
 

 

 

STOCHASTIC FLOW SEQUENCE GENERATION  

AND ASPINALL UNIT OPERATIONS 

 

 

By  

KENNETH C NOWAK  

B.S., Rensselaer Polytechnic Institute, 2006 

 

 

 

 

A thesis submitted to the faculty of the Graduate School of the University of 

Colorado in partial fulfillment of the requirement for the degree of  

Master of Science  

Department of Civil, Environmental, and Architectural Engineering  

2008 



 

This thesis entitled: 

Stochastic Flow Sequence Generation  

and Aspinall Unit Operations 

written by Kenneth C Nowak 

has been approved for the 

Department of Civil, Environmental, and Architectural Engineering 

 

_____________________________________________________ 

Balaji Rajagopalan 

 

_____________________________________________________ 

Edith Zagona 

 

_____________________________________________________ 

Kenneth Strzepek 

 

Date ____________________ 

The final copy of this thesis has been examined by the signatories, and we find that 

both the content and the form meet acceptable presentation standards of scholarly 

work in the above mentioned discipline.



iii 

Kenneth C Nowak (MS, Civil, Environmental, and Architectural Engineering)  

Stochastic Flow Sequence Generation and Aspinall Unit Operations 

Thesis directed by Professor Balaji Rajagopalan 

  

The Aspinall Unit is comprised of three reservoirs that lie on the western 

slope of Rocky Mountains and regulate approximately 50% of the Gunnison River 

Basin drainage.  Since its completion in 1977, the Unit’s primary objectives have 

been generation of hydropower, storage for consumptive use, flood prevention, and 

recreation.  Currently, an Environmental Impact Statement (EIS) is being prepared to 

benefit endangered fish species found in the Gunnison River, focusing on habitat 

management by prescribing beneficial flows.  Thus, the implication of this additional 

demand/objective is of importance to water managers.  

Southwestern water management and planning are increasingly discussed 

topics, given the recent, unprecedented drought (1999-2004).  While this period 

marked the worst drought on record for the Colorado River Basin, paleo 

reconstructed flows dating back to the 1500’s suggest that such events are not 

uncommon.  As a result, when assessing the impact of the recommended fish flows 

(RFF) on pre-existing objectives, it is important to consider a wide range of 

hydrologies that include extended periods of drought and surplus.  

This work aims to develop synthetic hydrologies that can be used to assess the 

implications of meeting the RFF on current operations of the Aspinall Unit through 

the following steps.  Stochastic flow sequence generation techniques based on 

observed data only are first investigated, followed by approaches to incorporate paleo 
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reconstructed data.  The selected methods are then employed to generate synthetic 

traces which are eventually used as inputs to a Decision Support System (DSS) model 

of the Gunnison Basin.  In order to be used as such, these traces are disaggregated 

from an annual single site value to intervening flows throughout the basin at a 

monthly timestep.  Last, a DSS model is developed and employed to demonstrate the 

usefulness of the stochastic flow sequences.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

1.1.1 Western United States Water Resources 
The recent extended period of drought (1999-2004) throughout the 

southwestern United States and Colorado River Basin in particular, has raised 

considerable concern about the ability to reliably provide water to the area’s growing 

population while protecting the environment and endangered species.  During this 

period, Lakes Powell and Mead experienced marked declines in storage, spurring 

alarm not only about the climate and growing demand, but the management of water 

in the Colorado Basin as a whole.  The Colorado Basin supplies water to seven “basin 

states” (Wyoming, Colorado, Utah, Nevada, Arizona, New Mexico and California) 

and to parts of Mexico.  Furthermore, thirty-six species of fish are native to the basin, 

four of which are listed as endangered and found nowhere else in the world.  As a 

result, water use and allocation have come under intense scrutiny. 

Since the early 1900’s, the southwest has grown over 1500% compared to the 

United States national average of approximately 225%.  Figure 1 depicts this trend 

over a ten year period spanning 1990-2000.  In particular, Arizona and New Mexico 

have become new retirement hotspots, while southern California and Las Vegas 

continue to sprawl (Chourre and Wright, 1997).  The influx of water users to the area, 

combined with the demand for amenities such as golf courses and manicured lawns, 

has further stressed this region.  The current water management compacts between 

basin states have several detractors.  Agreements were based on limited data that 

suggest a much wetter climate and overall greater availability of water.  Several 
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accords guarantee water by volume, instead of a percent-based approach, which can 

create a rather lopsided allocation during dry years.  Also, population growth and 

location are difficult to anticipate, and thus water is not always available to places 

that need it most.  Climate change projections suggest that water in the southwest will 

become scarcer in the future.  Now, more than ever, understanding potential 

hydrologic scenarios and the implications on water management is of great 

importance.  

 
Figure 1 United States population change map. (source: www.CensusScope.org) 

 

These aspects are underscored in the Gunnison River Basin, one of the 

important tributaries of the Colorado River, which serves as a microcosm to the issues 

faced on a larger scale in the Colorado River Basin. In particular, efforts are 
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underway in this basin to devise reservoir operating strategies to help sustain aquatic 

habitat under increasing stress to the area’s water resources from conflicting demands 

and changing climate.  Hence, the Gunnison River Basin is the focus of this study. 

1.1.2 Gunnison River Basin and Aspinall EIS 
The hydrology of much of the Colorado Basin including the Gunnison, is 

primarily driven by spring snowmelt run-off, shown by the computed natural flow 

hydrograph at Grand Junction (Figure 2).  Natural flow data is maintained by the 

Bureau of Reclamation and has anthropogenic impacts removed (Prairie and Callejo, 

2005).  Thus, it is the best estimate available of the actual basin hydrology.  As to be 

expected, peak demands tend to occur in summer months, primarily for irrigation 

purposes.  In order to reliably provide water to users, there are numerous dams, from 

which water can be released and controlled as necessary.  These structures can greatly 

alter the riparian environment by inundating large areas, disrupting natural 

streamflows and in general, negatively impacting the fish habitat (Gosset et al., 2006; 

Rieman et al., 2001; Thompson and Rahel, 1998).  Within the Gunnison Basin, 

several species have become endangered including the Razorback Sucker and the 

Colorado Pikeminnow.  Federal action to protect critical habitat for these fish, in 

accordance with the National Environmental Policy Act, has resulted in the ongoing 

preparation of the Aspinall Unit Operations Environmental Impact Statement (EIS).  

The Aspinall Unit is a series of reservoirs that regulate approximately half of the 

Gunnison River Basin, which, in its entirety, drains 8,000 square miles on the western 

slope of the Rocky Mountains, before its confluence with the Colorado in Grand 

Junction, CO.  The map below (Figure 3) illustrates the basin and three reservoirs 
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(Crystal, Morrow Point and Blue Mesa) that comprise the Aspinall Unit.  Other 

noteworthy components of the basin include Taylor Reservoir, located on Taylor 

River, the Uncompahgre Diversion Project and the Black Canyon of the Gunnison 

National Park, just downstream of the Aspinall Unit.  The EIS aims to develop 

operating guidance and criteria to assist in meeting recommended fish flows (RFF) 

for the endangered species, while continuing to meet the pre-existing objectives of the 

Unit (USBR, 2004a). 

 

Figure 2 Gunnison River at Grand Junction, CO annual hydrograph. 
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Figure 3 Gunnison River Basin. (source: USBR 2004b) 

1.1.3 Recommended Fish Flows (RFF) 
The largest impact of the Aspinall Unit has been the alteration of the river’s 

natural hydrograph.  As a result of holding back water for the dry summer months, 

typical spring peak flows have been severely reduced.  This can be clearly seen in 

Figure 2, which shows the pre and post Aspinall Unit hydrographs, as well as the 

computed natural flow hydrograph (Prairie and Callejo, 2005).  The pre Unit 

hydrograph is comprised of data observed at USGS gauge number 09152500 near 

Grand Junction, prior to the start of Aspinall Unit construction in 1963.  This 

hydrograph is very similar to the natural flow plot for the January to May period, but 

differs in the summer to early fall.  The discrepancy is due to the Gunnison Diversion 

Tunnel (1909), in which water is delivered to the Uncompahgre Basin from the 

Gunnison during the irrigation season, resulting in the reduced summer flows.  The 

post Unit hydrograph is developed from the same USGS gauge data, but after 1977, 
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when construction was completed.  The impact of the reservoirs is quite noticeable; 

peak flows have been reduced while during the other seasons flow has been 

augmented for irrigation and hydropower.  Overall, the difference in total annual 

volume between the pre and post unit hydrographs is about 1%, with the post unit 

being slightly less. This is a small difference and is most likely due to the increased 

losses due to evaporation from the three reservoirs.   

The RFF set forth by the US Fish and Wildlife Service mandate high flow 

releases in late spring, hoping to inundate flood plains/generate off-channel habitats 

rich in food for adult staging/growth, while providing effective sediment transport to 

remove silt and restore cobble bed breeding habitat (USFWS, 2003).  Late 

spring/early summer high flows also serve as a spawning cue for the fish.  Required 

flows for a given year are based on the forecasted April –July inflow to the basin; 

which is used to assign one of six hydrologic states.  There are six states that range 

from wet to dry.  Each of the six hydrologic categories specify the number of days for 

which there should be ½ fullbank discharge and fullbank discharge, in addition to 

instantaneous peak flow ranges.  Also, summer, fall and winter flows are established 

based on hydrologic category to provide baseflows that promote survival of the young 

(USFWS, 2003).  All flows are specified at the United States Geologic Survey 

(USGS) gauge near Grand Junction (09152500).  

Understanding the year-to-year variability in streamflow is critical to 

obtaining insight into the potential risk of inability to meet these fish flows and 

developing realistic and sustainable reservoir operating guidelines.  To this end, the 

following integrated components are essential – (i) simple and robust streamflow 
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simulation techniques and (ii) a realistic decision support tool that encapsulates the 

operations and rules of the basin and can be driven by a variety of streamflow 

scenarios to obtain system risk and reliability estimates.  This research develops a 

variety of synthetic hydrologies for that purpose and a simple DSS model to 

demonstrate their utility in work such as the Aspinall Unit Operations EIS study. 

1.2 Need for Stochastic Flow Sequence Generation 
When assessing the Aspinall Unit operations under the new strains of fish 

flow requirements, it is important to model the system under a variety of plausible 

flow scenarios – especially extreme conditions beyond what has been observed.  

Historical data are always limited; therefore, tools are necessary to generate plausible 

flow scenarios that are statistically consistent with the observed data.  Paleo 

reconstructions of streamflow that extend back several centuries are also available, 

albeit with reduced reliability (Hidalgo et al., 2000; Woodhouse et al., 2006).  Thus, a 

stochastic flow generation tool is desired that is (i) simple, (ii) robust, (iii) data driven 

and (iv) able to incorporate information from the paleo reconstructions to provide a 

realistic and rich variety of streamflow sequences.  This motivates the first part of this 

research.  In the second component, a decision support tool is developed for basin 

operations that can be driven by these stochastic sequences and show their value in 

providing system risk and reliability when meeting the RFF.  The outline of the thesis 

describing the various chapters is as follows. 

1.3 Outline 
Chapter 2 will introduce basic parametric and non-parametric techniques for 

the generation of stochastic flow sequences for the Gunnison River at Grand Junction.  
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Specifically, the Index Sequential Method (ISM) (Ouarda et al., 1997), K-Nearest 

Neighbor (KNN) bootstrap (Lall and Sharma, 1996), Modified K-Nearest Neighbor 

(Prairie et al., 2006) and Auto Regressive Moving Average (ARMA) (Thomas and 

Fiering, 1962; Salas et al., 1982; Harms and Campbell, 1967) models are discussed.  

ISM is widely utilized for its simplicity and ability to replicate observed statistics 

very well.  Its main drawback is that the sequence and magnitude of flows are 

restricted to that of the observed – essentially, it repeats the flows in the exact manner 

as observed.  The KNN bootstrap technique can generate a wide range of flow 

sequences while retaining the observed magnitude of flows – this provides a richer 

variety in the sequences while preserving the observed statistics.  Prairie et al.’s 

(2006) Modified KNN also generates a wide range of sequences while retaining 

observed statistics, but in addition, produces previously unseen flow magnitudes.  

ARMA models have the ability to generate a wide variety of values, beyond those 

observed, but struggle to reproduce non-Gaussian distributions.  This chapter will 

elaborate on the implementation of these methods, contrast advantages and 

drawbacks and compare the results from the traces generated. 

Paleo reconstructed flow data can provide insight into long-term streamflow 

and more importantly, on the hydrologic state (wet/dry) variability  – however, the 

reconstructed flow magnitudes are less reliable, as they are based on regression 

equations developed between tree ring growth and streamflow during the 

contemporary period (Hidalgo et al. 2000).  Nonetheless, it is prudent to harness this 

information and incorporate it into a streamflow generation technique.  To this end, 

Chapter 3 will develop a technique that combines Markov chain-based methods that 
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with a KNN bootstrap, in order to generate streamflow scenarios incorporating the 

observed and paleo information.  The different combination methods are presented, 

compared and discussed in this chapter. 

The above methods provide annual streamflow traces for the Gunnison River 

near Grand Junction.  However, for work such as the EIS study, flow scenarios are 

often needed at several locations throughout the basin at monthly time scales.  This 

requires the generated annual flows to be disaggregated in space and time.  Chapter 4 

will adapt the non-parametric space-time disaggregation technique (Prairie et al., 

2006) for this purpose to provide monthly flows at key sites in the Gunnison Basin.  

The results will be compared with historical data to ensure effective disaggregation of 

flows from Chapters 2 and 3.   

