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Abstract

In this dissertation, we study Taylor approximations of functions of operators

with Hilbert-Schmidt resolvents. We obtain integral representations for traces of the
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Chapter 1

Introduction

Let H0 be a closed densely defined self-adjoint operator (for simplicity we will just

write “self-adjoint” in the sequel), V a bounded self-adjoint operator on a separable

Hilbert spaceH, f a sufficiently nice function, and let f(H0) and f(H0+V ) be defined

by the functional calculus. Consider the remainder of the Taylor approximation

Rn,H0,V (f) := f(H0 + V )−
n−1∑
k=0

1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV ),

where n ∈ N and the Gâteaux derivatives
dk

dtk

∣∣∣
t=0
f(H0 + tV ) are evaluated in the

uniform operator topology. If a self-adjoint perturbation V is in the Schatten-von

Neumann ideal of compact operators Sn, then the following trace formula holds:

Tr
(
Rn,H0,V (f)

)
=

∫
R
f (n)(t)ηn(t) dt, (1.0.1)

where ηn = ηn,H0,V is a real valued L1-function depending only on H0 and V . The

history of representation (1.0.1) started in physics in the late 40’s and the first math-

ematical result was proved by M. G. Krein for n = 1 in 1953 [11]. The results for

n = 2 and n ≥ 3 were established by L. S. Koplienko in 1984 [10] and by D. Potapov,

A. Skripka, and F. Sukochev in 2013 [16], respectively. If the perturbations of the

operators are not compact and no additional restriction on the initial operator H0 is

imposed, then the trace of Rn,H0,V (f) is usually undefined. Noncompact perturbations

mainly arise in the study of differential operators because they are multiplications by

functions defined on Rd, which are not compact operators. In this case, the condition

that the perturbations are in some Schatten-von Neumann ideal of the compact oper-

ators Sn gets replaced by the restriction on the resolvent of the initial (unperturbed)

operators.
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In this dissertation, we prove trace formulas similar to (1.0.1) under different

assumptions on H0, V , and f . We assume that the resolvent of H0 belongs to S2, V

is a bounded self-adjoint linear operator on H, and f ∈ Cn
c ((a, b)), where Cn

c ((a, b))

is the space of n times continuously differentiable functions on R that are compactly

supported in (a, b) ⊂ R. We show that there exists a unique locally finite real-valued

measure µn = µn,H0,V , n ≥ 3, such that the following trace formula holds:

Tr
(
Rn,H0,V (f)

)
=

∫
R
f (n)(t)dµn(t). (1.0.2)

In the special case of commuting H0 and V , we show that the measure µn in (1.0.2) is

absolutely continuous, so that there exists a locally integrable function ηn = ηn,H0,V ,

n ≥ 3, such that the trace formula (1.0.1) holds. The formula (1.0.1) with locally

integrable ηn for n = 1 and n = 2 was proved in [2, Theorem 2.5] and [18, Theorem

3.10], respectively.

This work is divided mainly into two chapters. In Chapter 2, we derive formulas

for the derivatives of operator functions. Derivatives of operator functions can be

written as multiple operator integrals (see, e.g., [3]). We give an example of the

multiple operator integral representing a derivative of a finite dimensional matrix

function. We also show that derivatives of more general operator functions can be

expressed via Bochner integrals. Although it is a known result, we prove it here by

straightforward calculations and use it to prove our central results. In particular, we

use it to prove (1.0.1) in the commutative case.

Chapter 3 is devoted to the main results of this dissertation and we follow [18]

to prove our results. We divide Chapter 3 into two sections. In the first section, we

consider the general case and prove the formula (1.0.2). In the second section, we

consider the commutative case and prove the formula (1.0.1). We also give examples

of a Hilbert space and operators to which the formulas (1.0.1) and (1.0.2) apply.

The Appendix collects standard definitions and facts about operators, spectral

theory, Bochner integrals, the Schwartz class functions, and the Fourier transform

that are applied in the dissertation.

In this work, H denotes a separable complex Hilbert space, B(H) the space of all

bounded linear operators on H, H0 a self-adjoint operator in H, and Tr denotes the

standard trace. The symbol EH0(·) stands for the spectral measure of a self-adjoint

operator H0. As usually, σ(H0) and ρ(H0) denote the spectrum and resolvent set of

H0, respectively.

