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Abstract

Accurate simulations of Arctic sea ice are important for forecasting as well as for

understanding the global climate. However, quantitative measures for simulation

displacements are underutilized. We present five such measures proposed as being

useful in the validation of simulated sea ice displacements. Using drifting buoy and

satellite measurements of sea ice motion as observation, we apply the metrics in a

comparison of observed displacements and predicted displacements from the Arctic

sea ice simulation MPM ice. We find the metric scores are useful for comparing

simulations and observations. The metrics also brought to light problems in the

simulation MPM ice, demonstrating their utility in validation of simulated displace-

ments.
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Chapter 1

Introduction

Sea ice is frozen sea water which helps to insulate the ocean from the colder atmo-

sphere in winter and to provide a partial barrier to heat, moisture, and momentum

transfer between the ocean and atmosphere, making it an important component in

the Earth’s energy balance. The ice cover waxes and wanes seasonally and at its

maximum extent covers around 7% of the Earth’s surface and close to 12% of the

Global Ocean [24]. Cracks in the ice cover, called leads, occupy 1-2% of the ice cover

in winter but account for half of the heat flux from the ocean to the atmosphere [2].

Accurate simulations of the Arctic are important for commercial reasons, such as

transportation, as well as for our understanding of the climate as a whole. A com-

plete description of sea ice requires inclusion of both dynamic and thermodynamic

processes. The thermodynamic component should capture heat flux by solving the

heat equation through the ice thickness. The dynamic component uses the forces,

including wind and ocean drag, the Coriolis force due to the rotation of the Earth,

sea surface tilt, and internal forces acting on the ice, as well as the conservation

of momentum equations for sea ice to balance changes in the system. Constitutive

modeling of ice has evolved over the decades. Nearly all current simulations for

1



Chapter 1. Introduction

Figure 1.1: Leads near the east coast of Greenland. Photo: Margie Turrin, Lamont-
Doherty Earth Observatory.

climate modeling use the viscous-plastic model [11] [12], or a variant, the elastic-

viscous-plastic model [13]. These treat ice as an isotropic fluid with variable vis-

cosity. Recent trends in constitutive modeling attempt to account for anisotropies

that should be considered when leads are present in the ice [25]. This document

will examine displacements predicted by the Material-Point Method sea ice model

(MPM ice) which implements the elastic-decohesive constitutive model for sea ice

[19].

MPM ice uses the Material-Point Method (MPM) to solve the two-dimensional

2



Chapter 1. Introduction

momentum equation for horizontal motion; a one-dimensional heat equation for ther-

modynamics in the vertical direction (through the ice thickness), and a balance law

for the thickness distribution [22]. MPM uses Lagrangian elements, called material

points, to follow the trajectories of ice [22]. The rapid heat exchange between the

open water in leads and the Arctic atmosphere, and the reduction of stress after

cracking compared to intact ice, play a role in the dynamic and thermodynamic

properties of the Arctic and are captured in the model. MPM ice can model the

formation of leads and can predict their widths and orientations [21].

Use of remote sensing, especially via satellites, has provided a wealth of data that

can be used to assess the accuracy of numerical simulations of the Arctic. For exam-

ple, motion data has been derived from high-resolution Synthetic Aperture Radar

(SAR) imagery acquired by the RADARSAT satellite. Retrievals from instruments

aboard other satellites capture ice concentration and thickness. However, the use

of satellites to monitor the Arctic is relatively recent. RADARSAT was launched

in 1996, and the data were not processed and published until several years later.

Thus, systematic and quantitative assessments of numerical simulations based on

these data is still in its infancy.

This thesis will focus on assessing simulated ice motion. For displacement little

quantitative analysis has been done with the exception of Grumbine [9], [10]. How-

ever, Grumbine’s work was limited to the analysis of two older free-drift models. In

Chapter 2 we define five metrics proposed in [10] as being useful for the validation

of sea ice displacement predictions and in Section 2.6 we present an example of their

application to sets of two-dimensional vectors. In Chapter 3 we give an overview of

Arctic sea ice motion data used in the comparison to simulation. Chapter 4 presents

a comparison between the predicted displacements of MPM ice and observations for

2001 and 2003. Finally, a discussion of the results and conclusions are given in

Chapters 5 and 6, respectively.

3



Chapter 2

Metrics

In this Chapter, we define the five metrics in [10] suggested for the validation of

sea ice displacement predictions, and describe the strengths and weaknesses of each

measure. In Section 2.6 we present an example of the metrics’ application to simple

sets of two-dimensional vectors.

Validation of displacement is difficult because displacement is a vector quantity

having both a length and a direction. It should be noted that because the ice

extent is much larger than its thickness, ice is modeled as two dimensional. In

two dimensions, vectors are described by magnitude and angle. While in sea ice

modeling, the statistics of scalar quantities are well studied [18], statistical measures

applied to vector quantities remains an area of research. For the purpose of defining

the metrics let (u1,i,v1,i) be a collection of two-dimensional observation vectors with

lengths xi, and angles θi; measured counter clockwise from the x-axis in Cartesian

geometry. Similarly let (u2,i,v2,i) be two-dimensional simulation vectors with lengths

yi, and angles φi. Individual measurements are indexed by i = 1, 2, ..., n where n is

the number of observations. We denote by ūj , v̄j the means of vector components

where ūj = 1
n

∑n
i=1 uj,i and v̄j = 1

n

∑n
i=1 vj,i for j = 1, 2. The means of the lengths

4



Chapter 2. Metrics

and angles of the vectors are defined similarly, with length being the two-dimensional

Euclidean norm. We also define the corrected sample covariance between ui and vj

for i, j = 1, 2 by

σ(ui, vj) =
1

n− 1

n∑
k=1

(ui,k − ūi)(vj,k − v̄j). (2.1)

We define the variance c, as c = σ(z, z) and standard deviation as s =
√
σ(z, z),

where z may be the components, ui, vi for i = 1, 2, as well as the lengths or directions

of the vector sets. Means of vector lengths or angles will be denoted by µ.

2.1 Error radius

The error radius, Rerr, is defined as

Rerr =
1

n

n∑
i=1

√
[(u1,i − u2,i)2 + (v1,i − v2,i)2], (2.2)

the mean difference between the observation and forecast vector endpoints, with

Rerr ∈ [0,∞) and 0 being the best score. This measure is sensitive to both magnitude

and direction and a large discrepancy in either will lead to a large error radius.

One drawback is the difficulty in determining whether errors in magnitude or

direction are the main contributor to a given score. In other words, identical error

radii can be generated by vectors with equal magnitudes in opposite directions or an

observed vector with twice the magnitude of the forecast in the same direction.

2.2 Root mean square direction error

The root mean square (RMS) direction error, hereafter direction error, applies the

standard scalar RMS error to the difference of angles in radians between forecast and

5



Chapter 2. Metrics

observed vectors. The direction error, θerr, is calculated as

θerr =

√√√√ n∑
i=1

(θi − φi)
2

n
(2.3)

For this measure θerr ∈ [0, 2π) with 0 being the best score.

This metric does not account for the magnitude of the vectors. For this reason

the direction error is complementary to the error radius.

2.3 Distance correlation

The distance correlation is the uncorrected sample correlation coefficient for distances

xi and yi. This metric measures any mutual relationship between the length of

observation and simulation vectors regardless of direction.

The distance correlation, ρ, is calculated as

ρ =

n∑
i=1

xiyi − nx̄ȳ√
n∑

i=1

x2i − nx̄2
√

n∑
i=1

y2i − nȳ2
, (2.4)

with ρ ∈ [−1, 1] with 1 indicating perfect correlation.

One possible disadvantage is that this metric considers the simulation vector

length regardless of the magnitude of the observed vector. In other words, a sim-

ulation vector length of thirteen-kilometers and observed vector length of three-

kilometers will be scored the same as a simulation vector length of forty-kilometers

and an observed vector length of thirty-kilometers. The difference in distance is the

same but the relative error is not.

6



Chapter 2. Metrics

2.4 Vector correlation

Vector correlation, described by Crosby in [5], is an attempt to generalize the scalar

correlation coefficient to two-dimensions. This metric is a candidate for a universally

accepted definition of vector correlation and has several desirable properties. It is a

generalization of the square of the simple one-dimensional correlation coefficient and

can be interpreted in terms of canonical correlation [5]. Vector correlation is defined

as

ρ2v = Tr[(Σ11)
−1Σ12(Σ22)

−1Σ21], (2.5)

where Tr(A) is the trace of the n × n matrix, A. The trace is defined as Tr(A) =
n∑

i=1

ai,i, and the matrices in (2.5) are covariance matrices between observation and

simulation vector component sets

Σij =

σ(ui, uj) σ(ui, vj)

σ(vi, uj) σ(vi, vj)

 . (2.6)

Equation 2.5 can written as ρ2v = f
g
, with

f =σ(u1, u1)[σ(u2, u2)(σ(v1, v1))
2 + σ(v2, v2)(σ(v1, u2))

2]

+ σ(v1, v1)[σ(u2, u2)(σ(u1, u2))
2 + σ(v2, v2)(σ(u1, u2))

2]

+ 2[σ(u1, v1)σ(u1, v2)σ(v1, u2)σ(u2, v2) + σ(u1, v1)σ(u1, u2)σ(v1, v2)σ(u2, v2)]

− 2[σ(u1, u1)σ(v1, u2)σ(v1, v2)σ(u2, v2) + σ(v1, v1)σ(u1, u2)σ(u1, v2)σ(v2, vv)

+ σ(u2, u2)σ(u1, v1)σ(u1, v2)σ(v1, v2) + σ(v2, v2)σ(u1, v1)σ(u1, u2)σ(v1, u2)],

(2.7)

and

g = [σ(u1, u1)σ(v1, v1)− (σ(u1, v1))
2][σ(u2, u2)σ(v2, v2)− (σ(u2, v2))

2], [5]. (2.8)

ρ2v ∈ [0, 2] with 2 being the best score.
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Chapter 2. Metrics

Though this metric takes into account both magnitude and direction, by itself it is

an insufficient measure for determining how sets of vectors are related. This measure

is symmetric with respect to the vector components so a sample of observation and

simulation vectors with equal magnitude but opposite directions will give a score of

2.

2.5 Distance Regression Slope

The distance regression slope is the uncorrected covariance between observed and

predicted displacement magnitudes divided by the variance of the observed displace-

ment magnitudes. The regression slope, m, is calculated as

m =

n∑
i=1

xiyi − nx̄ȳ
n∑

i=1

x2i − nx̄2
. (2.9)

The distance regression slope is not bounded, though 1 is the ideal score.

The distance regression slope gives information complementary to the distance

correlation score. If the simulation were consistently off by some factor, α, the corre-

lation coefficient would be one but the regression slope would show the disagreement.

2.6 Metric sensitivity

In order to gain insight into the metrics, we generated a set of vectors from a uni-

form distribution to serve as a control to which we applied a series of random, but

systematically increasing, rotations or dilations. Rotations and dilations were de-

termined by prescribing a maximum of 25 for dilation and 2π for rotation, then to

each vector was applied a rotation or dilation from a uniform distribution up to, but
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Chapter 2. Metrics

not exceeding the maximum. The altered vectors are then compared to the control.

Figure 2.1 shows the scores comparing the experimental and control vectors for the

five metrics described in this chapter.

Figure 2.1 (a) shows that the vector correlation decreases monotonically from

2 to 0 with increasing rotation. The direction error and error radius increase with

increasing rotation and plateau at values of about 2 and 1, respectively. Both the

distance correlation and regression slope show no variation due to change in rotation

meaning that they are indicators of changes in dilation.

Figure 2.1 (b) shows increasing regression slope and error radius with increasing

dilation. In contrast both vector and distance correlation are decreasing towards 0,

though their changes in value remain small after a dilation of 5. Direction error is

unaffected by dilation.

Vector correlation is more sensitive to changes in direction compared to changes

in dilation, meaning that its interpretation will depend on the direction error score.

If we consider that either a dilation of 5 or a rotation of 3 rad is a strong perturba-

tion, then the error radius can be difficult to interpret as its score for each of these

perturbations is about 1.

These results illustrate that each metric may not be sensitive to the differences

between sets of vectors, but together they can provide a sense of how the sets may

differ.
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Figure 2.1: Metric response to systematically increasing rotations (panel (a)) and
dilations (panel (b)) of control vectors. In panel (a) as rotations increase, distance
correlation and regression slope show no change. Vector correlation decreases with
increasing rotation magnitude, while direction error and error radius increase with
increasing rotations. In panel (b) error radius shows no response to increasing di-
lations. Vector correlation and distance correlation decline slowly with increasing
dilations. Regression slope and error radius increase linearly with increasing dila-
tions.
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Observation data

This chapter presents an overview of Arctic sea ice motion observations used in

the validation of displacements. For this work, observations come from buoys and

satellite imagery. While buoy data are more accurate, they do not provide coverage

of the entire Arctic Ocean. On the other hand, the satellite data provide coverage

over a larger area but with a time gap in the dataset. For this reason, in Section 3.4

we apply the metrics defined in Chapter 2 to the different sets of observation data

and show how each dataset can be used for displacement validation.

For processing and applying the metrics the observations are projected to two-

dimensional map coordinates. The projection involves polar aspect spherical Lam-

bert azimuthal equal-area projections for the northern hemisphere, described in [20],

to transform geographic coordinates to map coordinates using a Matlab function

written by Andy Bliss. The projected space is then addressed by an Equal-Area

Scalable Earth Grid (EASE-Grid) [4].
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Chapter 3. Observation data

3.1 Drifting buoys

One set of observations is generated by the International Arctic Buoy Program

(IABP) drifting buoys, made available by the National Snow and Ice Data Cen-

ter (NSIDC) at http://nsidc.org/data/G00791. Buoys provide real time coverage

and move with the ice and for this reason we assume these data to be the most

reliable.

Figure 3.1: Buoy motion for the full year 2003. Buoy trajectories (in blue) are
apparent and show the spatial coverage of the data set.

Around twenty-five individual buoys transmit information every twelve-hours.

They collect information about the Arctic environment along with their location.

The position data files contain the buoy identification number as well as date, time,

12



Chapter 3. Observation data

latitude, and longitude information. We use the identification number to track each

buoy in time and thus its displacement. Figure 3.1 shows all available buoy displace-

ments and trajectories over the full year of 2003.

Though buoys provide very accurate location data, they do not provide coverage

of the entire Arctic ocean. For this reason we require an additional data set with

coverage where buoy data are scarce.

3.2 RADARSAT geophysical processor system

Figure 3.2: Coverage of ASF-RGPS data. Shown are three day displacements for
the first three days of January, 2003. Swaths and overlap regions are apparent.