In Chapter 5, a decision support tool in Riverware (Zagona et al., 2001) will 

be presented.  This is a modification of the Aspinall Unit operations developed by 

Regonda (2006).  The key change is the development of operational rules to meet the 

RFF.  The monthly flow scenarios generated from the previous chapter will be used 

to drive this decision support tool.  This will provide scenarios of hydropower 

generation, pool elevations, and fish flow violations and the consequent risk 

estimates.  This information illustrates the benefit from stochastic traces in providing 

guidance when making necessary modifications to operating policies. 

Chapter 6 will provide an overall summary of the work, addressing both the 

techniques used and results from Riverware modeling.  This section will also provide 

recommendations for future work and improvements. 
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CHAPTER 2: DEVELOPMENT OF STOCHASTIC FLOW 
SEQUENCES BASED ON OBSERVED DATA 

2.1 Introduction 
Devising effective water resources and flood plain management strategies 

require a realistic estimation of the risk of various streamflow related events.  As 

mentioned earlier, when assessing the Aspinall Unit operations under the new strains 

of fish flow requirements, it is important to model the system under a variety of 

plausible flow scenarios – especially extreme conditions beyond what has been 

observed.  This requires a tool that can generate realistic flow scenarios that are 

statistically similar to the observed data but provide a rich flow sequence variety.  

Several stochastic techniques have been developed and prevalent among them 

are traditional (parametric) linear stochastic techniques in an Auto Regressive 

Moving Average (ARMA) regression framework (Thomas and Fiering, 1962; Salas et 

al., 1982, Harms and Campbell, 1967).  Recently, nonparametric techniques have 

been developed that are versatile and simple, and seem to provide an attractive 

alternative (Lall and Sharma, 1996; Prairie et al., 2006; Sharma et al., 1997).  Another 

method most widely used in practice is resampling chunks of historical data – i.e., 

Index Sequential Method (ISM) (Ouarda et al., 1997).     

In this chapter, the objective is to apply the above suite of techniques to 

streamflow generation at USGS gauge number 09152500 in the Gunnison River 

Basin, a key gauge in the basin for the EIS analysis.  The observed data are available 

for the period 1906 –2005, as natural flow from the U.S. Bureau of Reclamation 

(USBR) (Prairie and Callejo, 2005).  The above mentioned techniques are assessed 

for their ability to capture a variety of statistics while also attempting to generate 
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longer periods of drought and surplus.  A background on the stochastic streamflow 

generation is provided, followed by a brief description of four generation techniques 

– (i) ARMA, (ii) K-Nearest Neighbor (KNN) Bootstrap, (iii) Modified KNN (iv) ISM 

– widely used by USBR.  The statistics used for comparison are then presented, 

followed by the results from the simulations and discussion. 

2.2 Background 
Given a time series Xt, t = 1, 2, …,N, a typical time series model is of the form 

tptttt ZXXXfX += −−− ),...,,( 21  
Equation 1 
 
where Zt is the model error (or residual) that is assumed to be normally distributed 

with a mean of 0 and variance σ2.  If the function f is linear and fitted to the entire 

data set, then the above form is an Auto Regressive (AR) model and all aspects of 

regression theory apply (Loucks et al., 1981, Chatfield, 2004).  The function f, as can 

be seen in Equation 1, captures the time dependency in the time series.  If there are 

random jumps (i.e., financial time series) in the data in addition to time dependency, 

then the above model is modified to Equation 2. 

tqttptttt ZZZXXXfX += −−−−− ),...,,,...,,( 121  
Equation 2 
 

If f is linear and fitted to the entire data set, then it is an Auto Regressive 

Moving Average (ARMA).  The inclusion of past residuals captures the shock 

component, and the past time series value captures that dependency.  The order ‘p’ 

and ‘q’ have to be appropriately estimated from the data.  The ARMA framework 

(Loucks et al., 1981, Chatfield, 2004) is the staple of hydrologic time series modeling.  
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While this framework is easy and has a rich background from linear 

regression theory, it has several drawbacks.  Chiefly, (i) the function f is linear and 

fitted globally to the entire data – so any global or local nonlinearities that might be 

present in the data cannot be captured, (ii) the model assumes the data to be normally 

distributed - if not, the data must be transformed to normality before model fitting – 

which can be quite difficult in practice and (iii) statistics modeled and captured in the 

transformed space are not guaranteed to be captured in the original space when they 

are back-transformed  

Nonparametric techniques, which estimate the function f ‘locally’ at each 

point, provide an attractive alternative by offering a data-driven and flexible approach 

(Lall, 1995).  There are several nonparametric approaches (see Lall, 1995 for an 

overview), but the general philosophy is to identify a ‘locale’ or ‘neighborhood’ 

around the current ‘feature’ and then either fit a function to the points (Prairie et al., 

2005) in the neighborhood or resample from them (Lall and Sharma, 1996).  The 

local estimation provides the capability to capture any arbitrary features present in the 

data.  These techniques can be viewed as variations of a block bootstrap of the 

observed data, also known as Index Sequential Method (ISM) (Ouarda et al., 1997).  

This very simple approach is widely used by the Bureau of Reclamation.  These 

methods are further described in the following section. 

2.3 Description of Stochastic Methods 

2.3.1 ARMA 
As mentioned earlier, the ARMA framework is the staple of traditional time 

series analysis as well as hydrologic time series modeling.  The linear form of this 

model is given as: 
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qtqtttptptt ZZZZXXX −−−− +++++++= βββαα KK 11011  
Equation 3 
 
where p and q represent the model order, α the AR coefficients, β the MA coefficients 

and σ2 the error variance.  The method of moments or maximum likelihood technique 

(Chatfield, 2004) is used to estimate α and β from the data.  Typically, objective 

criteria such as Alkaline Information Criterion (AIC) are used to identify the optimal 

model order (e.g., AR1MA1, AR2MA1).  Visual inspection of the Auto Correlation 

Function (ACF) and Partial Auto Correlation Function (PACF) can also help provide 

insights into the model order.  From theory (Loucks et al., 1981; Chatfield et al. 

2004), an AR model of order (p) is appropriate if the PACF of the time series is 

insignificant beyond lag p.  Likewise, a MA model of order (q) is appropriate if the 

ACF of the time series is insignificant beyond lag q.  For annual streamflow at USGS 

gauge number 09152500, the ACF and PACF are shown in Figure 4.  From the PACF 

it can be seen that an AR-1 model is adequate. 

 

Figure 4 PACF (left) and ACF (right) for USGS gauge number 09152500 from 1906-2005. 
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Thus, the AR(1) model for this data is:  

ttt ZXX += −1α  
Equation 4 

2.3.2 ISM 
The Index Sequential Method (ISM) (Ouarda et al., 1997) uses a sequential 

block bootstrap of the observed data in order to generate flow sequences.  Each 

sequence is of the desired simulation length (in this case, 30 years).  For 100 years of 

data, we can have 100 blocks of 30-year sequences (when the end of the data record 

is reached it is wrapped around to the start of the record).  To illustrate, the first 

sequence will be data from 1906 to 1935; the second from 1907 to 1936, and so on; 

the last sequence will be data of 2005 along with 1906 to 1934.  By re-sampling the 

observed data in sequential 30 year blocks (1906-1935, 1907-1936, etc.) with 

wrapping (i.e., 2005-1934), ISM can potentially generate events longer than that of 

the observed.  While this method is simple to implement and captures all the statistics 

and features of the observed data quite well (by design), it is limited to 100 specific 

sequences, most of which are seen in the observed data.  

2.3.3 K-Nearest Neighbor Time Series Resampling 
The KNN bootstrap technique (Lall and Sharma, 1996) is a modification of 

the ISM.  Rather than selecting an entire (30-year) block at once, the trace is 

generated one year at a time.  As a result, a key difference between the two methods 

is that unlike ISM, where only the observed year sequences can be obtained, KNN 

can generate a variety of sequences.  This technique has been applied to multivariate, 

multi-site, daily weather generation (Rajagopalan and Lall, 1999; Yates et al., 2003). 
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The implementation algorithm of the lag-1 KNN time series resampling 

technique is described below. 

(i) Begin by randomly selecting a year, say, t , with corresponding flow xt. 

(ii) Next, the K number of nearest neighbors of xt are identified from the 

historical observations. The value of K is typically the square root of the length of the 

historic data. This choice has been found to work well in previous studies (Lall and 

Sharma, 1996). Note that the nearest neighbors are a set of historical years. 

(iii) Weights are assigned to each of the K neighbors – with highest weight to 

the nearest neighbor and least to the farthest. Lall and Sharma (1996) have shown that 

weight function choice has little impact on results. 

 (iv) One of the neighbors (a historic year) is randomly selected using the 

weight function, say, year j. The flow corresponding to year j+1, xj+1, becomes the 

simulated flow for the second year. 

(v) Steps ii through iv are repeated to obtain the desired number of flow 

sequences.  

This process is depicted in Figure 5.  
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Figure 5 Lag-1 KNN technique. 
 

The following is a KNN lag-1 example, based on Figure 5. 

Example data (X=16): 
Year Flow (acre-ft/yr) 
1950 844.8 
1951 1375.4 
1952 1039.8 
1953 1124.5 
1954 1310.4 
1955 728.0 
1956 646.5 
1957 1077.5 
1958 1229.5 
1959 1432.8 
1960 1472.1 
1961 927.9 
1962 1065.3 
1963 819.0 
1964 1373.2 
1965 524.1 

 
(i)  Select a year at random to be the first year in the generated sequence. Say, 

current year (t) = 1956 (646.acre-ft/yr)  
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Generated sequence (so far):  
Year Number Year Flow (acre-ft/yr) 
1 1956 646.5 
2   

 

(ii) Identify K nearest neighbors to year 1956 based on flow ( XK = , K=4) 

(Note: 1965 is one of the 4 closest neighbors, but cannot be selected because there is 

no flow information after 1965) 

Neighbors for 1956: 
Rank Year Flow (acre-ft/yr) Delta 
1 1956 646.5 0 
2 1955 728.0 81.5 
3 1963 819.0 172.5 
4 1950 844.8 198.3 

 

(iii) Assign weights to neighbors by: 

∑
=

= K

i

i
rank

rankw

1
/1

/1
 

 

(iv) Conduct a random resampling of the weighted neighbors to obtain a 

single neighbor for this iteration (j). Say j=1963 in this case. The next year in the 

generated sequence is year j+1 (1964), and its corresponding flow. 

Generated sequence (so far): 
Year Number Year Flow (acre-ft/yr) 
1 1956 646.5 
2 1964 1373.2 
3   

 

(v) 1964 now becomes the current year (t) and steps 2-6 are repeated until the 

desired sequence length is reached.   
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2.3.4 Modified KNN 
One of the aspects of the KNN resampling approach is that no new values can 

be generated – which might be desired by some users and applications.  To address 

this, Prairie et al. (2006) proposed a modification of the KNN resampling approach.  

The methodology is abstracted from Prairie et al. (2006) and described below. 

(i). A local polynomial is fit for each month dependent on the previous month 

(as in Figure 6):   

ttt eygy += − )( 1  

Equation 5 
 
where )( 1−tyg = local polynomial fitted as described above. 

(ii). The residuals ( te ) from the fit are saved. 

(iii). Once we have the simulated value of the flow for the current month 

( *
1−ty ), we estimate the mean flow of the next month ( *ˆty ) from Equation 5, not 

including the residual. 

(iv). KNN of *
1−ty (these are highlighted in Figure 6) are obtained. 

(v). The neighbors are weighted using the following weight function. 

∑ =

= K
i i

iiW
1 )/1(
/1)(  

Equation 6  
This weight function gives more weight to the nearest neighbor and less weight to the 

farthest neighbor.  The weights are normalized to create a probability mass function 

or “weight metric.” Other weight functions with the same philosophy (i.e., more 
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weights to nearest neighbors and lesser weights to farther neighbors) can be used as 

well.  Little or no sensitivity was found to the choice of the weight function. 

(vi). One of the neighbors is resampled using the “weight metric” obtained 

from Equation 5, above.  Consequently, its residual ( *
te ) is added to the mean 

estimate ( *ˆty ). Thus, the simulated value for the next timestep becomes: 

*** ˆ ttt eyy +=  
Equation 7 
 

(vii). Steps (i)–(vi) are repeated for other months to obtain an ensemble of 

simulations.  The output from steps (i) and (ii) can be saved for each month and used 

for successive years. 

 

Figure 6 Modified KNN. (source: Prairie et al., 2006) 
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2.4 Evaluation of Methods 
A suite of statistics are computed from the simulations, compared against that 

of the historic data and presented as boxplots.  The ‘box’ in the boxplot represents the 

interquartile range, the horizontal line inside the box is the median, the whiskers 

correspond to the 5th and 95th percentiles and values beyond the whiskers are shown 

as points.  The value of a statistic computed from the historical data is shown as a 

dashed red line. When the observed statistic lies within the interquartile range, it can 

be inferred that the simulations adequately capture the statistic.  

The distributional statistics computed are mean, standard deviation, 

coefficient of skew, lag-1 correlation, maximum and minimum.  In addition, 

probability density functions (PDFs) of the simulations are provided.  

For the KNN, Modified KNN and AR-1 methods described earlier, 1,000 

simulations, 30 years in length were generated.  For ISM, however, traces are limited 

to 100 simulations, the length of historical data.  All the methods reproduce the mean 

and standard deviation (Figure 7).  The ISM produces a limited range of mean and 

standard deviations – this is because its simulations are restricted to the observed 

sequence.   