2



Chapter 2

Calculation of operator derivatives

The formulas for derivatives of operator functions derived in this chapter are well

known, but they appeared in the literature without a detailed calculation. Moreover,

our calculation of these derivatives is straightforward and does not appeal to the

most general theory of differentiation of operator functions, which can be found in,

for example, [3].

2.1 Divided differences

The formulas for operator derivatives involve the object known under the names

divided difference or difference quotient. The definition and basic properties of the

divided difference are given in this section; for more comprehensive treatment of this

object we refer the reader to [8, Section 4.7].

Definition 2.1.1. Let n ∈ N. The divided difference of order n is an operation on

functions f ∈ Cn(R) of one (real) variable, which we usually call λ, defined recursively

as follows:

f [0][λ1] := f(λ1),

f [n][λ1, ..., λn−1, λn, λn+1]

:=


f [n−1][λ1, ..., λn−1, λn]− f [n−1][λ1, ..., λn−1, λn+1]

λn−1 − λn
if λn 6= λn+1

∂

∂t

∣∣∣
t=λn+1

f [n−1][λ1, ..., λn−1, t] if λn = λn+1.

The following two lemmas are simple properties of divided differences that we use

later in the proof of Theorem 2.2.7 below.
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Lemma 2.1.2. Let f(λ) := λn for n ∈ N. Then,

f [p][λ1, λ2, ..., λp+1] =
∑

0≤n0,n1,...,np
n0+n1+...+np=n−p

λn0
1 λ

n1
2 ...λ

np

p+1, p ≤ n.

Proof. The lemma can be proved by induction on p. Here, we give the proof only for

p = 2. Note that f [2][λ1, λ2, λ3] = f [2][λσ(1), λσ(2), λσ(3)], where σ is a permutation on

{1, 2, 3}, and f [1][λ1, λ2] = f [1][λ2, λ1]. We consider the following three different cases:

Case (1): λ1 6= λ2 6= λ3.

By Definition 2.1.1,

f [2][λ1, λ2, λ3]

=
f [1][λ2, λ3]− f [1][λ1, λ2]

λ3 − λ1

=

f(λ3)− f(λ2)

λ3 − λ2

− f(λ2)− f(λ1)

λ2 − λ1

λ3 − λ1

=

λn3 − λn2
λ3 − λ2

− λn2 − λn1
λ2 − λ1

λ3 − λ1

=
λn−1

3 + λn−2
3 λ2 + ....+ λ3λ

n−2
2 + λn−1

2 − λn−1
2 − λn−2

2 λ1 − ....− λ2λ
n−2
1 − λn−1

1

λ3 − λ1

=
(λn−1

3 − λn−1
1 ) + λ2(λn−2

3 − λn−2
1 ) + λ2

2(λn−3
3 − λn−3

1 ) + ....+ λn−2
2 (λ3 − λ1)

λ3 − λ1

=

(λ3 − λ1)
[ n−2∑
i=0

λi3λ
n−2−i
1 + λ2

n−3∑
i=0

λi3λ
n−3−i
1 + ....+ λn−3

2 (λ3 + λ1) + λn−2
2

]
(λ3 − λ1)

=
n−1∑
m=1

m−1∑
i=0

λi3λ
m−1−i
1 λn−1−m

2 .

Since 0 ≤ i, (m− 1− i), (n− 1−m) and i + (m− 1− i) + (n− 1−m) = n− 2, we

have

f [2][λ1, λ2, λ3] =
∑

0≤n0,n1,n2
n0+n1+n2=n−2

λn0
1 λ

n1
2 λ

n2
3 .

Case (2): λ1 = λ2 6= λ3.

By Definition 2.1.1,

f [2][λ1, λ1, λ3] =
f [1][λ1, λ3]− f [1][λ1, λ1]

λ3 − λ1

4



=

f(λ3)− f(λ1)

λ3 − λ1

− f ′(λ1)

λ3 − λ1

=

λn3 − λn1
λ3 − λ1

− nλn−1
1

λ3 − λ1

=
λn−1

3 + λn−2
3 λ1 + ....+ λ3λ

n−2
1 + λn−1

1 − nλn−1
1

λ3 − λ1

=
(λn−1

3 − λn−1
1 ) + λ1(λn−2

3 − λn−2
1 ) + λ2

1(λn−3
3 − λn−3

1 ) + ....+ λn−2
1 (λ3 − λ1)

λ3 − λ1

=

(λ3 − λ1)
[ n−2∑
i=0

λi3λ
n−2−i
1 + λ1

n−3∑
i=0

λi3λ
n−3−i
1 + ....+ λn−3

1 (λ3 + λ1) + λn−2
1

]
(λ3 − λ1)

=
n−1∑
m=1

m−1∑
i=0

λi3λ
m−1−i
1 λn−1−m

1 .

