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Abstract

In this dissertation, we study Taylor approximations of functions of operators
with Hilbert-Schmidt resolvents. We obtain integral representations for traces of the
respective Taylor remainders that are analogous to trace formulas obtained in the

case of Schatten perturbations in [10, 11, 16].
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Chapter 1
Introduction

Let Hy be a closed densely defined self-adjoint operator (for simplicity we will just
write “self-adjoint” in the sequel), V' a bounded self-adjoint operator on a separable
Hilbert space H, f a sufficiently nice function, and let f(Hy) and f(Ho+V') be defined

by the functional calculus. Consider the remainder of the Taylor approximation

o 1

R (f) o= J(Ho +V) =3 roam |
k=0 -

f(Hy+tV),

dk
where n € N and the Gateaux derivatives %‘ f(Ho + tV) are evaluated in the
t=0

uniform operator topology. If a self-adjoint perturbation V is in the Schatten-von

Neumann ideal of compact operators 8", then the following trace formula holds:

T (Rosto () = / £ (E)ma(t) dt, (1.0.1)

where 7, = 1,1, v i a real valued L'-function depending only on Hy and V. The
history of representation (1.0.1) started in physics in the late 40’s and the first math-
ematical result was proved by M. G. Krein for n = 1 in 1953 [11]. The results for
n = 2 and n > 3 were established by L. S. Koplienko in 1984 [10] and by D. Potapov,
A. Skripka, and F. Sukochev in 2013 [16], respectively. If the perturbations of the
operators are not compact and no additional restriction on the initial operator Hy is
imposed, then the trace of R,, g, v (f) is usually undefined. Noncompact perturbations
mainly arise in the study of differential operators because they are multiplications by
functions defined on R?, which are not compact operators. In this case, the condition
that the perturbations are in some Schatten-von Neumann ideal of the compact oper-
ators 8™ gets replaced by the restriction on the resolvent of the initial (unperturbed)

operators.



In this dissertation, we prove trace formulas similar to (1.0.1) under different
assumptions on Hy, V, and f. We assume that the resolvent of H, belongs to S%, V
is a bounded self-adjoint linear operator on H, and f € CZ((a,b)), where C?((a,b))
is the space of n times continuously differentiable functions on R that are compactly
supported in (a,b) C R. We show that there exists a unique locally finite real-valued

measure [l, = fn H, v, N > 3, such that the following trace formula holds:

TR (1) = [ £70dm (0 (1.02)

In the special case of commuting Hy and V', we show that the measure y, in (1.0.2) is
absolutely continuous, so that there exists a locally integrable function 7,, = 7, 1, v,
n > 3, such that the trace formula (1.0.1) holds. The formula (1.0.1) with locally
integrable 7, for n = 1 and n = 2 was proved in [2, Theorem 2.5] and [18, Theorem

3.10], respectively.

This work is divided mainly into two chapters. In Chapter 2, we derive formulas
for the derivatives of operator functions. Derivatives of operator functions can be
written as multiple operator integrals (see, e.g., [3]). We give an example of the
multiple operator integral representing a derivative of a finite dimensional matrix
function. We also show that derivatives of more general operator functions can be
expressed via Bochner integrals. Although it is a known result, we prove it here by
straightforward calculations and use it to prove our central results. In particular, we

use it to prove (1.0.1) in the commutative case.

Chapter 3 is devoted to the main results of this dissertation and we follow [18]
to prove our results. We divide Chapter 3 into two sections. In the first section, we
consider the general case and prove the formula (1.0.2). In the second section, we
consider the commutative case and prove the formula (1.0.1). We also give examples

of a Hilbert space and operators to which the formulas (1.0.1) and (1.0.2) apply.

The Appendix collects standard definitions and facts about operators, spectral
theory, Bochner integrals, the Schwartz class functions, and the Fourier transform

that are applied in the dissertation.

In this work, H denotes a separable complex Hilbert space, B(H) the space of all
bounded linear operators on H, Hj a self-adjoint operator in H, and Tr denotes the
standard trace. The symbol Eg,(-) stands for the spectral measure of a self-adjoint
operator Hy. As usually, 0(Hy) and p(Hy) denote the spectrum and resolvent set of

Hy, respectively.



Chapter 2
Calculation of operator derivatives

The formulas for derivatives of operator functions derived in this chapter are well
known, but they appeared in the literature without a detailed calculation. Moreover,
our calculation of these derivatives is straightforward and does not appeal to the
most general theory of differentiation of operator functions, which can be found in,

for example, [3].

2.1 Divided differences

The formulas for operator derivatives involve the object known under the names
divided difference or difference quotient. The definition and basic properties of the
divided difference are given in this section; for more comprehensive treatment of this

object we refer the reader to [8, Section 4.7].

Definition 2.1.1. Let n € N. The divided difference of order n is an operation on
functions f € C™(R) of one (real) variable, which we usually call X, defined recursively

as follows:

O] = f(N),
FIAL, o At Ay A

=1 e A1, ) = FPTU o A, A
f [ 1505 An—1, ;] f)\ [ L. An—l; n+1] Zf )\n#)\n-l-l
n—1 = \n

f[nil] [)\1, cee )\n—la t] Zf )\n = )\n+1.

0

a t=An+1

The following two lemmas are simple properties of divided differences that we use

later in the proof of Theorem 2.2.7 below.



Lemma 2.1.2. Let f(\) := A" forn € N. Then,

— 7o \ 11 np
f[p}[)\l,)\z, o Apt1] = E AP A A, p S .
0<ng,n1,...,np
notni+...+np=n—p

Proof. The lemma can be proved by induction on p. Here, we give the proof only for
p = 2. Note that fP[A, X2, A3] = fP[Ay(1), Ao2)s Ao(3)], Where o is a permutation on
{1,2,3}, and fIU[A;, Ao] = fI[A2, A]. We consider the following three different cases:
Case (1): A1 # Ay # As.

By Definition 2.1.1,

FPIAL A2, g
SU2, As] = FIAL A
N A3 — M
fs) = f(A2)  f(A2) = f(A)
)\3 — )\2 )\2 _ /\1

Az — A
M=y Mg Ap
N A

s — M
D T T O e D Vs VT PO R
B X — M
T ) A = D) O = AT e+ 20— A
X — M
n—2 ) n—3 .
(s = M) | 0 M2 400 30 AT 4 T A A+ A
— =0 i=0
N (A — A1)
n—1 m—1

)\i )\mflfi)\nflfm
37'1 2 :

g

Il
o

i

iy(m—1—1i),(n—1—m)andi+(m—1—i)+(n—1—m)=n—2, we

IN

Since 0
have
PRI Ao dsl = )0 ATOARAR

0<ng,n1,n2
no+ni+no=n—2

Case (2) )\1 = /\2 7é /\3.
By Definition 2.1.1,

f[l] [)\17 )\3] - f[l] [)\h )\1]
A3 — A\

f[z} [>\17 )\17 )\3] -



fs) = f(M)

/
— F'(A
DYy J'(A1)
A3 — Ar
Ay =AY 1
T S L
YD
X3 — M\
AT RTI A AT AT
B X3 — A
5T T M AT M AT AT = )
N3 — M
n—2 . n—3 .
(s — A1) [ S AN M N AP0 ) x;—?]
- (As — A1)
n—1 m—1

)\' )\T—l—i)\?—l—m'

1 =0

3
I

Since 0 <i,(m—1—i),(n—1—m)andi+(m—1—i)+(n—1—m)=n—2,

AL A, As] = E: ATONT D2
0<ng,n1,n2
ng+ni+no=n—2

Using the symmetry of divided difference and proceeding as in case(2), we can prove
the cases \j = A3 # Ag and Ay = \3 # \.

Case (3): A1 = Ay = As.

By Definition 2.1.1,

f[2] [)\17 A1, )\1] _ f”;\1>
_nn—1) ,_,
== A7
= o)+ -2

=[n—1)+Mn—-2)+..+3+2+1A"
= =D+ (n—= 2N 2 3N 2R N

n—3
:Zmn - Z+>\IZX>\” T AT O M) A
1=0

n—1 m—1
. )\zAm 1 'L)\n 1-m
- 1

m=1 1=0

Since 0 <i,(m—1—i),(n—1—m)andi+(m—1—d)+(n—1—m)=n—2,



we have

FEIAL AL A = §j ATONTIAT2
0<ng,n1,n2
no+ni+ne=n—2

Lemma 2.1.3. (f + ¢)™[Xo, A, oos Al = F N0, ALy oy An] 9™ Aoy AL, ooy ], where
f,g € C*(R).

2.2 Derivatives of operator functions

In this section, we calculate the derivatives of operator rational functions and operator

functions with nice Fourier transforms.

2.2.1 Basic differentiation rules

In this section, we define Gateaux derivative and discuss some basic rules for it.

Definition 2.2.1. Let U be a closed densely defined self-adjoint operator in H and
V=V*e€ B(H). Let f : R+ C be a bounded function. Then, the Gateauz derivative
of the mapping U — f(U) at U in the direction V is defined by

| jw s sv) :EL%ﬂUHZ)_f(U)’

% s=0
if the limit exists in the operator norm (uniform operator topology).

The following two lemmas are the sum and product rules for Gateaux derivatives.

Lemma 2.2.2. Let U be a closed densely defined self-adjoint operator in H and
V =V*¢e€ B(H). Let f,g : R — C be bounded functions such that the mappings
U— f(U) and U — g(U) are Gateauz differentiable at U in the direction V. Then,
the mapping U — (f + g)(U) is also Gateauz differentiable at U in the direction V

and

FraW ) =S| jwswy+ S| g,

i‘ (
dt lt=0 dt lt=0

Proof. By Definition 2.2.1,
(f+9)U+tV) - (f+9)U)

(f + 9)(U +1V) = lim

dt lt=0 t
o SO V) g(U +1V) = f(U) = g(U)
t—0 t
i [f(UthVt) e ACHN g(U+tVt) —g(U)].



Now, we have

Hf(U +tVt) -0 | g(U+tVt) —9(U) <%Lof(U+tV) +dit tZOQ(U+tV)> H
< Hf(UH‘? —fU) - tof(U+tV)H+
S

as [t| — 0 since both the mappings U — f(U) and U — ¢g(U) are Gateaux differen-
tiable at U in the direction V. Therefore,

. fU+tV)=f(U)  gU+tV)—g(U) d d
50 [ t + t } dt t:Of(U V) + dt t:Og(U V)
and which completes the proof. O]

Lemma 2.2.3. Let U be a closed densely defined self-adjoint operator in H and
V =V*e€ B(H). Let f,g : R — C be bounded functions such that the mappings
U— f(U) and U — g(U) are Gateauz differentiable at U in the direction V. Then,
the mapping U — (fg)(U) is also Gateauz differentiable at U in the direction V and
d d d
S| Gy = 2| U+ )gU) + F0) ] oW+,
Proof. The proof is similar to that of Lemma 2.2.2. O

2.2.2 Derivatives of operator rational functions

A polynomial of an operator is defined only if the operator is bounded. The rational
function f(t) = (t — 2)7%, 2 € C\R, k € N is bounded and continuous on R so that

we can define f(U) as a bounded operator even if U = U* is an unbounded operator.

The case of a finite dimensional Hilbert space

In this section, we collect technical facts on derivatives of operator polynomial func-

tions.

Lemma 2.2.4. Let H be a finite dimensional Hilbert space and let U,V € B(H). Let
f(z) :==2a", n eN. Then,

d n—1 . '
_ — J n—j—1
7 s:tf(U +sV) JEZO(U +tV)YV(U +tV) ,

where the limits are evaluated in the uniform operator topology.



Proof. The proof directly follows from Definition 2.2.1 and the fact that

d

Y jwesvy= 2| fwGrow)

ds ls=0
O

Remark 2.2.5. The above lemma is still true if we consider H to be an infinite
dimensional Hilbert space and follows as in the case of finite dimensional Hilbert

space.

Lemma 2.2.6. Let H be an m dimensional Hilbert space and U = U* be an m x m

matrix on H. Then,

Uk = Em: M E;
i=1

where k € N, {\;}1", are eigenvalues of U counting multiplicity, and E; : H — H is

the spectral projection corresponding to the eigenvalue \;.

Proof. Let {e;}"; be an orthonormal basis of eigenvectors such that Ue; = A\;e;. Then

every x € H has a unique representation

m
T = E e,
=1

where o; = (z,¢;) = 27¢;.

Since Ue; = \;e; and U is linear, we have

m
Ux = E A€,
i=1

Since E; is the spectral projection in H onto the span{e;}, E;(x) = a;e;. Therefore,
the last expression becomes

m

Uz = Z \iE;i(z) for every x € H.

i=1
Hence, we get the following representation for U:

m

i=1

By the just obtained result,

oo () (S0

i=1 j=1



o E ifi=j
= Z )\Ez since EZEJ = .
py 0 ifi#

Assume that

Ut = Em: M E;
=1

Then,
Ut = Ut U = (Z ) (Z)\ E)
=1
e E, ifi=3j
= Z)\HlEi since B;E; = J )

i=1 0 ifi#y

Therefore by induction,
=2 NE;
i=1

for all k. O

A derivative of an operator function can be written as a multiple operator integral
(see, e.g., [3, Theorem 5.7]). The multiple operator integral representing a derivative
of a finite dimensional matrix function has a simpler formula, an example of which
we provide below. In the derivation of the following result, we adjust the proof of [7,

Theorem 1] for the first order derivative of a matrix polynomial.
Theorem 2.2.7. Let H be an m dimensional Hilbert space. Let U = U* € B(H) and
V e B(H). Let f be a polynomial of degree n. Then,
dP
dte li=

—pl ZZ Z PN Ny s i | EQ VELVLVE, ., p<n,

i1=112=1 ipt1=1

f(U +tV)

| is the
divided difference of order p, and E; : H — H is the spectral projection corresponding

where { N}, is the spectrum of U counting multiplicity, fP[\i, Niy, -y A

Ip+1

to the eigenvalue ;.

