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Abstract

Despite the rapidly growing interest, progress in the study of relations between physi-

ological abnormalities and mental disorders is hampered by complexity of the human

brain and high costs of data collection. The complexity can be captured by machine

learning approaches, but they still may require significant amounts of data.

In this thesis, we seek to mitigate the latter challenge by developing a data driven

sample generator model for the generation of synthetic realistic training data. Our

method greatly improves generalization in classification of schizophrenia patients and

healthy controls from their structural magnetic resonance images. A feed forward

neural network trained exclusively on continuously generated synthetic data produces

the best area under the curve compared to classifiers trained on real data alone.

v



Contents

List of Figures ix

List of Tables xii

1 Introduction 1

1.1 Structural Magnetic Resonance Imaging . . . . . . . . . . . . . . . . 3

1.1.1 SMRI Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Motivation for Current Work . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Machine learning 13

2.1 Classification methods . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



Contents

2.1.1 Nearest neighbors . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.5 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.6 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . 20

2.1.7 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . 21

2.1.8 Majority Voting Classifier . . . . . . . . . . . . . . . . . . . . 22

2.1.9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Dataset, SMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Sample generator model 27

3.1 Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . 29

3.1.2 Independent Component Analysis . . . . . . . . . . . . . . . . 30

3.2 Random variable samplers . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Rejection sampling . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Multivariate Normal . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Data driven sample generator . . . . . . . . . . . . . . . . . . . . . . 37

vii



Contents

4 Application to SMRI classification 39

4.1 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Size effect for data generator . . . . . . . . . . . . . . . . . . . . . . . 47

5 Discussion 49

6 Future Work 54

Appendices 55

A Example of analytic solution for optimal envelop function 56

B Code samples 59

B.1 Baseline results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.2 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B.3 Brain graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



List of Figures

1.1 Siemens magnetic resonance scanner. Example of brain scanning for

SMRI. Retrieved from http://www.siemens.co.uk . . . . . . . . . . . 4

1.2 Raw SMRI example. This image was taken at the Mind Research

Network Institute and belongs to the author of this thesis. . . . . . . 5

1.3 Example diagram of a single layer neural network with 3 input fea-

tures, 4 hidden units, and 3 outputs. . . . . . . . . . . . . . . . . . . 9

1.4 Example diagram of a multi-layer neural network with 4 input fea-

tures, 3 hidden layers of 5 units each, and 3 output. . . . . . . . . . 9

2.1 Nearest neighbors example for k = 3. The green sample will be

assigned class B because there are 2 samples on class B and 1 sample

in class A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Decision tree example for coffee classification. Note that the order of

the decisions determines the importance of a feature. . . . . . . . . . 16

2.3 Bayes classifier example on Fisher’s iris dataset. Obtained from

http://www.mathworks.com/help/stats/fitnaivebayes.html . . . . . 18

ix



List of Figures

2.4 Example of a linear decision boundary for a support vector machine.

(a) The green lines denote some of the infinity of planes that can

divide blue samples from red samples in the feature space of x. (b)

The green line shows the optimal plane which has the maximum

margin. Obtained from http://docs.opencv.org . . . . . . . . . . . . 20

2.5 Moon dataset for classifier evaluation. . . . . . . . . . . . . . . . . . 23

2.6 Moon dataset results on various classifiers. . . . . . . . . . . . . . . 24

2.7 Predicted labels across all 10 folds for each classifier . . . . . . . . . 26

3.1 Visual example of principal component analysis decomposition. . . 30

3.2 Visual example of an independent component analysis decomposi-

tion. The plot shows the (a) true sources, (b) mixed sources, (c)

estimated sources computed with ICA, and (d) estimated sources

computed with PCA . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Rejection sampling efficiency visualized. (a) Plot of density func-

tion to sample from, (b) histogram of accepted samples, (c) plot of

rejected samples in blue, and accepted samples in green for e(x) =

0.3×Uniform(0, 1), and (d) same plot as in (c) with e(x) = 1.5×χ2(4). 35

3.4 Data driven generator block diagram. The dataset is factorized into

components and loading matrix A. The RV block denotes the RV

generator that fits from A and generates new samples to reconstruct

the synthetic dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 (a) Image taken from the author of this thesis as an example of a

raw SMRI image. (b) Image after pre-processing steps described in

Section 2.2.1. (c) Mask used to keep intracraneal voxels. . . . . . . . 40

x



List of Figures

4.2 Three-way ANOVA results. Voxels passing fdr correction for multi-

ple comparison at the 0.01 level for the (a) diagnosis, (b) age, and

(c) gender effects. Significant interactions between (d) gender and

diagnosis; (e) age and diagnosis; and (f) age, gender, and diagnosis.

We show the significance as −log10(p). . . . . . . . . . . . . . . . . . 43

4.3 Three dimensional view of all effects on the GMC mean. Red marks

the diagnosis effect after FDR correction at 0.01 level. Blue shows

the age effect after FDR correction at 0.01 level. Green shows the

age-diagnosis effect at 0.01 level. Pink shows the gender-diagnosis

effect at 0.01 level. White shows the three-way interaction effect at

0.01 level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Average classification score results for raw, ICA reduced, PCA re-

duced, and augmented data grouped by type of classifier. . . . . . . 47

4.5 Size effect for various classification methods trained on synthetic

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1 Beta(2,2) probability density function. . . . . . . . . . . . . . . . . . 56

xi



List of Tables

4.1 Participants demographics distribution. . . . . . . . . . . . . . . . . 41

4.2 Participants demographics distribution for three factors: age, gender,

and diagnosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Three way ANOVA group means for the main effects of schizophrenia

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Three way ANOVA group means for the effects of interactions on

schizophrenia dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Classification methods and parameters for grid search . . . . . . . . 46

4.6 Classification results on raw data, ICA reduced, PCA reduced, and

augmented dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xii



Chapter 1

Introduction

Mental illnesses alter normal behavior and may provoke hallucinations in individuals.

Depending on severity, they can also impair the person and significantly degrade

their quality of life. According to the national survey on drug use and health for

Behavioral Health Statistics and Quality (2015), there were an estimated 9.8 million

adults aged 18 or older in the United States with severe mental illness. This number

represented 4.2% of all U.S. adults. Thus, the need to better understand, diagnose,

and treat these disorders generates a vast interest in the study of mental illnesses at

the behavioral and biological levels.

Even though the literature presents many efforts of multidisciplinary areas to

understand the underlying mechanisms of the brain, it remains an open problem.

Researchers use several data modalities, and a wide range of data analysis methods

(Ozer et al., 2008; Müller et al., 2011; Frodl and Skokauskas, 2012) to collect evidence

in favor of a study’s hypothesis, nonetheless, both data modalities and methods

remain a challenge due to various factors (Akil et al., 2011).

Current technology allows us to extract brain behavior information in a non-

invasive manner by exploiting measurable electrical properties of the brain. These

1



Chapter 1. Introduction

electrical properties are magnetic and electric potential fields. Magnetic fields can be

measured with magnetic resonance scanners that induce a strong magnetic field to the

brain and provides 3D images of brain tissue contrast, or magneto-encephalograms

that sense fields triggered by brain activity. On the other hand, the electric potential

is measured on the scalp, where probes measure voltage differences that respond to

brain activity. All these technologies bring a lot of information to explore and help

investigate the brain, however, at the time of writing this thesis, these imaging

technologies are still very sophisticated and expensive.

State-of-the-art methods used for brain data analysis are often challenged by the

limited sample size that the expensive data collection impose to the problem. The low

number of data samples and its effect on statistical models is a well studied problem.

Particularly, in machine learning, an area focused in automatic data analysis, the lack

of data causes model over-fitting, meaning that the learned model is more influenced

by noise variations than the data itself.

Some attempts to overcome the effects of over-fitting are in the form of norm

regularization (Hoerl and Kennard, 1970; Tibshirani, 1996; Zou and Hastie, 2005),

dropout (Srivastava et al., 2014), and hypothesis-based analysis. The norm regular-

ization methods seek to minimize the norm of model parameters, following the as-

sumption that the parameter space is often sparse. Classic examples of this technique

are Ridge regression (Hoerl and Kennard, 1970), Lasso regression (Tibshirani, 1996),

and Elastic net (Zou and Hastie, 2005). A more recent method, called Dropout, was

proposed in the setting of neural networks. The dropout technique showed promis-

ing results on several applications (Pham et al., 2014; Krizhevsky et al., 2012). It

temporarily removes a set of parameters and chooses randomly a new set for each

training step. As Srivastava et al. (2014) state, this prevents parameters from co-

adapting too much. Training several smaller sub-models prevents the big model from

not generalizing for unseen data. Finally, another popular approach is to hypothe-
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Chapter 1. Introduction

size areas of interest prior to the analysis by removing unwanted features based on

previous knowledge.

In this Master’s thesis, we focus on the analysis of images from magnetic resonance

scanners called structural magnetic resonance images (SMRI) from a Schizophrenia

dataset. We also propose a novel methodology that improves SMRI classification

accuracy by acting as a new form of regularization.

