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Abstract

We consider standard error of the method of simulated moment (MSM) estimator

for generalized linear mixed models (GLMM). Parametric bootstrap (PB) has been

used to estimate the covariance matrix, in which we use the estimates to generate

the simulated moments. To avoid the bias introduced by estimating the parame-

ters and to deal with the correlated observations, (Lu, 2012) proposed a multi-stage

block nonparametric bootstrap to estimate the standard errors. In this research, we

compare PB and nonparametric bootstrap methods (NPB) in estimating the stan-
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dard errors of MSM estimators for GLMM. Simulation results show that when the

group size is large, NPB and PB perform similarly; when group size is medium, NPB

performs better than PB in estimating the mean. A data application is considered

to illustrate the methods discussed in this paper, using productivity of plantation

roses. The data application finds that, the person caring for the roses is associated

with the productivity of those beds. Furthermore, we did an initial study in applying

random forests to predict the productivity of the rose beds.
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Chapter 1

Introduction

General linear mixed models (GLMMs) are extensions of the generalized linear model,

introduced by (McCullagh & Nelder, 1989). GLMMs integrate random effects into

the fixed portion of the model. However, correlated observations within GLMMs

present a computational difficulty in solving the maximum likelihood estimator, due

to the high-dimensional integrals in the likelihood function. Therefore, approxima-

tion methods are used to solve the parameters of interest, for example, approximat-

ing the data (Penalized quasi-likelihood (PQL)), approximating the integral, and

approximating the moments (MSM) etc.

Penalized quasi-likelihood (PQL) approach (Breslow & Clayton, 1993) is a com-

monly used estimation procedure for GLMM. However, it has been noticed that PQL

tends to underestimate variance components as well as regression coefficients. Lin
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Chapter 1. Introduction

and Breslow (1996) proposed bias corrected PQL approach for solving the likeli-

hood estimators. However, Jiang (1998) showed that the estimators from the above

two methods are both inconsistent. Method of simulated moments (MSM) is an

extention of method of moments that could be used to estimate the parameters for

GLMM, which approximates the moments by Monte Carlo simulation when direct

computation are not possible. Jiang (2009) showed that MSM estimator of GLMM

is consistent; the precision and efficiency of the MSM estimator are competitive to

PQL type estimator while the computation is relatively simple.

The bootstrap method was introduced by Efron (1979). Since then, there have

been enormous applications and adaptations of bootstrap method for inference prob-

lems under various data generating mechanisms. For example, Krishnamoorthy, Lu,

and Mathew (n.d.) introduced PB method for testing equality of factor means in

one-way ANOVA. Zhang (2015(a), 2015(b)) investigated the multiple comparison

problems in one way and two way ANOVA with unequal variances and unequal group

sizes. Jiang (2009) suggested a parametric bootstrap for estimating the covariance

matrix for MSM estimators for GLMM. Kunsch (1989) proposed block bootstrap for

analyzing the time series data sets. Liu and Singh (1992) independently suggested

“Moving Block Bootstrap” (MBB). Lu (2012) proposed a two-stage block nonpara-

metric bootstrap to estimate the standard errors of MSM estimators for GLMM.

Hall (1992), Davison and Hinkley (1997), Shao and Tu (1995) and Lahiri (2003)

2



Chapter 1. Introduction

have thoroughly discussed different aspects of the bootstrap method.

The interest of this study is to compare the performance of two methods (Jiang,

2009 and Lu, 2012) in estimating standard error of MSM estimators for GLMM with

an application to productivity of plantation roses via GLMM and random forests.

This thesis is organized around 4 sections: in Section 2, a background on the the-

ory behind general linear models, generalized linear models, linear mixed models,

generalized linear mixed models, random forests, and standard error estimation of

GLMMs; Section 3 is dedicated opt the simulation comparison between PB and NPB

bootstrap estimation. We first review the procedure for both methods, then follow

with the results of the simulation. The results depend on the group size; when group

size is medium, NPB performs better than PB when estimating the mean; on the

other hand, PB performs better than NPB in estimating the variance (when group

size is medium). When group size is large, both PB and NPB perform similarly in

estimating both the mean and standard deviation. Next, we introduce the rose data

and demonstrate selected methods PB and NPB in a data application, followed by

an application of the random forests in predicting the productivity of the rose data.

The last section is a conclusion and considerations for future research.

3



Chapter 2

Background

2.1 General Linear Model

A general linear model refers to the potential linear dependency of the outcome/response

on more than one explanatory variable, compared to the simple linear model. A gen-

eral linear model has the form:

Yi = β0 + β1Xi1 + · · ·+ βpXi(p−1) + ϵi (2.1)

where the response Yi, (i = 1, 2, · · · , n) is modeled by a linear function of the ex-

planatory variables Xj; j = 1, · · · , p− 1 plus an error term. The systematic portion

of the model may be written as

E(Yi) = µi = β0 +

p−1∑
j=1

Xijβj; i = 1, · · · , n (2.2)

4



Chapter 2. Background

where Xij is the value of the jth covariate for the observation i. We can also write

this relationship in matrix form:

Y = Xβ + ϵ,

where X is called a design matrix with the ith row X′
i = (1, Xi1, · · · , Xi(p−1)), i.e.,

X =



1 X11 · · · X1(p−1)

1 X21 · · · X2(p−1)

...
...

...
...

1 Xn1 · · · Xn(p−1)


,

β is an p× 1 vector of population parameters:

β =



β0

β1

...

βp−1


,

Y is an n× 1 vector of responses:

Y =



Y1

Y2

...

Yn


,
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Chapter 2. Background

and ϵ is an n× 1 vector of error terms:

ϵ =


ϵ1

...

ϵn

 .

The general linear model assumes that the errors ϵi are independent and iden-

tically distributed, such that E[ϵi] = 0 and var[ϵi] = σ2, where the variance σ2 is

assumed to be constant. We also assume that the errors follow a normal distribution:

ϵi ∼ N(0, σ2) as a basis for inferential tests.

Take for example modeling monthly productivity at a rose plantation. The con-

tinuous outcome productivity, as measured by the number of exportable rose stems

cut from each flower bed, could be modeled as a linear function of relative humidity,

temperature, etc.. The general linear model may look like this:

Productivity = β0 + β1(RelativeHumidity) + β2(Temperature) + ϵ

General linear models are very useful for a variety of situations, but do come with

some restrictions. General linear models are not appropriate when the range of Y is

restricted, as with binary or count variables.

6



Chapter 2. Background

2.2 Generalized Linear Models

In this section, we will first review Generalized Linear Models. Next, we will review

the maximum likelihood estimators for GLM.

Review of Generalized Linear Models

Generalized linear models extend the general linear model framework to address the

issue of restricted range of Y. For example, the outcome Yi is binary with 0 or

1. X1, X2, · · · , Xp−1 are explanatory variables defined as before. E(Yi) = µi for

i = 1, 2, · · · , n. For the n independent observations, the distribution of each Yi is is

an exponential family with density

f(Yi, θi, ϕ) = exp

{
Yiθi − b(θi)

ai(ϕ)
+ c(Yi, ϕ)

}
,

where θi is usually called a natural or canonical parameter and ϕ is a scale parameter

(known or seen as a nuisance) and ai(ϕ), b(θi), and c(Yi, ϕ) are known functions.