Since 0 ≤ i, (m− 1− i), (n− 1−m) and i+ (m− 1− i) + (n− 1−m) = n− 2,

f [2][λ1, λ1, λ3] =
∑

0≤n0,n1,n2
n0+n1+n2=n−2

λn0
1 λ

n1
1 λ

n2
3 .

Using the symmetry of divided difference and proceeding as in case(2), we can prove

the cases λ1 = λ3 6= λ2 and λ2 = λ3 6= λ1.

Case (3): λ1 = λ2 = λ3.

By Definition 2.1.1,

f [2][λ1, λ1, λ1] =
f ′′(λ1)

2!

=
n(n− 1)

2
λn−2

1

=
n− 1

2
{2(1) + (n− 2)(1)}λn−2

1

= [(n− 1) + (n− 2) + ....+ 3 + 2 + 1]λn−2
1

= (n− 1)λn−2
1 + (n− 2)λn−2

1 + ....+ 3λn−2
1 + 2λn−2

1 + λn−2
1

=
n−2∑
i=0

λi1λ
n−2−i
1 + λ1

n−3∑
i=0

λi1λ
n−3−i
1 + ....+ λn−3

1 (λ1 + λ1) + λn−2
1

=
n−1∑
m=1

m−1∑
i=0

λi1λ
m−1−i
1 λn−1−m

1 .

Since 0 ≤ i, (m− 1− i), (n− 1−m) and i+ (m− 1− i) + (n− 1−m) = n− 2,

5



we have

f [2][λ1, λ1, λ1] =
∑

0≤n0,n1,n2
n0+n1+n2=n−2

λn0
1 λ

n1
1 λ

n2
1 .

Lemma 2.1.3. (f + g)[n][λ0, λ1, ..., λn] = f [n][λ0, λ1, ..., λn] + g[n][λ0, λ1, ..., λn], where

f, g ∈ Cn(R).

2.2 Derivatives of operator functions

In this section, we calculate the derivatives of operator rational functions and operator

functions with nice Fourier transforms.

2.2.1 Basic differentiation rules

In this section, we define Gâteaux derivative and discuss some basic rules for it.

Definition 2.2.1. Let U be a closed densely defined self-adjoint operator in H and

V = V ∗ ∈ B(H). Let f : R 7→ C be a bounded function. Then, the Gâteaux derivative

of the mapping U → f(U) at U in the direction V is defined by

d

ds

∣∣∣
s=0

f(U + sV ) = lim
s→0

f(U + sV )− f(U)

s
,

if the limit exists in the operator norm (uniform operator topology).

The following two lemmas are the sum and product rules for Gâteaux derivatives.

Lemma 2.2.2. Let U be a closed densely defined self-adjoint operator in H and

V = V ∗ ∈ B(H). Let f, g : R 7→ C be bounded functions such that the mappings

U → f(U) and U → g(U) are Gâteaux differentiable at U in the direction V . Then,

the mapping U → (f + g)(U) is also Gâteaux differentiable at U in the direction V

and

d

dt

∣∣∣
t=0

(f + g)(U + tV ) =
d

dt

∣∣∣
t=0
f(U + tV ) +

d

dt

∣∣∣
t=0
g(U + tV ).