13



Chapter 3. Observation data

A second set of observations comes from the RADARSAT Geophysical Proces-

sor System (RGPS), a NASA funded synthetic aperture radar C-band microwave

imaging system, used with the Canadian RADARSAT satellite [14]. RGPS displace-

ments are generated by processing radar backscatter images of the Arctic. Each day

the RADARSAT satellite produces an image of a portion of the Arctic in swaths

(see Figure 3.2). This process generates an image of the Arctic about every three

days and ice displacements are found by tracking features through successive im-

ages. One RGPS dataset was obtained from the Alaska Satellite Facility (ASF) at

https://www.asf.alaska.edu/sea-ice/sea-ice-data/. The ASF data sets provide La-

grangian trajectories as well as time location and a tracking quality flag associated

with the confidence that points in consecutive images are correctly identified.

The ASF data provide very fine spatial and temporal resolution, but the volume of

data can limit its usefulness. In order to make these data more accessible, a condensed

version was obtained from Ron Kwok of NASA’s Jet Propulsion Laboratory in which

daily displacements are averaged and interpolated to a uniform 100-kilometer grid

(EASE grid described above) for each month of the year. Data were available in this

form for 1992 - 2015. An example for January 2001 is shown in Figure 3.3. This data

processing allowed for comparisons to be made quickly, and as is shown in Section

3.3, gave information consistent with buoy observations. It is the daily-averaged

RGPS, hereafter averaged-RGPS, displacements that are used in the comparison to

simulation in Section 4.4.
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Figure 3.3: Coverage of averaged-RGPS data. Shown are averaged daily displace-
ments for January 2001 interpolated to a uniform 100-kilometer grid (displacement
lengths are not to scale). This data set represents a processed form of ASF-RGPS
data.

3.3 Observation comparison

We use the metrics defined in Chapter 2 to compare buoy and RGPS displacements

in two ways. First, we find the closest averaged-RGPS grid point to each buoy at

the beginning of the month, track the buoy for a month, compute its average daily

displacement for the month, and compare to the averaged-RGPS displacement at

the grid point. Secondly, variable forecast length displacements are compared using

the ASF-RGPS dataset by finding the nearest ASF-RGPS point to each buoy and

comparing the displacements at the end of the forecast.
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3.3.1 Daily average comparison

2003 Averaged-RGPS and IABP Buoy Monthly Comparison
Month n ρ2v θerr (rad) Rerr (km) ρ m
January 14 1.97 0.151 0.274 0.994 1.03
February 16 1.93 0.235 0.429 0.984 1.07
March 15 1.90 0.357 1.06 0.972 1.73
April 15 1.96 0.411 0.257 0.992 1.02
May 26 1.81 0.280 0.468 0.918 1.15
June 21 1.48 0.264 1.03 0.651 1.33
July 19 1.94 0.193 0.929 0.938 1.34
August 20 1.90 0.267 0.845 0.963 1.11
September 23 1.86 0.245 0.659 0.957 1.17
October 34 1.52 0.566 1.18 0.774 1.23
November 31 1.88 0.263 0.481 0.964 1.04
December 21 1.84 0.185 0.793 0.954 1.02

Table 3.1: Number of available buoys, vector correlation, direction error, error radius,
distance correlation, and regression slope for monthly comparisons between averaged
buoy and RGPS displacements. Scores show values close to ideal for most months.
June and October produced the lowest vector correlation scores and large (relative
to this comparison) error radii. The highest direction error occurs in October.

Metric Score
ρ2v 1.77
ρ 0.898
m 1.209
θerr (rad) 0.322
Rerr (km) 0.730

Table 3.2: Vector correlation, distance correlation, regression slope, direction error,
and error radius for 2003 full year comparison of buoy and averaged-RGPS displace-
ments. The annual scores are not representative of the monthly comparisons.

Table 3.1 shows the five metrics for the comparison between averaged-RGPS and

daily-averaged buoy displacements for each month of 2003. Vector correlation shows
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scores higher than 1.8 for all months except for June and October. In fact, these two

months correspond to a strong melt period in the summer and refreeze in winter.

It is possible that buoys are not frozen in the ice or that the satellite is unable to

track features accurately. However, discrepancies indicated by the metric scores are

most likely due to the difference in how the daily averaged displacement at a point

is computed. This might explain why October scores the worst for error radius and

direction error but has the greatest number of observations. The error radius for

March is large as is regression slope and direction error. The scores for regression

slope in March, June, and July are larger than the ideal value of 1.

Table 3.2 shows the metric scores for the full year of 2003. However, the annual

metrics are not representative of the monthly ones. Vector correlation is lower than

1.8 and the direction error of 0.32 is greater than most of the monthly scores. The

annual metric scores might be biased due to outliers or strong seasonal signals (such

as melt and refreeze) and for this reason comparisons should be made monthly or

over a shorter time span if possible.
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Figure 3.4: Mean, standard deviation, variance and covariance for averaged-RGPS
and buoy displacement magnitudes (panel (a)) and displacement angle (panel (b))
for each month of 2003. Panel (a): Differences in means can be seen in June, July
and October, and differences in standard deviations in March, June, and July. These
months correspond to periods of strong melt or refreeze. Panel (b): The results are in
close agreement suggesting displacement angles are not causing strong discrepancies
between the two datasets.
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Figure 3.4 (a) shows similar results for the mean, standard deviation, variance,

and covariance for daily averaged buoy and averaged-RGPS displacement magnitudes

for each month of 2003. Standard deviation and variance are generally higher for

the buoys, indicating their displacements take on a wider range of values than those

of the averaged-RGPS. The biggest differences in these measures occur in March,

June, July, and October which agrees with the results in Table 3.1. The maximum

mean displacements for both data sets occurs in December when the ice cover is near

its maximum extent. Figure 3.4 (b) shows the mean, standard deviation, variance,

and covariance for daily averaged buoy and averaged-RGPS displacement angles for

each month of 2003. The results are closer for the displacement angles than for the

magnitudes and the biggest differences are seen in the first three-months of the year.

There are several reasons why the scores from the comparison of observation data

sets would deviate from ideal values. Worse scores may be expected in the summer

when the Arctic ice cover is at a minimum and SAR data are less accurate. This

period also coincides with an increase in the formation of leads and break up of pack

ice into aggregates which drift freely. Moreover, there is no check implemented to

determine whether or not a buoy is frozen in ice. It is possible that some buoys may

end up in open water, at which time its displacement no longer reflects the motion

of ice. The largest contributor is probably that the average daily buoy displacement

is not computed the same as averaged-RGPS. In the former case a single buoy is

followed in a Lagrangian sense and its average displacement is obtained along its

trajectory. In the latter case, the averaged-RGPS is an average at a fixed point in

space.
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3.3.2 RGPS, buoy forecast comparison

The temporal coverage of the ASF-RGPS data allows for comparisons to buoy motion

with variable forecast length, rather than daily-averages over a month. However,

these ASF-RGPS data differ from the IABP buoy location data in that locations are

not collected at the same time each day. In order to ensure these time discrepancies

do not significantly affect the metric scores, a test is designed to determine the impact

of allowing only RGPS location data obtained within a specified amount of time from

midnight, the time buoy data are collected.

Figure 3.5 shows the metric scores for a forecast length of six-days for the first

133-days of 2003 between buoy and RGPS data which are filtered by the time of day

the data are obtained. The x-axis shows the length of time, in hours, from midnight

that an RGPS image is allowed to be used in the comparison. At the point x = 12

filtering is no longer applied and RGPS data are considered for that day regardless

of the time the back-scatter image is produced. This filtering means that at x = 3

only images taken between 21:00, the previous day, and 03:00 are considered, where

00:00 is the start of the day under consideration.

Figure 3.5 shows that time filtering has no affect on vector correlation, distance

correlation, or distance regression slope. Error radius increases slightly as the time

threshold is increased but drops again when no filtering is applied. Direction error

decreases as the time threshold increases with a minimum when no filtering is applied.

Time thresholding also decreases the number of RGPS observation points that are

available for the comparison.

One possible problem with the test above is that the time thresholding is sym-

metric with respect to midnight and when the filter is turned off the time frame is

no longer symmetric. Whether this asymmetry has any impact on these results is

unknown. However, the impact of this time discrepancy should decrease with in-
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creasing forecast length. Based on figure 3.5 the metrics suggest that there are no

issues with allowing RGPS data to be considered regardless of the time of day the

backscatter image is produced, and from this point forward ASF-RGPS data will not

be time filtered.

Figure 3.6 shows the metric scores between ASF-RGPS and buoy displacement

data for the first 133-days of 2003 with forecast lengths ranging between three and

thirty days. The metrics show the observed displacements agree over relatively long

periods of time. Error radius remains under 5 km for all forecast lengths. This

position discrepancy could possibly be caused by errors in the image processing of

RGPS grid points, or by buoys drifting in a lead. Additionally, time filtering (or

lack thereof) might also have an impact on error radius. Direction error decreases

with increasing forecast length indicating any initial errors become less significant as

displacement lengths become larger.

Figure 3.7 (a) shows the mean, standard deviation, variance, and covariance for

variable forecast length buoy and ASF-RGPS displacement magnitudes for the first

133-days of 2003. Both data sets closely agree and all the measures increase for both

data sets with increasing forecast length.

Figure 3.7 (b) is similar to 3.7 (a) but for buoy and ASF-RGPS displacement

angles for the first 133-days of 2003. RGPS has a slightly higher mean angle for nearly

all forecast lengths. For a forecast length of fifteen days the mean buoy displacement

angle is larger than that of the RGPS. This forecast length also corresponds to the

maximum of the standard deviation, variance, and covariance of both data sets.

A similar comparison between buoy and RGPS displacements is made in [17]

for forecast lengths up to twelve days. The comparison uses a metric which is the

square of the distance correlation coefficient implemented here, and the score in [17]

of 0.996 is consistent with the scores obtained here of 0.992 for a forecast length of
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twelve-days. Another measure implemented in [17] is the root mean square difference

of magnitudes. This metric should be similar to the error radius defined in Chapter

2 though the directions of the displacements are not considered. Lindsay and Stern

[17] found a root mean square difference of 1.4 km for forecast lengths up to twelve

days, which is smaller than the error radius scores obtained here at close to 3 km.

The comparison between the two sets of observations gives confidence that the

metrics will give reasonable scores when comparing related sets of vectors. This

property is desirable for metrics used in model validation. Therefore, if the metrics

give good scores in the comparison of vectors predicted by a simulation to observed

displacement vectors, one can conclude the sets of vectors agree and that the model

is performing well.

3.3.3 Inter-comparison of RGPS data

In this section we apply the metrics in a comparison of the ASF and averaged-RGPS

datasets.

Table 3.4 shows the metric scores for the inter-comparison of ASF and averaged-

RGPS displacement data. The two sets closely agree and show the data sets are

consistent. To make the comparison, for each of the averaged-RGPS grid points is

found the nearest point from the ASF-RGPS data set. If no point is found within

thirty kilometers the grid point is excluded from the comparison. Daily displacements

are computed and averaged for the point from the ASF dataset in the same manner

as is done for buoys and compared to the averaged-RGPS displacement. Because

the averaged-RGPS is a processed form of the ASF-RGPS dataset the comparison

should give a sense of the errors introduced in the processing of the data. February

scored worst in vector correlation, distance correlation, and regression slope, though

it scored well for error radius. Other scores are close to their ideal values.
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Metric Score
ρ2v 1.86
ρ 0.919
m 0.794
θerr (rad) 0.413
Rerr (km) 0.651

Table 3.3: Metric scores for the January through April, 2003 inter-comparison of
ASF and averaged-RGPS displacement data. Metric scores show some discrepancies
between the datasets, particularly regression slope and direction error.

Table 3.3 shows the metric scores for the first 133-days of 2003. These results

should inform how the metric scores are interpreted in the validation of displacement

predictions.

Comparison of Monthly Averaged and ASF-RGPS Displacements
Month n ρ2v θerr (rad) Rerr (km) ρ m
January 80 1.82 0.644 1.06 0.910 1.00
February 191 1.81 0.360 0.588 0.870 1.12
March 33 1.90 0.466 0.634 0.899 0.963
April 100 1.88 0.199 0.449 0.960 1.02

Table 3.4: Number of observations, vector correlation, direction error, error radius,
distance correlation, and regression slope for comparison between averaged and ASF-
RGPS data for January through April, 2003.
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Figure 3.5: Vector correlation, distance correlation, regression slope, direction er-
ror, error radius, and number of observations available for time filtered ASF-RGPS
displacements compared to buoy displacements with a forecast length of six-days.
Data from the ASF-RGPS data set are only considered if the backscatter image,
from which the data are generated, was taken within a specified length of time from
midnight (shown on the x-axis). The results show that time filtering does not sig-
nificantly affect the metric scores.
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Figure 3.7: Means, standard deviations, variances and covariance for buoys and
ASF-RGPS displacement magnitudes (panel (a)) and angles (panel (b)) for variable
forecast length displacements for the first 133-days of 2003. Displacement statistics
agree for the data sets with increasing forecast length. Mean displacement angle
differs slightly between the two datasets.
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Results

In this Chapter we present an overview of MPM ice and compare simulated dis-

placements with observations described in the previous chapter. We show a com-

parison of variable forecast length using drifting buoy data in Section 4.3, as well as

a comparison of averaged daily displacements for each month using averaged-RGPS

displacements in Section 4.4. In this chapter we denote the difference of displace-

ment statistics by ∆, where the difference is taken relative to the observation. For

example the difference in displacement means is denoted by ∆µ = µobs−µsim, where

µobs is the observed mean displacement magnitude and µsim is the predicted mean

displacement magnitude.

4.1 Simulations

The simulation data were provided by Deborah Sulsky in the form of netcdf files.

Though the simulation generates information about many aspects of the Arctic en-

vironment, only displacements are considered here. In the simulation, sea ice is

represented by discrete points, called material points (MPs), which are created and
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tracked throughout the simulation [22]. MPM ice is coupled to the Massachusetts In-

stitute of Technology General Circulation Model (MITgcm) ocean code which solves

the Boussinesq, incompressible hydrostatic primitive equations [1]. The coupling is

two-way with fluxes between the ocean component of MITgcm and MPM ice serving

as boundary conditions between the ice and ocean simulations.

Due to the large size of simulation files, MP data are accessed only for the start

and end day of each forecast period. Each MP is associated to an initial position and

a possibly non-unique identification number, due to the use of the same ID numbers

on different processors. Taken together these data uniquely identify each MP while

it exists in the simulation. Before comparing to observations, simulation data are

converted to spherical latitude and longitude coordinates and then stereographically

projected into the same two-dimensional space as the observation data. Based on

the observation data, MPs with the closest straight line distance to each available

observation point’s initial position are found and stored. If the same MP exists on

the forecast end day its position is stored and displacements are calculated based

on the initial and final positions. Some MPs may melt in the simulation before the

end of the forecast period, and to these points is assigned a displacement of zero

for comparison, regardless of when during the forecast period the point melted. At

the end of the forecast period the displacement vectors are saved and the process is

repeated with the metrics being applied at the end of the period being examined.