Proof. The theorem can be proved by induction on p. Here, we give the proof only
for p=1,2. Let us take H = C™, U = U* and V to be m x m matrices on H. We



prove the theorem for a monomial f(x) = 2%, k € N, and the application of Lemma
2.1.3 and Lemma 2.2.2 will give the result for a general polynomial function of the
form

f(z) = apa™ 4+ a1zt 4 L+ asr® + aga? + agx 4+ . By Lemma 2.2.4,

k—1
d
— U+ tV)k UivukiTt,
dt t:O( + ]z;

By Lemma 2.2.6, the last expression becomes

k—1 m
d k—j—1
dt t_o(U+tV :ZZA1 E“VZ)‘é Ei,
7=0i1=1 io=1
m m k-1

= > D NATE\VE,, (2.2.1)

i1=1ia=1 j=0

Since
)\k —\k
Fl T TN AN
Z )\11/\fz 7= 1 /\21 - /\12 ' ?é ?
7=0 k‘Afl_l if )\7;1 = )\ig

and using Definition 2.1.1, the equation (2.2.1) becomes

m m

(Ot =30y NG A BV E,

11=112=1

dt

t=

which proves the theorem for p = 1.
Next, we prove the theorem for p = 2. By the definition of second order operator

derivative,

d k k
02 . T S:t(U+ sV)F — o 8:0(U+ sV)
dt? t:O(U+tV) N 15% t ’

where the limit is evaluated in the uniform operator topology. By Lemma 2.2.4, the

above expression becomes

k—1 h—1
2 ZO(U + V)V (U +tV)kit - UiV ki1
]:
dt2 t:O(U + tV) 715 1’% t
_ - 11 (U +tVY V(U +tV)k=i-t iy yk-i-1
N t—0 t .

10



By Lemma 2.2.3, we get

1

d2 k— d d .
— | (U+tV)r = —| U4tV VU UV —|  (U+tV)FI!
dt? t:()( V) s (d ( +V) * dt tf( V)
-l k—2 d
=Y —| (U+tv)yvuki! UIV—| (U+tV)F
= dt t:O( V) +z_; d t:O( +tV)
Again by Lemma 2.2.4, the last expression equals
k=11 j—1 k—2 k—j—2
[(ZU VUt ot 1} +Z[U]V< N UivoEies )]
j=1 =0 =0 =0
k=1 j—1 k—1 k—j—1

vmtvutvurt

=0

UVUITTVUETIT 4
0 J
j—1

M

7 1

—_
??' Il
H N

UVUITiVUhT 4 Z UittvutvuhiT }

154 =0

1
PR
| — | .
I T
o

J

Since 0<i, (j—1—i), (k—j—Dandi+(G—1—i)+(k—j—1)=k—2
0<(G—1),i,(k—j—1—i)and (j—1)4i+(k—j—1—i)=k—2,

2

dt? li=o

U+tV)F =20 Y UevVUmVU™. (2.2.2)

0<ng,n1,n2
no+ni+no=k—2

Using Lemma 2.2.6, the equation (2.2.2) becomes

:O(U+tV)k:2! > in:)\ﬁOE“VZ)\"lEmVZ)\"?E

0<ng,n1,n2 11=1 to=1 i3=1
no+ni+no=k—2

— 2 i ij i > ANUNZE,VE,VE;,.

i1=112=113=1 0<ng,n1,n2
no+ni1+ne=k—2

2

dt? It

By Lemma 2.1.2, we get

2

d m m m
Tl (UAVE=23N TS BIN N N BV ELVE,,
i1=119=1143=1

The case of an infinite dimensional Hilbert space

The following lemma will be used to prove Theorem 2.2.9 below.

11



Lemma 2.2.8. Let U = U* be an operator in H and V =V* € B(H). Lett € R and
z € C\R. Then,

(U +tV — 2zI)' = (U — 21)71,
t—0
where the limit is evaluated in the uniform operator topology.

Proof. Since U and U + tV are self-adjoint, the spectra of both U and U + tV are
subsets of R. Hence for all z € C\R, the resolvent operators (U — zI)~! of U and
(U +tV — 2I)7! of U +tV exist and are bounded on H. By the spectral theorem
(see [Appendix, Theorem 4.3.8]),

U+tV:/)\dE()\),
R

where F is the spectral measure of U + tV on H defined on the g-algebra of Borel

subsets of R and the convergence of the integral is understood in the strong oper-

1
ator topology. Since f(\) = 5y is a bounded continuous function on R, by the

functional calculus (see [Append?x, Section 4.3.5]),
FU+V) = / FINAE(N).
R
Since f(U +tV) = (U +tV — zI)7}, the last expression becomes

1
U+tV —z)t =
(U + 2I) /IR)\_Z

dE()).

By the well known result in functional calculus (see [Appendix, Theorem 4.3.6)),

1 1
U4tV —zI)7Y = / dE)|| < :
I 07 = | [ am)| < sup ot
If z = a + b, where a,b € R, then the last estimate becomes

1 1 1
(U 4tV — 2I)7Y| < sup —————— = sup - < —
AeR |[(A—a) —ib|  er (A —a)?+1?)? b

By the just obtained estimate, we get
(U +tV — 21)" — (U — D)7}
= (U +tV - 21)~" ((U — ) — (U +tV — zz)) U - 2D}
< U +tV —=zD)7H| [t (VI (U =207
< o 1 IVI I = 1) 0

as |t| — 0.

12



Theorem 2.2.9. Let U = U* be an operator in H and V =V* € B(H). Lett € R
and z € C\R. Then,

e H(U +tV —2I)”
= (—1)? p! > (U = 2I)V(U = 2) ™V V(U — 2I) .
1<ko,k1,....kp<k
k0+k‘1+...+k‘p=k‘+p

Proof. The theorem can be proved by induction on p for an arbitrary k. Here, we
prove the theorem for p = 1 and p = 2 and only for £ =1 and k = 2.
Let k£ = 1.

By the definition of first order operator derivative,

d

dt

_ I—l_ _ [—1
(U+tV—zI)_1:lim(U+tV 2D (U = 2l)

t=0 t—0 t ’

where the limit is evaluated in the uniform operator topology. The above expression

can be rewritten as

d
_ A
o t:O(U+tV 2I)

(U +tV — 21)"! ((U D) — (U +tV — zI)) (U - 21)"
= lim

t—0 t
. 1 . -1

_— (U + 1tV — 2I) t tV (U — 2I)

= —lm(U +tV —20)'V (U - 2I)".
t—0

By Lemma 2.2.8, the last expression becomes

d
yr 0(U +tV —2) = —(U - 20)"'V(U — 2I)* (2.2.3)
t=
=— > (U-z)VU -z
1<ko,k1<1
ko+k1=2
Let &k = 2.

By the definition of first order operator derivative,

d

— tV —21)7?
o t:O(U+ V —zI)
— lim U4tV —20)2—(U—=zI)?
t—0 t
— lim U4tV —2) U4tV —20)' = (U —=20)"YU - 2I)7!
150 t )
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where the limit is evaluated in the uniform operator topology. By Lemma 2.2.3
applied to f(U+tV) = (U+tV —zI)"t and g(U +tV) = (U +tV — zI)~! and using
(2.2.3), we get

4 (U+tV —2I)7?

dt li=o

= —(U—z2I)y" VU =2 U =20 = (U -2 (U - 2I)'V(U — zI)~".

The above expression can be rewritten as

d

— — 22
o t:o(U+tV 21)
S [(U — 2 WV(U = 2D+ (U — D)2V (U — 1) (2.2.4)
=— Y U=z VU -z
1<ko, k1 <2
ko+k1=3

Continuing this way, we can show that it is true for all &.
Next, we prove the theorem for p = 2.
Let k= 1.

As in the equality (2.2.3), we can show that

7 (U+sV —z2)'=—(U+tV —z2I) WU +tV —2I)"". (2.2.5)
s=t
By the definition of second order operator derivative,
d -1 d -1
02 o £8:t(U+sV—zI) _%s:o(U—i_SV_d)
@t:O(UthV_ZI) —15% . ,

where the limit is evaluated in the uniform operator topology. By (2.2.3), (2.2.5), and
Lemma 2.2.3 applied to f(U+tV) = (U+tV—zI)"'V and g(U+tV) = (U+tV —zI)",
the last expression equals

d? .

— U+tV —zI)”

dt? t:O( i )

~ m (U+tV —z2)" WU +tV —zI)' — (U —20)"'V(U - zI)™!
o _t—>0 t

. [—(U ) WU = 2I) W (U — 20)
— (U —=2I)"'W(U - 2)"'V(U — 2zI)™*
=2l (U—z2D)"'V(U —2D)"'V(U — 2I)~!
=20 Y (U—z) VU =2V =2

1<ko,k1,k2<1
ko+k1+ko=3

14



Let k = 2.
As in the equality (2.2.4), we can show that

— — 2]) 2
E S:t(U—i—sV 2I)
_ [(U FtV = 2D) WU AtV — 2D) 2 (U AtV — 2D) 2V (U +tV — D)7
(2.2.6)
By the definition of second order operator derivative,
d -9 d -2
pe L £S:t(U+sV—zI) —%SZO(U—FSV—,ZI)
@t:O(U—FtV—ZI) —11_{% n ,

where the limit is evaluated in the uniform operator topology. By (2.2.4) and (2.2.6),

the latter expression becomes

d2
e t:0<U +tV — 2I)7?
o [hm (U 4tV — 2I) " V(U +1V — 21)2 — (U — 2I)" V(U — 21)?
t—0 t
+ lim (U+tV —2D)2V(U +tV —2I)™ — (U — 21)2V(U — 21)™* |
t—0 t

By Lemma 2.2.3 applied once to f(U+tV) = (U+tV —zI)"'V and g(U+tV) = (U+
tV—2I)"? and next to f(U+tV) = (U+tV —2I)"2V and g(U+tV) = (U+tV —zI)~*
and using (2.2.3) and (2.2.4), we get

d2

0(U +tV — 2I)?
S [—(U ) WU — 2D WU — 21)
. zI)_1V<(U —2)W(U = 2) 2+ (U — 2D) 2V (U — zI)_1>

- <(U ) WU — 2172V 4 (U — 2D) 2V (U — z[)’1V> (U — 21)71

U—2)2V(U — 2I)" V(U — zI)_l]
=21 Y (U—zD) V(U = 2)MV(U - 2D)
1<ko,k1,k2<2

ko+ki+ko=4

Continuing this way, we can show that it is true for all £. O]
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2.2.3 Derivatives of operator functions with nice Fourier

transforms

Derivatives of more general operator functions can be expressed via Bochner integrals,
whose detailed discussion can be found in, for example, [Appendix, Section 4.4] and
[19, Section V.5].

Formulas for operator derivatives

The main result is in Theorem 2.2.14. We will prove several auxiliary lemmas before

the main result.

Lemma 2.2.10. (Duhamel’s formula)(See [3, Lemma 5.2]) If B is a self-adjoint
operator in H, if V.=V* € B(H) and if A= B+V, then

eisA . eisB _ / €i(s_t)Ai(A . B)Githt, s € ]R’
0

where the integral is a Bochner integral and its convergence is understood in the strong
operator topology. Moreover, if B is bounded, then the integral can be evaluated in

the uniform operator topology.

Lemma 2.2.11. Let Hy = H{ be an operator in H and V =V* € B(H). Then,

lim ezA(Ho—i—tV) — €Z)\H0, = R,
t—0

where the limit is evaluated in the strong operator topology. Moreover, if Hy is

bounded, then the limit can be evaluated in the uniform operator topology.

Proof. Using Lemma 2.2.10 and by [Appendix, Theorem 4.3.6 (7)], we have

HBM(HO—HV) _ ei)\Ho H

< /)\ Hei()\*y)(HOHV)Z'tVeino H dy
0

A
/ei(/\—y)(Ho-HV)Z'tVeinody"
0

A
<1t [V / dy

—[t[IVI-A—0, as [t|—o0.
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In the proof of the following lemmas, we will use basic properties of the Fourier

transform, which can be found in [Appendix, Section 4.5.2].

Lemma 2.2.12. Let Hy = Hj be an operator in H and let f be such that
f. f e LYR). Forz € H, the function t — f(t)eo'z from R to H is Bochner
integrable, that is, there exists a sequence of simple functions {s20®} which converges

tot — f(t)etolz almost everywhere and

n—00 "
R

/ FO)e e gt = Tim | s (t) dt (2.2.7)
R

in H. Moreover, if Hy is bounded, then the integral can be evaluated in the uniform

operator topology.

Proof. By the well known result in functional calculus (see [Appendix, Theorem 4.3.6

(1D

||| = H/ eiktdE()\)H < suple| =1, forall t €R. (2.2.8)
R AER
By the estimate (2.2.8) and the formula for the Fourier transform of f

(see [Appendix, Definition 4.5.2]), we have

IF @™ < 1F @] e < 1 f(2)

‘“td)\' < —/|f )|dA

and which implies that f(t)e’" € B(H) for each t € R. We first show that the
function t — f(t)eo'z is continuous.

By the standard properties of spectral integral (see [Appendix, Theorem 4.3.6
(6)]), for = € H, we have

IF0e = Fae™ ol = | [ (0 = o)) o

_ /]R ‘f(t)ez)\t _ f(to)ei’\to 2

where F is the spectral measure of Hy and (E(-)z, z) is a finite scalar measure defined

2

d{E(N)z,z), t ity e R,

(2.2.9)

on the o-algebra of Borel subsets of R. Since f € L'(R), f is continuous on R (see
[Appendix, Proposition 4.5.4]). Also, for each A € R, €™ is a continuous function of
¢ in R. Therefore, f (t)e™ is a continuous function of ¢ in R for each A € R and, for

each A € R, we have

lim |f(t)e™ — f(to)e™|” =0, £ty € R. (2.2.10)

t—to

17



Since f € L'(R), f is bounded on R. So, there exists M > 0 such that
|f(t)| < M for all ¢ €R.
Using the last estimate, we have

A~ . A ) 2
‘f(t)e“\t — f(to)e™™| < 4M? t,ty e R.