Proof. By Definition 2.2.1,

d

dt

∣∣∣
t=0

(f + g)(U + tV ) = lim
t→0

(f + g)(U + tV )− (f + g)(U)

t

= lim
t→0

f(U + tV ) + g(U + tV )− f(U)− g(U)

t

= lim
t→0

[f(U + tV )− f(U)

t
+
g(U + tV )− g(U)

t

]
.
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Now, we have∥∥∥∥f(U + tV )− f(U)

t
+
g(U + tV )− g(U)

t
−
( d
dt

∣∣∣
t=0
f(U + tV ) +

d

dt

∣∣∣
t=0
g(U + tV )

)∥∥∥∥
≤
∥∥∥∥f(U + tV )− f(U)

t
− d

dt

∣∣∣
t=0
f(U + tV )

∥∥∥∥+∥∥∥∥g(U + tV )− g(U)

t
− d

dt

∣∣∣
t=0
g(U + tV )

∥∥∥∥→ 0

as |t| → 0 since both the mappings U → f(U) and U → g(U) are Gâteaux differen-

tiable at U in the direction V . Therefore,

lim
t→0

[f(U + tV )− f(U)

t
+
g(U + tV )− g(U)

t

]
=

d

dt

∣∣∣
t=0
f(U + tV ) +

d

dt

∣∣∣
t=0
g(U + tV )

and which completes the proof.

Lemma 2.2.3. Let U be a closed densely defined self-adjoint operator in H and

V = V ∗ ∈ B(H). Let f, g : R 7→ C be bounded functions such that the mappings

U → f(U) and U → g(U) are Gâteaux differentiable at U in the direction V . Then,

the mapping U → (fg)(U) is also Gâteaux differentiable at U in the direction V and

d

dt

∣∣∣
t=0

(fg)(U + tV ) =
d

dt

∣∣∣
t=0
f(U + tV )g(U) + f(U)

d

dt

∣∣∣
t=0
g(U + tV ).

Proof. The proof is similar to that of Lemma 2.2.2.

2.2.2 Derivatives of operator rational functions

A polynomial of an operator is defined only if the operator is bounded. The rational

function f(t) = (t − z)−k, z ∈ C\R, k ∈ N is bounded and continuous on R so that

we can define f(U) as a bounded operator even if U = U∗ is an unbounded operator.

The case of a finite dimensional Hilbert space

In this section, we collect technical facts on derivatives of operator polynomial func-

tions.

Lemma 2.2.4. Let H be a finite dimensional Hilbert space and let U, V ∈ B(H). Let

f(x) := xn, n ∈ N. Then,

d

ds

∣∣∣
s=t
f(U + sV ) =

n−1∑
j=0

(U + tV )jV (U + tV )n−j−1,

where the limits are evaluated in the uniform operator topology.

7



Proof. The proof directly follows from Definition 2.2.1 and the fact that

d

ds

∣∣∣
s=t
f(U + sV ) =

d

ds

∣∣∣
s=0

f(U + (s+ t)V ).

Remark 2.2.5. The above lemma is still true if we consider H to be an infinite

dimensional Hilbert space and follows as in the case of finite dimensional Hilbert

space.

Lemma 2.2.6. Let H be an m dimensional Hilbert space and U = U∗ be an m×m
matrix on H. Then,

Uk =
m∑
i=1

λkiEi,

where k ∈ N, {λi}mi=1 are eigenvalues of U counting multiplicity, and Ei : H 7→ H is

the spectral projection corresponding to the eigenvalue λi.

Proof. Let {ei}mi=1 be an orthonormal basis of eigenvectors such that Uei = λiei. Then

every x ∈ H has a unique representation

x =
m∑
i=1

αiei,

where αi = 〈x, ei〉 = xT ēi.

Since Uei = λiei and U is linear, we have

Ux =
m∑
i=1

λiαiei.

Since Ei is the spectral projection in H onto the span{ei}, Ei(x) = αiei. Therefore,

the last expression becomes

Ux =
m∑
i=1

λiEi(x) for every x ∈ H.

Hence, we get the following representation for U :

U =
m∑
i=1

λiEi.

By the just obtained result,

U2 =

(
m∑
i=1

λiEi

)(
m∑
j=1

λjEj

)

8



=
m∑
i=1

λ2
iEi since EiEj =

Ei if i = j

0 if i 6= j
.

Assume that

Uk =
m∑
i=1

λkiEi.

Then,

Uk+1 = Uk U =

(
m∑
i=1

λkiEi

)(
m∑
j=1

λjEj

)

=
m∑
i=1

λk+1
i Ei since EiEj =

Ei if i = j

0 if i 6= j
.

Therefore by induction,

Uk =
m∑
i=1

λkiEi,

for all k.

A derivative of an operator function can be written as a multiple operator integral

(see, e.g., [3, Theorem 5.7]). The multiple operator integral representing a derivative

of a finite dimensional matrix function has a simpler formula, an example of which

we provide below. In the derivation of the following result, we adjust the proof of [7,

Theorem 1] for the first order derivative of a matrix polynomial.

