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Abstract

In this thesis the Double Pendulum Inverted on a Cart (DPIC) system is modeled

using the Euler-Lagrange equation for the chosen Lagrangian, giving a second-order

nonlinear system. This system can be approximated by a linear first-order system

in which linear control theory can be used. The important definitions and theorems

of linear control theory are stated and proved to allow them to be utilized on a

linear version of the DPIC system. Controllability and eigenvalue placement for the

linear system are shown using MATLAB. Linear Optimal control theory is likewise

explained in this section and its uses are applied to the DPIC system to derive a

Linear Quadratic Regulator (LQR). Two different LQR controllers are then applied

to the full nonlinear DPIC system, which is concurrently modeled in MATLAB.

Also, an in-depth look is taken at the Riccati equation and its solutions. Finally,

results from various MATLAB simulations are shown.
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Chapter 1

Introduction

Dynamical Systems extensively represent natural phenomena occurring anywhere [1].

These systems of ordinary differential equations in terms of the ‘state’ of the system

are modeled by taking in real world data. A model is then built around this data.

These models can then be used for prediction [2]. However, it is often required that

one goes beyond describing the system of interest and actually actively manipulates

the system to change its fundamental behaviour. This is achieved by Control Theory.

Control, or how we affect the world around us, has been human nature since

civilization began. The earliest works alluding to concepts of control theory are the

writings of Aristotle. In book 1 of Aristotle’s Politics [3], Aristotle states

“. . . if every instrument could accomplish its own work, obeying or antic-

ipating the will of others . . . if the shuttle weaved and the pick touched

the lyre without a hand to guide them, chief workmen would not need

servants, nor masters slaves.”

This quote describes a motivation for control. A need for automotive processes that

ease habitation for mankind.

1



Chapter 1. Introduction

Control

Passive Active

Open-loop Closed-loop

Figure 1.1: Types of Control

1.1 Concepts of Control

Manipulating dynamical systems requires control. Control helps attain a desired

outcome for a system. There are many different types of control [4], some of these

control types are shown in Figure 1.1. Here a few common controls are explained

along with a specific control type that will be used multiple times in this thesis.

1.1.1 Types of Control

Passive Control

The most basic and common type of control is passive control. Passive control is a

control law that passively effects the system, it cannot be changed or altered as it is

constant. For example, in automobile design, the aerodynamic body of a car is placed

upon the chassis in such a way that the air moves favourably around the vehicle and

allows for a smoother and faster ride by minimizing drag. A significant advantage of

passive control is that it is predetermined, there is no energy expenditure.

2



Chapter 1. Introduction

Systemu y

Figure 1.2: Open-loop Control

Active Control

However, passive control alone is typically not enough. Often, to get a desired

outcome or effect, active control is also required. Active control is essentially control

where energy is actively pumped into the system to actively manipulate its behaviour.

Active control has many forms. The most recurrent type of active control is open-loop

control.

Open-loop Control

Open-loop control, on a system with inputs u and outputs y, aims to Figure out

exactly what is the perfect u to get a specific desired y. Toasting bread is a simple

but perfect example of this control type, time toasted is the input u and preferred

shade of toast, say ‘light brown and slightly crisp’, is the output y. The downside

to this specific type of active control is that the energy cost is constant. It can

sometimes be very expensive.

Closed-loop Control

The next form of active control builds on open-loop control. It uses sensors to

measure the current output y, this measurement is fed into a ‘controller’ and fed

back into the input signal u. This is called closed-loop control, or closed-loop feedback

control. Essentially, the output is measured and ‘feeds back’ through a controller

into the input and the system. In this thesis, this method of control will eventually

3
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SystemSystemu y

Control

Figure 1.3: Closed-loop Control

be used on the Double Pendulum Inverted on a Cart (DPIC) system derived in the

following sections.

1.1.2 Closed-loop Control

Why Closed-loop Control?

Closed-loop feedback control has many benefits over open-loop. Any pre-planned

trajectory for an input u will be sub-optimal if there is any inherent uncertainty in

the system. Feedback measures this and appropriately adjusts the controller, even

if the system itself is not perfect. Moreover, open-loop control cannot change the

fundamental behaviour of the system itself, an unstable system will stay unstable.

However, as this thesis will show, feedback control can directly manipulate the dy-

namics of the system and stabilize the eigenvalues. Furthermore, feedback control

immediately accounts for external disturbances to the system, a gust of wind to a

pendulum will be measured and corrected in the feedback loop. The final advan-

tage is energy cost or efficiency. This concept will be explored more in the Optimal

Control section, section 3.

4



Chapter 1. Introduction

Review of Linear Systems

Before diving further into control theory it is necessary to review the required math-

ematical theory. Throughout this thesis, select topics from linear systems and linear

algebra will be reviewed in order to fully understand that specific section. At this

point, solutions of linear systems and the stability of eigenvalues are recapped to

help show why closed-loop feedback can eradicate instability in a system, see [5] for

more. Let A ∈ Rn×n. Recall that the linear system

ẋ = Ax, x(0) = x0

has solution

x(t) = eAtx0

for x ∈ Rn. Assume that A can be expressed in diagonal form

A = TDT−1

where T,D ∈ Rn×n. Let λi be eigenvalues and vi be the eigenvectors of A, here

i = 1, . . . , n. Here

T = [v1|v2| . . . |vn], D = Diag(λ1, λ2, . . . , λn)

Using the series representation of eAt implies

x(t) = eAtx0 = TeDtT−1x0

If all the eigenvalues of A are in the negative half plane, Re(λ) < 0 for all λ, the

system is stable. If just one of the eigenvalues has non-negative real part, Re(λ) ≥ 0

for some λ, then the system is unstable. Figure 1.4 shows this. Essentially, control

theory seeks to stabilize system eigenvalues.

5
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Stable Unstable

Figure 1.4: Eigenvalue Stability

Motivation for Closed-loop Control

Let A ∈ Rn×n, B ∈ Rn×m. Consider the dynamical system, this system will be

explained in section 2.1.

ẋ = Ax+Bu

for x(t) ∈ Rn and u(t) ∈ Rm. Suppose a controller is applied

u = −Kx

where K ∈ Rm×n. Ways to find K will be shown in sections 2.2.4, 3.1.5 and 3.2.1.

The system becomes

ẋ = (A−BK)x

Closed-loop Control seeks to give all the eigenvalues of (A−BK) negative real parts

such that the controlled system is a stable system. (A,B) is called a stabilizable pair

if there exists such a K.

Stabilizability

Definition 1.1.1 (Stabizable Pair). A ∈ Rn×n, B ∈ Rn×m. The pair of matrices

(A,B) is stabilizable if there existsK ∈ Rm×n such that all the eigenvalues ofA−BK

have negative real part.

6



Chapter 1. Introduction

1.2 System

The Double Pendulum Inverted on a Cart (DPIC) system is a pendulum system

with two joints, which typically start suspended vertically in the air, the pendulum-

up position. The pendulums are connected to a cart which can be powered externally

to move horizontally and manipulate the system. This is our controller. See Figure

1.5 for a diagram. This problem has been used extensively to test linear and nonlinear

control laws [6], see some of this research in [6],[7] and [8].

1.2.1 Modeling

The system is modeled so that the center of the cart begins at (0, 0), in Cartesian

coordinates. Following the notation in [9], m0 is the mass of the cart, m1,m2 are

the masses of the first and second pendulum link. θ0 is the horizontal position of

the cart, θ1, θ2 are the angles between each pendulum link and the vertical. l1, l2

are the distances from the base of each pendulum link to the center of mass for

that pendulum link, L1, L2 are the lengths of the each pendulum link. I1, I2 are the

moments of inertia of each pendulum link with respect to its center of mass. g is

the gravitational constant and the force u(t) is the control. Each pendulum link

can move through all 360◦. When released from suspension the DPIC will collapse,

oscillating indefinitely. If friction is present, the DPIC will decelerate over time and

converge to the only stable fixed point, the pendulum-down position, θ1 = θ2 = π.

This occurs when released from any combination of initial angles unless control is

used. However, the DPIC system provides a difficult problem with regard to control

theory, there is only a single controlling force u(t) and three degrees of freedom

θ0, θ1, θ2. The control force u(t) acts only horizontally on the cart through a motor.

7
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0 x

y

θ0
m0

L1

L2

l1

l2

l1 cos θ1

l1 sin θ1

θ1

m1g

l2 cos θ2

l2 sin θ2

θ2

m2g

I1

I2

u(t)

Figure 1.5: Double Pendulum Inverted on a Cart (DPIC)

1.2.2 Derivation via Lagrange

Next, it is necessary to calculate the equations of motion for the DPIC system. There

are multiple methods to derive the system of equations modeling the DPIC system.

For example, a Newtonian approach regarding forces would eventually calculate the

system equations. However, it is most elegant and efficient to use the Lagrange

equations for a particular Lagrangian [10].

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= q (1.1)

L is the Lagrangian, q is a vector of generalized forces which act in the direction

of each component in θ, these forces are not included in the kinetic and potential

energies of the cart and each pendulum link. The control force u(t) is one of these

8



Chapter 1. Introduction

forces. This method of derivation is similar to that of [9] but explains it in full. Let

θ =


θ0

θ1

θ2


Recall that θ0 is the horizontal position of the cart and θ1 and θ2 are the angles of

the first and second pendulum links to the vertical. Because of these components,

the control force u(t), which is the force acting on the cart, only acts horizontally

and does not affect the angles directly. Negating other external forces, q is simply

q =


u(t)

0

0

 =


1

0

0

u(t) = Hu(t)

Thus, looking at the Lagrange equation (1.1) for each component of θ the following

system of equations is obtained.

d

dt

(
∂L

∂θ̇0

)
− ∂L

∂θ0
= u(t)

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= 0

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= 0

The Lagrangian, L is the difference between the total kinetic energy, Ekin, and the

total gravitational potential energy, Epot of the system.

L = Ekin − Epot (1.2)

These energies can be broken down into energies of the specific components. The

cart, the first pendulum link, and the second pendulum link.

Ekin = E
(0)
kin + E

(1)
kin + E

(2)
kin

Epot = E
(0)
pot + E

(1)
pot + E

(2)
pot

9



Chapter 1. Introduction

Here the subscript notation denotes either kinetic or potential energy and the su-

perscript indicates which component of the system is being referred to. E(0)
kin is the

kinetic energy of the cart and E(2)
pot is the gravitational potential energy of the second,

or top, pendulum link. Using Figure 1.5, the specific coordinates of each component

in the DPIC system can be calculated, this will help calculate the Lagrangian (1.2).

For the position of the cart one has

x0 = θ0

y0 = 0

The position of the midpoint of the first pendulum link

x1 = θ0 + l1 sin θ1

y1 = l1 cos θ1

The position of the midpoint of the second pendulum link

x2 = θ0 + L1 sin θ1 + l2 sin θ2

y2 = L1 cos θ1 + l2 cos θ2

Using these coordinates the energy components can be calculated. First, using stan-

dard results from Newtonian mechanics [11], calculate the kinetic and potential en-

ergy, E(0)
kin and E(0)

pot, for the cart

E
(0)
kin =

1

2
m0θ̇

2
0

E
(0)
pot = 0

10



Chapter 1. Introduction

Next look at the bottom pendulum link. Due to modeling each pendulum link

with the center of mass at the midpoint of that link, the kinetic energy has two

components. These are translational kinetic energy and rotational kinetic energy

[11].

E
(1)
kin = E

(1)
kin(trans) + E

(1)
kin(rot)

E
(1)
kin =

1

2
m1

(
ẋ21 + ẏ21

)
+

1

2
I1θ̇

2
1

E
(1)
kin =

1

2
m1

{( d
dt

[
θ0 + l1 sin θ1

])2
+
( d
dt

[
l1 cos θ1

])2}
+

1

2
I1θ̇

2
1

E
(1)
kin =

1

2
m1

[(
θ̇0 + l1θ̇1 cos θ1

)2
+
(
− l1θ̇1 sin θ1

)2]
+

1

2
I1θ̇

2
1

E
(1)
kin =

1

2
m1

[
θ̇20 + 2l1θ̇0θ̇1 cos θ1 + l21θ̇

2
1 cos

2 θ1 + l21θ̇
2
1 sin

2 θ1
]
+

1

2
I1θ̇

2
1

E
(1)
kin =

1

2
m1

[
θ̇20 + 2l1θ̇0θ̇1 cos θ1 + l21θ̇

2
1

]
+

1

2
I1θ̇

2
1

E
(1)
kin =

1

2
m1θ̇

2
0 +

1

2

(
m1l

2
1 + I1

)
θ̇21 +m1l1θ̇0θ̇1 cos θ1

Furthermore

E
(1)
pot = m1gy1

E
(1)
pot = m1gl1 cos θ1

11
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Finally, calculate the energies for the top pendulum link. As before, for the same

reasons, the kinetic energy has two components, translational and rotational.