This introductory chapter is organized as follows. In Section 1.1 we introduce

SMRI data and the pre-processing steps. In Section 2, we briefly present machine

learning and the concept of deep neural networks. Then, in the remaining sections we

present the motivation for the current work, the thesis statement, our contribution,

and the thesis overview.

1.1 Structural Magnetic Resonance Imaging

SMRI is a technique for brain imaging collected using magnetic resonance scanners.

It measures matter density through magnetic properties of brain tissue. Since this

technique is non-invasive and present no harm to humans, SMRI is a popular tech-

nique for brain imaging.

In order obtain an image of a brain, a subject is located in the center of a

magnetic resonance scanner, see Figure 1.1. The machine induces a strong magnetic

field (from 1 to 10 Teslas) that causes the protons in the subject’s head to align their

spins. Then, by introducing a pulse of magnetic energy perpendicular to the main

magnetic field the spins absorb energy and become excited. The excitatory pulse is

a radio frequency pulse tuned at the specific frequency of the hydrogen atom from

brain imaging, due to its high concentration as water in the human body. The time

it takes the protons to return to their equilibrium magnetization is an exponential

3



Chapter 1. Introduction

Figure 1.1: Siemens magnetic resonance scanner. Example of brain scanning for
SMRI. Retrieved from http://www.siemens.co.uk

decay process with time constant parameters called transverse relaxation time, T2,

and longitudinal relaxation time, T1. The relaxation time T1 acts as a measure of

the material’s density. A time sampling interval, TR, is designed to be long enough

so that gray matter tissue can fully recover in between pulses.

By mapping T1, the magnetic resonance machine can report a contrast image,

where the intensity of each voxel proportionally relates to the gray or white matter

concentration. See an SMRI image example in Figure 1.2.

SMRI is often used by physicians to diagnose brain related diseases or abnor-

malities like tumors (Young and Knopp, 2006), traumatic brain injuries (Gale et al.,

2005), or birth defects (Sowell et al., 2008). More recently, SMRI has also proven use-

ful for the identification of more subtle differences found in patients diagnosed with

mental disorders like schizophrenia(Narr et al., 2005; Gupta et al., 2014), bipolar

(Fornito et al., 2009), depression (Kipli et al., 2013), attention deficit hyperactivity

disorder (Dai et al., 2012), among others.

The raw image obtained from the scanner will vary across subjects depending on

the position and size of the head, and scanner parameters. Ideally, a dataset would

4



Chapter 1. Introduction

Figure 1.2: Raw SMRI example. This image was taken at the Mind Research Network
Institute and belongs to the author of this thesis.

contain images perfectly aligned in size and position, however, this is physically im-

possible. Thus, several pre-processing steps are required for SMRI dataset analysis.

We describe them in the following section.

1.1.1 SMRI Preprocessing

Following scanning, the SMRI data is pre-processed to enhance data quality and

allow for improved statistical power. The pre-processing steps are performed using

SPM 8 software as described in Ins (2012). The basic steps include:

Step 1. Slice Timing

The slices are collected at different times and require synchronization to avoid

signal biases. Slice timing correction is performed using sinc function interpo-

5



Chapter 1. Introduction

lation.

Step 2. Realignment

Head motion during scanning, even in the order of millimeters, can still cause

significant artifacts. Motion correction is achieved realigning a time series of

images acquired from the same subject using a least squares approach and a

6 parameter (rigid body) spatial transformation. Also, the fat chemical that

envelops the brain causes a shift in the resulting image and the susceptibility

map is not homogeneous due to the air canals near the brain such as the

auditory and nasal canals. This correction is performed using an estimate of

the susceptibility map and reconstruction from the phase of the acquired image.

Step 3. Spatial Normalization

Spatial normalization involves image registration to the brain atlas to allow for

comparisons among different individuals.

Step 4. Smoothing

Spatial smoothing is applied for improving the signal-to-noise ratio (SNR) to

allow for better activation detection. Smoothing does not have a high impact on

frequency estimation because it is only reducing amplitude and not distorting

frequency content.

Step 5. Vectorization and Masking

We vectorize each three-dimensional image. Then we search for voxels outside

the brain and remove them from the analysis. This results in a sample by voxel

matrix.

Step 6. Covariates

The brain is in constant change through the development of every human being.

The literature reveals that age and gender affects gray matter concentration,

thus we treat them as covariates and regress them out by keeping the residuals
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of a linear regression model which dependent variable is the voxel intensity

with gender and age as covariates.

1.2 Machine Learning

Machine learning aims to design and implement machines that automate decision

making. This field of study combines statistical modeling and computer science to

create statistical models that can adapt from observed data in a computationally

reasonable manner. A typical machine learning problem is pattern classification,

where a statistical model is designed to estimate class labels from observed samples.

In general, classification models define a decision function y = f(x,w), where

x ∈ Rp is a p-dimensional observed sample, w ∈ Rq is a vector of q parameters, and

f(·) is defined in Rp → R. The decision function draws a boundary hyperplane in

the p-dimensional space that divides the samples in classes, such that when a new

unlabeled sample arrives to the system we can estimate its class by applying f(·).

The optimal parameters w are learned using a training set of samples. The train-

ing set of labeled samples are predicted by the classification model, then the predicted

label, ŷ, is compared with the true label, y, with some loss function L(y, ŷ). The

methods seek to minimize such error, so the loss function is minimized by adjusting

the parameters, w, according to a designed learning rule. In close form we can define

the problem as

w∗ = argmin
w

N∑
n=1

L(yn, ŷn), (1.1)

where N is the size of the training set. Then, the optimal decision function is defined

by f(x,w∗).

A perfect classification is not always desired, because it may not generalize
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for data samples not yet seen. This problem is called over-fitting. Thus, as we

described in the introductory section, regularization was introduced to help alle-

viate this problem. The regularization technique seeks to minimize the parame-

ter norm based on the assumption of a sparse w. The updated cost function is

L′(y, ŷ,w) = L(y, ŷ) +λ||w||r, where || · ||r denotes the r-norm function, and λ is the

emphasis of the regularization on the overall loss function.

1.2.1 Deep Neural Networks

Neural networks are machine learning models inspired in the biological function of

the nervous system. As in the human brain, the basic unit of processing is called a

neuron which acts as a continuous function defined in Rn → R, n inputs and one

output. Several neurons interconnected to each other form a neural network. The

connection between neurons are weights that modulate the network as it learns from

observed data. See an example of a basic neural network architecture in Figure 1.3.

The first implementations of neural networks can be traced back to the 1950’s.

The first attempt was in the form of electrical circuits (McCulloch and Pitts, 1943),

and later computer implementations (Rosenblatt, 1958) resulted in the oldest neural

network still in use today, the Perceptron.

The popularity of neural networks peaked in the 1980’s and early 1990’s when

artificial intelligence took over the media and over-promised in its early results. How-

ever, it quickly declined in the early 2000’s after the machine learning community

revealed many flaws on the early designs of neural networks. This challenged the

theoretical foundations of neural networks, yet new advances in training techniques

and computational power available made possible the re-discovery of neural networks

following a re-branding as deep learning.

Deep learning is a multi-layer neural network that stacks neural networks, i.e.,
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Input #1

Input #2

Input #3

Input #4

Output

Output

Output

Hidden
layer

Input
layer

Output
layer

Figure 1.3: Example diagram of a single layer neural network with 3 input features,
4 hidden units, and 3 outputs.

Input #1

Input #2

Input #3

Input #4

Output

Output

Output

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Input
layer

Output
layer

Figure 1.4: Example diagram of a multi-layer neural network with 4 input features,
3 hidden layers of 5 units each, and 3 output.

Perceptrons, to create a bigger and more complex learning model. Such complex

neural network structure is most effective on large datasets such as natural images,

video, audio, and text (LeCun et al., 2015). See Figure 1.4 for an example of a deep

neural network, called Multilayer Perceptron (MLP), with 4 input features, 3 hidden

layers of 5 units each, and 3 output.
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1.3 Motivation for Current Work

Several studies make use of large SMRI datasets to provide evidence of gray matter

concentration variations generated by lessions or neuro-degenerative diseases. De-

tection of tumors (Young and Knopp, 2006), brain lessions (Cuingnet et al., 2011;

Gale et al., 2005), and more recently, mental illnesses like attention deficit hyper-

activity disorder (ADHD) (Dai et al., 2012), Alzheimer’s disease (Sabuncu et al.,

2014), and Schizophrenia (Schnack et al., 2014; Liu et al., 2012). Yet, it often relies

on extra pre-processing steps that either reduce the dimensionality at the cost of

interpretability (Van Giessen, 2012), or impose prior assumptions with the hope to

inflate statistical power (Elsayed et al., 2010).

On the other hand, Deep learning has shown excellent results for the big data

scenario, where the number of collected observations is several orders of magnitude

larger than the number of variables. For example, crowd-sourced databases of natural

images (Krizhevsky et al., 2012), video (Le, 2013), and text (Xue et al., 2008).

