R cell lines treated with an equivalent dose. This data 

implies a variation in the basal levels of autophagic flux of these two oncogenic cell lines 

that are subsequently differentially affected by chemical inhibition.   

 Upregulation of autophagy related (ATG) genes results in the conjugation of 

cytosolic LC3 (LC3-I) to form LC3-II-PE which is recruited to the autophagosomal 

membranes.6  When the intra-autophagosomal components are degraded by lysosomal 

hydrolases, LC3-II-PE is also degraded.  Lysosomal turnover of LC3-II-PE reflects 

autophagic flux, and the detection of LC3 by immunofluorescence is a reliable method 

for monitoring autophagy.34   CQ disruption of lysosomal function causes a dysregulation 

in autophagosome turnover resulting in an increase in the number of autophagosomes 
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present in the cell.5,34  Similarly, a defect in autophagy turnover results when autophagy 

has been induced but there is limited autophagic flux.  Subsequently, this leads to a 

reduction in the overall rate of autophagic flux and an increase in type II cell death. Our 

data support that BRAF* cells are dependent on late-stage autophagy for maintenance of 

an active metabolic state and undergo apoptosis when treated with autophagy inhibiting 

agents such as CQ (Figures 1-5). 35,36 Some cancer cell types have been shown to rely on 

autophagy for survival as evidenced by an increase in autophagosome production and 

autophagic flux while under nutrient depleted conditions (Figure 4). 18,37,35 Further,  this 

dependence on autophagy for survival has been described as “autophagy-addiction”.31   

To that end, recent reports in the literature have revealed that tumor cells harboring BRAF 

V600E mutations develop an addiction to autophagy as a means to preserve mitochondrial 

function, as well as for glutamine metabolism, suggesting that oncogene mutation status 

may dictate basal levels of autophagy. 38 These findings suggest that inhibiting autophagy 

may be a powerful strategy for BRAF V600E -driven malignancies that develop resistance 

to selective inhibition. 

2.6.2 Oncogene status dictates melanoma CQ sensitivity, altering autophagic 

flux and increasing apoptosis.   Through in vitro assays we showed a significant 

decrease in cell viability following inhibition of autophagy in BRAF V600E melanoma cell 

lines which we then characterized as apoptotic cell death.  Supporting the idea that 

oncogene status alters autophagic flux, we observed a diminished effect on cell viability 

in NRASQ61R after CQ treatment. This phenomenon was evident as an 8-fold difference in 

the IC50 for CQ in BRAFV600E melanoma cell lines compared to NRASQ61R was observed 

(Table 1; Figure 1). We verified that the reduction in cell viability following CQ 
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exposure resulted in a significant increase in apoptotic cell death in BRAF* cell lines 

following CQ inhibition compared to the NRAS* cell lines (Figure 2 and 3).   These data 

indicate that BRAF V600E melanoma cell lines are more sensitive to CQ induced inhibition 

of autophagy and that inhibition of autophagy in these cells as shown by our data 

(Figures 2 and 3) results in apoptotic cell death. While CQ is currently being investigated 

in cancer trials, without a clear understanding of the biological mechanisms underlying 

the mode of action for this treatment, we may be unable to appropriately target those 

patients who can benefit from this combination therapy. Our data indicate that only 

patients with BRAF* melanomas may be responsive to autophagy inhibition with CQ as a 

co-therapy (Figure 1-3; Figure 5). 

2.6.3 BRAF cells have more basal LC3 puncta and, following autophagy 

inhibition or induction, oncogenic cell lines display different rates of 

autophagic flux. In this study dysregulation is represented by higher basal expression of 

LC3-II puncta in the BRAF V600E cell lines compared to NRAS Q61R cell lines (Figure 4 

and 5).  Thus these data are consistent with the hypothesis that cell lines with BRAF V600E 

mutations may be more dependent upon autophagy for survival than NRAS Q61R cell lines. 

In addition, the inability of BRAF* cells to upregulate autophagy over 2 hours following 

serum starvation (Figure 4) reinforcing the elevated basal level maintained in these cells. 

The failure of these cells to have the capacity to increase autophagic degradation rates in 

response to serum deprivation suggests these cells have upregulated basal autophagy to 

threshold. 39 The data that NRAS*cells can increase autophagy following serum starvation 

as well as following RAP induction indicate that these cells can use the autophagy 

pathway to survive nutrient depletion but they are not dependent upon this pathway under 
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basal conditions. In addition, we demonstrated an increase size in LC3 puncta in CQ-

treated BRAF V600E cell lines (Figure 4), suggesting autophagosome accumulation as a 

consequence of lysosomal inhibition by CQ. By contrast, we did not observe the same 

level of LC3-II aggregation and autophagosome accumulation in the NRAS Q61R cell lines 

treated with the same dosage of CQ. Further, using the western assay, we showed a 

decrease in overall LC3-I and an increase in LC3-II protein expression following CQ 

treatment (Figure 6) in BRAF* cells but not a corresponding decrease in NRAS* cells 

indicating that autophagy is induced at higher basal levels in BRAF* than NRAS* 

melanoma cells. 

 To determine if BRAFV600E was associated with autophagy activation, we 

knocked down either BRAF or NRAS in melanoma cells and evaluated the corresponding 

change in LC3 gene expression (Figure 7). These results indicate showed knock-down of 

BRAF significantly decreased LC3 expression. These results are consist with the 

association of the BRAF* and increased rates autophagy. We did not see a corresponding 

consistent trend with NRAS knockdown providing evidence that, while BRAF* correlates 

with LC3 expression, NRAS* expression does not. Previously, a positive correlation 

between LC3 protein and levels of BRAF has been also reported lending further support 

to our conclusions.32  

 Currently, BRAF inhibition is accomplished clinically by treatment with 

vemurafenib, a specific BRAF V600E ATP-competitive, small-molecule inhibitor. Studies 

have reported the development of NRAS mutation in patients following vemurafenib 

treatment for BRAF melanoma.40 This important finding reiterates the significance of 

understanding the biological mechanisms underlying the induction of the autophagy 
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pathway, as BRAF inhibition resistant tumors might also lose their sensitivity to 

chloroquine following acquisition of NRAS mutations. BRAF is an amino acid sensor and 

has been shown to positively regulate autophagy in colon cancer cells. Under nutrient 

deprivation conditions or with constitutive activation of BRAF, MAPK is induced and 

results in the upregulation of autophagy. As part of the MAPK pathway, Extracellular 

Signal-regulated Kinase (ERK) regulates the maturation of autophagic vacuoles and 

constitutive activation of the MAPK.41 MAPK activation results in the inhibition of 

mTORC1/2, as well an increase in the expression of Beclin 1 (Atg6), a protein with a 

central role in autophagy initiation. Through these interactions we speculate that BRAF 

may be facilitating an increase in basal autophagic flux (Figure 8). This speculation is 

supported by recent data reporting that the use of combination BRAF and autophagy 

inhibitors promoted tumor regression in BRAF inhibition -resistant xenografts.42   

 Limitations of our study include the absence of the characterization of the rate of 

autophagic flux in a BRAF/NRAS wildtype cell line. However, as melanoma is a highly 

mutagenic cancer, even a cell line that that expressed wildtype NRAS and BRAF would 

have other mutations which might impact autophagy independently diminishing the 

relevance of this comparison.  

 In the current study we determined that autophagy was up-regulated in BRAFV600E 

melanoma cells when compared with NRASQ61R melanoma cells as measured by 

immunofluorescence and western blot analyses and that inhibition of autophagy resulted 

in apoptotic cell death specifically in the BRAF* cells. Finally we identified a trend in the 

gene expression of a proxy marker of LC3 and BRAF expression but no corresponding 

trend with NRAS expression. 
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 Despite the recent success of BRAFV600E specific inhibitors, chemo-resistance quickly 

occurs which suggests that other signaling mechanisms, like autophagy, may contribute to 

progression in this subtype of melanoma. Our findings implicate a positive association 

between the expression of BRAF V600E mutations in melanoma cells lines and the rate of 

autophagic flux. While both BRAF and NRAS mutations activate ERK/MAPK 

signaling,43 our research reveals that melanoma cells harboring BRAF V600E mutations 

utilize autophagy as a metabolic resource to a greater extent than NRAS* cells.  In 

addition, the BRAF* and NRAS* pathways, may have opposing effects on the rate of 

autophagic flux in melanoma. Our results indicate that BRAF* melanoma cells are 

addicted to autophagy and support BRAF activation of autophagy, potentially through 

Beclin1, 44,45 thereby promoting tumor survival (Figure 8). 30,43  

 In conclusion, BRAF* melanoma cancer cells are more susceptible to autophagic 

inhibition, while NRAS* melanoma cells appear less dependent on this pathway which 

implicates this process as a viable and attractive target for future therapies. The 

identification of an association of autophagy dependence and BRAF V600E melanoma 

suggests that drugs like CQ, that suppress this process, may also have therapeutic 

potential for aggressive tumor types and that there is differential activation of the 

autophagy pathway in BRAF* vs. NRAS* melanomas.  
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2.9 Tables and Figures 

 
2.9.1 Table 1: Oncogene status and gender summary for Memorial Sloan 

Kettering melanoma cell lines (SK-Mel). 

 

  

 
 

2.9.2 Figure 1: Cell Treatment with 20 µM CQ. Average percentage of viable cells 

(n=3) following treatment with vehicle or 20 µM CQ (A) BRAF V600E mutant melanoma 

cell lines (SK-Mel 2, 19, 29) (B) NRAS Q61R mutant melanoma cell lines (SK-Mel 94, 

103, 147) (mean ± SD *, P <0.01; **, P <0.001; ***, P <0.0001). 

 

Cell Line Gender p53 B-RAF N-Ras

19 Female WT V600E WT

29 Male WT V600E WT

94 Male WT V600E WT

2 Male WT WT Mut/Q61R

103 Male WT WT Mut/Q61R

147 Male WT WT Mut/Q61R

Table 1: Memorial Sloan Kettering Melanoma Cell 
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2.9.3 Figure 2a-d:  Annexin V/PI staining by flow cytometry. Flow cytometric 

analysis of melanoma cell apoptosis in culture. Untreated and CQ treated cells collected 

after 24 h of culture were stained with PI and FITC-labelled Annexin V. Two melanoma 

cell lines, one BRAF and one NRAS were treated either with vehicle (Figure 2a and c) or c 

20 µM CQ (Figure 2b and d) for 24 hours prior to staining with Annexin V and 

propidium iodide (PI). Viable cells with intact membranes were represented by the 

unstained portion (Annexin V and PI negative) in the lower left, while and Annexin V 

stained cells, indicating early apoptotic cells, are represented in the lower right (Annexin 

V positive/ PI negative). The upper left portion represents necrotic cells (Annexin V 

negative/PI positive) while cells with disrupted membranes are undergoing late apoptosis 

or are already dead are represented in the upper right (Annexin V positive/ PI positive).  

Insets represent the percentage of cells in each quadrant. 
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2.9.4 Figure 3a-b: Caspase activity luminescence assay. BRAF (SK-MEL19) or 

NRAS (SK-MEL 103) mutant cells were treated with either vehicle or 20μM  chloroquine 

for 24 h. Following treatment the caspase 3/7 activity of each triplicate group of cells was 

quantified by a luminescence assay. Data are mean ± SD of two sets of different triplicate 

experiments. * P < 0.005. 
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2.9.5 Figure 4a-c:  Immunofluorescent staining of melanoma cell lines before 

and after autophagy induction by serum starvation. (A-B) Autophagy was 

induced by serum starvation through culture in serum-free medium (SFM) for indicated 

time points. Control cells were cultured in normal media (NM) containing FBS and 

vehicle. Live cells were treated with lysotracker and then cells were fixed prior to 

additional staining with Anti-LC3 FITC and DAPI. Composite images of LC3 (green) 

with lysosomal (red) and nuclear stain (blue) or co-localization shown by yellow dual 

staining of LC3 (green) with lysosomal (red). Cells were examined by Zeiss Axioskop 

2MOT microscope × 620. *P < 0.05. A) BRAF mutant melanoma cells in NM or SFM. 

B) NRAS mutant melanoma cells in NM or in SFM. C) Histogram of quantification of 

LC3 immunofluorescence puncta as a ratio of the percentage of cells displaying punctate 

fluorescence out of 100 cells compared to control cells in an average of three independent 

experiments. *P < 0.05. 

* 
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2.9.6 Figure 5a-e: The effect of autophagic chemical inhibition by CQ or BAF 

treatment, or RAP induced autophagy, in melanoma cells.  

Oncogenic melanoma cells were treated with vehicle, (A) rapamycin (1 μM)(RAP), (D) 

cloroquine (CQ)(20 µM) or (D) bafilomycin A (BAF)(20nmol/L) for three hours. 

Quantification of autophagy induction (C) or inhibition (E). Control cells were cultured 

in normal media containing FBS and vehicle. Live cells were treated with lysotracker and 

then cells were fixed prior to additional staining with Anti-LC3 FITC (green) and DAPI 

nuclear stain (blue). Composite images of LC3 (green) with lysosomal (red) and nuclear 

stain (blue) or co-localization shown by yellow dual staining of LC3 (green) with 

lysosomal (red).  Cells were examined by Zeiss Axioskop 2MOT microscope. × 620. 
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2.9.7 Figure 6a-b: Western blot analysis of LC-3B.  

(A) Western blot and (B) Quantitative Analysis of (A). Relative LC3 protein expression 

in BRAF and NRAS mutant melanoma cell lines when treated with vehicle (-) or 20 µM 

CQ (+) for 24 hrs. (B) Protein quantification from Western blot using densitometry of 

LC-3B-II in BRAF or NRAS mutant melanoma following treatment with vehicle or 20 

µM CQ as indicated. Results are shown as arbitrary units (AU) normalized to β-Actin 

(mean ± SD; **, P < 0.01; ***, P < 0.001; n =3). 

 

A.       B 

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.9.8 Figure 7: Suppression of BRAF or NRAS mRNA expression by siRNA.  

SK-Mel cells were transiently transfected with si-BRAF; si-NRAS or scrambled siRNA 

(Scramble). Twenty-four, forty-eight or seventy-two hours after siRNA or scramble 

treatment, total RNA was extracted from transfected cells and quantified using real-time 

PCR. Expression levels of BRAF and LC3 mRNA were significantly suppressed by si-

SK-MEL 103 SK-MEL 19  
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BRAF (A) and expression levels of NRAS mRNA were significantly suppressed by si-

NRAS (B) but had an insignificant influence on LC3 mRNA. Results are normalized to 

the expression level of B-actin mRNA and are expressed as the ratio of BRAF, NRAS or 

LC3 expression to scramble. Data are presented as mean ± SD of three replicate 

experiments. 

 

 
2.9.9 Figure 8: Melanoma cells with activating BRAF* or NRAS* have 

differential dependence on autophagy 
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CHAPTER THREE: 

Quantitative Analysis of Immunohistochemistry in Melanoma Tumors and LC3 

and Beclin 1 Expression in Melanoma Lesions: Association with UV Exposure 

and Prognostic Indicators.    
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Supplemental note: Due to the current subjective quantification of protein expression, in 

order to rigorously address whether autophagic flux is associated with UV exposure 

and/or clinical stage and modified by oncogenic BRAF/NRAS in melanoma tumors, I 

developed a novel quantification method which removes this aspect from the evaluation 

of proteins by IHC in melanoma.  

