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Abstract

Cancer is a disease caused by mutations in normal cells. According to the National

Cancer Institute, in 2016, an estimated 1.6 million people were diagnosed and ap-

proximately 0.5 million people died from the disease in the United States. There are

many factors that shape cancer at the cellular and organismal level, including genetic,

immunological, and environmental components. In this thesis, we show how math-

ematical modeling can be used to provide insight into some of the key mechanisms

underlying cancer dynamics. First, we use mathematical modeling to investigate op-

timal homeostatic cell renewal in tissues such as the small intestine with an emphasis

on division patterns and tissue architecture. We find that the division patterns that

delay the accumulation of mutations are strictly associated with the population sizes

of the tissue. In particular, patterns with long chains of differentiation delay the

time to observe a second-hit mutant, which is important given that for many can-

cers two mutations are enough to initiate a tumor. We also investigated homeostatic

cell renewal under a selective pressure and find that hierarchically organized tissues

act as suppressors of selection; we find that an architecture with a small number

of stem cells and larger pools of transit amplifying cells and mature differentiated
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cells, together with long chains of differentiation, form a robust evolutionary strategy

to delay the time to observe a second-hit mutant when mutations acquire a fitness

advantage or disadvantage. We also formulate a model of the immune response to

cancer in the presence of costimulatory and inhibitory signals. We demonstrate that

the coordination of such signals is crucial to initiate an effective immune response,

and while immunotherapy has become a promising cancer treatment over the past

decade, these results offer some explanations for why it can fail.
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Chapter 1

Introduction

Cancer is a major public health burden. According to the National Cancer Institute

(NCI), in 2016, an estimated 1.6 million people were diagnosed and approximately

0.5 million people died from the disease in the United States. Cancer is produced by

mutations in healthy cells. Normally, when cells become old or damaged, they die and

are replaced by new cells, so that the tissue maintains its functionality. When cancer

arises, cells proliferate uncontrolled, and eventually form tumors. Several factors at

the organismal and cellular level can influence the development of cancer. Genetic,

immunological and environmental components can all greatly influence cancer dy-

namics. In this thesis, we use mathematical modeling to gain insight into some of the

mechanisms that play a crucial role in cancer dynamics.

This thesis consists of 5 chapters. In Chapters 2, 3, and 4, we develop the topics

that form individual manuscripts, and in chapter 5, we present some general con-

clusions. In chapter 2 we study homeostatic cell renewal in hierarchically organized

tissues such as the colon, the skin and the haematopoietic system, among others. In

the bottom of the hierarchy, there are a small number of stem cells (SCs), which have

almost an infinite replicative capacity. In intermediate positions of the hierarchy are

transit amplifying cells (TACs), which have a limited replicative capacity, and in the

1



Chapter 1. Introduction

top of the hierarchy are mature differentiated cells, which are constantly discarded

and replaced to keep the tissue at constant numbers. This process of cell renewal

triggers cascades or chains of differentiations that can greatly influence cancer dy-

namics. We propose a compartmental model of homeostatic cell renewal through a

system of differential equations that predicts the expected number of mutants in each

compartment of the hierarchy. We use the accumulation of one-hit mutants and the

time to observe a second-hit mutant as measures for cancer risk. We focus on two key

variables: the proliferation patterns and tissue architecture. Overall, we find that if

the optimization task is to reduce the accumulation of one-hit mutants, in the long

run, short chains of differentiation are better; on the other hand, if the optimization

task is to delay the time to observe a second-hit, long chains of differentiation are

preferred. A non-intuitive finding is that an architecture with larger populations in

more primitive compartments delays the accumulation of mutations. The derivation

of the ODEs was carried out by Dr. Natalia Komarova, while I performed most of

the numerical experiments in this chapter under the guidance of Dr. Komarova and

Dr. Helen Wearing.

In chapter 3, we extend the model proposed in chapter 2 by assigning a fitness

advantage/disadvantage to mutants. In chapter 2 we assume that mutations are

neutral, even though when cells divide it is very likely that they acquire a fitness

advantage or disadvantage. It is widely accepted that tissues evolve to minimize

cancer risk. The hierarchical organization of most tissues, the proliferation patterns

for self-renewal, slow division rates, and the type of cell division are examples of how

tissues attempt to minimize cancer risk [1–8]. In this context, the question is whether

the tissues act as suppressors or amplifiers of selection, and under what conditions

proliferation patterns and tissue architecture act as optimal evolutionary strategies

to delay the accumulation of advantageous and disadvantageous mutants. We find

that hierarchically organized tissues are suppressors of selection; in addition, we find

that an increasing architecture (which has a small number of stem cells and larger

2



Chapter 1. Introduction

number of mature cells) and long chains of differentiation, are a robust strategy to

delay the time to observe a second-hit mutant, which can be translated into a lower

risk of cancer.

In chapter 4, we model an immune response to cancer. In the last decade, im-

munotherapy, a treatment that uses the body’s own immune system to attack cancer

cells, has become a promising treatment to fight cancer. Despite its relative success,

there are many factors that can lead to failure. In order to initiate an immune re-

sponse, T cells need to receive antigen which is carried out by Antigen Presenting

Cells (APCs), typically dendritic cells, and later, a costimulatory signal is activated

so that T cells are ready to kill cancer cells. After activation of T cells, immune

checkpoints (inhibitory signals) are activated which downregulate T cells. We pro-

pose a model described by a set of nonlinear differential equations that allows us

to explore different types of immunotherapy treatments, and most importantly, we

investigate scenarios under which immunotherapy can fail or succeed. Overall, if the

inhibitory pathways are not successfully blocked, an immune response might not be

sustained despite high rates of antigen presentation. In particular, if the immune

checkpoints that activate after antigen presentation/reception are not blocked, stim-

ulation of antigen presentation is no longer effective, indicating why treatments that

stimulate antigen reception signaling could fail.

In conclusion, we use mathematical modeling to study homeostatic cell renewal

that gives us a broader understanding of the role of tissue architecture, division pat-

terns and selection, which are key factors that shape cancer dynamics in hierarchically

organized tissues. We also propose a model of an immune response to cancer, which

offers explanations of why some immunotherapy treatments can fail when the immune

checkpoints are activated, despite large rates of antigen presentation.

3



Chapter 2

Optimal homeostatic cell renewal

2.1 Introduction

Many tissues in complex organisms are hierarchically organized, such as the human

colon, the small intestine, the skin, and the haematopoietic system. Hierarchically

organized tissues are renewed constantly by means of a balance of cell deaths and

cell divisions. Understanding the mechanisms that regulate cell proliferation and

differentiation patterns is key to explaining the robust nature of homeostasis [4].

Because of the imminent risk of mutation acquisition, tissue organization also plays

an important role in preventing cancer [5–7, 9–13].

At the root of hierarchically organized tissues are a small number of stem cells

(SCs), capable of both self renewal and differentiation into more specialized cells [14].

Downstream from SCs there are intermediate cells of increasing degrees of maturity,

which can undergo a certain number of divisions. Finally, there are fully mature

differentiated cells, which perform their function and are discarded and replenished

through divisions of less differentiated cells. For instance, evidence suggests that

on or near the bottom of the colon crypts and the small intestine crypts, there are

4
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Figure 2.1: Schematics showing key concepts of the paper. (a) Two types of symmetric
divisions: proliferations and differentiations. Each circle represents a cell, and i
denotes the ith compartment, while i+1 denotes the (i+1)th compartment. Panels (b)
and (c) demonstrate the division chains that replenish 8 differentiated cells eliminated
from the top compartment. Dead cells are denoted by X’s and arrows show divisions.
Cells are arranged in horizontal layers corresponding to compartments. Only the
dividing cells are shown (for example, there may be more than 4 cells in the second
to top compartment in panel (b)). In (b), the dead cells are replaced by a longer
division tree, and in (c) by four shorter division trees.

between 4− 6 SCs [15–17], and the remaining compartments are composed of transit

amplifying cells (TACs) and finally mature differentiated cells that are discarded, so

that the entire crypt is renewed every 2 − 7 days [18]. A similar situation occurs in

the haematopoietic system, where a stem cell pool of about 400 cells is required to

replenish a daily bone marrow output of about 3.5× 1011 cells [19].

Stem cells are thought to be capable of symmetric or asymmetric divisions. Asym-

metric divisions of a stem cell result in one daughter cell that is a stem cell and the

other daughter cell that is a more differentiated cell. Symmetric divisions result in

two identical daughter cells. The two types of symmetric divisions are illustrated in

figure 2.1(a) in a more general context: differentiation divisions result in two offspring

that are both more differentiated than the dividing cell, and proliferation divisions

result in two offspring whose differentiation status is identical to that of the parent.

5



Chapter 2. Optimal homeostatic cell renewal

Because experiments to track cell divisions and mutations are in general difficult,

or not feasible in some hierarchically organized tissues, mathematical models have

been used to understand cellular dynamics or homeostasis and mutations. In partic-

ular, the origin and development of colorectal cancer have been extensively studied. It

has been demonstrated theoretically that mutations leading to colorectal cancer can

originate in either the stem cell compartment or TACs [5, 9, 11, 20]. Computational

models, such as virtual crypts, have helped to understand the process of self renewal

in hierarchically organized tissues, for instance the organization of the colon [21–24].

Several studies have investigated tissue architecture with the goal of understanding

its utility in protection against mutation accumulation. Traulsen, Werner and col-

leagues used mathematical models to study mutations in the haematopoietic system,

and found theoretical evidence that tissue architecture and the process of self renewal

were a protection mechanism against cancer [12, 13, 19, 25]. Rodriguez-Brenes et al.

[6] proposed that an optimal tissue architecture that minimized the replication capac-

ity of cells was one where the less differentiated cells had a larger rate of self-renewal.

Shahriyari and Komarova [7] showed that having symmetric stem cell divisions (pro-

liferations and differentiations) rather than asymmetric stem cell divisions minimized

the risk of two-hit mutant generation. Dingli et al. [3] considered the question of

mutation generation by stem cells and found that mutations that increased the prob-

ability of asymmetric replication could lead to rapid expansion of mutant stem cells

in the absence of a selective fitness advantage. Pepper et al. [26] examined a tissue

undergoing serial differentiation patterns originating with self-renewing somatic stem

cells, continuing with several TACs differentiations, and showed that such patterns

lowered the rate of somatic evolution. Paper [27] emphasizes the importance of spatial

considerations in the modeling of stem cell hierarchies and division patterns.

Despite significant progress reported in the literature, there are still plenty of unan-

swered questions regarding tissue renewal and cancer development in hierarchically

organized tissues. Particularly, the optimal mechanisms of self renewal and prolifera-

6



Chapter 2. Optimal homeostatic cell renewal

tion to maintain homeostasis is a crucial process which is far from being understood.

To illustrate some of the questions we are interested in solving, consider a hierarchical

tissue (such as the colon) where symmetric divisions are prevalent [28–31]. When ma-

ture differentiated cells are discarded, cells from the upstream compartment divide to

replace the eliminated cells. This gives rise to a chain of differentiations, because the

cells that differentiated and migrated from the upstream compartment also need to

be replaced, in order to keep the tissue at homeostasis. Figure 2.1(b,c) schematically

illustrates two opposite trends. Both panels depict 8 mature cells that are eliminated.

These cells are replenished by 4 differentiation events, whereby cells from the neigh-

boring compartment differentiate and migrate downstream to replace the dead cells.

In figure 2.1(b), the 4 cells are, in turn, replenished by two differentiation events

from the previous layer (representing a compartment in the hierarchy), leaving two

cells to be replaced. This is done by a single differentiation event from the last layer,

and the remaining cell is then replaced by a proliferation event from the same layer.

These processes comprise a differentiation cascade, or a differentiation chain, which

in this case included differentiation events in 3 consecutive compartments. A different

scenario is shown in figure 2.1(c) where the 4 cells that differentiated and migrated

from the second to top layer are all replaced by proliferation divisions of cells in the

same layer. In this case we have 4 shorter differentiation chains which only include

differentiation events in one compartment. As will be shown, a range of intermediate

scenarios is possible.

Biologically, differentiation chains are shaped by a system of feedback loops de-

termined by signals altering proliferation, differentiation, apoptosis, migration, and

adhesion in both the stem cell compartment and the transit amplifying cells [4, 6, 32].

The proliferation and differentiation activity is a well controlled system to guarantee

tissue homeostasis in hierarchically organized tissues, thus, changes in proliferation

and differentiation patterns might be associated with an increased risk of cancer devel-

opment, as found, for example, by Merrit et al. [33] in the context of colorectal cancer.

7



Chapter 2. Optimal homeostatic cell renewal

Figure 2.1(b,c) suggests that in terms of tissue architecture, and in the presence of hi-

erarchical lineages, there are multiple arrangements that are all, in principle, capable

of maintaining balanced tissue turnover. Each arrangement preserves the number of

cells in each compartment in the face of divisions triggered by cell deaths in the top

compartment. Because each cell division is associated with a probability of harmful

mutations, the question then becomes if there is a preferred strategy for a tissue to

arrange its turnover and/or compartment sizes in order to minimize the number of

mutants generated.

The goal of this work is to describe different differentiation/proliferation patterns

and their effect on cancer generation in a hierarchically organized tissue. First, we de-

rive analytical expressions for the expected number of mutants in each compartment,

as a result of these chains of differentiation. This informs a deterministic approx-

imation resulting in a set of differential equations describing mutant dynamics in

different compartments. It turns out that this methodology can be further adapted

to describe not only the approximately deterministic regime of large populations and

large mutation rates, but a more relevant regime of small populations and small mu-

tation rates. We investigate the dynamics of our model in different scenarios, focusing

on different proliferation/differentiation probabilities and different compartment size

arrangements. In addition, we perform stochastic simulations to study the accumula-

tion of mutations in a stochastic regime. We describe both one-hit and two-hit mutant

generation, and find the parameters that can be tuned to delay cancer initiation in

hierarchically organized tissues.
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2.2 Methods: ordinary differential equations and

stochastic simulations

2.2.1 Trees and their probabilities

We start by formulating a metapopulation style model of stem cell lineages. Assume

that there are n + 1 compartments, C0, . . . , Cn, with total constant cell numbers

N0, . . . , Nn. Inside individual compartments, we assume complete mixing, and the

compartments are arranged linearly from the least mature, C0, to the most mature,

Cn. At each time step, we remove an = 2n cells from compartment Cn. These cells

must be replaced by 2n divisions in different compartments. Because cells in com-

partment Cn do not proliferate, there will be an−1 = 2n−1 differentiation divisions

in compartment Cn−1. Now, an−1 cells in this compartment must be replaced, ei-

ther by differentiation divisions from compartment Cn−2 or by proliferation divisions

from compartment Cn−1. Suppose there are an−2 differentiations and an−1 − 2an−2

proliferations. Next, an−2 cells from compartment Cn−2 must be replaced. This pro-

cess gives rise to a division tree, which is uniquely characterized by the numbers of

differentiation divisions in each compartment:

{an−1, . . . , a0}, (2.1)

where an−1 = 2n−1 and

0 ≤ ai ≤ 2i, i = 0, . . . , n− 1.

The number of proliferations in compartment Ci is given by ai − 2ai−1. The length

of the tree is the number of compartments that have nonzero numbers of differenti-

ation events, and it varies from 1 to n. Proliferation and differentiation events are

assigned probabilistically, by means of the following process. Suppose ai cells must

be replaced in compartment Ci, that is, there are i openings to fill. Each cell is

replaced by a proliferation division in this compartment with probability vi. If the

9
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number of remaining openings is odd, then an additional proliferation division hap-

pens, such that the number of remaining openings is even, and they are then filled

by differentiation divisions from compartment Ci−1. This allows us to calculate the

probability of a given tree defined by string (2.1). First we calculate the probability of

having ai differentiations in compartment Ci given that there are ai+1 differentiations

in compartment Ci+1:

p(ai) = C2aiai+1
(1− vi+1)

2aiv
ai+1−2ai
i+1 + C2ai+1

ai+1
(1− vi+1)

2ai+1v
ai+1−2ai−1
i+1 , 0 ≤ i ≤ n− 1,

where formally an = 2n and we use the following notation for the binomial coefficients:

Ckn =
n!

k!(n− k)!
.

We then have the probability of string (2.1):

P (an−1, . . . , a0) =
n−1∏
i=0

p(ai).

In particular, since vn = 0, we obtain that an−1 = 2n−1 with certainty.

2.2.2 Chains of differentiation

The process previously described can be analyzed through division patterns or chains

of differentiation of a given length. What are the possible patterns of replacement of

2n cells? For example, if n = 3, we have 5 possibilities to replace 23 cells as illustrated

in figure 2.2. Figure 2.2(a) corresponds to 4 proliferation events in compartment C2

(4 differentiation chains of length one). Figures 2.2(b,c) represent one differentiation

chain of length 2 and two differentiation chains of length 1. Figure 2.2(d) corresponds

to 2 differentiation chains of length 2. In the last pattern, figure 2.2(e), we have one

differentiation chain of length 3.

Decreasing the probability of proliferation, v, increases the mean length of prolif-

eration trees, and shifts the divisions toward the stem cell compartment, see figure

2.3.

10
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Figure 2.2: Possible patterns to replace 23 = 8 cells removed from compartment C3.
The cells in red correspond to 8 cells discarded in C3 and the blue cells are dividing
cells (again, only dividing cells are shown, and the actual compartments contain more
cells). (a) All 4 cells that differentiated out to replace 8 cells in C3 are replaced by
4 proliferation events in C2. This pattern occurs with probability v4. (b) and (c):
2 out of 4 cells that differentiated out from C2 are replaced by one differentiation
event from C1 (followed by a proliferation in C1) and two cells in C2 are replaced by
2 proliferation events in C2. The probability of each of these patterns is v2(1 − v)2.
(d) The 4 cells that differentiated out from C2 are replaced by 2 differentiations C1,
followed by 2 proliferation events in C2. The probability of this pattern is (1− v)4v2.
(e) Similar to (d), except that the 2 cells in C1 are replaced by a differentiation from
C0 followed by a proliferation event. This pattern occurs with probability (1− v)6.