However, the neuroimaging field poses the opposite scenario. The image of a brain

can be composed of around 50,000 voxels (variables) and may only contain between

400 and 2,800 images (Meda et al., 2008; Sabuncu et al., 2014).

The high cost of SMRI data collection usually yields datasets with not enough

samples to be applicable in a deep learning setting. Thus, there is a need for methods

that help alleviate this problem.

1.4 Thesis Statement

The primary thesis of this dissertation is that the generation of synthetic data by

our proposed method can lead to improved classification accuracy rates.
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First, we provide a comparison framework for the most popular classification

methods on raw data. Second, we generate synthetic data, following the proposed

method, to replace the raw data where we explore its results with statistical tools.

We hypothesize that feeding a large number of synthetic MRI images to classical

machine learning methods may improve the classification accuracy of schizophrenia

patients, thus its high potential to be useful in context beyond classification.

1.5 Contributions

In this thesis, we propose a new classification architecture that uses a data-driven

sample generation technique to mitigate the effects of a limited sample size. Our

approach preserves statistical properties of observed data in the synthetic samples

that are continuously generated for training large neural networks.

While the idea of synthetic data generation has previously been used for the recog-

nition of natural images (Netzer et al., 2011; Goodfellow et al., 2013) and in its prim-

itive form (additive noise) as an inherent part of the de-noising autoencoder (Vincent

et al., 2010), we are unaware of studies that used synthetic neuroimaging data in an

online learning framework.

1.6 Thesis Overview

The thesis is organized in six chapters. The first chapter presented a brief concept

review of SMRI data acquisition and machine learning. The second chapter sum-

marizes the classical classification methods used in classification. The third chapter

introduces the proposed method and the comparison framework. The fourth chapter

describes the case study and the results of applying the proposed method. Chapter

11



Chapter 1. Introduction

five provides a discussion of the results and conclusion. Finally, in the last chapter

we suggest future work.

12



Chapter 2

Machine learning

In this chapter, we briefly review some popular classification methods and present

the cross-validation technique used for performance evaluation. Finally, we introduce

the case study, dataset, and details of the data collection.

2.1 Classification methods

Among the vast number of classification methods, we chose the most representative of

non-parametric methods such as: nearest neighbors, decision trees, random forests;

linear methods such as: logistic regression, linear support vector machines (SVM);

non-linear methods such as: multilayer perceptron, polynomial SVM, radial SVM;

and the Voting Classifier as an ensemble method.

2.1.1 Nearest neighbors

Nearest neighbors is a simple classification method that bases its decision rule on

the class that is mostly represented in the closest labeled samples. If the method

13
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Figure 2.1: Nearest neighbors example for k = 3. The green sample will be assigned
class B because there are 2 samples on class B and 1 sample in class A

chooses to poll all the labeled samples, every new unlabeled sample would be labeled

as the class with the more samples on the dataset. Thus, we have to set a determined

number of samples to poll from. This is the hyper-parameter k.

Given a new sample and k neighbors to search, the method determines the k

nearest points based on Euclidean distance from the new observation and counts the

number of elements that belong to each class. Then, it assigns a new point to the

class that is most common among the k neighbors.

As an example of a nearest neighbor classifier with k = 3, see Figure 2.1. The

blue circles represent samples that belong to Class A, and the red circles represent

samples that belong to class B. We plot these samples and identify a new sample,

marked in green with unknown class X. The black circle around the green sample

shows the distance at which the third nearest neighbor is located, so all the samples

inside the circle will vote on the class of the green sample. In the figure, we observe

two B samples and one A sample, thus we assign the class B to the green sample.

The parameter k has to be adjusted. A low number of neighbors to use as voters

14
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may lead to overfitting, whereas a high number of neighbors may lead to not fit the

data well enough (underfitting).

The simplest implementation is to compute the distance of every point to the

query point, then sort by distance and compute the class mode for the k nearest

samples. This simple algorithm is of complexity O(nd), where n is the number

of samples and d is the data dimensionallity (number of features). A more recent

implementation reduces the complexity to O(log(n)) (Yianilos, 1993).

The main advantage of this method is that it does not require an assumption on

the statistical properties of the data. Moreover, it is very fast to train. However, it

can create very complicated and hard to interpret decision boundaries.

2.1.2 Decision Tree

Decision Tree is an algorithm that automatically determines how to construct deci-

sion rules by constructing a tree that ends in a single class label. One can think of

the resulting tree as a recipe. For any new sample, first look at the property in the

root node of the tree, if the value for that sample is greater that the value specified

in the root, check the property in the node left of the tree otherwise to the right of

it, and proceed until a leaf with decisive label is reached.

As an example of a decision tree classifier see Figure 2.2. In this case, we are

interested in classifying new coffee samples by its flavor, either good or bad. The

tree was constructed after training on various coffee samples from which we know

the age, if it is organic or not, and the climate of its precedence. Then when a new

sample arrives, we first check the age. If it is more than one year old, then classify it

as bad, otherwise keep investigating. The tree not only provides the set of decision

rules but by the order of it we can determine its importance. In this example, the age

is the most important feature, and the climate the least important feature, because,

15
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Figure 2.2: Decision tree example for coffee classification. Note that the order of the
decisions determines the importance of a feature.

it does not matter if the new coffee is from a tropical region, as long as it is old it

will not be good.

The method constructs decision rules that determine the class of a sample by

direct numerical comparisons (Breiman et al., 1984). It learns the rules from training

data, then it applies the chain of rules to unlabeled data until it reaches the end of

the tree to predict its label. In terms of interpretation, the chain of decision rules

allows us to directly identify what is the decision mechanism the classifier is following

to arrive at any given conclusion.

In theory, there are exponentially many decision trees that can be constructed

from a given set of features. Finding the optimal tree is computationally unfeasible

because the search space is of exponential size as the number of features increases.

Nevertheless, there are several efficient algorithms to train a decision tree, the fastest

one claims a complexity of O(nT ) (Kearns and Mansour, 1998), where T is the depth

of the tree. The necessary depth is directly related to the number of features, thus

a large number of features will result in a big depth.

A strength of decision trees is that the decision boundaries are arbitrary and can
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accommodate both numerical and categorical data. Moreover, the decision rules are

also easy to understand and interpret. However, it is highly prone to overfitting as

the tree grows in complexity. We can control the maximum depth of the tree to

avoid overfitting, yet a low depth will lead to underfiting.

2.1.3 Random Forest

Random forest is a classification method that constructs several (thousand) decision

trees. Each tree is grown using a bootstrap sample of training data (Breiman, 2001),

then all the trees vote on the final class decision. Contrary to the decision tree

classifiers, random forests are robust to overfitting at the cost of computation time.

Since random forest methods are dependent on decision trees, its computational

complexity goes in hand with decision trees.

2.1.4 Naive Bayes

The naive Bayes method relies on the Bayes’ theorem for the construction of a

decision rule:

p(y|x) =
p(y)p(x|y)

p(x)

where, x is a sample vector, and y denotes the sample label. Then, when a new

sample arrives we ask for the p(y|xnew) and assign xnew to the class with the highest

probability.

Taking the Fisher’s iris plant dataset as an example, Figure 2.3 depicts the level

contours of Gaussian distributions fitted to each class where features are assumed to

be independent. This distributions are then used in the decision rule to classify new

samples.

From the Bayes’ rule, we can infer that p(x), evidence, refers to the probability

17
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Figure 2.3: Bayes classifier example on Fisher’s iris dataset. Obtained from
http://www.mathworks.com/help/stats/fitnaivebayes.html

distribution of the population; p(y), prior, indicates the population frequency of each

label; and p(x|y), likelihood, can be interpreted as the probability density function

of samples from each class.

Naive Bayes gets its name because of its strong assumptions. First, it requires

a known distribution of samples. Second, it assumes our sample is representative of

the population. And finally, it naively assumes independence of features to simplify

its decision rule.

The algorithm for naive Bayes is simple and fast to train. The prior is estimated

from the frequency of each class in the data, the likelihood is computed from the

assumed distribution in close form, and the evidence is drawn from the probability

density function of the assumed distribution, where we estimate the parameters

from sample statistics. Then, a new sample is assigned to the class with the highest

posterior probability for that sample. The training algorithm for Naive Bayes is of

complexity O(nd) (Metsis et al., 2006).
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As we stated, the main downside of the method is its strong assumptions. It

builds a closed-form likelihood formula, typically assuming a Gaussian or multinomial

distribution (Metsis et al., 2006). Moreover, it assumes independence of features

which, overall, makes it difficult to apply to any generic dataset.

2.1.5 Logistic Regression

Logistic regression, like naive Bayes, is a probabilistic classification method with the

goal of estimating p(y|x). In particular, logistic regression is designed in a linear

regression framework, where it constructs a linear function of p(y|x) dependent on

x, where a variation of x will result in a variation of p(y|x). However, p(y|x) must

be between 0 and 1, and linear functions are unbounded. Thus, the logistic function

is used to bound the response variable in this regression framework:

log

(
p(y|x)

1− p(y|x)

)
= θ0 + xθ.