4.2 Comparison of buoys and MPM ice

Comparisons with buoys are done for three-month periods, January through March,

April through June, July through September, and October through December for

2001 and 2003. Comparisons with buoy data can be made with a specified forecast

length, where the displacement is taken to be the position at the end of the forecast
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period minus the position at the start. For the purpose of this work, each buoy

is compared to a single MP with the shortest straight line distance to the buoy.

Observation and simulation starting points do not coincide exactly but are generally

less than 5 km apart. If the closest simulation point to any observation is greater

than 30 km then both observation and simulation points are excluded from the

comparison.

Comparisons between buoys and forecast displacements are made with forecast

lengths from one to thirty days. Longer forecast lengths were examined but proved

less reliable. Sorted buoy data are accessed based on forecast start and end date.

For buoys with available data, displacements are computed and stored until the end

of the three-month period.

4.2.1 2001

Figure 4.1 shows the metric scores for all comparisons to buoys made for 2001.

January-March, in black, and October-December, in blue, produced near constant

direction errors for the duration of the comparison. Error radius scores for these

months increases linearly with increasing forecast length, which is consistent with

near constant direction error. These measures together indicate that simulation and

observation are drifting apart through time. Distance regression slope for January-

March is greater than one for forecast lengths longer than five days with high distance

correlation, suggesting the variance of the displacement magnitudes is too large in

the simulation. Distance regression slope and correlation for October-December are

both close to one-half indicating observation and simulation displacement magnitudes

are not well correlated during this time. Smaller errors in direction predictions

contribute to higher vector correlation scores for October-December, while smaller

errors in magnitude predictions contribute to higher vector correlation scores for

January-March.
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Similarly, direction error scores for April-June, in green, and July-September, in

red, are close to constant throughout the comparison and scores for July-September

are close to those of January-March. Error radius scores for these periods are, again,

consistent with constant direction error. April-June produces the lowest error radius

at day thirty. Distance regression slope and correlation are low throughout the

comparisons of April-June and July-September indicating low correlation between

predicted and observed displacement magnitudes during these months. April-June

produces the lowest vector correlation scores, likely due to inaccurate displacement

magnitude and angle predictions. Vector correlation is also low for July-September

but higher than April-June because angles are predicted more accurately during this

time.
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Figure 4.1: Distance correlation, vector correlation, regression slope, error radius,
and direction error for the three-month comparisons of 2001. Scores are generally
better for January-March and October-December, with the exception of error radius
and direction error scores.
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(a) 1-day forecast (b) 15-day forecast

(c) 30-day forecast

Figure 4.2: Histograms for all 2001 observation and simulation displacement angles.
The distributions become more dissimilar as the forecast length increases.

Figure 4.2 shows the distributions of all 1-day, 15-day, and 30-day forecast ob-

servation and simulation displacement angles for 2001. At a forecast length of 1-day

small displacement angles are under-predicted by the simulation. The frequency of

directions is well matched for shorter forecast lengths compared to longer ones. How-

ever, this may be an artifact of comparing the full year as opposed to shorter time

frames. Observations appear rotated 50◦ counterclockwise from simulations which

is consistent with the approximate average of the 1-day forecast direction error of

Figure 4.1 (close to 60◦).

Figure 4.3 shows the distributions of all observations and simulations for 1-day,
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(a) 1-day forecast (b) 15-day forecast (c) 30-day forecast

Figure 4.3: Histograms for all 2001 observation and simulation displacement mag-
nitudes, where n is the number of observations. The plots show over-prediction of
small displacements for longer forecast lengths. Note, the y-axis scale differs between
subfigures.

15-day, and 30-day forecast displacement magnitudes for 2001. Simulation outliers

are excluded in the creation of the histograms. The largest displacement magnitudes

predicted by the simulation for 1-day, 15-day, and 30-day forecasts are 72 km, 616

km, and 955 km, respectively. The plots show that displacements less than 1 km are

under-predicted for shorter forecast lengths, while displacements smaller than 20 km

are over-predicted for longer forecast lengths. In general, the distributions suggest

magnitudes are being under predicted.

Figure 4.4 shows scatter plots of observation and simulation 1-day displacement

magnitudes for January-March, along with the linear regression line and correlation

coefficient. Even though the 1-day forecast plots show relatively good results in terms

of distance correlation and regression slope, the scatter plot does not necessarily

reflect this. In contrast the 30-day forecast plot clearly shows two different trends:

one in which the model over-predicts smaller displacements (50 km and lower) and

another which over-predicts larger displacements (400 km and higher). These two

extremes likely compensate each other in the calculation of the linear regression

and correlation coefficients. Thus, the scatter plots provide insight that cannot be

captured solely using the metrics in Fig. 4.1.
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Figure 4.4: Scatter plots of observation (x-axis) and simulation (y-axis) displace-
ment magnitudes for January-March, 2001. The plots show much scatter around the
regression line in (a), and the influence of large displacements in the longer forecast
length of (b).

Figure 4.5 shows the displacement statistic differences for displacement magni-

tudes for the three-month comparisons of 2001. July-September shows the best scores

for all measures. This might be misleading considering the results shown in Figure

4.1 and the simulation may be consistently under-predicting displacement magni-

tudes. January-March and April-June show statistics are diverging with increasing

forecast length, indicating the simulation might be more trustworthy over shorter

time periods. Such a result has previously been observed in [9].

Figure 4.6 shows the statistic differences for displacement angles for the three

month comparisons of 2001. The difference in mean angles shows January-March

and October-December trended similarly and both of these periods scored similarly

for vector correlation in Figure 4.1. The difference in mean angles increases for July-

September contrary to the other periods examined. The difference in displacement

angle standard deviations as well as variances increase with increasing forecast length,

though January-March stayed close to observation.
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Figure 4.5: Difference of means, standard deviations, variances, and covariance of
buoy and simulation point displacement magnitudes for all three-month comparisons
of 2001. July-September and October-December have magnitude values closer to
what is observed than other comparison months.
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Figure 4.6: Difference of means, standard deviations, variances, and covariance of
buoy and simulation point displacement angles for all three-month comparisons of
2001. The difference of average angles for January-March and October-December
show similar trends. In terms of the range of displacement angles January-March
and April-June are closest to what is observed.
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The previous plots show that angle and magnitude errors in the simulation are

persistent and contribute to error radius scores seen in the comparison. Average

simulation displacement magnitude is too small apart from July-September. The

variance in simulation magnitudes is too large for January-March as indicated by

the regression slope and distance correlation scores for this period. There appears

to be a similar trend in the difference of mean displacement angles apart from July-

September.

2001 observation counts
Forecast (days) January - March April - June July - September October - December
1 2193 2386 2364 2384
3 2068 2218 2182 2207
6 1996 2085 2048 2110
9 1914 1997 1925 2039
12 1829 1898 1825 1928
15 1765 1793 1721 1830
18 1678 1714 1630 1742
21 1620 1626 1541 1674
24 1544 1540 1412 1582
27 1464 1452 1328 1506
30 1381 1362 1266 1426

Table 4.1: Number of observations from buoys used to produce the metric scores
for the three month comparisons of 2001. The number of observations available
decreases with increasing forecast length.

Table 4.1 shows the number of buoy displacements for each forecast length used

in the 2001 comparison with displacements of the simulation MPM ice. Though the

number of observations decreases with increasing forecast length, there are enough

at day thirty to make a meaningful comparison.
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4.2.2 2003

Figure 4.7 shows the metric scores for all comparisons made to buoys for 2003.

January-March, in black, and October-December, in blue, produce near constant di-

rection errors throughout the comparison which is consistent with linearly increasing

error radii for these months. Distance regression slope for January-March peaked

at day three and remains close to one-half through a twenty-five day forecast, while

distance correlation increases throughout the comparison. Regression slope behaves

similarly for October-December, though distance correlation remains low throughout

the comparison, implying weak correlation between observed and simulated displace-

ment magnitudes. Vector correlation scores are very similar for January-March which

better predicts directions, and October-December which better predicts magnitude.

April-June, in green, gives the largest direction error through the duration of

the comparison and corresponds to linearly increasing error radius with increasing

forecast length. July-September, in red, had low direction error through day ten but

is larger than all months besides April-June for the remainder of the comparison.

Error radius for July-September increases linearly and produces the largest score at

day thirty, suggesting issues with magnitude predictions during this time. Regression

slope for April-June decreases throughout the comparison and corresponds to very

low correlation coefficients, suggesting magnitudes are not predicted well during this

time. Regression slope for July-September remains low, though higher than April-

June, throughout the comparison and is associated with low, though again higher

than April-June, correlation coefficient. Vector correlation is very low, and rela-

tively constant, for April-June driven by bad direction and magnitude predictions.

For July-September vector correlation scores are higher and closer to scores seen in

January-March and October-December. This is most likely due to relatively better

direction predictions for July-September as the maximum direction error score, at

eighteen days, corresponds to the minimum vector correlation score.
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Figure 4.7: Distance correlation, vector correlation, regression slope, error radius,
and direction error for all three-month comparisons of 2003. January-March and
October-December score better than April-June and July-September for most fore-
cast lengths. The comparison of April-June has the worst scores with the exception
of error radius.
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(a) 1-day forecast (b) 15-day forecast

(c) 30-day forecast

Figure 4.8: Histograms for all 2003 observation and simulation displacement angles
for 1-day, 15-day, and 30-day forecast displacements.

Figure 4.8 shows the distributions of all 1-day, 15-day, and 30-day forecast ob-

servation and simulation displacement angles for 2003. The plots show that the dis-

tributions of predicted displacements for short forecasts are close to those observed.

While the distributions are similar, the predicted distribution of displacement angles

appears to be more uniform than observations. These plots provide further evidence

that there are issues with displacement angles in the simulations.

Figure 4.9 shows the distributions of all observation and simulation 1-day, 15-day,

and 30-day forecast displacement magnitudes for 2003. The distribution of simulated

1-day forecast displacement magnitudes is similar to what is observed. However, for
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(a) 1-day forecast (b) 15-day forecast (c) 30-day forecast

Figure 4.9: Histograms for all 2003 observation and simulation displacement magni-
tudes for 1-day, 15-day, and 30-day forecast. The plots show over-prediction of small
displacements for longer forecast lengths.

30-day forecasts the simulation over-predicts displacements smaller than 40 km and

under-predicts displacements larger than 120 km. Similarly to 2001, the simulation

under-predicts larger displacements for longer forecast lengths.

Figure 4.10 shows scatter plots of observation and simulation 1-day and 30-day

forecast displacement magnitudes for January-March, along with the linear regression
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Figure 4.10: Scatter plots of observation (x-axis) and simulation (y-axis) displace-
ment magnitudes for January-March, 2003.
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line and correlation coefficient. (The plots represent the most accurate displacement

magnitude predictions from the 2003 comparison to buoys, according to the metrics

shown in Figure 4.7.) Similarly to what is shown for 2001 in Figure 4.3, regression

slope and correlation coefficient scores should be interpreted with care and in terms

of one another.

Figure 4.11 shows the differences of statistics for simulation and buoy displace-

ment magnitudes for all three-month comparisons for 2003. Averaged simulation

magnitudes for all three-month comparisons are smaller than those observed. The

large difference in variance shows the range of magnitudes predicted is too large far all

three-month periods and more so for January-March. Contrary to what is observed

in Figure 4.5, simulated displacements in 2003 are consistently under-predicting the

range of displacement magnitudes.
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Figure 4.11: Difference of means, standard deviations, variances, and covariance of
buoy and simulation point displacement magnitudes for all three-month comparisons
of 2003. July-September and October-December produce displacement magnitudes
closest to observation on average.
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Figure 4.12: Difference of means, standard deviations, variances, and covariance of
buoy and simulation point displacement angles for the three-month comparisons of
2003. The averaged simulation displacement angles for January-March are continu-
ously decreasing with forecast length compared to observation. We do not see such
a trend for the three other periods.
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Figure 4.12 shows the difference of statistics for simulation and buoy displacement

angles for all three-month comparisons for 2003. The average simulation displace-

ment angles for January-March are continuously decreasing with respect to forecast

length compared to observation. However, this trend is not apparent for any of the

other three-month periods. Simulation for July-September shows the best statistical

agreement compared to observations.

The results in Figure 4.7 are counter-intuitive when taking into account the statis-

tics shown in Figure 4.12. For example, the direction error is decreasing with in-

creasing forecast length while the difference in mean angles grows worse. This might

suggest that the small values seen in the difference in means with increasing forecast

length may be due to cancellation error. In contrast the direction error for October-

December does not vary strongly with forecast length nor does its statistics.

2003 observation counts
Forecast (days) January - March April - June July - September October - December
1 1530 2394 2392 2755
3 1464 2272 2262 2602
6 1398 2144 2120 2504
9 1342 2024 1996 2404
12 1273 1922 1877 2289
15 1209 1825 1767 2194
18 1159 1733 1646 2089
21 1106 1644 1539 1986
24 1050 1543 1442 1896
27 1001 1456 1348 1801
30 938 1369 1268 1699

Table 4.2: Number of observations used to produce the metric scores for three month
comparisons of 2003. Observation data available for comparison decreases with in-
creasing forecast length.

Table 4.2 shows the number of buoy displacements for each forecast length used in

the comparison with displacements from the simulation MPM ice. This table shows

similar patterns as 2001 from which we can draw similar conclusions.
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4.3 Comparison of averaged-RGPS and MPM ice

In order to compare to averaged-RGPS, simulation displacements are interpolated

to a grid each day and these daily displacements are averaged for the month. Due to

Figure 4.13: Region of RGPS comparison corresponding to ice minimum. This
ensures a constant number of points (541) throughout the comparison.

the fact that observation and simulation do not always agree on the sea ice extent,

we choose a fixed domain, shown in Figure 4.13. This region corresponds to the

observed sea ice minimum extent which ensures a constant number of points (541)

throughout the comparison. This domain is chosen in order to give a consistent

picture of ice displacements throughout the year. Without this choice of domain, the
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number of observation points would change in time, complicating interpretation of

the metrics. Moreover, if the simulation and observation do not agree on ice extent,

then there would be points with nonzero observations and missing simulations, or

vice versa. At present it is not clear how to treat the missing values.

4.3.1 2001

Figure 4.14 shows the metric scores for the comparison of daily-averaged displace-

ments for each month of 2001. Direction error scores, with the exception of March,

are lower for winter months. Error radius scores are low with the exception of

September through November. The fact that direction error scores are low during

this time suggests that errors in magnitude are responsible for low error radius scores.