E
(2)
kin =

1

2
m2

(
ẋ22 + ẏ22

)
+

1

2
I2θ̇

2
2

=
1

2
m2

{( d
dt

[
θ0 + L1 sin θ1 + l2 sin θ2

])2
+
( d
dt

[
L1 cos θ1 + l2 cos θ2

])2}
+

1

2
I2θ̇

2
2

=
1

2
m2

[(
θ̇0 + L1θ̇1 cos θ1 + l2θ̇2 cos θ2

)2
+
(
− L1θ̇1 sin θ1 − l2θ̇2 sin θ2

)2]
+

1

2
I2θ̇

2
2

=
1

2
m2

[
θ̇20 + 2L1θ̇0θ̇1 cos θ1 + 2l2θ̇0θ̇2 cos θ2 + L2

1θ̇
2
1 cos

2 θ1

+ 2L1l2θ̇1θ̇2 cos θ1 cos θ2 + l22θ̇
2
2 cos

2 θ2 + L2
1θ̇

2
1 sin

2 θ1

+ 2L1l2θ̇1θ̇2 sin θ1 sin θ2 + l22θ̇
2
2 cos

2 θ2

]
+

1

2
I2θ̇

2
2

=
1

2
m2

[
θ̇20 + 2L1θ̇0θ̇1 cos θ1 + 2l2θ̇0θ̇2 cos θ2 + L2

1θ̇
2
1

(
cos2 θ1 + sin2 θ1

)
+ 2L1l2θ̇1θ̇2

(
cos θ1 cos θ2 + sin θ1 sin θ2

)
+ l22θ̇

2
2

(
cos2 θ2 + sin2 θ2

)]
+

1

2
I2θ̇

2
2

=
1

2
m2

[
θ̇20 + 2L1θ̇0θ̇1 cos θ1 + 2l2θ̇0θ̇2 cos θ2 + L2

1θ̇
2
1

+ 2L1l2θ̇1θ̇2 cos (θ1 − θ2) + l22θ̇
2
2

]
+

1

2
I2θ̇

2
2

=
1

2
m2

[
θ̇20 + 2L1θ̇0θ̇1 cos θ1 + 2l2θ̇0θ̇2 cos θ2 + L2

1θ̇
2
1

+ 2L1l2θ̇1θ̇2 cos (θ1 − θ2) + l22θ̇
2
2

]
+

1

2
I2θ̇

2
2

=
1

2
m2θ̇

2
0 +

1

2
m2L

2
1θ̇

2
1 +

1

2

(
m2l

2
2 + I2

)
θ̇22 +m2L1θ̇0θ̇1 cos θ1

+m2l2θ̇0θ̇2 cos θ2 +m2L1l2θ̇1θ̇2 cos (θ1 − θ2)

Also

E
(2)
pot = m1gy2

= m1g(L1 cos θ1 + l2 cos θ2)

12



Chapter 1. Introduction

Adding all of these kinetic and potential energies together gives the overall ener-

gies for the system.

Ekin = E
(0)
kin + E

(1)
kin + E

(2)
kin

=
1

2
m0θ̇

2
0 +

1

2
m1θ̇

2
0 +

1

2
(m1l

2
1 + I1)θ̇

2
1 +m1l1θ̇0θ̇1 cos θ1

+
1

2
m2θ̇

2
0 +

1

2
m2L

2
1θ̇

2
1 +

1

2
(m2l

2
2 + I2)θ̇

2
2 +m2L1θ̇0θ̇1 cos θ1

+m2l2θ̇0θ̇2 cos θ2 +m2L1l2θ̇1θ̇2 cos (θ1 − θ2)

=
1

2
(m0 +m1 +m2)θ̇

2
0 +

1

2
(m1l

2
1 +m2L

2
1 + I1)θ̇

2
1 +

1

2
(m2l

2
2 + I2)θ̇

2
1

+ (m1l1 +m2L1)θ̇0θ̇1 cos θ1 +m2l2θ̇0θ̇2 cos θ2 +m2L1l2θ̇1θ̇2 cos (θ1 − θ2)

Also

Epot = E
(0)
pot + E

(1)
pot + E

(2)
pot

= 0 +m1gl1 cos θ1 +m1g(L1 cos θ1 + l2 cos θ2)

= g(m1l1 +m2L1) cos θ1 +m2gl2 cos θ2

The Lagrangian (1.2) is

L = Ekin − Epot

=
1

2
(m0 +m1 +m2)θ̇

2
0 +

1

2
(m1l

2
1 +m2L

2
1 + I1)θ̇

2
1 +

1

2
(m2l

2
2 + I2)θ̇

2
2

+ (m1l1 +m2L1) cos θ1θ̇0θ̇1 +m2l2 cos θ2θ̇0θ̇2 +m2L1l2 cos (θ1 − θ2)θ̇1θ̇2

− g(m1l1 +m2L1) cos θ1 −m2gl2 cos θ2

13
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Now that the Lagrangian is known, explicitly calculate the partial, and full deriva-

tives for the system of equations (1.1).

d

dt

(
∂L

∂θ̇0

)
− ∂L

∂θ0
= u(t)

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= 0

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= 0

Now, calculating the derivatives

∂L

∂θ̇0
= (m0 +m1 +m2)θ̇0 + (m1l1 +m2L1) cos θ1θ̇1 +m2l2 cos θ2θ̇2

d

dt

(
∂L

∂θ̇0

)
= (m0 +m1 +m2)θ̈0 + (m1l1 +m2L1) cos θ1θ̈1 +m2l2 cos θ2θ̈2

− (m1l1 +m2L1) sin θ1θ̇
2
1 −m2l2 sin θ2θ̇

2
2

∂L

∂θ0
= 0

d

dt

(
∂L

∂θ̇0

)
− ∂L

∂θ0
= (m0 +m1 +m2)θ̈0 + (m1l1 +m2L1) cos θ1θ̈1 +m2l2 cos θ2θ̈2

− (m1l1 +m2L1) sin θ1θ̇
2
1 −m2l2 sin θ2θ̇

2
2

= u(t)

14



Chapter 1. Introduction

and

∂L

∂θ̇1
= (m1l

2
1 +m2L

2
1 + I1)θ̇1 + (m1l1 +m2L1) cos θ1θ̇0

+m2L1l2 cos (θ1 − θ2)θ̇2
d

dt

(
∂L

∂θ̇1

)
= (m1l

2
1 +m2L

2
1 + I1)θ̈1 + (m1l1 +m2L1) cos θ1θ̈0

+m2L1l2 cos (θ1 − θ2)θ̈2 − (m1l1 +m2L1) sin θ1θ̇0θ̇1

−m2L1l2 sin (θ1 − θ2)(θ̇1 − θ̇2)θ̇2
∂L

∂θ1
= −(m1l1 +m2L1) sin θ1θ̇0θ̇1 −m2L1l2 sin (θ1 − θ2)θ̇1θ̇2

+ g(m1l1 +m2L1) sin θ1

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= (m1l

2
1 +m2L

2
1 + I1)θ̈1 + (m1l1 +m2L1) cos θ1θ̈0

+m2L1l2 cos (θ1 − θ2)θ̈2 − (m1l1 +m2L1) sin θ1θ̇0θ̇1

−m2L1l2 sin (θ1 − θ2)(θ̇1 − θ̇2)θ̇2

+ (m1l1 +m2L1) sin θ1θ̇0θ̇1 +m2L1l2 sin (θ1 − θ2)θ̇1θ̇2

− g(m1l1 +m2L1) sin θ1

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= (m1l

2
1 +m2L

2
1 + I1)θ̈1 + (m1l1 +m2L1) cos θ1θ̈0

+m2L1l2 cos (θ1 − θ2)θ̈2 +m2L1l2 sin (θ1 − θ2)θ̇22

− g(m1l1 +m2L1) sin θ1

= 0

15
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finally,

∂L

∂θ̇2
= m2l2 cos θ2θ̇0 +m2L1l2 cos (θ1 − θ2)θ̇1 + (m2l

2
2 + I2)θ̇2

d

dt

(
∂L

∂θ̇2

)
= m2l2 cos θ2θ̈0 +m2L1l2 cos (θ1 − θ2)θ̈1 + (m2l

2
2 + I2)θ̈2

−m2l2 sin θ2θ̇0θ̇2 −m2L1l2 sin (θ1 − θ2)(θ̇1 − θ̇2)θ̇1
∂L

∂θ2
= −m2l2 sin θ2θ̇0θ̇2 +m2L1l2 sin (θ1 − θ2)θ̇1θ̇2

+m2gl2 sin θ2

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= m2l2 cos θ2θ̈0 +m2L1l2 cos (θ1 − θ2)θ̈1 + (m2l

2
2 + I2)θ̈2

−m2l2 sin θ2θ̇0θ̇2 −m2L1l2 sin (θ1 − θ2)(θ̇1 − θ̇2)θ̇1

+m2l2 sin θ2θ̇0θ̇2 −m2L1l2 sin (θ1 − θ2)θ̇1θ̇2

−m2gl2 sin θ2

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= m2l2 cos θ2θ̈0 +m2L1l2 cos (θ1 − θ2)θ̈1 + (m2l

2
2 + I2)θ̈2

−m2L1l2 sin (θ1 − θ2)θ̇21 −m2gl2 sin θ2

= 0

This gives the calculated system, in full

(m0 +m1 +m2)θ̈0 + (m1l1 +m2L1) cos θ1θ̈1 +m2l2 cos θ2θ̈2

−(m1l1 +m2L1) sin θ1θ̇
2
1 −m2l2 sin θ2θ̇

2
2 = u(t)

(1.3)

(m1l
2
1 +m2L

2
1 + I1)θ̈1 + (m1l1 +m2L1) cos θ1θ̈0

+m2L1l2 cos (θ1 − θ2)θ̈2 +m2L1l2 sin (θ1 − θ2)θ̇22

−g(m1l1 +m2L1) sin θ1 = 0

(1.4)

m2l2 cos θ2θ̈0 +m2L1l2 cos (θ1 − θ2)θ̈1 + (m2l
2
2 + I2)θ̈2

−m2L1l2 sin (θ1 − θ2)θ̇21 −m2gl2 sin θ2 = 0
(1.5)
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2nd-Order System

The system (1.3-1.5) is a nonlinear second-order system of the form

D(θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) = Hu (1.6)

where

D(θ) =


m0 +m1 +m2 (m1l1 +m2L1) cos θ1 m2l2 cos θ2

(m1l1 +m2L1) cos θ1 m1l
2
1 +m2L

2
1 + I1 m2L1l2 cos (θ1 − θ2)

m2l2 cos θ2 m2L1l2 cos (θ1 − θ2) m2l
2
2 + I2



C(θ, θ̇) =


0 −(m1l1 +m2L1) sin θ1θ̇1 −m2l2 sin θ2θ̇2

0 0 m2L1l2 sin (θ1 − θ2)θ̇2
0 −m2L1l2 sin (θ1 − θ2)θ̇1 0



G(θ) =


0

−(m1l1 +m2L1)g sin θ1

−m2gl2 sin θ2



H =


1

0

0
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Chapter 1. Introduction

To simplify the system, we adopt the choices from [9]. Here

=⇒ l1 =
1

2
L1 l2 =

1

2
L2

I1 =
1

12
m1L

2
1 I2 =

1

12
m2L

2
2

this updates the system with D(θ)

=


m0 +m1 +m2 (1

2
m1 +m2)L1 cos θ1

1
2
m2L2 cos θ2

(1
2
m1 +m2)L1 cos θ1 (1

3
m1 +m2)L

2
1

1
2
m2L1L2 cos (θ1 − θ2)

1
2
m2L2 cos θ2

1
2
m2L1L2 cos (θ1 − θ2) 1

3
m2L

2
2


and

C(θ, θ̇) =


0 −(1

2
m1 +m2)L1 sin θ1θ̇1 −1

2
m2L2 sin θ2θ̇2

0 0 1
2
m2L1L2 sin (θ1 − θ2)θ̇2

0 −1
2
m2L1L2 sin (θ1 − θ2)θ̇1 0



G(θ) =


0

−1
2
(m1 +m2)L1g sin θ1

−1
2
m2gL2 sin θ2



H =


1

0

0


Note. D(θ) is symmetric and nonsingular, =⇒ D−1(θ) exists and is also symmetric

[9].
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1st-Order System

In order to use control theory on this system, it makes most sense to convert the

system to first-order by manipulating the system and employing a few ‘tricks’. Recall

the system

D(θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) = Hu

disregarding the arguments for now in the notation

Dθ̈ +Cθ̇ +G = Hu

Dθ̈ = −Cθ̇ −G+Hu

θ̈ = −D−1Cθ̇ −D−1G+D−1Hu

which is 0 0

0 I

θ̇
θ̈

 =

0 0

0 −D−1C

θ
θ̇

+

 0

−D−1G

+

 0

D−1H

u
I 0

0 I

θ̇
θ̈

−
I 0

0 0

θ̇
θ̈

 =

0 0

0 −D−1C

θ
θ̇

+

 0

−D−1G

+

 0

D−1H

u
I 0

0 I

θ̇
θ̈

−
0 I

0 0

θ
θ̇

 =

0 0

0 −D−1C

θ
θ̇

+

 0

−D−1G

+

 0

D−1H

u
I 0

0 I

θ̇
θ̈

 =

0 I

0 −D−1C

θ
θ̇

+

 0

−D−1G

+

 0

D−1H

u
Let x =

θ
θ̇

 , ẋ =

θ̇
θ̈


I 0

0 I

 ẋ =

0 I

0 −D−1C

x+

 0

−D−1G

+

 0

D−1H

u
ẋ =

0 I

0 −D−1C

x+

 0

−D−1G

+

 0

D−1H

u
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gives the first-order system

ẋ = A(x)x+B(x)u+ L(x) (1.7)

where

A(x) =

0 I

0 −D−1C

 , B(x) =

 0

D−1H

 , L(x) =

 0

−D−1G

 .
Here C,D,G depend on x. This form is close to that of a typical control problem

which will be explained in section 2.1.