Solving for p(y|x), we obtain

p(y|x) =
1

1 + e−θ0+xθ
. (2.1)

Logistic regression then uses eq. (2.1) for classification. It creates a hyper-

plane decision boundary, p(y1|x) = p(y2|x), that best divides samples from different

classes. In other words, the method estimates the probability p(y|x). Contrary to

Naive Bayes, Logistic regression is robust on the distribution of the classes in the

feature space.

Several implementations of logistic regression have been developed over the years.

In principle, the likelihood function for the parameters θ is optimized with one of sev-

eral gradient-based methods (gradient descent, Newton-Raphson, or LBFGS) which

can be selected between because some are better suited for different situations de-

pendent on the number of samples and features.
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(a) (b)

Figure 2.4: Example of a linear decision boundary for a support vector machine. (a)
The green lines denote some of the infinity of planes that can divide blue samples
from red samples in the feature space of x. (b) The green line shows the optimal
plane which has the maximum margin. Obtained from http://docs.opencv.org

2.1.6 Support Vector Machines

As in previously described methods, support vector machines (SVM) seek to define

an effective decision boundary to discriminate unlabeled samples. In most scenarios,

the decision boundary is not unique and it is up to the method to pick a solution.

SVMs search for an optimal solution by maximizing the margin around the separating

boundary. See a graphical example of a linear decision boundary in Figure 2.4.

A unique property of SVMs compared to other methods is that not all the points

influence equally in the estimation of the decision boundary, only points close to

the boundary do. As a result, SVM is robust to outliers. Moreover, it projects the

observed samples to a higher dimensional space in order to find separation. The

method doesn’t allow any points on the wrong side of the boundary.

The main advantage of SVM is its flexibility. The decision boundary for training
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data can be designed as either linear or non-linear. Different kernels can produce

different boundaries such as quadratic or polynomial. Thus, we could cross validate

the best kernel for the training set, and benefit from both linear and non-linear

classification.

SVM is based in the optimization of a particular cost function, thus it is simple to

incorporate regularization in the form of L1 or L2 weight norm, under the assumption

of sparse weights.

2.1.7 Multilayer Perceptron

A multilayer perceptron (MLP) is a neural network that stacks multiple perceptrons,

as explained in section 1.2.1. Each perceptron projects a set of inputs to a multi-

dimensional representation of the previous layer. Thus, as we increase the number

of layers, we give the network the ability to model increasingly complex structures.

The output projection of the input data is compared to the desired label of

training data using a binary cross-entropy cost function defined as

e(y, ŷ) = −
n∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)),

where y is the training set labels, ŷ is the classification from the neural network, and

n is the number of samples.

The method then uses a learning algorithm to minimize the binary cross entropy.

Most learning algorithms for MLPs use a gradient descent variant method to find

an optimal solution. In this thesis, we chose one of the most popular and success-

ful learning algorithm called Adagrad (Zeiler, 2012) due to its convergence speed

compared to traditional methods.

The learning algorithm is batch based, i.e., it grabs a batch of samples at a time

to optimize the parameters. The batch learning allows us to feed the MLP small sets
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of data at a time. The direct benefit of this approach is that it does not need to load

all samples into computer memory.

The training of these neural networks grows in complexity with the number of

stacked layers, however recent developments improved the design of the starting point

and convergence rate for the optimization procedure (Zeiler, 2012).

2.1.8 Majority Voting Classifier

The voting classifier relies on all other previously described classifiers. It polls the

results of predicting from every other classifier and assigns the new sample to the

class with the most votes.

2.1.9 Implementation

Several considerations have to be taken into account when fitting and testing classifi-

cation methods. First, we can not report results on training data, because the model

was optimized on this dataset and good results on training data does not necessarily

extrapolate to unseen data. Therefore, we have to split the data into training and

testing sets.

A popular approach is called k-fold cross validation, where the samples are divided

into k sets, using k − 1 sets for training and one for testing. The cross validation

reports classification scores on the testing set only. Thus, we calculate the average

of k scores for a classifier.

In terms of scoring, simple accuracy is not a fair result to compare, because it does

not account for imbalanced datasets and it’s only fair when we have same number of

samples for each class, which is rarely the case. Instead, we report the area under the
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Figure 2.5: Moon dataset for classifier evaluation.

curve (AUC) of the receiver operating characteristic (ROC) curve. The ROC curve

is a plot of the true positive rate against the false positive rate. The AUC is then a

performance metric for binary classification that is insensitive to sample imbalance.

We also use cross validation for hyperparameter optimization. From the training

set, we split in three folds and measure the average score for each combination of

parameters. The parameter combination that provides the highest score on the

training set is used on the testing set. This allows us to automatically chose a

combination of parameters that are not obvious to infer from the data.

As an example, we present results of our implementation (Ulloa et al., 2016),

which can be retrieved from https://github.com/MRN-Code/polyssifier, in an

artificial “moon” dataset with 5000 samples, noise level of 0.4, and two classes, see

Figure 2.5. Refer to Pedregosa et al. (2011) for more detail on the moon dataset.

We then compute the resulting scores and plot it in order of the testing score in

Figure 2.6. Finally, we show the predicted labels across all 10 folds for each classifier

in Figure 2.7.

From Figure 2.5, we can observe that the moon dataset is best separated by a

non-linear classifier. The results of our implementation confirms that the non-linear
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Figure 2.6: Moon dataset results on various classifiers.

classifiers yield the best results. Also, it is possible to observe the decision boundaries

from Figure 2.6, where it is clear to observe that decision tree and random forest

show differences with more granularity than others, which may have led it to overfit.

Overall, this example supports the reliability of our software showing that it

yields results that can be trusted.

2.2 Dataset, SMRI

2.2.1 Participants

The SMRI data was collected from four sites: Johns Hopkins University, the Mary-

land Psychiatric Research Center, the Institute of Psychiatry (IOP), London, UK,

and the Western Psychiatric Research Institute and Clinic at the University of Pitts-

burgh, as described in Meda et al. (2008). It contains 198 schizophrenia patients

(121 M/ 77 F; age = 39.68±12.12, range 17-81) and 191 controls (97 M/ 94F; age =

40.26±15.02, range 16-79).
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MRI settings

MRI was obtained on 1.5 T Signa GE scanners with the following parameters (repeat

time (TR) = 35 ms, echo time (TE) = 5 ms, flip angle = 45 degrees, 1 excitation,

slice thickness = 1.5 mm, field of view = 24 cm, and matrix size = 256×256), except

for IOP data, which was obtained using a 35 degree flip angle and a 20 cm field of

view. Patients and controls were collected at all sites. For more information please

refer to Meda et al. (2008).

Pre-processing

The T1-weighted images were normalized to Montreal Neurologic Institute (MNI)

standard space, interpolated to voxel dimensions of 1.5 mm3 and segmented into

gray matter, white matter, and cerebro spinal fluid maps. The resulting gray matter

images were then smoothed with an isotropic 8 mm full width at half maximum

Gaussian filter.
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Figure 2.7: Predicted labels across all 10 folds for each classifier
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Sample generator model

We propose a sample generator model for improving classification scores on reducible

datasets. We define a reducible dataset as a matrix of samples and features that

can be reconstructed with small error after being factoried by a matrix factorization

method such as PCA or ICA. We hypothesize that by augmenting a reducible dataset

in its projected space and then reconstructing back to the original space, machine

learning should improve the representation of raw data, hence produce better scores.

The proposed method is composed of two main steps, a matrix factorization and

a random variable (RV) sampler. We first proceed to introduce both concepts and

later describe the proposed method.

The matrix factorization step seeks to decompose a matrix as follows

Xn×m = An×cSc×m + ε, (3.1)

where X is the observed dataset with n samples (rows) and m variables (columns),

A is the loading coefficient matrix, S is the component matrix, c is the number of

components, and ε is the error.

Since the application of this thesis is classification, we propose the use of two very
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popular matrix factorization techniques, principal component analysis (PCA) and

independent component analysis (ICA). Then, we let the machine learning method

choose what is the best decomposition method for the data at hand using the clas-

sification score in a nested cross-validation framework.

RV samplers are methods for generating RVs from various probability density

functions (PDFs). In computers, it is easy to generate uniform distributed RVs and

often we rely on the cumulative distribution function (CDF) inverse to transform

uniformly distrituted numbers to RVs with a particular PDF of interest. However,

the inverse CDF is not always posible to derive and we have to rely on iterative

sampling methods such rejection sampling or Gibbs sampling, among others.

In the proposed method, the RV sampler function will generate RVs with the

same PDF as those in the A matrix from eq. (3.1). Again, since the final goal

in this thesis is maximizing classification score, we implemented two RV samplers

and let the method choose the best suited for the data at hand. The first method

is a modification of a rejection sampling for multivariate samples, and the second

assumes multivariate normality.