Theorem 2.2.7. Let H be an m dimensional Hilbert space. Let U = U∗ ∈ B(H) and

V ∈ B(H). Let f be a polynomial of degree n. Then,

dp

dtp

∣∣∣
t=0
f(U + tV )

= p!
m∑
i1=1

m∑
i2=1

...
m∑

ip+1=1

f [p][λi1 , λi2 , ..., λip+1 ]Ei1V Ei2V...V Eip+1 , p ≤ n,

where {λi}mi=1 is the spectrum of U counting multiplicity, f [p][λi1 , λi2 , ..., λip+1 ] is the

divided difference of order p, and Ei : H 7→ H is the spectral projection corresponding

to the eigenvalue λi.

Proof. The theorem can be proved by induction on p. Here, we give the proof only

for p = 1, 2. Let us take H = Cm, U = U∗ and V to be m ×m matrices on H. We
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prove the theorem for a monomial f(x) = xk, k ∈ N, and the application of Lemma

2.1.3 and Lemma 2.2.2 will give the result for a general polynomial function of the

form

f(x) = αnx
n + αn−1x

n−1 + ...+ α3x
3 + α2x

2 + α1x+ α0. By Lemma 2.2.4,

d

dt

∣∣∣
t=0

(U + tV )k =
k−1∑
j=0

U jV Uk−j−1.

By Lemma 2.2.6, the last expression becomes

d

dt

∣∣∣
t=0

(U + tV )k =
k−1∑
j=0

m∑
i1=1

λji1Ei1V

m∑
i2=1

λk−j−1
i2

Ei2

=
m∑
i1=1

m∑
i2=1

k−1∑
j=0

λji1λ
k−j−1
i2

Ei1V Ei2 . (2.2.1)

Since

k−1∑
j=0

λji1λ
k−j−1
i2

=


λki1 − λ

k
i2

λi1 − λi2
if λi1 6= λi2

kλk−1
i1

if λi1 = λi2

and using Definition 2.1.1, the equation (2.2.1) becomes

d

dt

∣∣∣
t=0

(U + tV )k =
m∑
i1=1

m∑
i2=1

f [1][λi1 , λi2 ]Ei1V Ei2 ,

which proves the theorem for p = 1.

Next, we prove the theorem for p = 2. By the definition of second order operator

derivative,

d2

dt2

∣∣∣
t=0

(U + tV )k = lim
t→0

d

ds

∣∣∣
s=t

(U + sV )k − d

ds

∣∣∣
s=0

(U + sV )k

t
,

where the limit is evaluated in the uniform operator topology. By Lemma 2.2.4, the

above expression becomes

d2

dt2

∣∣∣
t=0

(U + tV )k = lim
t→0

k−1∑
j=0

(U + tV )jV (U + tV )k−j−1 −
k−1∑
j=0

U jV Uk−j−1

t

=
k−1∑
j=0

lim
t→0

(U + tV )jV (U + tV )k−j−1 − U jV Uk−j−1

t
.
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By Lemma 2.2.3, we get

d2

dt2

∣∣∣
t=0

(U + tV )k =
k−1∑
j=0

(
d

dt

∣∣∣
t=0

(U + tV )jV Uk−j−1 + U jV
d

dt

∣∣∣
t=0

(U + tV )k−j−1

)

=
k−1∑
j=1

d

dt

∣∣∣
t=0

(U + tV )jV Uk−j−1 +
k−2∑
j=0

U jV
d

dt

∣∣∣
t=0

(U + tV )k−j−1.

Again by Lemma 2.2.4, the last expression equals

k−1∑
j=1

[( j−1∑
i=0

U iV U j−1−i
)
V Uk−j−1

]
+

k−2∑
j=0

[
U jV

( k−j−2∑
i=0

U iV Uk−j−2−i
)]

=
k−1∑
j=1

j−1∑
i=0

U iV U j−1−iV Uk−j−1 +
k−1∑
j=1

k−j−1∑
i=0

U j−1V U iV Uk−j−1−i

=
k−1∑
j=1

[ j−1∑
i=0

U iV U j−1−iV Uk−j−1 +

k−j−1∑
i=0

U j−1V U iV Uk−j−1−i
]
.