1.2.3 Code in this thesis

Throughout this thesis, MATLAB was used to model and solve this system. Codes

are not provided in this thesis but are available upon request. The built-in MAT-

LAB function ode45 [12] is a numerical integration function that uses Runge-Kutta

methods [13] to solve a first-order ordinary differential system [14]. In this thesis,

ode45 will be used multiple times to solve and simulate the controlled nonlinear

system, as well as solving the differential Riccati equation. These solutions are then

used to model the system with animations and results.
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Control

Dynamical systems represent many phenomena in our universe, the double pendulum

inverted on a cart (DPIC) being one of them, the analysis of these systems can

definitely enhance our understanding. However it is influencing these systems that

is the evolved objective [1]. The field of control theory is concerned with influencing

and controlling these dynamical systems by a preconceived design, otherwise known

as a control. This control can often yield a desired result [2].

The earliest formal use of control theory, was in 1868 when James Clerk Maxwell

analyzed the dynamical systems of the centrifugal governor [15]. These results were

abstracted by Maxwell’s classmate Edward John Routh and applied to general linear

systems [16]. Over the following century many important scientific breakthroughs

were enabled by control theory. The Wright brothers made their first successful

manned flight in 1903, controlling the amount of lift. Control theory was central

to many military projects during the second world war. The Space Race also relied

heavily upon control theory. It was not until 1960 that Rudolf Kalman formally

defined controllability, observability and formulated the Kalman Filter [17]. In this

thesis, all of Kalman’s results will be used on the DPIC.
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2.1 Control Theory

A control problem, in continuous time, is a given system defined on a fixed time

interval 0 ≤ t ≤ t1, an initial condition and a set of allowable controls u(t) ∈ Rm

where

ẋ(t) = f(x(t),u(t)), x(0) = x0. (2.1)

However, to apply significant results in control theory, the nonlinear system (2.1)

must be simplified into a more workable linear format. Let A ∈ Rn×n and B ∈ Rn×m

and consider the following initial value problem (IVP).

ẋ(t) = Ax(t) +Bu(t), x(0) = 0. (2.2)

Here x(t) ∈ Rn is the state vector for the system and u(t) ∈ Rm the control function.

Note. It turns out that the assumption x(0) = 0 is not restrictive so that the state

x(t) and the length of the time interval t1 is unimportant.

Informally, the aim of control theory is choosing the control u(t) to influence, as

desired, the evolution of the state vector function x(t). Given any time t1 > 0 and

any state x(1) ∈ Rn, under what assumptions on the pair of matrices A and B does

there exist a control function u(t) such that the state x(t) moves to any given state

x(t1) = x(1)? This question leads to the notion of Controllability.
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2.1.1 Controllability

Definition 2.1.1 (Controllability). Fix any t1 > 0. The system (2.2) is called

controllable in the interval 0 ≤ t ≤ t1 if for any x(1) ∈ Rn there exists a control

function

u : [0, t1]→ Rm, u ∈ C

so that the solution x(t) of the system (2.2) satisfies x(t1) = x(1).

If B = 0 then the system (2.2) is obviously not controllable. Therefore, from now

on, assume B 6= 0. Next look at the conditions necessary in order for system (2.2)

to be controllable. What follows is a theorem showing the simple set of conditions

on the n × n matrix A and the n ×m matrix B that implies controllability of the

system.

Theorem 2.1.1 (Controllability Condition). Define the matrix

Mn = [B,AB,A2B, . . . ,An−1B] ∈ Rn×(mn).

The system (2.2) is controllable in 0 ≤ t ≤ t1 if and only if rank(Mn) = n.

Note. Every part AjB has the same dimensions as B. i.e. AjB has n rows and m

columns.

In order to prove Theorem 2.1.1 it helps to state and prove the following lemma

about the rank of the controllability Mn matrix and the rank of matrices with more

columns.

Lemma 2.1.2. For k = 1, 2, . . . set

Mk = [B,AB,A2B, . . . ,Ak−1B] ∈ Rn×(nk)
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and let

rk = rank(Mk).

If rk = rk+1 then rk+1 = rk+2.

Proof. First, recall that

rk = rank(Mk) = dim(range(Mk)) ∀k = 1, 2, . . .

Note that

Mk+1 = (Mk,A
kB),

along with the assumption that rk = rk+1, this implies that every column of AkB

lies in the range of Mk. If (AkB)j denotes the j-th column of AkB then there exists

a vector cj ∈ Rmk with

(AkB)j = Mkcj for j = 1, . . . ,m.

Set

C = (c1, c2, . . . , cm) ∈ R(mk)×m

and obtain that

AkB = MkC

Ak+1B = AMkC

Ak+1B = A(B,AB,A2B, . . . ,Ak−1B)C

Ak+1B = (AB,A2B,A3B, . . . ,AkB)C

Ak+1B = (B,AB,A2B, . . . ,Ak−1B)C̃ where C̃ =

0

C

 with 0 ∈ Rm×m

Ak+1B = Mk+1C̃
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Note C̃ ∈ Rm(k+1)×m, thus the columns of Ak+1B lie in

range(Mk+1) = range(Mk).

therefore

rk = rk+1 = rk+2.

Proof. Theorem 1.1. Assume that rank(Mn) = n. To prove the theorem, a control

u(t) is constructed for which the solution x(t) of the IVP (2.2) satisfies x(t1) = x(1).

Since every matrixMk has n rows rank(Mk) ≤ n for all k. Therefore, the assumption

rank(Mn) = n implies that rank(Mk) = n for all k ≥ n. Define the matrix

K =

∫ t1

0

e−AtBBT e−A
T tdt ∈ Rn×n

It is clear that K = KT . It will be shown that K is positive definite. Set

C(t) = BT e−A
T t ∈ Rm×n.

If a ∈ Rn is arbitrary

aTKa =

∫ t1

0

aTC(t)TC(t)adt

aTKa =

∫ t1

0

|C(t)a|2dt

This shows that aTKa ≥ 0 and if aTKa = 0 then

aTC(t)T = aT e−AtB = 0 for 0 ≤ t ≤ t1.

Now let a ∈ Rn be arbitrary and define the vector function

φ(t) = aT e−AtB for 0 ≤ t ≤ t1.
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Note that φ(t) is a row vector of dimension m. If one assumes that aTKa = 0 then

φ(t) = aT e−AtB = 0 for 0 ≤ t ≤ t1.

Therefore,

φ(t) = aT e−AtB

φ(0) = aTB = 0

φ̇(t) = −aT e−AtAB

φ̇(0) = −aTAB = 0

φ̈(t) = aT e−AtA2B

φ̈(0) = aTA2B = 0

...

One obtains that aTKa = 0, this implies

aTB = 0

aTAB = 0

aTA2B = 0

...

Therefore

aTMn = aT (B,AB,A2B, . . . ,An−1B]) = 0

Since Mn has n linearly independent columns it follows that a = 0. Thus it is shown

that aTKa > 0 if a 6= 0 i.e.

K = KT > 0.

Set

u(t) = BT e−A
T tK−1e−At1x(1) ∈ Rm (2.3)
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Then the solution of the IVP (2.2) satisfies

x(t1) =

∫ t1

0

eA(t1−t)Bu(t)dt

x(t1) = eAt1
∫ t1

0

e−AtBBT e−A
T tK−1e−At1x(1)dt

x(t1) = eAt1KK−1e−At1x(1)

x(t1) = x(1)

This proves the control u(t) given in (2.3) leads to a solution x(t) of (2.2) with

x(t1) = x(1). Assume that rank(Mn) < n, i.e., rn < n. Since 1 ≤ r1 ≤ r2 ≤ ... ≤

rn < n there exists k ∈ [1, 2, ..., n− 1] with rk = rk+1 < n. Using lemma 2.1.2 it can

be concluded that

rangeMj = rangeMn 6= Rn ∀j ≥ n.

For the solution x(t) of the IVP (2.2) one has

x(t1) =

∫ t1

0

eA(t1−t)Bu(t)dt

x(t1) =

∫ t1

0

∞∑
j=0

1

j!
AjB(t1 − t)ju(t)dt

x(t1) =
∞∑
j=0

AjBαj

with

αj =
1

j!

∫ t1

0

(t1 − t)ju(t)dt ∈ Rm.

Obtain that

x(t1) = lim
J→∞

J∑
j=0

AjBαj ∈Mn

for every control function u(t). This proves that if range(Mn) is a strict subspace

of Rn, then the system (2.2) is not controllable in 0 ≤ t ≤ t1. This proves the

theorem.
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General Initial Data

Consider a similar initial value problem with a more general initial condition.

ẋ(t) = Ax(t) +Bu(t), x(0) = x(0) (2.4)

where x(0) ∈ Rn is given. Also, let x(1) ∈ Rn be given.

Theorem 2.1.3. Assume that the system (2.2) is controllable on the interval 0 ≤

t ≤ t1, i.e. rank(Mn) = n. Then there exists a control function u(t) such that the

solution of (2.4) satisfies x(t1) = x(1).

Proof. By Theorem 2.1.1 there exists a control function y(t) so that the solution of

the following initial value problem

ẏ(t) = Ay(t) +Bu(t), y(0) = 0,

satisfies

y(t1) = x(1) − eAt1x(0).

Setting

x(t) = eAtx(0) + y(t)

gives

x(0) = x(0) and x(t1) = x(1).

Also

ẋ(t) = AeAtx(0) + ẏ(t)

ẋ(t) = AeAtx(0) +Ay(t) +Bu(t)

ẋ(t) = Ax(t) +Bu(t).

Therefore, x(t) satisfies the differential equation ẋ(t) = Ax(t) + Bu(t), the initial

condition x(0) = x(0) and the end condition x(t1) = x(1).
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2.1.2 Observability

Observability is a concept similar to controllability. The conditions for controllability

and observability have related requirements. They are often referred to as mathe-

matical ‘duals’ [1]. Informally, observability is a measure of how well the state vector

of a system can be inferred from particular knowledge of system outputs [2]. Let

C ∈ Rp×n and D ∈ Rp×m, with A and B as before. Consider the system

ẋ(t) = Ax(t) +Bu(t) (2.5)

y = Cx+Du

with outputs y ∈ Rp. C is a matrix that determines which components of the state

are measurable. D dictates how the control affects this output. Typically, these

matrices have only diagonal components of either 0 or 1 [2].

Definition 2.1.2 (Observability). The system (2.5) is called completely observable

if there is a t1 > 0 such that knowledge of y(t) for the interval 0 ≤ t ≤ t1 is sufficient

to determine x(0).

Theorem 2.1.4 (Observability Condition). Define the matrix

Sn =



C

CA

CA2

...

CAn−1


∈ R(pn)×(n).

The system (2.5) is completely observable if and only if rank(Sn) = n.

Proof. The proof of this theorem is very similar to that of Theorem 2.1.1. Which

does not need to be restated here. Omitted [1].
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2.1.3 Eigenvalue Placement

In control theory, it is often important that the controller increases or creates stability

for the system. In other words, to what extent can the eigenvalues of the system be

affected by the control function u(t)?

Theorem 2.1.5. Let the system (2.2) be controllable. Then for any nth order poly-

nomial

p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

there exists a real-valued matrix K such that A−BK has p(λ) as its characteristic

polynomial.

Proof. Omitted [1].