2.2.3 The expected number of mutants

Let us suppose that in each compartment, the number of mutants is given by mi,

0 ≤ i ≤ n. We would like to calculate the expected change in the number of mu-

11
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Figure 2.3: Properties of division trees as a function of v, the probability of prolifera-
tion in compartments 1, . . . , n−1. (a) Mean tree length, defined as the mean number
of compartments involved in the division trees. (b) Mean division position. For an
individual tree, sequence (2.1), this is defined as 2−n

∑n
i=0 2i(ai−ai−1); plotted is the

expectation of this quantity across all the trees. In this example, n = 4.

tants after 2n cells are removed in compartment Cn. To do this, let us determine the

expected change in the number of mutants associated with a particular tree, string

(2.1). This can be done by considering the change resulting from ak differentiations

from compartment Ck to compartment Ck+1 and ak+1 − 2ak proliferations in com-

partment Ck+1. These events will affect the numbers of mutants in compartments Ck

and Ck+1.
1

(a) When ak cells differentiate out of compartment Ck, 0 ≤ k ≤ n− 1, with proba-

bility

P diff

i = Ciakµ
i
k(1− µk)ak−i,

i of them may be mutants, where

µk =
mk

Nk

,

1Note that in the equations in this section we used combinatorial expressions obtained
from sampling with replacement. In the stochastic simulations below, sampling without
replacement was used, but it was established that sampling with replacement led to similar
results.
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which is the probability to pick a mutant among Nk cells. In this case, i mutants

are removed from compartment Ck and 2i mutants are added to compartment

Ck+1. Further, among the remaining ak − i differentiations, there may be l

mutations which will increase the number of mutants in compartment Ck+1 by

l. To calculate the corresponding probability, we note that ak − i wild type

cells differentiating in compartment Ck will produce 2(ak − i) offspring, each of

which become mutants with probability u. Therefore, l mutants are generated

with probability

P diff

i,l = Cl2(ak−i)u
l(1− u)2(ak−i)−l.

The total change in compartment Ck+1 is then 2i+ l, the total change in com-

partment Ck is −i, and this happens with probability P diff
i P diff

i,l . These changes

must be summed up for 0 ≤ i ≤ ak and 0 ≤ l ≤ 2(ak − i).

(b) When ak+1 − 2ak cells proliferate in compartment Ck+1, 0 ≤ k ≤ n − 1, with

probability

P pro

i = Ciak+1−2akµ
i
k+1(1− µk+1)

ak+1−2ak−i,

i of them are mutants. This means that i new mutants are added to com-

partment Ck+1. The remaining ak+1 − 2ak − i proliferating cells are wild type,

and it is possible that l of the offspring are new mutants. This happens with

probability

P pro

i,l = Cl2(ak+1−2ak−i)u
l(1− u)2(ak+1−2ak−i)−l.

The total change in compartment Ck+1 is then given by i+ l and happens with

probability P pro

i P pro

i,l . Again, these changes must be summed up for 0 ≤ i ≤ ak

and 0 ≤ l ≤ 2(ak − i).

(c) A special case is compartment C0. Here, a0 cells will proliferate, and the number

of mutants is calculated similar to (b).

13
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(d) Another special case is compartment Cn. Cells do not proliferate in this com-

partment, but 2n cells are removed, and we need to calculate the expected

number of mutants removed, similar to P diff
i in (a).

For each tree, the expected change in the number of mutants can be expressed as a

vector whose components are obtained as the expected change in each compartment,

as calculated in (a-d) above. These vectors must be added together, weighted with the

probability of each tree. The resulting vector gives the time-derivatives of quantities

m0, . . . ,mn.

When ak cells differentiate out of compartment Ck, 0 ≤ ak ≤ n− 1, the expected

gain of mutants in compartment Ck+1 is given by

αdiff

k+1 =

ak∑
i=0

2(ak−i)∑
l=0

(2i+ l)P diff

i P diff

i,l .

When ak+1 − 2ak cells proliferate in compartment Ck+1, 0 ≤ k ≤ n− 1, the expected

gain of mutants in compartment Ck+1 is

αpro

k+1 =

ak∑
i=0

2(ak−i)∑
l=0

(i+ l)P pro

i P pro

i,l .

The compartment Ck+1 loses mutants when ak+1 cells differentiate and migrate into

compartment Ck+2, and the expected loss is

βdiff

k+1 =

ak+1∑
i=0

2(ak+1−i)∑
l=0

(2i+ l)P diff

i P diff

i,l .

Thus the total change in the number of mutants in compartment Ck+1 is

Tk+1 = αdiff

k+1 + αpro

k+1 − β
diff

k+1

The value Tk+1 represents the expected number of mutants in compartment Ck+1

produced by a single tree or chain of differentiation; because more than one tree

could affect the expected number of mutants in each compartment, we need to sum
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the contributions from all trees to compartment Ck+1 weighted by their probability.

This weighted sum defines the rate of change of the number of mutants in each

compartment:

ṁk =
∑

All trees

ProbtreeT tree

k , 0 ≤ k ≤ n. (2.2)

For the simplest cases, we list the ODEs derived by computing the expected number

of mutants produced by all possible chains of differentiation in each compartment.

We will use the assumption that vi = v for 1 ≤ i ≤ n − 1, which has been assumed

in other studies [5, 13, 19].

For the case n = 1 we have

ṁ1 = u+ µ0(1− u)− µ1,

ṁ0 = 2u(1− µ0).

For n = 2 we have

ṁ2 = 4(u+ µ1(1− u)− µ2),

ṁ1 = 2(1− v)2(u+ µ0(1− u)− µ1) + 4u(2− v)v(1− µ1),

ṁ0 = 2u(1− v)2(1− µ0).

For n = 3 we have

ṁ3 = 8(u+ µ2(1− u)− µ3), (2.3)

ṁ2 = 4[u(1− µ1 + v(2− 3v + 4v2 − 2v3)(1 + µ1 − 2µ2))

+(1− v)2(1 + 2v2)(µ1 − µ2)],

ṁ1 = 2(1− v)6(u+ µ0(1− u)− µ1) + 4u(2− v)(1− v)4v(1− µ1)

+4uv(2− 3v + v3)(1− µ1),

ṁ0 = 2u(1− v)6(1− µ0). (2.4)
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The n+ 1 linear ordinary differential equations derived here are applicable in the

high mutation rate/large population limit (uN � 1). The unique fixed point of the

system, for all n, which is always stable, is

mi = Ni, 0 ≤ i ≤ n.

In figure 2.4, we show the number of mutants in each of 4 compartments (assuming

n = 3) as a function of time, obtained from numerical solution of equations (2.3-2.4).

The number of mutants reaches saturation in each compartment; first in the top

compartment (C3), followed by compartment C2 and so on, as clearly seen for v = 0.9

(for v = 0.1 the differences are more subtle and cannot be seen in the logarithmic

scale of the figure). The dynamics for two different values of v are presented. The

larger the value of v, the longer it takes for the lower compartments to reach their

equilibrium values. This is because for large proliferation probabilities, long trees are

unlikely and divisions rarely happen in the less differentiated compartments. Further

details of the deterministic regime are presented in appendix A.

2.2.4 Stochastic simulations

The stochastic process is simulated by replacing cells as described in section 2.2.1.

We track the numbers of mutants, mi, in each of the compartments of constant sizes

(Ni, i = 0, 1, . . . , n). Let us denote by wi = Ni −mi the number of wild type cells in

each compartment.

The initial number of mutants is zero, and the simulation proceeds as a sequence

of discrete updates. Each update starts with 2n cells removed from compartment

Cn. A mutant is discarded with probability mn

mn+wn
, otherwise, the cell discarded is a

wild type cell. The next step is to replace the 2n cells removed in compartment Cn.

Because cells in compartment Cn can not proliferate, 2n−1 cells differentiate out from

compartment Cn−1. In each division, a mutant is chosen with probability mn−1

mn−1+wn−1
,
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Figure 2.4: The dynamics of the expected number of mutants for a scenario of 4
compartments, comparing behavior for low and high proliferation probabilities. In
the top graph, v = 0.1, and in the bottom graph, v = 0.9. In this figure we used n = 3,
u = 10−3, and the compartment sizes are N0 = 103, N1 = 104, N2 = 105, N3 = 106.

which increases the number of mutants in compartment Cn by two while the number

of mutants decreases by one in compartment Cn−1. If a wild type cell is chosen for

differentiation in compartment Cn−1, a de-novo mutant is produced with probability

u, such that the number of mutants increases by one in Cn. The number of wild-type

cells is decreased by one in Cn−1. There are altogether 2n−1 differentiations from Cn−1

performed in this way.

Then, 2n−1 cells have to be replaced in compartment Cn−1. Each of these cells

can be replaced by a proliferation event in Cn−1 with probability v. Cells that are
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not replaced by a proliferation event are replaced by a differentiation event from Cn−2

with probability 1−v. If the number of cells to be replaced by differentiation events is

odd, we add an extra proliferation event in compartment Cn−1 so that the number of

remaining openings is even. If the division event is a proliferation, a mutant is chosen

with probability mn−1

mn−1+wn−1
which increases the mutant population in compartment

Cn−1 by one. If the proliferating cell is a wild type cell, it produces a de-novo mutant

with probability u such that the number of mutants in compartment Cn−1 increases by

one. If the wild type cell did not mutate or a mutant was not chosen for reproduction,

the number of wild type cells in compartment Cn−1 increases by one. If the event is

a differentiation from compartment Cn−2, mutants and wild type cells are updated in

the same way as described above for differentiations from compartment Cn−1.

After this, there are a number of cells “missing” from compartment Cn−2 that

have to be replaced in a similar way. Every time a cell is chosen for division from

compartment Ci, it is a mutant with probability

mi

mi + wi
. (2.5)

The process of cell replacement proceeds until compartment C0 is reached. Cells

“missing” from this compartment are replaced by proliferations in the same compart-

ment with probability 1.

A comparison of the solutions of the ODEs and stochastic simulations is presented

in appendix B.

2.3 The role of proliferation rates and compart-

ment sizes in mutant generation

The central question we address is what values of the proliferation probability, v,

produce fewer mutants; related to this, we investigate how the length of differen-
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tiation chains affects the growth of cancer cells. If low values of v produce fewer

mutants, this would imply that long chains of differentiation are favorable, as they

are likely to decrease the number of cancer cells; on the other hand, if high values of

v produce fewer mutants, short chains of differentiation would decrease the number

of cancer cells. In addition, we investigate how tissue architecture combined with the

proliferation probabilities affects mutant production.

2.3.1 De-novo mutant generation

In the ODE model derived here, mutations are generated constantly at a rate u. This

is a correct assumption with high mutation rates and high population numbers. In

smaller systems with low mutation rates, the processes of mutant (de novo) generation

and their clonal spread can be treated as separate. Mutant generation becomes a rare

event, and a single mutant that is generated gives rise to a clone that does not interfere

with the creation of other mutant clones. This regime can also be studied with the

help of the probabilities calculated above.

The removal of 2n mature cells from compartment Cn gives rise to a chain of

2n cell divisions that replenishes the lost cells. The probability of each such chain

is calculated above. Further, every chain gives rise to an expected change in the

mutant numbers in each of the compartments. This information can be used to study

the de-novo generation of mutants and their subsequent clonal spread. To calculate

the probability that a mutant will be generated in each of n + 1 compartments, we

evaluate the right hand side of system (2.2) with mi = 0 for all 0 ≤ i ≤ n (that

is, no prior mutations exist in the system). We obtain a vector proportional to

the mutation rate u. Normalizing this vector to create a probability distribution,

we obtain the probability to generate a mutant in each of the compartments. This

vector only depends on the quantities (v1, . . . , vn−1), and not on the population sizes

of individual compartments.
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We can study the vector of probabilities of mutant generation by setting vi = v

for all 1 ≤ i ≤ n − 1 and examining the dependence on v. Smaller values of v give

rise to longer trees, and consequently higher probabilities of generating mutants in

the stem cell compartment. Larger values of v correspond to shorter trees, such that

mutants are not generated in the stem cell compartment. These trends are illustrated

in figure 2.5(a).

Figure 2.5: The role of the proliferation rate on mutant generation and mutant dy-
namics (the analytical approach). (a) The probability of generating a mutant in each
of the compartments for 6 different values of v: v = 0, v = 0.2, . . . , v = 1.0. (b) The
expected number of mutants produced from a single mutant cell in the absence of
further de-novo mutations, plotted as a function of time for three different values of
v. In this example, n = 4, u = 10−4, and the compartment sizes are, from C0 to Cn,
40, 80, 120, 160, 200.

2.3.2 Clonal dynamics of mutants

Once generated, a mutant undergoes clonal expansion and is also subject to being

flushed out of the system (depending on its location). Let us consider the clonal

propagation of mutants, in the absence of new mutations, which is achieved by setting

u = 0 in the main system of ODEs, equation (2.2). For simplicity, we first consider

the extreme scenario where vi = 0, that is, cells do not proliferate in any compartment
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except for C0, and all trees have length n. In this case we obtain the following system:

ṁ0 = 0, (2.6)

ṁ1 = 2

(
m0

N0

− m1

N1

)
, (2.7)

ṁ2 = 4

(
m1

N1

− m2

N2

)
, (2.8)

ṁ3 = 8

(
m2

N2

− m3

N3

)
, (2.9)

. . .

The structure of this system originates from the fact that in each compartment, k,

mutants can only enter by differentiation out of compartment Ck−1, which is pro-

portional to mk−1/Nk−1, and mutants leave by differentiation from compartment Ck,

which is proportional to mk/Nk. In a more general case, we have

ṁk = K
(v)
k

(
mk

Nk

− mk+1

Nk+1

)
, (2.10)

for k > 0, where the constants K
(v)
k depend on the vector (v0, . . . , vn). To understand

why these type of dynamics occur for nonzero values of v, we note that if Q cells are

removed from compartment Ck this results in three effects:

• The expected number of mutants removed from Ck by differentiating out is

Qµk.

• On average, Qvk cells will be replaced by proliferations in compartment Ck,

resulting in Qvkµk mutants added on average to Ck.

• The remainder of the cells, Q(1− vk), will be replaced by differentiations from

compartment Ck−1. There will be Q(1 − vk)/2 such differentiations, resulting

in Q(1− vk)µk−1 mutants added on average to compartment Ck.
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The net change in the mean number of mutants is then given by Q(1−vk)(−µk+µk−1),

which agrees with the above equations. The steady state of system (2.10) is given by

mk = m0
Nk

N0

. (2.11)

The interpretation of this result is quite straightforward: the probability of fixation

of the mutant in compartment C0 is m0/N0, and the expected number of mutants in

all the downstream compartments is given by the corresponding compartment size

multipled by this fixation probability.

Depending on the origin of the mutation, the behavior of this system (and there-

fore, mutant clonal dynamics) will be different. Only in the case where the mutant is

introduced at C0, is the steady state (2.11) nontrivial, that is, mutations will persist

in the system if the stem cell compartment acquires a mutation. If a mutant is intro-

duced in any other compartment, there is transient dynamics, and then the mutation

will be flushed out, since m0 = 0 in (2.11).

The diagonal entries of the lower-triangular matrix in the linear system (2.10)

define the time-scale of the transient dynamics. The first diagonal entry is zero and

corresponds to the neutrality of the number of mutants in the stem cell compart-

ment.2 The rest of the diagonal entries of the matrix in system (2.10) have quantities

Ni in the denominators (that is, larger compartments are characterized by slower

mutant dynamics), and the numerators are products of powers of 1 − vk. If all vk

are equal, then powers of (1 − v) define the decay of mutants. For small values of

the proliferation probabilities, the mutants are flushed out quickly because of a high

rate of differentiations leading to upward motion of cells through the compartments.

For larger values of v, mutants are flushed out slowly so they tend to accumulate in

compartments, giving rise to very long-lived mutant populated states. In the extreme

2This is a consequence of modeling the behavior of mutants deterministically. In a
stochastic system, the probability of increasing and decreasing the number of mutants in
C0 are equal to each other, leading to a symmetric Markov chain. The mean behavior
however is correctly captured by the present system.
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case of v = 1, only compartment Cn−1 divides, and mutants accumulate in that com-

partment (the right hand side of equation (2.10) is zero in this case, except for the

equation for mn).

Figure 2.6: Comparison of mutant dynamics for different compartment size arrange-
ments. The expected number of mutants is shown as a function of time for increasing
compartment size Ni = 80ei+1 (blue lines), constant compartment size (green lines),
and decreasing compartment size Ni = 80e5−i (yellow lines), for 0 ≤ i ≤ n = 4. The
total population size is the same for all systems. The rare mutation limit is assumed.
The probability of proliferation in each compartment is constant, vi = v for 0 < i < n,
and two values of v are used: v = 0.1 (solid lines) and v = 0.9 (dashed lines). (a)
Shorter time-scales. (b) Longer time-scales (note the log scale on the horizontal axis).

2.3.3 The role of proliferation in mutant generation and dy-

namics

As the value of v increases, there is a trade-off between two different trends associated

with the probability of proliferation: the shortening of the division trees on the one

hand, and a decrease in the mutant flush out rate. More precisely, small values of

v imply longer trees and a higher probability of generating mutants in the stem cell

compartment. When the mutants arise however, they will be flushed out quickly. On

the contrary, large values of v correspond to shorter trees, such that mutants are not

likely to be generated in the stem cell compartment. Once generated, however, the

mutants accumulate and persist for longer. The flushing out rate is proportional to
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(1− v)b, where b is some large power, so realistically, non-small values of v result in

a very long-lived state populated with mutants.

These trends are illustrated in figure 2.5(b). We observe that for small values of

v, mutant accumulation is initially the least, but for large time, there is a significant

expected number of mutants in steady state (that is, a good chance that the mutants

fixate). For larger values of v, mutants tend to accumulate (as shown by the transient

increase in the number of mutants), but in the long run, the expected number of

mutants is smaller (a smaller chance that there is fixation in the system).

2.3.4 The role of compartment sizes

The question of optimal tissue architecture can be addressed in many different ways.

If the total number of cells and the number of compartments are fixed, there is a

very large number of ways to arrange individual compartment sizes. It is a difficult

problem to find the optimum among all possible compartment size arrangements. At

the same time, we know that the size distribution of compartments is determined by

more than one factor. For example, it would be unrealistic to say that the number of

cells in the SC compartment is large and the number of terminally differentiated cells

is small, because it is the more mature compartments that are there to perform the

function of the cells, and from the functional perspective, it is the numbers of such

cells that have to be maximized.

To study the question of mutant generation and the role of the compartment sizes,

we will not attempt to consider all possible compartment size arrangements. Instead,

we will look for general trends. From equation (2.10) we can see that to increase

the outflow of mutants from each compartment, one should decrease the Nk/Nk−1

ratio. Basically, the inflow and the outflow of mutants are both proportional to their

concentrations, and to increase the relative size of the outflow one should increase

the concentration in compartment Ck and decrease the concentration in compartment
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Ck−1.