Since 0 ≤ i, (j − 1− i), (k − j − 1) and i+ (j − 1− i) + (k − j − 1) = k − 2;

0 ≤ (j − 1), i, (k − j − 1− i) and (j − 1) + i+ (k − j − 1− i) = k − 2,

d2

dt2

∣∣∣
t=0

(U + tV )k = 2!
∑

0≤n0,n1,n2
n0+n1+n2=k−2

Un0V Un1V Un2 . (2.2.2)

Using Lemma 2.2.6, the equation (2.2.2) becomes

d2

dt2

∣∣∣
t=0

(U + tV )k = 2!
∑

0≤n0,n1,n2
n0+n1+n2=k−2

m∑
i1=1

λn0
i1
Ei1V

m∑
i2=1

λn1
i2
Ei2V

m∑
i3=1

λn2
i3
Ei3

= 2!
m∑
i1=1

m∑
i2=1

m∑
i3=1

∑
0≤n0,n1,n2

n0+n1+n2=k−2

λn0
i1
λn1
i2
λn2
i3
Ei1V Ei2V Ei3 .

By Lemma 2.1.2, we get

d2

dt2

∣∣∣
t=0

(U + tV )k = 2!
m∑
i1=1

m∑
i2=1

m∑
i3=1

f [2][λi1 , λi2 , λi3 ]Ei1V Ei2V Ei3 .

The case of an infinite dimensional Hilbert space

The following lemma will be used to prove Theorem 2.2.9 below.
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Lemma 2.2.8. Let U = U∗ be an operator in H and V = V ∗ ∈ B(H). Let t ∈ R and

z ∈ C\R. Then,

lim
t→0

(U + tV − zI)−1 = (U − zI)−1,

where the limit is evaluated in the uniform operator topology.

Proof. Since U and U + tV are self-adjoint, the spectra of both U and U + tV are

subsets of R. Hence for all z ∈ C\R, the resolvent operators (U − zI)−1 of U and

(U + tV − zI)−1 of U + tV exist and are bounded on H. By the spectral theorem

(see [Appendix, Theorem 4.3.8]),

U + tV =

∫
R
λ dE(λ),

where E is the spectral measure of U + tV on H defined on the σ-algebra of Borel

subsets of R and the convergence of the integral is understood in the strong oper-

ator topology. Since f(λ) =
1

λ− z
is a bounded continuous function on R, by the

functional calculus (see [Appendix, Section 4.3.5]),

f(U + tV ) =

∫
R
f(λ)dE(λ).

Since f(U + tV ) = (U + tV − zI)−1, the last expression becomes

(U + tV − zI)−1 =

∫
R

1

λ− z
dE(λ).

By the well known result in functional calculus (see [Appendix, Theorem 4.3.6]),

‖(U + tV − zI)−1‖ =

∥∥∥∥∫
R

1

λ− z
dE(λ)

∥∥∥∥ ≤ sup
λ∈R

1

|λ− z|
.

If z = a+ ib, where a, b ∈ R, then the last estimate becomes

‖(U + tV − zI)−1‖ ≤ sup
λ∈R

1

|(λ− a)− ib|
= sup

λ∈R

1(
(λ− a)2 + b2

) 1
2

≤ 1

|b|

By the just obtained estimate, we get

‖(U + tV − zI)−1 − (U − zI)−1‖

= ‖(U + tV − zI)−1
(

(U − zI)− (U + tV − zI)
)

(U − zI)−1‖

≤ ‖(U + tV − zI)−1‖ |t| ‖V ‖ ‖(U − zI)−1‖

≤ 1

|b|
|t| ‖V ‖ ‖(U − zI)−1‖ → 0

as |t| → 0.
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Theorem 2.2.9. Let U = U∗ be an operator in H and V = V ∗ ∈ B(H). Let t ∈ R
and z ∈ C\R. Then,

dp

dtp

∣∣∣
t=0

(U + tV − zI)−k

= (−1)p p!
∑

1≤k0,k1,...,kp≤k
k0+k1+...+kp=k+p

(U − zI)−k0V (U − zI)−k1V...V (U − zI)−kp .

Proof. The theorem can be proved by induction on p for an arbitrary k. Here, we

prove the theorem for p = 1 and p = 2 and only for k = 1 and k = 2.

Let k = 1.