If the linear system (2.2) is controllable, we can control the state for this system

x(t) to any point in Rn, at any time. We can also choose any eigenvalues for the

matrix A−BK.
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2.2 Control Theory and the DPIC System

For the DPIC problem, the equations of motion are represented in system (1.6), the

parameter u(t) is the control. u(t) is the horizontal force exerted on the cart. This

force can be implemented in either direction to move the cart either left or right.

In other words, the system has only a single positive or negative scalar input u(t).

Recall equation (1.7)

ẋ = A(x)x+B(x)u+ L(x)

where

A(x) =

0 I

0 −D−1C

 , B(x) =

 0

D−1H

 , L(x) =

 0

−D−1G

 .
which is a nonlinear problem of the form (2.1)

ẋ(t) = f(x(t),u(t)), x(0) = x0.

This is a very complex and difficult nonlinear differential system, one in which only

certain numerical methods could calculate an approximate solution. To apply the

basic concepts of linear control from the previous section, one must use the linear

version of the system of the form (2.2), where A,B are constant,

ẋ = Ax+Bu.
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2.2.1 Extracting the Linear System

In order to reduce the system to a linear form, series expansions about θ = 0 are

employed [9], it is assumed that the pendulum is close to the vertical. The L term is

absorbed into the x coefficient. This eliminates theta dependence. Technically, this

is a linearization about x = 0. The linear system could also be found by computing

the Jacobian and evaluating at a fixed point [2].

ẋ =

0 I

0 −D−1(θ)C(θ, θ̇)

x+

 0

−D−1(θ)G(θ)

+

 0

D−1(θ)H

u
where D(θ) is


m0 +m1 +m2 (1

2
m1 +m2)L1 cos θ1

1
2
m2L2 cos θ2

(1
2
m1 +m2)L1 cos θ1 (1

3
m1 +m2)L

2
1

1
2
m2L1L2 cos (θ1 − θ2)

1
2
m2L2 cos θ2

1
2
m2L1L2 cos (θ1 − θ2) 1

3
m2L

2
2


and

C(θ, θ̇) =


0 −(1

2
m1 +m2)L1 sin θ1θ̇1 −1

2
m2L2 sin θ2θ̇2

0 0 1
2
m2L1L2 sin (θ1 − θ2)θ̇2

0 −1
2
m2L1L2 sin (θ1 − θ2)θ̇1 0



G(θ) =


0

−1
2
(m1 +m2)L1g sin θ1

−1
2
m2gL2 sin θ2


Using multi-variable Taylor expansions

D−1(θ) ∼ D−1(0), C(θ, θ̇) ∼ C(0,0) and G(θ) ∼ ∂G(0)

∂θ
θ
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C(0,0) =


0 0 0

0 0 0

0 0 0

 =⇒ A(0) =

0 I

0 0

 one now has

ẋ =

0 I

0 0

x+

 0

D−1(0)H

u+
 0

−D−1(0)∂G(0)
∂θ

θ


ẋ =

0 I

0 0

x+

 0

D−1(0)H

u+
 0 0

−D−1(0)∂G(0)
∂θ

0

x

ẋ =

 0 I

−D−1(0)∂G(0)
∂θ

0

x+

 0

D−1(0)H

u

This system is now of the form (2.2), with the particular linear system as follows

ẋ = Ax+Bu (2.6)

where

A =

 0 I

−D−1(0)∂G(0)
∂θ

0

 and B =

 0

D−1(0)H


A and B are now new constant matrices. Here

D(0) =


m0 +m1 +m2 (1

2
m1 +m2)L1

1
2
m2L2

(1
2
m1 +m2)L1 (1

3
m1 +m2)L

2
1

1
2
m2L1L2

1
2
m2L2

1
2
m2L1L2

1
3
m2L

2
2
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and D(0)−1 is
4pm1 + 3pm2 − 3p

L1
(2m1 +m2)

3p
L2
m1

− 3p
L1
(2m1 +m2)

3p
L2
1
(4m0 + 4m1 +m2) − 9p

L1L2
(2m0 +m1)

3p
L2
m1 − 9p

L1L2
(2m0 +m1)

3p
m2L2

2
(m2

1 + 4m0m1 + 4m1m2 + 12m0m2)


where

p = detD(0) =
1

4m0m1 + 3m0m2 +m2
1 +m1m2

Furthermore

∂G

∂θ
(0) =


0 0 0

0 −L1g
2
(m1 + 2m2) 0

0 0 −L2g
2
m2


therefore −D(0)−1 ∂G

∂θ
(0) is

0 3
2
(2m1 +m2)(m1 + 2m2) −3

2
m1m2

0 − 3
2L1

(4m0 + 4m1 +m2)(m1 + 2m2)
9

2L1
(2m0 +m1)m2

0 9
2L2

(2m0 +m1)(m1 + 2m2) − 3
2L2

(m2
1 + 4m0m1 + 4m1m2 + 12m0m2)


also

H =


1

0

0

 =⇒ −D(0)−1H =


p(4m1 + 3m2)

− 3p
L1
(2m1 +m2)

3pm2

L2
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Finally, the linear system for the DPIC is as follows.

ẋ = Ax+Bu (2.7)

where

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 a42 a43 0 0 0

0 a52 a53 0 0 0

0 a62 a63 0 0 0


, B =



0

0

0

b4

b5

b6


where

a42 = −
3

2
p(2m2

1 + 5m1m2 + 2m2
2)g

a43 =
3

2
pm1m2g

a52 =
3

2

p

L1

(4m0m1 + 8m0m2 + 4m2
1 + 9m1m2 + 2m2

2)g

a53 = −
9

2

p

L1

(2m0m2 +m1m2)g

a62 = −
9

2

p

L2

(2m0m1 + 4m0m2 +m2
1 + 2m1m2)

a63 =
3

2

p

L2

(m2
1 + 4m0m1 + 12m0m2 + 4m1m2)

and

b4 = p(4m1 + 3m2)

b5 = −
3p

L1

(2m1 +m2)

b6 =
3pm2

L2

here p is the determinant of D(0).

p =
1

4m0m1 + 3m0m2 +m2
1 +m1m2
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2.2.2 Controllability of the DPIC

For the DPIC and the constant matrices, A and B are of the form

A =

0 I

Ã 0

 B =

0
B̃


where Ã ∈ R3×3 and B̃ ∈ R3. This implies that the controllability matrix for the

linear system

M = [B,AB,A2B, . . . ,A5B]

is actually as follows

M =

0 B̃ 0 ÃB̃ 0 Ã2B̃

B̃ 0 ÃB̃ 0 Ã2B̃ 0


Recall that B̃ is a vector, let

M =
[
c(1) c(2) c(3) c(3) c(5) c(6)

]
Using Theorem 2.1.1, the linear system is controllable if the matrix M has full rank,

rank(M) = 6. For M, it is clear that the ‘odd’ columns, columns with nonzero terms

in the top of the partition c(1), c(3), c(5), are linearly independent to the even columns,

c(2), c(4), c(6). As the rank of a matrix is the number of linearly independent columns

in the matrix, the structure of M enables simplifying the criteria to rank(M̃) = 3

where

M̃ =
[
B̃ ÃB̃ Ã2B̃

]
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Recall

Ã =


0 a42 a43

0 a52 a53

0 a62 a63

 B̃ =


b4

b5

b6


label these columns

M̃ =
[
v(1) v(2) v(3)

]
where

v(1) = B̃ =


b4

b5

b6

 v(2) = ÃB̃ =


a42b5 + a43b6

a52b5 + a53b6

a62b5 + a63b6



v(3) = Ã2B̃ =


(a42a52 + a43a62)b5 + (a42a53 + a43a63)b6

(a252 + a53a62)b5 + (a52a53 + a53a63)b6

(a52a62 + a62a63)b5 + (a53a62 + a263)b6


Therefore the DPIC system will be controllable for parameters m0,m1,m2, L1, L2, if

the vectors v(1),v(2),v(3) are linearly independent.
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2.2.3 Parameters

We use the results in [9] as a benchmark. Henceforth the system will be designed

with the following parameters; m0 = 1.5kg, m1 = 0.5kg, m2 = 0.75kg, L1 = 0.5m,

L2 = 0.75m and the constant of acceleration due to gravity g = 9.8ms−2. These

parameters will now be fixed for the rest of this thesis. This gives

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 −7.35 0.7875 0 0 0

0 73.5 −33.0750 0 0 0

0 −58.8 51.1 0 0 0


, B =



0

0

0

0.6071

−1.5

0.2857



Controllability

In the linear system ẋ = Ax + Bu. Using the theory of control on this system

gives a particular controllability matrix M ∈ R6×6 which, using MATLAB, has rank

6. Using the singular value decomposition [18], the distance from this matrix to

deficient rank is 0.355, the smallest singular value σ6. By Theorem 2.1.1, the system

is controllable. So for any state x(1) in R6 and time t1 there exists a control function

u(t) such that the solution of the system satisfies x(t) = x(1) at time t1. Now that

the system is shown to be controllable, by Theorem 2.1.5 we can experiment with

eigenvalue placement.

Observability

For the system with these parameters, we assume that we can directly measure each

component of the state vector. C = I, so y = x. It follows trivially that the system

is fully observable.
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Figure 2.1: State Component Evolution with Weak Eigenvalue Placement Control

2.2.4 Eigenvalue Placement

In MATLAB one can find a controller of the form u(t) = −Kx(t). Finding the ma-

trix K ∈ R1×6 by using the built-in MATLAB function place [19]. Input A, B and

the desired eigenvalues of the controlled system matrix (A−BK), into place and

the code outputs K. The linear control, u(t) = −Kx(t) derived by using eigenvalue

placement on the linear system, will be tested by use in the nonlinear system and

observing the result. When testing this control, the pendulum begins at an almost

vertical position, θ1 = θ2 = 5◦ at θ0 = 0, and is tasked with moving to the straight

pendulum-up position at θ1 = θ2 = 0. Note that the angles are referred to in degrees

but in the Figures, due to use of MATLAB, they appear in radians. The horizontal

variable is time in seconds.
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Figure 2.2: State Component Evolution with Strong Eigenvalue Placement Control

The first set of results, shown in Figure 2.1, is created by choosing the eigenvalues

of A−BK as (73,−0.11+ i,−0.11− i,−0.3,−6,−9), note here that the position of

the cart is a free variable, so the eigenvalue corresponding to the horizontal position

does not need to be stable, The other variables are just stable, smaller negative values

closer to zero. This control works, it successfully moves the state in the nonlinear

system to the pendulum-up position, θ1 = θ2 = 0◦. However, it is slow, it takes 10

seconds to control the state to the pendulum-up position. The terminal requirement

is that the components of the state vector x lie between −0.01 and 0.01.

The second set of results, shown in Figure 2.2, is created by choosing the eigenvalues

at (73,−1+i,−1−i,−3,−10,−20). The eigenvalues here are more stable than before,

they have greater negative real part. This control is also successful, it is twice as

fast as the controller in Figure 2.1, taking 5 seconds to get the the same terminal

requirement as above. However controlling this system through a force on the cart

has a cost, the energy expended by a motor in the cart. The velocities have incredibly

high initial oscillatory behaviour, this will have a huge energy cost.
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Experimentation with the eigenvalues also leads to results that break down, work

slowly, work incredibly fast and diverge [20]. Whilst these controls continue to work

successfully for the linear system as the eigenvalues are made more stable, there comes

a point where the inherent dynamics of the nonlinear system take over and the linear

control fails. Controls like Figure 2.1 are too slow to be useful. Whilst control u(t) in

Figure 2.2 is too costly. Both are sub-optimal, optimality will be explored in section

3. One requires a way to reduce cost whilst maintaining performance, this problem

now also requires optimization. The optimization is finding a K corresponding to an

ideal set of eigenvalues which has the best trade off between performance, the speed

of the control process, and cost, the energy requirement of the control.
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Optimal Control

An optimal control problem generally has a straightforward structure. A given dy-

namical system for which input control functions can be specified. Along with an

objective function which quantifies the cost of the control function and its effect on

the system. The goal of optimal control theory is to optimize this objective function

and, in so doing, to calculate the optimal control [1].

Resulting from the calculus of variations, Optimal control theory has a 360 year

history [21]. However, interest in Optimal Control theory snowballed once computers

were made readily available. In 1961, there were particular successes in aerospace

applications where optimal trajectory prediction was used [21].