This simple argument provides an important constraint on mutant production and

dynamics. To study this constraint, we will consider three types of tissue architecture:

increasing compartment sizes, constant compartment sizes, and decreasing compart-

ment sizes. The latter case is clearly unrealistic, and is included for completeness.

In the simplest case, we fix the probability of proliferation to be constant among

the compartments (for 0 < i < n), and compare the expected mutant production

following a (rare) mutation event for different arrangements of compartment sizes.

Figure 2.6 illustrates three different types of architecture: exponentially increasing

from N0 to Nn (blue lines), constant (green lines) and exponentially decreasing from

N0 to Nn (yellow lines). The two panels show the expected number of mutants on

different time-scales. In figure 2.6(a), on the time-scale of this plot, for small v,

decreasing compartment size minimizes mutations, and for large v, increasing size

minimizes mutations. In figure 2.6(b), the same plot is shown for longer time-scales.

Now decreasing compartment size minimizes mutations for both values of v. In ap-

pendix C we explore a model where the proliferation probability v is a function of

compartment sizes.

2.3.5 Stochastic simulations and a summary of trends

In this study, the number of mutants produced by a stem cell lineage system is

influenced by different factors. The two factors that we focused our investigation on

are the probability of proliferation in the compartments, v (such that low probability

of proliferation translates into having longer division trees), and the size of different

compartments. Here we summarize our findings and further illustrate them with

stochastic simulations, figure 2.7. In this figure, we present the mean dynamics of

mutations in different compartments, corresponding to two different values of v and

two different architectures, increasing and constant. As shown below, the behavior
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Figure 2.7: Mean number of mutants from 1000 stochastic simulations. We compare two
arrangements of the compartment sizes for n = 3: constant from C0 to C3 (N0 = 65, N1 =
65, N2 = 65, N3 = 65) and increasing from C0 to C3 (N0 = 20, N1 = 40, N2 = 80, N3 = 120).
(a) The mean number of mutants produced in compartments C1, C2 and C3 for v = 0.9.
Note that no mutants were produced in compartment C0 over the time scale shown. (b)
The mean number of mutants produced in compartments C0, C1, C2 and C3 for v = 0.1. (c)
The mean of the total number of mutants comparing both architectures for v = 0.9 (blue
line) and v = 0.1 (green line). For all panels, solid lines correspond to constant architecture
and dashed lines to increasing architecture. In these simulations u = 0.001.

of the stochastic system is consistent with our predictions based on the ODEs, that

were described above.

1. In the short term, lower probabilities of cell proliferation (lower values of v)

tend to be advantageous, as they result in a lower overall number of mutants.

Transiently, for larger v one observes the effect of mutant accumulation, which

temporarily increases the number of mutants compared to low-v systems, see

figures 2.6 and 2.7(c). As v increases and the mean tree length decreases, there

is a trade-off between decreasing the probability of mutant creation in the SC

compartment and also decreasing the flush-out rate. In the long run, however,
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we observe that the latter tendency becomes less important, and larger values

of v result in a smaller overall number of mutants. This can be seen in figure

2.6, where the dashed lines corresponding to larger v are lower than the solid

lines (small v) for longer times. The same tendency is observed in stochastic

simulations of figure 2.7(c), where blue lines (v = 0.9) are below green lines

(v = 0.1) for large times. Note that the larger the value of v, the longer the

mutant accumulation stage persists, thus making values of v ≈ 1 unrealistic.

2. Larger values of v are again advantageous from the viewpoint of minimizing

the number of mutants in the stem cell compartment. With a shorter division

tree length, divisions in the stem cell compartment happen less often leading

to a lower number of mutations. This can be seen for example in figure 2.4

by comparing the black lines (the number of mutants in compartment C0); see

also figure 2.7, where for the time-scale of the simulations, no mutants have

appeared in C0 in (a) for v = 0.9, and there is a nonzero expected number of

mutants in C0 in (b) for v = 0.1 (depicted by black lines).

3. Given that the value of v is fixed, in the long run, architectures where all

compartment sizes are equal (marked “constant” in the figures) produce fewer

mutants than increasing architectures, see figure 2.6(b) and figure 2.7(c). Tran-

siently, this trend can be reversed, see figure 2.6(a), for larger values of v.

Another scenario where increasing compartment sizes are advantageous arises

if we assume that the proliferation probabilities in compartments are correlated

with compartment sizes, such that differentiation from large to small compart-

ments is favored. In this case, increasing architecture may give rise to fewer

mutants, see figure C.1(b,c).

4. Increasing architecture always minimizes the number of mutants in the stem

cell compartment. This follows from the ODE description, see for example, the

equation for the number of mutants in compartment C0, equation (2.4). And

27



Chapter 2. Optimal homeostatic cell renewal

the same trend is observed in the stochastic dynamics, see the black lines in

figure 2.7(b), where the dashed line corresponding to the increasing architecture

shows fewer mutants in C0 compared to the solid line for constant architecture

(please note that in this figure, in the long run, the number of mutants in each

compartment in the constant architecture is very similar, such that all the solid

lines are superimposed).

2.3.6 Generation of two-hit mutants

Stochastic simulations developed here were also used to investigate the dynamics of

two-hit mutant generation. In this setting, one-hit mutants were allowed to undergo

a secondary mutation process, and the simulations were stopped as soon as the first

two-hit mutant was generated. This situation corresponds to the scenario where

two-hit mutants are advantageous and do not obey the same homeostatic control

as the wild type cells or one-hit mutants. In this section, we used the two-sample

t-test to compare the obtained p-values. Figure 2.8 shows the histograms of times

when the first two-hit mutant was generated under different parameters. It presents

a comparison between different tissue architectures, panels (a) and (b), and differ-

ent proliferation probabilities, panels (c) and (d). In particular we notice that the

largest difference in two-hit mutant generation times is experienced when we change

v (figure 2.8(c,d)). For both architecture types, low values of v lead to longer two-hit

mutant generation times. Therefore, we can say that from the viewpoint of two-hit

mutant generation, low values of v are advantageous. This can again be explained

by thinking about flush-out rates. Larger v lead to long-lived (although transient)

mutant accumulation in tissue compartments, which in turn results in a higher chance

of two-hit mutant generation. As a consequence, having lower proliferation rates and

longer differentiation trees results in slower two-hit mutant generation.

The differences in tissue architectures result in smaller differences in two-hit mu-
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tant generation time, but the trends we observe coincide with those seen in figure

2.6(a): for small values of v, increasing architecture leads to a faster production of

two-hit mutants (because it results in the fastest accumulation of one-hit mutants),

and for larger values of v, increasing architecture corresponds to the largest delay of

two-hit mutant generation, see also figure C.3.

Figure 2.9 further explores the differences between increasing and constant archi-

tecture by assuming that the proliferation probability is defined by the compartment

sizes according to formula (C.1) with β = 1. We observe that the constant archi-

tecture tends to delay the production of two-hit mutants compared to an increasing

architecture. This result follows from the fact that lower values of v slow down two-hit

mutant generation, as demonstrated above. Since the constant architecture results

in lower values of v, it results in the longest two-hit mutant generation times. Figure

C.3 shows an even stronger trend when the hypothetical, decreasing architecture was

investigated.
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Figure 2.8: Distribution of the generation times to second mutation, obtained from
5000 stochastic simulations. We consider two arrangements of the compartment sizes
for n = 3: constant from C0 to C3 (N0 = 65, N1 = 65, N2 = 65, N3 = 65) and
increasing from C0 to C3 (N0 = 20, N1 = 40, N2 = 80, N3 = 120). (a) The time to
observe a second mutant for both architectures and a high value of the proliferation
probability, v = 0.9. The mean time for constant and increasing architectures is 3.38
and 3.41 respectively; the p−value obtained in the t−test is p = 0.0023, indicating
that the means are different. (b) Same as (a) with a small value of the proliferation
probability, v = 0.1. The mean time for constant and increasing architectures is
3.68 and 3.61 respectively; the p−value obtained in the t−test is < 0.001, indicating
that the means are different. (c) and (d) The time to observe a second mutant for
a constant and increasing architecture, respectively, for small and high v. In these
simulations u = 0.001.
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(a) (b)

Figure 2.9: Distribution of the generation times to second mutation, obtained from
stochastic simulations, in the case where v depends on the compartment sizes. We
perform 5000 stochastic simulations and compare two arrangements of the compart-
ment sizes: (a) constant compartment size (red bars) and increasing (blue bars); (b)
decreasing (red bars) and increasing (blue bars). Compartment sizes are as in figure
2.8 and C.3. The proliferation probabilities are v1 = 1, v3 = 0, vi = Ni

Ni+Ni−1
, i = 1, 2.

We assume n = 3 and u = 0.001. In part (a), the mean time to a two-hit mutant
for constant and increasing architecture is 3.6387 and 3.5997 respectively; the p value
obtained by t-test is p < 0.001. In part (b), the mean time to a two-hit mutant for
decreasing architecture is 3.7232; the p value obtained by t-test is p < 0.001.
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2.4 Discussion

In this chapter we considered the dynamics of mutant accumulation in hierarchical

tissues under homeostatic turnover. What tissue architecture can be considered opti-

mal from the viewpoint of minimizing mutations? We have focused our attention on

two aspects of tissue architecture: (1) probability of proliferations/differentiations of

cells in compartments; and (2) compartment size.

The first aspect is the probability of cells in each compartment to proliferate.

Proliferation division is one way of replenishing cells that have been removed (by

differentiation) from the compartment; the other way is to replace “missing” cells by

a differentiation division from an upstream compartment. Therefore, by changing the

probability of proliferation (as opposed to differentiation) we change the probability

that an upstream compartment will be engaged, thus changing the length of a typical

hierarchical division tree. We have found that increasing v (the probability of prolif-

eration) results in two clear tends: (i) the trees get shorter and it becomes unlikely

to acquire a mutation in more primitive compartments, and (ii) mutations that are

generated are flushed out more slowly from the non-stem cell compartments, and

tend to accumulate (at least, transiently). This interesting trade-off results in differ-

ent “optimal” solutions, depending on the objective of optimization. If the goal is to

minimize the total number of one-hit mutants residing long-term in all compartments,

relatively large values of v are desirable. If on the other hand we want to protect the

stem cell compartment, then low values of v are superior. Finally, from the point of

view of two-hit mutant generation, again lower values of v are advantageous.

The latter result is important in the context of tumor suppressor gene inactiva-

tion, which is a common event in carcinogenesis. In tumor suppressor genes, such

as the APC gene that is inactivated in a large fraction of colorectal cancers, or Rb

gene responsible for retinoblastoma, both copies must be inactivated for the result-

ing cell to acquire a phenotypic change that eventually may lead to cancer. Tumor
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suppressor gene inactivation is often considered an early event in cancer progression,

and therefore a delay in this event is of crucial importance for evolution. Our analysis

indicates that in order to delay tumor suppression gene inactivation in a hierarchical

tissue, mitotic activities must be concentrated near the stem cell. This finding co-

incides with in vivo measurements performed in [22, 34], where divisions were more

often observed near the bottom of the hierarchical compartment.

Other, indirect pieces of evidence pointing toward the protective potential of cell

division regulation come from studies that investigate the connection between loss of

differentiation and cancer. Our result that small values of the proliferation proba-

bility v lead to double-hit mutant suppression is consistent with the findings of [35],

who reported that overexpression of protein kinase CβII induced colonic hyperprolif-

eration, and thus, increased the risk of colon carcinogenesis. This behavior has also

been observed in other types of cancers, where a disruption in differentiation patterns

might increase the risk of cancer [33, 36–39]. Tenen [40] explained that the loss of dif-

ferentiation is an important component of many cancers, specifically, haematopoietic

transcription factors are crucial for differentiation to particular lineages, and their dis-

ruption is critical in acute myeloid leukemia (AML) development. Researchers have

also found that mutations related to brain cancer and leukemia cause the production

of an enzyme that can reconfigure on–off switches across the genome and stop cells

from differentiating [41–43].

We should also discuss this result in the context of the previous theoretical work by

[5] and [8]. In both of these papers, variants of a linear model of the colon were inves-

tigated, where individual cells were arranged in a linear array and where dividing cells

pushed out their neighbors upstream [44]. Interestingly, while both papers found that

divisions near the stem cell compartment (the “bottom-high” division distribution)

resulted in lowering the risk of secondary mutations experienced by existing one-hit

mutants, the overall two-hit mutant generation was found by [8] to be accelerated in

this case (and the “top-high” division distribution, where most divisions happen near
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the top, was shown to lead to a delay in two-hit mutant production). This pattern is

different from the result reported in the present model, and the difference stems from

the modeling assumptions: the linear model was adopted by [5, 8], whereas a model

with separate compartments that experience a certain degree of mixing was consid-

ered here (similar in spirit to metapopulation models that are often used in population

biology, see e.g. [45–48]). In the present model, the linear arrangement is not 1-cell

thick, but instead, there is a possibility that mutants can accumulate, or “get stuck”,

in a compartment that has a size greater than one cell. This is in contrast to the

linear model, where such a possibility does not exist, and each mutant will inevitably

be pushed toward death at the top of the crypt in a regular fashion. The tendency

of mutants to accumulate in the presence of a large proliferation probability discov-

ered in the present setting, points toward a possibility that is ignored in the linear

models. In a sense, this is similar to the differences between one-dimensional spatial

population models on the one hand, and two-/three-dimensional population models

or metapopulation models on the other, see also [49, 50] for discussion of these issues.

Mutant spread is greatly restricted in one-dimensional geometry, whereas there are

different ways to spread in higher dimensions or in metapopulations.

The second aspect of architecture investigated here is the arrangement of com-

partment sizes. It is physiologically determined that the top compartment containing

the most mature cells performing their function in the organ, must be the largest.

Under this restriction, there is a great variety of ways in which sizes of consecutive

compartments can be arranged. In this paper we show that the size of the upstream

compartments matter when it comes to delaying mutant production in a hierarchi-

cal tissue. We found that the smaller the differences in the relative compartment

size, the longer it takes on average to generate a double-hit mutant. This suggests

the existence of evolutionary pressure to equalize compartment sizes to facilitate the

flushing out of mutant cells.

Next, we would like to interpret our model and its implications in the broader
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context of tissue architecture and the development of multicellular organisms. We

can view tissue as the “functional unit” consisting of the physiologically necessary,

fully mature cells, and a “support unit” consisting of less differentiated cells that do

not perform the same function but are there to support and replenish the cells from

the functional unit. The question then becomes, how to best organize the support

unit that maintains a certain number of “functional” cells, see also [11, 51]. As

one extreme scenario, one can envisage a great number of very short division trees

where more or less each mature cell is replenished by divisions of its own stem cell.

At the other extreme, it could happen that all the mature cells are replenished by

means of an enormously long division tree, and are all part of the same large lineage

stemming from a common SC. Our model is capable of distinguishing between these

two extreme possibilities (and the whole range of intermediate possibilities). If 2n cells

are removed, the longest division tree has length n and the shortest has length 1. If

v = 0, then the longest tree is always utilized. If v = 1, then only the shortest trees are

activated, and only cells in one upstream compartment (compartment Cn−1) divide.

If this was the evolutionarily preferable scenario, this would mean that compartment

Cn−1 is essentially the SC compartment, and that only one division step separates

SCs from fully differentiated cells. If an intermediate value of v was selected, then

the size of stem cell lineage would be defined by the length of a typical division tree

corresponding to this value of v, and the upstream compartments that hardly ever

divide would eventually be eliminated. Our results point towards the evolutionary

utility of lengthening of stem cell lineages, because decreasing v leads to an increase in

the two-hit mutant generation time. This process of lengthening of stem cell lineages

however has to be limited by other factors, such as geometric constraints and the

necessity of spatial distribution of lineages (for example colon crypts).

Incidentally, our result whereby lengthening of the SC lineages is preferred, is

again different from the previous one obtained in [51], for the same reason that was

highlighted above: the present model allows for mixing in the compartments, whereas
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the older model of [51] is rigid in the same way as the linear model of [5] (although it

is not a linear model but rather a sequence of deterministic divisions on a binary tree,

where randomness only comes about when creating de-novo mutations, see [20]).

The hierarchical model considered here, although less rigid in terms of division pat-

terns compared with the linear model of [5] and the binary model of [51], is obviously

still a simplification of reality. There are many extensions that can be introduced into

this model. Somatic mutations are not necessarily neutral, they might be disadvanta-

geous, or advantageous. In this context, a fitness advantage or disadvantage might be

assigned to mutants to study how it impacts the mutant population. Another impor-

tant feature that could be added to our model is a replication capacity. This could be

done by assigning a maximum number of divisions to each compartment, which would

definitely have an impact on the type of chains of differentiation observed and there-

fore, on mutant development. It has been shown that a finite, and relatively small,

replication capacity (between 50 and 70 divisions [52]) is a mechanism of protection

against cancer in hierarchically organized tissues [32].

Finally, we note that the present model takes the metapopulation approach to

spatial relationships among cells. It can be refined by adopting a fully spatial, two-

or three-dimensional description, for example, a cellular automaton or a hybrid model

with a degree of cell migration included. It will be interesting to see how the proper-

ties of this model change under such a refinement. The main finding of the present

model is that lowering the probability of proliferation in each compartment and com-

pensating by differentiations in longer division trees leads to a delay in two-hit mutant

generation. We predict that this result should continue to hold in the fully spatial

case.
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Optimal homeostatic cell renewal

under a selective pressure

3.1 Introduction

During homeostasis, cell replacement in some hierarchically organized tissues is neu-

tral [28, 29]. When mutations arise, they likely confer a fitness advantage or dis-

advantage to the cells. It is well known that tissues evolve to minimize the risk of

accumulation of mutations to prevent cancer [2, 9, 53]. Multiple mechanisms of pro-

tection against cancer have been identified such as the hierarchical organization of

most tissues, the proliferation patterns for self-renewal, slow division rates, and the

type of cell division [1–8].

Most hierarchically organized tissues are composed of a small number of quiescent

and active stem cells, a relatively large pool of transit amplifying cells (TACs), and

mature differentiated cells. Cells in the mature differentiated part of the hierarchy

are constantly discarded and replenished to maintain homeostasis. This is a process

carried out by TACs and stem cells which replace those discarded cells via different
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patterns of cell proliferation and differentiation. The spatial organization of most

tissues works together with cell division patterns to delay the onset of cancer [5, 8, 13].