3.1 Abstract: 

Aims: Interpretation of protein expression, by immunohistochemistry (IHC), in 

melanoma tissue sections is difficult and subjective. Inter/intra-observer variability even 

among experienced dermatopathologists and inherent pigmentation, make diagnostic 

reproducibility challenging.  

Methods: We sought to identify a quantitative method for measuring IHC protein 

expression in melanoma tissues. In the current study, we used IHC HRP-DAB with an 

Azure counterstain, to develop a quantitative measurement of protein expression using 

spectral imaging technology. 

Results:  We examined the distribution of mean intensities from DAB-labeled protein in 

different participants using different Azure reference spectra to remove (unmix) melanin 

stain. We identified no significant differences in mean DAB intensities (p=0.73; Kruskal-

Wallis).  

Conclusions: To our knowledge, this is the first study to use spectral imaging to quantify 

IHC protein expression in melanoma lesions. Using this methodology, the absorbance 

spectra of the reference is not affected by overall label intensity, allowing IHC 

interpretation to be independent of high visual contrast chromogens.  This has important 
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implications particularly for pigmented tissue sections. This quantification method 

reduces the subjectivity of protein expression analysis and provides a valuable tool for 

accurate evaluation.   

Keywords: Immunohistochemistry; melanoma; spectral imaging 

 

3.2 Introduction: 

Immunohistochemistry (IHC) is an important technique to both researchers and 

clinicians1, and is used to identify the presence and location of protein2.  Most cancer 

research employing IHC utilizes formalin-fixed paraffin embedded (FFPE) tissues that 

have been sectioned and mounted onto slides. For clinicians, IHC is particularly 

important in the diagnosis of cancers, including melanoma, as it allows for identification 

of overexpressed proteins. These protein biomarkers, for example S100 and HMB-45 in 

melanoma, can predict disease progression and identify potential therapeutic targets. 

Standard IHC is a multi-step technique that has two major stages—antigen 

retrieval/staining and analysis.  The first step in the staining stage is deparaffinization and 

rehydration of the tissue section. The tissue section is incubated in a buffer under high 

heat to remove cross-links formed during the fixation process and “expose” proteins of 

interest. Antigen retrieval unmasks antigens within the tissue section for binding to 

antibodies, followed by a series of steps to block antibody binding to non-specific 

proteins and the removal of endogenous peroxidases.  Next, the tissue is incubated with a 

high affinity primary antibody specific to the protein of interest. Visualization of the 

protein is accomplished using a chromogen substrate and an enzyme, such as horseradish 
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peroxidase (HRP), is conjugated to either the primary antibody or a secondary antibody 

against the primary antibody.   

The addition of the chromogen bound to the substrate-conjugated antibody results in 

substrate cleavage, producing a colored stain at that location, and thereby indicating the 

presence of the target protein. The most commonly utilized substrate-chromogen 

combination is HRP (substrate) 3,3’-Diaminobenzidine (DAB) (chromogen), which 

results in a brown stain and there are a limited number of substrate-chromogen 

combinations available for IHC 3. 

 

Once the tissues are developed, they are dehydrated and mounted with a stabilizing 

mounting medium and coverslip for visualization. The stains are visualized using 

microscopy and quantified through a variety of methods. Current IHC analysis is semi-

quantitative; typically several readers use a subjective scoring system. The scores are 

subsequently compared in order to assess inter-reader variability4.  

 

The limitations of this semi-quantitative method have been particularly troublesome in 

melanoma, because the melanin pigment is brown, creating challenges for both 

researchers and clinicians to accurately differentiate between DAB staining and melanin, 

potentially impacting accurate diagnoses.  Given the importance of this tool, there is a 

need for a non-subjective quantitation method that can be applied to IHC in melanoma 

tissue sections. 
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In 1991, Kamino and Tam identified that Azure B, hereafter referred to as Azure, acts as 

an appropriate counterstain in melanoma sections5. They reported that Azure stains 

melanin green-blue, allowing for its identification in contrast to the surrounding tissue. 

However, this method was still quantified using the scoring system, and therefore relies 

on subjective interpretation.  

Azure, a cationic dye, is one of the major metabolites of methylene blue and is used in 

chromosomal tissue staining6. While the selective binding is not well characterized in the 

literature, we propose, as a provisionary mechanism, that the heterocyclic nitrogen in 

Azure functions as a base7 to deprotonate carboxylic acids found in melanin. This would 

allow for ionic interactions between melanin’s anion and the cations in Azure. Acidic 

interplay, in conjunction with hydrogen bonding, likely results in the preferential staining 

of the melanin (Supplemental Figure 1).  

With advances in imaging and associated software, we sought to identify a quantitative 

method for measuring protein expression in melanoma tissues. In the current study, we 

used IHC HRP-DAB staining in melanoma tissues, with Azure as a counterstain, to 

develop a quantitative measurement of protein expression using spectral imaging 

technology. 

 

3.3 Methods: 

3.3.1 Tissue samples: 

Melanoma tissue sections were obtained from two different sources:  University of 

California Surgical Pathology Laboratory and the University of New Mexico Hospital 

(UNMH) Surgical Pathology Laboratory. California Surgical tissues were selected from a 
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residual bio-repository of de-identified FFPE tumor blocks from patients diagnosed with 

malignant melanoma between 1990 and 1999 in Los Angeles County.  New Mexico 

tissues were selected from the University of New Mexico Ultraviolet Light Exposure and 

Immunosuppression in Melanoma bio-repository (INST 0815 HRRC 08-433).  

Non-pigmented control tissue was obtained from breast reduction mammoplasty surgery 

between November 2007 and January 2011 as previously described8. This sample was 

collected with IRB approval and was de-identified.  

3.3.2 Immunohistochemistry (IHC):  

All IHC protocols were performed according to the antibody manufacturer’s instructions. 

Briefly tissue sections were stained with antibody produced in rabbit and generated 

against a C-terminus peptide in G protein-coupled estrogen receptor 1 (GPER) (clone 

number 8073) at a dilution of 1:200 for one hour and fifteen minutes.  The GPER 

antibody was a generous donation from the laboratory of Dr. Eric Prossnitz.  Tissue 

sections were then incubated with 1:100 dilution of secondary goat anti rabbit-HRP 

antibody for one hour (Sigma, St. Louis, MO). 

HRP activity was visualized using the Liquid DAB Plus Substrate Kit (Life 

Technologies, Carlsbad, CA) according to manufacturer’s instructions. Following 

incubation with DAB, sections were stained with Azure for 10 minutes5. Tissue sections 

were then dehydrated and mounted with a coverslip using permount.  

3.3.3 Image Acquisition and Analysis: 

Brightfield, spectral images of IHC labeled sections were generated at the UNM Cancer 

Center Fluorescence Microscopy and Cell Imaging Shared Resource using a Nikon 
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TE2000 microscope (Melville, NY) in transmitted light mode, which had been adjusted 

for Koehler illumination. Images were obtained using a 60x oil objective, at 1.5x 

intermediate magnification, and a Nuance Spectral Imaging Camera and software (Perkin 

Elmer). The Nuance camera uses a liquid crystal tunable filter (LCTF), set to collect 

transmitted light in 20 nm bandwidths, at 10 nm step intervals, from 420 to 720 nm. The 

resulting spectral image cube consists of 16 separate images each acquired at a different 

wavelength range.  Each pixel in the resulting image cube has an absorbance spectrum 

that depends on the absorbing materials (labels) that are present at that pixel location.  

Nuance camera software controls both the LCTF and spectral image acquisition. Prior to 

imaging of the tissues, a 100% transmission reference image cube was acquired from a 

region of the slide with no tissue or other debris and was used to convert all images to 

optical density (OD) images. Spectral image cubes collected from melanoma sections 

labeled only with Azure or anti-GPER-DAB were used to generate pure absorbance 

spectra for each of these labels. These pure spectra were then used by the Nuance 

software to unmix (using a linear unmixing algorithm) image cubes acquired from slides 

labeled with both Azure and DAB, generating single component images of each label.   

Absorbance spectrum imaging and unmixing of IHC labeled sections has been previously 

described9. 

Three reference spectra (pure absorbance spectra) of Azure were generated from 3 

separate patient tumors, each labeled only with Azure.  A single reference spectrum of 

GPER-DAB was generated from a GPER-positive, non-pigmented tissue section labeled 

only with anti-GPER DAB.  To quantify the staining, we generated three spectral 

libraries, each consisting of two spectra: 1) GPER-DAB reference spectrum and Azure 
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spectrum from patient tumor section A; 2) GPER-DAB reference spectrum and Azure 

spectrum from patient tumor section B; 3) GPER-DAB reference spectrum and Azure 

spectrum from patient tumor section C.  

Additional tissue sections from the same three patient tumors were doubly labeled with 

GPER-DAB and Azure and spectral image cubes were acquired with the Nuance camera.   

These spectral image cubes were unmixed with each of the three spectral libraries 

described above. The Azure component images show location of the counterstain and 

tissue structure; GPER-DAB component images show GPER-expressing cells in the 

section.   

GPER-DAB component images were exported from the Nuance software as TIF images, 

imported into Slidebook software 6.0 (3i, Intelligent Imaging Innovations, Denver) and 

the GPER-DAB staining was quantified.  Component GPER-DAB images were inverted 

from absorbance to pseudofluorescence for analysis.  In the inverted images, higher 

pseudofluorescence intensity corresponds to higher absorbance (DAB concentration).  A 

segment mask was created by setting a threshold to eliminate background.  Intensity 

values above the threshold represent DAB labeling.  A single threshold level was 

determined by examination of multiple images and was used for quantifying all of the 

DAB component images. Segmentation masks were created on each doubly labeled 

patient section.  Utilizing the mask statistics function in Slidebook, we exported the mean 

intensity value of each masked region in the GPER-DAB component images for 

statistical analysis. 

3.3.4 Statistics:  
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Mean intensity of anti-GPER-DAB in the three sections stained with GPER-DAB and 

Azure was compared following unmixing with the three reference spectral libraries 

described above, generating three mean intensities of GPER-DAB staining for each of the 

participants. Since the distribution of mean intensities of GPER-DAB staining 

(distribution) might not meet normality assumptions, we used the Kruskal–Wallis one-

way analysis of variance (ANOVA) to compare the distributions. The null hypothesis 

was that the distributions for each of the participants would be equal. The alternative 

hypothesis is that the distribution for at least one of the participants is different from the 

distribution for other participants. 

3.4 Results:  

3.4.1 Azure reference spectra do not vary between tissue sections: 

Because the absorbance spectrum of melanin may vary from person to person, the 

spectrum of Azure bound to melanin may also vary from person to person, as the melanin 

pigment masked by Azure staining will be included in the absorbance spectrum. 

Additionally, we were concerned that the affinity of Azure to bind to melanin may also 

vary from person to person. To address these concerns, we compared Azure spectra 

across melanoma tissues samples from three different participants.  

Figure 1 shows the three Azure reference spectra (blue, green, and red lines) generated 

from melanoma tissues sections labeled with Azure only from three different participants.   

A GPER-DAB reference spectrum (brown line) was generated in a non-pigmented tissue 

section stained only with GPER-DAB. Importantly, the three Azure spectra overlap and 

are visually comparable (Figure 1). 



 
 

106 
 

3.4.2 Quantification of GPER-DAB staining in tissue sections with Azure 

counterstain: 

As described previously, from the spectra represented in Figure 1, we generated three 

spectral libraries which included one Azure spectra derived from the three different 

participants and the GPER-DAB spectra derived from the non-pigmented tissue section.  

Each of these spectral libraries is named A, B, or C (Figure 2 and Table 1) consistent 

with the participant (A, B, or C) from which the Azure spectra was derived. 

Melanoma sections stained with both GPER-DAB and Azure for each participant (A, B, 

and C) were imaged with the Nuance spectral camera, generating spectral image cubes, 

referred to in Figure 2 as Original Image. The Nuance software creates a single image 

representation of the spectral cube, using a lookup table that maps different patterns of 

absorbance to different colors which we refer to as the original image.  Although the 

original image appears to show good localization of label, accurate location information 

is obtained only after unmixing the original image, using a spectral library with reference 

spectra for each of the labels on the section.  The original image from participant A is 

shown in Figure 2. 

Using spectral library A, comprised of the Azure spectra from participant A and the 

spectra from the non-pigmented GPER-DAB tissue, we unmixed the original image from 

participant A. We also unmixed the original image from participant A using the spectral 

libraries that included Azure spectra generated from participants B and C.  As shown in 

Figure 2, these GPER-DAB component images appear nearly identical. 
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Similarly, we unmixed the original images from participants B and C with all three 

spectral libraries, resulting in three GPER-DAB component images per participant, and 

nine GPER-DAB component images total for participants A, B, and C. The component 

images for GPER-DAB are shown for participant A in Figure 2, and the mean intensities 

are reported for each of the nine GPER-DAB component images in Table 1.  

To compare the distribution of mean GPER-DAB intensities of participants compared to 

themselves but unmixed with different Azure reference spectra, we performed a Kruskal-

Wallis test and identified no significant differences (Table 1).  These results indicate that 

the reported mean intensities vary slightly depending on the Azure reference spectra. 

However, these differences are not significant for any of the patient samples (p=0.73 

p>0.05; One-way ANOVA with Kruskal-Wallis).  Importantly, this suggests that one 

Azure reference spectrum is sufficient to unmix dual-stained images from multiple 

participants, eliminating the need for a separately stained section and Azure reference 

spectrum for every individual. 

3.5 Discussion: 

We have shown that using Azure as a counterstain in pigmented tissue sections, such as 

melanoma tumors, allows for quantification of HRP-DAB staining using spectral imaging 

techniques. Acquisition of spectral images of IHC stained melanoma tissue samples and 

subsequent unmixing using reference spectra, allows DAB-labeled protein to be 

quantified without interference from highly pigmented melanin. Although not 

demonstrated here, this method also allows for the observation of co-localization and 

quantitative measurement of multiple staining components. Unmixing is based on the 

absorbance spectra of the labels, is not affected by overall label intensity and is non-
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subjective, meaning that IHC is no longer dependent on the chromogens showing a high 

visual contrast with pigmentation or other chromogens.  

Importantly, this method allows for elimination of inter-reader variability by using 

spectral imaging to evaluate highly pigmented tissues. This finding improves the current 

semi-quantitative method of IHC, and increases the utility of IHC for both researchers 

and clinicians. 

This study has many strengths. First, we have identified a non-subjective method to 

quantify protein expression in pigmented melanoma tissues.  Furthermore, it is likely that 

this method would also provide a non-subjective method for quantification of protein 

expression in non-pigmented tissues, along with tissues using multiple chromogens.  

Additionally, we used archival tissues to validate that this technique can be applied to 

stored samples. Stored samples serve as a valuable resource for biomarker validation 

studies, but are often limited by the quality of the specimen and the loss of antigenicity 

over time.   

The discovery that one Azure reference spectrum can be used for every participant has 

important implications. First, it will lessen the amount of time needed to image tissue 

sections by eliminating the need to image an Azure reference for every participant. This 

will also hasten the unmixing process, as each participant’s dual-stained image will be 

unmixed using the same spectral library, allowing for batch unmixing. Finally, this will 

reduce the number of tissue sections needed from each participant, thereby allowing 

precious samples to be used for additional biomarker testing. 
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In summary, to our knowledge, this is the first study to use spectral imaging to quantify 

protein expression in pigmented tissue sections. This quantification method reduces the 

subjectivity and hastens analysis of protein expression detected by IHC.  For clinicians, 

non-subjective quantification of protein expression in melanomas may impact the current 

diagnosis and staging standards. For researchers, quantification of protein expression may 

further inform melanoma etiology, progression and identification of therapeutic targets.  