In 1958, Russian mathematician Lev Pontryagin created the Maximum Principle,

a problem which is equivalent to finding an optimal control for a system given con-

straints and input controls [22]. This theory will be used and built upon for systems

with quadratic cost, namely the DPIC.
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3.1 Optimal Control Theory

3.1.1 The Basic Optimal Control Problem

The basic optimal control problem is a system of differential equations, defined on

0 ≤ t ≤ t1

ẋ(t) = f(x(t),u(t)) (3.1)

x(0) = x0 (3.2)

u(t) ∈ U (3.3)

U is the set of allowable controls dependent on the system [1]. For simplicity, assume

U = C([0, t1],Rm). Alongside this control problem there is an objective function to

be maximized

J(u) = φ(x(t1)) +

∫ t1

0

l(x(t),u(t))dt (3.4)

Assume that the state vector x(t) ∈ Rn, the control vector u(t) ∈ Rm and the

function system f ∈ Fn have well-behaved components such that the problem above,

(3.1-3.3) has a unique solution x(t). Furthermore, assume that J , φ and l in (3.4)

are real-valued functions. φ(x(t1) is a function from Rm to R that measures the

contribution of the objective to the final state, for example achieving maximum

velocity at a given time. The function in the integral l(x(t),u(t)), from Rn ×Rm to

R, corresponds to expenditure over time, for example minimizing fuel expenditure

throughout. In most cases either φ or l will be zero, but not both. Once the control

u(t) on 0 ≤ t ≤ t1 is specified, it determines, in conjunction with the system equation

and the initial condition, a unique state trajectory x(t) for 0 ≤ t ≤ t1. This trajectory

and the control function then determine the value of J according to the objective

function.The basic optimal control problem is essentially, to find the control u(t)

from a set of allowable controls U which leads to the largest possible value of J . To

summarize all these conditions for optimality the Maximum principle is used.
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3.1.2 Derivation of the Maximum Principle

The maximum principle will not be explicitly proved here, however the derivation is

shown as an aside in Appendix A. Essentially, this is done by considering the effects of

small changes near the maximum point. It also defines a modified objective function

to obtain an added helpful adjoint trajectory λ(t).

3.1.3 The Maximum Principle

Theorem 3.1.1 (Maximum Principle). Suppose u(t) ∈ Rm is the optimal control

and x(t) is the state trajectory for the optimal control problem. Then there is an

adjoint trajectory λ(t) such that x,u,λ satisfy

ẋ(t) = f(x(t),u(t))

x(0) = x0

−λ̇(t)T = λ(t)T fx(x(t),u(t)) + lx(x(t),u(t))

λ(t1)
T = φx(x(t1))

∀ 0 ≤ t ≤ t1

Hu(λ,x,u) = 0

Where H is a Hamiltonian function H(λ,x,u) = λT f(x,u)+ l(x,u). The system

above is complete; there are 2n +m unknowns x,u,λ and 2n differential equations

with 2n boundary conditions and m static equations. One has everything necessary

to determine the 2n+m functions. Avoiding singular solutions the optimal u ∈ Rm

can be found. Solving this system is synonymous with maximizing the objective

function [1].
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3.1.4 Systems with Quadratic Cost

These systems are ones in which the dynamic system is linear and the objective is

quadratic. In the standard linear-quadratic optimal control problem one has the

following n-th order system

ẋ(t) = A(t)x(t) +B(t)u(t) (3.5)

with cost function J to be minimized

J =
1

2

∫ t1

0

[
x(t)TQ(t)x(t) + u(t)TR(t)u(t)

]
dt

where u(t) ∈ Rm, Q(t) ∈ Rn×n, R(t) ∈ Rm×m. The cost function J is quadratic

in both state and control. The quadratic functions are defined by both Q and R.

The matrix Q(t) is symmetric and positive semi-definite, x(t)TQ(t)x(t) ≥ 0∀x(t),

Q quantifies the penalty for the state if it is not in the correct position [2]. R(t) is

symmetric positive definite which implies R(t) is non-singular, hence invertible. R

quantifies the cost of the control [2]. Finally, assume that all functions are continuous

in time. The adjoint equation is

−λ̇(t)T = λ(t)TA(t)− x(t)TQ(t)

transposing this adjoint equation gives

λ̇(t) = Q(t)x(t)−A(t)Tλ(t)

with terminal condition λ(t1) = 0 the Hamiltonian becomes

H = λ(t)TA(t)x(t) + λ(t)TB(t)u(t)− 1

2
x(t)TQ(t)x(t)− 1

2
u(t)TR(t)u(t)

with

Hu = λ(t)TB(t)− u(t)TR(t)

45



Chapter 3. Optimal Control

To maximize the Hamiltonian with respect to u(t) it is required that Hu = 0 or

λ(t)TB(t)− u(t)TR(t) = 0

=⇒ u(t) = R(t)−1B(t)Tλ(t)

Substituting this u(t) into the differential equation gives

ẋ(t) = A(t)x(t) +B(t)R(t)−1B(t)Tλ(t)

Use of this new equation and the transposed adjoint equation along with the original

initial and final conditions gives a new maximum principle, which is

Theorem 3.1.2 (Maximum Principle for systems with quadratic cost). Suppose

u(t) ∈ U is the optimal control and x(t) is the state trajectory. Then there is an

adjoint trajectory λ(t) such that x,u,λ satisfy

ẋ(t) = A(t)x(t) +B(t)R(t)−1B(t)Tλ(t)

λ̇(t) = Q(t)x(t)−A(t)Tλ(t)

x(0) = x0

λ(t1) = 0

In this system, there are 2n differential equations, 2n endpoint conditions and

2n unknown functions. A problem arises when solving this system as n endpoint

conditions occur at t = 0 and the other n happen at time t = t1. This problem can

be solved numerically [14]. However, it is easier to use something called a Riccati

equation, section 3.2.
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3.1.5 Derivation of the Differential Riccati Equation

The system in Theorem 3.1.2 is linear. x(t) and λ(t) depend linearly on x0. Also,

λ(t) linearly depends on x(t). Knowing this, we try a solution of the following form

λ(t) = −P(t)x(t)

[1] where P(t) is an unknown n× n matrix, this expression can be substituted into

the system. Here

λ̇(t) = −P(t)ẋ(t)− Ṗ(t)x(t)

which, when substituted into the system, gives

ẋ(t) = A(t)x(t)−B(t)R(t)−1B(t)TP(t)x(t)

−P(t)ẋ(t)− Ṗ(t)x(t) = Q(t)x(t) +A(t)TP(t)x(t)

and simplifies to

ẋ(t) =
[
A(t)−B(t)R(t)−1B(t)TP(t)

]
x(t)

−P(t)ẋ(t)− Ṗ(t)x(t) =
[
Q(t) +A(t)TP(t)

]
x(t)

Multiplying the first by P(t) gives

P(t)ẋ(t) =
[
P(t)A(t)−P(t)B(t)R(t)−1B(t)TP(t)

]
x(t)

−P(t)ẋ(t)− Ṗ(t)x(t) =
[
Q(t) +A(t)TP(t)

]
x(t)

Now, adding the two equations together gives

[
Ṗ(t) +P(t)A(t) +A(t)TP(t)−P(t)B(t)R(t)−1B(t)TP(t) +Q(t)

]
x(t) = 0
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The above expression will be satisfied ∀ x(t) if

−Ṗ(t) = P(t)A(t) +A(t)TP(t)−P(t)B(t)R(t)−1B(t)TP(t) +Q(t)

and

P(t1) = 0

then λ(t1) = 0 holds for all x(t).

The differential equation above is quadratic in the unknown P(t). It is called a

differential Riccati equation [23], which is a system of the form

−Ṗ = ATP+PA−PBR−1BTP+Q

with final condition P(t1) = 0. It will be shown later that P is symmetric for all t.

The solution to the Riccati differential equation can be found by backward integration

starting at t = t1 with the condition P(t1) = 0, [1]. Once P(t) is known, one has

an expression for λ(t) given any state x(t). Which, in turn, gives an expression for

u(t). Which is

u(t) = −R(t)−1B(t)TP(t)x(t) (3.6)

or

u(t) = −K(t)x(t)

where

K = R(t)−1B(t)TP(t)
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3.2 Riccati Equation

The term Riccati equation is generally used to refer to matrix equations with an

analogous quadratic term [24]. Named after Venetian mathematician Jacopo Riccati.

Riccati equations occur in both continuous-time and discrete-time linear-quadratic

control problems. In this thesis only the continuous-time problem will be studied.

The Basic Riccati differential equation for these control problems is an equation of

the form

−Ṗ = ETPA+ATPE− (ETPB+ S)R−1(BTPE+ ST ) +CTQC (3.7)

where the matrices above are functions of t. This system can still be solved numer-

ically, but it is quite difficult [24]. A more familiar form occurs when S = 0, E = I

and C = I, this simplifies the required theory for the solution [25]. Recall that the

differential Riccati equation from the previous equation is

−Ṗ(t) = P(t)A(t) +A(t)TP(t)−P(t)B(t)R(t)−1B(t)TP(t) +Q(t) (3.8)

This is the simplified version of the basic Riccati differential equation. Recall again

that the solution is found by backward integration starting at t = t1 with the con-

dition P(t1) = 0. This continuous solution is effective but sometimes expensive to

calculate, in most cases it can only be calculated numerically [23]. This will be done

for the DPIC later in this thesis.

3.2.1 Time-Independent Case

Now suppose that A(t),B(t),Q(t),R(t) are constant matrices, A,B,Q,R, indepen-

dent of time. Here t1 goes to infinity. Then, since the Riccati equation is integrated

backward in time, the solution P(t) can be expected to approach a constant matrix

P for t near 0 [1]. Accordingly, Ṗ(t) approaches 0 [1]. This gives the following

Algebraic Riccati equation (ARE) that the limiting constant matrix P solves.
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PA+ATP−PBR−1BTP+Q = 0 (3.9)

There are three types of solutions to the ARE [26]. The stabilizing solution P+,

which, when substituted into the control, and the system, implies that the controlled

system matrix A−BK has eigenvalues with negative real parts. The anti-stabilizing

solution P−, this implies eigenvalues with positive real part for the system matrix.

Finally the mixed solutions Pθ, mixed solutions imply that the controlled system

matrix has both negative and positive eigenvalue real parts. There is only one sta-

bilizing and one anti-stabilizing solution whereas there are as many as 2n choose

n mixed solutions [18]. P+ and P− are structurally stable, the controlled system

matrix A − BK maintains the same stability properties under data perturbation.

Pθ may or may not be structurally stable, depending on the different combinations

of eigenvalues. P+, P− and Pθ are all needed to understand the complete phase

portrait of the Riccati differential equations [26]. However, for control purposes the

only solution needed is the unique stabilizing solution P+, this will help make the

eigenvalues of (A−BK) stable [27]. Here the control is of the form

u(t) = −R−1BTP+x(t)

or

u(t) = −K+x where K+ = R−1BTP+

giving

ẋ(t) = (A−BK+)x(t)

which is the closed-loop system with stable eigenvalues. The ARE is one of the most

deeply studied problems in both mathematics and engineering, its use in control

theory is well known and of particular interest to this thesis. Finding the stabilizing

solution to the algebraic Riccati equation is the topic for the following pages.
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3.2.2 A Note on Solution/Numerical Methods

There are many different theoretical approaches and corresponding algorithms to

solve the ARE [24]. The classical eigenvalue approach is typically used for most sys-

tems [28]. Reliable algorithms for the Riccati equations require sufficient attention to

the condition of the underlying problem, the numerical stability of the algorithm and

the robustness of the actual software implementation. Each of these help build reli-

able stabilizing solutions to the ARE [24]. In this thesis, an optimal LQR controller

will be derived from the linear DPIC and used in the nonlinear system. The built-in

MATLAB function care [29], which solves the ARE and outputs the stabilizing so-

lution P+, to find this controller. care, in loose terms, stands for Continuous-time

Algebraic Riccati Equation. The code enacts algorithms [24] to numerically calculate

the solution to the basic algebraic Riccati equation which is the algebraic version of

(3.7).

ETPA+ATPE− (ETPB+ S)R−1(BTPE+ ST ) +CTQC = 0

However, a more familiar form occurs when S = 0, E = I and C = I to give the

Algebraic Riccati equation (3.9) as before

PA+ATP−PBR−1BTP+Q = 0

This simplified system facilitates the theory and the corresponding algorithms [24].

Essentially, the theory behind the solution is as follows. This particular method

focuses on a specific set of Schur vectors that span the stable invariant subspace of

M, where M ∈ R2n×2n is a Hamiltonian matrix partitioned into Rn×n blocks [25].