3.1 Matrix Factorization

As shown in eq. (3.1), we seek to decompose a matrix of data where each row

represents an observation and each column represents a variable. The data matrix

X decomposes into loadings A and components S given certain constrains. In this

thesis, we focus on the two most popular methods PCA and ICA.
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3.1.1 Principal Component Analysis

PCA was introduced by Hotelling in 1933 (Hotelling, 1933), and it is still widely used

for data analysis, matrix factorization, and data reduction. In the context of this

thesis, we will use PCA as a matrix factorization with reduction, sample variation

summary.

Following eq. (3.1), PCA transforms X into principal components such that they

are uncorrelated. Algebraically, the principal components are linear combinations of

the RVs in each column of X. Geometrically, the components are the result of a

coordinate system rotation with each column of X as the coordinate axes.

The principal components depend only on the covariance matrix of X. First, the

method estimates the sample covariance and computes its spectral decomposition

E[XXT ] = UΛUT , where Λ is a diagonal matrix containing c eigen values, and

U contains the eigen-vectors in its columns. Then, the matrix S is estimated as

S = Λ−
1
2UTX, and A = UΛ

1
2 . Thus, the reconstruction is AS = UΛ

1
2 Λ−

1
2UTX =

UUTX = X.

The first principal component of PCA represents the direction of largest variance

in the data, then it searches for the second largest variance direction such that is

orthogonal to the first, and so on. Since each component retains a certain amount

of variance, it is possible to rank them. PCA is often used to reduce the dimension

of the data by retaining the top subset of components that retain a prespecified

proportion of total variance.

To illustrate the effect of PCA, we show an example in Figure 3.1. In the example,

we set A =

 cos(π/6) −sin(π/6)

sin(π/6) cos(π/6)

, a 30o rotation matrix. Then we sample

independent RVs and set them to the rows of S which represent the true sources. The

matrix multiplication of A and S results in the observed data X. We then estimate
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Figure 3.1: Visual example of principal component analysis decomposition.

the sources from the rotated data, which shows the estimated sources rotated back

to its orthogonal position. Note that the sign of the first component is flipped, this

is accounted in the estimated A that contains the negative of the original but same

in magnitude.

3.1.2 Independent Component Analysis

ICA was introduced by Herault et al. in 1983 (Hérault and Ans, 1984) as an exten-

sion of PCA. ICA has also been applied to various areas of signal processing includ-

ing speech separation, communications, and functional magnetic resonance imaging

(FMRI) (Hyvärinen et al., 2004; McKeown et al., 1997).

While PCA aims for uncorrelated sources, ICA seeks for independence, often with

a function related to the fourth moment. ICA also relaxes the orthogonality required

for PCA.

ICA is based on two main assumptions: statistically independent sources, and no

more than one Gaussian distributed source. In real world problems these assumptions

are reasonable because observed signals are usually composed of weighted sums of

several other random signals. Thus, the observed signal tends to be of Gaussian
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Figure 3.2: Visual example of an independent component analysis decomposition.
The plot shows the (a) true sources, (b) mixed sources, (c) estimated sources com-
puted with ICA, and (d) estimated sources computed with PCA

nature (central limit theorem), yet the sources that generates them tend to show

high kurtosis. A typical example of this observation is shown sound signals (Bell and

Sejnowski, 1996).

We can visualize the decomposition effect of ICA by simulating data in two

dimensions, see Figure 3.2. We let A =

 1 1

0 2

, and sample 10,000 independent

samples from the logistic distribution for two components of S. We then multiply

A × S to generate X. Note that in contrast to PCA, the matrix A doesn’t have to

be an orthogonal matrix.

For this example S contains independent sources and A mixes the sources to gen-

erate the simulated observed samples. In Figure 3.2 we plot the original independent

sources in the left plot, we plot the mixed sources X in the the middle plot, and

we show the estimated sources Ŝ in the right plot. Note that PCA would have just

rotated the axis in the direction of the component with the highest variance, which

is not enough to recover the original sources, see Figure 3.2d.

The literature reveals a various algorithms to estimate independent sources, in-

cluding infomax, fast ICA, and joint approximate diagonalization of eigenmatrices.
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In this thesis, we focus on infomax ICA, which shown the best results for brain

imaging data (Correa et al., 2007).

Infomax

The infomax algorithm was proposed in Bell and Sejnowski (1995). From the infor-

mation theory perspective, infomax seeks to estimate sources to minimize the mutual

information at zero. In other words, it uses the definition of independence using the

joint entropy which is defined as

H(x) = −
∫
f(x) log f(x)dx. (3.2)

Then, the mutual information is defined as

I(x) = −H(g(x)) + E

[∑
i

log
|gi(xi)|
fi(xi)

]
, (3.3)

where g(x) depends on the distribution f(x). Typically, g(x) is designed as the

sigmoid function

g(x) =
1

1 + exp−x
. (3.4)

Since the expectation term in eq. (3.3) is constant, minimizing the mutual infor-

mation is equivalent to maximizing the joint entropy. Thus, the infomax algorithm

then designs the following optimization problem for maximization of the joint en-

tropy:

Ŵ = argmax
W

H(g(WX)), (3.5)

where W is the mixing matrix W = A−1.

Because of the lack of implementation of infomax ICA in python, we ported

infomax ICA from the matlab version (Delorme and Makeig, 2004) to python and

published it under the GPL license at https://github.com/alvarouc/ica.

32

https://github.com/alvarouc/ica


Chapter 3. Sample generator model

3.2 Random variable samplers

The most simple approach for generating RV samples from a determined PDF is to

obtain the inverse CDF in closed form, F−1(x), and apply it to transform samples

from the uniform distribution. When F−1(x) is not accessible, we rely on other

sampling methods. Moreover, in real data applications, we do not have access to

f(x), thus we have to either estimate it or assume it to use a RV sampler.

For the purpose of this thesis, we present two methods. The first is a modified

version of rejection sampling that does not impose any assumptions on the probability

density function of the data but estimates samples assuming variable independence,

and the second one assumes a multivariate normal joint density.

3.2.1 Rejection sampling

Given a PDF, f(x), where F−1(x) does not exist, we can use rejection sampling to

draw samples from f(x) using an iterative procedure.

First, the method requires the definition of an envelop function e(x) such that

e(x) ≥ f(x), ∀x ∈ R. Let e(x) = αh(x), where h(x) is a PDF that is available to

sample from, such as the uniform or gaussian PDF, and α > 0 is a scale factor that

ensures e(x) = αh(x) ≥ f(x). Then, the method obtains a sample y ∼ h(y), and

u ∼ Uniform(0, e(y)), where it accepts y as a sample from f(x) if u > f(y). This

procedure is repeated until the desired number of samples is accepted. The iterative

algorithm for rejection sampling is described in Algorithm 1.
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Algorithm 1 Rejection sampling algorithm for univariate random variables.

repeat

Sample y ∼ h(y)

Sample u ∼ Uniform(0, e(y))

if u > f(y) then

Reject y

else

Accept y as a sample from f(x)

end if

until the desired number of samples is accepted

Efficiency

The efficiency of the rejection sampling algorithm depends on the design of e(x). The

ratio of rejected samples should be minimal to adquire the required number samples

in as few iterations as possible. Thus, a poorly designed e(x) will lead to a large

number of rejected samples. Ideally, e(x) should be tangent to f(x) or as close as

possible.

For example, let f(x) = exp(− (x−1)2
2x

)x+1
12

as in Figure 3.3a, and let e(x) be defined

with α = 4.5 and h(x) = Uniform(0, 15), which we use to produce RVs from f(x)

using the rejection sampling method. To corroborate that the obtained smaples

are drawn from f(x), we plot the normalized histogram of the obtained samples in

Figure 3.3b.

In the previous example, the arbitrary e(x) is not optimal. To illustrate the

effect of chosing a better designed e(x), we show the ratio of rejected samples by

drawing each sample in the (y, u) coordinate space, where the rejected samples are

drawn in blue and the accepted samples in green. The rejection area (blue) is 77.7%

of the total area of e(x), see Figure 3.3c. Therefore, a better design could be e(x)
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Figure 3.3: Rejection sampling efficiency visualized. (a) Plot of density function to
sample from, (b) histogram of accepted samples, (c) plot of rejected samples in blue,
and accepted samples in green for e(x) = 0.3× Uniform(0, 1), and (d) same plot as
in (c) with e(x) = 1.5× χ2(4).
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Chapter 3. Sample generator model

with α = 1.5 and h(x) = χ2(4), where the new rejection area is 33.3% of the total,

see 3.3d. Therefore, the second design is more efficient than the first one, yet not

optimal.

As we observed, the optimal envelop function e(x) depends on the area in between

e(x) and f(x). As the area reduces, the efficiency of rejection sampling increases.

Therefore, we propose that the optimal e(x) can be found by solving the following

optimization problem:

θ̂, α̂ = argmin
θ,α

∫
(αh(x|θ)− f(x))dx, s.t. e(x)− f(x) ≥ 0, ∀x ∈ R, (3.6)

which, using the fact that h(·) and f(·) are PDFs, reduces to

θ̂, α̂ = argmin
θ,α

α, s.t. αh(x|θ)− f(x) ≥ 0, ∀x ∈ Domain{f} (3.7)

See an example of an analytical solution for α and θ in the case were we require

samples from Beta(2, 2) using h(x|θ) = Uniform(0, θ) in Appendix A.