It has been shown that proliferation patterns with division activity near the stem cell

compartment are optimal to eliminate single mutants in colonic crypts [5], whereas

Shahriyari and colleagues [8] recently showed that proliferation patterns with activity

in more mature compartments are optimal to delay the accumulation of double-hit

mutants in the colon and the intestinal crypts. How spatial organization, division

patterns and selection interact to delay the accumulation of mutations is a question

that is far from being fully understood.

Tissues can be suppressors or amplifiers of selection. A suppressor of selection

reduces the probability of fixation of advantageous mutations and increases the prob-

ability of fixation of disadvantageous mutations [54]; while an amplifier acts in the

reverse direction. Hindersin and colleagues [55] showed that in systems that are

composed of few cells, amplification or suppression of selection are a result of subtle

changes in the tissue architecture. In this context, graph theory has been an impor-

tant tool to investigate tissue architecture and natural selection [54]. For example,

the linear process or directed line where the first cell is the root and every cell can only

replace its immediate successor has been shown to be a suppressor of selection [9].

This linear process has been applied to the colon crypts [5], although other directed

and undirected graphs have also been investigated in the colonic crypts [55]. Ideally,

if most of the mutations are advantageous, the tissue should act as a suppressor of

selection to minimize the risk of cancer. On the other hand, if most of the mutations

are deleterious, tissues should evolve and act as amplifiers of selection to minimize the

accumulation of such mutations, and therefore, the loss of functionality. Whether a

tissue should be a suppressor or amplifier of selection is a complex question that does

not have a simple answer. It depends on tissue architecture, and we hypothesize that

it also depends on the division patterns observed while the tissue is renewing. We

consider an optimal strategy as one where the accumulation of one-hit or second-hit
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mutants is minimized.

In chapter 2 we propose a model for tissue renewal where a fixed number of cells

is discarded in the compartment of mature differentiated cells. This triggers chains

of differentiations which can be short, implying that most of the activity is in the

more differentiated cells, intermediate, or long, implying that the stem cell compart-

ment participates in cell division more often. In this chapter, we examine whether

this model is a suppressor or amplifier of selection. Specifically, we investigate how

changes in the organization of compartment size impact the growth of advantageous

and disadvantageous mutations. In addition, we study how advantageous and disad-

vantageous mutations grow under different patterns of proliferation/differentiation.

This allows us to study tissue renewal under different proliferation patterns, different

tissue architectures and different fitness values, which are key to understanding when

tissue renewal becomes an amplifier or suppressor of selection. Thus we investigate

biologically relevant scenarios that could put the tissue at risk of failure, which would

indicate that the tissue does not evolve accordingly to maintain functionality.

We start by investigating the accumulation of one-hit mutants with a given fitness

advantage or disadvantage in large and small systems using an ODE approximation

and stochastic simulations. We also explore the time to observe a second-hit mutant.

In these investigations, we study the role of tissue architecture and proliferation pat-

terns for different values of the fitness parameter. We find that the hierarchically

organized tissue is a strong suppressor of selection. In the context of second-hit mu-

tant production, an architecture with a small number of SCs and larger number of

TACs, and long chains of differentiation could be optimal to minimize the risk of

cancer by means of minimizing the time for a second mutation to occur.
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3.2 Methods

We propose a compartmental model to study the role of mutant fitness during home-

ostatic cell renewal in hierarchically organized tissues. We use the results obtained in

chapter 2, where we derived an approximation of the expected number of mutants in

compartment Ci, i = 0, . . . , n, given that 2n cells are discarded in compartment Cn.

This approximation was derived by adding the expected number of mutants produced

by each chain of differentiation to every compartment. The difference with respect

to the previous model is that the probability of choosing a mutant for reproduction

is proportional to both the frequency of mutants in the population and the fitness of

mutants, r. We assume that neutral mutations have fitness r = 1, disadvantageous

mutations have fitness r < 1 and advantageous mutations have fitness r > 1. We

propose a model where mutants have the same fitness during their entire life span

and only one type of mutation can occur. Although this represents a simplification,

the approach allows us to study how a specific type of mutation accumulates in a hi-

erarchically organized tissue undergoing cell renewal. For example, for a tissue with 4

compartments, the dynamics of the expected number of mutants, mi, in compartment

i are given by

ṁ3 = 8(u+ µ2(1− u)− µ3), (3.1)

ṁ2 = 4[u(1− µ1 + v(2− 3v + 4v2 − 2v3)(1 + µ1 − 2µ2)) (3.2)

+(1− v)2(1 + 2v2)(µ1 − µ2)],

ṁ1 = 2(1− v)6(u+ µ0(1− u)− µ1) + 4u(2− v)(1− v)4v(1− µ1) (3.3)

+4uv(2− 3v + v3)(1− µ1),

ṁ0 = 2u(1− v)6(1− µ0). (3.4)

where the probability of choosing a mutant for reproduction is defined as

µi =
rmi

rmi + wi
, i = 0, . . . , n (3.5)
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where wi = Ni−mi is the number of wild type cells in compartment Ci. Ni represents

the size of compartment i, i = 0, . . . , n, v is the proliferation probability, and u is the

mutation rate. For this approximation, we use sampling with replacement, a method

identical to that utilized when neutral mutations were investigated. Similar to our

study in chapter 2, we will apply this approximation to systems with large population

sizes where mutants grow in a deterministic fashion, such as the haematopoietic

system, and, under certain assumptions, we also apply it to small systems where

mutations are rare events.

To investigate the dynamics of disadvantageous and advantageous mutations for

systems with small population sizes such as the small intestine, stochastic simulations

are also performed. We perform stochastic simulations in scenarios where mutants

have an advantage or disadvantage for different values of the proliferation probability.

In addition, different arrangements of the population sizes are studied. The stochastic

simulations are fully described in chapter 2, section 2.2.4, where the model for optimal

tissue renewal in hierarchical tissues was introduced. In the stochastic simulations,

sampling without replacement is used, so that the probability to select a mutant with

fitness r in compartment i during a division event is given by

µi =
rmi

rmi + wi
, i = 0, . . . , n,

where wi is the number of wild type cells in compartment i. In this case, wi + mi is

different to Ni, which is observed when sampling is done without replacement.

3.3 Results

3.3.1 The ODE approximation

Using the ODEs (3.1-3.4), the model is investigated in a scenario where mutants with

a fitness advantage or disadvantage are constantly produced, which requires systems
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with large population sizes and (or) high mutation rates. We investigate the dynamics

of the ODE approximation for advantageous and disadvantageous mutations in a large

system. In figure 3.1 we plot the total number of mutants as a function of the fitness

parameter r obtained by solving the ODE approximation for increasing and constant

architectures. Initially, for an increasing architecture, the number of advantageous

mutations will be larger than the number of disadvantageous mutations (figure 3.1,

top panels). However, as time increases, the number of advantageous mutations

becomes smaller than the number of disadvantageous mutations. Eventually, all types

of mutations will reach similar numbers (figure 3.1, bottom panels). This indicates

that the tissue is a strong suppressor of selection because it reduces the probability

of fixation of advantageous mutants. This is confirmed by examining the steady state

of the ODEs, mi = Ni, i = 0, . . . , n, which is independent of the fitness value, r.

Interestingly, we observe that when the population sizes in all 4 compartments are

equal (Ni = 277750, i = 0, . . . , 3), even for small times, the total number of mutants

decays as the fitness parameter r increases. As time increases, the qualitative behavior

of the scenario with constant architecture is identical to the scenario with increasing

architecture (figure 3.1).

Although the number of mutants reaches a steady state value that is independent

of fitness, we observe that the transient dynamics are greatly influenced by other key

components of the model: specifically the proliferation probability, v, and the tissue

architecture. As we found for neutral mutations, the value of v that minimizes the

number of advantageous or disadvantageous mutations is time dependent. As time

increases, the optimal v is shifting towards an intermediate or high value of v. We

observe that in the long run, small values of v produce the largest number of mutants,

which is similar to the result we obtained for neutral mutations (figure 3.2). Regard-

ing the tissue architecture, we observe that the transient dynamics of all mutants is

characterized by a greater accumulation of mutations when the compartment sizes

increase from the stem cell compartment to the mature compartment. These dynam-
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ics are the same as we observed for neutral mutations. In section 3.3.2 we present

further details about the role of tissue architecture.

3.3.2 Fitness in a stochastic regime

In this section we investigate small systems where mutations with a given fitness are

rare events. If we assume that once a mutant is generated, no more mutations occur,

u = 0, we obtain a similar system of ODEs to the one obtained for neutral mutations.

If we further assume that vi = 0, i = 1, . . . , n− 1, we arrive at

ṁ0 = 0,

ṁ1 = 2

(
rm0

rm0 +N0 −m0

− rm1

rm1 +N1 −m1

)
,

ṁ2 = 4

(
rm1

rm1 +N1 −m1

− rm2

rm2 +N2 −m2

)
,

ṁ3 = 8

(
rm2

rm2 +N2 −m2

− rm3

rm3 +N3 −m3

)
,

...

The steady states are identical to those found for neutral mutations:

mk = m0
Nk

N0

. (3.6)

Thus, the steady state does not depend on r as was found for large systems (section

3.3.1), where the number of mutants reached a steady-state value independent of the

fitness parameter. This confirms the role of the tissue as a suppressor of selection,

because the probability of fixation is independent of the fitness parameter, r. In gen-

eral, if the proliferation probabilities vi are non-zero, the steady state is unchanged,

although the values of vi delay or accelerate the growth rate of mutants. High values
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Figure 3.1: The total number of mutants as a function of the fitness parame-
ter r, obtained from the ODE approximation for different values of the prolif-
eration probability v and two architectures. We consider a scenario of 4 com-
partments with populations increasing from compartment C0 to compartment Cn
(N0 = 103, N1 = 104, N2 = 105, N3 = 106) and a tissue architecture with constant
compartment sizes (Ni = 277750, i = 0, . . . , 3). Each panel represents different time
values. The mutation rate is u = 10−3 and n = 3.

of v delay the rate at which mutants are flushed out, but eventually fewer mutants

are produced; on the other hand, small values accelerate the rate at which mutants

are flushed out, although the probability of fixation in all compartments increases.

The role of v is independent of the fitness of the mutants, even though the transient

dynamics of mutations with a given fitness advantage or disadvantage are time depen-

dent. Stochastic simulations also reflect the same behavior: eventually high values of

v will accumulate fewer mutants than small values of v (figure 3.3).

From the stochastic simulations we also find that disadvantageous mutations ac-

cumulate slightly more than advantageous mutations. Although, as time increases,
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Figure 3.2: The total number of mutants as a function of the proliferation probability
v, obtained from the ODE approximation for different values of the fitness parameter
r and two architectures. We consider a scenario of 4 compartments with populations
increasing from compartment C0 to compartment Cn (N0 = 103, N1 = 104, N2 =
105, N3 = 106), and a tissue architecture with constant compartment sizes (Ni =
277750, i = 0, . . . , 3). Each panel represents different time values. The mutation rate
is u = 10−3 and n = 3.

all types of mutation reach similar numbers, as was found in the ODE approximation

for the deterministic regime. As we observed in previous chapter, arrangements of the

populations where compartment sizes decrease from the stem cell compartment to the

top mature differentiated compartments are preferred to delay the accumulation of

one-hit mutants (see figure 3.1). These observations are confirmed by the stochastic

simulations, where for the two values of r investigated (r = 0.7 and r = 1.3), these

patterns hold (figure 3.4).
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Figure 3.3: Comparing small and high values of v for increasing and constant ar-
chitectures, and advantageous and disadvantageous mutants from 1000 stochastic
simulations. (a) Small (solid lines) versus high (dashed lines) values of v for increas-
ing architecture (N0 = 20, N1 = 40, N2 = 80, N3 = 120) and two values of the fitness
parameter r. (b) Small (solid lines) versus high (dashed lines) values of v for con-
stant architecture (N0 = 65, N1 = 65, N2 = 65, N3 = 65) and two values of the fitness
parameter r. The mutation rate is u = 10−3 and n = 3.

3.3.3 Fitness and second-hit mutants

We now allow for the possibility of a second mutation to occur. We study this sce-

nario via stochastic simulations; we track the time when a second mutation occurs

and immediately stop the simulation. We start by comparing different values of r

for a given architecture and proliferation probability v. In this section, we used the

two-sample t-test to compare the obtained p-values. Interestingly, we find that with

increasing architecture (figure 3.5(a,b)), there is no significant difference in the mean

time to observe a second mutation when comparing advantageous and disadvanta-

geous mutations for both high v (p = 0.4314) and small v (p = 0.8231). On the other

hand, for constant architecture (figure 3.5(c,d)), advantageous mutations produced

second-hit mutants faster than disadvantageous mutants for high v (p = 1.27×10−4).

46



Chapter 3. Optimal homeostatic cell renewal under a selective pressure

Figure 3.4: Comparing increasing and constant architectures for advantageous and
disadvantageous one-hit mutants. The mean of the total number of mutants from
1000 stochastic simulations. (a) Increasing (solid lines) versus constant architecture
(dashed lines) for a small value of v and two values of the fitness parameter r. (b)
Increasing (solid lines) versus constant architecture (dashed lines) for a high value of
v and two values of the fitness parameter r. In both panels, black lines correspond to
deleterious mutations (r = 0.7) and red lines correspond to advantageous mutations
(r = 1.3). For constant architecture, the compartment sizes are N0 = 65, N1 =
65, N2 = 65, N3 = 65, and for increasing architecture, the compartment sizes are
N0 = 20, N1 = 40, N2 = 80, N3 = 120. The mutation rate is u = 10−3 and n = 3.

For small v (p = 0.0854) there is no significant difference in the mean time. Signifi-

cant differences in the mean time to observe a second-hit mutant were also observed

when we investigated a decreasing architecture. For small v, advantageous mutants

produced a second-hit mutant faster than deleterious mutants (p < 0.0001, figure

3.6(b)), and for high v, disadvantageous mutants produced second-hit mutants faster

than advantageous mutants (p = 0.0213, figure 3.6(a)).

The results described above provide important insights into the role of tissue ar-

chitecture in minimizing cancer risk. When a second mutation occurs, the increasing
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Figure 3.5: Comparing advantageous and disadvantageous mutants. Distribution
of the time to observe a second mutation, obtained from 5000 stochastic simula-
tions. (a) and (b) Comparing advantageous and disadvantageous mutations for
increasing architecture and high and small v, respectively. (b) and (d) Compar-
ing advantageous and disadvantageous mutations for constant architecture and high
and small v, respectively. For constant architecture, the compartment sizes are
N0 = 65, N1 = 65, N2 = 65, N3 = 65, and for increasing architecture, the com-
partment sizes are N0 = 20, N1 = 40, N2 = 80, N3 = 120. The mutation rate is
u = 10−3 and n = 3.

architecture with a small number of stem cells, which is the typical organization of

tissues such as the colon and the small intestine, manages to keep the distribution

of time to observe a second-hit mutant the same for both advantageous and delete-

rious mutations. This indicates the robustness of the increasing architecture and its

role in minimizing the risk of cancer. On the other hand, when this architecture is

altered, so that the stem cell compartments have larger population sizes, then advan-

tageous mutants could increase the time to observe a second mutation compared to

disadvantageous mutants, or vice versa depending on the proliferation value and the

compartment architecture. Under these circumstances, there would be an increased

chance of fixation of advantageous or deleterious mutations, which might put the
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Figure 3.6: Comparing advantageous and disadvantageous mutants for decreasing ar-
chitecture. Distribution of the time to observe a second mutation from 5000 stochastic
simulations. (a) and (b) Comparing advantageous and disadvantageous mutations for
decreasing architecture and high and small v, respectively. The compartment sizes
are N0 = 120, N1 = 80, N2 = 40, N3 = 20. The mutation rate is u = 10−3 and n = 3.

tissue at risk. Therefore, an increasing architecture seems to be a good evolutionary

strategy, which combined with “the best” proliferation pattern, can minimize the risk

of cancer.

Similar to what we found for neutral mutations, small values of v delay the time

to observe a second-hit mutant compared to high values (figure 3.7, for all panels,

p < 0.05). Importantly, this result holds for all architectures considered, and both ad-

vantageous and disadvantageous mutations. Therefore, an optimal strategy to delay

the time to observe a second-hit mutant, which would be equivalent to minimizing

the risk of cancer, corresponds to long chains of differentiation where the division

activity is near the stem cell compartment.
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Figure 3.7: Comparing small and high values of v, for increasing and constant ar-
chitectures when mutants are advantageous or disadvantageous. Distribution of the
time to observe a second mutation from 5000 stochastic simulations. (a) and (b)
Comparing small and high values of v for advantageous mutations and increasing and
constant architectures, respectively. (c) and (d) Comparing small and high values of
v for disadvantageous mutations and increasing and constant architectures, respec-
tively. For all panels, the mean time to two-hit mutants is larger for small v and the
p-values of the t-test performed on the log-transformed data are less than 0.05. For
constant architecture the compartment sizes are N0 = 65, N1 = 65, N2 = 65, N3 = 65
and for increasing architecture, N0 = 20, N1 = 40, N2 = 80, N3 = 120. The mutation
rate is u = 10−3 and n = 3.

3.4 Discussion

We propose a model to study homeostatic cell renewal under a selective pressure. The

model incorporates key variables for cell renewal such as tissue architecture, prolifer-

ation patterns and a fitness value. This allows us to study different optimal strategies

that delay the accumulation of one- and two-hit mutants when mutations gain a fit-

ness advantage or disadvantage during cell division. During cell renewal, tissues can

be suppressors or amplifiers of selection. We find that whether the tissue becomes an
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amplifier or suppressor of selection is strictly related to the tissue architecture and

the proliferation patterns considered.

First, we discuss the results in terms of accumulation of one-hit mutants. We

find that the steady state of the system is independent of the fitness parameter and

is identical to the steady state found for neutral mutations, which depends on the

probability of fixating the stem cell compartment so that mutations arising in a

compartment different to the stem cell compartment are flushed out of the hierarchy.