M =

 A −G

−Q −AT


where G = BR−1BT . We will see in section 3.2.4 that the stabilizing solution can

be obtained by finding an orthogonal matrix U ∈ R2n×2n such that

UTMU = S.
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Note here the relation between the Hamiltonian matrix and the Riccati equation

−
[
I P

] 0 I

−I 0

M

 I

P

 = −
[
I P

] 0 I

−I 0

 A −G

−Q −AT

 I

P


= −

[
I P

]−Q −AT

−A G

 I

P


= −

[
−Q−PA −AT +PG

] I

P


= −(−Q−PA−ATP+PGP)

= Q+PA+ATP−PGP

= PA+ATP−PGP+Q

It turns out that, when the Riccati equation is simplified, this method saves valuable

computation time over other traditional methods. This method has been proved

to be reliable for ‘modest’ sized problems n < 100 [24], as the state is a vector

in R6 this process can be trusted and computed efficiently. Whilst it is the best

method for solving the simplified ARE (3.9), its use cannot be extended to a Riccati

equation of the form (3.7) or to non-symmetric Riccati problems [24]. To show

that the stabilizing solution P+ can be calculated this way, and to see the specific

requirements for it to work, a theorem is formulated. However, it is important to

review some necessary definitions and theorems from linear algebra.
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3.2.3 Linear Algebra Review

The following definitions, taken from [30], are necessary to formulate the required

lemmas.

Definition 3.2.1. A ∈ Rn×n is orthogonal if AT = A−1

Let J =

 0 I

−I 0

 ∈ R2n×2n where I denotes the n × n identity matrix. Note

JT = J−1 = −J.

Definition 3.2.2. A ∈ R2n×2n is Hamiltonian if J−1ATJ = −A

Definition 3.2.3. A ∈ R2n×2n is symplectic if J−1ATJ = A−1

The following lemmas are drawn from known theory in linear algebra [25]. These

lemmas will help prove the theorem on the Riccati solution, which is stated in section

3.2.4.

Lemma 3.2.1. Let A ∈ R2n×2n be Hamiltonian. If λ is an eigenvalue of A with

algebraic multiplicity α and geometric multiplicity d, −λ is also an eigenvalue of A

with algebraic multiplicity α and geometric multiplicity d.

Proof. A is Hamiltonian if J−1ATJ = −A. In other words, A and −AT are similar.

If λ is an eigenvalue of A then it is also an eigenvalue of −AT . Since the eigenvalues

of −AT are the negatives of the eigenvalues of A, the lemma is proved.

Lemma 3.2.2. Let A ∈ R2n×2n be Hamiltonian. Let U ∈ R2n×2n be symplectic.

Then U−1AU is also Hamiltonian.

Proof. Omitted. [30]
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Lemma 3.2.3. Let A ∈ Rn×n have eigenvalues λ1, λ2, ..., λn, listed according to their

algebraic multiplicity. Then there exists an orthogonal similarity transformation U

such that UTAU is upper-triangular with diagonal elements λ1, λ2, ..., λn in that

order.

Proof. Omitted. [30]

Lemma 3.2.3 can also work in block form. By reducing to quasi-upper-triangular

form with 2× 2 blocks on the diagonal for complex conjugate eigenvalues and single

one-dimensional blocks corresponding to the real eigenvalues. One works only over

R. This canonical form is known as the Murnaghan-Wintner canonical form [31], for

this thesis denote it the real Schur form (RSF).

Lemma 3.2.4. Let A ∈ Rn×n. Then there exists an orthogonal similarity transfor-

mation U such that UTAU is quasi-upper-triangular. Moreover, U can be chosen

so that 2× 2 and 1× 1 diagonal blocks appear in any order.

Proof. Omitted. [30]

In lemma 3.2.4 take S = UTAU partitioned into blocks such that

S =

S11 S12

0 S22


with S11 ∈ Rk×k with 0 ≤ k ≤ n. The first k column vectors of U are referred to

as the Schur vectors corresponding to the eigenvalues of S11. These vectors span the

sum of the eigenspaces of S11 even when some of the eigenvalues are multiple. This

property will prove to be useful in the following section.
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3.2.4 Theorem and Proof

This specific method used to solve the algebraic Riccati equation involves using a

specific set of Schur vectors. This method is one that will be used later in this thesis

for the DPIC system. The Algebraic Riccati equation is

PA+ATP−PGP+Q = 0 (3.10)

Assumptions

where P,A,G,Q ∈ Rn×n, B ∈ Rn×m and R ∈ Rm×m. Assume G = GT is positive

semi-definite. Recall Q = QT is assumed to be positive semi-definite. Recall G =

BR−1BT ∈ Rn×n and note that G = GT ≥ 0. (A,B) is assumed to be a stabilizable

pair, see section 1.1.2. Finally, assume full observability, section 2.1.2. Note this was

previously assumed when it was set that C = I. Under these assumptions, the ARE

can be shown to have a unique stabilizing solution P+ of the form (3.6), [27]. From

now on P = P+. Now consider the Hamiltonian matrix M ∈ R2n×2n.

M =

 A −G

−Q −AT


(A,B) is assumed to be a stabilizable pair, this implies that there exists a K such

that the eigenvalues of (A −BK) lie strictly in the left-half plane. In other words,

there are n stable eigenvalues. Let P be a symmetric solution to the ARE and

consider the matrix

T =

 I 0

P I
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T−1MT =

 I 0

−P I

 A −G

−Q −AT

 I 0

P I


=

 A −G

−PA−Q PG−AT

 I 0

P I


=

 A−GP −G

−(ATP+PA−PGP+Q) −(AT −PG)


=

A−GP −G

0 −(A−GP)T


Thus, the eigenvalues of M are the eigenvalues of A−GP together with the eigen-

values of −(A −GP)T . Because the eigenvalues of A −GP equal the eigenvalues

of A−BK, where n eigenvalues are stable, there are also n unstable eigenvalues for

−(A−GP)T . This follows from

A−GP = A−BR−1BTP = A−BK

So the spectrum of M includes no purely imaginary eigenvalues [18]. Now apply the

lemma 3.2.4, there exists an orthogonal transformation U ∈ R2n×2n such that M is

brought to the real Schur form

UTMU = S.

where

U =

U11 U12

U21 U22

 , S =

S11 S12

0 S22


here Uij,Sij ∈ Rn×n. For S ∈ R2n×2n, it is possible to arrange U such that every

eigenvalue of S11 has negative real part and all eigenvalues of S22 have positive real

part. It is now possible to state and prove the theorem on the stabilizing solution of

the ARE.
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Stabilizing Solution to the ARE

Theorem 3.2.5. Using the same notation and under the same assumptions as above.

This yields

(i) U11 is invertible, and P = U21U
−1
11 solves the ARE, equation (3.10).

(ii) S11 is similar to (A−GP).

(iii) P = PT , the solution is symmetric.

(iv) P ≥ 0, the solution is positive.

Proof of Stabilizing Solution to the ARE

The proof of this theorem is long, however necessary in order to understand how a

workable solution to the algebraic Riccati equation is formulated. Each point will be

proven sequentially.

Proof. (i) U11 is invertible, and P = U21U
−1
11 solves the ARE, equation (3.10).

(a) U11 is invertible.

For simplicity assume S is upper-triangular and U is orthogonal. Note that

UTMU = S

MU = US
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Suppose U11 is singular. Without loss of generality assume that U11 =
[
0 Ũ11

]
where 0 ∈ Rn and Ũ11 ∈ Rn×(n−1) thus

M

[0 Ũ11

]
U12

U21 U22

 =

[0 Ũ11

]
U12

U21 U22

S

 A −G

−Q −AT

[0 Ũ11

]
U12

U21 U22

 =

[0 Ũ11

]
U12

U21 U22

S11 S12

0 S22



Thus, the first row of U yields A −G

−Q −AT

0
u

 =

0
u

 · (−λ)
where u ∈ Rn and (−λ) is the top left value of S, Re(λ) > 0. Expanding gives −Gu

−ATu

 =

 0

−λu


This gives

ATu = λu & −Gu = 0

but for any P

(A−GP)Tu = (AT −PTG)u

= ATu−PTGu

= λu+ 0

(A−GP)Tu = λu

therefore there exists an eigenvalue of A with positive real part which is uncontrol-

lable. This contradicts the assumption of stabilizability. So, by contradiction, U11

is invertible.
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(b) P = U21U
−1
11 solves the algebraic Riccati equation.

To prove this, sub this P into the Riccati equation. But first recall that the Riccati

equation can be expressed in the following form

PA+ATP−PGP+Q = −
[
I P

] 0 I

−I 0

 A −G

−Q −AT

 I

P


Now take the first line above and eventually sub in P

= −
[
I P

] 0 I

−I 0

M

 I

P


= −

[
−P I

]
M

 I

P


=
[
P −I

]
M

 I

P


=
[
U21U

−1
11 −I

]
M

 I

U21U
−1
11


=
[
U21U

−1
11 −I

]
M

U11

U21

U−111

=
[
U21U

−1
11 −I

]U11

U21

S11U−111

= (U21U
−1
11 U11 −U21)S11U

−1
11

= (U21 −U21)S11U
−1
11

= 0

=⇒ P = U21U
−1
11 solves the Riccati equation.
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(ii) S11 is similar to (A−GP).

Recall

M

U11

U21

 =

U11

U21

S11 A −G

−Q −AT

U11

U21

 =

U11

U21

S11

Recall P = U21U
−1
11 and thus U21 = PU11. For the upper block part of the above

system,

AU11 −GU21 = U11S11

AU11 −GPU11 = U11S11

(A−GP)U11 = U11S11

U−111 (A−GP)U11 = S11

Therefore S11 is similar to (A−GP). They have the same eigensystems.
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(iii) P = PT , the solution is symmetric.

Let X = UT
11U21, thus U21 = (U−111 )

TX therefore

P = U21U
−1
11

P = (U−111 )
TXU−111

and

PT = (U−111 )
TXU−111

Thus for P = PT it suffices that

X = XT

Now consider skew-symmetric, orthogonal Y = UTJU.

Y =

U11 U12

U21 U22

T  0 I

−I 0

U11 U12

U21 U22


Y =

UT
11 UT

21

UT
12 UT

22

 0 I

−I 0

U11 U12

U21 U22


Y =

−UT
21 UT

11

−UT
22 UT

12

U11 U12

U21 U22


Y =

−UT
21U11 +UT

11U21 −UT
21U12 +UT

11U22

−UT
22U11 +UT

12U21 −UT
22U12 +UT

12U22
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Using the fact that M is Hamiltonian, i.e. M = −J−1MTJ = JMTJ and MT =

USTUT it can be shown that

UTMU = S

UTJMTJU = S

UTJUSTUTJU = S

STUTJU = UTJ−1US

STUTJU = −UTJUS

STY = −YS

Thus S11 S12

0 S22

T Y11 Y12

Y21 Y22

 = −

Y11 Y12

Y21 Y22

S11 S12

0 S22


ST11 0

ST12 ST22

Y11 Y12

Y21 Y22

 = −

Y11 Y12

Y21 Y22

S11 S12

0 S22


For the upper block

ST11Y11 = −Y11S11

Via classical Lyapunov theory [32], since S11 is stable, Y11 = 0. Therefore

−UT
21U11 +UT

11U21 = 0

UT
11U21 = UT

21U11

UT
11U21 = (UT

11U21)
T

So X = XT , therefore P = PT , the solution is symmetric.
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(iv) P ≥ 0, the solution is positive.

P = U21U
−1
11

X = UT
11U21

P = (U−111 )
TXU−111

Therefore P ≥ 0 if X ≥ 0. Define

F(t) =

U11

U21

 etS11

Note

F(0) =

U11

U21

 & lim
t→∞+

F(t) =

0
0


since S11 is stable.

Ḟ(t) =

U11

U21

S11e
tS11

Ḟ(t) = M

U11

U21

 etS11

Ḟ(t) = MF(t)
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Now, let

G(t) = FT (0)LF(0)− FT (t)LF(t)

where L =

0 I

0 0

 here

G(t) = −
∫ t

0

d

ds
[FT (s)LF(s)]ds

G(t) = −
∫ t

0

FT (s)[MTL+ LM]F(s)ds

G(t) = −
∫ t

0

FT (s)

−Q 0

0 −G

F(s)ds ≤ 0

Therefore the integral is greater than 0 because Q and G are positive semi-definite,

G(t) ≥ 0 ∀t

lim
t→∞+

G(t) = FT (0)LF(0)

=
[
UT

11 UT
21

]0 I

0 0

U11

U21


=
[
0 UT

11

]U11

U21


= UT

11U21 ≥ 0

Therefore X ≥ 0 =⇒ P ≥ 0. This concludes the proof.

Consequences

Thus we can find a unique stabilizing solution using Theorem 3.2.5, this is what the

built-in MATLAB function care uses. We can now apply this to the linear DPIC

system (2.7).
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3.3 Optimal Control Theory and the DPIC System

To test the different controls on the DPIC system from the different Riccati equations,

we must first build a cost function. For this DPIC system we use a Linear Quadratic

Regulator (LQR).