Multivariate RV extension

Let the joint probability density function of A be fA(x), and the marginal densities

be fA(xi) for i = 1, 2, . . . , c, where c is the number of components in A. Then,

assuming the marginal random variables are independent, we can obtain the joint

distribution by fA(x) =
∏c

i=1 fA(xi). In other words, we assume xi are independent

and apply rejection sampling to each xi to generate x.

3.2.2 Multivariate Normal

We use the sample mean and sample covariance matrix from A as input to this gener-

ator. Then, we use the spectral decomposition approach for generating multivariate

36



Chapter 3. Sample generator model

random normal samples. Contrary to the rejection sampling generator, this approach

accounts for the correlation structure among the RVs, but it loses the generality of

the marginal distributions.

3.3 Data driven sample generator

The proposed method is designed with the goal to provide machine learning models

an augmented dataset that is as close as possible to real data. Machine learning

methods then could take advantage of the extra sample variability to build more

robust decision boundaries and avoid overfitting. In particular, we focus on datasets

that are rich in features but short of samples, which is the scenario where machine

learning models tend to overfit and fail.

Our proposed method for a data driven sample generator builds from two as-

sumptions:

• The input dataset is reducible, as in error from matrix factorization reconstruc-

tion is minimal.

• A group of samples with a common diagnosis (class) share statistical properties

that are reflected in their loading coefficients (A).

Based on these assumptions, the proposed method proceeds as follows. First,

it factors the observed dataset X into A and S (e.g., using PCA or ICA). Next, it

splits A into sub-matrices, A = [AT1 , A
T
2 , · · · , ATC ]T , where each Ai represents a class

of samples.

After that it feeds each Ai matrix to a RV generator of choice. In case of the

rejection sampling method, we first estimate the PDF of each column of Ai and

generate new samples with that distribution. Otherwise, we compute the sample
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Figure 3.4: Data driven generator block diagram. The dataset is factorized into
components and loading matrix A. The RV block denotes the RV generator that fits
from A and generates new samples to reconstruct the synthetic dataset.

mean and convariance to generate new samples with the same parameters. The

method then reconstructs a new dataset using X̂ = ÂS. As we stated before, the

matrix factorization method is left to the classification score to decide, as well as the

RV sampler of choice.

To use the rejection sampling method, we estimate the joint PDF of each Ai using

a normalized histogram with M bins of each column and a smoothing kernel, which

we denote by the function pdfM{·}. Based on data observations, we set M = 20.

We use the rejection sampling method to sample the marginals from the joint PDF,

fi =
∏c

j=1 pdfN{[Ai]j}, ∀i ∈ {0, 1, ..., N}, where j indicates the jth marginal PDF.

In the case of the multivariate normal RVs, we simply use the maximum likelihood

estimators (MLE) to estimate the mean and covariance matrix of Ai and generate

M samples using the estimated parameters, Âi ∼ MVN(Āi,Σi).

The method RV generator method is depicted in Figure 3.4.
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Application to SMRI classification

The number of SMRI images that can be collected per study is limited by the high

collection cost and patient availability. It requires expensive facilities, qualified tech-

nicians, and significant patient time. In Chapter 3 of this thesis, we proposed a data

driven generator model to mitigate the negative effects of a limited sample size by

artificially augmenting the dataset. As a case study, we use SMRI images to classify

people into two diagnostic groups: patients with schizophrenia and healthy controls.

The dataset was presented in section 2.2. We now elaborate on the process

of applying the proposed method in a classification problem. We will apply the

traditional methods that were described in Chapter 2 to SMRI data for baseline

results and to the augmented dataset to measure any significant improvement.

The present chapter follows with a linear statistical analysis of the SMRI im-

ages related to patient demographics, then classification results using both raw and

augmented datasets.
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(a) (b) (c)

Figure 4.1: (a) Image taken from the author of this thesis as an example of a raw
SMRI image. (b) Image after pre-processing steps described in Section 2.2.1. (c)
Mask used to keep intracraneal voxels.

4.1 Data analysis

4.1.1 Data set

The dataset consists of 389 subjects, roughly age and gender balanced (schizophrenia

is 40% more prevalent in males), as described in Table 4.1. Each subject was scanned

to obtain a three dimensional image of 52 by 63 by 45 voxels, where each voxel

represents gray matter concentration (GMC) (from 0 to 1) in a 3mm by 3mm by

3mm cube, e.g., see Figure 4.1a. After the preprocessing steps described in 2.2.1,

all the images are aligned and look as we show in Fig. 4.1b. We then mask out

voxels outside of the brain, see Figure 4.1c, and vectorize the image. This results in

a vector of 60,465 voxels per sample.

4.1.2 Linear model

Since age and gender have been shown to be highly correlated with gray matter

concentration (Takahashi et al., 2011), we include them in the analysis as factors.
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Table 4.1: Participants demographics distribution.

Patient Control Total

Male 121 97 218
Female 77 94 171
Age 39.68±12.12 40.26±15.02
Total 198 191 389

Table 4.2: Participants demographics distribution for three factors: age, gender, and
diagnosis.

Healthy Patient

Age Male Female Male Female Total
Young (16-33) 39 35 37 19 130
Adult (34-43) 27 25 51 25 128
Senior (44-81) 31 34 33 33 131
Total 97 94 121 77 389

We partition age into three groups: young (16-33), adult (34-43), senior (44-81).

The demographics of the participants passing quality control, see Section 2.2.1, are

summarized in the three-way table in Table 4.2.

Now, we conduct a three-way ANOVA on GMC as the response variable, diag-

nosis, age, and gender as factors, and its interactions. For every voxel, we fit the

full model including the three-way interaction. Then we perform backward selection

in the standard way. We first check whether the three-way interaction (age-gender-

diagnosis) is significant at the 0.01 level; if it is not significant, we remove that

term and repeat testing until all model terms are either significant or included in a

higher-order significant term.
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4.1.3 Results

We compute the p-value for every voxel and we transform it with − log10(−p) to

improve the graphical representation overlayed on the MNI structural template. For

the main effects, we correct the resulting p-values for multiple comparisons using the

false discovery rate (FDR) with a 0.01 level. In Figure 4.2 we show the FDR-corrected

transformed p-value where the effects of each factor are significant.

The main factor of interest in this study is the diagnosis. The brain regions where

the diagnosis showed a significant effect are at the left and right superior temporal

gyrus, and the superior frontal gyrus. The schizophrenia patients show an average

reduction of GMC of 0.043 at the right superior temporal gyrus, 0.048 at the left

superior temporal gyrus, and 0.036 at the superior frontal gyrus. No other factor, or

interaction showed significant effects on these brain regions.

We also extract brain regions where age showed a significant effect. These are the

left and right thalamus, and parahippocampal gyrus. Overall, it shows an increasing

GMC trend as age progresses, however in the parahippocampal gyrus, adults and

seniors show no significant difference. Again, we observed no interaction or effects

of other factors in these regions.

Age also showed interaction effect with diagnosis on the left and right parietal

lobule, where young patients showed the largest reduction in GMC compared to

controls (0.073 on right and 0.065 on left).

Gender showed no significant effect on any brain region, however, it showed sig-

nificant interaction with diagnosis on the right fusiform gyrus, where the largest

difference is found between male patients and male controls (0.02 average difference).

The three way interaction only had a significant effect on a small region of the left

precuneus, where senior female patients showed the largest GMC reduction compared
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Figure 4.2: Three-way ANOVA results. Voxels passing fdr correction for multiple
comparison at the 0.01 level for the (a) diagnosis, (b) age, and (c) gender effects.
Significant interactions between (d) gender and diagnosis; (e) age and diagnosis; and
(f) age, gender, and diagnosis. We show the significance as −log10(p).

to all others (0.041).

We plot this results by factor in Figure 4.2, and all factors at one in Figure 4.3.

We also summarize the effects and group means in Table 4.3 and Table 4.4.

4.2 Classification results

We now present classification scores for each of the classifiers discussed in Section 2.1.

We compute scores for raw data, ICA projected data, PCA projected data, and the

augmented dataset generated with the proposed method in this thesis.
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Figure 4.3: Three dimensional view of all effects on the GMC mean. Red marks the
diagnosis effect after FDR correction at 0.01 level. Blue shows the age effect after
FDR correction at 0.01 level. Green shows the age-diagnosis effect at 0.01 level.
Pink shows the gender-diagnosis effect at 0.01 level. White shows the three-way
interaction effect at 0.01 level.

Table 4.3: Three way ANOVA group means for the main effects of schizophrenia
dataset.