 

 Figure 7 Mean (left) and standard deviation (right) for 100 simulations.  
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It should be noted that bootstrap techniques such as KNN are sensitive to the 

number of simulations, i.e., sampling variability (Efron, 1982). To placate concerns 

regarding the decision to generate 1,000 traces, simulations of several sizes were 

generated - 10 through 10,000 and the median for each was computed, shown as 

boxplots (Figure 8).  The interquartile ranges and whiskers are almost identical for 

simulations of more than 100, and the outlier range begins to stabilize for runs with 

250 to 1000 simulations.  There is, however, a slight increase in the range of outliers 

when 10,000 simulations are generated.  This can always be expected when more 

simulations are generated, and furthermore, these values represent less than 0.5% of 

the all the simulated traces, which is not overly significant.  This exercise suggests 

that 1,000 simulations is a sufficient number to address sampling variability.  

Consequently, comparisons are provided for the three methods – AR1, KNN and 

Modified KNN. 

 
 Figure 8 Median annual flow for various numbers of simulations using KNN.  
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For water resources management, particularly reservoir operations, periods of 

drought and surplus are critical for system reliability – therefore, a suite of spell 

statistics are computed and depicted in Figure 9.  For the work that follows, a drought 

period is simply a series of consecutive years for which all flows are less than the 

observed median value.  A drought deficit refers to the difference in water volume 

between median flow for the length of the drought and the actual volume of water for 

that period, or how much water it would take to bring all years in a drought to median 

flow.  Likewise, a surplus period is consecutive years for which annual flows are 

above the median.  The volume of water above the median flow for that time is 

termed a surplus.  

Threshold
(e.g., median)

Drought
Length (LD)

Surplus
Length (LS )

TimeDrought Deficit (MD)

Surplus
volume (MS )F

lo
w

 

Figure 9 Definition of surplus and drought statistics. 
 

As would be expected, it is important to assess both the length and magnitude 

of these drought/surplus periods.  For example, a 10 year drought can seem rather 
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severe, but if all of those years are just slightly below the drought/surplus threshold, 

the impact on reservoir operations is most likely small.  Conversely, a 3 year drought 

with significantly reduced inflow can strain even the largest of reservoirs quickly.  

Thus, histograms of drought/surplus and length/magnitude are provided for all 

simulation methods.  

2.5 Results 
All the methods capture the mean, standard deviation and lag-1 auto 

correlation very well.  The nonparametric methods capture the skew well, but the AR-

1 method under-simulates this statistic.  This is because the AR method generates a 

normal distribution which has a skew of zero, whereas, the nonparametric methods 

are data driven.  The nonparametric KNN method cannot generate values outside the 

maximum and minimum of the observed data, while the modified KNN and AR-1 can 

(Figure 10).  However, the nonparametric methods capture the non-normality feature 

of the observed data very well, but the AR-1 method reproduces a normal distribution 

(Figure 11).  This is one key advantage of the nonparametric techniques.  
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 Figure 10 Distributional statistics for KNN, Modified KNN and AR-1 traces. 
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Figure 11 Annual Flow PDFs (acre-ft/yr) of KNN (left), Modified KNN (center) and AR-1 (right). 
The red line depicts the observed PDF. 
 

Figure 12 shows the surplus length distributions of the three methods.  All 

three techniques show periods of surplus longer that that of the observed (6 years), 

albeit with somewhat low probability.  The two KNN-based methods show almost 

identical surplus distributions.  This is logical, as they are both effectively bootstraps 

of the observed data.  The spells from AR-1 show reduced probability, especially at 

lower spell lengths.  Similar observation can be made for the drought length (Figure 

13), surplus volume (Figure 14) and deficit volumes (Figure 15).  For comparison, the 

observed surplus and drought histograms are provided (Figure 16 and Figure 17).  

While the observed drought and surplus values are clearly exceeded by the techniques 

put forth, it is with limited probability. The non parametric techniques show 

approximately 2% probability of exceeding the max observed event for drought and 

surplus. The AR model has slightly higher probabilities (roughly 3.3%).  
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Figure 12 Surplus length histograms. KNN (left), Modified KNN (center) and AR-1 (right). 
 

 

Figure 13 Drought length histograms. KNN (left), Modified KNN (center) and AR-1 (l right). 
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Figure 14 Surplus volume histograms. KNN (left), Modified KNN (center) and AR-1 (right). 

 

 
Figure 15 Drought deficit histograms. KNN (left), Modified KNN (center) and AR-1 (right). 



28 

 
Figure 16 Observed drought histogram 

 
Figure 17 Observed surplus histogram 

2.6 System Risk 
The drought and surplus statistics described above are sensitive to the 

threshold (in this case the long-term median flow) choice.  This is somewhat 

subjective, especially since the metric changes as the observed data set grows with 

time.  An alternate method to quantify water availability is considered.  Termed the 

sequent peak algorithm (Loucks et al., 1981), this approach quantifies the storage 

capacity needed to meet different demands for a given flow sequence.  As a result, 

this method obviates the need to define a drought threshold, and instead provides a 
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robust system-wide measure of the ability to meet demands.  The following briefly 

describes implementation of this technique: 

ii ydS
iS −+′
=′ −1

0{  

],...,max[ ''
Nic SSS =  

 
iS is the storage at timestep i, d is the demand or yield, yi is the streamflow 

from a sequence at time i, and cS  is the storage capacity.  This algorithm is also 

widely used for designing reservoir capacities.  

Storage is computed for each demand level for each simulated sequence, 

resulting in boxplots shown in Figure 18.  It can be seen that all three methods 

provide considerable variability in the storage, as to be expected.  The combined live 

storage of the Aspinall Unit and Taylor Park is approximately 1.07 MAF (Western, 

2007; United States, 2004) and is shown by a red dashed line for reference.  For a 

system demand of 1.65 MAF, the storage requirement for the observed trace is almost 

exactly 1.07 MAF, suggesting 100% reliability.  However, both nonparametric 

simulations show about 25% of storage requirements are above 1.07 MAF, 

suggesting only 75% reliability.  This variability from the KNN simulations can 

provide a better estimate of the system reliability, which is important in management 

decisions.  Last, AR-1 shows about 50% reliability for a demand of 1.65 MAF, given 

the available storage.  This is a result of the skew toward smaller flow values, and 

thus, may not be completely appropriate for management of the Aspinall Unit.  Figure 

19 shows PDFs of required storage to meet the demand of 1.65 MAF. 

The sequent peak method assumes a static demand that must be met each year.  

From that point of view, it provides an overly simplistic model of reservoir operations 
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and results in a conservative estimate of storage requirements.  To gain further insight 

into reliability of various system components, the simulations should be used to drive 

a decision support model that incorporates the complexity of reservoir operation. 

 

Figure 18 Sequent peak algorithm. KNN (left), Modified KNN (center) and AR-1 (right). 
 

 

Figure 19 PDFs of storage required to meet a demand of 1.65 MAF. The red vertical line 
represents the live storage capacity of the Gunnison Basin.  KNN (left), Modified KNN (center) 
and AR-1 (right). 

2.6 Summary and Discussion 
The purpose of investigating a variety of modeling techniques is undoubtedly 

to generate more varied traces beyond that of the commonly used ISM.  Equally 

important to introducing increased variability is proper model selection.  Thus, by 

these two criteria, both KNN approaches provide a satisfactory combination of 
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statistical validation and variance.  The advantage of the traditional KNN approach is 

that it is simpler to implement, as it only resamples the observed values.  This ensures 

that the magnitudes are all realistic, because they have been documented in past 

years.  While this may not seem overly significant, it may prove crucial in convincing 

skeptical managers and stakeholders to consider “new” techniques.  The Modified 

KNN does not have these benefits; in fact, its strength over the traditional approach 

lies in the ability to introduce more variability by simulating previously unseen 

values.  Clearly, this may be perceived as either advantageous or a drawback, 

depending on the purpose and goals of the work.  

In conclusion, the nonparametric stochastic techniques investigated in this 

chapter have proven superior compared to traditional approaches such as an AR-1 

model.  Model selection, however, is impacted not only by the effectiveness of 

meeting goals, but also by the intended audience.  
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CHAPTER 3: DEVELOPMENT OF STOCHASTIC FLOW 
SEQUENCES BASED ON OBSERVED AND PALEO DATA 

3.1 Introduction  
The Gunnison River Basin experienced the worst drought on record during 

2000-2004.  This event impacted the entire Colorado Basin and raised serious 

concerns regarding water availability and quality over much of the western United 

States.  Since this period was one of the severe droughts in recorded history, many 

water managers wondered if this was perhaps an anomaly that should have little 

impact on basin operations and management.  However, paleo reconstructions of 

streamflow for the pre-observational period in the basins show droughts of greater 

magnitude and duration with higher frequency, indicating that the recent drought is 

not unusual.  While the system was able to withstand the recent dry period and all 

major water delivery obligations were met, insight from paleo data will help provide 

water managers with better estimates of system risk and consequently, lead to better 

management strategies in the future.  Clearly, this calls for combining the rich 

information provided by paleo reconstructions with the observed streamflow record in 

stochastic models, enabling the generation of realistic flow scenarios required for 

robust water resources planning and management.  To this end, Chapter 3 proposes 

several techniques for such a combination, followed by an evaluation of the stochastic 

flow simulations.  

Paleo reconstructed flows utilized in this work were developed by Woodhouse 

et al. (2006) at USGS gauge number 09152500 for the period of 1569-1997, and they 

are used along with the natural (observed) streamflow (Prairie and Callejo, 2005) for 

the 1906-2005 period.  Four methods are examined that combine these two data sets, 
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capitalizing on their individual strengths to produce robust flow sequences.  The 

central aspect of these methods is the use of hydrologic state (i.e., wet or dry) 

sequencing from the paleo reconstructions and magnitudes from the observed data.  

The rationale for this is discussed in the follow sections.  Streamflow traces are 

generated using these techniques and are evaluated on their ability to capture a suite 

of statistics, while extending drought and surplus attributes beyond the observed 

range.  The investigation concludes with a summary of the results and identification 

of a recommended technique. 

3.2 Paleo Data  
Paleo reconstructed flow data are generally created by fitting a regression 

model to observed flow values and the corresponding portion of tree ring cores.  This 

provides a relationship between tree ring growth and streamflow, allowing for the 

back-extrapolation of flows as far as the core samples permit.  The outcome of the 

reconstruction is dependant upon a number of choices made throughout the process – 

site and species selection are chief among them (Hidalgo et al., 2000).  An ideal site 

has a variety of tree species that provide sensitivity to both wet and dry periods, 

displayed by tree ring growth.  In addition to site and species choice, model selection 

to represent the streamflow-ring growth relationship greatly impacts the 

reconstructions.  This is illustrated in Figure 20, where four reconstructions (indicated 

in the figure) for the Colorado River at Lee’s Ferry, AZ gauge are presented.  

Reconstruction variability is mainly due to the factors mentioned above.  In this case, 

the reconstructions completed by Hidalgo et al. (2000) differ significantly from the 

rest. This variability and the fact that regression based reconstructions do not capture 
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the entire variability have resulted in a reluctance to use these reconstructed flows for 

water management purposes.  

Nevertheless, the reconstructions agree quite well on the hydrologic state (i.e., 

a wet or dry) in any year – as can be seen in Figure 20.  Defining the wet and dry year 

based on a threshold of the observed median flow, the states from the reconstructions 

are shown in Figure 21. Analysis of the data in Figure 21 shows that three or more 

reconstructions agree on the hydrologic state 88% of the time, while all four methods 

agree 65% of the time on an annual basis.  This is a clear indication that the paleo 

reconstructions are quite good at providing the hydrologic state information.  Thus, a 

combination of the two data sets entails using the state information from the 

reconstructed period and the magnitude information from the observed record.  This 

forms the rationale for the methods proposed in this chapter below.  

 

Figure 20 Paleo reconstructed flows for the Colorado River at Lee’s Ferry, AZ. 
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Figure 21 Wet/dry state time series for observed data (top) and four paleo reconstructions.   
 

Woodhouse et al. (2006) completed the reconstructions used in this work for 

the Gunnison River near Grand Junction, CO (USGS gauge 09152500) for the period 

1569 to 1997 shown in Figure 22. 

 
Figure 22 Paleo reconstructed flows for Gunnison River near Grand Junction, CO with 5-year 
smoothing. 
 

3.2 Methods 
As previously stated, the methods considered here involve two steps – (i) 

model/simulate the hydrologic state and (ii) model/simulate the streamflow 
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magnitude.  The median flow of the 100 year observed period is used as the threshold 

to define the wet (1) or dry(0) state – this is approach is widely used by a number of 

groups, including the United States Bureau of Reclamation (USBR).  Upon obtaining 

the binary state sequence (St, t = 1, 2, ..N) of the paleo record, four techniques are 

applied to model the state sequence; (1) block resampling of the binary, (2) 

homogeneous Markov model, (3) block homogeneous Markov model and (4) non-

homogeneous Markov model. These methods are used to generate hydrologic state 

sequences for a desired length (in this case 30 years), followed by a K-Nearest 

Neighbor (KNN) resampling of the observed flows to assign magnitudes.  The 

process in which the binary traces are generated distinguishes one method from 

another. These methods are described below. 

3.2.1 Block Resampling (Block) 
This is the most basic approach, which selects a random block of 30 years and 

the associated hydrologic state information is selected (i.e., bootstrapped) from the 

paleo record.  The resampling is repeated many times to obtain an ensemble of 

sequences.  This technique captures the multi-year dependency, but the sequences are 

limited to those seen in the paleo record.  