This demonstrates that the tissue is the strongest suppressor of selection in the sense

that it reduces the probability of fixation of mutants in the stem cell compartment

to a value 1
N0

, where N0 is the size of the stem cell compartment. Our model is

somewhat similar to the linear model proposed by [5], which is a structure that was

found to suppress selection [9, 54]. Our model differs from the linear model in the

sense that it can be thought of as a metapopulation-style model. In the linear model,

cells are arranged in a 1-cell thick chain, in which mutants are pushed toward the

top of the hierarchy where they are discarded. In our model, mutants still “travel”

from the stem cell compartment to the top compartment, but on the way they can

accumulate in all compartments, which is not captured by a one-dimensional array.

The transient dynamics are characterized by greater accumulation of advantageous

mutants for early times, and as time increases, deleterious mutants reach similar (or

higher) numbers. We interpret this result in terms of cell aging and cancer risk. It

is well known that cancer incidence increases with age. As cells age, they lose fitness

and are more likely to get damaged, which translates into loss of functionality of the

tissue and a higher risk of mutations [56–59]. This indicates that the ability of the

tissue to maintain fitness is crucial to minimize cancer risk [59]. Many long-lived

multicellular organisms such as large animals like whales and elephants, have evolved

highly fit stem cell populations, which leads to lower cancer incidence, despite having

larger stem cell pools which makes them a larger target for mutations [59].
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When we study second-hit mutants, we observe that tissue architecture plays a key

role in delaying the time to observe a second-hit mutant. First, we found that with

an increasing architecture, deleterious and advantageous mutations produced two-hit

mutants almost at the same times, which indicates that an increasing architecture

is a robust evolutionary strategy in terms of minimizing cancer risk. This could be

explained by the fact that in an increasing architecture, the stem cell compartment

has a small number of cells, which makes it a smaller target for oncogenic mutations.

Also, when mutations arise, they are more likely to be pushed toward the top of the

hierarchy where they have a higher chance to be eliminated. On the other hand,

when we considered a constant architecture (with a larger stem cell pool compared

to an increasing architecture), we observed that advantageous mutants could produce

a second-hit mutant faster than deleterious mutants when the value of v was high,

indicating an amplification of selection, which could be a dangerous situation for

the tissue. When a decreasing architecture was considered, advantageous mutants

produced mutants faster than disadvantageous mutants for small values of v, and the

opposite occurred for high values of v, when disadvantageous mutants produced a

second-hit mutant faster. Thus, an increase in the stem cell pool could compromise

the functionality of the tissue by making it a larger target for oncogenic mutations.

This is emphasized for constant and decreasing architectures, where short chains of

differentiation could lead to hyper-proliferation, which is associated with an increased

risk of cancer [33, 35–39]. In addition, for all tissue architectures investigated, small

values of v (corresponding to long chains of differentiation) delayed the time to observe

a second-hit mutant compared to high values of v (short chains of differentiation).

This suggests that proliferation patterns where the division activity is concentrated

near the stem cell compartment are optimal to minimize cancer risk. This is explained

by the fact that small values of v increase the rate at which mutants are flushed out,

which reduces the accumulation of mutants.

In the model presented here, mutations are assumed to have a single identical
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fitness value for all time. An interesting addition to our model would be to investigate

the effects of a fitness parameter that changes as a function of time. This would

be a more realistic assumption given that as cells age, their fitness is reduced [59].

We hypothesize that our model would predict an increase in mutant accumulation

as fitness decreases with time, as observed in the current model when deleterious

mutations were investigated. Again, this would be associated with a higher risk of

cell damage, which can make oncogenic mutations more likely to occur. Another

feature that could be added is the possibility of having deleterious and advantageous

mutants simultaneously, which is not currently allowed in our model. This could be

done by assigning a different fitness value to cells, depending on the position in the

hierarchy. Stem cells could have the largest fitness value, and the higher the position

in the hierarchy is, the less fit cells would be.

Overall, we find that hierarchically organized tissues are suppressors of selection,

whereby an increasing architecture (small number of stem cells) and small values of

v (long differentiation trees) are robust evolutionary strategies to minimize the time

to observe a second-hit mutant. This can be associated with a reduction in the risk

of cancer, given that two mutations are enough to initiate a tumor for certain cancer

types such as colon cancer.
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Chapter 4

A theoretical model of immune

checkpoints

4.1 Introduction

In the last decade, the immune system has been proven to play a crucial role in the

fight against cancer. Cancer immunotherapy, consisting of treatments that stimulate

the body’s own immune defenses, has become an important alternative and com-

plement to traditional treatments such as chemotherapy. Immunotherapy includes

several different types of treatments such as monoclonal antibodies, cancer vaccines

and immune checkpoint inhibitors. Despite the success of immunotherapy, the design

of these treatments remains challenging, and several situations can lead to failure.

Understanding the interactions between the immune system and tumor cells is cru-

cial when designing these types of treatments. In this regard, mathematical modeling

is a powerful tool that can help to disentangle this complex process and to design

better cancer treatment strategies.

An immune response against cancer is a complex process which requires the co-
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operation of different cell types and involves a variety of molecular mechanisms. The

immune system deploys an innate immune response that provides an early defense

against pathogens but it is the adaptive immune response that is capable of resolving

diseases [60]. Cytotoxic T lymphocytes, killer T cells that are part of the adaptive

immune system, are able to fight cancer once they are activated. The activation and

down regulation of T cells to trigger an immunologic response against cancer cells

is orchestrated by several costimulatory and inhibitory signals together with anti-

gen presentation to T cells, which is carried out by antigen presenting cells (APCs)

[61–66].

In figure 4.1, we illustrate this process: tumor cells display antigen, and APCs,

such as dendritic cells, intake antigen and present it to the T cells in the context of

a major histocompatibility complex (MHC) molecule. Then, a costimulatory signal

is activated when the ligand B7 in the APC binds the receptor CD-28 in the T cell

[61]. Early after activation of T cells, immune checkpoints or negative signals are

activated, which downregulate the immunologic response. The most studied immune

checkpoints in clinical trials are cytotoxic T lymphocyte antigen 4, CTLA-4 [67–73]

and the programmed cell death protein, PD-1 [74–78]. There are other immunologic

checkpoints that have been tested and likely many that remain unknown [79–81].

Expression of the CTLA-4 antigen is initiated upon T cell activation, and it traf-

fics to and accumulates in the immunological synapse, eventually attenuating or pre-

venting CD28 costimulation by competition for B7 binding and negative signaling

[82–87]. PD-1 is also an inhibitory program of T-cell activity at a variety of stages of

the immune response when it interacts with its two ligands PD-L1 and PD-L2 [88–

90]. PD-L2 is predominantly expressed in APCs, whereas PD-L1 can be expressed

in many cell types, including cells of the immune system, epithelial cells, endothelial

cells, and tumor cells. PD-1 does not outcompete CD28 for binding to B7, as CTLA-4

does, but it inhibits T cell responses by interfering with T cell receptor signaling. An

extensive review of the immune checkpoints CTLA-4 and PD-1 can be found in [91].
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From a modeling perspective, the immune response can be thought of as a bal-

ance between positive and negative signals: positive signals upregulate production of

T cells after they encounter APCs, whereas negative signals are initiated after the

activation of T cells to downregulate T cells and maintain immunological homeosta-

sis. In previous theoretical studies, little attention has been paid to understanding

the interactions between positive and negative signals: it is assumed that tumor cells

can impair the immune response, but additional pathways that can lead to its down-

regulation are ignored. Most of the attention has been focused on understanding the

role of antigen presentation by APCs and investigating how dendritic cell vaccina-

tion (DCV) can help to stimulate antigen reception by T cells during immunotherapy

[92–95]. Wodarz and Jansen [92] found that an immunologic response will be acti-

vated and sustained if the rate of antigen presentation/reception is relatively high.

The stimulation of antigen presentation by APCs to T cell receptors might be done

through a vaccine [96, 97], but if the immune checkpoints are activated, this could

potentially result in the increase of an inhibitory signal, as suggested by [98].

Our goal is to describe, with a simple mathematical model, the effects of antigen

presentation of APCs to T cells and the interaction of costimulatory and negative

signals (immunologic checkpoints). We also investigate the role of the initial number

of tumor and immune cells, because, for example, the absolute count of T lympho-

cytes is regarded as a positive bio marker during immunotherapy. Specifically, we

address three broad questions: Under what conditions can an immune response be

sustained in the presence of costimulatory and inhibitory signals? Is stimulation of

antigen reception signaling beneficial in the presence of inhibitory signals that acti-

vate proportionally to the encounter of loaded dendritic cells and T cells? How do

initial populations of immune cells and tumor cells affect an immune response in the

presence of costimulatory and inhibitory signals?

In this chapter, we first study the system at equilibrium and characterize 3 dif-

ferent types of equilibria. We then investigate how cancer and immune cell dynamics
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Figure 4.1: T cell activation and immune checkpoints. In order to activate, a T cell
requires antigen presentation by antigen presenting cells (APCs) through a major
histocompatibility complex (MHC) molecule and a costimulatory signal mediated by
B7 molecules in the APCs and the receptor CD-28 in the T cell. Early after acti-
vation, several inhibitory pathways are initiated, which downregulate T cell function
to maintain immunological homeostasis. The diagram illustrates how the immune
checkpoint, CTLA-4, is activated and one of the possible pathways of the immune
checkpoint, programmed cell death PD-1. This figure is a combination of figure 1 in
[65] and figure 1 in [98].

are affected by the rate of antigen reception and by the presence of costimulatory

and inhibitory signals. In addition, we examine how the initial tumor size, the initial

number of dendritic cells and the initial count of T cells impact the tumor cell dynam-

ics during an immunologic response in the presence of costimulatory and inhibitory

signals. Finally, we perform a sensitivity analysis to investigate the effects of key

parameters on our results.
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4.2 Methods

4.2.1 The Model

We construct a system of ordinary differential equations that describes the inter-

actions between a growing tumor cell population and a tumor-specific response by

cytotoxic T lymphocytes (CTL) under the action of positive signals and inhibitory

signals known as immunologic checkpoints. Our model is similar to that proposed by

Wodarz and Jansen [92], and it captures the basic interactions between the immune

system and tumor cells represented in other models such as [93]. In [92], it is assumed

that tumor cells impair the immune response through an inhibitory signal that occurs

after a T cell encounters a tumor cell, but this is only one of the possible ways in

which the PD-1 inhibitor might be activated. In our model we also include the effect

of an inhibitory signal that might occur after a positive signal is activated when a T

cell encounters a loaded APC. This is how the CTLA-4 immunologic checkpoint is

activated, and also one of the possible ways in which the immune checkpoint PD-1

protein is activated. We also model the effect of inhibitory signals differently from

[92]. In [92], the inhibitory signal activates proportional to the encounter of T cells

(T) and cancer cells (C) and directly reduces the population of activated T cells at

the rate qTC, where q represents the rate at which cancer cells remove T cells. In

our model, increasing the inhibitory signal reduces the activation rate of T cells in-

stead of directly reducing the number of activated T cells. This accounts for different

effects of inhibitory pathways, such as impairing T cells from recognizing tumor cells

or undergoing cell division.

The model consists of 4 variables: tumor cells directly displaying antigen, C;

antigen-presenting cells (APCs), A; loaded APCs, D; and activated T lymphocytes,

T, which are able to kill cancer cells. The dynamics of these populations over time is
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described by the following system of differential equations:

Ċ = rC

(
1− C

k

)
− γTC

Ȧ = λ− αAC − δ1A

Ḋ = αAC − δ2D

Ṫ =
psTD

b1βTC + b2sTD + n
− uT.

(4.1)

The parameter r represents the maximum per capita growth rate of tumor cells; k

is the carrying capacity (in the absence of killer T cells); and γ is the killing rate when

a killer T cell encounters a tumor cell. APCs are produced at a constant rate λ, they

intake antigen and become loaded at rate α and die at rate δ1. Loaded APCs die at

rate δ2. We propose that the rate of activation of T cells is proportional to the ratio

of positive to negative signals ( psTD
b1βTC+b2sTD+n

). After the encounter of an inactivated

T cell with loaded APCs, a positive signal is activated. This is represented by term

psTD in system (4.1). Immune checkpoints downregulate T cells proportionally to

the encounter of T cells and tumor cells and to the encounter of T cells and APCs, this

includes the pathways through which CTLA-4 and PD-1 activate. The parameters b1

and b2 represent the strength of the inhibitory signals and the parameter p represents

the strength of the positive signal. The rate of antigen presentation/reception is

represented by s and the rate at which the tumor cells impair the immune response

is represented by β. The parameter n represents an additional inhibitory pathway. T

cells die at a rate u. We estimate some parameter values from the literature, which

are based on studies of melanoma in mice. For those parameters for which there is

no estimate, we perform a sensitivity analysis over a parameter range that produces

biologically relevant values. The description and units of all parameters are in Table

4.1.
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4.2.2 Equilibria

We investigate the equilibrium points of the system (4.1) as a function of the negative

signals b1 and b2, the positive signal p, and the rate of antigen reception s, which are

the parameters of interest in this investigation because they are the key parameters

in the activation/production of killer T cells. There are three biologically relevant

equilibrium points obtained by solving the system (4.1): the point

E1 = (C∗, A∗, D∗, T ∗) =

(
0,
λ

δ1
, 0, 0

)
(4.2)

corresponds to immunity, an outcome in which tumor cells are cleared. It is straight-

forward to show that this equilibrium point is always locally unstable when the in-

trinsic growth rate of the tumor cells is positive (r > 0).

One of the outcomes in which tolerance of tumor cells is reached corresponds to

the saturation of tumor cells and the disappearance of T cells:

E2 = (C∗, A∗, D∗, T ∗) =

(
k,

λ

αk + δ1
,
αk

δ2

λ

αk + δ1
, 0

)
(4.3)

This equilibrium point is stable if

D∗ =
αk

δ2

λ

αk + δ1
<
un

ps
(4.4)

This condition implies that saturation of tumor cells is stable if the number of

loaded APCs remains below a threshold which increases for a small costimulatory

signal p and a small rate of antigen presentation/reception s.

The other equilibrium points are the solution of a cubic equation (E.4). For

more details about the equilibrium points and stability see appendix E. From our

simulations, we obtain only one more biologically relevant equilibrium point, in which

tumor cells lie between C∗ = 0 and the carrying capacity C∗ = k, we name it E3.

The existence and stability of E3 and whether E3 corresponds to saturation of tumor
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cells, an intermediate value of tumor cells or immunity depends on the parameter

combinations considered.

4.2.3 Initial conditions

We investigate the role of initial conditions during an immune response in the presence

of costimulatory and inhibitory signals. We start by varying the initial tumor size

and compare the tumor dynamics for different values of the inhibitory signals b1 and

b2 while the positive signal p is fixed. Then, we vary the initial number of loaded

APCs to simulate how dendritic cell vaccination impacts the immune response in

the presence of costimulatory and negative signals. Lastly, we investigate how the

initial number of activated T cells affects the tumor dynamics in the presence of

costimulatory and inhibitory signals.

4.2.4 Sensitivity analysis

We perform a sensitivity analysis in which we simultaneously vary the following key

parameters of the model: the net growth rate of tumor cells, r, the killing rate of tumor

cells, γ, the rate of antigen intake, α, the rate of antigen reception, s, the negative

signals, b1 and b2, the positive signal, p, and the strength of additional inhibitory

pathways, n. We perform 5000 simulations using latin hypercube sampling within

uniform parameter ranges in a logarithmic scale that produce biologically relevant

outcomes (see table 4.1). All simulations are performed in MATLAB and Statistics

Toolbox Release 2014a, The MathWorks, Inc., Natick, Massachusetts, United States.
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Table 4.1: Model parameters

Notation Description Value, Units and
Reference

Range for
Sensitivity
Analysis

r Net growth rate of tu-
mor cells

0.3954 day−1 [93] [10−6, 1]

k Carrying capacity of tu-
mor cells

109cells [93]

γ Killing rate when a T
cell encounters a tumor
cell

8 × 10−3 cell−1 day−1,
assumed

[10−3, 1]

λ Rate of production of
dendritic cells

2.4388 × 104cell day−1

[93]
α Rate of antigen uptake varies, cell−1 day−1 [10−9, 1]
δ1 Death rate of dendritic

cells
0.2310 day−1 [99]

δ2 Death rate of loaded
dendritic cells

0.2310 day−1 [99]

u Death rate of T cells 0.1199 day−1 [99]
p Strength of positive sig-

nal
varies, cell day−1 [10−3, 1]

b1 Strength of inhibitory
signal proportional to
encounter of dendritic
and T cells

varies, dimensionless [10−8, 1]

b2 Strength of inhibitory
signal proportional to
encounter of tumor and
T cells

varies, dimensionless [10−8, 1]

s Rate of antigen recep-
tion

varies, cell−1 day−1 [10−5, 1]

β Rate at which tumor
cells impair T cells

9.42× 10−12cell−1day−1

[100]
n Additional inhibitory

signal
1 cell day−1, assumed [10−1, 10]
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4.3 Results

4.3.1 Immune response dynamics at equilibrium

Equilibria as a function of positive and negative signals

The equilibrium point E1, corresponding to immunity, is unstable (for r > 0) and

exists for all values of the strength of costimulatory and negative signals. The equi-

librium point E2, representing saturation of tumor cells, also exists for all values of

the costimulatory and inhibitory signals, and its stability does not depend on b1 and

b2 (see equation (4.4)). Therefore, we restrict our investigation to the equilibrium E3,

which is the equilibrium value where the number of tumor cells lie between immunity

and saturation and whose stability does depend on the inhibitory signals (b1 and b2),

as well as the rate of antigen reception s, and the costimulatory signal p, among other

parameters.

First, we investigate the strength of the negative signal activated after a T cell

encounters a tumor cell (b1) and the strength of the negative signal activated after an

APC presents antigen to T cells (b2). In figure 4.2(a), we vary the negative signals

b1 and b2, while the positive signal p is fixed at p = 0.1. As b1 and b2 increase and

cross a threshold, tumor cells approach their carrying capacity (figure 4.2(a)). In the

parameter region explored, we observe that E3 is unstable for small values of b1 and b2.

As b1 and b2 increase and cross a threshold, E3 becomes stable. Note that the effect

of b1 on the number of tumor cells is smaller compared to b2, which is explained by

the assumption that tumor cells impair T cells at a very low rate, β = 9.42× 10−12.

In the parameter regions investigated in figure 4.2(a), the equilibrium point E2 is

unstable.