Effect Brain Region Group Means (×10−2)

Diagnosis

Control Patient
57.7 52.9
60.2 55.4
39.3 35.7

Right Superior Temporal Gyrus
Left Superior Temporal Gyrus
Superior Frontal Gyrus

Young Adult Senior
30.8 33.7 35.9
34.1 37.5 39.8
68.3 73.7∗ 73.3∗

66.8 71.3∗ 71.7∗

Age

Left Thalamus
Right Thalamus
Right Parahippocampal Gyrus
Left Parahippocampal Gyrus

Gender None
∗ Not statistically different.
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Table 4.4: Three way ANOVA group means for the effects of interactions on
schizophrenia dataset.

Effect Brain Region Group Means (×10−2)

Gender-Diagnosis Right Fusiform
Gyrus

Control Patient
Male 27.7(a) 29.7(b)

Female 29.4(a,b) 28.1(a,b)

Age-Diagnosis
Right Inferior
Parietal Lobule

Young Adult Senior
Control 54.5(c) 53.0(b,c) 47.1(a)

Patient 47.2(a) 50.7(a,b) 48.8(a)

Left Inferior
Parietal lobule

Young Adult Senior
Control 51.9(b,c) 52.2(c) 47.1(a)

Patient 45.4(a) 50.2(a,b) 48.3(a,b)

Age-Gender-Diagnosis Left Precuneus
Senior Female Patient Others

43.0 47.1

We set the parameters for each classification method shown in Table 4.5. The

methods that show a list of values for a parameter were trained using a grid search ap-

proach, where the best scoring combination of parameters in a subset of the training

data was used to predict on the test data. In the case of the proposed methodology,

we appended two additional hyper-parameters, the decomposition method (PCA or

ICA) and the R.V. generator (rejection or MVN).

Not all classifiers are scale invariant, so we normalize the data by removing the

mean and scaling each voxel to unit variance over the subjects. Then, we split the

data in 5 folds, where 4 are used for training and the remaining for testing. Each fold

is used for testing once. We fit each classifier on the training set, on the projection

of the training set, or on the augmented dataset created from the training set using

the proposed method. Finally, we report the score and standard deviation from the

testing folds and summarize it on Table 4.6 and Figure 4.4.

Overall, the MLP method showed the best performance when the proposed

methodology was used for training. Among the type of classifiers, the linear methods

showed the best average scores, followed by the non-linear classifiers, and the non-
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Method Parameter Values

Nearest Neighbors Number of neighbors [1, 5, 10, 20]
Decision Tree Maximum number of features ’auto’
Random Forest Number of estimators [5...20]
Naive Bayes Kernel Gaussian
Logistic Regression C [0.001, 0.1, 1]

Support Vector Machines
Kernel [radial, polynomial]
C [0.01, 0.1, 1]

Linear SVM
C [0.01, 0.1, 1]
Penalty [’L1’, ’L2’]

Multilayer Perceptron
Depth [3, 4, 5]
Number of hidden units [50, 100, 200]

Table 4.5: Classification methods and parameters for grid search

parametric classifiers. The decision tree method showed no average improvement but

reduced its standard deviation when using the generator. Linear SVM along with

logistic regression reported no difference on the average score for raw vs augmented

dataset, however when using data projections they report decreased scores. Naive

bayes along with random forest performed the best when the dataset was projected

using PCA but generally not performing well.

Method Raw ICA PCA Augmented

Logistic Regression 72.1± 3.5 66.4± 7.6 67.5± 3.9 71.0± 3.0
Multilayer Perceptron 60.2± 12.5 67.9± 5.2 66.6± 3.7 75.0± 4.5
SVM (radial, poly) 70.5± 5.9 57.0± 4.7 64.0± 5.5 70.1± 4.0
Linear SVM 69.1± 6.7 68.2± 7.5 67.4± 4.3 71.3± 3.9
Naive Bayes 60.3± 6.0 59.8± 8.6 65.2± 5.8 58.3± 3.7
Decision Tree 55.5± 4.9 54.3± 5.1 56.0± 5.6 55.2± 3.3
Random Forest 60.1± 3.4 62.3± 5.7 65.6± 3.9 63.3± 2.3
Nearest Neighbors 62.7± 3.5 58.6± 6.2 65.1± 3.8 60.3± 3.5

Table 4.6: Classification results on raw data, ICA reduced, PCA reduced, and aug-
mented dataset.
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Figure 4.4: Average classification score results for raw, ICA reduced, PCA reduced,
and augmented data grouped by type of classifier.

4.3 Size effect for data generator

We tested the size effect for the proposed methodology. The experiment consists

on varying the number of synthetic samples as 10, 100, 1000, and 5000 samples per

group, and measuring the average and standard deviation of the scores across folds

for each classifier at each size level. We did not make use of the grid search approach

for this experiment for computation and time constrains. This should not affect

the overall trend but may affect the absolute values when compared to the results

obtained in Table 4.6.

We plot the average score of each classification method and the spread of the

scores measured by the standard deviation for the training and testing sets. For the

training scores, we trained on synthetic data and report the score on the training set

from which the synthetic data was generated. The training average score increases

with the size and saturates at smaller numbers of generated samples for naive Bayes,

logistic regression and linear SVM. The standard deviation of training scores decrease

with the data size. For the test score we also observe an increasing trend, however

the variability is higher. The results are summarized in Figure 4.5.
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Figure 4.5: Size effect for various classification methods trained on synthetic data.
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Discussion

We initially hypothesized that training on a large number of synthetic but realis-

tic samples may improve the accuracy of classifying schizophrenia patients versus

healthy controls. The results show evidence in favor of our hypothesis because when

using synthetic data, the classification scores matched or improved when compared

to other approaches, see Figure 4.4. Results are encouraging and provide evidence

of the value of the proposed synthetic data generator for classification.

We conducted an exploratory data analysis to investigate the differences between

healthy controls and schizophrenia patients with an ANOVA model. The model

consists of the voxel intensity as the response variable, diagnosis as the main fac-

tor, and age and gender as covariates. After conducting the analysis with model

reduction, the results suggested a significant influence of the superior temporal and

frontal gyrus on the schizophrenia diagnosis, where patients exhibited a significant

decrease in GMC. These brain regions have been reported on several other publica-

tions concerning schizophrenia and GMC (Kasai et al., 2003; Rajarethinam et al.,

2000; Gupta et al., 2015). Thus, our dataset replicated past findings, which builds

confidence in its validity.
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Secondary results of the exploratory analysis suggested that age, gender and in-

teraction effects are significant on other non-overlapping brain regions. As the age

progresses, all the subjects showed an increased GMC on the thalamus and the

parahippocampal Gyrus, which matches findings in (Rzezak et al., 2015; Fama and

Sullivan, 2015). The gender showed no significant effects on GMC when control-

ing for diagnosis and age, yet it suggested significant interaction effects with the

diagnosis, where males showed the highest increase of GMC at the right fusiform

gyrus. A recent study in (Koenders et al., 2015) reports the opposite of our findings,

where male patients exhibited decreased GMC, thus we suggest caution and further

replication should be studied. The age factor also showed a significant effect on the

inferior parietal lobules, where only young subjects hold a meaningful reduction of

GMC. A study focused in the inferior parietal lobules (Torrey, 2007) reveals a lack

of consistency on the literature, where 6 studies reported decreased GMC on males

only and 3 reported a significant increase in GMC. We suggest replication of this

experiment to increase confidence in this last results. Finally, the analysis also re-

vealed significant reduction of GMC for senior female patients when compared to all

others at a very small section of the left precuneus. The literature does not show a

clear finding related to schizophrenia in this brain region.

In summary, the results from the ANOVA analysis reveals that there is some sepa-

rability between healthy controls and schizophrenia and linear classification methods

should be able to find and exploit those regions.

Out of the learning methods used in our experiments, the MLP stands out in

its classification performance when using synthetic data. This suggests the utility of

deep learning in the area of neuroimaging. Deep neural networks have been gaining

popularity in areas where data are abundant, so called “big data”, however its utility

on the other side of the data size spectrum, scarce data, is yet to be defined. Our

MLP with synthetic data generation brings deep neural networks a step closer to
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applications to neuroimaging data.

A scenario where overfiting is not a problem is when the number of collected

observations is much larger than the number of variables. Deep learning methods

have proven most effective for big data problems, such as natural images (Krizhevsky

et al., 2012), video (Le, 2013), and text (Xue et al., 2008) processing. However, in

the medical imaging field we find the opposite scenario. For example, an image of the

brain taken from structural magnetic resonance imaging (SMRI) can be composed of

around 50,000 voxels (variables) and even a large dataset may only contain between

400 and 2,800 images (Meda et al., 2008; Sabuncu et al., 2014).

The literature shows many efforts on overcoming the effect of overfitting. For

example, in classical regression and classification problems it is a common practice

to add constrains to cost functions in the form of L1 and L2 norms of the model

parameters (Schmidt et al., 2007; Tibshirani, 1996), or a combination of the two as

elastic net regularization (Zou and Hastie, 2005). More specifically, deep learning

methods also use other regularization techniques in combination to the latter ones,

such as dropout (Dahl et al., 2013; Srivastava et al., 2014), and additive noise as an

inherent part of the de-noising autoencoder (Vincent et al., 2010).