It can then be shown that Yi has mean and variance as follows

E(Yi) = µi = b′(θi) (2.3)

var(Yi) = σ2
i = b′′(θi)ai(ϕ)

where b′(θi) and b′′(θi) are the first and second derivatives of b(θi). When ai(ϕ) =
ϕ
pi
,

7



Chapter 2. Background

where pi is a known prior weight, usually 1. The variance has the simpler form

var(Yi) = σ2
i = ϕb′′(θi)/pi.

The variance of Yi is thus the product of two functions; the first, b′′(θi) is dependent

on the mean via the canonical parameter and is known as the variance function. The

other function depends only on ϕ, and is independent of θi.

Generalized linear models are characterized by three parts: the random compo-

nent, the systematic component, and a link function. The generalization portion of

the linear model is the link function. Instead of modeling the mean, as in the gen-

eral linear model, we introduce a one-to-one continuous differentiable transformation

g(µi) such that

ηi = g(µi). (2.4)

Examples of the link function include log, reciprocal, logit, and probit. The logistic

link function is given as:

g(x) = ln
x

1− x
.

We further assume that the transformed mean follows a linear model, so that

ηi = X′
iβ = β0 + β1Xi1 + · · ·+ βp−1Xi(p−1).

ηi is called the linear predictor. Given the simplicity of the model of ηi, we can invert

8



Chapter 2. Background

it to obtain

µi = g−1(X′
iβ)

The response Yi is not transformed, but rather the expected value of µi.

When the link function equates the linear predictor ηi and the canonical param-

eter θi, we say that the link is canonical. Specifically, we have,

g(µ) = η = θ. (2.5)

It can be shown from (2.3) that

θ = (b′)−1(µ). (2.6)

By the results of (2.5) and (2.6), we have g = (b′)−1. This link is called canonical

link.

For the normal distribution, the canonical link is the identity link. Each distri-

bution has its own canonical link, although different pairings between distributions

and links are possible. A canonical link is advantageous in that it allows for the

existence of minimally sufficient statistic β.

Take for example a binary logistic regression model of the rose data. Suppose we

want to model low or high productivity, where high productivity represents the top

15 percent of productivity values. The explanatory variables remain the same as in

9



Chapter 2. Background

the general linear model. The model is:

ln

(
P (HighProductivity)

1− P (HighProductivity)

)
= β0+β1(RelativeHumidity)+β2(Temperature),

which models the log odds of probability of “success” (high productivity) as a func-

tion of the explanatory variables. The systematic component of the model is com-

posed of the explanatory variables, which can be continuous or discrete; the random

component refers to the Binomial(n, p) distribution of Y ; and the link function is the

logistic link described above.

Maximum Likelihood Estimation

The defining feature of Generalized Linear Models is that data are all fit with the

same algorithm, with a form of iteratively re-weighted least squares. Given a trial

estimate of the parameters β, say β̂(0), we calculate the estimated linear predictor

X′β̂(0) and use this to obtain fitted values µ̂i = g−1(X′β̂(0)). Using this estimation,

the working dependent variable can be calculated

zi = η̂i + (yi − µ̂i)
dηi
dµi

, (2.7)

where the term dηi
dµi

is the derivative of the link function. Now we can calculate the

iterative weights

wi = pi/[b
′′(θi)(

dηi
dµi

)2], (2.8)

10



Chapter 2. Background

where b′′(θi) is the second derivative of b(θi) evaluated at the trial estimate, when

ai(ϕ) is assumed to have the usual form ϕ
pi
. The weight is inversely proportional to the

variance of zi, the dependent variable, given the current estimates of the parameters,

with proportionality factor ϕ. Using the dependent variable zi, the weights wi, and

the predictors Xi, we calculate the weighted least-squares estimate

β̂ = (X′WX)−1X′Wz,

where X is the model matrix, W is a diagonal matrix of weights with entries wi given

by (2.8) and z is a response vector with entries zi given by (2.7). The procedure is

iterative, and repeated until estimates vary by less than a pre-specified amount.

This technique leads to maximum likelihood (ML) estimates (McCullagh and Nelder

1989). Nelder and Wederburn (1972) were the first to extend the fitting of generalized

linear models to deal with maximum-likelihood estimation for exponential-family

models.

2.3 Linear Mixed Effects Models

Mixed model methodology extends the general linear model to data that have a com-

plex, multilevel, or hierarchal structure. Observations between levels or clusters are

independent of one another, but observations within clusters or levels are correlated.

A common example of this structure is assessments nested within individuals, or

11



Chapter 2. Background

classrooms within schools. The strength of the mixed model is the ability to model

these complex data by the inclusion of multilevel random effects. Since this section,

we slightly changed some of the notations, such as, Y to y, Xi to xi to make the

notation be consistent with those in Jiang (2009). The notation in this section will

remain the same until the end of the thesis.

The linear mixed effects (LME) model can be expressed generally as

y = Xβ + Zα+ ε, (2.9)

where y = (y1, y2, · · · , yn) is an n × 1 vector of observations, β is a p × 1 vector

of parameters defined as before; α is an m × 1 vector of random effects with α =

(α1, α2, · · · , αm)
′. ε is an n× 1 vector of errors; X is an n× p design matrix; Z is an

n×m design matrix defined as follows:

Z =



1 z11 · · · z1m

1 z21 · · · z2m

...
...

...
...

1 zn1 · · · zn(m)


,

or in some textbooks (such as Demidenko (2005)),

Z =


Z1 0 0

0
. . . 0

0 0 Zq

 ,

12



Chapter 2. Background

where Zi is the ni ×mi design matrix, with
∑q

i=1 ni = n and
∑q

i=1 mi = m.

Assume that α is multivariate normal with mean 0 and covariance matrix G, and

ε is multivariate normal with mean 0 and covariance matrix R. It is also assumed

that α and ε are uncorrelated. For a special case R = τ 2I, given α, the observations

y1, y2, ..., yn are conditionally independent such that

yi ∼ N(x′
iβ + z′iα, τ 2),

where xi and zi are the ith row of the design matrices X and Z respectively. Through

this article, the responses yis are correlated in nonoverlapping blocks (or strata, clus-

ters or groups) related to certain random effect αr. We assume that the population

blocks are all essentially infinite. The distribution of yi does not depend on ni,

the size of the sample taken from the ith block. The variance-covariance matrix

of the random effects G and R can be estimated either by maximum likelihood,

or quadratic non-iterative distribution-free estimators, including MINQUE, variance

least squares, and method of moments (Demidenko, 2005).

Consider the rose data as an example, again with a continuous outcome. Here,

we augment the general linear model with a random effect on cutters, because we

want to see if there are variabilities among the cutters regarding the productivity.