Therefore, we expect that these findings will advance the field of melanoma. 
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3.8. Tables and Figures 

3.8.1 Figure 1: Azure Spectra do not vary between melanoma tissue sections 

 

 
 

3.8.2 Figure 2: Component images unmixed with different spectral libraries 

 
A:  

 
 
B.   
 

         

 

A: Original image: GPER-DAB and Azure in Melanoma (Participant A). This is a single image 
representation of a spectral image cube (containing 16 individual images). 

Azure  GPER 

 

Absorbance spectra of GPER ( 

) and Azure acquired from 

3 separate melanoma tissues (

). 

 

Original image A unmixed 

with Spectral Library A 

Original image A unmixed 

with Spectral Library B 

Original image A unmixed 

with Spectral Library C 
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B. Component images representing GPER-DAB in melanoma: Original image (Participant A) 
unmixed with three spectral libraries.  

3.8.3 Supplemental Figure 1: Proposed mechanism for Azure binding to 

melanin 
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3.9 Abstract  

LC3 and Beclin 1 Expression in Melanoma Lesions: Association with UV 

Exposure and Prognostic Indicators.  

 
Background: The activation of the autophagy pathway in BRAF melanomas is one 

proposed mechanism involved in progression. Autophagy, a catabolic process, has been 

shown to both inhibit and promote tumorigenicity. Autophagy inhibition is under 

investigation in melanoma treatment.  However, the melanoma risk factor, UV exposure, 

activates autophagy. Here we investigated UV exposure and autophagy by BRAF/NRAS 

status to test for differential contributions to melanoma prognostic factors and survival. 

 

Methods: Sections from n melanoma tumors and n benign nevi were analyzed for 

Beclin1 and LC3 expression, using immunohistochemistry. BRAF /NRAS status was 

determined by sequencing. Beclin1 and LC3 expression levels measured by IHC were 

correlated with UV exposure data. The effect of NRAS and BRAF pathways on autophagy 

proteins was evaluated. 

 

Results: We found that the autophagy pathway is activated with UV exposure in 

melanoma tumors compared to benign nevi. We observed critical proteins in the 

autophagy pathway associated with decreased Breslow depth (Beclin1) as well as 

decreased mortality (LC3). 
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Conclusions: The expression of Beclin1 and LC3 was not directly linked BRAF or NRAS 

mutations in melanoma; rather, autophagy was activated in response to UV exposure and 

associated with prognostic indicators and survival. These findings may have implications 

concerning the biology of melanoma and for ongoing autophagy inhibition clinical trials.
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3.10 Introduction:  

 Invasive melanoma has an increasing incidence of 6% each year but with new 

clinical treatment options for advanced melanoma. The American Cancer Society 

estimates that in 2015, 73,870 new melanomas will be diagnosed and 9,940 people will 

die from their disease.  Despite the introduction of new therapies, the 5-year survival rate 

for stage IV melanoma will remain unchanged at 15% to 20%.1  

 Autophagy is a cellular recycling pathway involved in normal physiological 

processes including nutrient and/or stress responses, antigen presentation, and aging.3–8 In 

cancer, autophagy appears to be an important energy source for nutrient depleted tumors. 

9–11 In melanoma, basal levels of autophagy appear to vary by tumor stage, and higher 

levels of autophagic flux are associated with increased hypoxia and poor clinical 

prognosis. 11–15 Mutations in BRAF and NRAS differentially regulate autophagy. 16–22 In 

2010, Lazova and colleagues reported that melanoma cells contain high levels of 

autophagosomes, a cellular structure associated with autophagic flux, as measured by the 

proxy marker microtubule-associated protein 1 light chain 3 (LC3), an autophagy related 

(ATG) protein.11 LC3 is integrated into the membrane of a critical structure in autophagy, 

called the autophagosome, in order to facilitate the recycling of products targeted for 

degradation. This integration creates a punctate LC3-staining pattern, which is used as a 

proxy marker for the rate of autophagy. 11  The role of LC3 and another critical protein in 

autophagy initiation, Beclin 1 (Becn1), may have a biphasic role in cancer. 3   LC3 levels 

have been shown to be elevated in the cytoplasm of cancer cells including 

gastrointestinal23 and pancreatic cancer.24 and have been reported to be associated with 

stress response, metastasis and poor clinical prognosis in melanoma.15,19,25,26  Becn1 has 
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been reported to be associated with increased stage27, lower relapse-free survival 28 and 

decreased 5-year survival in several cancers.29  Elevated levels of LC3 and Becn1 as well 

as other autophagic proteins correlated with  poor prognosis or cancer progression have 

prompted Phase I/II clinical trials to investigate autophagy inhibition as a co-therapy, 

particularly in melanoma.30–32  

Conversely, it also appears that there is an inverse relationship between expression of 

autophagy markers and malignant potential, so in some cancers lower levels of autophagy 

are associated with worse prognosis. This implies that defects in cellular autophagy may 

contribute to the development of cancer33 and that cancer cells may have lower basal 

autophagic activity. 34–37 Low levels of both Becn1 and LC3 have also both been reported 

to associate with poor clinical pathological markers and decreased survival 38–40 in 

melanoma, among other tumors.41,42 Becn1 in particular has been shown to exhibit anti-

oncogenic functions, has been found to be monoallelically deleted in breast, ovarian and 

prostate tumors.43–46 Finally, low levels of Becn1 have also been reported in nodular 

melanomas to be associated with increased risk of early death.47    The dual role of 

autophagy in the regulation and progression of melanoma require further investigation. 

The role of these two autophagy proteins (LC3 and Becn1) in melanoma may, in part, be 

influenced by their interaction with other factors including ultra-violet (UV) exposure. 

UV’s impact on progression and survival in melanoma is also complex and unclear. 48,49 

As autophagy appears to have a role in the resolution of double-stranded DNA 

breaks50,51, it may be that UV induces autophagy and  improves melanoma-specific 

survival at the same time that it is the major risk factor for melanoma. The impact of UV 

exposure on autophagic processes in skin has not been well characterized and there is a 
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need for in-depth evaluation of role of autophagy in a set of well-defined melanoma 

samples.52 

In the current study, we seek to determine whether autophagy differentially regulates 

prognostic characteristics and survival in melanoma depending on the timing of UV 

exposure. We evaluated autophagy in 51 melanoma and 17 benign nevus tissue sections, 

for LC3 and Becn1 protein expression, using immunohistochemistry (IHC) to determine 

if autophagic flux is associated with clinical stage in melanoma. For the same samples, 

using extensive questionnaire data, we evaluated the impact of estimated lifetime sun 

exposure on survival and correlated these data with prognostic factors as well as available 

information on autophagy levels. These results assessed whether autophagic flux is 

modified by UV exposure. We hypothesized that UV exposure is associated with levels 

of autophagy and autophagy markers are prognostic for clinical characteristics of 

melanoma survival. 

3.11 Material and Methods: 

3.11.1 Patient Characteristics:  

The New Mexico Tumor Registry and the University of New Mexico Cancer Center 

identified study participants in which a skin biopsy was taken to rule out melanoma.  

Study participants with melanoma or a benign skin biopsy (n=98) were interviewed using 

a validated questionnaire for UV exposure.48,53 Institutional Review Boards of all 

participating institutions approved the protocol and informed consent was obtained from 

each participant. 46 melanoma and 17 patients who had a benign nevi excised, were 

consented, enrolled and interviewed and selected based on availability of a tissue block 
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(see patient characteristics below, Table 1-2). Survival was determined using the National 

Death Index and provided by the Tumor Registry. 

3.11.2 IHC Staining of LC3 and Becn1: 

Formalin-fixed paraffin embedded (FFPE) control and melanoma sections were made 

using archival tissue blocks from patient biopsies. Expression of LC3 and Becn1 in these 

sections were measured as a proxy for levels of autophagy. Standard immunoperoxidase 

techniques for immunohistochemistry using anti-LC3 and anti-beclin1 antibodies (MBL, 

Woburn, MA; Cell Signaling Technology, Danvers, MA; 1:200; with citric acid/ antigen 

retrieval) was used to quantify expression in melanoma  cells (brown) compared to 

tumor-associated melanophages (azure). Azure B stains melanin green blue and is easily 

distinguished from the brown diaminobenzidine chromogen54. Original images were 

obtained using a Nikon Scope from the UNM Fluorescence Microscopy Shared 

Resource, equipped with a spectral imaging camera. Becn1 and LC3 staining intensity 

were quantified by Spectral imaging software.55  

 

3.11.3 BRAF, NRAS status:  

Genomic DNA was isolated from FFPE tumor sections using Qiagen QIAamp DNA 

FFPE kit (Qiagen, Inc., Valencia, CA). Patients’ BRAF/NRAS mutation status was 

evaluated using standard PCR technique to amplify the coding region of interest. All 

amplicons were directly sequenced on an ABI 3730xl DNA Analyzer (Applied 

Biosystems, Foster City, CA) using BigDye Terminators (Applied Biosystems) according 

to the manufacturer's specifications for sequencing. A 224 bp BRAF PCR product 
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(chr7:140453033-140453256) was amplified using the primers 5′-

TCATAATGCTTGCTCTGATAGGA-3′ and 5′-GGCCAAAAATTTAATCAGTGGA-3′ 

and a 272 bp NRAS PCR product (chr1:115256298-115256569) was amplified using the 

primers 5′- GGTGAAACCTGTTTGTTGGA-3′ and 5′- 

AACCTAAAACCAACTCTTCCCA-3′ in a  50 ml reaction containing the 10 μL 

(40ng/μl) DNA template, 5 μM of each primer, 2× Premix F (Epicentre, Madison, 

Wisconsin) and 0.5 U of Taq polymerase in a PCR reaction as described above. DNA 

template was denatured at 94°C for 4 min and cycled 26 times through steps of 

denaturing at 94°C for 1 min, annealing 63-0.5c and denaturation. An additional 10 

cycles of denaturing at 94°C for 1 min, annealing 50c and extension at 72°C; final DNA 

extension was at 72°C for 10:00 minutes. PCR products were purified using ExoSap 

(Affymetrix, Santa Clara, CA) according to manufacturer's instructions. 

Sequencing chromatograms were read with the aid of FinchTV software version 1.4.0 

(Geospiza, Inc., http://www.geospiza.com/Products/finchtv.shtml)  

3.11.4 Clinical Stage:  

Histopathology was characterized by a board-certified pathologist using Hematoxylin & 

Eosin (H&E) stained slides and clinical stage was determined including Breslow 

thickness, mitotic index and ulceration. Mitoses were defined as present or absent. 56 All 

cases were characterized using these variables. Patient vital status was obtained through 

linkage with the NM Tumor Registry, using an honest broker system with IRB approval 

(HRRC 08-433). 
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3.11.5 UV Exposure:  

Using extensive questionnaire data, participants were retrospectively evaluated for UV 

ambient exposure in the first decade of life and near the time of diagnosis.  Questionnaire 

data, which has been previously described,53 includes the following variables: daily sun 

exposure on weekdays and weekends at each decade; sun exposure at the site of the 

melanoma at each decade; and waterside recreational sun exposure at each decade.  

3.11.6 Data Analysis:  

Frequency tables were used to summarize the clinical distributions and UV exposures for 

controls and melanoma cases (Table 1-2).  Analysis of UV data with participant 

characteristics was correlated with oncogene status and levels of LC3 and Becn1 protein 

in melanoma tissue sections. Wilcoxon rank-sum tests and Pearson chi-squared tests were 

performed for pair-wise associations. ORs and 95% CIs were calculated from non-

parametric logistic regression models using data from cases and benign nevi controls to 

assess the association with LC3 and Becn1 expression. The Pearson’s coefficient was 

used to assess linear relationships. The relationship between categorical variables was 

analyzed by Chi-square test or Fisher’s exact test. Univariate and multivariate analyses of 

prognostic factors were performed by the Cox proportional hazards regression model. 

ORs and 95% confidence intervals estimated from coefficients were used to summarize 

the associations. For all tests, a two-sided P value <0.05 was considered statistically 

significant. 
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3.12 Results:  

In the overall population we identified 24 BRAF T1799A (V600E) point mutations in 16 

cases and 8 controls. Additionally, we found 6 cases with NRAS A182G (Q61R) 

mutations.  No controls had an NRAS mutation. There were 24 melanoma cases and 9 

controls without a mutation in BRAF or NRAS. Protein levels were evaluated in 48 

melanoma biopsies and 17 control tissues using the novel IHC quantification method we 

developed and is described previously in chapter 3 (Table 2; Table 4).  

After adjustments for age and sex, high Becn1 expression was associated with decreased 

Breslow thickness (p=0.05), whereas high levels of LC3 were correlated with decreased 

mortality among patients (p=0.02).  Furthermore, females were more likely to have 

tumors with high Becn1 expression (p=0.02) (Table 3).  Melanoma participants who 

reported ever having a blistering sunburn were more likely to have high Becn1 

expression (p=0.01) (Table 4). Becn1 expression was not associated with NRAS* or 

BRAF* status. Superficial spreading histology (Table 3) and report of blistering sunburns 

in early life had borderline associations with high levels of Becn1 and LC3 (P = 0.09, P = 

0.08, respectively) (Table 4). 

High LC3 expression was also positively associated with the expression of punctate LC3 

(p=0.0007) (Table 3).  High cytosolic LC3 expression correlated with NRAS WT 

genotype (p=0.01) when compared to NRAS mutant Table 3).  A lack of painful sunburns 

for two or more days (p=0.03) was associated with high LC3 expression (Table 4). High 

LC3 expression had a borderline significant associations with unprotected prolonged sun 

exposure (p=0.06), boating activities and any outdoor activity sun exposure (p=0.08) 

(Table 4). 
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3.13 Discussion: 

This study was designed to assess the association of oncogene status and UV exposure 

with protein levels of Becn1 and LC3 in cutaneous melanoma. UV is associated with 

both autophagy activation and melanoma incidence, and as both UV and autophagy are 

complex.  

Previously, it has been shown that Becn1 and LC3 protein levels are altered in several 

human cancer types including melanoma and our data supports the fact that protein levels 

vary between melanoma and control patient samples. 57 We also found that expression of 

autophagy markers varied by Clark’s level and survival status.  

High levels of Becn1 and LC3 are consistently inversely associated with poor prognostic 

markers and/or survival. High Becn1 expression was associated with decreased Breslow 

depth (the strongest prognostic indicator for melanoma) (p=0.05) (Table 3), whereas high 

levels of punctate LC3 indicating autophagosome formation, had an association with 

decreased mortality among patients (p=0.04) (Table 5).  Early autophagy, as represented 

by Becn1, was associated with lower stage at diagnosis, while late stage autophagy, as 

represented by lower punctate LC3 expression, and was associated with decreased 

mortality from melanoma (Table 5). Autophagy genes have previously been implicated 

both in tumor suppression and tumor development.44 Becn1 has multiple functions.  In 

addition to its role in autophagy initiation, it is implicated in both the differentiation and 

apoptosis of cancer cells.58,59 Lower Becn1 expression has been reported in both breast 

cancer,60 and melanoma42  and the loss of Becn1 has been correlated with poor prognosis 

in colon61  and liver50 cancer, lymphomas62 and squamous cell carcinoma.27 

Overexpression of Becn1 is also correlated with progression of gastric and colorectal 
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cancer63  and with poor prognosis in endometrial cancer. 29In our study the association of 

high Becn1 with decreased Breslow thickness might indicate that it is acting as a tumor 

suppressor in melanoma patients.  