Since (E(-)x,x) is a finite measure on R, we also have
/ AM2d (E(V)z, ) < 0o,
R
Therefore, by the Lebesgue dominated convergence theorem and (2.2.10), we get

A . 2
lim ’ z)\t iAto
Jim / f(t) f(to)e

From (2.2.9) and (2.2.11), we have

d(E(N)z,x) = /ROCHE(/\)x,x) = 0. (2.2.11)

lim || f(¢)e™ z — f(to)e™ o™ z|? = 0.
t—to

Since t, € R was arbitrary, the function ¢ ~— f (t)etfoly is continuous. For any
o € H*, the function t — aff(t)e'folz) is continuous from R to C, and hence,
measurable. Moreover, {f(t)eiolz : t € R} C H is separable. By ([Appendix,
Definition 4.4.2]), the function ¢ — f(t)e'z is separably-valued. Therefore, the
function ¢ — f(t)eHotz is measurable (see [Appendix, Theorem 4.4.3]). Also, since
/Hf(t)eiHotxH dt < oo, by [Appendix, Theorem 4.4.5], t — f(t)e'fotz is Bochner
ir]ﬁ:egrable. By [Appendix, Definition 4.4.4], there exists a sequence of simple functions
{sHow} that satisfies the assertions of the theorem.

If Hy is bounded, then ¢ — f(£)e"°! is continuous in the uniform operator topol-
ogy. By an argument similar to the one above, we can show that the limit in (2.2.7)

exists in the uniform operator topology. O]

Lemma 2.2.13. Let Hy = Hj be an operator in a Hilbert space H and let f be such
that f, f € L'(R). Then,

I(Hh) = = [ fera

where the integral on the right is a Bochner integral and its convergence is evaluated
in the strong operator topology. Moreover, if Hy is bounded, then the integral can be

evaluated in the uniform operator topology.
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Proof. By the spectral theorem (see [Appendix, Theorem 4.3.8]),

HO:/R/\dE(/\),

where F is the spectral measure of Hy on H defined on the g-algebra of Borel subsets
of R and the convergence of the integral is understood in the strong operator topology.

Since f is a bounded continuous function on R, by [Appendix, Section 4.3.5], we have

F(Ho) = / FOVAE(N)

By [Appendix, Theorem 4.3.6 (5)], we also have

(f(Hop)x,y) = /Rf()\)dw()\), x,y € H, (2.2.12)

where w(-) = (E(-)x,y) is a finite scalar measure defined on the o-algebra of Borel

subsets of R. Since f, f € L'(R), by the Fourier inversion formula,

1 A .
f) = —/f(t)e”‘tdt. Therefore, the equation (2.2.12) becomes

\/ﬂ R
(f(Ho)z,y) = /R (\/% /R f(t)emdt) dw(N). (2.2.13)

i)\t| — 1’

/ (/ I “t'dt> i) = | ( JAC |dt) dlw|(%) < (2:2.14)

where the last inequality follows from the fact that f € L'(R) and |w|(-) is a finite

positive measure on R. Since R is a o-finite measure space with respect to the

Since |e

Lebesgue measure and (2.2.14) holds, by Fubini’s theorem the equation (2.2.13) can

be written as

(f(Ho)z,y) = 7 / ( / e duw( )\)) Ft)dt.

By [Appendix, Theorem 4.3.6 (5)], the last expression becomes

(f(Ho)x,y) = \/LQ_T( /R <eiH°tx,y> f(t)dt = J%Tr /R <f(t)eiH°tx,y> dt. (2.2.15)

By Lemma 2.2.12, for « € H, the function t — f(t)e’Holz from R to H is Bochner

integrable and, hence, there exists a sequence of simple functions {s0:*} such that

F(t)eoty = lim sMo=(¢)
n— oo
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almost everywhere and

/ f(t)eoty dt = lim H”(t) dt

n—00

in H. By the continuity of an inner product, for all y € H, we have

()Tt . y) = Tim (s (1), ) (2.2.16)

n—oo

almost everywhere and

1 R iHot o 1 . Hy,x
<\/—2_7T/Rf(t)e xdt,y> = \/%nh—{go</RS" (t)dt,y>

1
= lim [ (s70(t),4) dt. 2.2.17
o A, R< n (1), y) ( )
For all y € H, we have
i | [ G000 = [ (G0 0,0) )
n—oo | Ip R
— lim / (st (t) — f(t)e™ z,y) dt‘
n—oo R
< Tim [ |(sfoe(t) = fo)e 'z, )| di
n—o0 ]R
< lim [ |[sHo(t) — f(t)eHolx ‘HyH dt — 0,
n—o0 R

as n — oo by the Bochner integrability of the function ¢ — f (t)ettot

Definition 4.4.4]). Therefore, we have

x (see [Appendix,

/}R(f(t)eiHOt z,y)dt = lim [ (sHo"(t),y) dt. (2.2.18)

n—oo R

By (2.2.17) and (2.2.18), we get

<\/12_7r / f(tye ™t x,y> - \/12—7T /(f(t)eiHOt x,y)dt, for all y € H.
R R

Using the last equality, (2.2.15) can be written as

(f(Hp)z,y) = <\/% /Rf(t)eiHotdt x,y>, for all y € H,

and, hence

zHot
Ho)e = = / F(t)
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Since x € ‘H was arbitrary, we have

i) = —= [ foye i

If Hy is bounded, then the last integral converges in the uniform operator topology
by Lemma 2.2.12. O

Theorem 2.2. -14. Let Ho = Hj be an operator in H and V. =V* € B(H). If [ is
such that f\9) f € L'(R),j=0,1,...,n, then

dn

i f(H0+tV)

180 51 HOV Vel Sp—1—Sn HUVeZS”HO dSn .ds ,
\/27r// / 0

where the integral on the right is a Bochner integral and its convergence is understood

in the strong operator topology. Moreover, if Hy is bounded, then the integral can be

evaluated in the uniform operator topology.

Proof. The theorem can be proved by induction on n. Here, we give the proof only

for n = 1,2. We first prove for n = 1. By Lemma 2.2.13, we have
1 A A 1 N )
Hy+tV) — f(Hy) = —— / A)eAHAVIGN - / A)e o)
AHOHY) _ iAo ), 2.2.19
-7 LI ) (2219

Using Lemma 2.2.10, the equation (2.2.19) can be written as

f(Hy+tV) — f(Hy) = \/2_ / f(x < / A=) (Ho+tV) the””HOd:U> d\
T
/ / FN) A= HottV) gy piwto g ) (2.2.20)

\/ﬂ

By the definition of first order operator derivative and using (2.2.20), we get

d Hy+tV) — f(H

dt lt=0
Ner %m%// Jie J(Ho+HV) Y gieHo gg: ), (2.2.21)
e —

Using Lemma 2.2.11, we have

lim f()\)ei()\fx)(HothV)VeizHo _ fA(A)ei()\fm)HoV'el'ﬂﬁH()7 )\’ = R,

t—0
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where the limit is evaluated in the strong operator topology. We have

Hf()\)ei()\—;v)(Ho—l—tV)VeixHo

< [FOHIVI-

Also, we have

’AAA|f<A>!\rV\|ddi’
=V '/R|f(>\)| (/Okdx) dA'

< v / NI
— v / IAFV)dA.

Since ]?’()\) — iAf(A\) (see [Appendix, Proposition 4.5.6]) and f’()\) € L'(R), the

latter estimate becomes

>\ “~ —~
/ FV | dee d>\‘ <[V / [F'(M)]dA < oo
R JO R

Therefore, by [Appendix, Proposition 4.4.6], the function f(\)e!*-®Hoy gizHo i

Bochner integrable with respect to the Lebesgue measure dx x d\ and

lim / / X V(HoFtV) Y/ gizHo gy g \

27'(- t—0

= F(N)ef—DHoy gieHo gy g\
V2T /]R /0

Using the last equality, (2.2.21) becomes

d

S Ho+tV) \/_ / / f\) Aoy gieHo ga ) (2.2.22)
Making the substitution A = sy and x = sy, the latter integral becomes

) 80 ~ . .
t 0f(Ho +tV) = —227r / / f(sq)eitsoms)Hoy gisiHo g, g
= V R Jo

and, hence, the theorem is proved for n = 1.

Next, we prove for n = 2. As in the equality (2.2.22), we can show

ds

s=t

. Py
f(H0+sV):\/% / / F(N)e! A2 HoH V) gielHottV) g g\ (2.2.23)
™ JRJO
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By the definition of second order operator derivative,

d

d
2 sl f(Ho+sV) — s s=of(H0 +sV)
@ t:Of(HO + tV) = lg% L ; .
Using (2.2.22) and (2.2.23), the last expression becomes
d2
prif f(HO +tV)

i(A—z)(Ho+tV) ix(Ho+tV)
t—>0t \/%// f Ve Vdx d\

\/2_// f i(A— ac)H()‘/ewcH()daj d)\)
T
= lim —

z()\ z)(Ho+tV) i(A—z)Ho ix(Ho+tV)
lim - \/ﬂ// Fx ) Ve dz d))

z()\ z)Ho tw(Ho+tV) szo
+g%t m//f V(e ) dodA).

By Lemma 2.2.10, the latter expression becomes

2
d—‘ F(Hy +tV)

dt?
()\—:E—y)(Ho—‘rtV)Z'tVeino dy Vei:l:(Ho—l—tV)dx d\
=0 E/2r / / (/

- i(A—z)Hop ¢ i(x—y)(Ho+tV) iy Ho

+1ltg>%t\/%// f V(/o e itVe dy)d:nd)\
A—z

— hm// / f i(A—x—y)(Ho+tV) VG yHovezx (Ho+tV) dy dx d\

27T t—0

lim / / / FA)e Oty gile=n) oty eivfo gy dy: d). (2.2.24)

27T t—0

Using Lemma 2.2.11, it follows that
hmf( ) i()\frpfy)(HngtV)Veinoveix(HngtV)
t—0

= f(\)eOmrmtoy ety gintlo X 4y € R,

where the limit is evaluated in the strong operator topology. We have

f( ) i(A—z— y)(H0+tV)vezyHovezm HO+tV)H < |f( >| ||V||2

Also, we have

)\a:

MIIV[dy d dA\
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~1vie|[ A>|/OA (/dy) ddi‘
< Ve [ 170 / YA e d

< ||V||2/| (N2 (V).

Since ﬁ()\) = (iA\)2f(\) (see [Appendix, Proposition 4.5.6]) and ﬁ()\) € L'(R), the
latter estimate becomes
A—z

NIV Py ds x| < V2 [ [FO)aA < o

Therefore, by [Appendix, Proposition 4.4.6], the function
F(\)eiA—z—nHoy civHoy/ gizHo js Bochner integrable with respect to the Lebesgue mea-

sure dy X dr x d\ and

A—z
hm// / f z(>\ z—y)(Ho+tV) VezyHoVem Ho+tV) dy dr d\

\/ﬂ t—0

A—x

= F)eAmrmntoy gty eietlo gy dg d).
V2T /R/O /0

Similarly, we can show that

hm// / f iA=2)Ho/ i —y)(Ho+tV) VeZyHOdy dxr dA\

ﬂ' t—0

= fn)eO-nHoyila=nHoy eivto gy dy ),
V2T /R/O /0

Using the last two equalities, (2.2.24) becomes

A—x
F) e Aoy eivHoyseintho dy g d)
b

+ 27r// / f()\)ei(’\_’”)HOVei(m_y)HoVeinOdyd:rd)\.
vV rJo Jo
(2.2.25)

d?

dt? 4=

J(Ho+1V)

Making the substitution \ = sg, z = so, and y = s; — sy in the first integral and the
substitution A = sy, x = s1, and y = s in the second integral of (2.2.25), we obtain
the representation
P2
dt? =

f(Ho+tv)

f ei(so=s1)Hoy/ oi(s1—s2)Ho VeZSZHOdSQ dsy dsg
\/27r / / /
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and, hence, the theorem is proved for n = 2.
We now assume that Hj is bounded. Then, by Lemma 2.2.13

) = <= [ fyera

where the convergence of the integral is evaluated in the uniform operator topology.
Similarly, the integral and limit in Lemma 2.2.10 and Lemma 2.2.11 can be evaluated
in the uniform operator topology. Using all these results and proceeding as above,

we see the integral in this lemma converges in the uniform operator topology. O]

25



Chapter 3

Trace formulas in the case of
Hilbert-Schmidt resolvents

Let the resolvent of Hy belong to 82, that is, |(il + Ho)™'| = (I + H3)™'/? € &%
V =V* e B(H); and f € C*((a,b)), where C"((a,b)) is the space of n times

continuously differentiable functions on R that are compactly supported in (a,b) C R.

We show that there exists a unique locally finite real-valued measure f, = fin m,.v,
n > 3, such that the following trace formula holds (see Theorem 3.1.7):

n—1

k
Tr(f(Ho+V) = f(Ho) — Z%% -

k=1

Of(H0+tV)> Z/Rf(”)(t)dun(t),

for f € C?((a,b)). In the case of commuting Hy and V', we show that there exists a
locally integrable function 1, = 1, mg,v, n > 3, such that the following trace formula
holds (see Theorem 3.2.1):

-1

1 d*
TT(f(HO‘i‘V) — [(Ho) —ZE@
k=1

3

tzof(Ho—I—tV)) = / ™ ()t

for f € C"((a,b)).