The model looks like:

Productivity = β0 + β1(RelativeHumidity) + β2(Temperature) + (Cutter) + ϵ

13



Chapter 2. Background

This model accounts for the random effect on cutter, to control for any heterogeneity

observed between cutters, while retaining relative humidity and temperature as fixed

effects of primary interest.

2.4 Generalized Linear Mixed Models

Generalized linear mixed models (GLMMs) are extensions of the generalized linear

mixed model family (McCullagh & Nelder, 1989), whereby random effects of the

predictors are incorporated to account for the restricted range responses. This ap-

proach is especially useful for multilevel data, or models in which random cluster

and/or subject effects need to be taken into account. Mixed models for the con-

tinuous normal outcomes have been developed extensively. Development have been

made with nonnormal data as well, and both normal and non-normal data fall under

the rubric of GLMMs.

GLMM is an extension of the general linear mixed models, in which the responses

are correlated and categorical. Given a vector of random effects α, the responses

y1, y2, ..., yn are conditionally independent such that the conditional distribution of yi

given α is a member of the exponential family with the following probability density

function

f(yi|α) = exp

(
yi ∗ ξi − b(ξi)

ai(ϕ)
+ ci(yi, ϕ)

)
(2.10)

14



Chapter 2. Background

where ϕ is a dispersion parameter and a(·), b(·) and c(·) are known functions. ξi

is associated with the conditional mean µi = E(yi|α) , which is associated with a

linear predictor ηi = x′
iβ + z′iα through a known link function g(·) with g(µi) = ηi.

According to the properties of the exponential family, one has b′(ξi) = µi. Under the

canonical link, one has ξi = ηi, that is, g = h−1 where h(·) = b′(·), h−1 represents

the inverse function of h.

Let’s turn to an example. Recall the previous example of the rose productivity

data. Suppose we want to model low or high productivity, where high productivity

represents the top 15 percent of productivity values. Let i denote the ith cutter and

j denote the flower beds gathered in by the ith cutter. Assume i = 1, · · · ,m cutters

and j = 1, · · · , ni repeated observations (flower beds) nested within each cutter. The

linear predictor ηij can be written as

ηij = β0 + β1(RelativeHumidity) + β2(Temperature) + (Cutter),

therefore, the GLMM is:

ln

(
P (HighProductivity)

1− P (HighProductivity)

)
= ηij

= β0 + β1(RelativeHumidity) + β2(Temperature) + (Cutter)

where cutter is the random effect used to control for any heterogeneity observed be-
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tween cutters, while retaining relative humidity and temperature as fixed effects of

primary interest. This models the log odds of probability of ”success” (high produc-

tivity) as a function of the explanatory variables. The outcome has Binomial(n, p)

distribution, and the link function is the logistic link.

2.5 Random Forest

Random forests as an idea are a subset of machine learning, which allow for auto-

mated decision making. Preceding random forests were procedure such as bagging

(Breiman, 1996) and random split selection (Dietterich, 1998). The term random

forest refers to an ensemble (or forest) of decision trees, grown from a variant of the

nodes. The “randomness” in random forests is introduced at each node when de-

termining the split. These trees are non-parametric, meaning that they can “model

arbitrarily complex relations between inputs and outputs, without any a priori as-

sumption” (p.26) Louppe (2014). They are able to handle ordered data or categorical

data, or a mix of both; are robust to outliers and errors; minimize noise in variables

to exclude irrelevant data; and are easily interpretable. The theory of random forest

comes from use of the strong law of large numbers, which shows that the random

forests always converge and therefore overfitting is not a concern Breiman (2001).

The accuracy of a random forest depends on the strength of the individual tree
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classifiers, and their interdependence Amit and Geman (1997).

Take the rose data as an example: we are interested in whether high or low

productivity is influenced by a variety of factors; the random forest takes in our

independent variables (cutter, temperature, pests, etc) and uses each of those in

estimating a node in the individual trees. We can see the overall accuracy of the

forest and the importance of each variable in predicting productivity.

2.6 Method of Simulated Moments for GLMM

Method of moments (MoM) is another way used to estimate the parameters for

GLMMs. The MoM begins with obtaining a set of estimating equations by equating

sample moments of the sufficient statistics to their expectations. These expecta-

tions usually involve integrals, the highest dimension of which equals the number of

sources of random effects Jiang (1998). The evaluation of the integrals may not be

possible, therefore, a method of simulated moments (MSM) may be considered as an

approximation. MSM was introduced by McFadden (1989) and applies to situation

in which the theoretical moment function cannot be expressed. MSM approximates

the moments by Monte Carlo simulation when direct computation of the moments

are not possible. Jiang (2009) showed that MSM estimator of GLMM is consistent;

furthermore, the MSM estimators are computationally simpler and comparable in
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efficiency and precision to the PQL type estimators.

The following is a description of the general results of MSM estimator for GLMM

. Much of this notation is from Jiang (2009). Assume that the conditional density

of yi given the vector of random effects α has the following form,

f(yi|α) = exp[(wi/ϕ){yiξi − b(ξi)}+ ci(yi, ϕ)],

where ϕ is a dispersion parameter, and wi’s are known weights with

wi(x) =


1, for ungrouped data

ni, for grouped data if the response is an average

1/ni, response is a group sum.

b(·) and ci(·, ·) are known functions. For ξi, we assume a canonical link ηi = ξi. Let

α = (α′
1, · · · ,α′

q)
′, where αr is a mr × 1 random vector (with m1 +m2 + · · ·+mq =

m) whose components are independently distributed as N(0, σ2
r), 1 ≤ r ≤ q. For

convenience, let

α = Du (2.11)

where D is blockdiagonal with the diagonal blocks σrImr , 1 ≤ r ≤ q, and u ∼

N(0, Im).

Suppose the linear predictor associated with the link function is Xβ + Zα. Z is

an n ×m design matrix. Let Zr be an n ×mr design matrix of random effects αr,

so that Z = (Z1, · · ·Zq). For simplicity, we assume that Zr, 1 ≤ r ≤ q are standard
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design matrices that each Zr consists only of 0s and 1s, and there is exactly one 1

in each row and at least one 1 in each column. We denote the ith row of Zr by

z′ir = (zirl)
′ with 1 ≤ i ≤ n and 1 ≤ l ≤ mr. We have |zir|2 = 1 and for s ̸= t,

z′srztr = 0 or 1.

Let Ir = {(s, t) : 1 ≤ s ̸= t ≤ n, z′srztr = 1} = {(s, t) : 1 ≤ s ̸= t ≤ n, zsr = ztr}.