In our study, the expression of the Becn1 protein and also of the autophagosome protein 

LC3 was found to be lower in melanomas with more aggressive prognostic indicators, 

similar to findings in ovarian cancer. 38The expression of Becn1 and LC3 could also be 

associated with UV in melanoma as both of these proteins were associated with UV 

exposure 

The relationship between UV and autophagy may have important implications for data 

describing the autophagy pathway in melanoma progression.17,26  While melanoma only 

accounts for approximately 2.4% of all cancer related deaths, it is the one of the most 

common cancers in young adults, age 25-29, particularly in young women. This is of 

particular importance as the mean survival rate of patients diagnosed with metastatic 

melanoma is six months, with five year survival rates of less than 5%.  UV exposure 

causes DNA damage and can induce the activation of autophagy. 

Extensive studies of the role of UV in survival with melanoma have been based on 

careful measurement of UV and melanoma risk,53 and  sun exposure and survival with 

melanoma.48,64  We evaluated sun exposure at three times in life:  early life up to the age 

of 10, in the 10 years prior to diagnosis, and averaged over the lifetime.  Studies have 

shown that an individual’s lifetime sun exposure is well represented by the sum of their 

exposures at each decade (e.g., 10, 20) of age. 65  We also evaluated sunburns and water-

related activities.  While not significant our study identified an association between water 

activities and boating activities and increased Becn1 expression (Table 3). 
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Previously it has been reported that the only significant UV predictors of melanoma 

survival are UVB dose up to the age of 10 and sunburns in the decade prior to diagnosis. 

48 Strangely, UVB dose up to the age of 10 increased the risk of dying from melanoma, 

yet any sunburns in the decade prior to diagnosis decreased the risk of dying from 

melanoma, even after adjusting for clinical characteristics.  As autophagy acts as a 

cytoprotective mechanism against ultraviolet (UV)-induced apoptosis, Becn1 and LC3 

expression may be upregulated following DNA damage from sun exposure.66  

UV-radiation is an established risk factor for melanoma and increases autophagic flux. 67 

UV exposure triggers defense mechanisms, including an increase in DNA repair 

capacity,49,68 and autophagy has an established role in DNA repair by removing products 

of DNA damage. 67 Some researchers have found evidence that high levels of sun 

exposure prior to diagnosis were associated with better melanoma survival.64  However, 

contradictory evidence indicates high levels of UV exposure in childhood are associated 

with worse survival and that high levels of UV exposure prior to diagnosis are associated 

with better overall survival but not with better melanoma-specific survival. 48 In our study 

we identified that UV exposure is independently associated with levels of autophagy as 

shown by the high LC3 protein expression in individuals with decreased sunburns or no 

participation in water sports (Table 4). 

Our study is limited by the possibility that cells use other mechanisms, including post 

translational modifications, to regulate protein expression so LC3/Beclin1 may stay 

consistently expressed under variable conditions.   In addition, our small sample size may 

not really be representative of a larger population-based sample. 
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In our study, high level of Beclin 1 and LC3 expression in tumors, correlated with less 

aggressive histopathological markers including Breslow thickness, as well as better 

overall survival of the patients.  The present data support the idea that while autophagy is 

associated with melanoma tumors, low level of autophagy favors cancer progression and 

that autophagy may support more indolent melanoma phenotype. Understanding the 

relationships between autophagy status, UV exposure and melanoma progression will 

help to elucidate the molecular mechanisms that contribute to this disease. 
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3.16 Tables: 

3.16.2 Table 1. Demographic and pathological summary of participants. 

N=68 Overall Control Case 
Age at diagnosis/Presentation No.  59.5 54.9 60.7 

 
No. % No. % No. % 

Gender 
      Male  48 51.1 11 61.1 37 48.7 

Female 44 46.8 6 33.3 38 50 
Oncogene Status             
NRAS* 7 7.4 . . 7 9.2 
BRAF* 25 26.6 1 5.6 24 31.6 
Wild-type 45 47.9 9 50 36 47.4 
Breslow thickness (mm)  

 
 

    0.01-1.00 30 31.9 . . 30 39.5 
> 1.00 32 34 . . 32 42.1 
LC3 Punctate              
Absent 30 31.9 6 33.3 24 31.6 
Present 39 41.5 11 61.1 28 36.8 
Anatomic site   

 
 

    Trunk/pelvis 15 16 . . 15 19.7 
Scalp/neck 6 6.4 . . 6 7.9 
Face/ears/other 13 13.8 . . 13 17.1 
Upper extremities 20 21.3 . . 20 26.3 
Lower extremities 17 18.1 . . 17 22.4 
Histological subtype              
SSM 38 40.4 . . 38 50 
NM 19 20.2 . . 19 25 
LMM 9 9.6 . . 9 11.8 
Other 2 2.1 . . 2 2.6 
Mitosis       
Absent 21 30.8 . . 21 41.2 
Present 29 42.7 . . 29 56.9 
Regression  

      Absent 28 29.8 . . 28 36.8 
Present 26 27.7 . . 26 34.2 
Ulceration  

      Absent 13 13.8 . . 13 17.1 
Present 44 46.8 . . 44 57.9 
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Clark's Level       
    Level  2 21 22.3 . . 21 27.6 

Level  3 8 8.5 . . 8 10.5 
Level  4 23 24.5 . . 23 30.3 
Level  5 7 7.4 . . 7 9.2 
Vital Statistics 

      Death from melanoma*  68 72.3 6 33.3 62 81.6 
Alive or death from other causes  12 12.8 . . 12 15.8 

3.16.3 Table 2. Summary of participants UV exposure. 

   Overall Control Case 
 No. % No. % No. % 
UV exposure        
Sunlamp Use 

      Never 64 68.1 13 72.2 51 67.1 
Ever 24 25.5 5 27.8 19 25 
Missing 6 6.4 . . 6 7.9 
Sun exposure without any protection             
Get a severe sunburn with blistering 13 13.8 3 16.7 10 13.2 
Have a painful sunburn for a few days 
with peeling 

34 36.2 5 27.8 29 38.2 

Get mildly burnt followed by some 
tanning 27 28.7 7 38.9 20 26.3 

Go brown without any sunburn 11 11.7 3 16.7 8 10.5 
Don't Know 1 1.1 . . 1 1.3 
Missing 8 8.5 . . 8 10.5 
Repeatedly exposed to bright sunlight             
Go very brown and deeply tanned 11 11.7 2 11.1 9 11.8 
Get moderately tanned 39 41.5 10 55.6 29 38.2 
Get mildly or occasionally tanned 24 25.5 4 22.2 20 26.3 
Get no suntan at all or only get 
freckled 11 11.7 2 11.1 9 11.8 

Don't Know 2 2.1 . . 2 2.6 
Missing 7 7.4 . . 7 9.2 
Ever Sunburn 

      Never 16 17 3 16.7 13 17.1 
Ever 72 76.6 15 83.3 57 75 
Missing 6 6.4 . . 6 7.9 
Sunburn at age 10y 

      No 26 27.7 6 33.3 20 26.3 
Yes 62 66 12 66.7 50 65.8 
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   Overall Control Case 
 No. % No. % No. % 
Missing 6 6.4 . . 6 7.9 
Ever Blister 

      No 47 50 13 72.2 34 44.7 
Yes 41 43.6 5 27.8 36 47.4 
Missing 6 6.4 . . 6 7.9 
Blister at age 10y             
No 59 62.8 14 77.8 45 59.2 
Yes 29 30.9 4 22.2 25 32.9 
Any occupational sun exposure             
No 35 37.2 8 44.4 27 35.5 
Yes 53 56.4 10 55.6 43 56.6 
Occupational sun exposure             
None 35 37.2 8 44.4 27 35.5 
<P50 29 30.9 6 33.3 23 30.3 
>=P50 24 25.5 4 22.2 20 26.3 
Any beach or waterside activities             
Never 55 58.5 10 55.6 45 59.2 
Yes 33 35.1 8 44.4 25 32.9 
Any outdoor poolside activities             
Never 37 39.4 6 33.3 31 40.8 
Yes 51 54.3 12 66.7 39 51.3 
Other sunbathing             
Never 23 24.5 4 22.2 19 25 
Yes 64 68.1 14 77.8 50 65.8 
Boating Activities             
Never 31 33 3 16.7 28 36.8 
Yes 57 60.6 15 83.3 42 55.3 
Any Water Activity             
Never 7 7.4 . . 7 9.2 
Yes 81 86.2 18 100 63 82.9 
Missing 6 6.4 . . 6 7.9 
 
* Death from melanoma recorded during 2 years of follow-up. 
Abbreviations: SSM, Superficial spreading melanoma; NM, Nodular 
melanoma; LMM, Lentigo maligna melanoma; UV, ultraviolet radiation 
 

 



 
 

142 
 

3.16.4 Table 3: Characteristics of Control and Melanoma Participants Analyzed for Demographic, Clinical Characteristics by LC3 and Beclin1 

 LC3 Protein Expression Beclin 1 Protein Expression 

 
All Control Case   All Control Case  

  No. Mean No. Mean No. Mean P-
value No. Mean No. Mean No. Mean P-

value 
All 68 1543 17 1587 51 1528 0.67 59 2524 14 326 45 3207  
Age at 
Presentation             0.07             0.02 

Gender 21 1552 17 1587 4 1403   18 930 14 326 4 3045 0.02 
Male 23 1580 - - 23 1580   18 3040 - - 18 3040  
Female 24 1499 - - 24 1499   23 3366 - - 23 3366  
Clinical  Characteristics: 

   
  

       Death from 
Melanoma 44 1610 5 1908 39 1572 0.03 12 670 10 191 2 3065  
Alive or death 
from other causes 10 1383 - - 10 1383   37 2991 4 663 33 3273  
Breslow Thickness             0.17             0.05 
< 1 20 1497 - - 20 1497   17 2986 - - 17 2986  
≥ 1 27 1538 17 1587 10 1455   23 1442 14 326 9 3179  
BRAF and NRAS              0.01             0.56 
WT 43 1567 9 1697 34 1532   37 2703 6 504 31 3128  
NRAS+ 6 1317 - - 6 1317   6 2868 - - 6 2868  
BRAF+ 24 1512 8 1465 16 1536   21 2188 8 192 13 3416  
Punctate LC3             >0.01             0.84 
Absent 38 1641 11 1763 27 1592   34 2366 10 391 24 3189  
Present 26 1550 17 1587 9 1478   22 1374 14 326 8 3209  
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Table 4. Characteristics of Control and Melanoma Participants Analyzed for UV Exposure,  LC3 and Beclin1 

        
 LC3 Protein Expression Beclin 1 Protein Expression 

 
All Control Case  All Control Case  

UV Exposure: No. Mean No. Mean No. Mean P-
value No. Mean No. Mean No. Mean P-

value 
Repeated Sun Exposure Without 
Protection 

    

0.06 

      

0.46 

Go Very 
Brown/Deeply 
Tan 

28 1597 10 1613 18 1588   24 2270 8 389 16 3210   

Moderately Tan 18 1539 3 1786 15 1489   16 2990 2 301 14 3374   
Get Mildly Tan 6 1279 2 934 4 1451   5 1932 2 208 3 3082   
No Suntan/Only 
Freckled 1 1556 - - 1 1556   1 3203 - - 1 3203   

Don't Know 4 1608 - - 4 1608   3 2831 - - 3 2831   
Missing 10 1519 2 1816 8 1445   9 2437 2 217 7 3072   
Painful Sunburn  (2 or 
more days) 

     

0.03 

      

0.5 

No 52 1494 14 1518 38 1485   45 2544 11 346 34 3256   
Yes 4 1608 - - 4 1608   3 2831 - - 3 2831   
Missing 12 1734 3 1914 9 1674   11 2354 3 253 8 3143   
Ever Blistering Sunburn 

     
0.32 

      
0.02 

No 28 1464 4 1378 24 1479   24 2976 3 194 21 3374   
Yes 4 1608 - - 4 1608   3 2831 - - 3 2831   
Any Beach/ Waterside 
Activities 

     

0.69  
     

0.93 

Never 26 1554 7 1471 19 1585   23 2529 6 502 17 3245   
Ever 4 1608 - - 4 1608   3 2831 - - 3 2831   

 Subjects consisted of 68 participants from a New Mexico tissue collection.  OR values are adjusted for age as a continuous 
variable. Abbreviations:  CI = confidence limit; NM = nodular melanoma; HR = Hazard ratio; SSM = superficial spreading 
melanoma; SD = standard deviation; Death from melanoma recorded during 2.5 years of follow-up. *Statistical significance 
was set at 5%. **Unless noted otherwise odds ratios (OR) are for a one unit increase. 
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3.14.6 Table 5. Univariate Logistic Regression for Melanoma Specific Mortality 
Correlated with Histopathological Characteristics, UV Exposure and LC3/ Beclin 1 
Expression 

 

OR (95% CI)** p-value* 
Age at Diagnosis 1.00 (0.95-1.05) 0.95 
Sex (Female) 1.00 (0.29-3434) 0.99 
Clinical  Characteristics: 

  Breslow thickness (continuous) 1.5 (1.11-2.01) 0.01 
Breslow Thickness ≥ 1 5.33 (1.03-27.8) 0.05 
Clark (Per Stage Increase) 1.87 (0.90-3.92) 0.1 
Mitoses  1.31 (1.03-1.67) 0.03 
Moles  0.94 (0.84-1.05) 0.24 
Ulceration  (Absent vs. Present) 13.67 (2.48-75.27) 0.003 
Regression (Absent vs. Present) 0.25 (0.05-1.4) 0.12 

Oncogene Status:   
NRAS (heterozygous vs wt.) 35,0 (3.21-381.59) 0.004 
BRAF (heterozygous vs wt.) 0.63 (0.12-3.44) 0.6 

Autophagy Markers: 
  LC3  Expression (log-transformed) 0.004 (0.001-0.77) 0.04 

LC3 Punctate Expression 0.25 (0.06-1.08) 0.06 
Beclin1 Expression (log-transformed) 1.35 (0.38-4.72) 0.64 

Histological Sub-type:   
SSM 0.15 (0.04-0.64) 0.01 
NM 2.60 (0.69-9.8) 0.16 
LMM 8.39 (1.81-38.98) 0.01 
Melanoma in situ 1.03 (0.23-4.61) 0.97 

UV Exposure:   
Weekly Sun Hours Age 10 (per 8 hour 
increase) 0.94 (0.45-1.92) 0.86 

Weekly Sun Hours at Diagnosis (per 8 hour 
increase) 1.08 (0.68-1.73) 0.73 

Sunlamp Use 1.92 (0.48-7.67) 0.36 
Painful Sunburn  (2 or more days) 0.77 (0.14-4.17) 0.76 
Early Sunburn  (by age 10) 0.88 (0.20-3.81) 0.87 
Decades with Sunburn (per 1 decade increase) 0.76 (0.39-1.48) 0.42 
Ever Had a Blistering Sunburn 0.88 (0.23-3.34) 0.85 
Early Blistering Sunburn (by age 10) 1.21 (0.31-4.76) 0.78 
Decades with Blistering Sunburn (per 1 decade 
increase) 0.62 (0.26-1.49) 0.28 