Following delicate methods of noncommutative analysis developed in [18], we first

1 dt
show that each summand in f(Hy+ V) — f(Ho) — > Eﬁ‘ f(Hy+1tV) is a trace
k=1 ! t=0

class operator (see Lemmas 3.1.1 and 3.1.5) and prove the estimate

n—1
Tr<f(H0—|—V Z%j—‘ H0+tV))
k=1

S Cn,a,b,Ho,V ' ||f(n) ||OO7

where C, 45 1,,v is @ constant depending on a, b, Hy and V. Then, we use the Riesz

representation theorem for a functional in (CC(R))* to find a unique locally finite
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real-valued measure p,, that satisfies the result in Theorem 3.1.7. To prove Theorem
3.2.1, we simply prove the absolute continuity of the measure y,, obtained in Theorem

3.1.7 using integration by parts.

3.1 Non-commutative perturbations

In this section, we assume that the initial operator Hy and its bounded perturbation
V' do not commute, that is, HyV # V H,.

3.1.1 Trace Formulas

The main result is in Theorem 3.1.7. We have several auxiliary lemmas before the

main result.

Lemma 3.1.1. (See [18, Lemma 2.5]) Let Hy = H; satisfy (I + HZ)~/? € 8% and let
V =V*e€ B(H). Let f be a continuous compactly supported function on R. Then,
f(Hy+V) eS8 and

1 (Ho + V)l < [ Flloo - (1 + nax (%) - L+ VI IVIP) - 17+ H) 25,
In particular, f(Hy) € S' and

£ < I fllo (14 ma [s2) - 7+ )2

Lemma 3.1.2. (See [3, Lemma 2.1]) If f is such that f, f\ € L'(R),
7=0,1,...,n, then

f”][)\o,...,

i(50—51)>\0mei(sn—l—sn)AnfleiSW\” ds,,...dsg
\/27r // / ’ |

where f o, ..., \n] is a divided difference of order n given by Definition 2.1.1.

Lemma 3.1.3. (See [3, Lemma 4.5]) Let HO = Hg,...,Hn = H} be defined in H
and let Vi, ..., V,, € B(H). If f is such that {9 f € L'(R),j =0,1,....,n, then the

Bochner integral

Tfl_[{?] ..... Hn(‘/'l’ (3.1.1)
z (so—s1 Hov Vv 7lei(s"*178")H"71V eiS”H”y ds ...dS()
27 / / / e ' ’
v (3.1.2)
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exists for every y € H and thus defines a bounded linear operator on H with the norm

bound

1 —_—
|| =5 [l7

AR VAT

Remark 3.1.4. Tﬁf] """ (Vi) ... V) in the above lemma is a bounded multilinear map-
ping from B(H)x---xB(H) to B(H). It follows immediately from Theorem 2.2.14 and

(3.1.2) that for V. =V* € B(H) and f is such that {9, ?(J\) € L'(R),j=0,1,....n,

1 dn Y
— . — Hy +tV 7o “(V,...,V).
n! dt® t:()f( 0 +1V) = fin L L )

n times

Lemma 3.1.5. (See [18, Lemma 3.6]) Let Hy = H; satisfy (I +HZ)~'/? € 8% and let
V =V* € B(H). Denote u(t) = (1+t2)/2. Then, for everyn € N and f € C"*(R),
1 d

f(Ho+tV) € St and

Wl @ o
|5 ]+t < g I+ B IV
where
Cpa < VA(IF2Y I+ 1 (Fe) ) + 2] o (313)
and for n > 2,
V2 "
Crn < L2 (1D o+ (£ D))
n+3 V2
4 OB s L)l 7l 2 (17 4 1542)),
V2
(102 + 1(Fu) V11 ) §

2
X const - max (Hu 2 + w9+ ) (3.1.4)
2<j<n

Lemma 3.1.6. Let f € C((a,b)), n € N, and u(t) = (1 + )2, If C},, satisfy
(3.1.3) forn =1 and (3.1.4) for n > 2, then

Cf,n S ||f(n+1)||oo : Ca,b,m nc N, (315)

where

Copr =24 - maX{l, (b— a)2} : maX{Z 14 L= (a1 ||(u2)’HL°°<[a,b1)} (3.1.6)
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and forn > 2,

4b—a)V? n(n+3
Ca,b,n:[ ( 7’L'> + ( B )-max{1,4(b—a)1/2}

‘ , 2
X const - max (”U/(j)HQ + HUUH)H2> } -2m max{l, (b— a)”“}
<j<n

2, [|u?|[ oo 2|l e B[ oo } 1.
L A [ P [ P [ [P (3.1.7)

Proof. We prove the case n > 2. The case n = 1 is similar to that of n > 2 and,

hence, omitted. Here, we denote || - |2 = || - || z2(ap) and || - [oo = || - [|2o(a,e))- For

f € Cri((a,b)),
£l < 5D o (b= )2, 0= G <t 1. (3.18)

Using (3.1.8), we obtain that

Crn
) ol = )72+ () o5 = 0)12)

<
#2031 Ll Y (15Ol — ) 75— )12,

2 1<k<n

g(”ﬁf W) ool = @)% + [ (Fu) D (b~ 0)72) }

. X 2
% const - max (Hu(J)HQ + Hu(ﬂ“)HQ) . (3.1.9)
2<j<n

Since

(9 %—HZ() #) <3 (a1

7=0
< 9k . )
<20 max [|f7 gglag;cll oo,

for 0 <7 <n-+1, we have
1(f1*) Pl < 27+ max || fD|oo - max || (u®) | o (o)

0<5<5e 0<I<i

< 27 mnax { [ lloes Il o 15"Vl }

X max { ||u2||Loo([a7b]), ||(U2)/||Loo([a7b]), ceey ||(u2)(”+1) ||Loo([a7b])}. (3110)
Since, for f € C™((a,b)),

1FPNloo < UF" oo+ (0= @)™, 0<j<n+1,
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3.1.10) is bounded b
( ) y
1(fu) Pl < 277 [ 0| - max {(b —a)", (b—a)", ..., 1}

x max{||u2||m[a,b]), 12) || oo (s - ||(u2)<"+1>||m([a,b])}, (3.1.11)

for 0 < i <n+ 1. Since 1<m<a>il{1, (b —a)'} < max{l,(b—a)""}, (v?) =2, and
(u?)"+D) =0, for n > 2, (3_111) is bounded by
1(fu*)P o

< 2% 0 o - max{ 1, (6 = @)™ - maxd 2 o e, 102 2o g §
< 2n+1 . Hf(n—i-l)Hoo . max{l, (b . a)n—l—l}

X max {2, [0 | oo .y | ()l oo (fat) ||u(k)||L°°([a,b})}a 0<i<n+l

0<k<n+1
(3.1.12)
Similarly, for 0 <i <n + 1, we have
17D loo
<27 o max{1, (- )
2 2 k
o max {2 [0l oy 16 laoe s [0 e }- (3.1.13)
and
1(Fu) oo
< 2n+1 . ||f(n+1)||oo . max{l, (b . a)n—i—l}
2 2 k
S e e [ P (O PN A (3.1.14)

Using (3.1.12)—(3.1.14), we obtain that

" 252(b—a)t?  n(n+3)
Crn < Il - | —— + =5

‘ , 2
X const - max (Hu(J)HQ + \]u(]+1)|\2> } 22" max{l, (b— a)”“}
2<j<n

~max { 1,2%2(b — a)V/?
{12 - '}

2 29711 ")) }
T A [ P [ P [ [P
4(b—a)’?  n(n+3)
: [ +
n! 2
. . 2
X const - max (||u(9)\|2 + ||u(7+1)||2> } 2" max{l, (b— a)"“}
SJsn

< | fO) ~max{1,4(b—a)1/2}

k
* odignti {210z oy 1) oy 10 2y

= ||f(n+1)||00 : Oa,b,'rm n Z 27
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where C, 5, is given by (3.1.7). n

Theorem 3.1.7. Let Hy = H} satisfy (I + HZ)™Y? € S? and let V = V* € B(H).
Then, there is a unique locally finite real-valued measure i, = fn v, 1 > 3, with

total variation on the segment [a, b

n—1

[ il <2 Con- T+ B 21 Y VI, (3.L15)
[a.0] k=0
where

Cop = max {(b —a)" - (1+a®>+b*),Capp- (b— a)"_l_k}, n>3, (3.1.16)

1<k<n—1

Capi is given by (3.1.6) for k=1 and (3.1.7) for k > 2, such that

dk
dtk

:fHo—i-tV /f A)d i (A

Te(f(Hy + V) = f(1) - %

TM

for f € C*(a,b)), a,beR.

Proof. Let n > 3 and let

dk
— H . 1.1
| gk tzof( 0o+1tV) (3.1.17)

Rt (f) i= f(Ho+ V) = f(Hy) %

WMH

By Lemmas 3.1.1 and 3.1.5, each summand on the right hand side of (3.1.17) is a
trace class operator. Therefore, taking trace on both sides of (3.1.17) and using the

linearity of the trace functional, we get

Te(Rp o v (f)) = Te(f(Ho + V) — Te(f(Hp)) — 2 Tr(%%  f(H+ tV)).

Using the triangle inequality, we get from the last expression

‘Tr(Rn,HO,V( ) ‘
< Tr(f(H0+V))‘+ Tr(f(HO))‘ nzl Tr(;'j; f(H0+tV))‘.

Since for A € 8*, |Tr(A)| < || A1, the latter expression is bounded by

1 dF
Ty (Ho + 1Y)

T (R v ()| < 117 (Ho + V)l + 11 (o))

1

(3.1.18)
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Again by Lemmas 3.1.1 and 3.1.5, (3.1.18) is bounded by

‘TI'(Rn,Ho,V(f))‘
n—1
< w - (14+ ma s -+ VI + IVII?) + C-Vk)
< (Wl (5 mas | 9 @ VI IVIE) + X2 - 1V
x ||+ H3) 2|13, (3.1.19)

where Cj, satisfies (3.1.3) for k = 1 and (3.1.4) for £ > 2. By Lemma 3.1.6 and the

fact that (1+ max |s]?) < (1+ a®+b%) applied in (3.1.19),
s€suppfC(a,b)

Tr(Rn,Ho,V(f» ‘
n—1

< (llflloo-(1+a2+b2) C+ VI VI + D 1% D oo - Capn- ||V||)
k=1

< |[(1 + Hy) 2|15,
where Cy 1 is given by (3.1.6) for £ = 1 and (3.1.7) for & > 2. For f € C?((a,b)),
1F PNl < F e - (b= )", 0<j<n,
and, hence,

T (R (1)
< F Moo - 10+ HY 723
X ((b —a)" - (I+a®+0°) - 2+ [VI+IIVI*) + nzl Capye - (b—a)" 175 HVHk)-
- (3.1.20)
If C,p is given by (3.1.16), then(3.1.20) is bounded by

n—1
Tt (Rt ()] £ Cap - 1Pl - 11+ HD 25 (24 IVI+ IVIE+ 3 IVIF)
k=1

n—1
<2 Cap - IF ™ Nloo - 11+ HG) 25> VI

Hence, by the Riesz representation theorem for a functional in (C.(R))", there is a
unique locally finite real-valued measure pt,, = i g, v, n > 3, with total variation on
the segment [a, b] satisfying (3.1.15) such that

Tr (R, o, (f /f A)dpn (A
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3.1.2 Example of a Self-adjoint operator with
Hilbert-Schmidt resolvent

In this section, we will make a specific choice of a Hilbert space H and a self-adjoint
operator Hy with Hilbert-Schmidt resolvent to which Theorem 3.1.7 applies. More
precisely, we take H = L?([0, 7]) and Hy a negative Laplacian with Dirichlet boundary
conditions. We show that Hy is self-adjoint (see Lemma 3.1.15) with Hilbert-Schmidt
resolvent (see Lemma 3.1.17) so that if V' = V* is any bounded perturbation, then
the result in Theorem 3.1.7 holds.

Let H = L*([0,n]) and denote

D={f€H: f exists, f is absolutely continuous, f”’ € H,and f(0) = f(7) = 0}.
(3.1.21)

Let Hy : D — H be defined by
Hou = —". (3.1.22)

The operator Hy given by the equation (3.1.22) is called a Sturm-Liouville oper-
ator. We will see that eigenvalues of Hj are real numbers and the resolvent operator
(Hy — AI)~! of Hy, where A € R is not an eigenvalue of Hy is a compact self-adjoint

operator. In order to compute the resolvent, we solve the inhomogeneous equation
(Hy— M)u=f, u(0)=0=u(n).

We will show that (Hy — AI)~! is an integral operator with square integrable kernel
called Green’s function of the Sturm-Liouville problem. Then, it follows that the
operator (Hy — AI)™1, A € R is not an eigenvalue of Hy, is a compact self-adjoint

operator. Finally, we show that the resolvent operator (Hy — AI)~! belongs to S2.

Definition 3.1.8. (See, e.g., [1, Section 2.4]) Green’s function for the Sturm-

Liouville operator given by the equation (3.1.22) is a function
g 10,7 x[0,7] =R
with the following properties:
1. g is symmetric, in the sense that
g(w,y) = gly,x) for all x,y € [0, 7],

and g satisfies the boundary conditions in each variable x and y.
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2. g 1s a continuous function on the square [0,7] X [0, 7] and of class C* on

0, 7] x [0,7]\ {(x,y) : =y}, where it satisfies the differential equation
Gez(,y) = 0.
3. The deriative g, has a jump discontinuity at x =y given by
9a(y+,y) = 9a(y—,y) = lim gs(c,y) = lim gu(c,y) = ~1.