Let Xj be the jth column of design matrix X. W = diag(wi, 1 ≤ i ≤ n). Let

θ = (β′, σ1, · · · , σq), u = (u′
1, · · · ,u′

q)
′ with ur = (url)1≤l≤mr , ur ∼ N(0, Imr).

e(θ,u) = {b′(ξi)}1≤i≤n with ξi =
∑p

j=1 xijβj+
∑q

r=1 σrz
′
irur. Thus, the MM equations

that do not involve ϕ are given by

n∑
i=1

wixijyi = X′
jWE{e(θ,u)}, 1 ≤ j ≤ p, (2.12)

∑
(s,t)∈Ir

wswtysyt = E{e(θ,u)′WHrWe(θ,u)}, 1 ≤ r ≤ q, (2.13)

where the expectations on the right-hand sides are with respect to u ∼ N(0, Im).

We approximate the right-hand sides by a simple Monte Carlo simulation. Let

u(1), · · · , u(L) be generated i.i.d. copies of u, the right side of (2.12) and (2.13)

can be approximated by Monte Carlo averages X′
jW[ 1

L

L∑
l=1

e{θ,u(l)}], 1 ≤ j ≤ p and

1
L

L∑
l=1

e{θ,u(l)}′WHrWe{θ,u(l)}, 1 ≤ r ≤ q.
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2.7 Standard Error Estimation of GLMM

The primary difficulty in implementing full likelihood inference lies in the integrations

needed to evaluate the quasi-likelihood ql; hence, we can turn to penalized quasi-

likelihood estimation (PQL) (Breslow & Clayton, 1993). PQL estimation (Breslow

& Clayton, 1993) and bias corrected PQL estimation (Lin & Breslow, 1996) have

been popular solutions for addressing this problem; however, these methods have

been shown to yield inconsistent estimators (Jiang, 1998).

Parametric Bootstraping (PB) resample a known distribution function, whose

parameters are estimated from the sample. A problem of parametric bootstrap is

that the estimators are used to generate the simulated moments instead of the true

parameters, in which bias was introduced by estimating the parameters. The basic

idea of non-parametric bootstrapping (introduced by Efron (1979)) is to estimate

population parameters via simulation; nonparametric bootstrapping involves sam-

pling with replacement from the observed data, without making assumptions as to

the sampling distribution. The random samples are the same size as the sample

itself that it draws from. Samples are taken B times, resulting in a sampling vector

which consists of 1 × B samples. The standard errors may then be estimated over

all samples. There have been numerous applications and variations of bootstrap

methodology for interference problems. These aspects have been discussed by Hall
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(1992), Davison and Hinkley (1997), Shao and Tu (1995) and Lahiri (2003).

2.7.1 Variance Estimation of MSM Estimators Using PB

Standard errors can be estimated easily with PB; however, this estimated standard

error is also easily influenced by the parameter estimates used when generating sim-

ulated moments. Let θ̂ be the MSM estimator of θ = (β′, σ1, σ2, ...σq), and M(θ) be

the vector of moments. Let ϑ̂ be the MSM estimator of ϑ = (β′, σ2
1, σ

2
2, ...σ

2
q ), where

ϑ is a function of θ. By Taylor theorem,

M̂(θ̂) ≈ M(θ) + Ṁ(θ)J−1(θ)(ϑ̂− ϑ)

where Ṁ is the matrix of first derivatives and J(θ) = diag(1, ..., 1, 2σ1, ..., 2σq). The

covariance matrix of ϑ̂ is derived as follows

Var(ϑ̂) ≈ J(θ)Ṁ(θ)−1Var(M̂)
(
Ṁ(θ)−1

)T

J(θ).

The simulated moments can be used to estimate Ṁ(θ) and a parametric bootstrap

may be used to estimate the covariance matrix of M̂ . Generate K bootstrap samples

from the GLMM using θ̂ and compute the sample moments for all bootstrap samples.

Take Mk(θ̂) = (Mk
1 ,M

k
2 , ...M

k
s ) for the kth bootstrap sample, and then

V̂ ar(M̂) =
1

K − 1

K∑
k=1

(Mk − M̄∗)(Mk − M̄∗)T

where M̄∗ = 1
K

∑K
k=1M

k.
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2.7.2 Variance Estimation of MSM Estimators Using Block

NonParametric Bootstrap (NPB)

For correlated observations, such as those observed in GLMM, single observation

resampling fails to work. Block bootstrapping for time series data sets was first pro-

posed by Kunsch (1989). Many block bootstrap techniques have been proposed since

then: Liu and Singh (1992) (Carlstein, 1986) (Politis & Romano, 1992) (Carlstein,

Do, Hall, Hesterberg, & Kunsch, 1998) (Paparoditis & Politis, 2001). Lu (2012)

proposed a block bootstrap for use in MSM estimators for GLMM; a review of the

procedure follows.

Consider a general GLMM,

g(µ) = Xβ + Zα, (2.14)

and a simple blocked sample

y1 : y11, y12, · · · , y1n1 ,

y2 : y21, y22, · · · , y2n2 ,

...

yt : yt1, yt2, · · · , ytnt ,

where t is number of groups with
∑t

i=1 ni = n, i = 1, 2, · · · , t. The following gives

a procedure of nonparametric block bootstrap standard error estimation for MSM

estimators:
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Step 1: Sample t numbers from 1 to t with replacement, say t1, t2, · · · , tt. ti may

be equal to tj since sampling is with replacement.

Step 2: Sample nt1 observations from yt1 ; nt2 observations from yt2 etc until ntt

observations from ytt with replacement to form a block bootstrap sample.

Step 3: Calculate MSM estimators of µ and σ2 for the bootstrap sample by

equations (2.12) and (2.13). The right side of equations was approximated by a

simple Monte Carlo simulation introduced in Section 2.6.

Step 4: Repeat step 1 and 3 L times. Calculate the sampling variance of the

MSM estimates from the L bootstrap samples.
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Proposal: Comparison of PB and

NPB Bootstrap Estimation

In this section, we perform simulation studies to compare the PB and nonparametric

bootstrap in estimating the standard errors of MSM estimators for GLMM. Simula-

tion results are given in Tables (3.1), (3.2) and also in Figures (3.1), (3.2), (3.3) and

(3.4). Logistic normal model (4.1) is used in simulation study:

logit(P (Yij = 1)) = µ+ αi, (3.1)

where 1 ≤ i ≤ m (in this case, number of groups t is equal to the number of random

effectsm), 1 ≤ j ≤ ni for each i, ni is the number of observations within each group i,
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and α′
is are i.i.d. normally distributed random variables with mean zero and variance

σ2. For simplicity, we assume that ni = k, for i = 1, 2, · · · ,m. Simulation set up

mainly follows from Jiang (2009):

(1) Set µ = .2, σ = 1, m = 30 and k = 6. Generate a sample by (4.1);

(2) Find MSM estimates for µ and σ2 for the bootstrap samples. The MM estimating

equations by (2.12) and (2.13) for logistic normal model (4.1) are as follows,

1

m

m∑
i=1

yi. = E(yi.),

and

1

m

m∑
i=1

y2
i. = E(y2

i.),

where E(yi.) = kE(f(u)), E(y2
i.) = kE(f(u)) + k(k − 1)E(f 2(u)), f(u) = exp(µ +

σu)/(1 + exp(µ+ σu)). Recall that u is a standard normal random variable. Gener-

ate a sequence of standard normal random variables, u1, u2, ..., uL. The replication

number L for the simulated moments is set to 100. We approximate the expectations

by

E(f(u)) =

∑L
i=1 f(ui)

L

and

E(f 2(u)) =

∑L
i=1 f

2(ui)

L
.