Any Occupational Exposure to Sunlight 0.95 (0.24-3.71) 0.94 
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Total Weekly Occupational Exposure to 
Sunlight (per 1 hour increase) 1.01 (0.98-1.05) 0.47 

Total Occupational Exposure to Sunlight 1.22 (0.54-2.77) 0.64 

Activities: 
  Any Beach/Waterside Activity 2.93 (0.74-11.53) 0.12 

Swimming Pool Activities 2.05 (0.485-8.67) 0.33 
Sunbathing Other than Beach or Pool 0.76 (0.17-3.32) 0.72 
Boating Activities 1.57 (0.37-6.69) 0.54 
Any Outdoor Activity Sun Exposure 0.96 (0.10-8.97) 0.97 
Number  of Outdoor Activities (per 1 activity 
increase) 1.42 (0.7-2.88) 0.34 

 
Subjects consisted of 68 participants from a New Mexico tissue collection.  OR values are adjusted for age 
as a continuous variable. Abbreviations:  CI = confidence limit; NM = nodular melanoma; OR = odds ratio; 
SSM = superficial spreading melanoma; SD = standard deviation; Death from melanoma recorded during 
2.5 years of follow-up. *Statistical significance was set at 5%. **Unless noted otherwise odds ratios (OR) 
are for a one unit increase 
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CHAPTER 4 

Variants in Autophagy Related Genes and Clinical Characteristics in Melanoma: 

A Population-Based Study 
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4.1 Abstract  

Autophagy has been linked with melanoma, but polymorphisms in autophagy related 

(ATG) genes have not been investigated for association with survival or histopathological 

features known to be important in melanoma survival. We examined 5 ATG gene single 

nucleotide polymorphisms (SNPs) in a multicenter population-based case-control study 

of melanoma. DNA from 911 melanoma patients was genotyped for SNPs with suspected 

impact on autophagic flux. While no association was identified with survival, several 

associations with prognostic features were noted. A decreased Breslow thickness (p = 

0.03) and earlier stage at diagnosis (OR 0.47, 95% CI 0.27-0.81, p = 0.02) was identified 

with the minor allele for an ATG16L polymorphism (rs2241880) and the heterozygous 

genotype was associated with younger diagnosis age (p = 0.02). In addition, two SNPs in 

ATG5 (rs2245214 and rs510432) were associated with increased stage of melanoma (OR 

1.84 95% CI 1.12-3.02, p=0.05; OR 1.47 95% CI 1.11-1.94, p=0.03).  Finally, although 

not significant at the global p-value, we identified an inverse association between the 

minor alleles of ATG5 (rs2245214) and scalp or neck melanomas (OR 0.20, 95% CI 

0.05-0.86, p= 0.03); ATG10 rs1864182 (OR 0.42, 95% CI 0.21-0.88, p= 0.02) and brisk 

TILs, and non-brisk TILs and ATG5 rs510432 (OR 0.55 95% CI 0.34-0.87, p= 0.01). In 

summary, our data suggest ATG SNPs might be associated with prognostic characteristics 

although not with survival and that the direction of the ATG SNPs may be differential 

due to low.  It may be informative to evaluate these and other SNPs in the larger 

population as these associations may be helpful to understand the role of autophagy in 

melanoma.  
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4.2 Introduction: 

The American Cancer Society estimates that in 2015, 73,870 new melanomas will be 

diagnosed and 9,940 people will die from their disease.1 The long term prognosis for 

melanoma patients has not improved at the same rate as other cancers.2 One mechanism 

of tumorigenesis that is under intensive investigation is autophagy. Autophagy  is a 

catabolic process that assists the removal of unnecessary or dysfunctional cellular 

components, including damaged proteins and organelles through lysosomal degradation.3 

Macroautophagy (hereafter referred to as autophagy) is tightly regulated and plays a role 

in a wide variety of normal physiological processes including energy metabolism, stress 

responses, growth regulation, and aging4,5 and can be induced in response to nutrient 

deprivation.6 Accumulating evidence indicates that autophagy is involved in cancer 

progression.5 In addition, the idea of melanoma addiction to autophagy7–11  has important 

implications for cancer development as well as treatment options.12 There are clinical 

trials ongoing at the National Institutes of Health to target inhibition of the autophagic 

pathway in multiple cancer types including melanoma.13 However, the extent to which 

the autophagy impacts melanoma progression and/or survival remains to be elucidated. 

Single nucleotide  polymorphisms (SNPs) have been implicated in the pathogenesis of 

many types of cancers14 including melanoma.15–17 Relevant data from the current 

literature suggests that the frequency of variants in autophagy-related (ATG) genes may 

be altered in cancer patients.18  Autophagy gene variants have been associated with risk 

prognosis and/or  survival in autoimmune diseases, including Crohn’s disease, 

tuberculosis19 and gastric, breast and thyroid cancers20–24. To our knowledge, there are no 
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studies examining the relationship between ATG gene SNPs and histopathological 

markers or survival in melanoma.  

In this study, we analyzed germline DNA for variants (i.e. SNPs) in ATG genes from a 

large population-based cohort of melanoma patients from Australia and the US. The 

SNPs investigated were chosen having been identified as significantly associated with 

disease outcomes and≥10% minor allele frequency in Caucasians.  Our goal was to 

determine whether SNPs in ATG genes were associated with factors associated with 

tumor characteristics and survival in melanoma patients. We hypothesize that ATG gene 

variants are associated with histopathological markers of melanoma progression.  

4.3 Materials and Methods 

4.3.1 Patient Characteristics:  

Over four years, 3,579 individuals from 9 study sites including eight population-based 

cancer registries in the United States (New Jersey, North Carolina, California), Australia 

(New South Wales, Tasmania), Canada (Ontario, British Columbia), and Italy (Turin), 

and one hospital center in Michigan were enrolled in the Genes, Environment and 

Melanoma (GEM), a large international population-based case control study. GEM 

recruitment procedures and data collection have been previously described.25 The 

Institutional Review Boards of all participating institutions approved the protocol and 

informed consent was obtained from each participant. GEM is a population-based 

international consortium studying risk for melanoma development and progression and 

survival. From this study of a population of 1,206 individuals with multiple primary 

melanoma and 2,373 with single primary melanoma, 911 genomic DNA samples were 
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chosen based on tumor availability (previously reported; Thomas et. al 2015)(see patient 

characteristics below, Table 1)26 and genotyped to compared ATG SNP frequencies with 

histopathological data.  

4.3.2 Clinical Stage:  

Histopathology slides were reviewed as previously described27 and clinical stage was 

determined based on pathology reports and includes Breslow thickness, mitotic index and 

ulceration. Mitoses were defined as present or absent. TIL grade was scored as absent, 

nonbrisk, or brisk using a previously defined grading system.27 All cases were 

characterized using the T classification which describes the state of the primary tumor in 

the AJCC TNM (tumor, regional nodes, and distant metastasis) melanoma staging 

system. 

4.3.3 Selection of SNPs and Genotyping:  

5 SNPs in three critical ATG genes were selected from those identified with functional 

SNPs in the literature or that were associated with cancer or disease outcomes (see Figure 

1). 18,19,21,28,29 Taqman Real-Time PCR Assays (ThermoFisher Scientific, Grand Island, 

NY) were used to identify SNPs in ATG genes performed with a 7900HT Fast Real-Time 

PCR System (ThermoFisher Scientific, Grand Island, NY) following manufacture 

recommendations. DNA was isolated from buccal cells as previously described.25,30 A 

Nanodrop 2000 spectrophotometer (ThermoFisher Scientific, Grand Island, NY) was 

used for quantification of DNA. The ratio of fluorescence in amplification during the 

logarithmic phase was quantified to identify specific alleles in genes of interest using a 

commercially available Taqman primer assay on a 7900HT Applied Biosystems qPCR 
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machine. Genomic DNA samples were chosen from those samples with sufficient DNA 

and tumor availability to allow for somatic analysis in future studies. 26 The genotyping 

call rate for the 911 chosen samples ranged from 96% to 99% and biological replicates 

were generated for 10% of the samples with 100% concordance. 

4.3.4 Data Analysis:  

Frequency tables were used to summarize the genotype distributions for each ATG SNP.  

To assess the genotyping quality, we calculated the genotype call rates and tested the 

departure from Hardy Weinberg Equilibrium for each SNP in all subjects. The 

association between SNPs and histopathological features were tested under the general 

genotypic inheritance (co-dominant) model.  No assumptions were made on the model of 

inheritance, and the genotypes for each SNP were treated as a three-level nominal 

variable.  Using a genotypic model to simultaneously compare heterozygous genotype 

versus wildtype, and homozygous minor genotype versus wildtype, we report a global p -

value representing the overall significance of the two comparisons for our analysis. 

Linear regression analyses were performed to assess the association between ATG gene 

SNPs and log transformed Breslow thickness, which was non-normally distributed. To 

evaluate the association between ATG SNPs and histopathological features, we conducted 

logistic regression analyses for binary outcomes (mitosis, ulceration), ordinal logistic 

regression analysis for ordinal outcome (stage), and polytomous logistic regression 

analyses for nominal outcomes (histology and tumor subtype). The exponentiated 

regression coefficient modeled Breslow thickness representing Breslow thickness 

increases per mm. ORs and 95% confidence intervals estimated from the regression 
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models were used to summarize the associations. Wald tests were used to assess the 

significance of the association and statistical significance was two-sided at 5%.  

4.4 Results: 

Five SNPs within ATG genes that have been previously reported associated with disease 

outcomes were genotyped and similar allele frequencies were identified in males and 

females (data not shown). GEM minor allele frequencies are presented in Table 2 and 

genotypes do not deviate from Hardy Weinberg Equilibrium (HWE) (data not shown). 

After adjustment for age, sex, status (single or multiple primaries) and study center, three 

ATG SNPs (rs2241880, rs510432, rs2245214) were significantly associated with 

melanoma prognostic indicators. An analysis of all 5 ATG gene SNPs with Breslow 

thickness, the most important prognostic marker in melanoma, revealed a significant 

association between the minor allele (A) of rs2241880 (ATG16L) (Table 3a) and a 

decrease in Breslow thickness (p= 0.02). A significant association was also identified 

between the rs2241880 (ATG16L) minor allele and an earlier stage at diagnosis (OR 0.47 

95% CI 0.27-0.81, p = 0.02) when defined as a binary variable of Stage T1a/T1b/T2a 

versus T2b and higher (Table 4). Finally, presence of heterozygous (AG) of rs2241880 

was significantly associated with a younger age of melanoma diagnosis (p = 0.02) (Table 

3b).  

In addition, two ATG5 SNPs (rs2245214 and rs510432) were found significantly 

associated with increased stage of melanoma (OR 1.47, 95% CI 1.11-1.94, p=0.03; OR 

1.84, 95% CI 1.12-3.02, p=0.05) (Table 4).  The minor allele (CC) of rs510432 had a 

borderline association with increased stage. Interestingly, only the heterozygous (CG) of 
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rs2245214 was associated with this increase in stage when it was defined as a continuous 

variable (Supplemental Table S1), while the other two SNPs (rs2241880, rs510432) did 

not retain significance in this analysis 

No associations between the 5 autophagy SNPs and mitosis, ulceration, histological 

subtype or melanoma specific survival (Table 5; Supplemental Table S1) were identified.  

Of interest, while they were not significant at the level of the global p-value, a decrease in 

OR (OR 0.42 95% CI 0.21-0.88, p=0.02) was identified between the presence of brisk 

TILs and the minor allele of SNP rs1864182, and the presence of non-brisk TILs and the 

minor allele of rs510432 (OR 0.55 95% CI 0.34-0.87, p=0.01). Finally, while not 

significant at the global p-value, an inverse association between the minor allele of 

rs2245214 and scalp/neck melanomas was also identified (OR 0.20 95% CI 0.05-0.86, 

p=0.03). 

4.5 Discussion:  

There are clear associations between autophagy and cancer and the role of germline SNPs 

in melanoma progression and survival has remained unexplored. Autophagy in cancer is 

context dependent, acting as both a tumor suppressor and as a tumor promoter depending 

on the stage of development of the tumor. While a recent GWAS study reported no 

association between melanoma susceptibility31 and ATG gene SNPs, we know of no other 

study addressing the associations between common genetic variants in ATG genes and 

melanoma development and survival. 

In the current study, five SNPs were selected for analysis based on their association with 

other diseases.  The SNPs investigated in this study are located in genes that are critical 
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to the early stage of the autophagy pathway (Figure 1) and necessary for the formation of 

the autophagosome.3 As shown in Figure 1 ATG10 is essential for ATG12 conjugation to 

ATG5 and ultimately to ATG16L.  

Previously, variants in ATG genes have been associated with risk, prognosis or survival 

in cancer18,28,29 and autoimmune conditions.32–35  In the current analysis, we examined 

one SNP (rs2241880) in ATG16L which increases risk and is associated with poorer 

prognosis in disease and might contribute to progression in melanoma.  A 

nonsynonymous polymorphism in ATG16L, rs2241880 (T300A), has been extensively 

studied because its variant allele has been linked with increased risk of Crohn’s disease.23 

This ATG16L SNP (AA) creates a caspase 3- and caspase 7- cleavage site and reduces the 

stability of the protein resulting in decreased autophagy; clinically, presence of this 

variant is associated with decreased survival and increased risk for ileal Crohn’s disease 

in adults. 23 While this SNP is associated with increased susceptibility, it is also 

associated with childhood (early) onset of this disease.36As illustrated in Figure 1, 

ATG16L is essential for the formation of the autophagosome. Through its noncovalent 

interaction with ATG12–ATG5, it facilitates the conjugation of other critical ATG 

proteins. Other studies have identified a genetic association for rs2241880 and another 

SNP in ATG5 (rs2245214) with nearly two-fold susceptibility to non-medullary thyroid 

cancers 18 as well as an increase in disease severity associated with rs2241880.28  This 

SNP (rs2241880) has also been shown to be associated with almost double the risk of 

developing colorectal cancer.37  

ATG5 is part of an ubiquitin-like conjugation pathway which links ATG5 with ATG16L 

(ATG5-ATG16L). Specifically, ATG5 membrane binding is activated through its 

http://onlinelibrary.wiley.com/doi/10.1002/ijc.29434/full#ijc29434-fig-0001
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conjugation with ATG16L.  Membrane binding by the ATG12–ATG5-ATG16 exerts an 

E3 enzyme-like function and this binding is critical for the correct formation of the 

autophagosome (Figure 1). Importantly, both rs1864182 and rs1051423, located in 

ATG10, have been reported associated with a decreased risk of breast cancer.29 

In the current study, three SNPs were associated with melanoma prognostic indicators. 

One SNP, in a critical autophagy gene (ATG16L), had multiple associations in our 

analysis. A significant association was identified between the minor allele for rs2241880 

and a decrease in Breslow thickness (p = 0.03) and an earlier stage at diagnosis (OR 0.47 

95% CI 0.27-0.81, p = 0.02). This SNP (rs2241880) also showed an association between 

the heterozygous variant and a younger age at melanoma diagnosis (p = 0.02). This SNP 

is also associated in the literature with decreased autophagy and may mediate melanoma 

progression through the accumulation of protein aggregates and damaged organelles in 

patients.38,39There is evidence in the literature that decreased autophagy may inhibit 

melanoma tumorgeneis.7,8 Further, this ATG16L SNP has been reported in the literature 

to be associated with increased IL-1β production in primary cells.23 Metastatic melanoma 

cells spontaneously secrete active IL-1β40 and the association between melanoma and this 

ATG variant warrants further investigation.  