By the definition of first order operator derivative,

d

dt

∣∣∣
t=0

(U + tV − zI)−1 = lim
t→0

(U + tV − zI)−1 − (U − zI)−1

t
,

where the limit is evaluated in the uniform operator topology. The above expression

can be rewritten as

d

dt

∣∣∣
t=0

(U + tV − zI)−1

= lim
t→0

(U + tV − zI)−1
(

(U − zI)− (U + tV − zI)
)

(U − zI)−1

t

= − lim
t→0

(U + tV − zI)−1 tV (U − zI)−1

t

= − lim
t→0

(U + tV − zI)−1 V (U − zI)−1.

By Lemma 2.2.8, the last expression becomes

d

dt

∣∣∣
t=0

(U + tV − zI)−1 = −(U − zI)−1V (U − zI)−1 (2.2.3)

= −
∑

1≤k0,k1≤1
k0+k1=2

(U − zI)−k0V (U − zI)−k1 .

Let k = 2.

By the definition of first order operator derivative,

d

dt

∣∣∣
t=0

(U + tV − zI)−2

= lim
t→0

(U + tV − zI)−2 − (U − zI)−2

t

= lim
t→0

(U + tV − zI)−1(U + tV − zI)−1 − (U − zI)−1(U − zI)−1

t
,
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where the limit is evaluated in the uniform operator topology. By Lemma 2.2.3

applied to f(U + tV ) = (U + tV − zI)−1 and g(U + tV ) = (U + tV − zI)−1 and using

(2.2.3), we get

d

dt

∣∣∣
t=0

(U + tV − zI)−2

= −(U − zI)−1V (U − zI)−1(U − zI)−1 − (U − zI)−1(U − zI)−1V (U − zI)−1.

The above expression can be rewritten as

d

dt

∣∣∣
t=0

(U + tV − zI)−2

= −
[
(U − zI)−1V (U − zI)−2 + (U − zI)−2V (U − zI)−1

]
. (2.2.4)

= −
∑

1≤k0,k1≤2
k0+k1=3

(U − zI)−k0V (U − zI)−k1 .

Continuing this way, we can show that it is true for all k.

Next, we prove the theorem for p = 2.

Let k = 1.

As in the equality (2.2.3), we can show that

d

ds

∣∣∣
s=t

(U + sV − zI)−1 = −(U + tV − zI)−1V (U + tV − zI)−1. (2.2.5)

By the definition of second order operator derivative,

d2

dt2

∣∣∣
t=0

(U + tV − zI)−1 = lim
t→0

d

ds

∣∣∣
s=t

(U + sV − zI)−1 − d

ds

∣∣∣
s=0

(U + sV − zI)−1

t
,

where the limit is evaluated in the uniform operator topology. By (2.2.3), (2.2.5), and

Lemma 2.2.3 applied to f(U+tV ) = (U+tV−zI)−1V and g(U+tV ) = (U+tV−zI)−1,

the last expression equals

d2

dt2

∣∣∣
t=0

(U + tV − zI)−1

= − lim
t→0

(U + tV − zI)−1V (U + tV − zI)−1 − (U − zI)−1V (U − zI)−1

t

= −
[
−(U − zI)−1V (U − zI)−1V (U − zI)−1

− (U − zI)−1V (U − zI)−1V (U − zI)−1
]

= 2! (U − zI)−1V (U − zI)−1V (U − zI)−1

= 2!
∑

1≤k0,k1,k2≤1
k0+k1+k2=3

(U − zI)−k0V (U − zI)−k1V (U − zI)−k2 .
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Let k = 2.

As in the equality (2.2.4), we can show that

d

ds

∣∣∣
s=t

(U + sV − zI)−2

= −
[
(U + tV − zI)−1V (U + tV − zI)−2 + (U + tV − zI)−2V (U + tV − zI)−1

]
.

(2.2.6)

By the definition of second order operator derivative,

d2

dt2

∣∣∣
t=0

(U + tV − zI)−2 = lim
t→0

d

ds

∣∣∣
s=t

(U + sV − zI)−2 − d

ds

∣∣∣
s=0

(U + sV − zI)−2

t
,

where the limit is evaluated in the uniform operator topology. By (2.2.4) and (2.2.6),

the latter expression becomes

d2

dt2

∣∣∣
t=0

(U + tV − zI)−2

= −
[
lim
t→0

(U + tV − zI)−1V (U + tV − zI)−2 − (U − zI)−1V (U − zI)−2

t

+ lim
t→0

(U + tV − zI)−2V (U + tV − zI)−1 − (U − zI)−2V (U − zI)−1

t

]
.