Lemma 3.1.9. Let Hy : D — H, where D is defined by the equation (3.1.21) be given
by
Hou = —u"
and assume that
Hu=0 — u=0.
Then, the Green function g for Hy satisfying the Definition 3.1.8 is given by
z(m —y)
g(z,y) = m - - (3.1.23)

T
Proof. Let us choose non-zero solutions

ui(x) =z
and
ug(z) =m—1x
of Hyu = 0 such that u, satisfies the boundary condition at x = 0,
u1(0) =0,
and us satisfies the boundary condition at x = ,
ug(m) = 0.

Since the Wronskian W of u; and wuy satisfies

(y) ua(y)
(y) us(y)

= w1 (y)us(y) — uz(y)uy (y)
=y(—1) — (7 —y)(1)
= -7 #0, forall y€[0,7],

W) ="

1
U
(
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uy and uy are linearly independent.

Now define

Cly)ui(z)uz(y), 0<w<y<m

g(z,y) =
Cly)u(y)us(z), 0<y<az<nw
C — I<xr<y<
_ ) CWalr—y), Osesysn (3.1.24)

Clyy(r—x), 0<y<z<m,

where
1 1
C _ _
(y) W)

Substituting the value of C'(y) in the equation (3.1.24), we get the equation (3.1.23).

Now it remains to show that all the properties of g(x,y) listed in the Definition
3.1.8 are satisfied. Clearly, g(x,y) = ¢(y,x) and hence g is symmetric. By the
equation (3.1.23), it follows that

9(0,y) =0 = g(m,y) and g(x,0) =0 = g(x,7),

which shows that ¢ satisfies the boundary conditions in each variable x and y. Thus,
the property 1 of Definition 3.1.8 is satisfied. The function ¢ is obviously continuous

on [0, 7] x [0, 7]. Differentiating the equation (3.1.23) with respect to z, we get

ge(,y) = § —7
—, 0<y<azx<m.
T

Therefore,

Gza(z,y) =0 for x #y.

Thus, the property 2 of Definition 3.1.8 is satisfied. Finally,

9:(y+,y) — g:(y—,y) = lim g,(c,y) — lim g,(c,y)
c—y+ c—y—

. Yy . T™T—Y
= lim —= — lim
c—y-+ T c—Y— T

=1

Y

which proves that property 3 of Definition 3.1.8 is also satisfied. n
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Theorem 3.1.10. (See, e.g., [6, Chapter II, Proposition 4.7]) Let (X,Q,u) be a
finite measure space and let k € L*(X x X,Qx Q, ux u). Then, the integral operator
K : LA(X,Q, p) — L*(X,Q, ) defined by

(K f)(x) = / Kz, 9)f(4)du(y)

X

is a compact operator and ||K|| < ||kl 2.

The theorem below is a known result. We give here a simple and rigorous proof

for it.

Theorem 3.1.11. (See, e.g., [6, [Chapter II, Theorem 6.9]) Let Hy : D — H, where
D is defined by the equation (3.1.21), be given by

Hou = —u"
and assume that

Hyu=0 = u=0.

Let g be the Green function for Hy given by the equation (3.1.23). Let G : H — H be
the integral operator defined by

(G)(x) = / " gl ) f)dy. (3.1.25)

Then, G is a compact self-adjoint operator on H, Gf € D for all f € H, H/Gf = f
for all f € H, and GHoh = h for all h € D.

Proof. Since g(z,y) is continuous on [0, 7] x [0, 7] and [0, 7| x [0, 7] is compact, there
exists M > 0 such that |g(z,y)| < M for all z,y € [0, 7] x [0, 7] . Since

/ g )Pz x ) < M?n? < o,
[0,7] % [0,7]

(G is compact according to Theorem 3.1.10. We now show that G is self-adjoint. For
fiheH,

(Gf.h) = / (G @)h(x)dz
_ / ” / " g, 9) f () h(x)dy do.
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Since g is real valued and symmetric, the last expression becomes

(G h) = / ' / " 9(y, 2)h(a)  (y)dy dz (3.1.26)

By the Holder inequality, we get

[ sty < ([ Tan) ([ iswran)”

—va( [ k) < .

/OW I7(z)|da < co.

Also, we have |g(y, z)| = |g(z,y)| < M for all x,y € [0, 7] x [0, 7]. Therefore, we have

/Oﬂ (/07r |§(yax)ﬁ(:v)f(y)|dy)dx < 0. (3.1.27)

Since [0, 7] is a finite measure space with respect to the Lebesgue measure and the

Similarly, we can show

equation (3.1.27) holds, by Fubini’s theorem the equation (3.1.26) can be written as

Gr.m = [ 1) [ ot li(ords dy

/th

= (f.Gh),

which proves that G is self-adjoint.
Let us fix some f € ‘H and let h = G f. We wish to show that h € D. We have

) = [ty
_ /Oxg(x,y)f(y)dy—F/ﬂ 9(@,y) f(y)dy
- /Ox Y0 gy + /7r @f(y)dy

™ —X

— /O yf(y)dy + % /;(7T —y)f(y)dy.

™

By the Holder inequality, we get

[ sy < ([ 1oPas) ([ 1) <o
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which implies that yf(y) € £!([0,7]). Similarly, we can show that (7 — y)f(y) €
L]0, 71]). Therefore,

hi(z) == /x yf(y)dy

0

and
bata) = [ (m =)0y
are absolutely continuous, and
hi(x) = zf(z) for almost every x € [0, 7],
and
hy(z) = —(7m — x) f(x) for almost every x € [0, 7].

Therefore, we have

W (x)
_T ; z of(z) — % hi(z) — %(W —x)f(z) + % ho(z) for almost every z € [0, 7]
_ %(l@(:ﬁ) ~ hy(2)) for all @ € [0, 7], (3.1.28)

since h; and hy are absolutely continuous on [0, 7]. Therefore, b’ is also absolutely

continuous on [0, 7]. Differentiating the equation (3.1.28), we get

W'(x) = = (hy(z) — hy(z))

(= (r—a)f(z) —xf(x))
= —f(x) for almost every z € [0, ] (3.1.29)

A==

Since f € H, h" € H. Also, h(0) = 0 = h(m). Hence, h € D.

To show HyGf = f for all f € H, let h = Gf. Then, Hyh = —h"” = f by the
equation (3.1.29).

To show GHyu = u for all uw € D, let u € D. Then, Hyu € H. Since H\Gf = f
for all f € H, HiGHyu = Hyu, which implies that Ho(GHou — u) = 0. Since
kerHy = {0}, it follows that GHou = u for all u € D. O
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Lemma 3.1.12. Let A € R\{n?} ~,. Let L = (Hy — X) : D — H, where D is
defined by the equation (3.1.21), be given by

Lu=—u"—\u
and assume that
Lu=0 = u=0.

Then, the Green function g for L satisfying Definition 3.1.8 is given by

sin vz sin(\/_w—\/_y)

, 0<z<y<nm
x _ VA sin VA
gl y) =4 Vg sin(vr — vz) | (3.1.30)

, 0fy<z<
VA sin vV

Proof. Let us choose non-zero solutions

uy(z) = sin vz

and
uy(x) = sin(VAr — VAz)

of Lu = 0 such that w; satisfies the boundary conditions at x = 0,

and us satisfies the boundary condition at x = ,
ug(m) = 0.
Since the Wronskian W of u; and u, satisfies

ui(y) ua(y)

/

ui(y) us(y)
= w1 (y)us(y) — ua(y)ui ()

= —sin vV Ay VA cos(VAT — Vy) — sin(VAr — V) VAcosvVy
=~V sin(Vy + Var — V)

= —VAsinVA® #£0, forall y e [0,n],

W(y) =
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uy and uy are linearly independent.

Now define
) CWm@)ue(y), 0<z<y<m
g(l’,y) -
Clyu(y)us(z), 0<y<az<nw
_[ewsn e AR, sesyss
C(y)sin vV Ay sin(vAr —vVAz), 0<y<z<m,
where
1
Cly) = W
1
- \/X sin\/XW'

Substituting the value of C'(y) in the equation (3.1.31), we get the equation (3.1.30).

Now it remains to show that all the properties of g(x,y) listed in the Definition
3.1.8 are satisfied. Clearly, g(x,y) = ¢(y,x) and hence ¢ is symmetric. By the
equation (3.1.30), it follows that

9(0,y) = 0=g(m,y) and g(z,0) =0 = g(z,7),

which shows that the property 1 of Definition 3.1.8 is satisfied. The function g is
obviously continuous on [0, 7] x [0,7]. Differentiating the equation (3.1.30) with

respect to x, we get

cos vV Az sin(vAr — vAy)

, O0<zr<y<m
go(z,y) = sin vV Y
o — sin v/ Ay cos(vV AT — V) 0< <<
, 0< <.
sin VA Y

Again differentiating the last equation with respect to x, we get

—VX sin vz sin(v A1 — vV y)

o) = sin vV ’
Gas(2,Y) —V/\ sin vy sm(\/_ﬂ—\/_x)

sin vV

0<zr<y<nm

0<y<ax <.
For z < v,

- g:vas<x7 y) - )\g([E, y)
B VA sin vz sin(vVr — v y) _ Asin VAz sin(vAr — Vy)
a sin v/ VA sin vV

= 0.
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Similarly, for z > vy,

— Ga(T,9) — Ag(2,9)

_ VA sinV/Ay sin(vAr —VAz) A sinyy sin(var — vAz)

sin \/XW \/X sin \/XW

=0.
Thus, the property 2 of Definition 3.1.8 is satisfied. Finally,

9x(y+,y) — g2(y—,y) = lim g,(c,y) — lim g,(c,y)
c—y+ c—Yy—

—sin vy cos(vVAr — vV Ace)

= lim
c—=y+ sin VA
_cosVAesin(vVAr — v y)
— lim
Y= sin \/XTI'

—sin(v Ay + VA1 — V)
sinv/

=—1.
Therefore, the property 3 of Definition 3.1.8 is also satisfied. m

In Theorem 3.1.11, we saw that if 0 is not an eigenvalue of Hy, the resolvent
Hy' exists and is a compact self-adjoint operator. The following theorem is similar
to Theorem 3.1.11 where we show that the resolvent (Hy — A)~! exists and is a

compact self-adjoint operator for any nonzero A € R which is not an eigenvalue of
Hy.

Theorem 3.1.13. Let A € R\{n?}~ . Let L = (Hy— \I) : D — H, where D is
defined by the equation (3.1.21), be given by

Lu=—u"—\u
and assume that
Lu=0 —= u=0.

Let g be the Green function for L given by the equation (3.1.30). Let G : H — H be
the integral operator defined by

(G)() = / gl y) F)dy. (3.1.32)

Then, G is a compact self-adjoint operator on H, Gf € D for all f € H, LGf = f
for all f € H, and GLh = h for all h in D.
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Proof. The proof that G is a compact self-adjoint operator follows exactly as in The-
orem J3.1.11.
Let us fix some f € ‘H and let h = G f. We wish to show that h € D. We have

h(x)
_ / 9z, 9) f (y)dy
_ / ) )y + / g, ) Fl)dy

= /0 s \/Xy\/—ims(l;/_j/g; Vi) Fy)dy + / S ﬁg@?iiﬁ; V) fy)dy
B sin(vAr — V) [T sin vz T B
= s /0 sin vy f (y)dy + m/x sin(VAm — VAy) f(y)dy.

By the Holder inequality, we get

/Oﬂ |sin vV Ay f(y)ldy < </07f | sin \/Xy|2dy> 1/2(/07T |f(y)|2dy>1/2 <,

which implies that sin v Ay f(y) € L'([0, 71]).
Similarly, we can show that sin(vAr — v Ay)f(y) € L'([0,7]). Therefore,

h(w) = /0 sin vy (y)dy
and
hala) = [ sin(/Ax = VA )y
are absolutely continuous, and
Wi (x) = sin V Az f(z) for almost every z € [0, 7],
and
Wy(x) = —sin(vVAr — VAz) f(x) for almost every z € [0, 7].

Therefore, we have

_ sin(v A1 — vV Az) VA cos(VAT — V)

B () 7 sin o sin VAzf(z) — s hi ()
sin v/ \x ) VA cos vz
" A Jon sin(VAr — Vz) f(z) + I s or ho(x)
_cos Vz B cos(VAr — Vz)
= v ho(x) o hq(z) for all z € [0, ], (3.1.33)

42



since cos VAz, ho(z), cos(vAr — v/Az), and hy(x) are all absolutely continuous on
[0,7]. Therefore, h'(z) is also absolutely continuous on [0,7]|. Differentiating the

equation (3.1.33), we get

(a) = VA ) - AL ) DTV
B vV sin(\/XW — \/Xl') ()
sin V7 '
~ cos NV VA sin vz
= Do sm(\/XW — \/Xx)f(m) — m ha ()
cos(vV AT —VAz) | VA sin(vV A1 — vV z)

_ o s1n\/Xxf(:E) — S hi(z)
B _sin(\/X:v +VAr —Vz) f(x) B
B sin vV Am M)
= —f(z) — MAh(x) for almost every z € [0, 7). (3.1.34)

Since both f and h are in H, h” is also in H. Also, h(0) = 0 = h(m). Hence, h € D.
To show LGf = f for all f € H, let h =Gf. Then, Lh = —h” — Ah = f by the
equation (3.1.34).
To show GLh = h for all h € D, let h € D. Then, Lh € H. Since LGf = f for
all f € H, LGLh = Lh, which implies that L(GLh — h) = 0. Since ker L = {0}, it
follows that GLh = h. O

Lemma 3.1.14. Let Hy : D +— H, where D is defined by the equation (3.1.21), be
given by

Hof = —f". (3.1.35)

Then, the eigenvalues of Hy are {n®} _, each of multiplicity one. The eigenspace of

the eigenvalue n? is span {sin(nz)}.
Proof. Let us consider the equation
Hof = Af (3.1.36)
under the boundary conditions
f(0) = f(m) =0. (3.1.37)
By the equations (3.1.35) and (3.1.36),

F 4+ A =0. (3.1.38)
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Let us first consider the case where A > 0. The general solution of the equation
(3.1.38) is given by

f(z) = AcosVAz + BsinVz. (3.1.39)
Applying the boundary conditions given by the equation (3.1.37), we get
0= f(0) = Acos0+ Bsin0,
which gives A =0, and
0= f(m) = Acos VAr + Bsin VAr.