In figure 4.2(b) we vary the positive signal p while b1 = b2. By doing this, we

study how tumor cells corresponding to E3 vary as function of the positive and
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(a) (b)

Figure 4.2: Bifurcation diagrams illustrating the number of tumor cells at the equi-
librium point E3 as a function of the negative signals b1, b2 and the positive signal p.
The orange and green regions represent the parameter values for which the equilib-
rium point E3 is stable and unstable, respectively. (a) Varying the negative signals
b1 and b2 while p = 0.1, s = 2 × 10−5, α = 10−5. (b) Varying the positive signal p
while b1 = b2 and s = 10−3, α = 10−9. The rest of the parameter values are fixed, see
table 4.1.

negative signals, simultaneously. The equilibrium value E3 decreases as we increase

the positive signal p (figure 4.2(b)) when both negative signals b1 and b2 are relatively

small. Once b1 = b2 increases and crosses a threshold, tumor cells reach values close

to their carrying capacity despite high values of p. A similar behavior occurs for

stability; E3 is stable provided that b1 = b2 is relatively high.

The rate of antigen presentation/reception and b2

In figure 4.3, we plot a bifurcation diagram of the equilibrium point E3, as a function

of the rate of antigen presentation/reception s and the strength b2 of the inhibitory

pathway which activates proportional to s and the encounter of T and loaded APCs.

We remark that E3 can get values close to E1 and coincides with E2 depending on

the parameter combinations considered. We set b1 = 0 and p = 1, so that we can
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Figure 4.3: Bifurcation diagram of the number of tumor cells corresponding to the
equilibrium point E3 lying between saturation and immunity, as a function of the
rate of antigen reception s and the inhibitory signal b2. The orange and green regions
represent the parameter values for which the equilibrium point E3 is stable and
unstable, respectively. Parameters used: b1 = 0, p = 1, α = 10−9. The rest of the
parameter values are described in table 4.1.

study the joint effect of s and the negative signal b2.

We observe that when s is near zero, tumor cells reach high values even for a small

inhibitory signal b2. As s increases, tumor cells remain at intermediate numbers as

long as the inhibitory signal b2 remains below a threshold. Interestingly, as b2 increases

and crosses a threshold, the number of tumor cells increases approaching saturation

very quickly, despite a relatively high rate of antigen reception (figure 4.3). Once

b2 increases and crosses a threshold, the equilibrium E3 becomes stable. Thus, the

stimulation of antigen presentation/reception becomes ineffective if the strength of

an inhibitory pathway that activates after the encounter of loaded APCs and T cells

is relatively high.
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4.3.2 Dynamics of immune responses as a function of nega-

tive and positive signals

We investigate the effects of the costimulatory and inhibitory signals on the type

of immunologic responses observed under different scenarios. The initial conditions

are taken as follows: (C,A,D, T ) = (106, 104, 10, 10). We assume that initially, the

number of loaded dendritic cells and activated T cells are small compared to the

initial tumor size. In section 4.3.3 we further examine the role of initial conditions

during an immunologic response to cancer.

How do costimulatory and inhibitory signals shape an immunologic re-

sponse?

Here, we fix the strength of the positive signal p and examine the temporal dynamics

as we vary the strength of the negative signals b1 and b2. If the inhibitory signals

are weak (so that immune checkpoints inhibit T cell activation partially) there is an

immune response and the tumor cell population is reduced, then the tumor population

grows again, is reduced and the pattern repeats with time (figure 4.4(a)). Tumor cells

oscillate and the period of these oscillations increases as we decrease the strength of

the negative signals b1 and b2, meaning that tumor cells can remain at small number

for longer time periods as long as the inhibitory signals remain small. If we increase

the negative signals b1 and b2, the number of cancer cells exhibit damped oscillations

that eventually reach high or intermediate values (figure 4.4(b)). If we consider a

larger value of the negative signals b1 and b2, cancer cells approach saturation very

quickly (figure 4.4(c)). T cells remain at very small numbers when the negative signals

are large. Thus, a positive signal is effective as long as the negative signals are small

enough, i.e, the immune checkpoints must be blocked in order to clear tumor cells.

Notice that in figure 4.4, tumor cells show stable oscillations or tumor cells approach

their carrying capacity, which corresponds to a stable equilibrium. This is related
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(a) b1 = 0.005, b2 = 0.005 (b) b1 = 0.01, b2 = 0.01 (c) b1 = 0.1, b2 = 0.1

Figure 4.4: The effect of increasing negative signals on the temporal dynamics of
tumor and immune cells. In (a) b1 = b2 = 0.005; (b) b1 = b2 = 0.01; (c) b1 = b2 =
0.1. The initial population sizes are C(0) = 106, A(0) = 104, D(0) = 10, T (0) =
10. Parameters used: p = 0.1, s = 10−3, α = 10−9. In all panels, the green line
corresponds to loaded dendritic cells, the blue line corresponds to T cells, and the
black line corresponds to tumor cells. The rest of the parameter values are described
in table 4.1.

to the results in section 4.3.1, where we find stable equilibrium points for relatively

high values of the strength of the negative signals. As the negative signals decrease,

it is possible to find unstable oscillatory solutions, as observed when we investigated

the temporal dynamics for smaller values of b1 and b2, and under different initial

conditions (see section 4.3.3).

The observations above are also confirmed when we investigate the value of the

first peak of tumor cells, the time it takes tumor cells to reach the first peak and the

value of the maximum peak of tumor cells as a function of the inhibitory signals b1 and

b2 in the time interval [0, 400] days. When the inhibitory signals are small, the value

of the first and the maximum peaks of tumor cells are relatively small compared to

the high inhibitory signals (figure 4.5, center and bottom panels). Notice that when

b2 is high, tumor cells reach values close to saturation independently of the value

of b1, while for b1 tumor cells reach values close to saturation as long as b2 is also

high. As explained earlier, we are assuming that tumor cells impair T cells at a very

low rate, β = 9.24 × 10−12, which diminishes the effect of the negative signal with
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Figure 4.5: The first peak, the time to reach the first peak and the maximum peak
as a function of the negative signals b1 and b2. The time interval is [0, 400] days. The
initial population sizes are C(0) = 106, A(0) = 104, D(0) = 10, T (0) = 10 and the
parameters used are p = 0.1, s = 10−3, α = 10−9. The rest of parameter values are
described in table 4.1.

strength b1. In figure 4.4 above, we only observed stable solutions. If we consider

smaller values of the negative signals as we did in figure 4.5, we also observe that the

maximum peak of tumor cells is a non monotonic function of the negative signals,

indicating the existence of unstable oscillatory solutions. These oscillatory solutions

are also observed in section 4.3.3 where we investigated the role of initial conditions.
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4.3.3 The role of initial conditions

In this section, we explore the effects of assuming different initial values of tumor

cells, loaded APCs and T cells with varying values of the strengths of costimulatory

and inhibitory signals. Overall, we find that the initial sizes of these cell populations

alter only the transient dynamics of the immune response, indicating that the signals

involved in the activation/downregulation of T cells are more determinant in shaping

the long-term immune response to cancer.

Tumor size

We investigate the impact of different initial tumor sizes for different values of the

negative and positive signals. In figure 4.6 we consider five different initial tumor

sizes while we vary the negative signals b1 and b2. Under the action of negative and

costimulatory signals, different initial tumor sizes have a similar qualitative behavior.

If the negative signals are relatively high and the initial T cell population is small

T (0) = 10, tumor cells saturate very quickly or remain at an intermediate value for

all initial tumor sizes considered (figure 4.6(a), top and center panel). When the

negative signals are smaller, tumor cells grow initially, but as time increases they are

“cleared out” during a long time period (figure 4.6(a), bottom panel). Tumor cells

are not fully eliminated, and eventually they will peak again, but as a long as the

inhibitory signals remain small, they will not be able to saturate or remain at high

numbers.

In figure 4.6(b), we plot the time it takes the number of tumor cells to reach the

first peak, the value at the first peak and the maximum value of the peak of tumor

cells observed in the time interval [0, 400] days, as a function of the negative signal b2

while b1 = 10−4. We observe that the value of the first peak of tumor cells increases

as we increase the negative signal b2 for all initial tumor sizes considered (figure

4.6(b), center panel), together with the time to reach the first peak (figure 4.6(b),
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Figure 4.6: Varying the initial tumor size. (a) The top panels, the center panels, and the
bottom panels correspond to b1 = b2 = 0.5, b1 = b2 = 0.01 and b1 = b2 = 10−4, respectively.
(b) The top panel, the center panel and the bottom panel correspond to the time to reach
the first peak, the first peak and the maximum peak of tumor cells, respectively, as a
function of the negative signal b2 while b1 = 10−4. The time interval is [0, 400] days. The
initial number of APCs, loaded APCs and T cells are A(0) = 104, D(0) = 10, T (0) = 10,
respectively. Parameters used: p = 0.05, s = 10−3, α = 10−9. The rest of the parameter
values are described in table 4.1.

top panel). Small initial tumor sizes take longer to reach the first peak (figure 4.6(b),

top panel). In general, the maximum peak of tumor cells increases as b2 increases,

although for small values of b2, tumor cells can reach large values indicating that

even a low inhibitory signal can lead to a high number of tumor cells. Increasing the

initial number of tumor cells alters the transient dynamics of the immune response.

However, whether the response is sustained is controlled by the signals involved.
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Figure 4.7: Varying the initial number of loaded dendritic cells. (a) The top panels, the
center panels and the bottom panels correspond to b1 = b2 = 0.5, b1 = b2 = 0.01 and
b1 = b2 = 10−4, respectively. (b) The top panel, the center panel and the bottom panel
correspond to the time to reach the first peak, the first peak and the maximum peak,
respectively, as a function of the negative signal b2 while b1 = 10−4. The time interval is
[0, 400] days. The initial number of tumor cells, APCs and T cells are C(0) = 106, A(0) =
104, T (0) = 10, respectively. Parameters used: p = 0.05, s = 10−3, α = 10−9. The rest of
parameter values are described in table 4.1.

Varying the initial number of loaded APCs

Antigen presenting cells are able to present antigen to T cells so that T cells activate

and kill tumor cells. In figure 4.7, we study 5 different values for the initial number

of loaded APCs while we vary the inhibitory signals b1 and b2. If the negative signals

are relatively high, increasing the number of APCs has no effect; tumor cells reach

saturation very quickly or remain at intermediate values (figure 4.7(a), top and center

panels). When the negative signals are smaller, even a small number of initial loaded

APCs can help to maintain tumor cells at small numbers for long time periods (figure

4.7(a), bottom panel).

In figure 4.7(b), we plot the time it takes for tumor cells to reach the first peak,
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the value of the first peak and the value of the maximum peak of tumor cells in the

time interval [0, 400] days as a function of the negative signal b2 while b1 = 10−4. The

value of the first peak and the time to reach the first peak increase as b2 increases

(figure 4.7(b), top and center panels); the time to reach the first peak is longer for a

larger initial number of loaded APCs. We observe that as b2 increases and reaches a

threshold, all initial numbers of APCs reach similar values for the first peak and the

maximum peak of tumor cells (figure 4.7(b), center and bottom panels).

Thus, increasing the initial number of APCs helps to maintain tumor cells at

small numbers if the inhibitory signals are small. This is important because it suggests

that immunotherapy via dendritic cell vaccination is successful as long as the immune

checkpoints are successfully blocked. We remark that under the presence of inhibitory

signals, increasing the initial number of dendritic cells is able to modify the transient

dynamics of the immune response. The final outcome of the immune response is

ultimately controlled by the different signals activating and downregulating T cells.

Initial count of activated T cells

We investigate 5 values of the initial number of T cells for different values of the neg-

ative signals while the positive signal p is fixed. When the strength of the negative

signals is relatively high, the outcome is saturation or tumor cells reach an interme-

diate value (figure 4.8(a), top and center panels). We observe that a larger initial

number of T cells delays the time for tumor cells to reach saturation or an interme-

diate value. When the strength of the negative signals are smaller, even a relatively

small number of T cells is able to maintain tumor cells at very small numbers for long

periods of time (figure 4.8(a), bottom panel).

When we examine the first peak of tumor cells and the time to reach it, we find

that a relatively large initial number of T cells significantly delays the time to reach

the first peak, which holds independently of the value of the inhibitory signal b2
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Figure 4.8: Varying the initial number of T cells. (a) The top panel, the center panel
and the bottom panels correspond to b1 = b2 = 0.5, b1 = b2 = 0.01 and b1 = b2 = 10−4,
respectively. (b) The top panel, the center panel and the bottom panel correspond to
the time to reach the first peak, the first peak and the maximum peak of tumor cells,
respectively, as a function of the negative signal b2 while b1 = 10−4. The time interval
is [0, 400] days. Parameters used: p = 0.05, s = 10−3, α = 10−9. The rest of parameter
values are described in table 4.1. The remaining initial populations are C(0) = 106, A(0) =
104, D(0) = 10.

(figure 4.8(b), top panel), in fact, for the largest value of the initial number of T cells

considered, T (0) = 3×103, a peak was not observed in the parameter region explored

in the time interval [0, 400] days. For small values of b2, a small initial number of T

cells can reach the highest peak; as b2 increases, tumor cells reach a similar value of

the highest peak for all initial values of T cells considered.

Therefore, an effective immunologic response is more likely if the initial count of

activated T cells is relatively large. In fact, when the inhibitory signals are small,

tumor cells can be cleared for long time periods, which could mean an increase in

survival times of a patient with cancer. This reveals the role of the absolute T
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lymphocyte count as a bio marker associated with immunotherapy success.

4.4 Assessing parameter uncertainty

We perform a sensitivity analysis in which we simultaneously vary the key parameters

of the model. Specifically, we vary the net growth rate of tumor cells r, the killing

rate of tumor cells γ, the rate of antigen intake α, the rate of antigen reception s,

the strength of the negative signals b1 and b2, the strength of the positive signal p,

and the strength of the additional inhibitory signals n. We perform 5000 calculations

using latin hypercube sampling. The parameter ranges are given in table 4.1.

In figure 4.9, we plot the resulting distribution of the number of tumor cells at

equilibrium E3, which lies between immunity and saturation (it can reach saturation

(E2) and values close to immunity (E1), as observed before). We investigate combi-

nations of parameter sets that produced biologically relevant outcomes (non-negative

number of cells). Approximately 32% of these parameter combinations resulted in

a number of tumor cells below one, and only 6% resulted in values above 108, so

there is approximately 62% percent of intermediate values. We found that 80% of

the simulations producing biologically relevant outcomes resulted in an unstable equi-

librium, and thus, 20% in a stable one. Most of the unstable solutions correspond

to an intermediate or a small number of tumor cells. In addition, we find that all

values above 108 are stable, indicating that once the tumor reaches high values, it

will remain there. We also mention that 15% of the 5000 parameter sets produced a

number of tumor cells greater than their carrying capacity, which is associated with

the lowest values of the positive signal p and the rate of antigen reception s. These

simulations were not considered given that they correspond to a negative number of

T cells.

Overall, we observe that if we allow all important parameters in the model to

74



Chapter 4. A theoretical model of immune checkpoints

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.002

0.004

0.006

0.008

0.01

0.012

Tumor Cells

P
er

ce
nt

ag
e

Figure 4.9: Sensitivity analysis. Histogram of the number of tumor cells for the
equilibrium value E3. We simultaneously vary the net growth rate of the tumor, r,
the killing rate of tumor cells, γ, the rate of antigen intake, α, the rate of antigen
reception, s, the strength of the negative signals, b1 and b2, the positive signal, p, and
the strength of additional inhibitory signals, n. The parameter ranges and the values
of the fixed parameters are presented in table 4.1.

vary in a broad range, the number of tumor cells at equilibrium E3 varies from small

values (immunity), through intermediate values to values close to saturation. Most

of the intermediate and small values of tumor cells are unstable, while all values close

to saturation are stable.

4.5 Discussion

We propose a model that describes the role of antigen presentation, costimulatory

(positive) signals, and inhibitory (negative) signals during the activation of T cells

capable of killing tumor cells. There are two key differences between the model

presented here and most of the previous work that has modeled an immunologic

response to cancer. First, we assume that tumor cells are not the only cells capable of

impairing an immunologic response. Thus, we include a term in which the encounter

of APCs with T cells also activates an immune checkpoint. Second, we propose that
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killer T cells increase at a rate determined by a balance between positive and negative

signals, so that the regulatory feedback upregulates or downregulates the activation

of new killer T cells.

We find that the relative strength of positive and negative signals plays a crucial

role when triggering T cells to fight tumor cells. When the strength of the costimu-

latory signal is low, we observe that even a low inhibitory signal can lead to tumor

cells remaining at relatively large numbers. This is consistent with the finding that

the stimulation of molecules providing positive signals for T cell activation is cru-

cial in the modulation of an immune response [63, 101–104]. When the strength of

the costimulatory signal is high enough, T cells are able to trigger and sustain an

immunologic response, but this depends on the strength of the inhibitory signals,

because tumor cells can remain at high numbers when the inhibitory pathways are

also high. Therefore, if a positive signal is maintained and the inhibitory pathways

are successfully blocked, T cells can trigger and sustain an immunologic response,

which is consistent with the increasing survival rates achieved by blocking immune

checkpoints [68, 70, 105–109].

T cells require antigen presentation to activate. The question is how much anti-

gen presentation is optimal given that an inhibitory pathway activates after APCs

present antigen to T cells. We observe that increasing the rate of antigen reception

is not effective when the strength of this inhibitory pathway is high. This might

explain why immunotherapy via stimulation of antigen receptor signaling can fail in

sustaining an immunologic response to cancer over longer time periods. Our finding

agrees with Sharma and Allison who suggest that over-stimulation of antigen recep-

tion signaling might be counter-productive to T cell activation if it is administered

when the immune checkpoints are activated [98]. This challenges one of the premises

under which antigen stimulation is currently deployed, and suggests that stimulation

of antigen reception and blockade of immune checkpoints can be more effective if both

are targeted simultaneously.
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In addition, we studied the role of the initial sizes of immune and tumor cells

on the dynamics of the immunologic response. Specifically, we investigated den-

dritic cell vaccination (DCV) by varying the initial number of loaded APCs. We

found that DCV has an effect on the transient dynamics of an immune response if

it is administered when the strength of the inhibitory signals is low. This suggests

that immunotherapy via DCV can be successful if immune checkpoints are blocked,

otherwise, DCV could be counterproductive because it will enhance the strength of

the inhibitory pathway initiated after the antigen presentation by dendritic cells to

T cells. The initial count of activated T cells also plays an important role in the

transient dynamics of an immune response. We found that a relatively large initial

number of activated T cells can significantly delay tumor cell growth, even in the

presence of inhibitory signals. In fact, when the inhibitory signals are low, a small

initial number of activated T cells can keep tumor cells at very small numbers. This

is consistent with findings from clinical studies that the absolute lymphocyte count

is a positive biomarker associated with longer survival rates during immune check-

point blockade [69, 110]. Overall, varying the initial number of tumor, dendritic and

T cells altered only the transient dynamics of the immune response, indicating that

costimulatory and inhibitory signals are the key determinants for the final outcome

of an immunologic response against cancer.