3.2.2 Homogeneous Markov (HM) 
This method and the two that follow differ from the block resampling 

technique because they generate new, unseen binary sequences, while the block 

resampling, as mentioned above, is limited to the sequences in the paleo record.  This 

is possible through a two state, first order Markov model (Rajagopalan et al., 1996) – 

which results in four possible transitions from one year to the next (wet to wet, wet to 
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dry, dry to dry, and dry to wet).  The probability of experiencing a particular 

transition is estimated as a proportion from the entire paleo data period. For example, 

the wet-wet transition is computed as a percentage representing the number of times a 

wet year is followed by a wet year – resulting in a transition probability matrix (TPM) 

that provides the probability of transiting to any state in the next year from any state 

in the current year.  Table 1 is an example of a TPM; note that the probabilities sum 

to 1 across the rows.  . 

 

 W D Sum 
W 0.5275229   0.4724771 1 
D 0.5047619 0.4952381   1 
Table 1 HM TPM (left is current state, top is future state). 

 

 The TPM is used to generate sequences of hydrologic states (1 or 0).  Markov 

chains are very popular in modeling rainfall occurrences (Rajagopalan and Lall, 1999; 

Apipattanavis et al., 2007) and have been shown to capture spell statistics quite well.  

Since the TPM is fitted over the entire paleo record and provides an average 

estimate of the transitions, it is not very effective at modeling the temporal variability 

(or epochal behavior) of the wet and dry spells present in the data (see Figure 22). 

The following two methods address this deficiency. 

3.2.3 Block Homogeneous Markov (BHM) 
To capture the epochal variability, the strengths of the previous two methods 

were combined to form a block homogeneous Markov model (BHM).  In this 

approach, a random block (of say 30 years) and the associated paleo binary state 

information are selected, and the TPM is computed for this block. Then, a 30-year 
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state sequence is generated from the estimated transition probability matrix. This 

approach captures the epochal variability better while still being simple to implement.  

 
Figure 23 Wet-wet (blue dashed) and dry-dry (solid red) transition probabilities from the BHM 
technique.  

3.2.4 Non-Homogeneous Markov (NHM) 
This final method is a natural extension of the BHM approach described 

above.  In this method, a transition probability matrix is estimated for each year using 

a kernel estimator (Rajagopalan et al., 1996), thus modeling the temporal 

nonhomogeneity.  This method was developed and implemented on the Colorado 

River Basin (Prairie et al., 2008) and was found to be highly effective at generating 

longer periods of drought and surplus.  A brief description is provided below while 

referring the reader to this paper for further details.  Additional information can also 

be found in Rajagopalan, et al. (1996) and Rajagopalan, et al. (1997). 

The four local transition probabilities for each year t, can be determined from 

the probabilities of transitioning from a dry to wet state ( dwP ) and a wet to dry state 

( wdP ).  The probability of transitioning from a dry to dry state is found as 
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dwdd PP −= 1 , and the probability of transitioning from a wet to wet state is found 

as wdww PP −= 1 , as described previously.  These transition probabilities are calculated 

based on years in the range [ ()ht − to ()ht + ] as: 
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where )(K = the kernel function; ()h  is kernel bandwidth for the transition of interest 

(dw or wd); =tS  system hydrologic state (1 = wet, 0 = dry) at time t ,); =−1tS  system 

hydrologic state at time 1−t ; t = year of interest; and =n the number of values in the 

window )(ht −  to )(ht + .  The kernel function K is defined as: 
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Equation 10 
 

 where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

h
tt

x () , 1≤x , t is the year of interest, and ()t  is the transition of interest. 

The bandwidth provides a window overlaying the current year, over which the 

suite of transition probabilities is calculated.  The value of h  is optimized for years 
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transitioning from wet and then again for years transitioning from dry.  Optimization 

is accomplished using a method defined as: 

∑
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−−=
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2)](ˆ1[1)(LSCV  

Equation 11 
 

where n = the number of  dw or wd transition within the window [ ()ht − to ()ht + ]; 

and )(ˆ
it tP

i− = the estimate of the transition probability ( dwP̂  or wdP̂ ) at year t  dropping 

the information on year t . 

The LSCV is calculated for a suite of h values; the h ultimately selected 

results in the smallest LSCV value. Once h values have been selected for transitions 

from both wet and dry years, transition probabilities can be calculated for each year.  

 
Figure 24 Wet-wet (blue dashed) and dry-dry (solid red) transition probabilities from the NHM 
technique. 
 

Of note, when optimizing the band width (h), it is necessary to determine a 

wet band width representative of transitions which start with a wet year, and a dry 
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band width representative of transitions which begin with a dry year.  Since this work 

deals with a two state model, there are two possible transitions that can be optimized 

for both the wet (ww and wd) and dry (dd and dw) band widths.  Ideally, there will be 

a clear LSCV minimum for at least one of the two possible transitions that can be 

used to determine each bandwidth.  This is not always the case however, and thus, 

bandwidth selection can be somewhat at the discretion of the individual.  

From encountering this situation (where the LSCV function decays instead of 

reaching a minimum value) in working with other data, several useful findings are 

reported.  The most effective way to approach such a scenario is to develop a 

minimum delta LSCV threshold.  Therefore, if the LSCV value from one band width 

to the next fails to change by a significant amount, that bandwidth can be declared the 

effective minimum.  When developing this threshold, it should be kept in mind that 

very small bandwidths can introduce undue variability, while large h values result in 

over-smoothing of the probabilities.  Furthermore, large band widths can significantly 

reduce the number of years upon which transition probabilities can be calculated.  For 

example, a bandwidth of 60 years results in 120 years of paleo record that cannot be 

used to compute transition probabilities.  Thus, in this example, a band width of 60 

represents more than a 25% “reduction” in data.  It is difficult to assign hard-fast rules 

for these situations due to the uniqueness of each dataset; however, the above should 

serve as a guide for these issues.   

The simulation proceeds as before, by resampling a block of years from the 

paleo record.  Using the TPM estimates for each year, the hydrologic state is 
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generated for each of the years in the block.  The nonhomogeneity of the TPM is the 

key aspect of this method and enables modeling of the epochal behavior.  

3.2.5 KNN Flow Magnitude Resampling 
Once the desired number of binary traces have been generated, via any of the 

above described methods, the flow magnitudes are obtained from the observed data.  

To accomplish this, a KNN conditional resampling approach (Prairie et al., 2008) is 

employed, conditioned on the hydrologic state of the previous and current year.  This 

model can be described as the conditional probability density function (PDF): 

),,( 11 −− tttt xSSxf  

Equation 12 
 
where the flow at the current time )( tx  is conditioned on the current system state 

)( tS , previous system state )( 1−tS  and previous flow )( 1−tx . 

The following description of the KNN flow magnitude resampling is 

abstracted from Prairie et al. (2008).  Simulation from this conditional PDF is 

achieved by a KNN bootstrap method (Lall and Sharma, 1996; Rajagopalan and Lall, 

1999). Typically, K nearest neighbors are identified in the observational data of the 

current feature vector ],,[ 11 −− ttt xSS .  One of the neighbors is selected, based on a 

metric that gives highest probability to the nearest neighbor and lowest to the farthest.  

The corresponding streamflow of the selected neighbor is the simulated value for the 

current time.  

This case is unique in that the feature vector includes discrete and continuous 

variables.  Further, the discrete variables indicate system state as 0 or 1 (i.e., dry or 

wet), while the continuous variable is a considerably larger value.  If this disparity in 
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magnitude is not considered in the neighbor choice the state information will not 

influence the neighbor choice.  The neighbor would then be chosen base solely 

on 1−tx .  Therefore, determination from the feature vector (vt= ],,[ 11 −− ttt xSS ) is split 

into two steps.  First, the discrete variables are identified as members in one of the 

four categories (ww, wd, dw, dd) identified from the state vector ( ],[ 1−tt SS .  In the 

second step, the K-nearest neighbors of 1−tx  that lie within the appropriate category 

are identified.  The flow for the following year, tx , corresponding to the neighbor 

selected for xt-1 is then sampled.   

In this work, jj n=K , where 4,..,1=j  representing the four state categories 

and n is the number of values in each category.  With a larger observational data set, 

the number of nearest neighbors can also be based on the heuristic scheme n=K  

(Lall and Sharma, 1996), following the asymptotic arguments of Fukunaga (1990).  

Objective criteria, such as Generalized Cross Validation (GCV), can also be used.  

The jK  neighbors were weighted with the function: 
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3.3 Evaluation of Methods 
A suite of statistics are computed from the simulations and compared against 

that of the observed data using boxplots.  The ‘box’ in the boxplots represents the 

interquartile range (IQR), the horizontal line inside the box is the median, the 

whiskers correspond to the 5th and 95th percentiles and values beyond the whiskers 

are shown as points.  The value of a statistic computed from the historical data is 
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shown as a red triangle.  When the observed statistic lies within the IQR, it can be 

inferred that the simulations adequately capture the statistic.  

The distributional statistics of the flow magnitudes computed for comparison 

with the observed are mean, standard deviation, skewness, lag-1 correlation, 

maximum and minimum.  In addition to the above-mentioned statistics, probability 

density functions (PDFs) are fit to the simulations and presented as boxplots to show 

variability.  

The main idea behind the combined approaches developed is to generate a 

rich variety of wet and dry sequences that are critical for water management – 

especially the EIS.  Thus, statistics on periods of drought and surplus are computed – 

these are same as described in Chapter 2.  Figure 25 below depicts the various 

drought and surplus statistics considered.  To compare drought and surplus periods 

generated by the different methods, histograms are provided to display 

drought/surplus length/magnitude distributions.  
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Figure 25 Definition of drought/surplus statistics.  
 

3.4 Results 
Figure 26 shows the suite of basic statistics of the flow magnitude computed 

for the four paleo methods employed in this investigation, with the red line 

representing the respective statistic of the observed data for the observed period.  All 

methods capture the observed mean, standard deviation and skew quite well – this is 

to be expected, as the methods generate flows by resampling the historical data.  

However, it is worth mentioning that the block HM method has the widest IQR, as 

well as the widest total range of values, indicating its effectiveness at introducing 

variability.  The lag-1 autocorrelation, maximum and minimum statistics are under-

simulated by the methods.  These statistics would all be captured if flow sequences 

were generated as the same length as the observed period (i.e., 100 years long instead 

of 30 years) and based on the observed period, as opposed to generating 30 year 
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sequences in a two step process based on the paleo and observed data – as seen in 

Chapter 2.  

 

Figure 26 Distributional statistics for Block, HM, BHM and NHM traces.  
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The PDFs of the historical flows are well captured in all the methods (Figure 

27) – consistent with the fact the flow magnitudes are generated from resampling the 

observed flows.  This helps in capturing the non-Gaussian shape of the PDF present 

in the observed data – a unique advantage offered by this approach over traditional 

parametric techniques.   

 
Figure 27 Annual PDFs (acre-ft/yr) of traces generated using Block (upper left), HM (upper 
right BHM (lower left) and NHM (lower right) techniques. The observed PDF is shown in red.  
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Figure 28 Surplus length histograms of Block (upper left), HM (upper right), BHM (lower left) 
and NHM (lower right) techniques.  
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Figure 29 Drought length histograms of Block (upper left), HM (upper right), BHM (lower left) 
and NHM (lower right) techniques. 
 

Figure 28 and Figure 29 show surplus and drought length distributions of the 

four methods investigated.  As to be expected, the block method is limited to both the 

longest drought and longest surplus seen in the paleo data (11 and 9 years, 

respectively).  The other techniques all generate periods of drought and surplus that 

extend beyond those observed, with the maximum drought reaching 24 years in 

length and the maximum surplus reaching 18 years.  It should be noted that the 
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probabilities of exceeding the longest observed drought (6 years) and surplus (6 

years) are similar very similar to those seen in Chapter 2 (approximately 2%); 

however, with the paleo techniques, that probability is spread over a wider range of 

lengths. Also, the HM results show a considerably higher probability of exceeding the 

observed surplus than the observed drought.  

The transition probabilities of most importance when discussing drought and 

surplus periods are wet to wet (ww) and dry to dry (dd).  These probabilities are 

shown as time series for the block homogeneous technique in Figure 23 and for the 

non-homogeneous approach in Figure 24.  Even though there are more wet than dry 

events in the paleo record (210 vs. 219), the NHM and BHM methods both produce 

longer periods of drought than surplus.  This is directly linked to the distribution of 

ww and dd transition probabilities.  As seen in Figure 23 and Figure 24, the dd curve 

has one obvious peak with magnitudes greater than any seen in the ww plot.  Thus, 

when this region is selected, there is potential to generate the extended periods of 

drought, even though on average the ww transition probability is greater.  

The HM method produces the longest surplus period, albeit only by 1 year, 

compared to the BHM approach.  This can be attributed to the slightly higher ww and 

dw transition probabilities, as seen in Table 1.  The slight preference to transition to 

wet from dry and then stay wet not only accounts for the extended surplus periods 

generated by the HM technique, but also the relatively short drought periods shown in 

Figure 29. This is also supported by the increased probability of exceeding the 

maximum observed surplus length, as discussed earlier. 
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Figure 30 and Figure 31 show surplus and deficit volume distributions, 

respectively.  It should be noted that the HM model can generate deficits and surplus 

volumes greater than that from the paleo, given the resampling of observed values.  