In ATG5, we identified a positive association with increased stage between two SNPs, 

rs510432 minor allele (CC) (defined as a Stage T1a/T1b/T2a vs. T2b and higher OR 1.26 

95% CI 0.81-1.95, p = 0.05) and rs2245214 heterozygous genotype (CG) (defined as 

categorical stage OR 1.47 95% CI 1.11-1.94 p = 0.03), and increased stage in melanoma. 

SNP rs510432 had a borderline association when it was. Interestingly, rs510432 is in the 

5′ untranslated region (UTR) upstream of its first exon in the promotor region. In 
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addition, this SNP (rs510432) (C) has a reported positive association with asthma (p= 

0.003) 21 and is reported to confer increased promoter activity of this gene.  As we also 

identified a positive association with increased stage and rs510432 (C) in our population, 

further studies exploring the functional role of this SNP in the rate of autophagy and 

melanoma progression may elucidate ATG5 promoter activity in these participants, 

leading to more advanced melanoma stage. 

In addition, ATG5 has functions independent of autophagy, including critical roles in 

apoptosis, mitotic catastrophe and regulation of the β-Catenin signaling pathway41,42. As 

ATG5 is often down-regulated in primary melanomas,43 the association of two SNPs in 

this critical ATG gene with increased melanoma stage is significant as they have the 

potential to become new markers of melanoma risk, progression and/or therapeutic 

targets. 

Our study identified no association between the 5 ATG gene SNPs and melanoma 

specific survival. There were also no significant associations identified between the SNPs 

and ulceration, mitosis, or histological subtype.   

While they were not significant at the global p-value, a decrease in OR (0.42 95% CI 

0.21-0.88, p = 0.02) was identified between the presence of brisk TILs and the minor 

allele of SNP rs1864182, and non-brisk TILs and the minor allele of rs510432 (OR 0.55 

95% CI 0.34-0.87 p = 0.01). The association of TILs with autophagy variants is 

significant as increased number of TILs, particularly brisk TILs, in primary melanomas 

are associated with improved melanoma-specific survival.44 TIL absence in melanoma is 

associated with higher stage then either the presence of non-brisk or brisk TIL. The 

presence of non-brisk TILs is also associated with a 30%  decrease in melanoma death 
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(HR 0.7; 95% CI  0.5 to 1.0) while there is a 50% decrease associated with brisk TILs 

(HR 0.5 95% CI 0.3 to 0.9).44  

Finally, while not significant at the global p-value, an inverse association between the 

minor allele of rs2245214 and scalp/neck melanomas was also identified (OR 0.20 95% 

CI 0.05-0.86 p=0.03). As it has been previously documented that individuals with 

scalp/neck melanomas have poorer outcomes than patients with melanomas on other 

sites, 45 this inverse relationship warrants further studies to determine if there is a 

functional significance for ATG5 and this anatomic site. 

Autophagy has had a role in cancer; however the relationship between genetic variants in 

autophagy genes and cancer development, progression and survival remains under 

explored. In the present study, we assessed the impact of variants in ATG genes necessary 

for autophagic flux in relationship to melanoma prognostic indicators and survival. Drugs 

targeting the autophagy pathway are being investigated as effective therapy for many 

cancers including melanoma. SNPs that alter autophagic rates may affect the 

effectiveness of current treatment strategies and have clinical significance.9,46–49 In silico 

analysis of results from multiple studies, and/or coordination of large studies, will have to 

assess the reproducibility of these ATG gene interactions in melanoma. 

This study is limited by the knowledge that alteration of autophagy might not be due to 

variants in ATG genes but possibly due to other signaling pathways that regulate 

autophagy or post-translational modifications. In addition, there are other probably other 

functional genetic variants not included in the current study, as there are approximately 

38 ATG genes specifically required for autophagy in Saccharomyces cerevisiae.50 We 

found no direct association between any of the 5 ATG gene SNPs and survival although 
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this may be due to insufficient sample size. Enlarging the number of samples and 

incorporating functional studies may help to establish if an association with survival 

exists.  Our analyses did not control for multiplicative significance and false discovery 

rate but employed a more stringent global p-value to reduce type 1 errors. These 

limitations must be addressed in future experiments by screening for SNPs in other 

relevant genes potentially using alternative technologies including deep sequencing.  

In conclusion, while we found no association with survival, we have identified three ATG 

gene SNPs as a genetic factors affecting melanoma progression, which, in melanoma 

patients, may cause changes in ATG protein levels and alter autophagy regulation, 

affecting melanomagenesis. These findings emphasize the significance of the autophagy 

pathway in melanoma. As the role of autophagy in melanoma is complex and context 

dependent, the reported associations may provide important insight into how SNPs in 

critical autophagy genes impact melanoma progression. 
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4.7 Figure and Tables: 

4.7.1 Figure 1: Overview of the Autophagy related (ATG) conjugation pathway 

focusing on the gene variants investigated in this study, including those in the ATG5, 

ATG 10 and ATG 16L genes. 

 

* Five variants from three autophagy related genes were selected for either an association 

with or functional impact on risk or progression of disease.  Two SNPs were chosen from 

ATG10, two from ATG5 and one from ATG16L. From our analysis a significant 

association was identified between the ATG16L polymorphism (rs2241880) and a 

decrease in Breslow thickness (p = 0.03), younger age (p = 0.02) and earlier stage at 

diagnosis (OR 0.47, 95% CI 0.27-0.81, p = 0.02).   In addition, two SNPs in ATG5 

(rs2245214 and rs510432) were associated with increased stage of melanoma (OR 1.84 

95% CI 1.12-3.02, p=0.05; OR 1.47 95% CI 1.11-1.94, p=0.03).  We identified an 

inverse association between the ATG5 SNP rs2245214 and melanomas on the scalp or 

neck (OR 0.20, 95% CI 0.05-0.86, p= 0.03); rs1864182 (ATG10) (OR 0.42, 95% CI 0.21-

0.88, p= 0.02), and with brisk TILs. Finally, we identified an association between non-

brisk TILs and the ATG5 SNP rs510432 (OR 0.55 95% CI 0.34-0.87, p= 0.01) although 

not significant at the global p-value. 
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4.7.2 Table 1.   Clinicopathologic characteristics among 911 melanoma cases* 

Characteristics  
No.  % 

Age at diagnosis 60 
 

 Breslow thickness, median , mm 0.8 
 

 
 Gender  Male 534 59 

  Female 377 41 
Breslow thickness (mm) 0.01-1.00 547 60 

 
1.01-2.00 212 23 

 
2.01-4.00 108 12 

 
> 4.00 44 5 

Status  SPM 603 66 

 
MPM 308 34 

Anatomic site Trunk/pelvis 394 43 

 

Scalp/neck 56 6 

 
Face/ears/other 116 13 

 
Upper extremities 172 19 

 
Lower extremities 173 19 

Histological subtype  SSM 610 67 

 
NM 92 10 

 
LMM 116 13 

 
Other 93 10 

 
Missing 0 0 

Ulceration  Absent 794 92 

 
Present 73 8 

Mitosis  Absent 454 52 

 
Present 415 48 

AJCC stage  T1a 397 46 

 
T1b 124 14 

 
T2a 183 21 

 
T2b 16 2 

 
T3a 73 8 

 
T3b 32 4 

 
T4a 21 2 

 
T4b 21 2 

 
   

AJCC stage (T1a/T1b/T2a vs. T2b+) T1a/T1b/T2a 704 81 

 
T2b+ 163 19 

TIL grade Absent 194 22 

 
Non-Brisk 563 65 

 
Brisk 111 13 

Growth phase Absent 255 29 
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Present 614 71 

Death from melanoma*   76 8 
Alive or death from other causes   835 92 

 

   

*Subjects comprised 911 participants from the GEM study from Australia and the United States.  OR 
values are adjusted for age as a continuous variable. Abbreviations:  AJCC= American Joint Committee on 
Cancer; CI = confidence limit; Mpm= Multiple primary melanoma; NM = nodular melanoma; OR = odds 
ratio; SSM = superficial spreading melanoma; SD = standard deviation; TIL= Tumor infiltrating 
lymphocytes; Spm=Single primary melanoma.  Death from melanoma recorded during 7.5 years of follow-
up. 

4.7.3 Table 2. Allele frequencies of ATG genes in melanoma patients 

ATG SNP Genotype Number of patients (%) 
ATG5   

rs510432  CC 190 (0.22) 

 CT 425 (0.48) 

 TT 266 (0.30) 
ATG5   

rs2245214  CC 331 (0.38) 

 CG 427 (0.49) 

 GG 110 (0.13) 
ATG16L 

 
 

rs2241880  AA 198 (0.23) 
 AG 418 (0.490 

 GG 245 (0.29) 
ATG10   

rs10514231  CC 116 (0.13) 

 CT 403 (0.47) 

 TT 345 (0.40) 
ATG10   

rs1864182 AA 238 (0.28) 
 AC 424 (0.49) 
 CC 200 (0.23) 
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4.7.4 Table 3. Relationship between ATG genotype, Breslow thickness and age of 
diagnosis in melanoma 

4.7.4a Table 3a. Relationship between ATG genotype and Breslow thickness in 
melanoma 

                                                         Breslow thickness (Continuous) 

ATG gene SNP Genotype  Coeff (95% CI) p-value* Global p-value* 

rs10514231 TT 1.00  0.18 

 CT 1.09 (0.98-1.22) 0.09  
 CC 0.99 (0.84-1.16) 0.91  
rs1864182 CC 1.00  0.72 

 AC 1.05 (0.92-1.19) 0.46  
 AA 1.05 (0.9-0.82) 0.50  
rs2241880 GG 1.00  0.03 

 AG 1.04 (0.92-0.85) 0.55  
 AA 0.87 (0.97-0.99) 0.06  
rs22445214  TT 1.00  0.28 

 CG 1.09 (0.98-1.22) 0.11  
 CC 1.06 (0.9-1.26) 0.49  
rs510432 TT 1.00  0.30 

 CT 1.05 (0.94-1.19) 0.37  
  CC 1.12 (0.97-1.3) 0.12   

Genotypic model adjusted for age (continuous) sex, study center and status.  Abbreviations: CI, 
confidence interval; Coeff, coefficient 

4.7.4b Table 3b.  Age at diagnosis by genotype status among melanoma cases 

 
 

 Age at diagnosis, y 
 

  ATG gene SNP Genotype n Coeff (95% CI) p-value* Global p-value* 

rs10514231 TT 864 1.00  
0.71 

 
CT  0.22 (-1.95-2.39) 0.84 

 
CC  1.33 (-1.84-4.50) 0.41 

rs1864182 CC 862 1.00  
0.70 

 
AC  0.72 (-1.67-3.11) 0.55 

 
AA  -0.26 (-3.09-2.57) 0.86 

rs2241880 GG 861 1.00  0.02 
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AG  -3.25 (-5.60--0.91) 0.01 

 
AA  -2.04 (-4.83-0.74) 0.15 

rs2245214 TT 868 1.00  
0.75  CG  -0.59 (-2.77-1.58) 0.59 

 CC  -1.17 (-4.43-2.09) 0.48 

rs510432 TT 881 1.00  
0.75  CT  0.43 (-1.86-2.73) 0.71 

 CC  -0.55 (-3.33-2.23) 0.70 
Genotypic model adjusted for sex, study center and status. 

4.7.5 Table 4. Relationship between ATG genotype and AJCC stage in melanoma 

 
                                          Melanoma Stage    

ATG gene SNP Genotype  ≥ Stage  T2b vs. Stage T1a/T1b/T2a p-value* Global p-
value* 

rs10514231 TT 1.00  
0.46 

 
CT 1.18 (0.80-1.76) 0.41 

 
CC 0.84 (0.46-1.54) 0.57 

rs1864182 CC 1.00  
0.52 

 
AC 1.22 (0.79-1.89) 0.38 

 
AA 0.98 (0.57-1.66) 0.93 

rs2241880 GG 1.00  
0.02 

 
AG 0.88 (0.59-1.33) 0.55 

 
AA 0.47 (0.27-0.81) 0.01 

rs2245214 TT 1.00  
0.14  CG 1.46 (0.98-2.17) 0.06 

 CC 1.05 (0.57-1.92) 0.88 
rs510432 TT 1.00  

0.05  CT 1.26 (0.81-1.95) 0.30 

 CC 1.84 (1.12-3.02) 0.02 
Genotypic model adjusted for age (continuous) sex, study center and status.  Abbreviations: 
AJCC, American Joint Committee on Cancer 

4.7.6 Table 5. Relationship between ATG Genotype and melanoma-specific survival 

ATG gene SNP Genotype HR (95% CI) p-
value 

Wald p-
value 

rs10514231 TT 1 [Reference]  0.72 
 CT 1.24 (0.74-2.07) 0.42 
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 CC 1.12 (0.54-2.35) 0.76 
rs1864182 CC 1 [Reference]  

0.18  AC 1.83 (0.93-3.59) 0.08 

 AA 1.89 (0.90-3.98) 0.10 
rs2241880 GG 1 [Reference]  

0.85  AG 1.04 (0.60-1.80) 0.89 

 AA 0.86 (0.43-1.72) 0.67 
rs22445214  TT 1 [Reference]  

0.80  CG 0.86 (0.52-1.43) 0.56 

 CC 0.82 (0.37-1.81) 0.63 
rs510432 TT 1 [Reference]  

0.13  CT 0.68 (0.40-1.17) 0.16 

  CC 1.19 (0.67-2.12) 0.55 
Survival analysis adjusted for age, sex, study center, status (Spm vs. Mpm) and time dependent crossover 
in a genotypic model.  Abbreviations: HR, hazard ratio; CI, confidence interval
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4.7.7 Supplemental Table S1a. Clinicopathologic characteristics by genotype status among melanoma cases* 

Anatomic Site 

ATG gene SNP Genotype 
Scalp/neck vs. 
Trunk/pelvis 

p-value* 
Face/ears/ other vs. 

Trunk/pelvis 
p-value* 

Upper extremities vs. 
Trunk/pelvis 

p-value* 
Lower extremities vs. 