Finally, we discuss the limitations and potential extensions of our model. In our

study, we used parameter estimates from melanoma in mice (for those parameters

for which there is information in the literature, see table 4.1 for more details). The

appropriate time scale is days, which would likely be different for data from human

patients because many biological processes occur faster in mice than in humans. In

order to account for the uncertainty in the model parameters, which could reflect

tumor and patient variability, we perform a sensitivity analysis. This analysis lead to

a variety of outcomes: from a small number of tumor cells, to intermediate values and

finally tumor cells reaching their carrying capacity. Particularly, we notice that when
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tumor cells reach high numbers close to saturation, the equilibrium E3 was stable,

which indicates that once tumor cells reach high numbers, they will remain there.

When we investigated the temporal dynamics of immune responses for small values

of the strength of the negative signals b1 and b2, in certain scenarios we observed that

tumor cells oscillated between high and very small values. Perhaps, in a stochastic

framework, once tumor cells reach very small values, these scenarios would correspond

to full clearance of tumor cells which is not captured in our deterministic model. This

reveals the need for stochastic models that can capture other features of an immune

response against cancer, which are not observed under a deterministic framework. Our

model does not include all types of immune cells in an attempt to keep the model

analysis tractable, but it does include the main interactions between tumor cells and

immune cells. In practice, the success of an immunologic response to cancer depends

on other factors and it varies from patient to patient and between tumor types. The

expression of bio markers in addition to the absolute T lymphocyte count, might be

important to investigate. It has been suggested that the T cell receptor repertoire is

an important bio marker that could be associated with immunotherapy success [111].

Overall, our model offers potential explanations as to why some immunotherapy

treatments cannot sustain an immunologic response to cancer; it suggests that im-

munotherapy treatments that stimulate antigen reception signaling (up to a certain

rate) can maintain a response for longer time periods if the immune checkpoints are

blocked. Overstimulation might be counterproductive if the immune checkpoints are

activated.
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Conclusions

We have used mathematical modeling to gain insight into key mechanisms that shape

cancer dynamics. In chapter 2, we derived a compartmental model of homeostatic

cell renewal in hierarchical tissues described by a system of differential equations,

which predicts the expected number of mutants in each compartment by adding the

contributions of different chains of differentiation observed while a number of mature

cells is discarded in the top of the hierarchy. This allowed us to investigate the role of

different proliferation patterns and tissue architecture in the accumulation of one-hit

mutants. Overall, we find that if the optimization task is to delay the accumulation

of one-hit mutants, short chains of differentiation are better in the long run; on the

other hand, if the optimization task is to delay the time to observe a second-hit

mutant, long chains of differentiation are preferred, which is a more realistic measure

of cancer risk, given that for some cancers two mutations could be enough to initiate

a tumor. In chapter 3 we extend the model proposed in chapter 2 by adding a fitness

advantage/disadvantage to mutants. We find that the hierarchical tissue acts as a

suppressor of selection during homeostatic cell renewal. In addition, we found that the

combination of an increasing architecture and long chains of differentiation provides

a robust strategy when it comes to delaying the time to observe a second-hit mutant.
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Particularly, we found that increasing the stem cell pool could decrease the time to

observe a second-hit mutant, which can translate into a higher risk of cancer.

Finally, we proposed a model of an immune response to cancer where we show

the key role of costimulatory and inhibitory signals. The model allowed us to in-

vestigate different immunotherapy treatments and to study under which conditions

immunotherapy could succeed/fail. Overall, we find that treatments based on stimula-

tion of antigen reception signaling could be counterproductive if they are administered

when the immune checkpoints (inhibitory signals) are not blocked.
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Appendix A

Further analysis of the

deterministic mutant dynamics

Here we provide some analysis of the large mutation rate, large population regime

(Nu � 1). We investigate the total number of mutants as a function of the prolif-

eration probability v. As time increases, the total number of mutants decays with

v (figure A.1) but for some times, the total number of mutants is a non-monotonic

function of v. We observe that small values of the proliferation probability and val-

ues close to one produce the largest number of mutants. This might be explained

by the fact that when v is small, cell division occurs in more compartments due to

longer chains of differentiation, and thus, more compartments get saturated with mu-

tants, which becomes a permanent state of the system. For large values of v, the

division activity is concentrated in a single top compartment or in a small number

of top compartments with relatively large population sizes which leads to the rapid

accumulation of mutants in the top part of the tissue. These dynamics are transient

because as time increases the remaining compartments saturate, thus, small values

will eventually produce more mutants.

It appears that there is an optimal value of the proliferation probability v that
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Figure A.1: The total number of mutants as a function of the proliferation prob-
ability v from the ODE approximation. The total population size is assumed to
be 1, 111, 000 cells, the mutation rate is u = 10−3, and n = 3 (four compart-
ments). We compare the following architectures: increasing compartment sizes
(N0 = 103, N1 = 104, N2 = 105, N3 = 106, corresponds to the blue line), equal popu-

lation sizes (Ni =
Total Population

4
= 277750, i = 0, . . . , 3, corresponds to the black

line), and decreasing compartment sizes (N0 = 106, N1 = 105, N2 = 104, N3 = 103,
corresponds to the green line). We plot the total number of mutants as a function of
the proliferation probability v at different times.

delays the accumulation of mutations and it seems to be time dependent. We observe

that as time increases, the optimal value of v is shifting toward an intermediate or

higher value, figure A.1.

In figure A.1, we further investigate three types of tissue architecture as a function

of the proliferation probability. We find that a scenario of 4 compartments with

populations decreasing from compartment Cn to the stem cell compartment (N0 =

103, N1 = 104, N2 = 105, N3 = 106), accumulated more mutants than a scenario
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Figure A.2: The ODE mutant dynamics for 4 compartments, under two architectures.
Blue lines correspond to increasing compartment size: N0 = 40, N1 = 80, N2 =
120, N3 = 160, and green lines to the decreasing compartment sizes, N0 = 160, N1 =
120, N2 = 80, N3 = 40. The compartments are labeled C1, . . . , C4 to the left of the
lines. The other parameters are v = 0.1 and u = 0.1.

of 4 compartments with equal population sizes (Ni = 277750, i = 0, . . . , 3) or a

scenario where the population sizes decrease from the stem cell compartment to the

compartment with mature cells (N0 = 106, N1 = 105, N2 = 104, N3 = 103). This

dynamic is transient because the systems eventually reach the same steady-state

value, as observed in figure A.2.

Figure A.2 shows details of mutant accumulation dynamics for two opposing tissue

architectures: increasing compartmental sizes (blue) and decreasing compartmental

sizes (green). One can see that at first, the linear growth of mutants in each com-

partment is the same for both models; the stem cell compartment has the smallest

number of mutants while the mature compartment has the largest because of the

larger number of divisions in that compartment. Later on, however, differences in

the behavior of the two architecture types appear. In the system where the compart-

ment size increases from the stem cell compartment to the mature cell compartment

(blue), the smallest compartment is the most “protected” (has fewer divisions), and

the largest compartment has the easiest time accumulating mutations, therefore such
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a system is relatively efficient in mutation accumulation. In the opposite case (green),

the largest number of mutations has to accumulate in the most protected (stem cell)

compartment, and this naturally takes longer. While at the steady state, both sys-

tems have the same number of mutations, the transient behavior is characterized by

a smaller number of mutations in the architecture where compartment size increases

from Cn to C0.
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Comparison of the ODEs and

stochastic simulations for large

systems

The stochastic and deterministic models coincide in the regime where uN � 1, as

demonstrated in figure B.1. We compare the expected number of mutants predicted

by the ODEs with the mean number of mutants obtained from the simulations in

a deterministic regime and found that they both predict the qualitative behavior of

the model very well. The comparison was made for a scenario with 4 compartments

where the population sizes increase from the stem cell compartment to the fully

differentiated cell compartment (N0 = 103, N1 = 104, N2 = 105, N3 = 106).
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Figure B.1: Comparison between the average number of mutants from 1000 stochastic sim-
ulations without replacement and the expected number of mutants predicted by the ODE
approximation. (a) Comparing the number of mutants for a high value of the proliferation
probability, v = 0.9. (b) Comparing the number of mutants when the proliferation proba-
bility is small, v = 0.1. Solid lines correspond to the number of mutants in compartment
Ci, i = 1, . . . , 3, predicted by the ODE approximation (Ci ODE v = 0.1, for small v and Ci
ODE v = 0.9 for high v) and dashed lines correspond to the mean number of mutants in
compartment Ci from the stochastic simulations (Ci SIM v = 0.1, for small v and Ci SIM
v = 0.9 for high v). We assume n = 3, a mutation rate of u = 10−1, and the compartment
sizes are N0 = 103, N1 = 104, N2 = 105, N3 = 106.
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Further notes on the role of the

compartment size

In section 2.3.4, v and the compartment sizes are assumed independent, which might

be an over-simplification. Suppose that a number of cells differentiated out of the Ck

compartment. Then compartments Ck and Ck−1 might “compete” to fill the empty

spaces. It is possible that compartment Ck is small and Ck−1 is large (and crowded?).

In this case, differentiations from Ck−1 to Ck are preferred, and the probability of

proliferation, vk, is relatively low. One possibility is to set vk = Nk/(Nk +Nk−1), or,

more generally,

v0 = 1, vk =
Nβ
k

Nβ
k +Nβ

k−1
, 1 ≤ k ≤ n− 1, vn = 0. (C.1)

Again, the optimization task is to arrange the populations in the different compart-

ments to minimize mutation production. Figure C.1 illustrates some of the patterns

we have observed. It compares two opposite arrangements of compartment sizes, in-

creasing from N0 to Nn (blue lines), and decreasing from N0 to Nn (yellow lines). In

the example provided, the increase or decrease is exponential, but other laws have also

been investigated and give qualitatively similar results. According to formula (C.1),
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the increasing compartment architecture leads to higher values of v than decreasing

architecture.
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Figure C.1: Comparison of mutant dynamics for two different compartment size ar-
rangements: increasing compartment size Ni = 80ei+1 (blue lines), and decreasing
compartment size Ni = 80e5−i (yellow lines), for 0 ≤ i ≤ n = 4, m0 = 0.1. The rare
mutation limit is assumed. The probability of proliferation in each compartment, vk,
is determined by equation (C.1), where (a) β = 1, (b) β = 3, and (c) β = 5. The
values of vk are shown in the leftmost plots. The conditional probability that a mu-
tant is generated in each compartment (given that a mutant is generated) is plotted
in the middle graphs. The rightmost graphs show the relative number of mutants in
both systems as functions of time. Note that these graphs can only be interpreted
for purposes of comparison, not as absolute numbers.

Consider an extreme scenario where β → ∞ in (C.1). If the compartment size

grows from C0 to Cn, we have vk = 1 for 0 ≤ k ≤ n − 1, and only trees of length 1

exist. If the compartment size decreases from C0 to Cn, we have vk = 0 for 1 ≤ k ≤ n,
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and all the trees have length n.

For increasing compartment sizes, mutants can only appear in compartment Cn−1,

and they fixate with probability m0/Nn−1 (where m0 is the initial number of mutants),

such that the expected colony size is given by m0. For decreasing sizes, mutants can

appear in all compartments, but they are flushed out from any compartment except

from C0, where they fixate with probability 1/N0. So, only mutants that originate in

C0 can give rise to fixation in the state

m0

N0

n−1∑
k=0

Nk. (C.2)

The probability that a mutation occurs in compartment C0 (given that a mutation

occurs) is
1

1 +
∑n−2

i=0 2i
= 21−n. (C.3)

The product of factors (C.2) and (C.3) defines the long time behavior of the

mutant numbers for the decreasing compartment sizes in figure C.1, as β increases.

In the limit where β →∞, the increasing compartment system is characterized by a

constant (and equal to m0) number of mutants.

Finally, for completeness, we present stochastic simulations addressing the differ-

ences between the behavior of increasing and decreasing architecture structures. In

figure C.2, one-hit mutants are studied. This figure shows the same trends as fig-

ure 2.7, where increasing and constant architectures are compared; in figure 2.7, the

differences are more pronounced.

Figure C.3 studies two-hit mutant generation, and includes increasing and de-

creasing architectures. It should be compared with figure 2.8 (increasing and constant

architectures). Again, the same trends are observed, but the differences are larger in

the case of figure C.3.
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Figure C.2: Mean number of mutants from 1000 stochastic simulations. We com-
pare two arrangements of the compartment sizes: decreasing from C0 to C3 (N0 =
120, N1 = 80, N2 = 40, N3 = 20) and increasing from C0 to C3 (N0 = 20, N1 =
40, N2 = 80, N3 = 120). (a) The mean number of mutants produced in compart-
ments C0, C1, C2 and C3 for v = 0.9 (b) The mean number of mutants produced in
compartments C0, C1, C2 and C3 for v = 0.1. (c) The mean of the total number of
mutants comparing both architectures for v = 0.9 (blue line) and v = 0.1 (green line).
For all panels, solid lines correspond to decreasing architecture and dashed lines to
increasing architecture. We assume n = 3 and u = 0.001.
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Figure C.3: Distribution of the time to observe a second mutation from 5000 stochas-
tic simulations. We consider two arrangements of the compartment sizes: decreasing
from C0 to C3 (N0 = 120, N1 = 80, N2 = 40, N3 = 20) and increasing from C0 to C3

(N0 = 20, N1 = 40, N2 = 80, N3 = 120). (a) The time to observe a second mutant
for both architectures and a high value of the proliferation probability, v = 0.9. The
mean time for decreasing and increasing architectures is 3.32 and 3.41 respectively
(p < 0.001). (b) The time to observe a second mutant for both architectures and a
small value of the proliferation probability, v = 0.1. The mean time for decreasing
and increasing architectures is 3.73 and 3.51 respectively (p < 0.001). (c) The time
to observe a second mutant for a decreasing architecture for both small and high v.
We assume n = 3, u = 0.001.
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Further notes on tissue

architecture, division patterns and

fitness

We observe in the stochastic simulations that advantageous and disadvantageous

one-hit mutants reached similar numbers when a decreasing architecture was investi-

gated, with disadvantageous mutations accumulating slightly more mutants, specially

for high values of v (figure D.1(b)). This is similar to what we observed when we use

the ODE approximation for large systems, see figure 3.1. For small v, all types of

mutations reached identical numbers (figure D.1(a)). Clearly, a decreasing architec-

ture accumulates less mutants than an increasing architecture, similar to what was

observed for the ODE approximation (figure 3.1).

For second-hit mutants, increasing architecture did better delaying the time for

second-hit mutant compared to either constant or decreasing architecture for short

chains of differentiation (high values of v). In figure D.2 we compare increasing and

constant architectures. We find that for small values of v (panels c and d), constant is

better than increasing architecture for both advantageous and disadvantageous mu-
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Figure D.1: The mean of the total number of mutants that occur in increasing versus
decreasing architectures for different fitness values, based on 1000 stochastic simula-
tions. (a) Increasing architecture (N0 = 20, N1 = 40, N2 = 80, N3 = 120, solid lines)
versus decreasing architecture (N0 = 120, N1 = 80, N2 = 40, N3 = 20, dashed lines),
for small values of v and 2 values of the fitness parameter r. (b) Same as in (a) but
for a high value of v. The mutation rate is u = 10−3 and n = 3.

tants. For advantageous mutants, the mean times to a two-hit mutant for constant

and increasing architectures are 3.6798 and 3.5929, respectively, and for deleterious

mutants, the mean times for constant and increasing architectures are 3.6945 and

3.5948, respectively. For both panels, figure D.2(c,d), the p-value is less than 0.05,

which means that there is a significant difference in the mean times to observe a

second-hit mutant. Conversely, for high values of v, increasing architecture is better

than constant architecture only for advantageous mutations (figure D.2(a): the mean

times to a two-hit mutant for constant and increasing architectures are 3.3690 and

3.3953, respectively). For disadvantageous mutants there is no significant difference,

(figure D.2(b), p = 0.9235).
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A similar result was observed when we compared increasing and decreasing archi-

tectures. In this scenario, increasing was better than decreasing only for high values

of v for both advantageous and disadvantageous mutants (figure D.3). High values of

v can lead to hyperproliferation of cells, which can be a dangerous scenario. In this

context, an increasing architecture does a better job delaying the time to a second

mutation for high values of v and advantageous mutations. This can be interpreted

as an optimal evolutionary strategy to minimize cancer risk when differentiation is

lost.

Figure D.2: Comparing increasing and constant architectures for advantageous and
disadvantageous mutants. Distribution of the time to observe a second mutation from
5000 stochastic simulations. (a) and (b) Comparing increasing and constant architec-
tures for high v and advantageous and disadvantageous mutants, respectively. (c) and
(d) Comparing increasing and constant architectures for small v and advantageous
and disadvantageous mutants, respectively. For constant architecture, the compart-
ment sizes are N0 = 65, N1 = 65, N2 = 65, N3 = 65 and for increasing architecture,
N0 = 20, N1 = 40, N2 = 80, N3 = 120. The mutation rate is u = 10−3 and n = 3.
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Figure D.3: Comparing increasing and decreasing architectures for advantageous and
disadvantageous mutants. Distribution of the time to observe a second mutation
from 5000 stochastic simulations. (a) and (b) Comparing increasing and decreasing
architectures for high v and advantageous and disadvantageous mutants, respectively.
(c) and (d) Comparing increasing and decreasing architectures for small v and ad-
vantageous and disadvantageous mutants, respectively. For decreasing architecture,
compartment sizes are N0 = 120, N1 = 80, N2 = 40, N3 = 20 and for increasing archi-
tecture, N0 = 20, N1 = 40, N2 = 80, N3 = 120. The mutation rate is u = 10−3 and
n = 3.