3.3.1 Linear Quadratic Regulator

Recall the linear DPIC system (2.7), with the specific parameters from [9], defined

by

ẋ = Ax+Bu (2.7)

where

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 −7.35 0.7875 0 0 0

0 73.5 −33.075 0 0 0

0 −58.8 51.1 0 0 0


, B =



0

0

0

0.6071

−1.5

0.2857


The linear quadratic regulator for the linear system above is an optimal control that

minimizes the cost function

J(u) =

∫ t1

0

(xTQx+ uTRu)dt (3.11)

For the DPIC system, the control force acts horizontally only on the cart, affecting

only one of the degrees of freedom, see Figure 1.5. Therefore the allowable controls

are positive or negative one-dimensional values, u(t) ∈ R. This implies R will be

one-dimensional, R ∈ R. Recall R measures the cost of control and Q measures the

penalty for each component of the state being in the incorrect position [1]. Also from

[9], take
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Q =



5 0 0 0 0 0

0 50 0 0 0 0

0 0 50 0 0 0

0 0 0 20 0 0

0 0 0 0 700 0

0 0 0 0 0 700


, R = 1 (3.12)

3.3.2 Different Riccati Controls

Two different controllers which minimize (3.11) will be derived. The first will use

the stabilizing solution to the ARE (3.9) and the second will use a time-dependent

solution to the Riccati differential equation (3.8). The first method will use the

method discussed in the previous section to compute the constant stabilizing solution

P+ to the algebraic Riccati equation (3.9).

PA+ATP−PGP+Q = 0 (3.9)

The second method computes a time-dependent Riccati solution P(t) to the differ-

ential Riccati equation (3.8) using Runge-Kutta numerical methods [13]. However

here we use constant matrices A and B from the linearized DPIC system (2.7) and

Q and R from (3.12).

−Ṗ(t) = P(t)A+ATP(t)−P(t)BBTP(t) +Q (3.13)

with final condition P(t1) = 0. Note that the first solution at time t = 0, P(0)

should, and does, approximately equal P+ [23]. These controls should be effective

locally for the nonlinear problem, close to the vertical where the system (1.7) was

linearized. Here the linear dynamics of the system overpower the nonlinear dynamics.
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System Results

In order to test the performance of the two controllers, three different simulations are

run. The first looks at the performance of both controllers in the nonlinear system

and compares them to the results in Figures 2.1 and 2.2. The second looks at the set

of angles at which the controllers are successful, according to the accuracy required

in 2.2.4. This test finds the maximum angle of deflection from the vertical at which

the controller will work. Finally, the third looks at the effect of drag on controller

performance and its effect on the first two tests for the DPIC system. The first

control type will be obtained by finding the constant stabilizing solution P+ to the

algebraic Riccati equation (3.9). Denote this control the constant-K control

u(t) = −K+x(t) = −R−1BTP+ (4.1)

The second control type will be found by solving the differential Riccati equation

(3.13) for a time-dependent solution P(t). The control here will be

u(t) = −K(t)x(t) = −R−1BTP(t) (4.2)

Denote this the time-K control. From now on, any result in red has a constant-K

control of the form (4.1) and any result in blue denotes time-K control of the form

(4.2).
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4.1 Different Riccati Controls

The first test of the controls derived from the linear system is simply utilizing them

in the nonlinear system and observing the results.

Objective

For these simulations the nonlinear system is placed at initial condition

x0 = (0, 5◦, 5◦, 0, 0, 0)T (4.3)

at time t = 0. The objective is to use the controllers to move the DPIC state vector

to the pendulum-up position

x(t) = (0, 0, 0, 0, 0, 0)T (4.4)

using the controllers (4.1) and (4.2). We model this process using MATLAB and

extract Figures for the evolution of each controlled state x(t) ∈ R6×6. We record the

time when every component of the state vector has a sufficiently small magnitude,

|xi| < 0.01 for i = 1, . . . , 6. (4.5)

and denote this time tf , the time taken to get to the pendulum-up position. In these

Figures, each subgraph corresponds to a component of the state vector. Note that

all angles appear in radians.

4.1.1 Constant-K Control K+

The evolution of the state when controlled using the constant-K control (4.1) is

shown in Figure 4.1. The controller here takes 11 seconds to get to the pendulum-up
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Figure 4.1: State Evolution for Constant-K control

position (4.4) at accuracy given in (4.5), tf = 11. In all state components the con-

troller (4.1), after the first few major corrections, causes each component to converge

asymptotically to zero. Consider the cost function (3.11) with Q and R from (3.12)

J(u) =

∫ t1

0

(xTQx+ u2)dt (4.6)

For these parameters, and using time t1 = 11 for the integral limit, the value of

cost function (4.6) can be computed numerically. The constant-K control (4.1) has

cost J(−K+x(t)) = 43 in Joules. When compared to the results from eigenvalue

placement in section 2.2.2, the control is not as fast as shown in Figure 2.2, and not

as cheap as shown in Figure 2.1. However, this is the optimal control that minimizes

the cost function 4.6.

4.1.2 Time-K Control K(t)

The evolution of the controlled state using the time-K control (4.2) is shown in

Figure 4.2. Here, for the controlled system, the objective (4.5) is achieved at tf =
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Figure 4.2: State Evolution for Time-K control

16. All components of the state converge asymptotically to zero. When evaluating

the cost function (4.6) numerically over this time interval from 0 to tf , the cost is

J(−K(t)x(t)) = 263. For θ1 = θ2 = 5◦ the constant-K controller (4.1) is cheaper

than the time-K controller (4.2). Table 4.1 shows the costs J(u) at larger angles

β. The time-K control (4.2) is more expensive than the constant-K control (4.1) for

the angles β. However, the scale decreases for the bigger angles, but even then the

constant-K control is smaller than a third of the cost of the time-K controller. The

time-K control is not as ‘optimal’ considering the objective of minimizing the cost

function. However, it may be more encompassing.

β 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦

J(−K+x(t)) 43 174 395 712 1148 1780 3017

J(−K(t)x(t)) 263 1043 2311 3999 5995 8079 9763

Table 4.1: Quadratic Cost (Joules) for both Controllers
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4.2 Initial Conditions

The second test of the different linear controls tests which initial conditions for the

state variable x will yield ‘successful’ results. The simulation run in this section

tests either method of control at different initial angles. The controller could also

be tested at different initial velocities. However, velocities are not always directly

measurable, it is more reliable to give data on the angles only.

4.2.1 Complete Initial Conditions

Objective

In this test the nonlinear system is simulated with initial conditions

x0 = (0, θ1, θ2, 0, 0, 0)
T (4.7)

for every possible combination of θ1, θ2 ∈ [0, 360◦] there are 129, 600 of these combi-

nations. For every initial condition (4.7) the control is tasked with moving the DPIC

state vector to the pendulum-up position (4.4) from section 4.1

x(t) = (0, 0, 0, 0, 0, 0)T (4.4)

and accuracy

|xi| < 0.01 for i = 1, . . . , 6. (4.5)

If the control satisfies (4.5), we call it successful. The initial state corresponding to

the successful control is stored and plotted in Figures 4.3 and 4.4.

Result

In Figure 4.3 all initial conditions at which the controllers (4.1) and (4.2) are suc-

cessful (4.5) are plotted. If the controller is successful the initial state x0 (4.7) is
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Figure 4.3: Successful Starting DPIC Positions for both Controllers

plotted in Cartesian coordinates in the Figure. The left plot of Figure 4.3 shows

the successful initial conditions with the constant-K control (4.1). The right plot of

Figure 4.3 shows the successful initial conditions with the time-K control (4.2). Note

that the constant-K control (4.1) covers a greater percentage of initial conditions

than the time-K control (4.2). For any random pair of angles corresponding to an

initial condition (4.7), it more likely that the constant-K control (4.1) successfully

controls the system than the time-K control (4.2). However, the regions further from

the pendulum-up position (4.4), are less reliable and considered coincidental. In Fig-

ure 4.3 there is a clear cone showing how large a deflection from the pendulum-up

position (4.4) is possible. We call this the maximal angle of deflection. The results

with successful initial conditions with either |θ1|, |θ2| > π
2
are disregarded.

4.2.2 Maximum Angle of Deflection

Modified objective

Here the objective is the same as in section 4.2.1 except the initial condition is

x0 = (0, θ, θ, 0, 0, 0)T (4.8)
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Figure 4.4: Successful Straight Starting DPIC Positions for both Controllers

We test straight starting positions for the DPIC where θ1 = θ2. The successful

straight initial states for both controllers are plotted in Figure 4.4. This cone of initial

conditions that are successful is of particular importance because, if the controllers

(4.1) and (4.2) work for these initial angles, the controlled state trajectory will stay

within a valid linear region [33] whilst moving back to the pendulum-up position

(4.4). The state vector moves through other starting positions that also work when

tested with linear controls (4.1) and (4.2). Anything from the results outside the

cone will pass through other states with angles θ1, θ2 that are unsuccessful when

used as initial conditions.

Result

The left plot of Figure 4.4 shows the successful straight initial conditions with the

constant-K control (4.1). The cone encompasses the maximum angle of deflection α

of the DPIC to the vertical at which the controller is successful in bringing the state

to the pendulum-up position. For the constant-K control (4.1) the maximum angle

of deflection is α = 39◦ in either direction. The successful initial conditions where

θ > π
2
are ignored. The right plot of Figure 4.4 shows the successful straight initial
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Figure 4.5: State Evolution for Time-K and Constant-K controllers at 40◦

conditions with the time-K control (4.2). The maximum angle of deflection here is

α = 44◦ in either direction. See what happens at 40◦ in Figure 4.5, the first straight

initial condition at which the constant-K control (4.1) fails. The constant-K control

(4.1) in red attempts control but collapses on itself, the nonlinear mechanics quickly

spiral the pendula out of control, accelerating rapidly. The step size eventually

becomes smaller than MATLAB’s machine epsilon εM [14], causing the numerical

ordinary differential equation solver to fail just after time t = 4. The straight blue

line uses the time-K control (4.2), this is successful at initial condition (4.8) with

θ = 40◦. One cannot see the exact movement of the pendulum in this Figure,

appearing as a straight line due to the sheer size of the divergence of the constant-K

control. Figure 4.6 shows the state evolution under this control at (4.8) with θ = 40◦

in more detail. Recall in all Figures with angles, the angles appear in radians. For

more extreme values, initial conditions with θ ∈ [40, 41, 42, 43, 44], the time-K control

(4.2) is successful. The constant-K control (4.1) is unsuccessful.

In section 3.2.4, a specific method was used to save computation time when solving
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Figure 4.6: State Evolution for Time-K controller at 40◦

the algebraic Riccati equation (3.9). Table 4.2 shows the computation time τ taken

in seconds, for each method to compute controls at different angles β. τ+ is the

computation time for constant-K control (4.1) and τt the computation time for the

time-K control (4.2).

β 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦

τ+ 0.0493 0.0132 0.0354 0.0500 0.0422 0.0213 0.0312 Fails -

τt 0.2891 0.2551 0.2365 0.2362 0.2934 0.2422 0.2499 0.2632 Fails

Table 4.2: Computation Time (seconds) for both Controllers

The computation time does not change much with the size of the angle. The

computation time for constant-K control (4.1) is smaller than 0.05s, the computa-

tion time for time-K control (4.2) is roughly 0.24s. Therefore, computing the time-K

control (4.2) is significantly slower than constant-K control (4.1). So as well as the

time-K controller (4.2) being slower in time taken to get to the pendulum-up posi-

tion (4.4) with accuracy (4.5), the time-K controller (4.2) is also slower computation-
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ally. These computational and practical observations help explain why most modern

control problems solve the algebraic Riccati equation (3.9) instead of computing a

time-dependent solution to (3.8) [24].

4.3 Resistance Effect

In reality all oscillators have some form of drag, it can be very small but it can also

affect the dynamics of the system. For the DPIC 1.5, the drag force could be air

around the pendulum or friction within the joints. Now consider the DPIC system

with these forces. The drag forces, µ on DPIC are approximated to be proportional

to the velocities of the various components of θ, here

µ =


d0θ̇0

d1θ̇1

d2θ̇2

 (4.9)

The resisting forces on the cart is roughly proportional to the velocity of the cart

θ. The drag force on each pendulum link is approximated to be proportional to the

angular velocity of the respective pendulum link. Modifying the nonlinear 2nd-order

system (1.6) to accommodate these new forces gives

D(θ)θ̈ +C(θ, θ̇)θ̇ +G(θ) = Hu+ µ

The drag terms can absorbed into the diagonal of the C matrix. This gives the

nonlinear first-order system as before (1.7) but with a different A due to the change

in C. This is slightly more nonlinear than previously.

ẋ = A(x)x+B(x)u+ L(x) (4.10)
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Figure 4.7: State Evolution for Constant-K controller for Different Resistances

Objective

In these tests the DPIC begins at initial condition (4.3) as in section 4.1 and the

controllers are tasked with moving the state to the pendulum-up position (4.4).