Regression slope and distance correlation also show better scores for winter months,

however in September regression slope shows a spike above one suggesting predicted

magnitudes are too large. This fact agrees with the error radius and direction error

scores. Vector correlation, consistent with the rest of the metrics, shows better scores

for winter months.
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Figure 4.14: Distance correlation, vector correlation, regression slope, error radius,
and direction error for daily-averaged displacements for each month of 2001. Scores
are generally better for winter months.
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(a) January (b) March

(c) September

Figure 4.15: Histograms for 2001 observation and simulation displacement angles.
The plots show under-prediction of the range of displacement angles by the simula-
tion.

Figure 4.15 shows the distributions of observation and simulation displacement

angles for January, March, and September. The plots show that the ranges of dis-

placement angles predicted are too small for these months and the highest frequency

of simulated direction angles never match those of the observations.

Figure 4.16 shows the distributions of observation and simulation displacement

magnitudes for January, March, and September. The plots show the model does

not accurately predict the distribution of simulated displacement magnitudes. Jan-

uary and March under-predict larger displacements and over-predict smaller dis-
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(a) January (b) March (c) September

Figure 4.16: Histograms for January, March, and September, 2001 observation and
simulation displacement magnitudes. Issues in September are apparent, while Jan-
uary and March show under-prediction of larger displacements.

placements. These results are consistent with the small regression slopes seen for

these months. September shows over-prediction of large displacements which helps

to explain the large regression slope seen in the comparison.

Figure 4.17 plots observation and simulation displacement magnitudes for March

and September 2001. The scatter plot for March emphasizes that simulated displace-

ments over 2 km are not colocated with observed displacements of similar magnitude,

which is consistent with the distribution in 4.16 (b). Although September has an

improved regression slope, the scatter in the data do not show a strong linear rela-

tionship evidenced by the relatively low correlation coefficient.

Figure 4.18 (a) shows the means, standard deviations, variances, and covariance

of simulation and averaged-RGPS displacement magnitudes. Mean displacement

magnitude as well as the range of displacement magnitudes are too small through

August and too large for September through November. This is consistent with

the interpretation of the regression slope and distance correlation scores made from

Figure 4.14.

50



Chapter 4. Results

Figure 4.18 (b) shows the means, standard deviations, variances, and covariance

of averaged simulation and averaged-RGPS displacement angles. Predicted mean

displacement angles for March and November are far from observation compared to

all other months. The average angle predicted for June is close to observation and

so is its variance. However, the direction error for June in Figure 4.14 suggests these

relatively good results may be due to cancellation.
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Figure 4.17: Scatter plots of observation (x-axis) and simulation (y-axis) displace-
ment magnitudes for March and September, 2001. The scatter plot for March em-
phasizes that simulated displacements up to 8 km do not necessarily align well with
observed displacements of similar magnitude, hence the low regression slope. The
scatter plot for September shows an improved regression slope though lower correla-
tion.
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Figure 4.18: Observation (blue) and simulation (red) averaged magnitude and an-
gle statistics for 2001. The plots show that mean displacement is under-predicted
through August. The variance of predicted displacement angles is too small apart
from June.
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4.3.2 2003

Figure 4.19 shows the scores for daily-averaged displacements for each month of 2003.

Apart from February and March direction error scores are close to or greater than one.

Similarly to the 2001 comparison in Figure 4.14, scores are higher for winter months.

Trends in the error radius scores are less apparent, though the lowest scores are

obtained in February and November. Vector correlation, distance regression slope,

and distance correlation scores trend similarly and show worse scores for summer

months, though there is an improvement in scores for August.
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Figure 4.19: Distance correlation, vector correlation, regression slope, error radius,
and direction error for daily-averaged simulation displacements for 2003. Scores are
generally better for winter months, though less apparent as in 2001. September
scored among the worst for all metrics.
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(a) March (b) April

(c) September

Figure 4.20: Histograms for 2003 observation and simulation displacement angles.
Apart from March the range of displacement angles predicted is too small. The
average angles predicted for April and September are far from observation.

Figure 4.20 shows the distributions of observation and simulation displacement

angles for March, April, and September 2003. (Note: April was examined instead

of January due to the striking difference in direction error scores between March

and April.) The distributions for March are very close which is consistent with

the score for direction error in Figure 4.19, which is among the best. For April,

which produced the highest direction error score, the distributions are very dissimilar,

both in average direction and the variance of the distributions. September produced

distributions closer to those seen in the comparison of 2001 in that the predicted

range of displacement angles is too small and the means are rotated.
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(a) March (b) April (c) September

Figure 4.21: Histograms for March, April, and September, 2003 observation and sim-
ulation displacement magnitudes. The plots show that small and large displacement
are over- and under-predicted respectively by the simulation.

Figure 4.21 shows the distributions of observation and displacement magnitudes

for March, April, and September. The distributions for March and April show over-

prediction of displacement less than 1-2 km and under-prediction of displacement

greater than 2 km. September shows over-prediction of displacements less than 1

km and greater than 6 km which helps to explain the very low regression slope and

distance correlation scores in the comparison.

Figure 4.22 shows scatter plots of observation and simulation displacement mag-

nitudes for March and September, the months that produce the best and worst

regression slope and distance correlation scores, respectively. In March, there is

a reasonable correlation between observed and simulated displacement magnitudes

which is confirmed by the scatter plot. The regression slope is smaller than one,

indicating that simulated displacements are too small. We also see this trend in the

distribution of displacements shown in Figure 4.21. The scatter plot shows there is

no meaningful relationship between observed and simulated displacement magnitude

in September.

Figure 4.23 (a) shows the means, standard deviations, variances, and covariance

56



Chapter 4. Results

0 5 10 15

observation (km)

-2

0

2

4

6

8

10

12

14

16
s
im

u
la

ti
o
n
 (

k
m

)

March displacement magnitudes

m = 0.51955

 = 0.82703

(a) March

0 1 2 3 4 5 6 7 8

observation (km)

0

1

2

3

4

5

6

7

8

9

s
im

u
la

ti
o
n
 (

k
m

)

September displacement magnitudes

m = -0.32031

 = -0.20525

(b) September

Figure 4.22: Scatter plots of observation (x-axis) and simulation (y-axis) displace-
ment magnitudes for March and September, 2003. Displacements for March show a
good fit which is reflected in the high correlation coefficient, however the regression
slope is too small. September gives a negative slope and the low correlation suggests
this relationship is not meaningful.

of simulation and RGPS daily-averaged displacement magnitudes. Average displace-

ment magnitudes predicted are too small for the full year with the exception of

October. The variance of predicted displacement magnitudes is too small apart from

September and October. The largest difference in mean displacement magnitudes

is seen between February and June. Figure 4.19 shows that the error radius score

is the smallest throughout these months indicating a consistent agreement between

simulation and observation.

Figure 4.23 (b) shows the means, standard deviations, variances, and covariance

for averaged simulation and RGPS displacement angles. Predicted mean displace-

ment angles show wide variation across the year, though trends are similar to ob-

servation for January through March and October through December. With the

exception of April the variance of predicted displacement angles is too small. The

worst direction error scores occur in April, July, and September and these months
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also correspond to the largest difference in mean displacement angles.
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Figure 4.23: Means, standard deviations, variances, and covariance between daily-
averaged RGPS and simulation displacement magnitudes (panel (a)) and angles
(panel (b)) for 2003. Mean displacement magnitudes predicted are too small apart
from October. Average displacement angles predicted for April are far from obser-
vation.
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4.4 Wind turning angle investigation

As wind speeds are generally measured at altitude, a wind turning angle parameter

exists in the simulation to account for the Ekman spiral which causes wind velocities

closer to the surface to rotate relative to the direction of motion at altitude. In

Sections 4.3 and 4.4 the wind turning angle was set to 0.5 radians in the simulation

which was found to be incorrect. In order to determine whether this parameter is

responsible for the systematic direction errors observed in the comparisons, we reran

the 2001 simulation with two different wind turning angles: -0.5, and 0 radians. In

this section we denote ∆ as the difference in metric scores using a new wind turning

angle with respect to 0.5 rad. For example, ∆ρ = ρ0− ρ0.5 where ρ0 and ρ0.5 are the

scores for distance correlation with 0 and 0.5 wind turning angles, respectively.

4.4.1 Buoy comparison

Figure 4.24 shows the difference in metric scores comparing the results between sim-

ulations using -0.5 rad and 0.5 rad wind turning angle. Direction error gets worse in

October-December for forecast lengths of one and sixteen days but shows improve-

ment otherwise. Error radius remains somewhat unchanged for April-June and July-

September but improves for the two other periods. Other than October-December

distance correlation and vector correlation are improved with a wind turning angle

of -0.5 rad. Regression slope improves for January-March at day thirty but October-

December becomes worse.

59



Chapter 4. Results

-0.2

0

0.2

0.4

2001 metrics differences

TA-5 - TA5

January-March

April-June

July-September

October-December

-0.2

0

0.2

2 v

January-March

April-June

July-September

October-December

-0.2

0

0.2

m

January-March

April-June

July-September

October-December

-20

-10

0

R
e

rr
 (

k
m

)

January-March

April-June

July-September

October-December

0 5 10 15 20 25  

Forecast length (days)

-0.3

-0.2

-0.1

0

e
rr
 (

ra
d
)

January-March

April-June

July-September

October-December

Figure 4.24: Metric scores with wind turning angle 0.5 rad subtracted from scores
with wind turning angle -0.5 rad. Direction error, error radius, and vector correlation
scores show some significant improvements when using a wind turning angle of -0.5
rad. The three other scores improve for each period besides October-December.
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Figure 4.25: Metric scores with wind turning angle 0.5 radians subtracted from scores
with wind turning angle 0 rad. Scores show more consistent improvements, though
smaller in magnitude than with -0.5 rad.
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Figure 4.25 shows the metric scores for the comparison of 2001 with wind turning

angle 0.5 rad, subtracted from the scores with 0 rad. Direction error and error radius

scores decrease showing an improvement for these metrics with 0 rad wind turning

angle. Distance correlation and vector correlation scores are non-negative showing

that scores improve or are unchanged for these metrics. Switching the turning angle

to either 0 or -0.5 improves the metric scores and, in general, the improvements are

comparable between the two different wind turning angles.

4.4.2 RGPS comparison

Figure 4.26 shows the metric scores for the RGPS comparison of 2001 with wind

turning angle 0.5 rad subtracted from the scores with -0.5 rad in red, and 0 rad in

black. Direction error improves for March, April, and November with wind turning

angle -0.5 rad, but gets worse in January, June, October, and December. For wind

turning angle 0 rad, direction error shows small improvements or no change through-

out the year. Error radius scores are similar for both wind turning angles, though

-0.5 rad shows improvement of greater magnitude in November. Regression slope

scores also trend similarly for both wind turning angles. Distance correlation shows

more consistent improvement for wind turning angle of 0 rad. While a -0.5 rad wind

turning angle shows improvements of greater magnitude in April and May its scores

are worse in March and October. Vector correlation scores were very similar apart

from April.

The results for the wind turning angle comparisons with buoys and RGPS are

similar. While 0 rad wind turning angle produces more consistent, though smaller,

improvements, -0.5 rad produces improvements of greater magnitude overall. It is

apparent, however, that both new wind turning angles show improvements over the

original wind turning angle.
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Figure 4.26: Metric scores for the RGPS comparison of 2001 with wind turning angle
0.5 rad subtracted from the scores with wind turning angle of -0.5 rad (red) and 0
rad (black). Similarly to the comparison with buoys, wind turning angle of 0 rad
shows consistent improvement, while -0.5 rad produces some improvements, but of
greater magnitude.
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Discussion

The averaged-RGPS data set presents several challenges with respect to the way zero

displacements should be handled. The metrics are sensitive to the number of points

being considered and many zero displacements can significantly affect scores and

misguide their interpretation. In the comparison we restrict the domain to ensure

that ice is present for the full year to prevent the number of observations and zero

displacements from affecting the analysis. However, this restricted region excludes

areas where ice is being exported from the Arctic Ocean, and therefore will not

provide any information as to how well the simulation is performing in these regions.

The metrics defined in Chapter 2 are used to compare two-dimensional vectors,

particularly displacements. In the comparison, zero displacement was assigned if a

simulation point melted when it was not predicted to. This however may not be

appropriate, as the metrics were chosen for their ability to take into account both

magnitude and direction quantities. It may be unsuitable to have these particular

metrics examine zero predicted displacement where displacements were observed,

though this behavior should be penalized in model validation. If zeros are allowed

for comparison, and if the domain of the comparison is increased to include more
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ocean and therefore more ice-free surface area, then the model will perform better

by predicting no ice in these regions but the simulation will not have improved in

what it was designed to do. This bias is currently poorly understood and requires

further investigation.

The interpretation of the regression slope and distance correlation also presents a

challenge. We show using scatter plots that, even when good scores are assigned, the

data may not represent a good fit. It might be that the observation and simulation

magnitude data are not, in fact, linearly related in which case these metrics will be

less useful. Since the scatter plots show a clustering of points near zero, it might be

useful in the future to analyze a log-transform of the data, as this may give a clearer

picture of how smaller observed and simulated displacements are related.

In the comparison with buoys a single MP with the shortest straight line distance

to a buoy is found and tracked for the forecast period. However, the ice cover motion

is discontinuous and it is possible that a buoy and MP could start on opposite sides

of a fracture and drift apart. Thus, a MP starting slightly further from the buoy, but

on the same side of the fracture, might track the buoy displacement more faithfully.

In the future we plan to examine MPs in a neighborhood of each buoy to avoid this

situation.

The results of Chapter 4 show that the simulation does not perform well in

summer. During this period the ice cover is at a minimum and ice motion is governed

for the most part by free drift. That the metric scores are low during the summer

shows that the model may not capture this behavior well. However, observation error

is also higher during this period. During fall and winter the simulation performs

better according to the metrics, especially the period from October to December

when ice is refreezing. The performance of the simulation from January through

March is better than summer but worse than from October to December. At the

start of the year, the simulation initializes the ice as solid and unfractured which may
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account for the relatively low scores compared to when ice is refreezing. Excluding

this initialization period may give a better sense of the true performance of the

simulation during this time.

For all comparisons with buoys the direction error slope is near constant. This

behavior is interpreted as an indication that the model has an error which affects

direction and we investigated a potential simple cause: the wind turning angle. We

find in Section 4.6 that the simulation with wind turning angle 0.5 rad performs

worse than those with wind turning angles of 0 and −0.5 rad. Even though there

is an improvement with the modified turning angle, the metric scores are still low.

These low scores lead us to examine other possible causes of direction error. Many

factors can impact this metric, and in looking at drag coefficients we find that the

model does not treat this effect correctly and plan on redoing the analysis once a fix

is implemented.

In the definitions of the metrics in [10] and [5] we find that both biased and un-

biased measures of sample variance are used. Whether this is done intentionally is

unknown. However, sample sizes are large for the comparisons and so the unbiased

and biased measures should be close.