Since A = 0, the latter expression becomes BsinvAr = 0. If B = 0, then by the
equation (3.1.39) we will have a trivial solution of the equation (3.1.38) for all A > 0,
and the trivial solution is not admissible as an eigenfunction. So, we assume B # 0
and this implies that sin v Ar = 0. Therefore, we have VAr = nr, n € N, that is,
A, =n% neN.

If A =0, then f(x) = A+ Bz is the general solution of the differential equation
(3.1.38). After applying the boundary conditions given by the equation (3.1.37), we
get both A and B to be zero, which implies f to be a trivial solution. Therefore,
A = 0 cannot be an eigenvalue of H,.

Let A < 0. Then, the general solution of the differential equation (3.1.38) is given
by

flz) = eV 4 eV,

Applying the boundary conditions given by the equation (3.1.37), we get 0 = f(0) =

c1 + co, which gives ¢; = —cy, and
0= f(r) = creV > 4+ e VAT,

Since ¢; = —co, the latter expression equals

0=q¢ (e\/j‘” - e’ﬁ’r) .

Since V=X > 0, eV 7 +# e~V=>7_ Therefore, we have ¢; = ¢, = 0, which implies
f to be a trivial solution. So, A < 0 cannot be an eigenvalue of Hy. Therefore, the
eigenvalues of Hy are {n?} ., each of multiplicity one and the eigenspace of n? is

span {sin(nz)}. O

44



Lemma 3.1.15. Let Hy : D +— H, where D is defined by the equation (3.1.21), be
given by
HQU = —U”.

Then, Hy is a self-adjoint operator.

Proof. To prove that H is a self-adjoint operator, we must show Hy = H{, where H;
is the Hilbert-adjoint of Hy. We first show that Hj is symmetric. For f,g € D,

(Hof.q) = / " (Hof)gde

= —/ 1" gdx
0

-t + [ gris
0 0

:0+g’f7r—/ 7' fdz
0 0
:0—/ g fdx

0
:<f>H0.g>7

which proves that Hy is symmetric. Since Hj is symmetric, it follows that Hy C H{,
that is, D(Ho) = D C D(Hg) and Hy = Hg|,. Now, it suffices to show that Hy C Ho.
By Lemma 3.1.14, 0 is not an eigenvalue of Hy and hence by Theorem 3.1.11, the

operator GG given by the equation (3.1.25), whose domain is all of H and range D, is
the inverse of Hy. Therefore, the range of Hy, denoted by R(Hy), is all of H, that is,
R(Hy) = H. Let w € D(H{), then Hj u € H. Since R(Hy) = H, there exists some
v € D such that Hj u = Hyv. But Hy C Hj implies that Hj v = Hyv. Therefore,
we have H} u = H} v, that is, Hj(u —v) = 0. Since N(H}) = R(Hy)* = {0}, u = v.
Thus, u € D and Hj C Hy. ]

Lemma 3.1.16. Let Hy : D +— H, where D is defined by the equation (3.1.21), be
given by

HQU = —U”.
Then, the resolvent of Hy is compact.
Proof. Since the eigenvalues of Hy are {n?} ", for A # n? (Hy — Al)u = 0 implies
u =0, for u € D. If A = 0, then by Theorem 3.1.11, it follows that the operator
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G given by the equation (3.1.25) is the inverse of Hy and compact. Thus, H; ' is a
compact operator. If A € R\ {n?} ", then by Theorem 3.1.13, it follows that the
operator G given by the equation (3.1.32) is the inverse of (Hy — AI) and compact.
Therefore, (Hy—AI)~! is a compact operator for all A € R\ {n?} _,. Since a compact
operator is bounded, and (Hy — AI)~! exists and compact for all A € R\ {n?} | it
follows that such A belongs to the resolvent set of Hy, that is, A € p(Hy). Since H
is self-adjoint, A € C\R implies A\ € p(Hp). Therefore, p(Hy) = C\ {n?} _,. Let
Ao € R\ {n?} 2| and X € p(Hy) be such that A\ # \g. By the resolvent identity

[17, Theorem VL5, we have

(Ho — A" = (Hy — AoI) ™" + (A = Ao)(Ho — M) "' (Ho — AoI) ™" (3.1.40)

Since (Hy—AI)~! is bounded and (Hy — A\oI) ™! is compact, (Ho— A )~!- (Ho—XoI) ™!
is compact. Therefore, the right hand side of the equation (3.1.40) is compact, and

hence (Hy — AI)~! is compact. Thus, the resolvent of Hy is compact. O

Lemma 3.1.17. Let Hy, D, and H be as in Lemma 3.1.16. Then, the resolvent of
Hy belongs to S', and, hence, to S?.

Proof. Let i € p((Hy — AI)™'). Then, ((Hy— M)™' — ,u])_l is a bounded linear

operator. Since
(Ho =A™ = pl = (™1 = (Ho — ) (Ho — M) 7Y,

it follows that

-

((Ho — A)™" = ul) ™" = (Ho — M) (™1 — (Hy — X)) "'

The last expression is equivalent to

1

(Ho— A1) ((Ho = M) ™" — )" = (w1 = (Ho — M) ™. (3.1.41)

Since the left hand side of the equation (3.1.41) is a bounded linear operator, it follows
that (u1— (Ho—AI))™"
the spectrum of Hy is {n?}

= ((p 4+ — HO)_1 is a bounded linear operator. Since
n=1"

w i A#£n? neN

The latter expression is equivalent to

1
nz—\

n € N.

s
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1\ IR
Therefore, p((Ho — M)™) C C\{ )\} . Next, choose p € C\{ 5 )\} .
_ n2 —

n=1 n=1

Then, u=* + X # n?, n € N. Since the spectrum of Hy is {n?} _, it follows that

(™t + NI - HO)_l = (W' — (Ho— X)) ~!is a bounded linear operator. By the

equation (3.1.41), we conclude that ((Hy— )™t —pul) ~!is a bounded linear operator,
1 oo

which shows that u € p((Ho—A)™") and hence C\ {n2 — )\} C p((Ho—M)™).

n=1

Thus, p((Hy — \)-1) = C\ {n2 L A}OO e, o ((Ho— A1) = { 1_A}°° et

2
n=1 n n=1

JE Ty n € N. Since nonzero points in the spectrum of compact operators are
n —_

eigenvalues [17, Theorem VI.15] and

o0
D ] < o0,
n=1

we conclude that the resolvent of Hy belong to 8!, and, hence to S2. m

3.2 Commutative Perturbations

In this section, we assume that the initial operator Hy and its bounded perturbation
V' commute, that is, HyV = V H,.

3.2.1 Trace Formulas

Theorem 3.2.1. Let Hy = H satisfy (I + H2)"Y? € 8% and let V = V* € B(H).
Also, let H)V =V Hy. Then, there is a locally integrable function 1, = 1, gy,v, n > 3,

with total variation on the segment |a, b]

n—1

/[ ’ Da(M]dA < 2 Cap - (T4 H) 25> IV, (3.2.1)
@ k=0

where

Cop = max {(b —a)" (14 a’ + b2), Capg - (b— a)”_l_k}, n > 3,

1<k<n—1
Capk is given by (3.1.6) for k=1 and (3.1.7) for k > 2, such that

n—1

1 d*
Tr( f(Hy+ V) — - | JHe+tV)) = [ fP N0\, (3.2.2)
( 0 £ Rl drF ‘ 0 > /R
for f € C(a,b)), a,b € R.
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Proof. By Theorem 3.1.7, there is a unique locally finite real-valued measure

Wy =ty He v, P> 3, with total variation on the segment [a, b]

p—1

/[ il <2-Cou |+ BRIV
a, k=0

where

Ca,b = max {(b - a)p : (1 + CL2 =+ b2)7 Ca,b,k : (b - a)pilik}a P 2 37

1<k<p—1

Capk is given by (3.1.6) for k =1 and (3.1.7) for k > 2, such that

Tr Ryt /f )iy (A

If feC(a,b)),a,beR, then R, g, v(f) for 3 <p < n are well defined and

Tr (R, p,v ( / FMN)dpn (A (3.2.3)
and
TR (5) = [ £ (i1 (3:2.4)
R
By Theorem 2.2.14, we have
dn—l
= f(HO +tV)

(n—1)! glso—s)Hoys y/gisn—1Ho g g 3.2.5
\/27r / / / g 0 )

Since HyV = V Hy, by spectral theorem, it follows that
eHoty/ = Vet for all ¢ € R. (3.2.6)

Using (3.2.6), (3.2.5) becomes

dn—l
ditn—1 tzof(Ho +tV)
_ (n - 1>' vn 1f zsoHO ds 1. dS()
V2T
- 1 Vn 1 - s
~ -1 = /RSO L (s0)e"*0 0 ds,
Vn_l . 17 is
— NeT (is9)" 1f(so)e oo ggq
Vn—l — )
= 5= [T so)e o dso
= V=D (Hy), (3.2.7)
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where the last equality follows from Lemma 2.2.13. Since f™~Y is a continuous
compactly supported function on R, by Lemma 3.1.1 it follows that f"~V(H,) € S!

and

LFOD(H) < 1"Vl (L4 max [sf2) - (1 + HE) 2|2

sesuppfC(a,b)

<F oo - (L4 a® +6%) - 11+ He) ™25,

Since V"' € B(H) and 8! is a *-ideal in B(H), it follows that V"~ f(=Y(H,) € S
and
Vet D H ) < VP I Vloe - (L0 +0%) - (1 + H) 725 (3.2.8)

dn—l

1
From (327) and (328), we see that WW —0

f(Hy+tV) € 8 and

1 dnt
T Hy+t

(n—1)! 1"<d7f”—1 t:0f< 0t V)> '

1 dnt
< Hy+tV
T (n—=1)||dtnt t:Of( 0 +tV) 1

1 n— n— —
< s VI I e - (U a® +07) - [+ HE) ™23

~ (n—1)!

Hence, by the Riesz representation theorem for a functional in (C’C(R))*, there is a
unique locally finite real-valued measure v,,_; := v,,_; g, v with total variation on the

segment [a, 0]

(14 a®+ b?) b Lars B
dlvn | < EECHEO) L p gy et
[ Al < S W 1V

such that

1 dn—l
(n— 1)!Tr<dtn1 o HO“‘/ /f” V(N dv—1(A). (3.2.9)

Since v, is finite real-valued measure on R, the function F,, , : R — R defined by

E,  (A) = vy ((—00, A])

is a distribution function of v,_; and

Aﬂ“%ﬂm%dM=/ﬂ“W)ﬂ%AM

(by parts) = /f AN Vn—1((—00, A]) dA.
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Using the last equality, (3.2.9) becomes

1 dnfl
T
(n—1) \dem—1

t=0

F(Hy+17)) = - / FO N1 (—o0, XY dX. (3.2.10)
Similarly, from (3.2.4), we get

TR () = [ £ dpaea) = = [ £ 0tnca(—o0. )
(3.2.11)

Using (3.2.10) and (3.2.11), we get

1 dn—l
T
(n—1)! r(alt"*1

=/Rf(”)(A)(vn_1((—oo,A])—Mn_l((—oo,A}))dA. (3.2.12)

Tr(Rn,Hoy(f)) = Tr<Rn—1,H0,v(f)) _

[(Ho+1V))

t=0

From (3.2.3) and (3.2.12), we have

/Rf(n)()\) dun()\):/Rf(")()\)(vn_1((—007>\])—Mn—l((—OO,/\]))dA,

which along with the uniqueness of u, implies that u, is absolutely continuous and

its density equals

n(A) = pin-1((=00, Al) = v (=00, A)).

Thus, 1, satisfies (3.2.2). (3.2.1) follows from (3.1.15).
[

3.2.2 The case of a Laplacian perturbed by multiplication by

a constant

In this section, we will give an example of a Hilbert space H, a self-adjoint operator
H, with Hilbert-Schmidt resolvent, and a bounded self-adjoint perturbation V' to
which Theorem 3.2.1 applies in the cases when n = 1 and n = 2. We consider the
same H and Hj as in Section 3.1.1 and define V' as in (3.2.13). We first prove that
V' is a bounded self-adjoint operator on H (see Lemma 3.2.2). The fact that H, has
a compact resolvent (see Lemma 3.1.16) will ultimately help us to find the spectral
representation for f(Hy + tV), t € R (see Corollary 3.2.6) so that we can compute
the expression on the left hand side of (3.2.2). Finally, we find the locally integrable
functions £ =y g, v (see (3.2.20)) and n = n2 g, v (see (3.2.27)) and prove the main
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results in Lemma 3.2.9 (case n = 1) and Lemma 3.2.10 (case n = 2), respectively.
In Lemmas 3.2.12 and 3.2.13, we generalize the example to more general class of
functions, that is, to the Schwartz class functions.

Let V : H — H be defined by

(VH)(z) = cf(2), (3.2.13)

where ¢ € R. Clearly, the operator V' is bounded. The lemma below shows that the

operator V is self-adjoint.

Lemma 3.2.2. Let V : H — H be defined by the equation (3.2.13). Then, V is
self-adjoint.

Proof. For f,g € H,
Wi.g) = [ Vgt
- | (e
/ fcgdx
={f:Vag),
which proves that V is self-adjoint. O

We need the following theorem to give the spectral representation for H.

Theorem 3.2.3. (See [17, Theorem VI.16]) Let T be a compact self-adjoint operator
on a Hilbert space H. Then, there is a complete orthonormal basis, {¢n} -, for H

so that T'¢,, = N\,¢, and N, — 0 as n — oo.