Because the horizontal position of the cart is directly controlled by u(t), set d0 = 0.

Set d1 = d2 = d in (4.9). For each test the resistance coefficient d is gradually

increased from 0 to 1 in the system (4.10). Figure 4.7 shows the effect of the different

resistance coefficients on constant-K control (4.1) and Figure 4.8 shows the effect of

the different resistance coefficients on time-K control (4.2). The darker the line, the

stronger the resistance. Recall angles in Figures are in radians.

4.3.1 Constant-K Control K+

Figure 4.7 shows the state evolution for the controlled DPIC using constant-K control

(4.1) at increasing values of drag. Different values of d in (4.9) are tested. As drag
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Figure 4.8: State Evolution for Time-K controller for Different Resistances

increases the movements of each component in the state trajectory are stretched.

Drag increases the time taken to get the desired result, and increases the amount of

control needed to get to the pendulum-up position (4.4).

4.3.2 Time-K Control K(t)

Figure 4.8 shows the effect of resistance on the state trajectory of the time-K con-

trol (4.2) controlled system. Fluctuations of the state vector become increasingly

stretched as the drag gets larger. The time taken tf to get the pendulum-up position

(4.4) also increases. Comparing Figures 4.7 and 4.8, the effect of drag is similar

for both controls. Drag stretches movements vertically and extends the time taken

to get to the pendulum-up position (4.4). The differences between Figure 4.7 and

Figure 4.8 are similar to the differences between Figures 4.1 and 4.2, where there is

no resistance present. With resistance, constant-K control (4.1) in Figure 4.7 takes

a shorter amount of time than the time-K control (4.2) in Figure 4.8.
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Figure 4.9: Maximum Angles of Deflection for Resistances with Constant-K control.

4.4 Resistance Effect on the Maximum Angle of De-

flection

Drag also affects the maximum angle of deflection α from section 4.2.2. The air

resistance or the friction in the joints both help and hinder the controllers in certain

cases.

Objective

The objective here is the same as in 4.2.2. This time the maximum angle of deflection

α is found for varying levels of resistance. The goal is to get to the pendulum-up

position (4.4) at each starting position for each value of resistance d1 = d2 = d in

(4.9). Figure 4.9 plots all successful straight initial conditions (4.7) for the constant-

K control (4.1). Figure 4.10 plots all successful straight initial conditions (4.7) for

the time-K control (4.2). Table 4.3 shows the maximum angle of deflection α for

each controller at the different levels of resistance.
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Figure 4.10: Maximum Angles of Deflection for Resistances with Time-K control.

4.4.1 Constant-K Control K+

For constant-K control (4.1) in Figure 4.9, the maximum angle of deflection α de-

creases as the forces disrupting the system increase. At d = 2 the maximum angle

of deflection decreases to α = 13◦.

4.4.2 Time-K Control K(t)

For time-K controller (4.2) in Figure 4.10, the maximum angle of deflection α in-

creases for resistance values up to d = 0.8. At d = 0.8 the maximum angle of

deflection α = 55◦. However, after this point the size of the maximum angle of

deflection begins to decrease, at a drag coefficient of d = 2 the maximum angle of

deflection is only α = 14◦. All results from Figures 4.9 and 4.10 are summarized in

table 4.3. α+ denotes the maximum angle of deflection for the constant-K control

(4.1), αt denotes the maximum angle of deflection for the time-K control (4.2).
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d 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

α+ 39 38 36 34 31 28 24 21 18 14 13

αt 44 48 51 53 55 35 29 24 21 16 14

Table 4.3: Maximum Angle of Deflection α for both Controllers with Varying Drag

The time-K control (4.2) has a larger cone of straight initial conditions (4.7)

that are successful (4.5) for every different drag coefficient. It even improves under

certain smaller forces of drag d = [0, 0.8], before the coefficients get too large and

the cone’s size decreases d > 0.8. If the goal is to attain the largest valid region of

these successful straight initial conditions, in all of which the DPIC is successfully

controlled to the pendulum-up position (4.4), the time-K control (4.2) is a better

controller than the constant-K control (4.1).
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5.1 Conclusion

This thesis has shown that, for parameters from [9], the nonlinear Double Pendulum

Inverted on a cart 1.6 can be controlled by linear controllers u(t) = K+x(t) and

u(t) = K(t)x(t) from (4.1) and (4.2) in section 4. Using results in section 2.1 the

linear version of the nonlinear DPIC system is controllable. The time-K control

(4.2), derived from solving the Riccati differential equation (3.8), performs better

under resistance forces d, and has a larger maximum angle of deflection α. However,

it is not fast, neither objectively nor computationally. Time taken to get to the

pendulum-up position (4.4) with accuracy (4.5) tf is slower than the tf for the

constant-K control (4.1). Computation time τt for the time-K control is also larger

than the computation time for the constant-K control τ+, see table 4.2. Solving the

Riccati differential equation (3.8) numerically is slower than using Theorem 3.2.5 to

solve the algebraic Riccati equation (3.9). The only time it would be beneficial to

use the time-K control (4.2) would be if the initial angle was large θ ≥ 40◦ in (4.7)

or the resistance values where time-K control performance increases 0.2 ≤ d ≤ 0.8.

Even then one would have to accept huge delays in computation time τ and ob-

jective time tf . Therefore, the algebraic Riccati equation (3.9) and the algorithm in

which it is solved, MATLAB’s care function in section 3.2.2, is a fast and reliable

solution for finding a Linear Quadratic Regulator for the DPIC control problem (1.6).

When used in the nonlinear system it can be relied upon to produce quick efficient

results. This result helps explain why the ARE is still used today in many control

problems [9][24].
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5.2 Future Work

To enhance this thesis and the particular control methods used, it would be inter-

esting to use the maximum angle of deflection α result to determine a new state to

linearize about and return to, say θ = 30◦, deriving an LQR control and a respective

new maximum angle of deflection for θ = 30◦. This process could be completed

multiple times creating a chain of linear controls for the entire state, moving through

each region and the corresponding controllers. However this process may not be op-

timal as there is only optimal control within each linear region and its corresponding

LQR controller, there may be a control which is sub-optimal for each region but

optimal when considering the whole trajectory.

Furthermore, the time-K control (4.2) could be improved by solving the Ric-

cati equation with time-dependent A and B giving a full State-Dependent Riccati

Equation Control (SDRE), which would perhaps perform better when compared to

constant-K control (4.1). There are also other types of control than the linear closed-

loop controls used in this thesis. Neural Networks are also used in modern control

problems [9], these Neural Networks can even be integrated into LQR and SDRE

methods to improve performance [9].

Another consideration that was not explored in this thesis was observability 2.1.2.

Dual to controllability [1], full observability is the notion that all of the state compo-

nents can be determined based on the information in the output [17]. It was assumed

in this thesis that we can directly measure each component of the state 2.2.3. If not,

we would have to prove that system (2.5) is observable using the observability matrix

S from theorem 2.1.4. Observability also effects the optimal control, using the basic

Riccati differential equation (3.6) instead of the ARE (3.9) or the differential Riccati

equation (3.8), complicating the solution process.
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Appendix A

Derivation of the Maximum

Principle, Theorem 3.1.1

Firstly assume u(t) is optimal. Make a small change in u(t) and determine the

corresponding change in the objective J . This change should be negative, non-

improving as the original u(t) is optimal. However, complications arise here because

changing the control u(t) will change the state vector x(t). To overcome this problem

employ a ‘trick’ to the objective function. Define a new modified objective function

J̃ = J −
∫ t1

0

λ(t)T
[
ẋ(t)− f(x(t),u(t))

]
dt

This function gives more freedom because the term within the square brackets is

zero for any state trajectory x(t). Therefore, for any choice of λ(t), J̃ = J where

x(t),u(t) satisfy the differential equations and initial conditions in the basic optimal

control problem. Now consider the problem maximizing J̃ instead of J . The added

choice of λ(t) helps simplify the problem. For convenience, define the Hamiltonian

function, note λ,x,u are all functions of t,

H(λ,x,u) = λT f(x,u) + l(x,u)
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Now express J̃ in terms of H

J̃ = J −
∫ t1

0

λT
[
ẋ− f(x,u)

]
dt

J̃ =

(
φ(x(t1)) +

∫ t1

0

l(x,u)dt

)
−
∫ t1

0

λT ẋ− λT f(x,u)dt

J̃ = φ(x(t1)) +

∫ t1

0

[
λT f(x,u) + l(x,u)− λT ẋ

]
dt

J̃ = φ(x(t1)) +

∫ t1

0

[
H(λ,x,u)− λT ẋ

]
dt

Now suppose that one specifies a nominal control u ∈ U , and thus determines a

corresponding state trajectory x. Now consider a small change to a new control

v(t) ∈ U . The absolute value of difference is small in the L1-norm for each component

of control.∫ t1

0

|ui(t)− vi(t)|dt < ε ∀i ∈ {1, 2, ...,m}

However, the actual change can be large over a very short time interval. The new

control v(t) leads to a new state trajectory, denote as x(t)+ δx(t). δx(t) is small for

all t because the state depends on the integral of the control function. There is also

a corresponding change in the modified objective, denote this with δJ̃ .

δJ̃ = φ(x(t1)+ δx(t1))−φ(x(t1))+
∫ t1

0

[
H(λ,x+ δx,v)−H(λ,x,u)−λT δẋ

]
dt

Calculating the final term by integrating by parts yields∫ t1

0

λT δẋdt = λT (t1)δx(t1)− λT (0)δx(0)−
∫ t1

0

λ̇
T
δx

Therefore

δJ̃ = φ(x(t1) + δx(t1))− φ(x(t1))− λT (t1)δx(t1) + λT (0)δx(0)

+

∫ t1

0

[
H(λ,x+ δx,v)−H(λ,x,u) + λ̇

T
δx
]
dt
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Now approximate the Hamiltonian expressions within the integral to first-order using

Taylor expansion.

=

∫ t1

0

[
H(λ,x+ δx,v)−H(λ,x,u)

]
dt

=

∫ t1

0

[
H(λ,x+ δx,v)−H(λ,x,v) +H(λ,x,v)−H(λ,x,u)

]
dt

≈
∫ t1

0

[
Hx(λ,x,v)δx+H(λ,x,v)−H(λ,x,u)

]
dt

≈
∫ t1

0

[
Hx(λ,x,u)δx+ (Hx(λ,x,v)−Hx(λ,x,u))δx

+H(λ,x,v)−H(λ,x,u)
]
dt

≈
∫ t1

0

[
Hx(λ,x,u)δx+H(λ,x,v)−H(λ,x,u)

]
dt

Substituting this into the expression for δJ̃ and using a differential approximation

to the first two terms in this expression yields

δJ̃ =
[
φx(x(t1))− λT (t1)

]
δx(t1) + λT (0)δx(0) +

∫ t1

0

[
Hx(λ,x,v) + λ̇

T ]
δxdt

+

∫ t1

0

[
H(λ,x,v)−H(λ,x,u)

]
dt+O(ε2)

Now simplify the above by selecting λ(t) properly. Note here that δx(0) = 0 since

the control function change cannot alter the initial state. Choose λ(t) as the solution

to the adjoint differential equation.

−λ̇(t)T = Hx(λ(t),x(t),u(t))

Or, more explicitly

−λ̇(t)T = λ(t)T fx(x(t),u(t)) + lx(x(t),u(t))

with final condition

λ(t1)
T = φx(x(t1))
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fx(x(t),u(t)) is a n × n matrix which is time-varying. However, it is known for

nominal x,u. lx(x(t),u(t)) is a known, time-varying, n-dimensional row vector.

Therefore the system above is a linear, time-varying, differential equation in the

unknown row vector λ(t)T , with a final condition on λ(t1)
T . Thus consider solving

the adjoint equation by moving backward in time from t1 to 0. This determines a

unique solution λ(t). With this new λ(t), δJ̃ becomes

δJ̃ =

∫ t1

0

[
H(λ,x,v)−H(λ,x,u)

]
dt+O(ε2)

If the original control function u is optimal, then for all t,

H(λ,x,v) ≤ H(λ,x,u) ∀v ∈ U

Theorem A.0.1 (Maximum Principle). Suppose u(t) ∈ U is the optimal control and

x(t) is the state trajectory for the optimal control problem. Then there is an adjoint

trajectory λ(t) such that x,u,λ satisfy

ẋ(t) = f(x(t),u(t))

x(0) = x0

−λ̇(t)T = λ(t)T fx(x(t),u(t)) + lx(x(t),u(t))

λ(t1)
T = φx(x(t1))

∀ 0 ≤ t ≤ t1

Hu(λ,x,u) = 0
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