All distances in the comparisons are calculated in stereographially projected,

two-dimensional space. In order to ensure that the projection choice does not signif-

icantly affect the distance, several forecast comparisons are made by calculating the

great-circle distance traveled by observation and simulation points using latitude and

longitude data, assuming a fixed radius for the Earth. Though great-circle distance

correlation and regression slope differ slightly for longer forecast lengths, the overall

analysis results are similar. For the present we assume the distance calculation does

not induce significant errors.

The same metrics considered in this work have been applied in the comparison of
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Metric Score
ρ2v 1.573
ρ 0.874
m ∼ 0.6
θerr (rad) 1.222
Rerr (km) > 10

Table 5.1: Best scores from the comparison of two different sea ice simulations with
buoys. Scores are found to be consistent with the comparison of buoys and MPM ice.

simulations using two free-drift sea ice models to buoys [9], [10]. Compared were daily

displacements for each month from Jan 1995 to April 2013, as well as comparisons

of variable forecast length from 1998 to 2007. The scores from these comparisons

are similar to the scores found in the comparison of buoys with MPM ice. Table

5.1 lists the best scores from the comparison of free-drift sea ice simulations with

buoys. Scores from the comparisons in [10] are generally worse than those shown in

Table 5.1 and become worse with increasing forecast length. MPM ice is performing

somewhat better than the free drift models and will hopefully improve further with

corrections made to the implementation of the method.

The next steps in the performance validation of MPM ice should include the

examination of specific regions in the Arctic. In general, ice displacement is much

larger in areas such as the Fram Strait and Bering Strait where ice is being exported

from the Arctic and into the open ocean. While in the center of the Arctic ocean,

away from land, displacements are generally much smaller. It is important to verify

this behavior is captured by the simulation.
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Conclusions

This work investigates the potential of the 5 metrics presented in [10] (error radius,

RMS direction error, distance regression slope, distance correlation, and vector cor-

relation) in validating simulated sea ice displacements using the model MPM ice

[22], [21]. Using IABP buoy positions as observation, simulation displacements are

compared for forecast lengths from one to thirty days. Additionally, we compare

averaged daily displacements using processed RGPS satellite data for each month of

2001 and 2003. In general, the metrics show that the simulation performs relatively

better for winter months.

The metrics on their own do not provide a complete picture of a model’s perfor-

mance. We find that frequency diagrams for displacement directions and magnitudes

provide additional qualitative information for the interpretation of distance correla-

tion and correlation coefficient, and direction error. Specifically, the distribution of

direction magnitudes helps to interpret distance correlation and correlation magni-

tude, while the distribution of angles informs the interpretation of direction error.

We also find that including displacements of 0, and the metrics’ sensitivity to the

number of data points being compared can lead to misleading scores.
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Consistently low direction error scores led us to investigate model components

that can affect displacement directions such as the wind turning angle. We ran and

compared simulations using two different values for this parameter, 0 and 0.5 rad,

and both led to better metric scores. The process of applying and analyzing the

metrics has so far surfaced two problems in the simulation, and though the metric

scores do not point directly to the cause of the problem, they provide a clue as to

what might be the cause.
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Matlab codes

A.1 Metrics

The following functions are numerical implementations of the five displacement met-

rics and take as their arguments vectors containing the u and v displacement vector

components for both observation and simulation and return the respective metric

score.

A.1.1 Distance correlation

%Author : Bryan McCormick (bmccormi@unm . edu )

%This func t i on produces a r e g r e s s i o n l i n e based on the magnitude o f

%disp lacement vec to r s from observat ion data and mate r i a l po in t s from

%the Arct i c s imu la t i on . Here the dependent va r i ab l e i s the mate r i a l po int

%displacements , the explanatory va r i ab l e the observed d i sp lacements .

%Also c a l cu l a t ed i s the c o r r e l a t i o n c o e f f i c i e n t , a number between −1 and 1

%to r ep r e s en t the l i n e a r dependance o f the d i sp lacements .

%Inputs :

% u1 = observat ion x−d i r e c t i o n disp lacement

% v1 = obse rvat ion y−d i r e c t i o n disp lacement

% u2 = s imulat i on x−d i r e c t i o n disp lacement

% v2 = s imula t i on y−d i r e c t i o n disp lacement

%Outputs :
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% cor r = two dimens ional vec tor conta in ing the c o r r e l a t i o n

% c o e f f i c i e n t and the r e g r e s s i o n s l ope

% d i s tance c o r r e l a t i o n

% l i n e a r r e g r e s s i o n o f magnitude o f d isp lacement vec to r s

func t i on co r r = Di s tance Cor r e l a t i on (u1 , v1 , u2 , v2 )

n = length ( u1 ) ;

% get the magnitudes ( d i s t ance )

X = sqr t ( u1 .ˆ2 + v1 . ˆ 2 ) ;

Y = sqr t ( u2 .ˆ2 + v2 . ˆ 2 ) ;

% means

X bar = 1/n∗(sum(X) ) ;

Y bar = 1/n∗(sum(Y) ) ;

% r e g r e s s i o n l i n e

% s l ope

m = (sum(X.∗Y) − n∗X bar∗Y bar )/( sum(X.∗X) − n∗X bar∗X bar ) ;

% i n t e r c ep t

b = Y bar − m∗X bar ;

% c o r r e l a t i o n c o e f f i c i e n t

co r r (1 ) = (sum(X.∗Y) − n∗X bar∗Y bar )/( sq r t (sum(X.∗X) − n∗X bar∗X bar ) . . .

∗ sq r t (sum(Y.∗Y) − n∗Y bar∗Y bar ) ) ;

co r r (2 ) = m;

end

A.1.2 Error radius

%Author : Bryan McCormick (bmccormi@unm . edu )

%This func t i on measures the s t r a i g h t l i n e d i s t ance between 2 po int s in

%k i l omete r s . This i s i n t e rp r e t ed as the d ic repency between where a

%point was f o r e c a s t to move by the Arct i c s imulat ion , and where the point

%ac tua l l y went accord ing to obse rvat ion data .

%Al l un i t s k i l omete r s

%Inputs :

% u1 = observat ion x−d i r e c t i o n disp lacement

% v1 = obse rvat ion y−d i r e c t i o n disp lacement

% u2 = s imula t i on x−d i r e c t i o n disp lacement

% v2 = s imula t i on y−d i r e c t i o n disp lacement

%Output :

% Erad = average o f e r ror−r a d i i f o r a l l buoys and mate r i a l po in t s f o r

% one f o r e c a s t per iod .

% e r r o r rad ius

func t i on Erad = Error Radius (u1 , v1 , u2 , v2 )

n = length ( u1 ) ;

% compute the e r r o r r a d i i

Erad = sum( sq r t ( ( u1 − u2 ) . ˆ 2 + ( v1 − v2 ) . ˆ 2 ) ) / n ;
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end

A.1.3 Direction error

%Author : Bryan McCormick (bmccormi@unm . edu )

%This func t i on computes the root mean square e r r o r between d i r e c t i o n s o f

%obse rvat ion and s imula t ion disp lacement vec to r s . The

%d i r e c t i o n i s taken to be the angle o f d i sp lacement vec to r s when p lo t t ed on

%the o r i g i on in rad ians .

%Inputs :

% u1 = observat ion x−d i r e c t i o n disp lacement

% v1 = obse rvat ion y−d i r e c t i o n disp lacement

% u2 = s imula t i on x−d i r e c t i o n disp lacement

% v2 = s imula t i on y−d i r e c t i o n disp lacement

%Output :

% RMSDE = root mean square d i r e c t i o n e r r o r

% root mean square d i r e c t i o n e r r o r

func t i on RMSDE = RMS Direction Error (u1 , v1 , u2 , v2 )

n = length ( u1 ) ;

% compute d i r e c t i o n e r r o r

RMSDE = sqr t (sum(( atan2 ( u1 .∗ v2 − v1 .∗ u2 , u1 .∗ u2 + v1 .∗ v2 ) ) . ˆ 2 ) / n ) ;

end

A.1.4 Vector correlation

%Author : Bryan McCormick (bmccormi@unm . edu )

%This func t i on i s an implementation o f the d e f i n i t i o n o f vec tor c o r r e l a t i o n

%o r i g i n a l l y proposed by Hooper (1959) and suggested as a metr ic f o r sea i c e

%d r i f t model v e r i f i c a t i o n by Grumbine ( 2013 ) . The func t i on takes obse rvat ion

%displacement vec to r s [ u1 , v1 ] and f o r e ca s td i sp l a c ement vec to r s [ u2 , v2 ]

%mate r i a l po in t s from Arct i c s imu la t i on .

%Here v e c t o r c o r r e l a t i o n i s de f ined as the t ra c e o f the matrix product :

%

%S(1 ,1)ˆ−1∗S (1 , 2 )∗ ( S(2 ,2)ˆ−1)∗S (2 ,1 )

%

%S( i , j ) are covar iance matr i ces between vec to r s ui , v j .

%See Crosby (1993) ’A Proposed De f i n i t i o n f o r Vector Cor r e l a t i on in

%Geophysics ’ f o r more in format ion .

%Inputs :

% u1 = obse rvat ion x−d i r e c t i o n disp lacement

% v1 = obse rvat ion y−d i r e c t i o n disp lacement

% u2 = s imulat i on x−d i r e c t i o n disp lacement

% v2 = s imula t i on y−d i r e c t i o n disp lacement

%Output :

% vector Corr = number between 0 and 2 r ep r e s en t i ng two dimens ional

% co r r e l a t i on , 0 = no co r r e l a t i on , 2 = ’ pe r f e c t ’

% c o r r e l a t i o n
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% funct i on to compute c o r r e l a t i o n between 2 s e t s o f v e c to r s

func t i on vector Corr = Vecto r Cor r e l a t i on (u1 , v1 , u2 , v2 )

vec tor Corr = VecCor (u1 , v1 , u2 , v2 ) ;

end

%Author : Bryan McCormick (bmccormi@unm . edu )

%This func t i on computes the squared vector c o r r e l a t i o n c o e f f i c i e n t between

%vec to r s (u1 , v1 ) and (u2 , v2 ) .

%Inputs :

% u1 = buoy x−d i r e c t i o n disp lacement

% v1 = buoy y−d i r e c t i o n disp lacement

% u2 = mater i a l po int x−d i r e c t i o n disp lacement

% v2 = mater i a l po int y−d i r e c t i o n disp lacement

%Output :

% vector Corr = number between 0 and 2 r ep r e s en t i ng two dimens ional

% co r r e l a t i on , 0 = no co r r e l a t i on , 2 = ’ pe r f e c t ’

% c o r r e l a t i o n

func t i on ro2 = VecCor (u1 , v1 , u2 , v2 )

f = Vecvariance (u1 , u1 )∗ ( Vecvariance (u2 , u2 )∗ ( ( Vecvariance ( v1 , v2 ) ) . ˆ 2 ) . . .

+ Vecvariance ( v2 , v2 )∗ ( Vecvariance ( v1 , u2 ) ) . ˆ 2 ) . . .

+ Vecvariance ( v1 , v1 )∗ ( Vecvariance (u2 , u2 )∗ ( Vecvariance (u1 , v2 ) . ˆ 2 ) . . .

+ Vecvariance ( v2 , v2 )∗ ( Vecvariance (u1 , u2 ) ) . ˆ 2 ) . . .

+ 2∗( Vecvariance (u1 , v1 )∗Vecvariance (u1 , v2 )∗Vecvariance ( v1 , u2 )∗Vecvariance (u2 , v2 ) . . .

+ Vecvariance (u1 , v1 )∗Vecvariance (u1 , u2 )∗Vecvariance ( v1 , v2 )∗Vecvariance (u2 , v2 ) ) . . .

− 2∗( Vecvariance (u1 , u1 )∗Vecvariance ( v1 , u2 )∗Vecvariance ( v1 , v2 )∗Vecvariance (u2 , v2 ) . . .

+ Vecvariance ( v1 , v1 )∗Vecvariance (u1 , u2 )∗Vecvariance (u1 , v2 )∗Vecvariance (u2 , v2 ) . . .

+ Vecvariance (u2 , u2 )∗Vecvariance (u1 , v1 )∗Vecvariance (u1 , v2 )∗Vecvariance ( v1 , v2 ) . . .

+ Vecvariance ( v2 , v2 )∗Vecvariance (u1 , v1 )∗Vecvariance (u1 , u2 )∗Vecvariance ( v1 , u2 ) ) ;

g = ( Vecvariance (u1 , u1 )∗Vecvariance ( v1 , v1 ) − ( Vecvariance (u1 , v1 ) . ˆ 2 ) ) . . .

∗( Vecvar iance (u2 , u2 )∗Vecvariance ( v2 , v2 ) − ( Vecvariance (u2 , v2 ) . ˆ 2 ) ) ;

ro2 = f /g ;

end
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A.2 Buoy comparison

The script MP ComparisonConfig sets the parameters for MP DisplacementCompare

which executes the comparison between IABP buoys and simulation displacements.

The script BuoySort sorts buoy position data by day.

A.2.1 MP ComparisonConfig

%Author : Bryan McCormick (bmccormi@unm . edu )

%

%This s c r i p t s e t s parameters f o r the s c r i p t ForecastCompare . Comparison can

%be made us ing I n t e r n a t i o na l Arct i c Buoy Program d r i f t i n g buoy

%l o c a t i o n data .

%For a comparison over a s p e c i f i c r eg i on o f the a r c t i c , s e t Region = true

%se t year f o r comparison

YEAR = 2003;

month start = 1 ;

month end = 3 ;

year = num2str (YEAR) ;

%s p e c i f i c r eg i on i n f o . Set Region = ’ true ’ to s e t s p e c i f i c r eg ion f o r

%comparison . Otherwise s c r i p t w i l l run f o r a l l a v a i l a b l e data .

Region = f a l s e ;

%l o c a t i o n o f buoy l o c a t i on f i l e

%Folder name should end with /

Buoy fo lder = ’ ˜/Desktop/BuoyData/ ’ ;

Buoy f i l e = [ ’C ’ year ] ;

%ente r f o r e c a s t l ength as an intege r , or a vector i f comparing s e v e r a l

%f o r e c a s t l eng ths

%NOTE: f o r monthly buoy comparison FORECAST should be length 1

FORECAST = [ 1 , 5 , 8 ] ;

%Model Data f i l e

%Folder name should end with /

M folder = [ ’ /Volumes/ I ca ru s /MP data/ ’ year ’ / ’ ] ;

M f i l e = ’ pmpart . nc ’ ;
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A.2.2 BuoySort

%Author : Bryan McCormick (bmccormi@unm . edu )

%This func t i on s o r t s IABP d r i f t i n g buoy data av a i l a b l e from NSIDC. The

%input parameter ’ f i l e ’ should be o f the form ’Cyear ’ as l o c a t i on data i s

%stored in a f i l e named ’C ’ .