Nonetheless, it is clear that the other three methods still have considerable advantage 

in terms of drought/surplus magnitudes, as they generate longer drought/surplus 

lengths.  Similar to the drought and surplus length histograms, the HM, BHM and 

NHM methods all generate deficit and surplus magnitudes greater than that of the 

observed.  Furthermore, the BHM and NHM techniques both generate larger deficits 

than surpluses.  There is, however, no skew in the HM towards larger surplus 

volumes.  This is not unrealistic, as length and magnitude distributions are not 

synonymous.  In fact, the magnitude of a drought/surplus periods is probably more 

important than the length because ten years of flow slightly below the median will not 

greatly impact operations, while three years of very low flow can be crippling to the 

system.  
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Figure 30 Surplus volume histograms of Block (upper left), HM (upper right), BHM (lower left) 
and NHM (lower right) techniques. 
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Figure 31 Drought deficit histograms of Block (upper left), HM (upper right), block BHM (lower 
left) and NHM (lower right) techniques. 
 

As discussed in Chapter 2, the sequent peak algorithm offers an attractive 

alternative to quantifying system risk.  Instead of selecting a drought or surplus 

threshold as done for the above histograms, the sequent peak approach determines a 

necessary storage for a given demand and flow sequence.  As a result, water 
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managers can quickly assess the ability to meet demands from the storage-yield plots 

such as those in Figure 32.  

 

Figure 32 Sequent peak of Block (upper left), HM (upper right), BHM (lower left) and NHM 
(lower right) techniques. The red dashed line represents maximum live storage of the Aspinall 
Unit and Taylor Reservoir, while the dotted blue line shows the observed data trace.  
 

The sequent peak analysis of the traces generated with the paleo techniques is 

not unlike that of the KNN and Modified KNN from Chapter 2.  The observed data 

(blue dotted line) indicate that a demand of 1.65 MAF/yr can be met given the current 
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storage (horizontal dashed red line).  However, the boxplots for the generated traces 

indicate a slight decrease in reliability compared to those from the non-paleo 

stochastic simulations in Chapter 2.  Figure 33 shows a more detailed picture by 

providing PDFs of the required storages.  Given the long wet and dry sequences 

generated from these methods, the storage requirements are also higher – indicated by 

a higher number of storage values beyond the whiskers in the above figure.  The 

simulations from the paleo methods suggest a lower reliability, which is important 

information for future management planning.  
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Figure 33 PDFs of storage required to meet a 1.65 MAF demand. The vertical red line is live 
storage of the Gunnison Basin. Block (upper left), HM (upper right), BHM (lower left) and NHM 
(lower right) techniques. 

3.5 Summary and Discussion 
Four different methods for generating flow sequences combining paleo 

reconstructions and observed record were presented.  These techniques are unique 

and offer a way to combine the strong aspects – hydrologic state information of the 

paleo record and the magnitude information from the observed data.  

As shown in the statistical validation, all four techniques capture the 

distributional statistics of the streamflow.  Within those techniques, there are apparent 
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strengths and weaknesses for each, especially for the drought and wet spells.  The 

Block method is the most limited in terms of drought and surplus spells, as it can only 

reproduce the maximum lengths experienced in the paleo reconstruction, and there 

are a limited number of unique sequences to be resampled.  However, it is very 

simple to implement, which can be an important strength for some applications.  The 

HM is an improvement in that it generates new, unseen state sequences, but includes 

a major detractor - the transition probabilities are overly smoothed and represent the 

average for the entire paleo reconstruction period.  Therefore, some of the epochal 

nature of the variability in the data is not well reproduced- a main goal of including 

the paleo data.  From this perspective, there is perhaps more merit to using the Block 

approach than the HM.  

The BHM provides a reasonable compromise between the two above-

mentioned techniques, but may result in an undue bias toward a particular transition, 

evidenced by Figure 23.  The NHM is an improved version of the BHM method, as it 

computes the transition probability for each year using a kernel based estimator.  

Additionally, by computing the transition probabilities at each year of the paleo, the 

occasional wet/dry year that breaks up an epoch can be reproduced, making for the 

most realistic sequencing.  

As discussed in Chapter 2, technique selection is a blend of intended use, 

goals and audience.  For the purpose of this research, the non-homogeneous Markov 

approach is selected.  It accomplishes the goals of introducing paleo sequencing, 

generates extended periods of drought and surplus and produces perhaps the most 
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realistic traces.  These flows will be disaggregated in space and time (Chapter 4) to 

drive the Riverware decision model (in Chapter 5).   
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CHAPTER 4: SPACE-TIME DISAGGREGATION OF FLOW 
SEQUENCES 

4.1 Introduction 
 

Flow scenarios are required at several locations in a basin, simultaneously 

maintaining spatial correlations, in order to investigate basin-wide water management 

strategies and system reliability.  This is precisely the case for the model developed in 

Chapter 5 for the Gunnison Basin.  The majority of the Gunnison is dominated by the 

operation of the Aspinall Unit, and thus, inflow to the various reservoirs is crucial in 

evaluating the operating policies under the added strain of fish flows.  Furthermore, 

the majority of water arrives in the form of spring snow melt, and peak demands 

occur during summer for the purpose of agricultural irrigation.  Therefore, multi-site, 

seasonal modeling of the basin and operations is paramount for the understanding of 

these complex, non-stationary systems.  In maintaining a parsimonious approach, 

typically, annual flows are generated at a downstream gauge using techniques 

described in the previous chapters, and then disaggregated spatially and temporally 

(i.e., monthly) using stochastic disaggregation techniques (Valencia and Schakke, 

1973; Salas et al., 1980; Koutsoyiannis, 1992; Tarboton et al., 1997). 

In this study, the nonparametric disaggregation technique proposed by Prairie 

et al. (2007) is employed to generate streamflows at four locations in the Gunnison 

Basin that will serve as inputs to the decision analysis in the next chapter. Figure 34 

shows a map detailing the Gunnison Basin and four locations to which the cumulative 

flow will be disaggregated. The highest location (site 1) lies on the Taylor River and 

represents all flow entering the system above Taylor Reservoir.  Site 2 is located a 
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considerable distance downstream and captures intervening flow between Taylor and 

Blue Mesa Reservoirs.  Local inflows between Blue Mesa and Crystal reservoirs are 

represented at site 3.  Last, the remaining drainage between Crystal Reservoir and 

Grand Junction is presented at site 4.  The sum of all intervening flow values results 

in the total in-stream flow below site 4.  

The disaggregation will be conducted using intervening flow values – i.e., 

flows within each reach. This is convenient because the intervening flows add up to 

the total flow at the downstream location (Site 4), also known as index gauge, and 

they are directly input into the decision model  

A brief background of stochastic disaggregation and a description of the 

nonparametric technique adapted is provided, followed by its application to the basin. 
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Figure 34 Gunnison Basin and disaggregation sites. 
 

4.2 Disaggregation Techniques 
Early disaggregation models were based on the work of Valencia and Schaake 

(1973), which employed a linear technique.  This approach is represented by Equation 

14, where Xt represents the disaggregate variables (e.g., monthly flows) at time t, Zt is 

the aggregate variable (e.g., annual flow) and Vt is a vector of random values from a 

normal distribution.  The elements of Xt sum to Zt, also known as the summability 

criteria, which is an important element for generating space-time streamflows on a 

river network.  Model parameters contained in matrix A and B are estimated such that 

the simulations preserve the cross correlation between and among the variables.  The 

Site 1

Site 2 
Site 3

Site 4 
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aggregate variable is typically generated from a simple stochastic model such as AR-

1, and this is disaggregated using the model below.  

ttt BVAZX +=  

Equation 14 
 

The general form of Equation 14 is rather similar to an ARMA model; and 

therefore, it suffers from similar drawbacks described in Chapter 2.  Specifically, this 

linear disaggregation scheme requires data to be normally distributed, and as 

previously mentioned, this is not always the case in hydrologic data.  Therefore, non-

Gaussian data must be transformed to a normal distribution before the above model is 

fit.  The simulations are generated in this transformed space and then back-

transformed to the original space – consequently, the statistics (especially the 

summability) are not guaranteed to be preserved in the original space.  Also, being a 

linear model, it cannot readily capture nonlinearities that might be present in the data 

in addition to non-Gaussian features.  Extending this technique to space and time 

results is a substantial increase in the dimensions of A and B, which can be 

cumbersome and computationally intensive in some cases.  Stepwise approaches that 

use fewer parameters, but require several stages to complete the process have been 

proposed (Lane, 1979; Salas et al. 1980; Grygier and Stedinger, 1988) along with 

condensed models, which reduce the number of parameters but model only select 

cross correlations (Pereira et al., 1984; Lane, 1982; Olivera et al., 1988) to reduce 

computational cost.  Koutsoyiannis (1992) and Santos and Salas (1992) continued this 

effort, while attempting to maintain summability of the disaggregated values.  
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In a significant shift that improved upon the above traditional approach, 

Tarboton et al. (1997) put forth a non-parametric technique that is data driven and can 

capture any arbitrary distributional (Gaussian, or non-Gaussian) or functional 

relationship (i.e., linear or nonlinear).  This approach is, however, computationally 

intensive especially when extending it to a large spatial-temporal disaggregation such 

as on the Colorado River.  Prairie et al. (2007) modified this kernel based approach to 

a K-Nearest Neighbor (KNN) resampling method.  They demonstrated this on the 

Colorado River Basin, which showed it to be simple, efficient, computationally less 

involved and able to simulate at large number of spatial locations.  Therefore, such an 

approach is adapted for this work.  The methodology is described in the following 

section.  

4.3 KNN Space-Time Disaggregation  
The schematic of the disaggregation for the Gunnison Basin is shown in 

Figure 35.  The implementation methodology, largely abstracted from Prairie et al. 

(2007), is described below.  X is a matrix of observed data that is D (dimensions, i.e., 

number of months or locations) by N (years of observations) in size.  Z is the  

aggregate vector of all dimensions for each year or aggregate gauging site. 
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Figure 35 Space-time disaggregation schematic. 
 

[ ]DxNX =  
Equation 15 
 

[ ] 1NxZ =  
Equation 16 
  

R is a DxD matrix such that R transpose is equal to R inverse.  This matrix is 

dependant only upon the number of dimensions (D) and is used to transform X into 

the orthonormal space, represented by Y.  

}|{ 1−=∈ MMMR T
DxD  

Equation 17 
 

RXY =  
Equation 18 

Zsim (simulated value to be disaggregated) and Z are transformed into the 

orthonormal space as described below.  
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DZZ /'=  
Equation 19 
 

DZZ simsim /' =  
Equation 20 
 

At this point, a KNN resampling of the Z’ values is conducted to identify the 

“nearest neighbor” to Z’sim. Say that the selected neighbor (year) is index j in vector 

Z’.  The (1:D-1) corresponding values from matrix Y are identified as Uj.  

jDj YU ),1(:1 −=  
Equation 21 
 

Uj is then combined with Z’sim to form vector Y*.  The last value, YD,j is not 

included because it can be calculated as the remaining flow required to sum to the 

aggregate.  Y* is then be back-transformed into the original space to give the 

disaggregated values (Xsim) as shown below.  

)',(* simj ZUY =  
Equation 22 
 

*YRX T
sim =  

Equation 23 
 

As a check, the sum Xsim should equal Zsim, providing disaggregated values for 

all D dimensions.  It should be noted that the above described method provides a 

single domain disaggregation (i.e., space or time), and thus for our purposes 

(disaggregation of a single, annual flow to monthly values at multiple sites), the data 

must be disaggregated in two steps to achieve the desired results.  For the second 

disaggregation, it was found that the best results were produced when the same 

observed year was used for both domains.  This obviates the need to conduct a KNN 



66 

resampling of the data in the second implementation, which further reduces 

computational intensity.  

4.4 Model Evaluation  
The aggregate variable, in this case the annual flow at the downstream gauge 

(Site 4), is generated using the recommended techniques from Chapters 2 and 3.  

These are then disaggregated using the nonparametric space-time disaggregation 

technique described above.  From each of the two methods, 1000 simulations, 30 

years in length are generated.  As before, a suite of statistics are computed from the 

simulations at the four locations and compared to the observed data.  The basic 

statistics computed are mean, skew, standard deviation, lag-1 correlation, max and 

min and cross-correlation, at the monthly and annual time scale. The results are 

displayed as boxplots (described in the previous chapters) with the observed values 

identified by a solid triangle - as before if the observed values fall within the IQR of 

the boxplot it can be taken that the statistic is well captured by the simulations.  In 

addition, probability density function (PDF) is also computed.   

4.5 Results 
To begin the disaggregation evaluation, boxplots of annual flow PDFs are 

presented at the four locations (Figure 36-Figure 39) along with the historical PDF.  It 

can be seen that the observed PDF is captured very well at all the locations. Also note 

that the annual PDF is based on the sum of the monthly disaggregated flows, and 

thus, is not explicitly designed to be reproduced.  Furthermore, it can be seen that all 

the four PDFs are non-Gaussian, which would make it very difficult for traditional 

disaggregation techniques to capture.  
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Figure 36 Annual flow PDF (acre-ft/yr) at site 4. 

 
Figure 37 Annual flow PDF (acre-ft/yr) at site 3. 
 

 
Figure 38 Annual flow PDF (acre-ft/yr) at site 2. 
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Figure 39 Annual flow PDF (acre-ft/yr) at site 1. 
 

 The monthly PDFs for each location are presented to evaluate the ability of 

the temporal disaggregation (Figure 40-Figure 43).  Here too, all the monthly PDFs at 

all the locations are very well reproduced.  Notice the variety of distributions, which 

are anything but Gaussian.  This is the powerful aspect of this nonparametric 

disaggregation technique relative to traditional, parametric approaches.  
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Figure 40 Monthly flow PDFs (acre-ft/yr) at site 4. 
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Figure 41 Monthly flow PDFs (acre-ft/yr) at site 3. 
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Figure 42 Monthly flow PDFs (acre-ft/yr) at site 2. 
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Figure 43 Monthly flow PDFs (acre-ft/yr) at site 1. 
 