Lemma 3.2.4. Let Hy be defined by the equation (3.1.22). Then, the spectral repre-

sentation of Hy 1s given by

00
= E HQPnz 5
n=1

where

P, = % (-,sin(nx)) sin(nx).
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Proof. Since H; ' is a compact self-adjoint operator with eigenvalues

1 }°°
) ) by
{n2 n=1

Theorem 3.2.3, there is a complete orhonormal basis {t,} for H so that

1 1
H51¢n:—2¢n, — — 0 as n — oo.
n n
The latter expression is equivalent to
Holbn - n2¢n7 n €N
By Lemma 3.1.14, we have

Hysin(nx) = n*sin(nz), n €N,

and the multiplicity of n? is one. Therefore, 1), = a - sin(nz) fo
In particular, we take v, = sm(nx)’ n € N so that —Sln(n:v)
VT2 vT/2 )

orthonormal basis for H. Let f € D C ‘H, then

where

an, = <f(90)7 Singrn/‘z)> — \/g/oﬂ f(x)sin(nx)dz.

Similarly, we have

=, sin(nz)
x) = Hyf(x) = by, ——F——=,
o) 1= Hofe) = 3o

where

Since

r

1

some scalar «.

is a complete



we have the following representation

Hof(x) = Z n’a, Sini:b/xQ) . (3.2.14)

n=1

2
If we define an operator P2 : H +— H by (P f)(x) = \/jan sin(nz), then clearly
s

P, is the orthogonal projection of H onto the eigenspace of H corresponding to n?.

Therefore, the equation (3.2.14) can be written as

Hof (z Z n*Paf(x (3.2.15)

completing the proof of the lemma. n

Lemma 3.2.5. Let Hy and V' be defined by (3.1.22) and (3.2.13), respectively. Then,
for any t € R, the spectral representation of Hy + tV s given by

Hy+tV = Z(ct + n2)§ (-,sin(nz)) sin(nzx). (3.2.16)

n=1

Proof. Since Hy = H{ has compact resolvent and V = V* is a bounded operator, by
2, Lemma 1.3] Hy+tV, for t € R, also has compact resolvent. Since the eigenvalues
of Hy+ tV are {ct +n?} ~ each of multiplicity one and eigenspace of (ct + n?) is

span {sin(nzx)}, the proof exactly follows as in the case of Hy. ]

Corollary 3.2.6. For f € C3(R) andt € R, the spectral representation of f(Hy+tV)

18 given by
f(Hy+tV) Z f(ct +n?)= (-, sin(nx)) sin(nz). (3.2.17)
For t =0 and ¢t = 1, we have from Corollary 3.2.6

Z f(n ,sin(nx)) sin(nx) (3.2.18)

and
f(Hy+V) Z f(c+n?)= (-, sin(n)) sin(nx), (3.2.19)

respectively.
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Remark 3.2.7. Since any compact subset § of R contains finitely many eigenvalues
of Hy+tV, t € [0,1], it follows that the spectral measure Ey, 1 (6) has a finite rank,
and TT(EHO+tv<5)) equals the number of eigenvalues of Hy + tV in the set d.

Lemma 3.2.8. Let Hy and V' be defined by (3.1.22) and (3.2.13), respectively. For
a <1, let

E(N) = Tr(EHO((a,/\]) — Engyv ((a, /\])>
Then for 0 < ¢ < 3, we have

0 ifa<i<l
EN) =91 if 2<A<c+n? (3.2.20)
0 of c+n?<A<(n+1)%

forn € N.
Proof. The proof directly follows from Remark 3.2.7. [

The following two lemmas demonstrate the results of [2, Theorem 2.5] and
[18, Theorem 3.10], respectively, for a specific choice of H, Hy, and V. Moreover, the
method of our proof is purely computational and does not rely on the proof given in
[2, Theorem 2.5] and [18, Theorem 3.10].

Lemma 3.2.9. Let Hy and V' be as in the equations (3.1.22) and (3.2.13), respectively
and 0 < c< 3. Let f € Cf((a,b)), a,b € R and a < 1. Then,

T (7 (Ho+ V) = Te(7(H) = [ V)N
where £(N) is given by the equation (3.2.20).

Proof. Since f € C?((a, b)), a,b € Rand a < 1, both the sums given by the equations
(3.2.18) and (3.2.19) are finite sums. Therefore, the operators f(Hy) and f(Hy+ V)
are finite rank operators, and hence trace class operators. Using the equations (3.2.18)
and (3.2.19), we have

Te(f(Ho+V)) — Tr(f(Ho)) = Tr(z fle+ n2)% (-,sin(nx)) sin(nx))

- Tr(Z f(n2)% (-, sin(nz)) Sin(n:p))
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o0

-y (f(c +n?) — f(n2)>. (3.2.21)
Now using the equation (3.2.20), we have

/ FOVEND = [ FOEN DN+ / FOVEN)AA + / FOVEN) N
(a,1) [1,c+1) [c+1,4)
! A "INEN) AN "INEN) AN
+ /[ e+ /[ L S OED /[ L, T e
-h”+/ f@ﬁMMA+/] FONEN N + ...
[n?,c4+n?) [c+n2,(n+1)2)
= ") dX ") d) ") d)
o+%¥ﬂﬁ(> +0+%;Hf(> +O+A;wf() Lo
+...+0+/ F'N)dXN+0+ ...
[n2,c+n?)

= fle+1) = f(1) + fle+4)— f(4) + f(c+9) = [(9)
+ o fle+n?) — f(n?) + ...

( c+n?) n2)>. (3.2.22)

HM8

Combining the equations (3.2.21) and (3.2.22) completes the proof of the lemma. [

Lemma 3.2.10. Let Hy and V' be as in the equations (3.1.22) and (3.2.13), respec-
tively and 0 < ¢ < 3. Let f € C3((a,b)), a,b € R and a < 1. Then,

ﬂgwymm—fw@_d

f(Hy+tV)) / (A

where

:MWAD—/gwﬁ, (3.2.23)

wis a locally finite measure on R given by the equation (3.2.26) and £ is given by the
equation (3.2.20).
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Proof. Using the fact that f € C’g’((a, b)), a,b € R and a < 1, we have from the
equations (3.2.17) and (3.2.18)

dt lt=0 t—0 t
= 11_{% % (Z fet + nz)% (-, sin(nx)) sin(nz)
- Z f(nQ)% (-,sin(nx)) sin(nx))
= Z 11_r)r01 flet £ n t) — /)2 (-, sin(nx)) sin(nz)
= Z cf’(nQ)% (-,sin(nz)) sin(nx), (3.2.24)

d
and the latter sum is a finite sum. Thus, %‘ f(Ho+tV) is a finite rank operator
t=0

and hence a trace class operator. Taking the trace on both sides of the equation
(3.2.24), we get

d o - 1/, .2
Tr(— _f(Hy+ tV)) - ;cf (n2). (3.2.25)
Let A be a subset of R and define
1 ifn?eAd
On2(A) =
0 ifn*¢A

and

=> copn(A)

Then, p is a locally finite measure on R. For 0 < ¢ < 3 and a < 1, the measure u

satisfies
0 if a<A<l1
1((a,N)) =S ne  if n? < \<c+n? (3.2.26)
ne if c+n? <A< (n+1)%
for n € N.

Let & be as in the equation (3.2.20). Then, for a < A < 1,

/f t)dt = /Odtzo.
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For1<\A<c+1,

/Af(t)dt — [ ewydt+ | edt=0+(A—1)=Ar—1.
a (a,1)

[1,2]
Forc+1< A <4,

A
/ £(t)dt = g(t)dt+/ £(t)dt+/ EWdt =0+ (c+1—1)+0=c
a (a,1) [1,e+1) [c4+1,)]
For 4 < X\ < c+4,

A
/ eyt = [ eyt + / £(t)di + / e+ [ eyt
a (a,1) [1,c+1) [c+1,4) [4,2]
04 (c+1-1)+0+A—d)=c+A—4.

Forc+4<\X<9,

/a oy

= d d d d d
/m,lf“) 't / R /[ |, s /[ R / RCE

=0+(c+1-1)4+0+(c+4—-4)+0=2c

Therefore, in general, we have

if a<A<l1
/f =< (n—1Dc+A—n? if n? <A<c+n?

ne if c+n?<A<(n+1)?
for n € N.
Thus, we have

A
o) = @) - [ (o) a
0 if a<A<1
=qc+n?P-\ if n2<\A<c+n? (3.2.27)
0 if c+n* <A< (n+1)?

for n € N.
Now using the equation (3.2.27), we get

fromein=(] | L L
(a,1) [1,c+1) [c+1,4) [4,c+4) [n2,c+n?)

/ +...)f (MmN
[e-+n2, (n41)2)
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:/ f”()\)(c+1—)\)d/\—|—/ FION (e +4— N+ .
[1,e+1)

[4,c+4)

+/ "N (e+n? = N)d\ + ...
[n2,c+n?)

Integrating by parts, we obtain

/R (AN

=(c+1=Nf'(N

c+1 c+4

+/ F')AXN+ (e +4—=X)f'(N)
[1,e+1)

1

+/ FOAA+ .+ (c+n2 = N) /()
[4,c+4)

= —cf')+ fle+1) = f(1) —cf(4) + fle+4) = f(4) — ..
—cf'(n?) + fletn?) = f(n?) — ...

i( fletn?) = f(n?) —Cf’(n2)>- (3.2.28)

Combination of the equations (3.2.21), (3.2.25), and (3.2.28), concludes the proof of

the lemma.

Remark 3.2.11. A formula similar to (3.2.23) holds in the case of arbitrary Hy = H{
(without restrictions on the resolvent of Hy) and V =V* € S8 (see [10]).

]

Lemma 3.2.12. Let Hy and V be as in the equations (3.1.22) and (3.2.13), respec-
tively, and 0 < ¢ < 3. Let f € S(R), where S(R) denotes the set of all Schwartz

functions on R. Then,

Te(f(Ho + V) - )= [ ro
where £ is as in Lemma 3.2.8 with a € R replaced by —oo.
Proof. Since f € S(R), there exists My; > 0 such that
sup [[* |9 (2)] < My,
for all integers k,1 > 0. In particular, for x = n?, n € N, and k = 1 we have

0 M,
Ot < M
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> M,
for all integers [ > 0. Since ) —2l < 00, we have
n

n=1

Z |fO(n?)] < oo, (3.2.29)

for all integers [ > 0. By Lemma 3.2.5, we have

Hy+tV = Z(ct +n?)P,s,

n=1

where
2, :
P2 = — (- sin(nz)) sin(nzx).
T

Since f € S(R), it is bounded and continuous on R. Therefore by functional calculus

(see [Appendix, Section 4.3.5]), we have
f(Hy +1V) Z flet +n? (3.2.30)
In particular, when ¢t = 0 and ¢ = 1, we have
0) = i f(n?)Pye. (3.2.31)
n=1

and

From the inequality (3.2.29), we have Z |f(n?)] < oo. Similarly, it follows that

Z |f(c+n?)| < co. Therefore, both f(Hy) and f(Hy + V') are trace class operators,

and
Hy)) =Y f(n?) (3.2.32)
and

Tr(f(Hy+V)) Zf +n?) (3.2.33)
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From the equations (3.2.32) and (3.2.33), we get

Tr(f(HO +V) - f(Ho)) - i (f(c+ n?) — f(n2)>. (3.2.34)

If we proceed exactly as in Lemma 3.2.9, we get

/R FEN)IA = Z( e+ )~ f()). (3.2.35)

Combining the equations (3.2.34) and (3.2.35) completes the proof of the lemma. [

Lemma 3.2.13. Let Hy and V' be as in the equations (3.1.22) and (3.2.13), respec-
tively, and 0 < ¢ < 3. Let f € S(R), where S(R) denotes the set of all Schwartz

functions on R. Then,

d

Tr(f(Ho+tV) — f(Ho) — il f (Ho +tV)) /f”

where 1 1s as in Lemma 3.2.10 with a € R replaced by —oo.
Proof. Using the equations (3.2.30) and (3.2.31), we have

4 f(H0+tV)zlimf(H0+tv>_f<H0)

dt l+=0 t— t
—%g% <cht—|—n P2—Zf )
fct—i—n — f(n?)
= lim Z P,e. (3.2.36)

Since || P,z|| = 1, by the Mean Value Theorem, for all ¢ € (0,1), we have

Hf(cHH? — ), | _ ‘f(cHn? — (%)

P,

= c|f'(mp2)|, mp2 € (n?, ct +n?).

From the equation (3.2.29), it follows that > c|f'(mn2)| < oo. Therefore by the
n=1

Weierstrass M-test for a series of functions with values in a Banach space,
= flct+n?) - f(n?)

> . P,2 converges uniformly in ¢ € (0,1). Therefore, the equation
n=1
(3.2.36) becomes

d o flet+n?) — f(n?)

— Hy+tV) = 1 P,

gty 1Y) 2 t

= Z cf'(n?) P2
n=1
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Since Y | f'(n?)| < oo, f(Ho +tV) is a trace class operator and
n=1

4
dt lt=0

Tr(%)tzo F(Hoy + tV)> - icf’(rﬂ). (3.2.37)

n=1

Combining (3.2.32), (3.2.33), and (3.2.37), we have

Te(f(Ho + V) = F(Ho) ~ | (1)) = 3 (et n%) — 10— ef' (%))
n=1
(3.2.38)
If we proceed exactly as in Lemma 3.2.10, we get
/Rf”()\)n )d\ = Z ( cn?) - f(n?) — cf’(n2)>. (3.2.39)

Combining the equations (3.2.38) and (3.2.39) completes the proof of the lemma. [
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Chapter 4

Appendix

4.1 Compact Operators

In this section, we discuss compact operators and its classes. We refer the reader to
[4] and [17] for more details.