%The output i s a c e l l f o r each day o f the year conta in ing buoy

%i d e n t i f i c a t i o n numbers and pro j e c t ed (x , y ) l o c a t i o n data .

%Inputs :

% f o l d e r − path to buoy data f o l d e r

% f i l e − f i l e f o r d e s i r ed year

% leapYear − l o g i c a l

%Outputs :

% BuoyData − c e l l conta in ing l o c a t i o n data so r t ed by day

%func t i on to s o r t buoy data

func t i on BuoyData = BuoySort ( f o l d e r , f i l e , leapYear )

fname = [ f o l d e r f i l e ] ;

fID = fopen ( fname ) ;

c l e a r f o l d e r f i l e fname

%no header in f i l e , columns as f o l l ow s

% 1) year

% 2) month

% 3) day

% 4) hour in GMT (0 or 12)

% 5) buoy i d e n t i f i c a t i o n number

% 6) l a t i t u d e in degree s north

% 7) long i tude in degree s ea s t

data = textscan ( fID , ’%d %d %d %d %d %f %f ’ ) ;

f c l o s e ( fID ) ;

c l e a r fID

[X,Y] = po l a r s t e r e o fwd ( data {6} , data {7} ,6378137 ,0 .081816153 ,70 ,−45) ;

X = 1e−3∗X;

Y = 1e−3∗Y;

%so r t by time o f day measurements are taken

count = 0 ;

f o r i = 1 : l ength ( data {4})
i f data {4}( i ) == 12

count = count + 1 ;

month( count ) = data {2}( i ) ;

day ( count ) = data {3}( i ) ;

buoyID ( count ) = data {5}( i ) ;

buoyLocation ( count , : ) = [X( i ) ,Y( i ) ] ;

end

end

c l e a r count data X Y i

n = length ( day ) ;

dayNumber = ze ro s (1 , n ) ;

f o r i = 1 : n

dayNumber ( i ) = month2num(day ( i ) ,month( i ) , leapYear ) ;
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end

c l e a r day month n i

days = unique (dayNumber ) ;

n = length ( days ) ;

m = length (dayNumber ) ;

BuoyData = c e l l (n , 3 ) ;

f o r i = 1 : n

count = 0 ;

f o r j = 1 :m

i f dayNumber ( j ) == days ( i )

count = count + 1 ;

BuoyData{ i , 1} ( count ) = buoyID ( j ) ;

BuoyData{ i , 2} ( count ) = buoyLocation ( j , 1 ) ;

BuoyData{ i , 3} ( count ) = buoyLocation ( j , 2 ) ;

end

i f dayNumber ( j ) < days ( i )

cont inue

end

end

end

c l e a r i j m n count

c l e a r days buoyID buoyLocation dayNumber

end

A.2.3 MP DisplacementCompare

%Author : Bryan McCormick (bmccormi@unm . edu )

%This s c r i p t runs a disp lacement comparison between mate r i a l po int sea i c e

%model and , and IABP d r i f t i n g buoy disp lacement data . Before running t h i s s c r i p t

%se t parameters and paths to s imula t i on and obse rvat ion data in the

%MP ComparisonConfig c on f i gu r a t i on f i l e .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%comparison o f obse rvat ion data and sea i c e model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c l o s e a l l

c l e a r a l l

MonthStrings = [ ’ Jan ’ , ’Feb ’ , ’Mar ’ , ’Apr ’ , ’May ’ , ’ Jun ’ , . . .

’ Jul ’ , ’Aug ’ , ’ Sep ’ , ’Oct ’ , ’Nov ’ , ’Dec ’ ] ;

MP ComparisonConfig

%MP model data

MPfile = [ M folder M f i l e ] ;

c l e a r M folder M f i l e

day s ta r t = 1 ; %s t a r t i n g day

%user r eg ion i n f o

i f Region == true

f i g u r e ( )

landmask
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t i t l e ( ’ choose 4 po int s to generate area f o r comparison ’ )

[ regionX , regionY ] = ginput ( 4 ) ;

regionX = round ( regionX ) ;

regionY = round ( regionY ) ;

Xmin = min( regionX ) ;

Xmax = max( regionX ) ;

Ymin = min( regionY ) ;

Ymax = max( regionY ) ;

c l o s e a l l

end

%i n i t i a l i z e buoy and mate r i a l po int disp lacement vec to r s

U1 buoy = [ ] ;

V1 buoy = [ ] ;

BX0 = [ ] ;

BY0 = [ ] ;

U2 B = [ ] ;

V2 B = [ ] ;

MX0 B = [ ] ;

MY0 B = [ ] ;

%check dates

leapYear = f a l s e ;

i f mod(YEAR, 4 ) == 0

leapYear = true ;

end

%earth rad ius

REARTH = 6731;

%model data f i l e

ncid = netcd f . open (MPfile , ’NOWRITE’ ) ;

%blockt ime and b l o c k s i z e

var id = netcd f . inqVarID ( ncid , ’ b lockt ime ’ ) ;

b lockt ime = netcd f . getVar ( ncid , var id ) ;

var id = netcd f . inqVarID ( ncid , ’ b l o c k s i z e ’ ) ;

B l o ck s i z e = netcd f . getVar ( ncid , var id ) ;

r eg i on = netcd f . inqVarID ( ncid , ’ r eg i on ’ ) ;

day = unique ( blockt ime )/86400 ;

ndays = length ( day ) ;

%mp po s i t i o n s and ID ’ s

xmpID = netcd f . inqVarID ( ncid , ’xMP’ ) ;

mpIDs = netcd f . inqVarID ( ncid , ’ idMP ’ ) ;

%s t a r t i n g p o s i t i o n s f o r book keeping

mpX0 = netcd f . inqVarID ( ncid , ’x0MP ’ ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Buoy comparison

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

BuoyData = BuoySort ( Buoy fo lder , Buoy f i l e , leapYear ) ;
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c l e a r Buoy fo lder Buoy f i l e

Bloopcount = 0 ;

f i g u r e ( )

f o r f o r e c a s t = FORECAST

%s e t t i n g the f o r e c a s t l ength and end day

Bloopcount = Bloopcount + 1 ;

Fcast ( Bloopcount ) = f o r e c a s t ;

i f month end == 2

i f leapYear == true

DAY = 29 ;

e l s e

DAY = 28 ;

end

e l s e i f month end == 1 | | 3 | | 5 | | 7 | | 8 | | 1 0 | | 1 2

DAY = 31 ;

e l s e i f month end == 4 | | 6 | | 9 | | 1 1

DAY = 30 ;

end

day end = DAY − f o r e c a s t ;

i f day end <= 0

month end = month end − 1 ;

i f month end == 2

i f leapYear == true

DAY end = 29 ;

e l s e

DAY end = 28 ;

end

e l s e i f month end == 1 | | 3 | | 5 | | 7 | | 8 | | 1 0 | | 1 2

DAY end = 31 ;

e l s e i f month end == 4 | | 6 | | 9 | | 1 1

DAY end = 30 ;

end

day end = day end + DAY end ;

end

c l e a r DAY

%loop parameters

numStart = month2num( day star t , month start , leapYear ) ;

numEnd = month2num( day end , month end , leapYear ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%s t a r t f o r e c a s t loop

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fo r D = numStart : numEnd

i f D + f o r e c a s t > 365

cont inue

end

dateStar t = num2month(D, leapYear ) ;

dateEnd = num2month(D + fo r e ca s t , leapYear ) ;

MONTH start = dateStar t ( 2 ) ;

MONTH end = dateEnd ( 2 ) ;
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DAY start = dateStar t ( 1 ) ;

DAY end = dateEnd ( 1 ) ;

DAYstart = month2num(DAY start , MONTH start , leapYear ) ;

DAYend = month2num(DAY end , MONTH end, leapYear ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%get f i r s t mate r i a l po int b locks

b l o c k s i z e = Block s i z e ( 1 ) ;

s t a r t b l o c k s = f ind ( blockt ime /86400 == day (DAYstart ) ) ;

Ns ta r t b l o ck s = length ( s t a r t b l o c k s ) ;

MP start = ze ro s (2 , b l o ck s i z e , Ns ta r t b l o ck s ) ;

MPx0 Start = ze ro s (2 , b l o ck s i z e , Ns ta r t b l o ck s ) ;

s t a r t r e g i o n = ze ro s ( b l o ck s i z e , Ns ta r t b l o ck s ) ;

MPid Start = ze ro s ( b l o ck s i z e , Nstar t b locks , 1 ) ;

s t a r t = [ 0 , 0 , s t a r t b l o c k s (1) − 1 ] ;

count = [ 2 , b l o ck s i z e , Ns ta r t b l o ck s ] ;

MP start ( 1 : 2 , 1 : b l o ck s i z e , 1 : Ns ta r t b l o ck s ) = . . .

ne tcd f . getVar ( ncid , xmpID , s ta r t , count )∗1 e−3;

MPx0 Start ( 1 : 2 , 1 : b l o ck s i z e , 1 : Ns ta r t b l o ck s ) = . . .

ne tcd f . getVar ( ncid , mpX0, s ta r t , count )∗1 e−3;

s t a r t r e g i o n ( 1 : b l o ck s i z e , 1 : Ns ta r t b l o ck s ) = . . .

ne tcd f . getVar ( ncid , reg ion , s t a r t ( 2 : 3 ) , count ( 2 : 3 ) ) ;

MPid Start ( 1 : b l o ck s i z e , 1 : Nstar t b locks , 1) = . . .

ne tcd f . getVar ( ncid , mpIDs , s ta r t , [ 1 , b l o ck s i z e , Ns ta r t b l o ck s ] ) ;

s t a r t i nd ex = f ind ( s t a r t r e g i o n == 2 ) ;

[ mpX0start , mpY0start ] = . . .

earthCoords (MPx0 Start (1 , s t a r t i nd ex ) , MPx0 Start (2 , s t a r t i nd ex ) ) ;

MPid start = MPid Start ( s t a r t i nd ex ) ;

[LAT,LON] = earthCoords (MP start (1 , s t a r t i nd ex ) , MP start (2 , s t a r t i nd ex ) ) ;

[MPX0,MPY0] = pro j (LAT,LON) ;

c l e a r LAT LON MP start MPx0 Start s t a r t r e g i o n s t a r t count . . .

MPid Start s t a r t b l o c k s Nend blocks

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%get end b locks f o r mate r i a l po in t s

end b locks = f ind ( blockt ime /86400 == day (DAYend ) ) ;

Nend blocks = length ( end b locks ) ;

MP end = ze ro s (2 , b l o ck s i z e , Nend blocks ) ;

MPx0 End = ze ro s (2 , b l o ck s i z e , Nend blocks ) ;

end reg ion = ze ro s ( b l o ck s i z e , Nend blocks ) ;

MPid End = ze ro s ( b l o ck s i z e , Nend blocks , 1 ) ;

s t a r t = [ 0 , 0 , end b locks (1) − 1 ] ;

count = [ 2 , b l o ck s i z e , Nend blocks ] ;
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MP end ( 1 : 2 , 1 : b l o ck s i z e , 1 : Nend blocks ) = . . .

ne tcd f . getVar ( ncid , xmpID , s ta r t , count )∗1 e−3;

MPx0 End ( 1 : 2 , 1 : b l o ck s i z e , 1 : Nend blocks ) = . . .

ne tcd f . getVar ( ncid , mpX0, s ta r t , count )∗1 e−3;

end reg ion ( 1 : b l o ck s i z e , 1 : Nend blocks ) = . . .

ne tcd f . getVar ( ncid , reg ion , s t a r t ( 2 : 3 ) , count ( 2 : 3 ) ) ;

MPid End ( 1 : b l o ck s i z e , 1 : Nend blocks , 1) = . . .

ne tcd f . getVar ( ncid , mpIDs , s ta r t , [ 1 , b l o ck s i z e , Nend blocks ] ) ;

end index = f ind ( end reg ion == 2 ) ;

[mpX0end ,mpY0end ] = earthCoords (MPx0 End(1 , end index ) ,MPx0 End(2 , end index ) ) ;

MPid end = MPid End( end index ) ;

[LAT,LON] = earthCoords (MP end(1 , end index ) ,MP end(2 , end index ) ) ;

[MPXf,MPYf] = pro j (LAT,LON) ;

c l e a r LAT LON MP end MPx0 end end reg ion s t a r t count . . .

MPid End end blocks Nend blocks numstart numend

%buoy data f o r s t a r t and end days

%s t a r t day

start buoyIDs = BuoyData{DAYstart , 1 } ( : ) ;
end buoyIDs = BuoyData{DAYend , 1 } ( : ) ;

count = 0 ;

f o r j = 1 : l ength ( s tart buoyIDs )

f o r k = 1 : l ength ( end buoyIDs )

i f s tar t buoyIDs ( j ) == end buoyIDs (k )

count = count + 1 ;

buoyStartIndex ( count ) = j ;

buoyEndIndex ( count ) = k ;

end

end

end

BuoyX0 = BuoyData{DAYstart , 2} ( buoyStartIndex ( : ) ) ;

BuoyY0 = BuoyData{DAYstart , 3} ( buoyStartIndex ( : ) ) ;

BuoyXf = BuoyData{DAYend, 2} ( buoyEndIndex ( : ) ) ;

BuoyYf = BuoyData{DAYend, 3} ( buoyEndIndex ( : ) ) ;

c l e a r buoyStartIndex buoyEndIndex

%f i l t e r by user r eg ion

i f Region == true

buoyFound = f a l s e ;

count = 0 ;

f o r j = 1 : l ength (BuoyX0)

i f BuoyX0( j ) < Xmax && BuoyX0( j ) > Xmin . . .