The boxplots of the basic statistics for the index gauge and the four sites are 

shown in Figure 45 through Figure 49.  These plots show that for the most part, the 

statistics are reproduced well at both the annual and monthly timesteps throughout the 

basin.  At all five locations, the January backward lag-1 correlation fails to be 

captured.  This particular statistic relates the first month’s flow of the current year 

with the last month’s flow of the previous year.  Since this correlation is not taken 

into account when selecting neighbors in the disaggregation process, it should be 



73 

expected that this poor reproduction would occur.  This can be improved by including 

the flow from the last month of the previous year’s disaggregation in the neighbor 

selection for the current year – but it tends to somewhat degrade the cross-correlation 

for the other months.  Since January historically has very low flows, it was deemed 

the least important of the months to preserve.   

The flows at the sites are ‘intervening’ flows, as was mentioned earlier – 

which means they can be negative, indicative of a losing reach.  However, at site 1, 

which is the upper most gauge, flows should all be positive since the intervening flow 

and total flow are interchangeable for this reach.  However, the disaggregation 

simulates negative values at site 1 (as can be seen in Figure 49) - this is most likely 

due to the large difference in flow magnitude between sites 1 and 2.  An easy way 

around this issue is to use only those simulations with non-negative values at site 1.  

The other way is to slightly modify the disaggregation framework wherein, instead of 

disaggregating to sites 1-4 simultaneously, flow to site 4, site 3 and an aggregate of 

sites 1 and 2 is first split, thus reducing the number of locations to three.  Once these 

values have been assigned, the observed data are used to determine monthly 

percentages representative of the flow breakdown between sites 1 and 2 from the 

“aggregate site.”  This process ensures that flows above Taylor Reservoir will be 

positive and is based on reliable observed data.  The schematic of this is shown in 

Figure 44. 
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Figure 44 Two step spatial disaggregation. 
 

 
Figure 45 Monthly statistics at the index gauge. 
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Figure 46 Monthly statistics at site 4. 
 

 
Figure 47 Monthly statistics at site 3. 
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Figure 48 Monthly statistics at site 2. 

 

Figure 49 Monthly statistics at site 1. 
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One of the main drivers for the use of this space-time disaggregation 

technique is the need to capture the spatial and temporal correlations.  Figure 50 

shows the inter-month and month-annual correlation at the aggregate location of Site 

4.  The x-axis specifies the particular correlations - for example, 1-2 identifies the 

correlation between January and February, while 3-A depicts the March to annual 

correlation, and so on.  This figure clearly shows that temporal cross-correlations are 

very well captured.  Similarly, Figure 51 illustrates high effectiveness at reproducing 

spatial correlations at the monthly timestep.  The annual spatial correlations are 

slightly overestimated by the disaggregation.   

 

Figure 50 Temporal correlations at site 4. 
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Figure 51 Spatial correlations at monthly and annual timesteps. 

4.6 Summary 
The nonparametric KNN stochastic disaggregation technique of Prairie et al. 

(2007) was implemented for the Gunnison Basin, including the Aspinall Unit.  The 

disaggregation method demonstrated great ability to capture all the distribution and 

cross correlation features present in the data.  This method is simple to implement and 

robust relative to traditional methods.  The utility of this technique is substantial in 

that the user must only generate annual flows at the aggregate location, in order to 

obtain values throughout the basin at a monthly timestep   
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CHAPTER 5: ASPINALL UNIT OPERATIONS MODELING 

5.1 Introduction 
The previous chapters provided a thorough investigation into the generation of 

stochastic flow sequences, identifying strengths and weaknesses of techniques and 

data.  From this, we present a K-Nearest Neighbor bootstrap and Non-Homogeneous 

Markov model to generate single-site, annual flow traces, followed by a 

nonparametric space-time disaggregation.  This provides robust, synthetic data that 

can be used for a variety of water management applications.  Chapter 5 utilizes these 

two data sets to drive a model of the Gunnison River Basin under two operational 

regimes - a no action condition (current operations) and policies designed to meet the 

recommended fish flows (RFF).  The goal is to demonstrate the utility of using 

synthetic hydrologies when assessing policy changes such as those anticipated as a 

result of the Aspinall Unit Operations EIS.  

5.2 Water Management and Need for Modeling Tools 
Over time, water management has become an increasingly complex task due 

to competing demands (e.g., diversions, storage, hydropower facilities, environmental 

needs, recreation, etc) that must be considered when allocating water.  This challenge 

is not specific to the southwestern United States, but rather a global issue facing water 

managers worldwide.  As demands continue to increase and systems become more 

complex, it is necessary to examine and explore different management strategies 

under a variety of hydrologic conditions, to allow for future planning and 

optimization of water use.  Thus, the need for a flexible water management tool is 

presented.  
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One such tool is Riverware, an extremely versatile basin modeling tool, 

developed by CADSWES (Center for Advanced Decision Support for Water and 

Environmental Systems) at the University of Colorado Boulder (Zagona et al., 2001).  

Riverware has proven highly effective due to its adaptability to model any basin and 

it is used by numerous agencies including United States Bureau of Reclamation, 

Tennessee Valley Authority and the Army Corps of Engineers.  A graphical user 

interface (GUI) is employed in Riverware, allowing water managers/modelers to 

“click and drag” objects to represent reaches, diversions and reservoirs into the 

modeling canvas.  Within each object, there are slots for user-defined values (e.g., 

reach routing parameters, reservoir storage volume tables), as well as slots for model 

outputs (e.g., storage, flow, power generation, etc.).  Objects can then be linked 

together (e.g., reservoir outflow to reach inflow) by the same “point and click” 

approach, thus creating a model of the entire basin.  

In addition to being able to model virtually any basin, another strength of 

Riverware is the option to solve models in different simulation modes.  The simplest 

is pure simulation, where the user must specify all inputs required to solve an object 

(e.g., for a reservoir, inflow, outflow and previous storage must be specified to return 

the current storage).  Rule-based simulation allows a modeler to represent 

management strategies through the Riverware Policy Language (RPL) and then rank 

the rules based on priority.  The RPL interface is also user friendly and employs a 

similar GUI structure for selecting expressions and functions that comprise the rules.  

In turn, the rules appropriately assign slot values during simulation based on seasonal 

demands, storage targets or power needs to name a few.  This mode is particularly 
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useful when assessing a given management strategy under a variety of hydrologic 

conditions.  For the purpose of this work, rule-based simulation will be employed so 

as to analyze the basin policies under the simulated hydrologies of Chapters 2 and 3. 

A total of four simulations are run, each hydrology under the requirements of the EIS 

and the current no action policies.  A description of the Gunnison River Basin is first 

presented, followed by a background of the Aspinall Unit EIS process, then a detailed 

account of the modeling and finally results/discussion. 

5.3 Aspinall EIS  
The National Environmental Policy Act (NEPA) process governing the 

Aspinall Unit EIS began in the late 1990’s as a component of the Upper Colorado 

River Recovery Implementation Program (Recovery Program).  The Recovery 

Program was established in 1988 to aid in the revival of four endangered Colorado 

River fish species (Humpback Chub, Bonytail, Colorado Pikeminnow and Razorback 

Sucker).  The Colorado Pikeminnow and Razorback Sucker can be found in the 

Gunnison River, while the Bonytail and Humpback Chub reside downstream of the 

confluence with the Colorado River.  Therefore, the focus of the Aspinall Unit EIS is 

on the Pikeminnow and Razorback Sucker.  However, the other species will 

undoubtedly benefit from the recommended flows as well.  The Recovery Program 

has five specific components; habitat management, habitat development, non-native 

species management, endangered fish propagation and stocking and 

research/monitoring.  The RFF specifically address the habitat management portion 

of the Recovery Program (USBR, 2004a).  
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As discussed in Chapter 1, the recommended flow for a particular year is 

dependant upon the forecasted runoff season (April-July) inflow to the basin.  This 

forecast is identified as being in one of six hydrologic states ranging from wet to dry 

(Table 2).  Corresponding to each state are minimum base flow values for the 

summer, fall and winter seasons (Table 4).  The state also determines the number of 

“high flow” days for the spring season, in an effort to restore a more natural 

hydrograph that will improve fish habitat (Table 3).  The “high flow” days are broken 

into ½ bank and full bank discharges, and for each state a range for both is specified.  

Furthermore, each state specifies an instantaneous annual peak flow value.  These 

large releases aim to inundate flood plains and generate off-channel habitats rich in 

food for growth and development.  High flows are necessary for effective sediment 

transport to remove silt and restore cobble substrate breeding habitats, while also 

serving as a spawning cue for the fish.  These recommendations are to be met at 

USGS gauge number 09152500 near Grand Junction (USFWS, 2003). 

Hydrologic Category Description 

Wet 
 (0—10% exceedance)—A year during which the forecasted 
April—June runoff volume has been equal or exceeded in 
10% or less of the years since 1937.  

Moderate Wet 
(10—30% exceedance)—A year during which the forecasted 
April—July runoff volume has been equaled or exceeded in 
10—30% of the years since 1937. 

Average Wet 
(30—50% exceedance)—A year during which the forecasted 
April—July runoff volume has been equaled or exceeded in 
30—50% of the years since 1937. 

Average Dry 
(50—70% exceedance)—A year during which the forecasted 
April—July runoff volume has been equaled or exceeded in 
50—70% of the years since1937. 

Moderate Dry 
(70—90% exceedance)—A year during which the forecasted 
April—July runoff volume has been equaled or exceeded in 
70—90% of the years since 1937. 

Dry 
(90—100% exceedance)—A year during which the 
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forecasted April—July runoff volume has been equaled or 
exceeded in 90% or more of the years since 1937. 

Table 2  Hydrologic categories. (source: USFWS, 2003) 
 

Flow Target and Duration  
 
Hydrologic 
Category 

½ Fullbank 
Discharge 
 
Days/Year≥ 
8,070 (cfs) 

Fullbank 
Discharge 
 
Days/Year≥ 
14,350 (cfs) 

 
 
Instantaneous 
Peak Flow 
(cfs) 

Wet 60-100 15-25 15,000-23,000 
Moderate Wet 40-60 10-20 14,350-16,000 
Average Wet 20-25 2-3 ≥14,350 
Average Dry 10-15 0 ≥8,070 
Moderate Dry 0-10 0 ≥2,600 
Dry 0 0 900-4,000 
Table 3 Gunnison River spring flow recommendations.  (source: USFWS, 2003) 
 

Hydrologic Category Gunnison River at USGS gauge 09152500 (cfs) 

Wet 1,500-2,500  

Moderate Wet 1,050-2,500  

Average Wet 1,050-2,000  

Average Dry 1,050-2,000  

Moderate Dry 750-1,050  

Dry 750-1,050  
Table 4 Summer, fall and winter recommended flow ranges for Gunnison River. (source: 
USFWS, 2003) 
 

5.4 Basin Description and Operations 

5.4.1 General Overview 
The Gunnison River is located on the western slope of the Rocky Mountains 

and is a major tributary of the Colorado River, draining roughly 8,000 mi2, 

approximately half of which is regulated by the Aspinall Unit and Taylor Park 

Reservoir (Figure 52).  Completed in 1977; the Aspinall Unit is comprised of three 

power-generating reservoirs; Blue Mesa, Morrow Point and Crystal.  These reservoirs 
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have a combined capacity of 291 MW, over half of which is located at Morrow Point.  

Furthermore, Morrow Point and Crystal have a combined storage of approximately 

143,190 acre-ft, while Blue Mesa can store over 940,000 acre-ft.  Thus, Blue Mesa 

serves primarily as a storage reservoir to meet downstream demands, while Morrow 

Point and Crystal focus on maintaining optimal pool levels for the generation of 

hydropower.  Taylor Park has no power generating capacity, and thus serves mainly 

to meet downstream demands.  In addition to these dams, another major 

anthropogenic impact is the Uncompahgre Project, in which trans-basin deliveries are 

made via the Gunnison Diversion Tunnel, located just downstream of Crystal 

Reservoir.  The Diversion Tunnel has a capacity of 1,300 cfs and is almost six miles 

long.  At the outlet, water enters a series of canals before eventually meeting the 

Uncompahgre River to supply irrigation demands.  

 

Figure 52 Gunnison River Basin. (source: USBR, 2004b) 
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 In addition to the Aspinall Unit, other noteworthy components of the 

Gunnison River Basin include Curecanti National Recreation area and the Black 

Canyon of the Gunnison National Park.  These areas attract visitors for a variety of 

recreational activities including hiking, camping, boating and fishing.  The Black 

Canyon of the Gunnison has been designated a gold medal fishery by the Colorado 

Division of Wildlife and Taylor River provides excellent opportunities as well, 

drawing anglers from across the country.  Blue Mesa is also a recreation destination, 

as it is the largest body of water in Colorado.  As a result, the region receives well 

over a million recreational users annually, which is undoubtedly a large portion of the 

local economy.  Thus, environmental preservation is of great importance.  

Like many basins in the state of Colorado, the Gunnison has a snowmelt 

driven annual hydrograph, as seen in Figure 53.  Such basins receive a majority of 

their annual flow during the spring melt period.  For the Gunnison, the run-off season 

typically occurs from mid April to early July.  Thus, there is a need for storage 

reservoirs to reliably supply water throughout the year, especially for summer 

irrigation demands, while also providing flood control.  The objectives of the Aspinall 

Unit are precisely these: flood control, storage and the generation of hydropower.  