While the idea of synthetic image generation has previously been used for the

recognition of natural images (Netzer et al., 2011; Goodfellow et al., 2013) and in its

primitive form (additive noise) is an inherent part of the de-noising autoencoder (Vin-

cent et al., 2010), we are unaware of studies that used synthetic neuroimaging, ge-

netic, or combination of data modalities in a learning framework as presented in this

thesis.

The proposed data generator method exploits the fact that SMRI data is spatially

redundant (smooth) and, with insignificant loss of information, effectively reduces

dimensionality using ICA. Several studies on gray matter concentration favor the use
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of ICA (Smith et al., 2004; Liu et al., 2012) because of the easy interpretation of its

results and its compatibility with known regions of the brain.

The reduced data is then passed to a data-driven R.V. generator. The R.V. gen-

erator takes the reduced data, mixing matrix, and emulates its statistical properties

with two different approaches. The first approach is a method based on rejection

sampling that, from the sampled PDF, simulates R.V.s column by column of the

mixing matrix. This approach provides flexibility for modeling arbitrary PDFs from

the sampled mixing matrix, however it ignores interactions among columns of the

reduced data. On the other hand, the second approach, a simple multivariate normal

RV generator, captures the correlations between columns but fixes the joint PDF of

the variables.

In concordance with Li et al. (2007), we observed that as we increase the number

of estimated sources, it is more likely to encounter correlation among columns of

A. It often occurs that over-estimation of the number of sources results in spatial

splits, which then show a similar pattern at the mixing matrix level. Thus, the use

of a multivariate normal R.V. may be advantageous. On the other hand, if we set

a lower number of sources the loading coefficients are less likely to be correlated, so

the use of a rejection sampling R.V. generator should be preferred. Overall, it is a

good practice to observe the level of correlation on the mixing matrix and pick a

method that better fits the correlation structure.

To the best of our knowledge, the proposed methodology is the first attempt to

classify neuroimaging data in an online fashion using purely synthetic data. Re-

sults, showing the proposed method in synergy with MLP had the highest average

classification scores, are encouraging and provide positive evidence of a promising

methodology. Moreover, the proposed application can be used for sharing data and

let researchers use it to train their models searching for better algorithms to clas-

sify schizophrenia. This is especially true for datasets that cannot be shared in raw
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format for ethical or legal reasons.

Finally, it is important to mention that information from the model learned by

the classifiers can be extracted to identify brain regions that are of importance for

the classification. The identified brain region may be then used for targeting patient

treatment or further research.
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Future Work

Despite the demonstrated utility of our approach, there are several open questions

for the future work. For example, when does the simulator become useful as a

function of the size of the data? That is, when is there enough information in the

data to help generalization? Similarly, at what data size is there dimishing returns

so that the benefits of the synthetic data generator levels off? Additionally, even the

MVN simulator only captures second order statistics of the distribution, it remains

unknown if distributions that model more complex interactions are of further utility.

However, we hypothesize that this indeed may be the case according to the trend

that we already observed going from univariate to multivariate PDF.
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Example of analytic solution for

optimal envelop function

Let f(x) = Beta(2, 2) = 6x(1− x), x ∈ [0, 1], see Figure A.1, and

h(x|θ) = Uniform(0, θ) =

1/θ, if 0 ≤ x ≤ θ

0, otherwise

From eq. (3.7), we solve the following

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f(
x
)

Beta(2,2)

Figure A.1: Beta(2,2) probability density function.
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Appendix A. Example of analytic solution for optimal envelop function

θ̂, α̂ = argmin
θ,α

∫ 1

0

(αh(x|θ)− f(x))dx, s.t. e(x)− f(x) ≥ 0, ∀x ∈ [0, 1]

or

θ̂, α̂ = argmin
θ,α

α, s.t. αh(x|θ)− 6x(1− x) ≥ 0, ∀x ∈ [0, 1]

For θ < 1, h(x|θ) = 0 for x ∈ [θ, 1], then the constrain reduces to

0− 6x(1− x) ≥ 0,

x(1− x) ≤ 0

where, a solution is x > 0 and 1 − x < 0, which means x > 1; and the other

solution is x < 0 and 1 − x > 0 which means x < 0. This is a contradiction, thus,

θ ≥ 1 for the constrain to hold.

Now, for θ ≥ 1, the constraint is α 1
θ
− 6x(1− x) ≥ 0, ∀x ∈ [0, 1]

α

θ
≥ 6x(1− x)

α

6θ
≥ x− x2

x2 − x+
α

6θ
≥ 0

after some algebra,
α

θ
≥ 1.5.

Then, the optimization problem is reduced to

θ̂, α̂ = argmin
θ,α

α, s.t.
α

θ
≥ 1.5, and θ ≥ 1

Using Lagrangian multipliers, L(α, θ, λ, γ) = α− λ(
α

θ
− 1.5)− γ(θ− 1), we solve
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the following system of equations

∂L

∂α
= 1 +

λ

θ
= 0

∂L

∂θ
= −λ α

θ2
+ γ = 0

∂L

∂λ
=
α

θ
− 1.5 = 0

∂L

∂γ
= θ − 1 = 0

Then, the solution is θ = 1, and α = 1.5, which results in the optimal

e(x) = 1.5 Uniform(0, 1),

which is intuitively correct since the maximum value for Beta(2, 2) is 1.5.
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Code samples

B.1 Baseline results

The code for running multiple classifiers is publicly available on github http://

github.com/alvarouc/polyssifier with GPL license. It builds on top of two

popular python libraries: Scikit-learn http://scikit-learn.org and Keras http:

//keras.io.

We named our library ”polyssifer” and it can be used either from the terminal

or in python code as follows:

Bash terminal sample

poly data . npy l a b e l . npy −−name Moons −−concurrency 8

Python sample
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Appendix B. Code samples

from p o l y s s i f i e r import poly , p l o t

s co re s , con fus ions , p r e d i c t i o n s = poly ( data , l abe l ,

n f o l d s =8, concurrency =4)

p l o t ( s c o r e s )

B.2 Multilayer Perceptron

The Keras library provides tools for the design of deep-learning classifiers, however,

it was not compatible with scikit-learn. Thus, we wrote a wrapper code for making

it compatible with scikit-learn and easy to use. The code is publicly available on

http://github.com/alvarouc/mlp

Python sample

from mlp import MLP

from s k l e a rn . c r o s s v a l i d a t i o n import c r o s s v a l s c o r e

c l f = MLP( n hidden =10, n deep =3, l1 norm =0, drop =0.1 ,

verbose =0)

s c o r e s = c r o s s v a l s c o r e ( c l f , data , l abe l , cv=5,

n jobs =1, s c o r i n g=’ roc auc ’ )

B.3 Brain graphics

We created a library for plotting brain views from weight patterns of voxels. The

code is publicly available on http://github.com/alvarouc/brain_utils.
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Appendix B. Code samples

Python sample

from b r a i n u t i l s import p l o t s o u r c e

p l o t s o u r c e ( source , template , np . where (mask ) , th=th ,

vmin=th , vmax=np .max( t ) , cmap=’ hot ’ , xyz=xyz )
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Nicolle Correa, Tülay Adalı, and Vince D Calhoun. Performance of blind source sep-

aration algorithms for fmri analysis using a group ica method. Magnetic resonance

imaging, 25(5):684–694, 2007.
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Alex Fornito, Murat Yücel, and Christos Pantelis. Reconciling neuroimaging and

neuropathological findings in schizophrenia and bipolar disorder. Current opinion

in psychiatry, 22(3):312–319, 2009.

63

http://www.samhsa.gov/data/
http://www.samhsa.gov/data/


REFERENCES

T Frodl and N Skokauskas. Meta-analysis of structural mri studies in children and

adults with attention deficit hyperactivity disorder indicates treatment effects.

Acta Psychiatrica Scandinavica, 125(2):114–126, 2012.

Shawn D Gale, L Baxter, N Roundy, and SC Johnson. Traumatic brain injury and

grey matter concentration: a preliminary voxel based morphometry study. Journal

of Neurology, Neurosurgery & Psychiatry, 76(7):984–988, 2005.

Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet.

Multi-digit number recognition from street view imagery using deep convolutional

neural networks. arXiv preprint arXiv:1312.6082, 2013.

Cota Navin Gupta, Vince D Calhoun, Srinivas Rachakonda, Jiayu Chen, Veena Patel,

Jingyu Liu, Judith Segall, Barbara Franke, Marcel P Zwiers, Alejandro Arias-

Vasquez, et al. Patterns of gray matter abnormalities in schizophrenia based on

an international mega-analysis. Schizophrenia bulletin, page sbu177, 2014.

Cota Navin Gupta, Vince D Calhoun, Srinivas Rachakonda, Jiayu Chen, Veena Patel,

Jingyu Liu, Judith Segall, Barbara Franke, Marcel P Zwiers, Alejandro Arias-

Vasquez, et al. Patterns of gray matter abnormalities in schizophrenia based on

an international mega-analysis. Schizophrenia bulletin, 41(5):1133–1142, 2015.
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