The MSM estimators of µ and σ can be solved from the system MM estimating

equations.
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(3) Find parametric bootstrap variance estimators Parametric ŜE(µ̂) and Parametric ŜE(σ̂2)

(refer to Section 2.7.1);

(4) Find nonparametric block bootstrap variance estimates Nonparametric ŜE(µ̂)

and Nonparametric ŜE(σ̂2) (refer to Section 2.7.2), the replication number is 200

for this step;

(5) Repeat steps (1) to (4) for n = 1000 replications, record the average values of the

MSM estimators (µ̂ and σ̂2), standard errors (ŜE(µ̂) and ŜE(σ̂2)), parametric boot-

strap standard errors and nonparametric block bootstrap standard errors of MSM

estimators;

(6) Repeat steps (1) to (5) for different settings with m = 30, k = 20; m = 80,

k = 6 and m = 80, k = 20. Table 3.1 gives the results. Figures (3.1) and (3.2) are

representation of Table 3.1.

(7) Repeat steps (1) to (6) for µ = 1.0, σ = 1.0. Table 3.2 gives the results. Figures

(3.3) and (3.4) are representation of Table 3.2.

In both tables, µ̂ and σ̂2 are the average values of the MSM estimates from the

1000 replications. They are considered as the true mean and variance. SE(µ̂) and

SE(σ̂2) are the average value of standard errors. They are considered as the true stan-

dard error estimates of µ̂ and σ̂2. Parametric ŜE(µ̂) and Parametric ŜE(σ̂2) are para-

metric bootstrap variance estimates. And Nonparametric ŜE(µ̂) and Nonparametric

ŜE(σ̂2) are nonparametric block bootstrap variance estimates. Numbers in paren-
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Table 3.1: Simulation results: µ = .2, σ = 1 in model (4.1)

m k µ̂ SE(µ̂) Parametric ˆSE(µ̂) Nonparametric ˆSE(µ̂)
30 6 .2022 .2545 .4929(5.2014) .2720(.0535)
30 20 .1927 .2096 .2032(.0338) .2260(.0356)
80 6 .2052 .1539 .1525(.0170) .1608(.0195)
80 20 .2066 .1311 .1252(.0129) .1334(.0144)

σ̂2 SE(σ̂2) Parametric ˆSE(σ̂2) Nonparametric ˆSE(σ̂2)
30 6 1.0563 .6423 .6098(.2675) .7736(.3720)
30 20 1.0021 .3999 .3633(.1338) .4689(.1668)
80 6 1.0271 .3560 .3617(.0906) .3990(.1047)
80 20 .9969 .2382 .2205(.0493) .2465(.0520)

thesis are the sample variances.

From Tables (3.1), (3.2) and Figures (3.1), (3.2), (3.3) and (3.4), we see that

both methods are acceptable in estimating µ and σ2. When the group size is large,

nonparametric bootstrap and PB perform similarly. We also notice that when group

size is medium, nonparametric bootstrap performs better than PB in estimating the

mean; while PB performs better than nonparametric bootstrap in estimating the

variance.
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Figure 3.1: Simulation results: µ = .2, σ = 1 in model (4.1)
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Figure 3.2: Simulation results: µ = .2, σ = 1 in model (4.1)
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Table 3.2: Simulation results: µ = 1.0, σ = 1.0 in model (4.1)

m k µ̂ SE(µ̂) Parametric ˆSE(µ̂) Nonparametric ˆSE(µ̂)
30 6 1.0088 .2889 .3610(2.0846) .2983(.0651)
30 20 .9804 .2205 .2078(.0358) .2359(.0391)
80 6 1.0064 .1777 .1649(.0206) .1734(.0236)
80 20 .9979 .1357 .1295(.01343) .1389(.0148)

σ̂2 SE(σ̂2) Parametric ˆSE(σ̂2) Nonparametric ˆSE(σ̂2)
30 6 1.033 .6921 .6505(.3116) .8211(.4504)
30 20 .9756 .4050 .3778(.1419) .4816(.1890)
80 6 1.0088 .3964 .3870(.1078) .4237(.1269)
80 20 .9968 .2418 .2352(.0533) .2611(.0613)

Figure 3.3: Simulation results: µ = 1.0, σ = 1.0 in model (4.1)
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Figure 3.4: Simulation results: µ = 1.0, σ = 1.0 in model (4.1)
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Chapter 4

Data Application

Throughout this document we have referred to the rose data. Here, we will introduce

more thoroughly the data and apply selected methods. The dataset in this paper

come from a commercial rose plantation located outside of Biblian, Ecuador, in the

province of Canar. The plantation began collecting data on flower productivity in

2009, and slowly added other variables of interest over the following years, including

flower bed number and length, flower variety, greenhouse conditions (temperature,

humidity, dew point), which worker was caring for and cutting the flowers, whether

plastic was applied, and pests and infections that the rose plants sometimes acquire.

By 2013, all of these variables were being collected for at least some of the greenhouses

(but not all of the greenhouses, due to cost and time restrictions). Figure 4.1, below,

shows an aerial view of the plantation.
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Figure 4.1: Trebol Roses Plantation.

Multiple flower varieties are housed in any greenhouse; between one and four-

teen flower varieties can be found in a single greenhouse. Similarly, multiple cutters

work within any greenhouse; at least 5 cutters are required, with a maximum of

12 cutters present in one greenhouse. Cutters may work in more than one green-

house; similarly, a popular flower variety may be grown in more than one greenhouse.

Figure 4.2: A cutter gathering stems.

Productivity, the main variable of in-

terest, was collected every month of the

year except for October and November.

The plants grow in 90-day cycles; due to

this, it is important that the plants rest
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for these two months in preparation for the heavy production required by Valentine’s

Day in February. Temperature, relative humidity, and dew point were collected ev-

ery 30 minutes. This data was aggregated to a monthly average. Different workers

are assigned to sets of flower beds. Workers, or cutters as we refer to them here,

are responsible for all aspects of care for the plants, including cutting the stems for

exportation. All cutters are trained in the same manner. The workers were assigned

to certain beds within greenhouses for one year.This could potentially change, but

often workers remained with the same assigned beds the following year. Worker

turnover is not a concern as working conditions and wages are good; therefore, many

of the same workers have remained with the plantation throughout the data collec-

tion period. Plastic is removed or added to all beds within greenhouses on certain

dates. This date is aggregated to the month level; for example, if plastic was changed

on 1/8/2014, it would be coded as a change during January of 2014. The variables,

productivity, flower variety, and worker were collected at the flower bed level. The

variables temperature, humidity, dew point, and plastic were collected at the green-

house level. The pest and infection variables were collected for flower varieties within

greenhouse. Productivity refers to the total number of exportable stems gathered

for each row of plants for a given month. After all of the potentially exportable

stems have been cut from the plants, they are then assessed for quality and counted

in post-production if they are chosen for exportation. Temperature is measured in

degrees Celsius, with low alarms at 0.0 degrees and high alarms at 40.0 degrees. Rel-
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ative humidity is the amount of water vapor present in air at a given temperature,

expressed as a percentage. Low alarms sound at 35.0, while a relative humidity of

85.0 triggers high alarms. Dew point is an indication of the amount of water in the

air, and is measured in degrees Celsius. Stem class was used to group flower varieties

together; categories were: less than 50 cm, 50 to 53 cm, 53 to 55 cm, 55 to 58 cm,

and 58 to 61 cm.