Enhancement of fish, wildlife and recreation are also considered to be primary 

objectives of the Unit.  With so many objectives, effective management of the unit is 

vital to the surrounding area.  The following aims to demonstrate the utility of using 

synthetic traces when evaluating operational implications of meeting new objectives, 

such as the RFF.  
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Figure 53 Gunnison River natural flow hydrograph near Grand Junction. 
 

The following provides a brief outline of operational strategies at the four 

reservoirs. 

5.4.2 Taylor Park 
Taylor Park, like the Gunnison Diversion Tunnel, is part of the Uncompahgre 

Project and was constructed approximately thirty years prior to the Aspinall Unit.  

During the pre-Aspinall unit period, it provided the storage and releases to meet 

demands at the Diversion Tunnel.  However, with the construction of the Aspinall 

unit, particularly the large storage/flexibility at Blue Mesa, the importance of Taylor 

Park has been reduced.  Furthermore, there is no hydropower capacity it Taylor Park, 

and thus, it serves only as a storage reservoir.  The primary objectives are to maintain 
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storage within a target range of approximately 25,000 acre-ft to 106,000 acre-ft (max 

capacity) and provide seasonal flows (fish flows and tunnel diversion).  

5.4.3 Blue Mesa 
Blue Mesa has over six times the storage of the other three reservoirs 

combined, providing the ability to smooth inter-annual flow variability and meet 

growing demands.  Thus, meeting demands downstream of the Aspinall Unit is the 

largest operational goal at Blue Mesa.  Fish flows and the Diversion Tunnel dominate 

the downstream demands; therefore, releases are made to supplement the forecasted 

local inflow so as to meet the required flows.  Under the RFF, baseflows are specified 

at USGS gauge number 0912500 near Grand Junction (Table 4), but there must also 

be a minimum instream flow of 300 cfs throughout the entire reach from Crystal to 

the gauging station.  Blue Mesa’s operations are also aimed at maximizing 

hydropower output, which is primarily accomplished by minimizing spill (releases 

not through turbines) whenever possible.  Releases also seek to minimize spilling at 

the downstream reservoirs, thus maximizing power for the Unit as a whole.  Several 

seasonal targets help to meet these operational goals.  The first is to draw down the 

storage by the end of December to approximately 585,000 acre-ft, thus providing 

ample available storage to capture spring run-off, control flooding and eliminate icing 

problems.  Second, the reservoir should amass a storage of 803,000 acre-ft (roughly 

95% capacity) during the filling season (April-July), ensuring the ability to meet the 

diversion requests and high fish flows.   



88 

5.4.4 Morrow Point and Crystal 
The main purpose of Morrow Point and Crystal is to generate hydropower.  

These reservoirs have relatively small storage capacities that, alone, are ineffective at 

meeting downstream demands.  Thus, pool elevations are maintained at optimal 

levels for power generation and releases from Blue Mesa to meet demands are 

effectively “passed through.”  Also, spill is minimized at all times, although this is 

mainly controlled by Blue Mesa, because the nominal storage capacities of Morrow 

Point and Crystal provide little ability to absorb a large inflow.  

5.5 Modeling 
In order to provide a realistic but simple analysis of Gunnison River Basin 

operations, it was decided that modeling should occur at the monthly timestep.  This 

is a logical choice because monthly modeling is fine enough to capture the 

seasonality of flows while avoiding the complexities of daily operations.  Thus, the 

Riverware model developed and utilized by Regonda (2006) was adapted for the 

purposes of this work.  A screenshot of the model can be seen in Figure 54.  The four 

major reservoirs are clearly represented, as is the Diversion Tunnel.  Flow data and 

demands are contained within the EISData and MiscData data objects (square yellow 

icons not linked to the basin model).  The intervening flows obtained in Chapter 4 

through the space-time disaggregation serve as model inputs at five locations; Taylor 

Park Inflow, Gunnison Above Blue Mesa Local Inflow, Gunnison Above Morrow 

Point Local Inflow, Gunnison Above Crystal Local Inflow and Gunnison Below 

Crystal Local Inflow.  The unmodified rule set from Regonda (2006) serves as a no 

action model, while this work develops rules to govern operations under the RFF.  

Hence, with three hydrology data sets to drive the model (observed, KNN and NHM) 
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and two operational policies, a total of six modeling scenarios are conducted to assess 

the results from the different stochastic techniques and rulesets.  The following 

describes the EIS and no action rulesets used in the modeling process presented on a 

per reservoir basis.  

 

Figure 54 Riverware model. 

5.5.1 No Action  

5.5.1.1 Taylor Park Reservoir 

1. Solve Taylor Park demand by subtracting downstream intervening flows from 

required flows (e.g., Diversion Tunnel, spawning releases).  

2. Release from the reservoir is the larger of the minimum outflow and the 

computed demand, unless storage drops below the target range, in which only 

the minimum release is made.  
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3. At any time, reservoir elevation is neither allowed to go below its suggested 

minimum elevation (9270 feet) nor is allowed to exceed its maximum 

elevation (9328 feet). 

5.5.1.2 Blue Mesa Reservoir 

4. Solve Blue Mesa demand by subtracting downstream intervening flows from 

required flows (e.g., Diversion Tunnel, spawning releases, etc.).  

5. During irrigation season (March – September), reservoir releases are made to 

meet the following goals 

(a) fill reservoir by end of July to prepare for summer demands; 

(b) satisfy downstream demands; 

(c) avoid unnecessary spilling. 

6. For winter season (October – February), demands are estimated and releases 

made to  

(a) continue to meet downstream demands; 

(b) bring BM elevation down to 7490 feet or lower by end of December; 

(c) maintain consistency in river levels throughout rest of the winter. 

 

5.5.1.3 Morrow Point Reservoir 

7. Solve so as to maintain optimal power producing storage.  

8. If reservoir spills unnecessarily, then attempt to modify Blue Mesa Reservoir 

releases, which is the only controllable source of reservoir inflows. 
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5.5.1.4 Crystal Reservoir 

9. Solve so as to maintain optimal power producing storage.  

10. If reservoir spills unnecessarily, then attempt to modify Blue Mesa Reservoir 

releases, which is the only controllable source of reservoir inflows. 

 

Furthermore, all reservoirs are operated so as to maintain storage within a 

target range, while always meeting the minimum flow of 300 cfs.  This prevents 

reservoir drying at the occasional cost to downstream demands (Regonda, 2006).   

5.5.2 RFF Policy  
Under the policy designed to meet the RFF, current objectives of the Aspinall 

Unit will not change.  Thus, the above no action ruleset is simply added to, in order to 

accommodate the additional demands with a few small modifications.  A brief outline 

of the operating rules developed to satisfy the RFF are presented, followed by specific 

details.  

1. In January of each year, the estimated April-July inflow to Blue Mesa is used 

to determine which one of the six previously discussed hydrologic states the 

current year falls into.  

2. Based on the classification determined, target flows are set for the next 12 

months. 

3. The no action policies are implemented as described above, with the 

additional demands taken into account when computing releases.  

For the purpose of this work, a perfect forecast is used to assign appropriate 

the hydrologic category for each year.  This is possible because all monthly flows are 
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known at the start of each model run.  In reality this is not the case – it has been 

shown that forecasts made before snowpack has fully accumulated have significant 

uncertainty (Regonda, 2006).  One approach to address this is to perturb the perfect 

forecast by a percent that is consistent with the uncertainty in the actual forecasts.  

Since the RFF are specified at timesteps finer than that of this model, it was 

necessary to convert the values to monthly volumes.  For the summer, fall and winter 

baseflows, this was accomplished by selecting the median of the recommended range, 

computing a daily volume based on that flow and then multiplying by the number of 

days in the particular month.  For the Gunnison Basin, peak run-off months are 

traditionally April – July, making it the logical spring release period.  Within that 

range, the highest flows occur in May and June.  For developing monthly spring flow 

volumes, the recommended flows (again, when a range was listed, the median value 

was selected) were distributed over the April-July period using the following process.  

Fullbank discharges are distributed in the high flow months of May and June with 

additional volume for the instantaneous peak flow requirement in May.  Next, the 

halfbank discharges are distributed evenly between the unused portions of the April-

May and June-July periods with priority on May and June.  The remaining days of the 

entire April-July period are then set to the baseflow value.  With flows assigned to 

each day in the spring period, these values are converted to daily volumes and 

summed for each month.  These volumes represent the amount of water that, when 

properly released, will satisfy the RFF.   

While the current operational objectives of the Aspinall Unit will remain a 

priority when trying to meet the RFF, certain aspects of the no action ruleset require 
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modification.  Specifically, in order to meet the RFF during spring peak flows, rules 

which attempt to minimize spill can be overridden by the need for high volume 

releases. It should be noted that this only applies when the average daily release for a 

given month is greater than turbine release capacity.  Thus, for a month that requires 

spill for a few days to meet the RFF, the average daily discharge is most likely still 

within the turbine release capacity and therefore, that spill is not documented in this 

modeling. 

5.6 Validation and Results 
The purpose of this work is to demonstrate the use of synthetic hydrologies 

when assessing the impact of meeting the RFF on the Aspinall Unit.  Thus, it should 

be verified that the additional operating policies developed meet the RFF.  The 

validation is first presented, followed by modeling results.  In the interest of brevity, 

the following presents modeling results from NHM inputs only – it will be shown that 

the KNN inputs produce very similar results.  

Figure 55 shows the probability of modeled flows at USGS gauge number 

09152500 near Grand Junction, not falling within the target range as specified by the 

RFF for the NA and RFF policies.  These values are computed by dividing the 

number of times the flow near Grand Junction failed to be within the RFF range for a 

given month by the total number of times that month was modeled.  The RFF policy 

shows considerable reduction in risk.  However, it can be seen that some fish flow 

violations do occur.  Under the RFF policy, the majority of violations occur in the 

period following peak run-off, when reservoirs are fullest.  Furthermore, these 

failures to stay within the recommended range are mostly due to flows exceeding the 
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upper bounds of the range, not being too low.  This suggests that a wetter than usual 

summer may present challenges for water managers when trying to maintain stable 

baseflows.  

 
Figure 55 Probability (%) of not meeting fish flows with NHM data inputs, RFF policy shown as 
dashed and NA policy as solid. 

 

In addition, the results of applying RFF policies based on the computed 

natural flow data are compared to those from modeling driven by the NHM data.  

Figure 56 indicates that similar risk trends are found using both data sets.   

 
Figure 56 Probability (%) of not meeting fish flows under RFF policy with results from NHM 
data inputs shown as dashed and computed natural flow inputs as solid. 
 



95 

In order to assess the utility of synthetic hydrologies when investigating 

impacts of meeting the RFF, changes in storage, power generation and water spilled 

are compared based on modeling using computed natural flow versus synthetic data 

inputs.  

 As discussed earlier, Morrow Point has more than half of the power 

generating capacity of the Aspinall Unit, and thus it provides an effective way to 

gauge overall power production.  It can be seen (Figure 57) that with both the RFF 

and NA policies, there is greater variability in hydropower generated under the 

synthetic hydrologies as compared to the computed natural flow data.  For reference, 

annual generation under the various scenarios averaged in the low to mid 400 GWh 

range.  Over the period of 1995-2004, Morrow Point annual production ranged from 

200-510 GWh (USBR, 2005).  Thus, the modeled results are realistic, but perhaps a 

little high.  It should be noted that 1995-2004 includes the worst drought on record, 

and thus, may not be completely representative of the long-term averages.  

Furthermore, monthly modeling fails to capture day to day operations in which power 

may not be generated all of the time or perhaps turbines are taken offline for 

maintenance, etc., all resulting in a reduction in power generated.  Also, hydropower 

is quite valuable in the December-March season, when winter temperatures are 

coldest and heating demands greatest.  This will cause power authorities to request 

greater releases for hydropower during cold spells– a factor that is impossible to 

account for in most models.  
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Figure 57 Annual hydropower generation for Morrow Point under NHM and computed natural 
flow data inputs. 

 

Currently, the power generating facilities of the Aspinall Unit are operated in 

peaking mode, meaning that they provide supplemental power to the grid during 

times of high energy use (i.e., mornings and evenings – especially during summer 

months).  This can still be accomplished at Morrow Point and Blue Mesa under the 

RFF policy, but Crystal will need to make more consistent releases to keep the fish 

flows stable near Grand Junction.  These releases cannot be properly modeled at 

monthly timesteps – it is believed that daily modeling will uncover necessary changes 

in terms of day to day operations when comparing policies to meet the RFF and 

current policies.  Thus, for this work, the best option available is to employ a power 

calculation method in which the computed release is divided into time at baseflow 

and time at “peaking release.”  This provides realistic modeling of power generation 

given a monthly model.  Again, daily modeling will undoubtedly provide the most 

insight regarding this topic.  
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In most years, the total volume released from a given reservoir under both 

policies is quite similar.  However, there is a difference in the distribution of that 

release.  During the peak run-off season (April-July), both policies tend to make 

releases greater than the turbine capacities, and thus generate similar hydropower.  

For the rest of the year, the summer, fall and winter RFF releases are greater than 

those of the no action policy, thus producing more hydropower during this period, 

which accounts for slightly more power production under RFF policy (Figure 57).  

Closely tied to the distribution of the releases is the volume of water spilled – 

that is, water released, but does not pass through a turbine to generate hydropower.  