96



Appendix E

Equilibria and stability for the

immune response model

The Jacobian of system (4.1) is given by

J =


r − 2rC

k − γT 0 0 −γC

−αA −αC − δ1 0 0

αA αC −δ2 0

−psb1βDT 2

(b1βTC+b2sTD+n)2
0 psT (b1βTC+n)

(b1βTC+b2sTD+n)2
psnD

(b1βTC+b2sTD+n)2
− u

 (E.1)

One of the equilibrium values obtained by setting system (4.1) equal to zero corresponds

to immunity, (C,A,D, T ) = (0, λδ1 , 0, 0). If we plug these values into equation (E.1), we

obtain

J(0,
λ

δ1
, 0, 0) =


r 0 0 0

−α λ
δ1
−δ1 0 0

α λ
δ1

0 −δ2 0

0 0 0 −u

 . (E.2)

The eigenvalues of this matrix are the diagonal entries, therefore, the equilibrium value

corresponding to immunity is unstable if r > 0.
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The equilibrium value corresponding to saturation of tumor cells is given by

(C,A,D, T ) = (k,
λ

αk + δ1
,
αk

δ2

λ

αk + δ1
, 0).

If we plug these values into equation (E.1), we get

J(k,
λ

αk + δ1
,
αk

δ2

λ

αk + δ1
, 0) =


−r 0 0 −γk

−α λ
αk+δ1

−αk − δ1 0 0

α λ
αk+δ1

αk −δ2 0

0 0 0 ps
n
αk
δ2

λ
αk+δ1

− u

 (E.3)

The eigenvalues of this matrix are all negative except for the eigenvalue

e =
ps

n

αk

δ2

λ

αk + δ1
− u,

which is negative if

D =
αk

δ2

λ

αk + δ1
<
un

ps
.

This is the stability condition for the equilibrium point where tumor cells reach saturation.

The other equilibrium values are given by

A =
λ

αC + δ1
, D =

αλC

δ2(αC + δ1)
, T =

r

γ

(
1− C

k

)
,

where C is a solution of the equation

f(C) =
ub1βrα

γk
C3 +

(
ub2srαλ

γδ2k
− ub1βr

γ

(
α− δ1

k

))
C2+(

psαγ

δ2
− ub1βrδ1

γ
− ub2rαλ

γδ2
− unα

)
C − unδ1 = 0.

(E.4)

This is a cubic equation as a function of C and solutions are obtained numerically. The

function f(C) must always have at least one real positive solution because f(0) < 0 and f →

+∞ as C → ∞ (the coefficient of C3 is positive for all positive values of the parameters).

The solution could be larger than k, in which case, T would be negative, which is not

biologically relevant. It is also straightforward to obtain conditions that guarantee the
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existence of a single real positive solution by inspecting the curvature of f . In general, if

f ′′(C) > 0 for all C ≥ 0, a single positive-valued solution always exists.

We find that

f ′′(C) =
6ub1βrα

γk
C + 2

(
ub2srαλ

γδ2k
− ub1βr

γ

(
α− δ1

k

))
(E.5)

Given that the first term in equation E.5 is always positive or zero when C ≥ 0, one

condition that guarantees the existence of a single real positive solution occurs when the

constant term is greater than zero, which implies that

sb2αλ− b1βkαδ2 + b1βδ1δ2 > 0. (E.6)
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[21] Dunn SJ, Appleton PL, Nelson SA, Näthke IS, Gavaghan DJ, Osborne JM. A two-

dimensional model of the colonic crypt accounting for the role of the basement mem-

brane and pericryptal fibroblast sheath. PLoS Computational Biology. 2012;8(5):1–20.

doi:10.1371/journal.pcbi.1002515.

[22] Buske P, Galle J, Barker N, Aust G, Clevers H, Loeffler M. A comprehensive model

of the spatio-temporal stem cell and tissue organisation in the intestinal crypt. PLoS

Computational Biology. 2011;7(1):1–13. doi:10.1371/journal.pcbi.1001045.

[23] van der Wath RC, Gardiner BS, Burgess AW, Smith DW. Cell Organisation in the

colonic crypt: a theoretical comparison of the pedigree and niche concepts. PLoS

ONE. 2013;8(9):1–15. doi:10.1371/journal.pone.0073204.

[24] Bravo R, Axelrod DE. A calibrated agent-based computer model of stochastic cell

dynamics in normal human colon crypts useful for in silico experiments. Theoretical

biology and medical modelling. 2013;10(66):1–24. doi:10.1186/1742-4682-10-66.

[25] Traulsen A, Lenaerts T, Pacheco JM, Dingli D. On the dynamics of neutral mutations

in a mathematical model for a homogeneous stem cell population. Journal of the Royal

Society. 2012;10:1–8. doi:10.1098/rsif.2012.0810.

[26] Pepper JW, Sprouffske K, Maley CC. Animal Cell Differentiation Patterns Sup-

press Somatic Evolution. PLoS Computational Biology. 2007;3(12):2532–2545.

doi:10.1371/journal.pcbi.0030250.

[27] Sprouffske K, Aktipis CA, Radich JP, Carroll M, Nedelcu AM, Maley CC. An evo-

lutionary explanation for the presence of cancer nonstem cells in neoplasms. Evolu-

tionary Applications. 2012;6:92–101. doi:10.1111/eva.12030.

102



REFERENCES

[28] Lopez-Garcia C, Klein AM, Simons BD, Winton D. Intestinal stem cell

replacement follows a pattern of neutral drift. Science. 2010;330:822–825.

doi:10.1126/science.1196236.

[29] Snippert HJ, Van Der Flier LG, Sato T, Van Es JH, Van Den Born M, Kroon-

Veenboer C, et al. Intestinal crypt homeostasis results from neutral competition

between symmetrically dividing Lgr5 stem cells. Cell. 2010;143(1):134–144.

[30] Simons BD, Clevers H. Strategies for homeostatic stem cell self-renewal in adult

tissues. Cell. 2011;145(6):851–862.

[31] Klein AM, Simons BD. Universal patterns of stem cell fate in cycling adult tissues.

Development. 2011;138(15):3103–3111.

[32] Rodriguez-Brenes IA, Komarova NL, Wodarz D. Cancer-associated mutations

in healthy individuals: assessing the risk of carcinogenesis. Cancer Research.

2014;74(6):1661–1669. doi:10.1158/0008-5472.CAN-13-1452.

[33] Merritt AJ, Potten CS, Watson AJ, Loh DY, Nakayama Ki, Nakayama K, et al.

Differential expression of bcl-2 in intestinal epithelia. Correlation with attenuation of

apoptosis in colonic crypts and the incidence of colonic neoplasia. Journal of Cell

Science. 1995;108:2261–2271.

[34] Potten CS, Kellett M, Rew D, Roberts SA. Proliferation in human gastrointestinal

epithelium using bromodeoxyuridine in vivo: data for different sites, proximity to a

tumour, and polyposis coli. Gut. 1992;33(4):524–529.

[35] Murray NR, Davidson LA, Chapkin RS, Gustafson WC, Schattenberg DG, Fields

AP. Overexpression of protein kinase C bII induces colonic hyperproliferation and

increased sensitivity to colon carcinogenesis. Journal of Cell Biology. 1999;145(4):699–

711.

[36] Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G, et al. AML1

ETO downregulates the granulocytic differentiation factor C/EBP α in t (8;21)

myeloid leukemia. Nature Medicine. 2001;7(4):444–451.

103



REFERENCES

[37] Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Behre G, et al. Dominant-

negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α

(C/EBP α), in acute myeloid leukemia. Nature Genetics. 2001;27:263–270.

[38] Pabst T, Mueller BU. Complexity of CEBPA dysregulation in human acute myeloid

leukemia. Clinical Cancer Research. 2009;15(17):5303–5307. doi:10.1158/1078-

0432.CCR-08-2941.

[39] Van Der Flier L, Clevers H. Stem cells, self-Renewal, and differentiation

in the intestinal epithelium. Annual Review of Physiology. 2009;71:241–260.

doi:10.1146/annurev.physiol.010908.163145.

[40] Tenen DG. Disruption of differentiation in human cancer: AML shows the way.

Nature Reviews Cancer. 2003;3:89–101. doi:10.1038/nrc989.

[41] Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, et al. Transformation

by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature.

2012;483:484–488. doi:10.1038/nature10898.

[42] Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1 mutation is

sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–

483. doi:10.1038/nature10866.

[43] Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-wahab O, et al. IDH mutation

impairs histone demethylation and results in a block to cell differentiation. Nature.

2012;483:474–478. doi:10.1038/nature10860.

[44] Michor F, Iwasa Y, Rajagopalan H, Lengauer C, Nowak MA. Linear model of colon

cancer initiation. Cell cycle. 2004;3(3):356–360.

[45] Levins R. Some demographic and genetic consequences of environmental hetero-

geneity for biological control. Bulletin of the Entomological Society of America.

1969;15(3):237–240.

104



REFERENCES

[46] Hanski I. Single-species metapopulation dynamics: concepts, models and observa-

tions. Biological Journal of the Linnean Society. 1991;42(1-2):17–38.

[47] Hanski I. Metapopulation ecology. Oxford University Press; 1999.

[48] Gilpin M. Metapopulation dynamics: empirical and theoretical investigations. Aca-

demic Press; 2012.

[49] Wodarz D, Sun Z, Lau JW, Komarova NL. Nearest-neighbor interactions, habitat

fragmentation, and the persistence of host-pathogen systems. The American Natu-

ralist. 2013;182(3):E94–E111.

[50] Komarova NL, Shahriyari L, Wodarz D. Complex role of space in the crossing

of fitness valleys by asexual populations. Journal of The Royal Society Interface.

2014;11(95):20140014.

[51] Komarova NL, Cheng P. Epithelial tissue architecture protects against cancer. Math-

ematical biosciences. 2006;200(1):90–117.

[52] Huffman KE, Levene SD, Tesmer VM, Shay JW, Wright WE. Telomere shortening is

proportional to the size of the G-rich telomeric 3-overhang. The Journal of Biological

Chemistry. 2000;275(26):19719–19722. doi:10.1074/jbc.M002843200.

[53] Bozic I, Nowak MA. Unwanted evolution. Science. 2013;342(6161):938–939.

doi:10.1126/science.1247887.

[54] Lieberman E, Hauert C, Nowak MA. Evolutionary dynamics on graphs. Nature.

2005;433:312–316. doi:10.1038/nature03211.1.

[55] Hindersin L, Werner B, Dingli D, Traulsen A. Should tissue structure suppress

or amplify selection to minimize cancer risk? Biology Direct. 2016;11(41):1–11.

doi:10.1186/s13062-016-0140-7.

[56] Casas-Selves M, DeGregory J. How cancer shapes evolution, and how evolution shapes

cancer. Evolution. 2013;4(4):624–634. doi:10.1007/s12052-011-0373-y.

105



REFERENCES

[57] Henry CJ, Marusyk A, Zaberezhnyy V, Adane B, Degregori J. Declining lymphoid

progenitor fitness promotes aging-associated leukemogenesis. Proceedings of the Na-

tional Academy of Sciences. 2010;107(50):21713–21718. doi:10.1073/pnas.1005486107.

[58] Marusyk A, Degregori J. Declining cellular fitness with age promotes cancer initia-

tion by selecting for adaptive oncogenic mutations. Biochimica et Biophysica Acta.

2007;1785:1–11. doi:10.1016/j.bbcan.2007.09.001.

[59] Degregori J. Evolved tumor suppression: Why are we so good at not getting cancer?

Cancer Research. 2011;71(11):3739–3744. doi:10.1158/0008-5472.CAN-11-0342.

[60] Janeway C, P T, Walport M, Schlomchik MJ. Immunobiology: the immune system

in health and disease. Garland Science, New York; 2005.

[61] Greenwald RJ, Freeman GJ, Sharpe AH. The B7 Family Revisited. Annual Review

of Immunology. 2005;23(1):515–548. doi:10.1146/annurev.immunol.23.021704.115611.

[62] Foell J, Hewes B, Mittler RS. T cell costimulatory and inhibitory receptors as ther-

apeutic targets for inducing anti-tumor immunity. Current Cancer Drug Targets.

2007;7:55–70.

[63] Driessens G, Kline J, Gajewski T. Costimulatory and coinhibitory receptors in anti-

tumor immunity. Immunology Reviews. 2009;229(1):126–144. doi:10.1111/j.1600-

065X.2009.00771.x.

[64] Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nature

Reviews Cancer. 2012;12:252–264. doi:10.1038/nrc3239.

[65] Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer ther-

apy. Journal of Clinical Oncology. 2015;33(17):1–10. doi:10.1200/JCO.2014.59.4358.

[66] Littman DR. Releasing the brakes on cancer immunotherapy. Cell. 2015;162(6):1186–

1190. doi:10.1016/j.cell.2015.08.038.

106



REFERENCES

[67] Yang JC, Hughes M, Kammula U, Royal R, Sherry RM, Topalian SL, et al. Ipili-

mumab (anti- CTLA4 antibody) causes regression of metastatic renal cell cancer as-

sociated with enteritis and hypophysitis. Journal of Immunotherapy. 2007;30(8):825–

830.

[68] Hodi FS, Butler M, Oble Da, Seiden MV, Haluska FG, Kruse A, et al. Immunologic

and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen

4 in previously vaccinated cancer patients. Proceedings of the National Academy of

Sciences. 2008;105(8):3005–3010. doi:10.1073/pnas.0712237105.

[69] Carthon BC, Wolchok JD, Yuan J, Kamat A, Tang DS, Sun J, et al. Preoperative

CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical

clinical trial. Clinical Cancer Research. 2010;16(10):2861–2871. doi:10.1158/1078-

0432.CCR-10-0569.

[70] Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al.

Improved survival with ipilimumab in patients with metastatic melanoma. The New

England Journal of Medicine. 2010;363(8):711–723.

[71] van den Eertwegh A, Versluis J, van den Berg P, Santegoets SJ, Van Moorselaar

J, Van der Sluis T, et al. Combined immunotherapy with granulocyte-macrophage

colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab

in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-

escalation trial. The Lancet Oncology. 2012;13(5):509–517. doi:10.1016/S1470-

2045(12)70007-4.

[72] Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab

plus dacarbazine for previously untreated metastatic melanoma. The New England

Journal of Medicine. 2011;364(26):2517–2526. doi:10.1056/NEJMoa1104621.

[73] Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, Van den Eertwegh AJM, et al.

Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-

resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-

107



REFERENCES

043): a multicentre, randomised, double-blind, phase 3 trial. The Lancet Oncology.

2014;15(7):700–712. doi:10.1016/S1470-2045(14)70189-5.

[74] Brahmer J, Tykodi S, Chow L, Hwu W, Topalian S, Hwu P, et al. Safety and activity

of anti-PD-L1 antibody in patients with advanced cancer. New England Journal of

Medicine. 2012;366(26):2455–2465. doi:10.1016/j.juro.2012.08.169.

[75] Topalian S, Hodi S, Brahmer J, Gettinger S, Smith DC, Powderly JD, et al. Safety,

activity, and immune correlates of anti-PD-1 antibody in cancer. The New England

Journal of Medicine. 2012;366(26):2443–2454.

[76] Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A

(anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature.

2014;515:558–562. doi:10.1038/nature13904.

[77] Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1

Blockade with nivolumab in relapsed or refractory hodgkin’s lymphoma. The New

England Journal of Medicine. 2015;372(4):311–319. doi:10.1056/NEJMoa1411087.

[78] Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in

previously untreated melanoma without BRAF mutation. The New England Journal

of Medicine. 2015;372(4):320–30. doi:10.1056/NEJMoa1412082.

[79] Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot

E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. The

Journal of Experimental Medicine. 1990;171:1393–1405.

[80] Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, et al. VISTA, a novel

mouse Ig superfamily ligand that negatively regulates T cell responses. The Journal

of Experimental Medicine. 2011;208(3):577–92. doi:10.1084/jem.20100619.

[81] Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Tar-

geting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-

tumor immunity. The Journal of Experimental Medicine. 2010;207(10):2187–2194.

doi:10.1084/jem.20100643.

108



REFERENCES

[82] Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. CTLA-4

is a second receptor for the B cell activation antigen B7. Journal of Experimental

Medicine. 1991;174:561–569.

[83] Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the re-

sponse of T cells to stimulation. Journal of Experimental Medicine. 1995;182:329–375.

doi:10.1210/me.2014-1154.

[84] Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell

cycle progression upon activation of resting T cells. Journal of Experimental Medicine.

1996;183:2533–2540.

[85] Riley JL, Mao M, Kobayashi S, Biery M, Burchard J, Cavet G, et al. Modulation

of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4

receptors. Proceedings of the National Academy of Sciences. 2002;99(18):11790–11795.

[86] Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al.

Trans-endocytosis of CD80 and CD86: a molecular basis for the cell extrinsic function

of CTLA-4. Science. 2011;332(6029):600–603. doi:10.1126/science.1202947.

[87] Walunas TL, Lenschow DJ, Christina Y, Linsley PS, Freeman GJ, Jonathan M, et al.

CTLA-4 can function as a negative regulator of T cell activation . The Journal of

Immunology. 2013;1:405–413.

[88] Freeman GJ, Long A, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engage-

ment of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to

negative regulation of lymphocyte activation. The Journal of Experimental Medicine.

2000;192(7):1027–1034. doi:10.1084/jem.192.7.1027.

[89] Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel

member of the immunoglobulin gene superfamily, upon programmed cell death. The

EMBO Journal. 1992;11(11):3887–3895.

109



REFERENCES

[90] Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, et al. Tissue

expression of PD-L1 mediates peripheral T cell tolerance. Journal of Experimental

Medicine. 2006;203(4):883–895. doi:10.1084/jem.20051776.

[91] Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. Coinhibitory pathways

in immunotherapy for cancer. Annual Review of Immunology. 2016;34:539–573.

doi:10.1146/annurev-immunol-032414-112049.

[92] Wodarz D, Jansen V. A dynamical perspective of CTL cross-priming and regula-

tion: implications for cancer immunology. Immunology Letters. 2003;86(3):213–227.

doi:10.1016/S0165-2478(03)00023-3.

[93] dePillis L, Gallegos A, Radunskaya A. A model of dendritic cell therapy for melanoma.

Frontiers in oncology. 2013;3(56):1–14. doi:10.3389/fonc.2013.00056.

[94] dePillis L, Eladdadi A, Radunskaya A. Modeling cancer-immune responses to

therapy. Journal of Pharmacokinetics and Pharmacodynamics. 2014;41(5):461–478.

doi:10.1007/s10928-014-9386-9.

[95] Castillo-Montiel E, Chimal-Egúıa JC, Tello JI, Piñon-Zaráte G, Herrera-Enŕıquez
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