Definition 4.1.1. [17, Chapter VI, Section 5] A bounded linear operator T : H — H
is called compact if for every bounded subset B of H, the image T(B) is relatively

compact, i.e., the closure T'(B) is compact.
We denote the set of all compact operators on H by IC(H).

Theorem 4.1.2. [}, Theorem 3.9.4] Let T € IC(H). Then every nonzero A € o(T)
1s an etgenvalue of T and the set of eigenvalues of T is countable with O only the
possible point of accumulation of that set. If the dimension of H is infinite, then

o(T) contains 0.

Definition 4.1.3. [/, Chapter 11, Section 4] The Schatten-von Neumann ideal of
compact operators denoted by SP are defined by

s = {A K : 1Al = (Y )" < oo}, pe[1,00),
k=1
where sp(A) are the singular numbers of A (i.e., the eigenvalues of |[A| = VA*A).
- 1
The norm ||A]|, :== ( > si(A)) " is called the Schatten p—norm of A.
k=1

Note that S' and S? in the above definition are called the trace class and the

Hilbert-Schmidt class of operators, respectively.

62



Definition 4.1.4. [17, Chapter VI, Section 6] The map Tr : S — C given by

TI"(A) = Z <A¢m ¢n> )

n=1

where {¢,} is any orthonormal basis, is called the trace of A and it is independent of
the choice of the basis {¢y,}.

4.2 Convergence of a Sequence of Operators

Definition 4.2.1. [12, Definition 4.9-1] Let X andY be normed spaces. A sequence
{T,,} of operators T,, € B(X,Y') is said to be convergent to T € B(X,Y)
(1) in the uniform operator topology if

T, —T| —0, asn— oc;
(2) in the strong operator topology if
| Tz —Tz|| -0, asn—o0 forallxeX;
(3) in the weak operator topology if

|f(Tx) — f(Tx)] =0, asn—oo foral xe€ X and forall f €Y'

4.3 Spectral Measure and Spectral Integral

The material in this section is standard and found in many books in Functional

Analysis. We refer the reader to chapters 5 and 6 of [4] for more details.

4.3.1 Spectral Measure

Definition 4.3.1. [/, Chapter 5, Section 1] Let (,3) be a measurable space and
P = P(H) be the set of all orthogonal projections on H. Then, a spectral measure
E on (92,%) with respect to H is a mapping E : ¥ — P satisfying the following two
conditions.

(1) E is countably additive, that is for any sequence {8, }5°, of pairwise disjoint sets

o0

Jrom 3, we have E(J 9,) = >_ E(0,), where the latter series converges in the strong
n=1 n=1

operator topology.
(2) E(Q) =1, where I is the identity on H.
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Using the additivity of E, one can prove the following additional properties.

Theorem 4.3.2. [/, Theorems 5.1.1 and 5.1.2] Let E be a spectral measure on (€2, %)
with respect to H and let {6, }nen be measurable subsets of .
(1) For 01,05 € ¥, we have

E(5)E(5:) = E(5:)E(6:) = E(6, N 8y).

In particular, E(61)E(02) =0 if 61Ny = 0.
(2) If 6, C 8y for alln € N, then

lim E(5, (U5>

where the limit is evaluated in the strong operator topology.

(3) If 641 C 0y for alln € N, then

lim E(3, (ﬂ5>

where the limit is evaluated in the strong operator topology.

Note that every spectral measure FE generates a family of finite scalar measures
(E(0)¢,m), &,neH and 0 € .

4.3.2 Spectral Integral of Bounded Measurable Functions

Definition 4.3.3. [/, Chapter 5, Section 3] Let (2, %, H, E) be a spectral measure
space and let S(Q, E') denote the set of all simple functions on ). Then the integral
of f € S(Q, E) with respect to E is the operator TfE defined by

TF = / f(w)dE(w ZakE Or), (4.3.1)
where f € S(Q, E) is of the form

f:ZOékXC;k, ap, €C, opeX, k=1,...n, U(Sk:Q, n € N,
k=1 k=1

and xs 1S a characteristic function of the set § € 3.

The spectral integral defined by the equation (4.3.1) satisfies the following prop-

erties.
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Theorem 4.3.4. [/, Chapter 5, Section 3] Let T}E be as in (4.3.1), f,g € S(Q, E),
T a shorthand of TE, f a complex conjugate of f, and I the identity on H. Then

(1) Tapspg = Ty + BTy, o, B € C;

(2) Tyg = T5Ty = Tng;

(3) (Ty) =TF;

(4) Ty =1, forf—l

(5) (Ty&,m) = Jo FN) d{ENE,m), & n € MH;

(6) !Tf£|!~+¢—fg|f | d(ENE,&);

(D NTsll = 1 f oo

where || - || and || - || denote respectively the norm on H and the operator norm on
B(H).

Definition 4.3.5. [4, Chapter 5, Section 3] Let (2,3, H, E) be a spectral measure
space. Then, the integral of a bounded measurable function f on 0 with respect to E
is defined by

7yi= [ 1@aBw) = lim [ 1)), (432)

where the limit is evaluated in the operator norm on B(H), and { fn}nen is an arbitrary

sequence of simple functions converging uniformly to f.

Theorem 4.3.6. [}, Chapter 5, Section 3] Let Ty be as in (4.3.2), f,g bounded
measurable functions on Q, f a complex conjugate of f, and I the identity on H.
Then

(1) T, af+pg = Tp + By, o, p € C;

(2) ng = TfT T,T%;

(4)Tf—f forf_l

(B)(Ts&m) = Jo FN) d(ENE,m), &neH;

(6) 1T¢EN5 = Jq |f | d{E(NE,§);

(DN = 1 flloo

where || - || and || - || denote respectively the norm on H and the operator norm on
B(H).

4.3.3 Spectral Theorem for Bounded Self-adjoint Operators

Theorem 4.3.7. [17, Theorem VIL.8] Let Hy be a bounded self-adjoint operator on
H. Let[a,b] C R such that o(Hy) C [a,b]. Then there exists a unique spectral measure
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E := Ey, on the Borel o-algebra B([a, b)) such that

Hy = / ME(),
[a,b]

where the convergence of the integral is understood in the uniform operator topology.

4.3.4 Spectral Theorem for Unbounded Self-adjoint

Operators

Theorem 4.3.8. [17, Theorem VIII.6] Let Hy be a self-adjoint operator in H. Then
there exists a unique spectral measure E := Eg, on the Borel o-algebra B(R) such
that

Hy = /R ME(),

where the convergence of the integral is understood in the strong operator topology.

4.3.5 Functional Calculus

Let f be a bounded measurable function on €2 and let us write f(H,) for the spectral

integral T of Definition 4.3.5. Then, we have

F(Ho) = / FOVAE(N).

The assignment [ — f(Hy) is called the functional calculus of the self-adjoint operator
Hy.

4.4 Bochner Integrals

The Bochner integral is the natural generalization of the Lebesgue integral to func-
tions that take values in a Banach space. In this section, we give a definition of the
Bochner integral and state a version of the dominated convergence theorem for it.

For more details about the topic, we refer the reader to [19].

Definition 4.4.1. [19, Definition 4.1] A function f defined on a measure space
(X, %, u) with values in a Banach space B is said to be weakly measurable if for
any a € X*, the numerical function o(f(x)) of x is measurable. f(x) is said to be
measurable if there exists a sequence of simple functions with values in a Banach space

B convergent to f(z) p-a.e. on X.
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Recall that a simple function with values in a Banach space B is a function of the

form

N
f:anX5n7 NGNJ
n=1

where b, € B and the sets 0,, € ¥ are disjoint.

Definition 4.4.2. [19, Definition 4.2] A function f defined on a measure space
(X, X, u) with values in a Banach space B is said to be separably-valued if its range
{f(x) : x € X} is separable. It is p-almost separably-valued if there exists a measur-

able set B of p-measure zero such that {f(z) : x € X \ B} is separable.

Theorem 4.4.3. (B. J. Pettis)[19, Theorem 4.3] A function f defined on a measure
space (X, %, p) with values in a Banach space B is measurable if and only if it is

weakly measurable and p-almost separably-valued.

Definition 4.4.4. [19, Chapter V, Section 5] A function f defined on a measure
space (X, %, 1) with values in a Banach space B is said to be Bochner p-integrable
if there exists a sequence of simple functions { fn}n>1 which converges to f p-a.e. in

such a way that
lim / 1 — Flladu = 0.
n—oo X

In this case, the Bochner u-integral of f is defined by

/ fdu = lim fndp.
X n—oo X

Theorem 4.4.5. (S. Bochner)[19, Theorem 5.1] Let (X, 3, u) be a measure space.
A measurable function f with values in a Banach space B is Bochner p-integrable if

and only if || f(z)|| B is p-integrable.

Proposition 4.4.6. (Dominated convergence theorem) Let f, : X +— B be a sequence
of functions, each of which is Bochner p-integrable. Assume that there exist a function
f: X — B and a p-integrable function g : X — C such that

(1) nh_}lgo fn = [ p-almost everywhere;

(2) |1 fallB < |g| p-almost everywhere.

Then, f is Bochner u-integrable and we have

im [ 114, ~ Slnda =0
X

n—oo
In particular we have

lim fndu:/ fdpu.
b X

n—00
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4.5 The Schwartz class and the Fourier Transform

The material discussed in this section is standard and found in many books in Fourier

Analysis. We refer the reader to [9] and [15] for more details.

4.5.1 The Class of Schwartz Functions

Definition 4.5.1. [9, Definition 2.2.1] A C*° complez-valued function f onR is called
a Schwartz function if for every integers k,l > 0 there exists a constant My; > 0 such
that

sup |z[* [ fO(z)] < My,
zeR

The set of all Schwartz functions on R is denoted by S(R).

4.5.2 The Fourier Transform

Definition 4.5.2. [9, Chapter 2.2.4] Let f € L*(R). Then the Fourier transform of
f denoted by f s given by

f(t) = %27 / F(\)e ™ .

Proposition 4.5.3. (Riemann-Lebesque Lemma)[15, Lemma 8.5.1] For a function
f € LY(R) we have that

F(H)] =0 as [t| — oo

Proposition 4.5.4. [9, Ezercise 2.2.6] If f € L*(R), then f is uniformly continuous
on R.

Definition 4.5.5. [9, Chapter 2.2./] Let g € L'(R). Then the inverse Fourier trans-

Y is given by

1 )
V(A :—/ t)e dt.
@0 = = [ gtoe
Note that if both f, f € L'(R), then we have (f)¥ = f a.c.

form of g denoted by (g)

—_—

Proposition 4.5.6. (See [15, Chapter 7, Section 3]) If f is such that fU), f(0) ¢
L'(R), j=0,1,...,n, then

68



Bibliography

1]
2]

[6]

[7]

[10]

M. A. AI-Gwaiz, The Sturm-Liouville theory and its applications, Springer, 2007.

N. A. Azamov, A. L. Carey, F. A. Sukochev, The spectral shift function and
spectral flow, Comm. Math Phys. 276 (1) (2007) 51-91.

N. A. Azamov, A. L. Carey, P. G. Dodds, F. A. Sukochev, Operator integrals,
spectral shift, and spectral flow, Canad. J. Math. 61 (2009), no. 2, 241-263.

M. S. Birman, M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert
space. Translated from the 1980 Russian original by S. Khrushchev and V. Peller.
Mathematics and its Applications(Soviet Series). D. Reidel Publishing Co., Dor-
drecht, 1987.

A. L. Carey, J. Philips, Unbounded Fredholm modules and spectral flow. Canad.
J. Math. 50 (1998) 673-718.

J. B. Conway, A course in functional analysis, second editition, Springer, 1990.

Yu. L. Daleckii, S.G. Krein, Integration and differentiation of functions of Hermi-
tian operators and application to the theory of perturbations, (Russian) Voronezh.
Gos. Univ. Trudy Sem. Funkcional. Anal. 1956, no. 1, 81-105.

R. A. DeVore, G. G. Lorentz, Constructive approzimation. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-

ences|, 303. Springer-Verlag, Berlin, 1993.
L. Grafakos, Classical Fourier analysis, second edition, Springer, 2008.

L. S. Koplienko, Trace formula for perturbations of nonnuclear type, Sibirsk.
Mat. Zh. 25 (1984), 62-71(Russian). Translation: Siberian Math. J. 25 (1984),
735-743.

69



[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. G. Krein, On a trace formula in perturbation theory, Matem. Sbornik 33
(1953), 597-626 (Russian).

E. Kreyszig, Introductory functional analysis with applications, John Wiley and
Sons, 1978.

Peter D. Lax, Functional analysis, A. John Wiley and Sons, Inc., Publication
2002.

I. M. Lifshits, On a Problem of the Theory of Perturbations Connected with
Quantum Statistics, Uspehi Matem. Nauk (N.S.), 7 (1952), no. 1 (47), 171 180

(Russian).

M. C. Pereyra, L. A. Ward, Harmonic analysis from Fourier to wavelets, Student
mathematical library, IAS/Park City mathematical subseries, Volume 63, 2012.

D. Potapov, A. Skripka, F. Sukochev, Spectral shift function of higher order,
Invent. Math., 193 (2013), no. 3, 501-538.

M. Reed, B. Simon, Methods of modern mathematical physics I, functional anal-

ysis, revised and enlarged ed., Academic press, New York, 1980.

A. Skripka, Asymptotic expansions for trace functionals, J. Funct. Anal. 266
(2014), no. 5, 2845-2866.

K. Yosida, Functional analysis. Sixth edition. Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences|, 123.
Springer-Verlag, Berlin-New York, 1980.

70



	University of New Mexico
	UNM Digital Repository
	Summer 7-29-2017

	Trace formulas for perturbations of operators with Hilbert-Schmidt resolvents
	Bishnu Prasad Sedai
	Recommended Citation


	MergedFile