&& BuoyY0( j ) < Ymax && BuoyY0( j ) > Ymin

buoyFound = true ;

count = count + 1 ;

RbuoyX0( count ) = BuoyX0( j ) ;

RbuoyY0( count ) = BuoyY0( j ) ;

RbuoyXf ( count ) = BuoyXf ( j ) ;

RbuoyYf ( count ) = BuoyYf ( j ) ;

end

end
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i f buoyFound == f a l s e

cont inue

end

c l e a r BuoyX0 BuoyY0 BuoyXf BuoyYf count

BuoyX0 = RbuoyX0 ;

BuoyY0 = RbuoyY0 ;

BuoyXf = RbuoyXf ;

BuoyYf = RbuoyYf ;

end

BuoyXdisp = BuoyXf − BuoyX0 ;

BuoyYdisp = BuoyYf − BuoyY0 ;

n = length (BuoyX0 ) ;

%f ind the c l o s e s t mate r i a l po in t s

MPIDs = ze ro s (1 , n ) ;

MPx0 = ze ro s (1 , n ) ;

MPy0 = ze ro s (1 , n ) ;

MPinitialX = ze ro s (1 , n ) ;

MPinitialY = ze ro s (1 , n ) ;

f o r j = 1 : l ength (BuoyX0)

buoyX0 = BuoyX0( j ) ;

buoyY0 = BuoyY0( j ) ;

mark = [ buoyX0 , buoyY0 ] ’ ;

minDist = 1e6 ;

f o r i = 1 : l ength (MPX0)

d i s t ance = norm(mark − [MPX0( i ) ,MPY0( i ) ] ’ ) ;

i f d i s t ance < minDist

minDist = d i s t ance ;

c l o s e s t = [MPX0( i ) ,MPY0( i ) ] ’ ;

found = i ;

pointID = MPid start ( i ) ;

pointX0 (1) = mpX0start ( i ) ;

pointX0 (2) = mpY0start ( i ) ;

end

end

MPIDs( j ) = pointID ;

MPx0( j ) = c l o s e s t ( 1 ) ;

MPy0( j ) = c l o s e s t ( 2 ) ;

MPinitialX ( j ) = pointX0 ( 1 ) ;

MPinitialY ( j ) = pointX0 ( 2 ) ;

end

%mater i a l po int end data

MPxf = ze ro s (1 , n ) ;

MPyf = ze ro s (1 , n ) ;

f o r i = 1 : n

f o r j = 1 : l ength (MPid end )

i f MPid end ( j ) == MPIDs( i ) && mpX0end( j ) ==...

MPinitialX ( i ) && mpY0end( j ) == MPinitialY ( i )

MPxf( i ) = MPXf( j ) ;

MPyf( i ) = MPYf( j ) ;

end

end
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end

%f i l t e r melted mate r i a l po in t s

count = 0 ;

f o r i = 1 : n

i f MPxf( i ) ˜= 0 && MPyf( i ) ˜= 0

count = count + 1 ;

bx0 ( count ) = BuoyX0( i ) ;

by0 ( count ) = BuoyY0( i ) ;

mx0( count ) = MPx0( i ) ;

my0( count ) = MPy0( i ) ;

u1 ( count ) = BuoyXdisp ( i ) ;

v1 ( count ) = BuoyYdisp ( i ) ;

u2 ( count ) = MPxf( i ) − MPx0( i ) ;

v2 ( count ) = MPyf( i ) − MPy0( i ) ;

end

end

%save disp lacement vec to r s

U1 buoy = [ U1 buoy , u1 ] ;

V1 buoy = [ V1 buoy , v1 ] ;

U2 B = [U2 B , u2 ] ;

V2 B = [V2 B , v2 ] ;

c l e a r u1 v1 u2 v2 BuoyXdisp BuoyYdisp MPx0 MPy0 MPxf MPyf . . .

BuoyX0 BuoyXf BuoyY0 BuoyYf n MPid start MPid end . . .

buoyEndIndex buoyStartIndex bx0 by0 mx0 my0

end

%s t a t i s t i c s

Nobs ( Bloopcount ) = length (U1 buoy ) ;

%d i r e c t i o n e r r o r

dErr ( Bloopcount ) = RMS Direction Error (U1 buoy , V1 buoy , U2 B , V2 B ) ;

%vector c o r r e l a t i o n

VecCor ( Bloopcount ) = Vec to r Cor r e l a t i on (U1 buoy , V1 buoy , U2 B , V2 B ) ;

%d i s tance c o r r e l a t i o n

Dcor ( : , Bloopcount ) = Di s tance Cor r e l a t i on (U1 buoy , V1 buoy , U2 B , V2 B ) ;

%e r r o r rad ius

Erad ( Bloopcount ) = Error Radius (U1 buoy , V1 buoy , U2 B , V2 B ) ;

%new s t a t i s t i c s

[ buoylength , buoyangle , mplength , mpangle , cov ] = . . .

VectorStats (U1 buoy , V1 buoy , U2 B , V2 B ) ;

meanlengthBuoy ( Bloopcount ) = buoylength ( 1 ) ;

meanlengthMP( Bloopcount ) = mplength ( 1 ) ;

SDlengthBuoy ( Bloopcount ) = buoylength ( 2 ) ;

SDlengthMP( Bloopcount ) = mplength ( 2 ) ;

VarlengthBuoy ( Bloopcount ) = buoylength ( 3 ) ;

VarlengthMP( Bloopcount ) = mplength ( 3 ) ;

Covlength ( Bloopcount ) = cov ( 1 ) ;

meanAngleBuoy ( Bloopcount ) = buoyangle ( 1 ) ;

meanAngleMP( Bloopcount ) = mpangle ( 1 ) ;

SDAngleBuoy ( Bloopcount ) = buoyangle ( 2 ) ;

SDAngleMP( Bloopcount ) = mpangle ( 2 ) ;
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VarAngleBuoy ( Bloopcount ) = buoyangle ( 3 ) ;

VarAngleMP( Bloopcount ) = mpangle ( 3 ) ;

CovAngle ( Bloopcount ) = cov ( 2 ) ;

c l e a r buoylength buoyangle mplength mpangle cov

%mean o f d i f f e r e n c e s

l eng th obs = sq r t (U1 buoy .ˆ2 + V1 buoy . ˆ 2 ) ;

l e n g t h f o r = sq r t (U2 B .ˆ2 + V2 B . ˆ 2 ) ;

the ta obs = atan2 (U1 buoy , V1 buoy ) ;

t h e t a f o r = atan2 (U2 B , V2 B ) ;

f i g u r e ( )

subplot (2 , 1 , 1 )

histogram ( l ength obs )

y l ab e l ( ’ Observation (n) ’ , ’ FontSize ’ ,22)

ylim ( [ 0 , 1500 ] )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (2 , 1 , 2 )

histogram ( l e n g t h f o r )

y l ab e l ( ’ S imulat ion (n) ’ , ’ FontSize ’ ,22)

%ylim ( [ 0 , 3 5 0 0 ] )

xlim ( [ 0 , 8 0 0 ] )

x l ab e l ( ’km ’ , ’ FontSize ’ ,22)

f i g u r e ( )

subplot (1 , 2 , 1 )

po larh i s togram ( theta obs )

%r l im ( [ 0 , 0 . 8 ] )

t i t l e ( ’ Observation ’ , ’ FontSize ’ ,22)

subplot (1 , 2 , 2 )

po larh i s togram ( t h e t a f o r )

r l im ( [ 0 , 8 0 0 ] )

t i t l e ( ’ S imulat ion ’ , ’ FontSize ’ ,22)

%supplementary f i g u r e s

i f f o r e c a s t == 1 | | f o r e c a s t == 15 | | f o r e c a s t == 30

f i g u r e ( )

p lo t ( l ength obs , l e ng th f o r , ’∗ ’ )

x l ab e l ( ’ obse rvat ion (km) ’ )

y l ab e l ( ’ s imu lat i on (km) ’ )

hold on

x = min( l ength obs ) :max( l ength obs ) ;

b = mean( l e n g t h f o r ) − Dcor (2 , Bloopcount )∗mean( l ength obs ) ;

y = Dcor (2 , Bloopcount )∗x + b ;

p lo t (x , y , ’−−r ’ )

m = num2str (Dcor (2 , Bloopcount ) ) ;

p = num2str (Dcor (1 , Bloopcount ) ) ;

l a b e l = { [ ’m = ’ , m] , [ ’\ rho = ’ ,p ] } ;
t ext (min (x ) + 5 ,max( l e n g t h f o r ) −10, l abe l , ’ FontSize ’ , 1 8 ) ;

i f f o r e c a s t == 1

t i t l e ({ [ MonthStrings (4∗month start − 3:4∗month start ) , . . .

’− ’ , MonthStrings (4∗month end −3:4∗month end ) , year ] , . . .

’1−day disp lacement magnitudes ’ })
e l s e i f f o r e c a s t == 15

t i t l e ({ [ MonthStrings (4∗month start − 3:4∗month start ) , . . .

’− ’ , MonthStrings (4∗month end −3:4∗month end ) , year ] , . . .
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’15−day disp lacement magnitudes ’ })
e l s e

t i t l e ({ [ MonthStrings (4∗month start − 3:4∗month start ) , . . .

’− ’ , MonthStrings (4∗month end −3:4∗month end ) , year ] , . . .

’30−day disp lacement magnitudes ’ })
end

c l e a r m p x y b

end

l e n g t h d i f f = l ength obs − l e n g t h f o r ;

t h e t a d i f f = theta obs − t h e t a f o r ;

LengthMeanDiff ( Bloopcount ) = mean( l e n g t h d i f f ) ;

AngleMeanDiff ( Bloopcount ) = mean( t h e t a d i f f ) ;

LengthSDDiff ( Bloopcount ) = std ( l e n g t h d i f f ) ;

AngleSDDiff ( Bloopcount ) = std ( t h e t a d i f f ) ;

LengthDiffVar ( Bloopcount ) = Vecvariance ( l e n g t h d i f f , l e n g t h d i f f ) ;

AngleDif fVar ( Bloopcount ) = Vecvariance ( t h e t a d i f f , t h e t a d i f f ) ;

c l e a r l eng th obs l e n g t h f o r the ta obs t h e t a f o r l e n g t h d i f f t h e t a d i f f

U1 buoy = [ ] ;

V1 buoy = [ ] ;

U2 B = [ ] ;

V2 B = [ ] ;

BX0 = [ ] ;

BY0 = [ ] ;

MX0 B = [ ] ;

MY0 B = [ ] ;

end

%p l o t s f o r buoy comparison

f i g u r e ( )

subplot (3 , 1 , 1 )

p lo t ( Fcast , Dcor ( 1 , : ) , ’ : x ’ ) ;

g r id on

hold on

p lo t ( Fcast , VecCor , ’−o ’ ) ;

p l o t ( Fcast , Dcor ( 2 , : ) , ’−−∗ ’ ) ;
yl im ( [ −0 . 5 , 2 ] )

y l ab e l ( ’ metr ic s co r e ’ )

t i t l e ( ’ January 4−5, 2001 ’ )

legend ( ’\ rho ’ , ’\ rho ˆ2 v ’ , ’m’ , ’ Locat ion ’ , ’ northwest ’ )

legend boxo f f

hold o f f

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (3 , 1 , 2 )

p lo t ( Fcast , Erad , ’−x ’ )

g r id on

y l abe l ( ’R { e r r } (km) ’ )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (3 , 1 , 3 )

hold on

p lo t ( Fcast (1 ) − 1 , p i /2 , ’ ˆ ’ )

p l o t ( Fcast (1 ) − 1 , p i /3 , ’ ˆ ’ )
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p lo t ( Fcast (1 ) − 1 , p i /6 , ’ ˆ ’ )

l a b e l 1 = ’\pi /2 ’ ;

l a b e l 2 = ’\pi /3 ’ ;

l a b e l 3 = ’\pi /6 ’ ;

t ext ( Fcast (1 ) − . 9 , p i /2 , l a b e l 1 )

text ( Fcast (1 ) − . 9 , p i /3 , l a b e l 2 )

text ( Fcast (1 ) − . 9 , p i /6 , l a b e l 3 )

g r id on

p lo t ( Fcast , dErr , ’−x ’ )

x l ab e l ( ’ Forecast l ength ( days ) ’ )

y l ab e l ( ’\ the ta { e r r } ( rad ) ’ )

ylim ( [ 0 , p i ] )

%vector l ength s t a t i s t i c s

xax = Fcast ;

f i g u r e ( )

subplot (4 , 1 , 1 )

p lo t ( xax , meanlengthBuoy − meanlengthMP , ’ : x ’ )

y l ab e l ( ’Mean (km) ’ )

t i t l e ( ’ 3 month d i f f e r e n c e o f mean disp lacement magnitude ’ )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 2 )

p lo t ( xax , SDlengthBuoy − SDlengthMP , ’ : x ’ )

y l ab e l ( ’ Standard Deviat ion (km) ’ )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 3 )

p lo t ( xax , ( VarlengthBuoy ) − (VarlengthMP ) , ’ : x ’ )

y l ab e l ( ’ Variance (kmˆ2) ’ )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 4 )

p lo t ( xax , ( Covlength ) , ’−∗ ’ )
x l ab e l ( ’ Forecast l ength ( days ) ’ )

y l ab e l ( ’ Covariance (kmˆ2) ’ )

%vector angle s t a t i s t i c s

f i g u r e ( )

subplot (4 , 1 , 1 )

p lo t ( xax , meanAngleBuoy − meanAngleMP , ’ : x ’ )

y l ab e l ( ’Mean ( rad ) ’ )

t i t l e ( ’ 3 month d i f f e r e n c e s o f d isp lacement angle ’ )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 2 )

p lo t ( xax , SDAngleBuoy − SDAngleMP , ’ : x ’ )

y l ab e l ( ’ Standard dev i a t i on ( rad ) ’ )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 3 )

p lo t ( xax , ( VarAngleBuoy ) − (VarAngleMP) , ’ : x ’ )
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y l abe l ( ’ Variance ( rad ˆ2) ’ )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 4 )

p lo t ( xax , ( CovAngle ) , ’−∗ ’ )
x l ab e l ( ’ Forecast l ength ( days ) ’ )

y l ab e l ( ’ Covariance ( rad ˆ2) ’ )

A.3 RGPS comparison

The script MonthAvgConfig sets the parameters for the script MPmonthAvg which

runs the comparison between averaged-RGPS and simulation daily averaged dis-

placements. The function SimAvg retrieves the simulation displacement data.

A.3.1 MonthAvgConfig

%Author : Bryan McCormick (bmccormi@unm . edu )

%

%This s c r i p t s e t s parameters f o r the s c r i p t MPmonthAvg .

%YEAR i s the year being compared .

%SimFolder i s the path to the proces sed s imu lat i on disp lacement data f i l e ,

%note : the convent ion implemented in the s c r i p t s r e qu i r e s i nd i v i dua l f i l e s

%conta in ing d i sp lacements f o r each month , named 1−12.

%RGPS folder i s the l o c a t i o n o f the RGPS disp lacement data f i l e s .

%year being compared

YEAR = 2001;

%l o c a t i o n s o f obse rvat ion and s imulat i on data f i l e s

S im fo lde r = ’ ˜/Desktop/MPmonthAvg/2001a/ ’ ;

RGPS folder = ’ ˜/Desktop/RGPS/Obs/ ’ ;

%produce supplementary f i g u r e s f o r the s p e c i f i e d month or months . SupStats

%should be a vector conta in ing the de s i r ed months as numbers 1−12. I f no

%supplementary f i g u r e s are de s i r ed s e t SupStats = 0 .

SupStats = 8 ;

%produce f i g u r e s with mean , standard dev iat ion , var iance , and covar iance o f

%obse rvat ion and disp lacement l eng ths and ang l e s .