Figure 4.3: Inside one of the greenhouses.

A number of other variables are involved in producing roses in a plantation setting

which are not accounted for: plant position within the greenhouse (those plants closer

to the door experience more variation in greenhouse conditions) and how much water

each bed received. No data are available for these and similar variables. Similarly,

some variables are controlled for across greenhouses. For example, the plantation
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makes its own fertilizer, which is applied to every flower bed. All beds are treated

with any desired soil additives. All greenhouses are exposed to the same ambient

light, wind, and weather conditions as they are all situated within about 30 hectares.

Table 4.1 summarizes the variables used and how they were measured.

Table 4.1: Data Variable Description.

Variable Description
Productivity Collected per flower bed, a count of how many usable

stems were gathered for export
Variety The variety of rose
Temperature The temperature inside of the greenhouse, measured in

Celsius. Measured every 30 minutes and aggregated to
month

Humidity The amount of water in the air, measured in percent.
Measured every 30 minutes and aggregated to month

Dew point The atmospheric temperature below which water
droplets begin to condense and form dew, measured in
Celsius. Measured every 30 minutes and aggregated to
month

Cutter A number assigned to the person taking care of partic-
ular sets of flower beds

Plastic Change An indicator variable which states whether plastic was
either applied or removed from flower beds during a par-
ticular month

Spiders A count of how many spiders were found on the plants
within a given greenhouse for a given month

Aphids A count of how many aphids were found on the plants
within a given greenhouse for a given month

Botritis A count of how many instances of botrytis were found on
the plants within a given greenhouse for a given month

Mold A count of how many instances of mold were found on
the plants within a given greenhouse for a given month

Velloso A count of how many instances of velloso were found on
the plants within a given greenhouse for a given month
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A total of 17 greenhouses are represented in this dataset, with between 43 and

249 flower beds in each, from years 2013 to 2016. Data on the other variables

discussed varies by whether the data was collected at the time. Table 4.2 displays

the descriptive statistics for the continuous variables in the full dataset.

Table 4.2: Descriptive Statistics for the Full Dataset.

Year Mean Std Dev Min Max
Productivity 349.05 295.08 1 2,988
Temperature 15.75 1.22 12.93 18.50
Humidity 75.37 5.89 9.43 82.85
Dew Point 10.94 5.40 7.25 78.03
Spiders 21.76 18.92 0 95.68
Aphids 0.68 1.76 0 27.20
Botritis 0.36 1.53 0 23.57
Mold 20.25 26.49 0 98.64
Velloso 1.12 4.19 0 56.83

We can see that there’s great variability, especially among the productivity of the

flowers; for example, the standard deviation is nearly as large as the mean, indicating

that there are greenhouses or beds that sometimes produce inordinately high amounts

of flower stems. Temperature and dew point are measured in degrees Celsius, and are

both within the normal range for greenhouses. Humidity is measured as a percent of

the water in the air, and also tends to be within normal range. The pest variables,

spiders, aphids, botrytis, mold, and velloso, are all interpreted as rates. If 10 spiders

were found during the month of January in Greenhouse 31 (which has 200 beds),

for example, the rate would be recorded as 10/200 = 0.05 spiders (or aphids, mold,

36



Chapter 4. Data Application

etc.). The pest data aren’t necessarily interpreted as within a range;” the plantation

simply tries to manage their numbers as best they can, ideally as low as possible.

Next, we’ll examine some descriptive statistics for the categorical variables in Table

4.3.

Table 4.3: Tabulation of Categorical Variables in Full Data.

Categories Frequency Percent
Stem Class

Less than 50 cm 7,754 7.33
50 to 53 cm 4,545 4.29
53 to 55 cm 20,306 19.19
55 to 58 cm 59,285 56.02

58 cm or more 13,931 13.16
Instances of Plastic Change

No plastic change 121,297 95.74
Change of Plastic 5,403 4.26

We can see that the flower varieties with stems greater than 55 cm and less than

58 cm are the most populous, followed by those varieties greater than 53 cm and less

than 55 cm. Regarding plastic, most of the year, there is no change of plastic. Recall

that change of plastic refers to just that: a change. It may have been on the plants

in the greenhouse for the previous month, two months, etc.; we were not provided

with this information, just the fact that it was either added or removed.

The full dataset is huge, and unsuitable for research within one to two years.

Even data cleaning will take a huge amount of time. Therefore, in this thesis, we
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have done an initial study of the productivity and related variables using a selected

subset of data. Specifically, we have applied PB and NPB standard error estimation

methods of MSM for GLMM by using 2015 rose data, and applied random forests

to predict productivity by using greenhouse 12 data in 2015.

4.1 Application of MSM with PB and NPB stan-

dard error estimators

In this section, we applied the MSM, PB and NPB standard error estimators to a

real data example. The data set we used in this example is from year 2015 with

21649 observations. The variables we considered for this example is productivity

and cutter. The dataset has a lot of missing data which prevents reliable statistical

inference. In this example, since we mainly want to illustrate the use of the methods

we’ve studied in this research. Therefore, for simplicity, we’ve deleted the missing

cases for both of these two variables. We also notice that there are zero productivity.

These cases are also excluded from the study. After rough cleaning of the data, we

are left with 19206 observations.

The rose plantationers are interested in if there is difference among the cutters

regarding high productivity. Therefore, we treated productivity as a categorical

variable with high productivity (above or equal 85 quantile) be 1, and not high
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productivity (lower than 85 quantile) be 0. Since cutters are randomly employed

by the company, and we are interested in the variability among them, we consider

cutters (32 cutters available) as a random factor. Tables 4.4, 4.5 and 4.6 give some

summary statistics of the data set with 19206 observations.

Table 4.4: Mean Productivity by Cutters.

1 2 3 4 5 6 7 8
371.575 397.067 406.461 292.0415 435.157 332.828 347.396 365.417

9 10 11 12 13 14 15 16
334.313 339.757 362.699 310.639 218.202 322.733 264.864 310.284

17 18 19 20 21 22 23 24
273.888 374.913 328.633 394.026 386.523 228.029 321.164 587.703

25 26 27 28 29 30 31 32
405.476 463.335 513.433 436.973 534.222 609.125 563.512 515.249

Table 4.5: Productivity Percentiles from 19206 observation in 2015.