Water managers attempt to minimize spill as much as possible because it wastes 

potential energy.  Thus, when assessing new policies, changes in spill are of 

considerable interest.  Figure 58 shows Blue Mesa monthly and annual spill for model 

runs driven by NHM and computed natural flow data.  For the Aspinall Unit, spill at 

Blue Mesa is of particular interest because the reservoirs below are maintained at 

high pool elevations for optimal power generation.  The implication of this is that 

spill from Blue Mesa generally causes Morrow Point and Crystal to spill as well.  It 

can be seen that the general trend in spill is similar between the two scenarios; 

however, the NHM inputs provide more variability in the model results. 
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Figure 58 Monthly and annual spill at Blue Mesa under RFF policy with NHM inputs (top) and 
computed natural flow data input (bottom).   

 

From the modeling results, the no action policy resulted in similar trends in 

seasonal spilling, with slightly more, in some cases, compared to the RFF policy (see 

Figure 58 and Figure 59).  As discussed earlier, during the peak run-off season, both 

policies specify releases greater than the turbine capacities, thus resulting in spilled 

water.  Therefore, the fish flows are often not the underlying factor contributing to 

spilled water.  Furthermore, since the no action policy has fewer demands in the 

summer, fall and winter, pool elevations tend to remain higher throughout the year 

and thus, during drawdown and peak run-off, more water must be spilled to 

accommodate the additional water. 
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Figure 59 Monthly and annual spill at Blue Mesa under NA policy with NHM inputs (top) and 
computed natural flow data input (bottom).  
 

Figure 60 and Figure 61 show Blue Mesa storage for key times during the 

year; Blue Mesa is of particular interest regarding storage, as it contains 

approximately 80% of the Aspinall Unit’s capacity.  Increased demands throughout 

the year as a result of the RFF produce slightly less storage, as seen in Figure 60 

compared to Figure 61 (NA policy).  Under both NA and RFF policies, the NHM 

driven modeling results show more variability that those of the computed natural flow 

data.  This further supports the use of synthetic hydrologies for such analyses.  

Crystal and Morrow Point both remained near full for all model runs, which is 

consistent with the operating policies discussed earlier.  Taylor Park however, shows 
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significantly less storage under the RFF policy, compared to the no action alternative.  

It can be seen that storage approaches the upper and lower bounds of the acceptable 

range fairly frequently (Figure 62).  This may seem peculiar, as Blue Mesa is 

considerably larger and could help to reduce the strain on the smaller reservoir.  

However, reverting back to goals of the Aspinall Unit, it is in the interest of 

generating hydropower that Blue Mesa maintains a high pool elevation.  Taylor Park 

has no hydroelectric capacity, and thus, as long as the storage is maintained within the 

acceptable range, the results of the modeling are indicative of effective water 

management.  This is allowed by the 1975 exchange agreement, in which storage can 

be transferred from Taylor Park to Blue Mesa to benefit the resources of the upper 

Gunnison Basin (USBR, 2008).   

 
Figure 60 Blue Mesa Reservoir Storage under RFF policy with NHM inputs (top) and RFF 
policy with computed natural flow data inputs (bottom). 
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Figure 61 Blue Mesa Reservoir Storage under NA policy with NHM inputs (top) and NA policy 
with computed natural flow data inputs (bottom). 
 

 
Figure 62 Taylor Park Reservoir Storage RFF policy with NHM inputs (top) and computed 
natural flow data inputs (bottom). 
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Figure 63 Taylor Park Reservoir Storage under NA policy with NHM inputs (top) and NA policy 
with computed natural flow data inputs (bottom). 

 

Thus far, it has been shown that the RFF policy effectively meets the required 

fish flows while showing little impact on the operational objectives of the Unit.  In 

some cases, specifically hydropower and water spilled, there were slight 

improvements over the no action policy.  To investigate this, Figure 64 and Figure 65 

show the modeled flow at USGS gauge 09152500 as monthly boxplots.  The red 

triangles represent the average modeled flow using computed natural flow data from 

1977-2006 to drive the model.  Blue circles show the average monthly computed 

natural flow near Grand Junction for the same time period and green squares are 

monthly historic (as observed by gauging station) means, also from the 1977-2006 

period. This makes for an effective comparison of the various points. 
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Figure 64 Modeled flows at USGS gauge 09152500 under RFF policy and NHM input data.  Blue 
circles represent average computed natural flow, red triangles the average modeled flow results 
using computed natural flow inputs and green squares the average historic data at this location, 
all from 1977-2006. 
 

 

Figure 65 Modeled flows at USGS gauge 09152500 under NA policy and NHM input data. Blue 
circles represent average computed natural flow, red triangles the average modeled flow results 
using computed natural flow inputs and green squares the average historic data at this location, 
all from 1977-2006. 
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The results from these plots are two-fold.  As discussed earlier, the no action 

policy results in higher peak run-off releases, which corresponds with the slight 

increase in spill.  Also, reduced releases throughout the rest of the year result in the 

lower hydropower production.  The no action policy captures the computed natural 

flow data quite well, while the RFF policy mimics the historic (gauge data).  In 

theory, the no action policy should have captured the historic, as it aims to model the 

current policy.  Furthermore, the RFF hydrograph is more smoothed than that of the 

no action policy, which seems counter-intuitive because the RFF aim to restore 

natural “high flow” events.   

The no action policy rules represent the broad operational objectives of the 

Aspinall Unit.  However, these rules do not explicitly govern the operation of the 

Gunnison Basin; water managers make daily and even hourly decisions based on 

current and anticipated demands and conditions that simply can not be represented by 

the “if then” logic of modeling.  Furthermore, while the Fish and Wildlife Service 

flow recommendations have only been officially available since 2003, water 

managers have attempted to make releases beneficial to fish, when possible, for some 

time now.  Unofficial policies and nuances such as these contribute greatly to why the 

RFF policy seems to capture the observed flow more so than the NA rules.  

5.7 Summary 
As mentioned earlier, the modeling results from KNN and NHM flows were 

similar enough to merit presenting NHM figures only. However, Crystal spill from 

modeling with NHM data and NA policies in Figure 66 shows slightly more 

variability than that of Figure 67 (modeled with KNN data).  This is consistent with 
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the results of Chapters 2 and 3, as the NHM technique was shown to produce slightly 

longer periods of drought and surplus.  

 
Figure 66 Crystal spill results from modeling with NHM data and NA policy.  
 

 
Figure 67 Crystal spill results from modeling with KNN data and NA policy 

 

The results of this modeling effort have provided a broad overview of 

Aspinall Unit operations under two different policy sets.  From the analysis, the no 

action results may not be completely indicative of current operations, however, there 

is undoubtedly a need for policy changes in order to accommodate the additional fish 

flows.  Figure 65 suggests that the majority of these changes will occur on a daily 

timestep, as monthly releases to meet fish flows are consistent with the historic 

releases.  Thus, the storage capacities of the four reservoirs should be able to 

effectively meet the various demands throughout the basin with high reliability.  

Furthermore, it should be noted that the RFF for a given year are dependant upon the 
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hydrologic state.  For example, if due to climate change, the number of category wet 

years greatly reduces, water managers are not tied in any way to those flows - more 

years will simply fall in the dry categories.  This also indicates that the system is 

robust enough to meet additional demands.  Last, the modeled hydropower, spill and 

storage values all indicate that synthetic hydrologies such as those generated using the 

NHM and KNN techniques provide more variability than the observed data alone and 

thus allow for more robust modeling and risk analysis.   
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CHAPTER 6: CONCLUSION AND RECOMMENDATION FOR 
FUTURE WORK 

6.1 Conclusions 
This research develops a DSS model for the Gunnison River Basin and is 

driven by synthetic flow sequences in order to assess the implications of meeting the 

RFF and demonstrate the utility of stochastic techniques.  This is accomplished 

through four phases, shown in Chapters 2 through 5.  Techniques for generating flow 

sequences based purely on observed data are examined in Chapter 2.  Methods for 

incorporating paleo reconstructed flows with the observed data are explored in 

Chapter 3 in order to introduce increased variability and capture long-term epochal 

trends. Chapter 4 employs a nonparametric space time disaggregation developed by 

Prairie et al. (2007) to break the single site annual hydrologies into monthly flows 

throughout the basin.  A Riverware model of the Gunnison Basin is developed in 

Chapter 5, which uses the disaggregation results to model Aspinall Unit operations 

under a variety of hydrologic conditions, in addition to meeting new fish flows.  This 

modeling provides a coarse overview of the operational changes necessary to comply 

with the RFF and the consequent impact on system components, such as hydropower 

and storage. 

6.1.1 Observed Data Techniques 
The findings from this effort can be summarized as follows.  The KNN-

bootstrap and modified KNN techniques generate a rich variety of flow sequences 

that also capture the statistical properties of the observed data.  ISM and AR-1 models 

were also investigated; however, ISM is limited in the variety it can produce and 

ARMA based models fail to capture non-Gaussian distributions, as discussed in 
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Chapter 2.  The rich variety of sequences from the nonparametric approached provide 

a better estimate of system risk/reliability, a useful strength in water management.  

Beyond the evaluation of techniques, it is shown that the wet/dry state 

threshold (i.e., the median of the observed flow), used to compute the drought/surplus 

statistics, is somewhat subjective.  Furthermore, such thresholds are sensitive to the 

length of the observed data.  Thus, as the data set grows, a year classified as wet may 

become dry and vice versa.  Therefore, a demand and storage based approach, such as 

the sequent-peak algorithm, seems to be a better way to quantify drought and surplus.  

 6.1.2 Paleo Techniques 
The techniques presented in this section allow for the generation of more 

varied traces, compared to the observed data only methods.  In particular, the NHM 

approach is highly effective at introducing variability to the stochastic sequence 

generation process, while preserving distributional statistics.  While it is slightly more 

intensive to implement than the other methods discussed, it has several benefits.  By 

resampling transition probabilities to generate new binary sequences, an unlimited 

number of unique traces can be produced.  Other techniques that can generate unseen 

traces compute a single transition probability matrix (TPM) for a portion of or the 

entire paleo record, resulting in undue smoothing or bias toward a particular 

transition, an obvious detractor.  The epochal nature of the paleo data is undoubtedly 

reproduced to some extent by all methods; however, the NHM approach produces the 

most realistic results – longer periods of drought (or surplus) are generated with the 

possibility of an occasional wet (or dry) year interspersed.  
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This section also contributes to the stochastic modeling field guidelines for 

using the Least Squares Cross Validation (LSCV) method to select band widths for 

markov chain-type applications.  Specifically, recommendations are made for how to 

proceed when no clear minimum is presented.   

6.1.3 Flow Disaggregation 
The nonparametric disaggregation technique employed in Chapter 4 has 

substantial advantages over its traditional parametric counterparts.  Results show 

successful preservation of distributional statistics in both space and time.  

Furthermore, observed special and temporal correlations are also reproduced quite 

well and at no increase in computational intensity.  This is particularly significant as 

parametric methods are not effective at modeling non-linear correlations and quickly 

become intensive when attempting to capture these relationships at more than a few 

locations.  

6.1.4 Application of Synthetic Flows to Gunnison Operations Model 
This section applies generated flows to a decision support modeling tool for 

the simulation of the Aspinall Unit operations.  The stochastic flow sequences 

developed in Chapters 2 and 3, which are disaggregated to monthly intervening flows, 

drive this model.  It is shown that the DSS model is effective at meeting the RFF in 

addition to the other downstream demands.   The NHM and KNN techniques provide 

the flow sequence variability needed for robust planning applications.  The results of 

the modeling effort led to the following conclusions.  Monthly operations of the 

Aspinall Unit, specifically discharge volume, will change little to accommodate the 

fish flows; however, daily modeling of reservoir operations is recommended, as there 
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will need to be changes to the distribution of the release throughout the high flow 

months.  

 Hydropower generation, storage and spill results from modeling with the 

NHM flows all showed more variability, compared to the output when modeling with 

computed natural flow.  Robust, stochastic sequences make it possible for water 

managers and policy makers to analyze a wide range of scenarios and appropriately 

characterize system risk and reliability.  This information is useful in providing 

guidance when making necessary modifications to operating policies such as those 

currently being examined as part of the NEPA process governing the Aspinall Unit 

EIS.  

6.2 Future Work 

6.2.1 Further Development of Paleo Techniques 
Chapter 3 discusses the importance of capturing the epochal nature of the 

paleo record in the stochastic flow traces developed in this work.  This highlights the 

importance of properly understanding and modeling the sequencing of high and low 

flow events.  To this end, a modification to the nonhomogeneous markov (NHM) 

technique is proposed.  First, a smoothing of the paleo data is conducted (typically a 5 

or 10 year moving average is sufficient) to identify wet and dry epochs.  Next, TPMs 

are developed for the wet and dry epochs.  The epoch signal (the smoothed data) is 

converted to 1 (wet epoch) and 0 (dry epoch) and resampled in blocks of the desired 

length.  Then, based on the epoch at any given time and the hydrologic state of the 

previous timestep, the appropriate TPM is used to generate the current hydrologic 

state.  Once the hydrologic states have been assigned, the KNN-based conditional 

resampling is used to assign observed flow magnitudes.  This approach is expected to 
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produce similar results to the NHM, as it can generate new, previously unseen 

sequencing while still modeling the epochal nature of the data in a realistic manner. 

6.2.2 Climate Change and Water Management 
The paleo data used in this work indicates that the pre-observational period 

was, on average, slightly more wet than the past century.  This is undoubtedly useful 

information to water managers.  However, it should be interpreted with caution, as the 

paleo record may not be indicative of future conditions.  Factors such as global 

warming and anthropogenic basin impacts may shape future climate more so than the 

past trends.  Incorporating the variability of the past with the predicted future trends 

will be the next step in generating flow sequences for reservoir management.  

Furthermore, developing operational policies that properly address such changes will 

be paramount for the future of the southwestern United States. 
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