AngleStats = f a l s e ;

LengthStats = f a l s e ;
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A.3.2 MPmonthAvg

%Author : Bryan McCormick (bmccormi@unm . edu )

%This s c r i p t runs a da i l y averaged disp lacement comparison between mate r i a l po int sea i c e

%model and , and RGPS obse rvat ion disp lacement data . Before running t h i s s c r i p t

%se t parameters and paths to s imula t i on and obse rvat ion data in the

%MonthAvgConfig c on f i gu r a t i on f i l e .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%comparison o f da i l y averaged di sp lacements

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MonthAvgConfig

year = num2str (YEAR) ;

%i n i t i a l i z e v e c t o r r s to s t o r e metr ic s c o r e s

D i s tanceCor r e l a t i on = ze ro s ( 2 , 1 2 ) ;

VectorCorre la t i on = ze ro s ( 1 , 1 2 ) ;

ErrorRadius = ze ro s ( 1 , 1 2 ) ;

D i r e c t i onEr ro r = ze ro s ( 1 , 1 2 ) ;

%f ind the minimum extent

MINmonth = 9 ;

[ RGPS init ia l , RGPS final , ˜ ] = ReadDisplacementObs ( RGPS folder ,YEAR,MINmonth ) ;

c l e a r RGPS displacement

RGPS X0 = RGPS init ia l ( : , 1 ) ;

RGPS Y0 = RGPS init ia l ( : , 2 ) ;

RGPS Xf = RGPS final ( : , 1 ) ;

RGPS Yf = RGPS final ( : , 2 ) ;

c l e a r RGPS inital RGPS final

%compute d i sp lacements

RGPS U = RGPS Xf − RGPS X0 ;

RGPS V = RGPS Yf − RGPS Y0 ;

c l e a r RGPS Xf RGPS Yf

%f ind po in t s corresponding to i c e minimum

count = 0 ;

f o r j = 1 : l ength (RGPS U)

i f RGPS U( j ) ˜= 0 && RGPS V( j ) ˜= 0

count = count + 1 ;

MINdex( count ) = j ;

end

end

c l e a r RGPS U RGPS V RGPS X0 RGPS Y0 RGPS Xf RGPS Yf

%loop over each month o f the year

f o r m = 1:12

i f m == 2

DAY end = 28 ;

e l s e i f m == 1 | | 3 | | 5 | | 7 | | 8 | | 1 0 | | 1 2

DAY end = 31 ;

e l s e i f m == 4 | | 6 | | 9 | | 1 1

DAY end = 30 ;

end
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%pu l l obse rvat ion data f o r the month

[ RGPS init ia l , RGPS final , ˜ ] = ReadDisplacementObs ( RGPS folder ,YEAR,m) ;

c l e a r RGPS displacement

RGPS X0 = RGPS init ia l ( : , 1 ) ;

RGPS Y0 = RGPS init ia l ( : , 2 ) ;

RGPS Xf = RGPS final ( : , 1 ) ;

RGPS Yf = RGPS final ( : , 2 ) ;

c l e a r RGPS inital RGPS final

%compute d i sp lacements

RGPS u = RGPS Xf − RGPS X0 ;

RGPS v = RGPS Yf − RGPS Y0 ;

c l e a r RGPS Xf RGPS Yf

%pu l l s imu la t i on data f o r the month

[MP X0,MP Y0,MP u,MP v ] = SimAvg(m, S im fo lde r ) ;

%f i l t e r by i c e minimum

RGPS U = RGPS u(MINdex ) ;

RGPS V = RGPS v(MINdex ) ;

MP U = MP u(MINdex ) ;

MP V = MP v(MINdex ) ;

%compute disp lacement l eng ths and ang l e s

l eng th obs = sq r t (RGPS U.ˆ2 + RGPS V. ˆ 2 ) ;

l e n g t h f o r = sq r t (MP U.ˆ2 + MP V. ˆ 2 ) ;

the ta obs = atan2 (RGPS U,RGPS V) ;

t h e t a f o r = atan2 (MP U,MP V) ;

%s t a t i s t i c s f o r l eng ths and ang l e s

LengthMeanObs (m) = mean( l ength obs ) ;

LengthMeanFor (m) = mean( l e n g t h f o r ) ;

AngleMeanObs (m) = mean( theta obs ) ;

AngleMeanFor (m) = mean( t h e t a f o r ) ;

LengthSDObs (m) = std ( l ength obs ) ;

LengthSDFor (m) = std ( l e n g t h f o r ) ;

AngleSDObs (m) = std ( the ta obs ) ;

AngleSDFor (m) = std ( t h e t a f o r ) ;

LengthVarObs (m) = Vecvariance ( l ength obs , l eng th obs ) ;

LengthVarFor (m) = Vecvariance ( l eng th f o r , l e n g t h f o r ) ;

AngleVarObs (m) = Vecvariance ( theta obs , the ta obs ) ;

AngleVarFor (m) = Vecvariance ( th e t a f o r , t h e t a f o r ) ;

LengthCov (m) = Vecvariance ( l eng th f o r , l ength obs ) ;

AngleCov (m) = Vecvariance ( th e t a f o r , the ta obs ) ;

%compute and s t o r e metr ic s c o r e s f o r the month

VectorCorre la t i on (m) = Vecto r Cor r e l a t i on (RGPS U,RGPS V,MP U,MP V) ;

D i s tanceCor r e l a t i on ( : ,m) = Di s tance Cor r e l a t i on (RGPS U,RGPS V,MP U,MP V) ;

D i r e c t i onEr ro r (m) = RMS Direction Error (RGPS U,RGPS V,MP U,MP V) ;

ErrorRadius (m) = Error Radius (RGPS U,RGPS V,MP U,MP V) ;

%check f o r user requested supplementary f i g u r e s f o r the month

i f SupStats ˜= 0

f o r j = 1 : l ength ( SupStats )

i f m == SupStats ( j )

MONTH = num2str (m) ;
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f i g u r e ( )

subplot (2 , 1 , 1 )

histogram ( length obs , ’ BinWidth ’ , 0 . 5 )

%t i t l e ( [MONTH, ’/ ’ , year , ’ d i sp lacement magnitudes ’ ] )

y l ab e l ( ’ Observation (n) ’ , ’ FontSize ’ ,22)

xlim ( [ 0 , 9 ] )

ylim ( [ 0 , 3 2 0 ] )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (2 , 1 , 2 )

histogram ( l eng th f o r , ’ BinWidth ’ , 0 . 5 )

y l ab e l ( ’ S imulat ion (n) ’ , ’ FontSize ’ ,22)

ylim ( [ 0 , 3 2 0 ] )

xlim ( [ 0 , 9 ] )

x l ab e l ( ’km ’ , ’ FontSize ’ ,22)

f i g u r e ( )

subplot (1 , 2 , 1 )

po larh i s togram ( theta obs )

%r l im ( [ 0 , 0 . 8 ] )

t i t l e ( ’ Observation ’ , ’ FontSize ’ ,22)

subplot (1 , 2 , 2 )

po larh i s togram ( t h e t a f o r )

%r l im ( [ 0 , 0 . 8 ] )

t i t l e ( ’ S imulat ion ’ , ’ FontSize ’ ,22)

f i g u r e ( )

p lo t ( l ength obs , l e ng th f o r , ’∗ ’ )

hold on

x l abe l ( ’ obse rvat ion (km) ’ )

y l ab e l ( ’ s imu lat i on (km) ’ )

x = min ( l ength obs ) :max( l ength obs ) ;

M = (sum( l ength obs .∗ l e n g t h f o r ) − l ength ( l ength obs )∗mean( l ength obs ) . . .

∗mean( l e n g t h f o r ) ) / ( sum( l ength obs .∗ l eng th obs ) − l ength ( l ength obs ) . . .

∗mean( l ength obs )∗mean( l ength obs ) ) ;

b = mean( l e n g t h f o r ) − M∗mean( l ength obs ) ;

y = M∗x + b ;

p lo t (x , y , ’−−r ’ )

M = num2str ( D i s tanceCor r e l a t i on (2 ,m) ) ;

P = num2str ( D i s tanceCor r e l a t i on (1 ,m) ) ;

t i t l e ( [MONTH, ’ / ’ , year , ’ d i sp lacement magnitudes ’ ] )

l a b e l = { [ ’m = ’ , M] , [ ’\ rho = ’ ,P ] } ;
t ext (min (x ) + . 5 ,max( l e n g t h f o r ) − 1 , l abe l , ’ FontSize ’ , 1 8 ) ;

hold o f f

end

end

end

c l e a r l eng th obs l e n g t h f o r the ta obs t h e t a f o r

c l e a r RGPS X0 RGPS Y0 RGPS U RGPS V MP X0 MP Y0 MP U MP V x10 y10 x20 y20

end

%plo t the metr ic s c o r e s

x = 1 : 1 2 ;

f i g u r e ( )

subplot (5 , 1 , 1 )

p lo t (x , D i s tanceCor r e l a t i on ( 1 , : ) , ’b ’ ) ;
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y l abe l ( ’\ rho ’ , ’ FontSize ’ ,22)

t i t l e ( ’ 2003 metr i c s ’ )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (5 , 1 , 2 )

p lo t (x , VectorCorre lat ion , ’b ’ ) ;

y l ab e l ( ’\ rho ˆ2 v ’ , ’ FontSize ’ ,22)

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (5 , 1 , 3 )

p lo t (x , D i s tanceCor r e l a t i on ( 2 , : ) , ’b ’ ) ;

y l ab e l ( ’m’ , ’ FontSize ’ ,22)

ylim ( [ −0 . 2 , 2 ] )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (5 , 1 , 4 )

p lo t (x , ErrorRadius , ’b ’ )

y l ab e l ( ’R { e r r } (km) ’ , ’ FontSize ’ ,22)

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (5 , 1 , 5 )

p lo t (x , Di rect ionError , ’b ’ )

y l ab e l ( ’\ the ta { e r r } ( rad ) ’ , ’ FontSize ’ ,22)

s e t ( gca , ’ x t i ck ’ , 1 : 1 2 , . . .

’ x t i c k l a b e l ’ ,{ ’ Jan ’ , ’ Feb ’ , ’Mar ’ , ’Apr ’ , ’May ’ , ’ Jun ’ , ’ Jul ’ , ’Aug ’ , ’ Sep ’ , ’Oct ’ , ’Nov ’ , ’Dec ’ })

%p lo t the l ength data

i f LengthStats == true

f i g u r e ( )

subplot (4 , 1 , 1 )

p lo t ( xax , LengthMeanObs , ’b ’ )

hold on

p lo t ( xax , LengthMeanFor , ’ r ’ )

y l ab e l ( ’\mu (km) ’ , ’ FontSize ’ ,22)

legend ( ’ obs ’ , ’ sim ’ )

legend boxo f f

t i t l e ( ’ 2003 disp lacement magnitude ’ )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 2 )

p lo t ( xax , LengthSDObs , ’b ’ )

hold on

p lo t ( xax , LengthSDFor , ’ r ’ )

y l ab e l ( ’ s (km) ’ , ’ FontSize ’ ,22)

legend ( ’ obs ’ , ’ sim ’ )

legend boxo f f

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 3 )

p lo t ( xax , LengthVarObs , ’b ’ )

hold on

p lo t ( xax , LengthVarFor , ’ r ’ )

l egend ( ’ obs ’ , ’ sim ’ )

legend boxo f f

y l ab e l ( ’\ sigma (kmˆ2) ’ , ’ FontSize ’ ,22)
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s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 4 )

p lo t ( xax , LengthCov )

s e t ( gca , ’ x t i ck ’ , 1 : 1 2 , . . .

’ x t i c k l a b e l ’ ,{ ’ Jan ’ , ’ Feb ’ , ’Mar ’ , ’Apr ’ , ’May ’ , ’ Jun ’ , ’ Jul ’ , ’Aug ’ , ’ Sep ’ , ’Oct ’ , ’Nov ’ , ’Dec ’ })
y l ab e l ( ’ c (kmˆ2) ’ , ’ FontSize ’ ,22)

end

%plo t the angle data

i f AngleStats == true

f i g u r e ( )

subplot (4 , 1 , 1 )

p lo t ( xax , AngleMeanObs , ’b ’ )

hold on

p lo t ( xax , AngleMeanFor , ’ r ’ )

y l ab e l ( ’\mu ( rad ) ’ , ’ FontSize ’ ,22)

legend ( ’ obs ’ , ’ sim ’ )

legend boxo f f

t i t l e ( ’ 2003 disp lacement angle ’ )

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 2 )

p lo t ( xax , AngleSDObs , ’b ’ )

hold on

p lo t ( xax , AngleSDFor , ’ r ’ )

y l ab e l ( ’ s ( rad ) ’ , ’ FontSize ’ ,22)

legend ( ’ obs ’ , ’ sim ’ )

legend boxo f f

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 3 )

p lo t ( xax , AngleVarObs , ’b ’ )

hold on

p lo t ( xax , AngleVarFor , ’ r ’ )

l egend ( ’ obs ’ , ’ sim ’ )

legend boxo f f

y l ab e l ( ’\ sigma ( rad ˆ2) ’ , ’ FontSize ’ ,22)

s e t ( gca , ’ X t i ck l abe l ’ , [ ] )

subplot (4 , 1 , 4 )

p lo t ( xax , AngleCov )

s e t ( gca , ’ x t i ck ’ , 1 : 1 2 , . . .

’ x t i c k l a b e l ’ ,{ ’ Jan ’ , ’ Feb ’ , ’Mar ’ , ’Apr ’ , ’May ’ , ’ Jun ’ , ’ Jul ’ , ’Aug ’ , ’ Sep ’ , ’Oct ’ , ’Nov ’ , ’Dec ’ })
y l ab e l ( ’ c ( rad ˆ2) ’ , ’ FontSize ’ ,22)

end
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A.3.3 SimAvg

%Author : Bryan McCormick (bmccormi@unm . edu )

%This func t i on reads da i l y averaged and gr idded s imula t ion disp lacement

%data s p e c i f i e d in the ’ SimFile ’ , note t h i s func t i on r e qu i r e s

%pre−proc e s s i ng o f s imu lat i on disp lacement data .

%

%Inputs :

% month − Month o f the year s p e c i f i e d by MPmonthAvg s c r i p t

% SimFile − Locat ion o f s imu la t i on data f i l e

%Outputs :

% x0 − vector conta in ing s imu lat i on i n i t i a l x po s i t i o n

% y0 − vector conta in ing s imu lat i on i n i t i a l y po s i t i o n

% u − vector conta in ing s imu lat i on x disp lacement

% v − vector conta in ing s imu lat i on y disp lacement

func t i on [ x0 , y0 , u , v ] = SimAvg(month , SimFile )

month = num2str (month ) ;

address = [ SimFile , month ] ;

fID = fopen ( address ) ;

c l e a r address

data = textscan ( fID , ’%f %f %f %f ’ ) ;

x0 = data {1} ;
y0 = data {2} ;
u = data {3} ;
v = data {4} ;

end
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