0 25th 50th 75th 85th 100th
1 191 317 473 597 3115

Using Table 4.5, high productivity is coded as 1 if productivity is higher than

597, and low productivity is coded as 0 if productivity is lower or equal than 597.

The high productivity percentage of the cutters are listed as follows:
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Table 4.6: Percent High Productivity by Cutters.

1 2 3 4 5 6 7 8
0.1634 0.1767 0.1779 0.0533 0.2767 0.1235 0.1140 0.1424

9 10 11 12 13 14 15 16
0.0923 0.1191 0.1485 0.0700 0.0189 0.1005 0.0543 0.0684
17 18 19 20 21 22 23 24

0.0041 0.0855 0.1753 0.1622 0.1575 0.0422 0.0846 0.3913
25 26 27 28 29 30 31 32

0.2145 0.2349 0.3198 0.1795 0.3184 0.3305 0.3677 0.3510

From the above tables, we’ve seen variability among the cutters. For example,

cutter 24 realized nearly 40 percent of their beds as “high” productivity, while cutter

17 only harvested 0.41 percent of their beds at or above the 85th percentile for

productivity. The percent of high productivity varies widely among cutters.

Since the data set is huge with a lot of computation by using PB and NPB meth-

ods, plus the data set is only with rough cleaning, therefore, we consider a stratified

random sample in order to reduce the computation and to select a representative

sample from our rough data. Within each cutter, we randomly selected 60 beds,

with a total of 32 ∗ 60 = 1920 observations. We now apply the glmm logistic model

to analyze the data

logit(P (Yij = 1)) = µ+ αi, (4.1)

where 1 ≤ i ≤ m, 1 ≤ j ≤ ki for each i, and α′
is are i.i.d. normally distributed

random variables with mean zero and variance σ2. Here m = 32 is the number of
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the cutters and ki = k = 60 is the number of observations within each cutter i.

Following the simulation steps we’ve described in Section 2.5.3, we set up n = 1

(simulation run is 1 since we have a real data); the replication number L for the

simulated moments is set to be 1000 in order to find MSM estimators µ and σ2; the

replication number for NPB methods is set up to be 200. We’ve found the following

estimates:

Table 4.7: Results, with m = 32 and k = 60.

µ̂ PB ˆSE(µ̂) NPB ˆSE(µ̂) σ̂2 PB ˆSE(σ̂2) NPB ˆSE(σ̂2)
-1.7422 .1526 0.2240 0.5907 0.1777 0.1809

In Table 4.7, µ̂ and σ̂2 are the average values of the MSM estimators from the

1000 replications. PB ˆSE(µ̂) and PB ˆSE(σ̂2) are standard error estimates of µ̂

and σ̂2 by PB respectively. NPB ˆSE(µ̂) and NPB ˆSE(σ̂2) are standard error esti-

mates of µ̂ and σ̂2 by NPB respectively. The expected proportion is calculated by

p = e−1.7422/(1 + e−1.7422) = 0.1490, which is close to 15% (above the 85th quan-

tile). The estimated standard errors by PB and NPB are pretty close to each other.

σ̂2/se = 0.5907/0.1777 = 3.32, which is three standard deviation away from the

center. Therefore, we consider the variability between cutters is significant.
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4.2 Random Forest

The Random Forest utilized the data from 2015 for Greenhouse 12. Greenhouse

12, with 148 flower beds, was chosen from the other greenhouses after a selection

process. We needed a greenhouse with relatively fewer beds, and relatively little

missing data across variables; Greenhouse 12 fit these conditions. Full data on cutter

in Greenhouse 12 was available for 114 beds over ten months (data on cutter for 34

beds was not recorded by the plantation). Of the remaining 1,140 observations,

the first three months (Jan, Feb and Mar) of 2015 were selected for inspection and

cleaning, for a subset of 444 observations. Fifty-three percent of the data were

missing for the pest variables. Before applying the random forest, missing data

were imputed using a regression model via the random.forest package in the RStudio

environment. The continuous variable of productivity was recoded into a binary

variable indicating high productivity. Criterion for “high” productivity was falling

in the top 15th percentile of productivity. Let’s first take a look at similar descriptive

statistics for the subset of 2015 data for Greenhouse 12, displayed in Table 4.8.

Productivity for Greenhouse 12 in the first three months of 2015 was, on average,

lower than the overall productivity across all greenhouses and years, but with a larger

standard deviation. This can be accounted for by the high yields that Greenhouse

12 occasionally experienced during this time. The temperature, humidity, and dew
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Table 4.8: Descriptive Statistics for Greenhouse 12 for the first three months in 2015.

Mean Std Dev Min Max
Productivity 444.56 388.23 0 1954
Temperature 16.62 0.53 15.87 17.04
Humidity 76.78 3.03 73.97 80.98
Dew Point 11.51 0.33 11.04 11.78
Spiders 15.18 9.90 3.77 35.16
Aphids 0.06 0.08 0 0.25
Botritis 0 0 0 0
Mold 16.10 12.05 5.06 48.44
Velloso 0 0 0 0

point are all within reason. Greenhouse 12 had less of a problem with spiders,

aphids, and mold than greenhouses overall; and no instances of botrytis or velloso

were observed during this time. Next, we look at the categorical data for Greenhouse

12, Year 2015, in Table 4.9.

Table 4.9: Tabulation of Categorical Variables in Greenhouse 12.

Categories Frequency Percent
Stem Class

Less than 50 cm 99 22.30
50 to 53 cm 111 25.00
53 to 55 cm 132 29.73

58 cm or more 102 22.97
High and Low Productivity

Low Productivity 378 85.14
High Productivity 66 14.86

This table displays the frequencies and percentages for stem class and high/low

productivity. There were no instances of plastic change during this time period for

43



Chapter 4. Data Application

Table 4.10: Percent High Productivity by Cutter for Greenhouse 12.

Cutter Number Percent High Productivity
23 18.06
24 0
25 21.74
26 33.33
28 0

Greenhouse 12, so that variable is eliminated. This greenhouse has a more balanced

representation of stem classes, compared to greenhouses overall. Productivity was

coded high if it fell in the 85th percentile or higher; for Greenhouse 12 during the

first three months of 2015, this corresponded to productivity of 586 or higher. Since

we are particularly interested in cutter as a random variable, we also examine the

distribution of low/high productivity among the cutters, in Table 4.10:

Notice that Table 4.10 showed that cutters 24 and 28 did not cut in the top 15%

of productivity; one may be likely to think that this is due to the number of beds

assigned, but we see in Table 4.11 that both cutters are assigned very similar number

of beds. These 5 cutters are more or less evenly distributed across flower beds:

Table 4.11: Distribution of Beds among Cutters.