Trunk/pelvis 
p-value* 

Wald 
p-value 

rs10514231 TT 1.00 
 

1.00 
 

1.00 
 

1.00 
 

0.73 

 

CT 0.74 (0.39-1.39) 0.34 1.06 (0.65-1.74) 0.80 0.8 (0.53-1.2) 0.28 0.97 (0.63-1.47) 0.87 

 

CC 0.46 (0.15-1.4) 0.17 1.36 (0.71-2.62) 0.35 0.76 (0.41-1.42) 0.39 0.97 (0.52-1.82) 0.92 

rs1864182 CC 1.00 
 

1.00 
 

1.00 
 

1.00 
 

0.22 

 

AC 1.56 (0.77-3.14) 0.22 1 (0.58-1.71) 0.99 0.79 (0.5-1.24) 0.31 0.68 (0.25-1.81) 0.44 

 

AA 0.83 (0.52-1.33) 0.44 1.33 (0.72-2.47) 0.37 0.94 (0.55-1.62) 0.83 1.26 (0.73-2.17) 0.41 

rs2241880  GG 1.00 
 

1.00 
 

1.00 
 

1.00 
 

0.70 

 

AG 1.68 (0.83-3.4) 0.15 0.9 (0.53-1.52) 0.68 0.96 (0.62-1.5) 0.87 0.99 (0.62-1.59) 0.97 

 

AA 0.88 (0.34-2.27) 0.79 1.18 (0.65-2.16) 0.59 0.96 (0.57-1.63) 0.88 1.09 (0.63-1.89) 0.75 

rs2245214  TT 1.00 
 

1.00 
 

1.00 
 

1.00 
 

0.51 
 

CG 0.73 (0.4-1.33) 0.31 0.9 (0.56-1.45) 0.66 0.73 (0.49-1.1) 0.14 0.84 (0.55-1.28) 0.41 

 
CC 0.20 (0.05-0.86) 0.03 0.88 (0.44-1.77) 0.72 0.68 (0.37-1.26) 0.22 0.72 (0.38-1.37) 0.32 

rs510432  TT 1.00 
 

1.00 
 

1.00 
 

1.00 
 

0.20 
 

CT 0.65 (0.35-1.23) 0.18 0.67 (0.41-1.11) 0.12 1.27 (0.82-1.98) 0.28 1.23 (0.78-1.95) 0.38 

  CC 0.45 (0.19-1.07) 0.07 0.68 (0.37-1.24) 0.21 0.88 (0.51-1.52) 0.65 0.98 (0.56-1.71) 0.94 
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Histological sub-type 

      ATG gene SNP Genotype NM vs. SSM p-value LMM vs. SSM p-value Other vs. SSM p-value Wald p-value 

  rs10514231 TT 1.00 
 

1.00 
 

1.00 
 

0.36   

 

CT 1.21 (0.70-2.07) 0.50 1.08 (0.68-1.73) 0.74 0.95 (0.59-1.54) 0.83 

  

 

CC 1.78 (0.90-3.52) 0.10 1.10 (0.57-2.13) 0.77 0.46 (0.19-1.14) 0.09 

  rs1864182 CC 1.00 
 

1.00 
 

1.00 
 

0.46   

 

AC 1.58 (0.85-2.94) 0.15 1.52 (0.90-2.57) 0.12 1.00 (0.59-1.71) 0.99 

  

 

AA 1.63 (0.81-3.27) 0.17 1.12 (0.59-2.11) 0.73 0.80 (0.41-1.56) 0.52 

  rs2241880  GG 1.00 
 

1.00 
 

1.00 
 

0.54   

 

AG 1.63 (0.92-2.88) 0.09 1.31 (0.78-2.19) 0.30 0.89 (0.53-1.51) 0.66 

  

 

AA 1.18 (0.60-2.36) 0.63 1.18 (0.65-2.15) 0.59 0.74 (0.39-1.42) 0.36 

  rs2245214  TT 1.00 
 

1.00 
 

1.00 
 

0.26   

 
CG 1.59 (0.95-2.67) 0.08 0.88 (0.56-1.39) 0.59 1.41 (0.84-2.37) 0.20 

  

 
CC 0.76 (0.31-1.85) 0.54 0.80 (0.40-1.60) 0.53 1.40 (0.68-2.90) 0.36 

  rs510432  TT 1.00 
 

1.00 
 

1.00 
 

0.96   

 
CT 1.03 (0.60-1.78) 0.91 0.88 (0.54-1.43) 0.60 0.89 (0.53-1.49) 0.65 

    CC 1.33 (0.71-2.49) 0.38 0.98 (0.54-1.78) 0.94 0.93 (0.49-1.76) 0.83 

  All genotypic analyses were adjusted for age (continuous), sex, study center and status (Spm/ Mpm/ crossover)                                                                             
*Bold significance set p= 0.05    
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Ulceration 
 

    
ATG gene SNP Genotype Ulceration present vs. absent p-value Wald p-

value 
  rs10514231 TT 1.00  

0.82 
  

 

CT 1.04 (0.60-1.81) 0.90 

  

 

CC 0.80 (0.35-1.86) 0.61 

  rs1864182 CC 1.00  

0.61 
  

 
AC 1.23 (0.66-2.29) 0.52 

  

 

AA 0.90 (0.41-1.95) 0.78 

  rs2241880  GG 1.00  
0.41 

  
 

AG 0.94 (0.53-1.68) 0.84 
  

 

AA 0.61 (0.28-1.31) 0.20 

  rs2245214  TT 1.00  

0.29 
  

 CG 1.33 (0.77-2.28) 0.31 
  

 CC 0.70 (0.27-1.78) 0.45 

  rs510432  TT 1.00  
0.36   

 CT 1.27 (0.68-2.37) 0.45 
    CC 1.68 (0.83-3.43) 0.15 
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Mitosis 
 

    
ATG gene SNP Genotype Mitosis present vs. absent p-value Wald p-value 

  rs10514231 TT 1.00  
0.84   

 

CT 1.09 (0.81-1.48) 0.56 
  

 

CC 1.02 (0.65-1.58) 0.95 
  rs1864182 CC 1.00  

0.50   

 

AC 0.95 (0.68-1.33) 0.77 
  

 

AA 1.17 (0.79-1.74) 0.43 
  rs2241880  GG 1.00  

0.49   

 

AG 1.06 (0.76-1.48) 0.73 
  

 

AA 0.86 (0.58-1.27) 0.44 
  rs2245214  TT 1.00  

0.17   
 CG 1.33 (0.98-1.79) 0.07 

  
 CC 1.30 (0.83-2.03) 0.25 

  rs510432  TT 1.00  
0.34   

 CT 1.18 (0.86-1.63) 0.31 
    CC 1.33 (0.90-1.96) 0.15     

 
  

 

 
TIL Grade 

 
    

ATG gene SNP Genotype Non Brisk vs. Absent p-value Brisk vs Absent p-value Wald p-
value 

rs10514231 TT 1.00  1.00 
 0.88 

 

CT 0.98 (0.68-1.41) 0.91 0.92 (0.54-1.59) 0.78 

 

CC 1.15 (0.67-1.98) 0.62 0.80 (0.34-1.86) 0.6 
rs1864182 CC 1.00  1.00  

0.14 
 

AC 1.12 (0.74-1.68) 0.60 0.87 (0.49-1.58) 0.66 

 

AA 0.81 (0.51-1.29) 0.37 0.42 (0.21-0.88) 0.02 



 
 

178 
 

rs2241880  GG 1.00  1.00  
0.42 

 

AG 0.91 (0.61-1.35) 0.63 1.02 (0.55-1.90) 0.96 

 

AA 0.89 (0.55-1.43) 0.62 1.53 (0.76-3.08) 0.23 
rs2245214  TT 1.00  1.00  

0.97  CG 0.93 (0.65-1.34) 0.70 0.86 (0.50-1.49) 0.59 

 CC 0.91 (0.53-1.57) 0.74 1.01 (0.46-2.22) 0.98 
rs510432  TT 1.00  1.00  

0.12  CT 0.74 (0.49-1.11) 0.15 0.99 (0.54-1.79) 0.96 

 
CC 0.55 (0.34-0.87) 0.01 0.72 (0.36-1.45) 0.36 

 
 
Melanoma Stage (continuous) 
 

  ATG gene SNP Genotype  OR (95% CI) p-value Wald p-
value 

rs10514231 TT 1.00  0.32 

 

CT 1.18 (0.90-1.56) 0.23  

 

CC 0.92 (0.61-1.38) 0.69  
rs1864182 CC 1.00  

0.90 
 

AC 1.07 (0.79-1.46) 0.65 

 

AA 1.06 (0.74-1.53) 0.74 
rs2241880  GG 1.00  

0.14 
 

AG 1.01 (0.75-1.37) 0.93 

 

AA 0.74 (0.52-1.06) 0.10 
rs2245214  TT 1.00  

0.03  CG 1.47 (1.11-1.94) 0.01 

 CC 1.23 (0.82-1.85) 0.32 
rs510432  TT 1.00  

0.14  CT 1.30 (0.97-1.75) 0.08 

  CC 1.37 (0.96-1.95) 0.09 
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4.8 Supplemental research to chapter 4 manuscript: 

4.9 Introduction: 

The importance of the autophagy pathway, particularly in cancer, has been previously 

described in this chapter. In addition, it has been reported that knockout of autophagy 

related genes results in multiple disease states including neurodegenerative disease, 

autoimmunity, and cancer. Cells dependent on this catabolic pathway with decreased 

autophagic capacity to recycle nutrients will undergo programmed cell death which can 

result in tissue damage and inflammation. 1 Inflammation has an important and emerging 

role in cancer and has particular significance for melanoma. Melanoma inflammatory 

cells, including tumor-infiltrating macrophages, have prognostic implications.2 The 

presence of TILs in vertical growth phase of cutaneous melanomas has been reported to 

be associated with a better prognosis 3,4 Conversely, high levels of an inflammatory 

marker, C-reactive protein is a poor prognostic indicator.5 Cytokines, chemical 

messengers of the immune system, have a dynamic range of expression patterns in 

melanoma that changes with cancer progression. A variant in one SNP previously 

described in this chapter, autophagy related 16-like 1 (T300A) (Chapter 4.4), enhances 

the degradation of the ATG16L protein by caspase 3.1 Under certain conditions ATG16L  

is critical for negative regulation  of  inflammatory cytokines9  and the T300A  variant 

impacts IL-1β and IL-6  production. 10 

Characterizing the correlation of this SNP, which can directly impact the rate of 

autophagy in cells, with the two major oncogenes in melanoma BRAF and NRAS, should 

allow us to elucidate the role of autophagy in these important subtypes melanoma. For 
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this analysis, I used only single primary samples which had been genotyped for 

BRAF/NRAS status from GEM participants. In order to determine whether SNPs in ATG 

genes are associated with BRAF/NRAS mutations in melanoma patients, I used the 

procedures and premises listed in the previous part of this chapter to investigate 5 SNPs 

in 3 autophagy related genes in melanoma. 

4.10 Materials and Methods: 

4.10.1 Patient Characteristics:  

From the study of a population of  2,373 participants with single primary melanomas, we 

chose  602 genomic DNA samples were based on tumor availability (previously 

described in 4.3.1 and previously reported) 3 and compared ATG SNP frequencies with 

oncogene status.  

4.10.2 Clinical Stage:  

Previous described in 4.3.2 and summary characteristics were previous reported 3 

4.10.3 Selection of SNPs and Genotyping:  

5 SNPs in three critical ATG genes were selected from those identified with functional 

SNPs in the literature or that were associated with BRAF and NRAS status as previously 

described. DNA was isolated from buccal cells as previously described in 4.3.3.4,5 SNPs 

in ATG genes were characterized using Taqman Real-Time PCR Assays (ThermoFisher 

Scientific, Grand Island, NY) on a 7900HT Fast Real-Time PCR System (ThermoFisher 

Scientific, Grand Island, NY) following manufacture recommendations as previously 
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described in 4.3.3. The identification of ATG gene alleles were identified using the ratio 

of amplification fluorescence during the logarithmic phase generated from a 

commercially available Taqman primer assay on a 7900HT Applied Biosystems qPCR 

machine as previously described 4.3.3. Genomic DNA samples were chosen from those 

samples for single primary melanoma with sufficient DNA and tumor availability to 

allow for somatic analysis in future studies. 3  The genotyping call rate for the 602 chosen 

samples ranged was 98 to 100% and biological replicates were generated for 10% of the 

samples with 100% concordance. 

4.10.4 Data Analysis:  

Frequency tables were used to summarize the genotype distributions for each ATG SNP 

(see Table 2).  The association between SNPs and oncogene status were tested under the 

general genotypic inheritance (co-dominant) model allowing for simultaneous 

comparison of the heterozygous genotype versus wildtype, and homozygous minor 

genotype versus wildtype.  No assumptions were made on the model of inheritance, and 

the genotypes for each SNP were treated as a three-level nominal variable.  From this 

analysis we report a global p -value which represents the overall significance for our 

analysis as described previously. To evaluate the association between ATG SNPs and 

BRAF or NRAS status, we conducted logistic regression analyses. ORs and 95% 

confidence intervals estimated from the regression models were used to summarize the 

associations. Wald tests were used to assess the global significance of the association and 

statistical significance was two-sided and set at 5%.  
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4.11 Results: 

Five SNPs within ATG genes that have been previously reported associated with disease 

outcomes were genotyped and the result correlated with oncogene status. After 

adjustment for age, sex and study center, none of the 5 ATG gene SNPs were 

significantly associated with BRAF or NRAS status in melanoma participants. However 

the "A" allele of one SNP in ATG10 (rs1864182) showed a positive correlation with 

BRAF status although it did not retain significance at the global p-value (AC) (OR 1.79 

95%CI 1.12-2.87, p= 0.02) (AA) (OR 1.82 95%CI 1.06-3.12, p= 0.03).  This may be due 

to insufficient sample size as our power calculation was originally based on 795 samples. 

I was unable to obtain DNA for all 795 participants and information on BRAF NRAS 

status was unavailable for some tumors, resulting in decreased sample size.  

4.12 Discussion:  

In this study a SNP in ATG10 (rs1864182), while not significant at the global level, 

correlated with BRAF status in our melanoma participants. Of interest, the significance of 

both allelic specific models, one which examines the relationship between the 

heterozygous genotype versus wildtype, and homozygous minor genotype versus 

wildtype were both below .05 (p=0.02; p=0.03 respectively). Elevated expression of 

ATG10 in colon cancer has been shown to be associated with increased lymph node 

metastasis6 and previously this SNP has showed to be associated with increased IL-8 

production (p = 0.04).7 

Melanoma cells express a variety of cytokines, and their level of expression changes as 

melanoma progresses. 6 Early stage melanoma with lesions less than 1 mm Breslow 
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thickness exhibit low levels of cytokines including IL-8. 7 More advanced stage is 

associated with increased expression of pro-inflammatory cytokines IL-1α, β, IL-6, and 

IL-8. 7 The expression of IL-6 in particular has been associated with melanoma 

malignancy and its production has been associated with defective autophagy.8  Of 

interest, this particular SNP in ATG10 (rs1864182) was also previously reported to be 

associated with decreased breast cancer risk.8 Induced autophagy in breast cancer cells 

has been shown to result in autophagic regulated cell death.9 The impact of this SNP in 

the function of ATG10 remains to be elucidated. Analysis of the rate of autophagy 

associated with this SNP would provide insights into its association both with BRAF 

oncogene status as well as correlations with melanoma progression and survival. 
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4.14 Tables: 

4.14.1 Table 1: BRAF/ NRAS status by SNP genotype among melanoma cases* 

ATG SNP Genotype BRAF/ NRAS 
status OR (95% CI) p-value Wald 

p-value 
rs10514231 TT wt. 

 
1 [Reference] 

0.36 
rs10514231 CT BRAF* 1.36 (0.90-2.06) 0.15 
rs10514231 CC BRAF* 1.39 (0.77-2.50) 0.26 
rs10514231 CT NRAS* 1.37 (0.79-2.37) 0.27 
rs10514231 CC NRAS* 0.81 (0.34-1.92) 0.62 
rs1864182 CC wt.  1 [Reference] 

0.09 
rs1864182 AC BRAF* 1.79 (1.12-2.87) 0.02 
rs1864182 AA BRAF* 1.82 (1.06-3.12) 0.03 
rs1864182 AC NRAS* 1.09 (0.61-1.95) 0.77 
rs1864182 AA NRAS* 0.78 (0.38-1.62) 0.51 
rs2241880 GG wt.  1 [Reference] 

0.94 
rs2241880 AG BRAF* 0.97 (0.62-1.53) 0.90 
rs2241880 AA BRAF* 0.90 (0.53-1.53) 0.61 
rs2241880 AG NRAS* 1.17 (0.64-2.12) 0.70 
rs2241880 AA NRAS* 0.91 (0.45-1.86) 0.80 
rs2245214 TT wt.  1 [Reference] 

0.57 
rs2245214 CG BRAF* 1.12 (0.75-1.68) 0.57 
rs2245214 CC BRAF* 0.89 (0.47-1.69) 0.73 
rs2245214 CG NRAS* 0.71 (0.41-1.21) 0.20 
rs2245214 CC NRAS* 0.93 (0.43-2.02) 0.86 
rs510432 TT wt.  1 [Reference] 

0.38 
rs510432 CT BRAF* 1.12 (0.72-1.73) 0.63 
rs510432 CC BRAF* 1.03 (0.59-1.78) 0.93 
rs510432 CT NRAS* 0.86 (0.47-1.55) 0.61 
rs510432 CC NRAS* 1.51 (0.78-2.93) 0.22 

Genotypic model adjusted for age (continuous) sex, and study center. *Bold significance 
set p= 0.05 Abbreviations: OR, odds ratio; CI, confidence interval 
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4.14.2 Table 2: Power calculation for detecting oncogene status in 795 melanoma 

patients 

                                    Minimum detectable per-allele OR 

SNP Minor allele NRAS vs wt. BRAF vs wt. 
rs510432 0.447 1.75 1.53 
rs2241880 0.471 1.75 1.53 
rs10514231 0.359 1.76 1.55 
rs2245214 0.367 1.76 1.55 

    * sample size of 795 , 80% power and  5% significance level 
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5.1 Conclusions:   

My research offers insight into the interactions between BRAF/NRAS status, autophagy 

and melanoma. Despite new treatment options and therapies the long term survival rate 

for melanoma is stilllow.1  A common hypothesis has been that the autophagy pathway is 

upregulated early in tumorigenesis, suppressing cancer progression, but then the pathway 

is subverted and in later stages promotes tumorigencity.2,3 However, I have demonstrated 

at the cellular level that, particularly in late stage melanoma, oncogene status influences 

autophagy regulation. 

My research involves a broad approach. Starting with cell lines from metastatic 

melanoma patients, moving to melanoma and benign nevus tissues of patients in a pilot 

study, and finally to a larger study of melanoma patients at the population level, I have 

examined the complex relationship between melanoma, autophagy and the oncogenes 

that characterize a majority of melanoma tumors. Using this broad approach, I have 

identified dependence in metastatic BRAF* mutant cell lines on autophagy. In addition, in 

NRAS* cell lines I identified that these cells have the ability to utilize the autophagy 

pathway in response to serum starvation or chemical induction but they are not 

upregulating this process for survival under basal conditions. In addition, the data 

supporting the concept that BRAF* melanoma cancer cells are more susceptible to 

autophagic inhibition suggest that constitutively activated BRAF* selectively upregulated 

autophagy. The way in which autophagy is upregulated beyond the activation of the 

MAPK pathway remains to be elucidated, but this research suggests there is an important 

connection between the tumorigenicity of BRAF* melanoma and autophagy. My research 

also identifies the important but subtle finding that NRAS* melanoma cells appear less 
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dependent autophagy for survival at later in later stage. This differential activation of the 

autophagy pathway suggests that these two oncogenes, which mutually signal through the 

MAPK pathway, are interacting with other proteins to regulate autophagy. This finding is 

not counter intuitive as the uncoupling of mutant NRAS signaling from BRAF, and 

subsequent preferential signaling through CRAF has been previously reported.4 Still the 

role of autophagy in NRAS mutant melanoma etiology presents an area for additional 

research.  

The relationship between autophagy regulation and melanoma was also investigated in 

melanoma and control tissue sections showing that high Beclin1 expression was 

associated with decreased Breslow thickness potentially implying a tumor suppressive 

effect.  LC3 levels correlated with decreased melanoma specific mortality.  Of note my 

research also identified a gender specific association in the melanoma patients. Females 

in our sample population were more likely to have high Beclin1 expression in their tumor 

tissue sections.  This is a particularly stimulating observation as female melanoma 

patients exhibit longer survival over male melanoma patients with similar stage.5 If 

Beclin1 is acting as a tumor suppressor in melanoma, the higher levels of this protein 

may also have prognostic implications. 

Further, evaluation of UV exposure in melanoma tissue sections identified that certain 

outdoor activities, indicated consistent UV exposure, and were associated with 

upregulated autophagy. Melanoma participants reporting blistering sunburn were more 

likely to have elevated Beclin1 expression while high LC3 was associated with a lack of 

blistering sunburns. At first this finding may seem counter intuitive for a potential role 

for Beclin1 as a tumor suppressor. However, previous studies have shown an inverse 
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correlation between sunburn and death from melanoma.6 If Beclin1 is acting to suppress 

tumorigenesis following UV exposure this interaction may help to clarify the complex 

between relationships between sun exposure and melanoma progression. 

Interestingly, Beclin1 expression was not associated with NRAS mutant or BRAF mutant 

status in our analysis. While there may be no direct relationship between Beclin1 

expression and these oncogenes, another possible reason I did not identify a relationship 

between Beclin1 expression and BRAF or NRAS status might be due to low statistical 

power. We did see a borderline significance with the melanoma histological subtype, 

superficial spreading melanoma, that is more commonly associated with BRAF mutant 

melanoma but additional investigations will be necessary to clarify this relationship. 

LC3 expression is generally accepted as a proxy marker for the rate of autophagy and, 

interestingly, in our sample population high LC3 was correlated with decreased 

melanoma specific mortality. When I examined the interactions between mortality and 

LC3 compared to the interaction of mortality with either Beclin1 or Beclin1 combined 

with LC3, it was clear that LC3 protein expression alone in this model is associated with 

decreased mortality. As punctate LC3 in cases was significantly associated with LC3 

expression in cases, this potentially indicates an increase in the number of 

autophagosomes present in these patients. To add to the complexity, while BRAF and 

NRAS status were not significantly associated with LC3 expression, high cytosolic LC3 

expression correlated with wildtype status in our population genotype. The presence of 

high levels cytosolic of expression, coupled with the lack of punctate LC in these 

participants potentially indicates deacetylation of  LC3, which has been reported to 

increase LC3s expression in the cytoplasm.7 This would indicate that LC3 has been 
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primed for autophagy induction in the tissue of our non-oncogenic samples but that 

autophagosome formation may be impaired or inhibited as indicated by the absence of 

punctate LC3. The reasons for this association remain unclear and require additional 

investigation. In addition, while not significant, high LC3 expression was also associated 

with prolonged sun exposure on unprotected skin, boating activities and any outdoor 

activity sun exposure. This indicates a role for UV exposure with autophagy activation as 

evidenced by the high LC3 expression.   Ultimately my results indicated that autophagy 

proteins vary by tumor stage and their expression is associated with UV exposure. My 

research  also indicate that the expression of Beclin1 and LC3 could be beneficial as 

prognostic indicators and that elevated level of these two proteins may support the 

maintenance of a more indolent melanoma phenotype. 

In the final study of this project, I identified SNPs associated with markers of 

melanoma progression. To date, there are no other studies investigating the impact of 

ATG gene SNPs in melanoma progression and survival. While the association between 

oncogene status and these SNPs was not significant at a global p level, the linear 

correlation between BRAF status and a SNP in ATG10 was significant for the allelic 

model. This analysis could benefit from additional studies using increased sample size to 

ensure sufficient power in order to adequately evaluate this correlation. In addition, I 

identified three ATG SNPs (rs2241880, rs510432, rs2245214) that were associated with 

prognostic indictors in melanoma. The SNP in ATG16L (rs2241880) creates a cleavage 

site that results in the degradation of ATG16L and an overall decrease in the rate of 

autophagy. This variant was associated with better prognostic indicators including 

Breslow thickness, decreased stage and a younger age of melanoma diagnosis. This may 



 
 

192 
 

indicate that reduced levels of ATG16L are associated with less aggressive melanoma. In 

addition, two other SNPs in another autophagy related gene ATG5 (rs2245214 and 

rs510432) were associated with increased stage of melanoma. Of particular interest, the 

rs510432 SNP located in the ATG5 promoter has been associated with an increased rate 

of autophagy.8 This data would appear to suggest that increased levels of ATG, 

potentially resulting in increased rates of autophagy, is associated with more aggressive 

stage in melanoma. The apparent contrary nature of these two findings implies that, 

beyond the impact of these genetic factors that could be modulating disease severity, 

other factors are regulating autophagy potentially including UV exposure.  Throughout 

this study, several important interactions have been elucidated implicating the 

interactions between oncogenes and the autophagy pathway as impacting melanoma 

progression and survival. Overall, my results support the literature indicating the dual 

role of autophagy, acting tumor suppressive in earlier stages and tumor promoting, 

particularly in mutant BRAF melanomas as the tumor progresses. Autophagy, as 

represented by the proxy marker LC3, is upregulated in mutant BRAF melanoma cells 

compared to NRAS. This is also consistent with high levels of autophagy being associated 

with late stage BRAF tumor cells.  
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As shown at the individual level in melanoma tissue sections, and supported by the 

literature, high levels of autophagy are associated with earlier prognostic indictors 

suggesting that autophagy may be tumor suppressive in earlier stages of melanoma 

development. This is particularly true as Beclin1, which was associated with many 

positive prognostic indicators in my study, has tumor suppressive roles in many cancers. 

Finally at the population level my results indicated that decreased lifelong autophagy, 

resulting from the degradation of an important autophagy related protein (Atg16L), was 

associated with better prognosis, while increased autophagy, resulting from upregulation 

of the promoter of an important ATG gene (ATG5), was associated with increased 

melanoma stage.  

Overall my results indicate that dysregulation of autophagy can impact melanoma 

progression. 

 

5.2 Future studies: 

My research has broad implications for melanoma and cancer research as a whole. 

With a demonstrated but context specific impact of UV exposure and oncogene status on 

autophagic regulation, coupled with interactions with SNP in ATG genes potentially 

modifying melanoma progression and survival, this data builds knowledge applicable to 

the many autophagy associated diseases.  This knowledge suggests several future 

directions. 
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The differential activation of the autophagy pathway suggests that these two 

oncogenes, BRAF and NRAS, which mutually signal through the MAPK pathway, are 

interacting with other proteins to regulate autophagy. This finding is not counter intuitive 

as the uncoupling of mutant NRAS signaling from BRAF, and subsequent preferential 

signaling through CRAF has been previously reported.4 NRAS mutant cell lines have the 

ability to use the autophagy pathway in response to nutrient deprivation but mutant NRAS 

signaling of MAPK preferentially through CRAF appears to occur without the support of 

the autophagy pathway at least under basal condition. The cyclic AMP pathway (cAMP), 

which is inhibited in NRAS- mutant melanomas compared to BRAF oncogenic 

melanomas, has been reported to have a role in autophagy.4 BRAF signaling through 

cAMP has been reported to upregulate the autophagy initiating protein Beclin 1. Further 

characterization of this interaction, including the impact of oncogenic BRAF on Beclin1 

as well as the role of cAMP in autophagy and how these interaction impacts melanoma 

progression would help to clarify the biological regulation of autophagy. As I have stated 

the importance of Beclin1 warrants further investigation in melanoma. It has already been 

reported that the generation of Vitamin D3, following UV exposure, enhances the 

expression of Beclin-1 resulting in increased autophagy. 9 This interaction between UV 

exposure and a potential tumor suppressive role for Beclin1 could be characterized using 

clinical markers for sun exposure including serum Vitamin D levels and histopathological 

data from patients whose BRAF NRAS status has been established.  

In addition, there is data implicating high rates of autophagy as a mechanism of 

acquired resistance to BRAF mutant inhibitors including vemurafenib.10 This data 

supports the need for clinical studies in which autophagy inhibition is combined with 
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oncogene specific therapies in order to overcome resistance. However the effect of these 

combinations on different stages of melanoma is not clear. As our data have shown there 

remains a complex balance between the tumor suppressive effects of autophagy, 

particularly by Beclin 1, and the tumorigenic metabolic support provide by this pathway. 

Functional studies are needed in order to further characterize the anticipated outcome of 

these combination therapies.  The use of cell lines to characterize these interactions 

further would allow for some clarification of these relationships. Ultimately, the use of 

animal models would be beneficial for determining how the modulations of these 

proteins, as well as the impact of UV exposure, has on autophagy and melanoma 

progression and would allow for refinement in our understanding of these complex 

systems. 

In addition, in order to further investigate the correlations we identified in this study, 

autophagy SNPs should be functionally evaluated and it should be established what, if 

any linkage disequilibrium is present between these and other SNPs. At the present time, 

many novel and exciting therapies are in clinical trials and some, including CTLA-4 and 

PD-1/PD-L1 blockade, are showing promise for durable  impact on survival and 

ATG16L and ATG5 have both been shown to impact cytokine production in disease.8,11–

13 It is also important to note that focused my investigation on 5 SNPs in 3 genes. There 

are currently 38 ATG genes identified and the impact of variants in any of the other 

critical autophagy genes has not been established for melanoma progression or survival.  

Research characterizing deep sequencing and epigenetic changes including methylation 

patterns, could help to characterize the impact of the SNPs identified in this research. 

Finally, functional studies designed to evaluate the impact of the SNPs investigated in 
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this study as a well other ATG gene SNPs on cytokines production and autophagy 

regulation will provide insights into the relationship between autophagy and melanoma 

progression. 

5.3 Overall conclusions and perspectives: 
 

This dissertation has presented data suggesting that the relationships between 

autophagy, melanoma and oncogene status are complex and that careful examination of 

these interactions will be pivotal in the successful application of autophagy inhibitors for 

melanoma co-therapy. In particular, the dependence of BRAF mutant cell lines on 

autophagy to suppress apoptosis as well as the relationship between SNPs and melanoma 

clinical characteristics has important implications for understanding the etiology and 

progression of this disease. Factors impacting the rate of autophagy including SNPs and 

UV exposure interact with oncogenic differences to impact the melanoma progression 

and survival.   

These findings have important repercussions in beyond melanoma. First, there are 

other diseases where the autophagy pathway plays a critical role including in 

cardiovascular, neurodegenerative, infectious, and metabolic diseases and the data 

present in this research may inform biological mechanisms in those diseases as well.  

In addition, epidemiological studies can be used to identify unique interactions 

between independent and complex variables, including autophagy and UV exposure, in 

order to provide insights into melanoma. The use of large population studies when 
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properly modelled, allows for the statistical power to examine interactions between 

multiple SNPs, exposure variables and clinical characteristics. 

 Importantly, these results have implications for the interaction of the autophagy 

pathway in disease, particularly, where oncogenes have a critical developmental role. 

Overall, this data indicates that while BRAF cells may be dependent on autophagy for 

survival, and that the expression of Beclin1 and LC3 may support a more indolent 

melanoma phenotype. This suggests that the role of autophagy, as well as its interactions 

with other mitigating factors, should be carefully considered before inhibition of 

autophagy is used universally in melanoma treatment. 
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