Cutter Number Number of Beds Percent
23 72 21.05
24 69 20.18
25 69 20.18
26 69 20.18
28 63 18.41
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The random forest procedure fit a model with n=500 trees, with 6 variables

tried at each split. Five hundred trees in a forest is more than sufficient to ensure

correct classification. In using the rose data, we were interested in the percent of

cases correctly classified as either low or high productivity. Our random forest did

reasonably well in classifying observations of high or not high productivity based on

the independent variables. The out of bag (OOB) estimate of error rate was 5.56

percent. Recall that bagging refers to a method whereby the dataset is split into a

training and test group; the OOB error rate refers to the rate of correct classification

of the actual observation in the test data based on the data in the training set.

We’re mostly interested in how accurately our observations of high and not high

productivity were classified by the random forest. Table 4.12 shows the confusion

matrix:

Table 4.12: Random Forest Confusion Matrix.

Predicted: Predicted: Classification
Low Prod High Prod Error

Actual: Low Prod 257 8 0.03018868
Actual: High Prod 11 66 0.14285714

Our random forest was much more accurate in predicting low productivity than

high productivity. Our tree did very well at predicting low productivity, with an error

rate of 0.03. On the other hand, about 14 % of the observations that it classified

as “low” productivity were actually high productivity. Figure 4.4, below, shows the
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error rate over the trees, where the black line represents the overall classification

error.

Figure 4.4: Error Rate of Classification over Trees.

The black line represents the overall classification error (around 5.56%); the green

line represents the classification error when predicting the high productivity beds

(around 14%); the red line represents the classification error when predicting the

low productivity beds (around 3%). The green line, indicating inaccurate low pro-

ductivity classification, bounced around for the first 150 trees and then settled out

a little below 0.14. The error rate for high productivity classification started low,

around 0.6, and quickly dropped to its average rate of about 0.02. This coincides with
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the confusion matrix above, which indicates that 14.3 percent of outcomes classified

as low productivity were actually high productivity, and 3.02 percent of outcomes

classified as high productivity were actually observations for low productivity. The

error rate over trees decreases around 20 trees and stabilizes quickly. The prediction

(classification) accuracy can be examined in Figure 4.5, below.

Figure 4.5: False/True Positive Rate for Random Forest.

Figure 4.5 shows the true and false positive classification rate over all trees. A true

positive rate of 1.0 would indicate that 100 percent of the trees correctly classified

the outcome as either low or high productivity, while a false positive rate of 1.0

would indicate perfect misclassification. Our random forest does not classify with
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100 percent accuracy, but as the true positive rate is above 0.90 for the most part,

we can say that the random forest is reasonably accurate in classification.

Now that we’ve seen how accurate our random forest is, we want to know, which

variables matter the most in predicting high or not high productivity? The most

important predictors are shown in Figure 4.6.

Figure 4.6: Variable Importance Plot for Random Forest. Higher number means the
variable is more important.

The predictors are examined in terms of mean decrease in Gini coefficient, which

is a measure of how each variable contributes to the homogeneity of the nodes in

the random forest. Each time a predictor is selected for to split a node, the Gini
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coefficient for that node is calculated and compared to the original node. A Gini

coefficient of 1 indicates complete homogeneity, while a coefficient of 0 indicates com-

plete heterogeneity. According to Table 4.13, below, the most important predictors

in our random forest were presence of aphids, flower bed, and the presence of spiders.

Table 4.13: Mean Decrease in Gini for Predictors in Random Forest.

Predictor Mean Decrease Gini
Aphids 40.7090649
Bed 29.4553331

Spiders 12.0904459
Mold 12.0138108
Variety 1.8635322

DewPoint 1.5973287
Humidity 1.5078361
Cutter 1.3987558

Temperature 1.3658488
Month 0.5264053

4.3 Summary Data Application

This thesis has provided a first look at the type of data that is gathered by commercial

rose exporters by using random forest and simulation of the standard errors of the

GLMM. We applied the MSM with NP and NPB standard error estimators to a

subset of data available for 2015. We selected productivity of greater than 0 as a

rough cleaning measure, as we are only interested here in simulating the standard

errors. Any missing data on cutter was also excluded, as we wanted to show the
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standard error estimation among this group. Preliminary inspection showed great

variability in the percent of yields that were classified as ”high”, by cutter. We

selected a total of 60 random observations per cutter; with 32 cutters, our n was 1,920

observations for the simulation study. The simulation used here is n = 1 because

we are using actual observed data. The standard error estimates from PB and NPB

were quite similar, most likely because the group of cutters was relatively large.

The variability between cutters was also found to be significant in the simulation.

Next, we fit a random forest model to Greenhouse 12 for the first three month of

2015. The random forest procedure fit our data rather well, with an OOB error

rate of 5.56 percent and low rates of classification error for low productivity. It was

harder to classify high productivity, and that’s likely due to the artificial creation

of a boundary above and below 85 percent. It is likely that the random forest had

trouble predicting values that were just above the 85th percentiles of productivity,

and incorrectly classified those observations as low productivity. This procedure

found that aphids, flower bed, and spiders were the most important variables; after

these three variables, mold and humidity were the most important.
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Conclusion/Future Research

In this thesis, we compared the PB and NPB methods of estimating standard error of

MSM estimators. The simulation showed that both methods work well when groups

are relatively large, but when group size is medium, NPB performs better than PB

in estimating the mean, and PB does a better job of estimating the variance than

NPB. We also considered a data application of some of the models reviewed. The

application of MSM with PB and NPB standard error estimators to our observed

data yielded interesting results similar to those of the simulation: when group size

is relatively large, PB and NPB estimation methods perform similarly. Another

direction is how to work out an algorithm to save time on computation. Current

computation is quite expensive. We need to run about 20 hours for calculating the

standard errors for each setting. This is an important first look as to how these
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methods can be applied to a commercial dataset such as this one.

We’ve also tried to provide a concise yet sufficient review of the topics covered;

from the general linear model to the more complicated GLMM, random forest, and

methods of GLMM standard error estimation. We’ve applied two selected methods

to our data, but it is possible that another nonparametric method may suit the data

better.

This thesis was a preliminary look at the rose data. Much remains to be done with

data of this nature; for starters, we used just one year of data, and through a rough

cleaning process selected data where productivity was at least one stem. It may be

the case that productivity was actually 0, but at the behest of the plantation, and

not because the roses did not produce any stems for that month. Secondly, a more

thorough analysis would clean the data carefully before selection. Next, much more

could be done with the data in respect to time and greenhouse; an analysis using

more than one year of data would yield useful information about trends over time;

furthermore, using more than one greenhouse would allow tracking of productivity

within and between greenhouses. An application such as this would eventually allow

the plantation to see the factors impacting productivity, possibly correct those factors

to increase productivity and in turn increase revenue. Since cutter was identified as

an important variable, it’s imperative to explore more thoroughly the impact of

different cutters by including cutter as a nested effect within greenhouse. Another
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route to more further explore the data would involve taking the top three or four most

important variables identified by the Random Forest and using these as explanatory

factors in a GLMM. This thesis has provided a first glance at using this type of data,

which is well within the realm of interest of commercial international rose exporters.
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