By Lemma 2.2.3 applied once to f(U+tV ) = (U+tV −zI)−1V and g(U+tV ) = (U+

tV −zI)−2 and next to f(U+tV ) = (U+tV −zI)−2V and g(U+tV ) = (U+tV −zI)−1

and using (2.2.3) and (2.2.4), we get

d2

dt2

∣∣∣
t=0

(U + tV − zI)−2

= −
[
−(U − zI)−1V (U − zI)−1V (U − zI)−2

− (U − zI)−1V
(

(U − zI)−1V (U − zI)−2 + (U − zI)−2V (U − zI)−1
)

−
(

(U − zI)−1V (U − zI)−2V + (U − zI)−2V (U − zI)−1V
)

(U − zI)−1

− (U − zI)−2V
(

(U − zI)−1V (U − zI)−1
)]

= 2
[
(U − zI)−1V (U − zI)−1V (U − zI)−2 + (U − zI)−1V (U − zI)−2V (U − zI)−1

+ (U − zI)−2V (U − zI)−1V (U − zI)−1
]

= 2!
∑

1≤k0,k1,k2≤2
k0+k1+k2=4

(U − zI)−k0V (U − zI)−k1V (U − zI)−k2 .

Continuing this way, we can show that it is true for all k.
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2.2.3 Derivatives of operator functions with nice Fourier

transforms

Derivatives of more general operator functions can be expressed via Bochner integrals,

whose detailed discussion can be found in, for example, [Appendix, Section 4.4] and

[19, Section V.5].

Formulas for operator derivatives

The main result is in Theorem 2.2.14. We will prove several auxiliary lemmas before

the main result.

Lemma 2.2.10. (Duhamel’s formula)(See [3, Lemma 5.2]) If B is a self-adjoint

operator in H, if V = V ∗ ∈ B(H) and if A = B + V , then

eisA − eisB =

∫ s

0

ei(s−t)Ai(A−B)eitBdt, s ∈ R,

where the integral is a Bochner integral and its convergence is understood in the strong

operator topology. Moreover, if B is bounded, then the integral can be evaluated in

the uniform operator topology.

Lemma 2.2.11. Let H0 = H∗0 be an operator in H and V = V ∗ ∈ B(H). Then,

lim
t→0

eiλ(H0+tV ) = eiλH0 , λ ∈ R,

where the limit is evaluated in the strong operator topology. Moreover, if H0 is

bounded, then the limit can be evaluated in the uniform operator topology.

Proof. Using Lemma 2.2.10 and by [Appendix, Theorem 4.3.6 (7)], we have∥∥eiλ(H0+tV ) − eiλH0
∥∥

=

∥∥∥∥∫ λ

0

ei(λ−y)(H0+tV )itV eiyH0dy

∥∥∥∥
≤
∫ λ

0

∥∥ei(λ−y)(H0+tV )itV eiyH0
∥∥ dy

≤ |t| ‖V ‖
∫ λ

0

dy

= |t| ‖V ‖ · λ→ 0, as |t| → 0.
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In the proof of the following lemmas, we will use basic properties of the Fourier

transform, which can be found in [Appendix, Section 4.5.2].

Lemma 2.2.12. Let H0 = H∗0 be an operator in H and let f be such that

f , f̂ ∈ L1(R). For x ∈ H, the function t 7→ f̂(t)eiH0tx from R to H is Bochner

integrable, that is, there exists a sequence of simple functions {sH0,x
n } which converges

to t 7→ f̂(t)eiH0tx almost everywhere and∫
R
f̂(t)eiH0tx dt = lim

n→∞

∫
R
sH0,x
n (t) dt (2.2.7)

in H. Moreover, if H0 is bounded, then the integral can be evaluated in the uniform

operator topology.

Proof. By the well known result in functional calculus (see [Appendix, Theorem 4.3.6

(7)]),

‖eiH0t‖ =

∥∥∥∥∫
R
eiλtdE(λ)

∥∥∥∥ ≤ sup
λ∈R
|eiλt| = 1, for all t ∈ R. (2.2.8)

By the estimate (2.2.8) and the formula for the Fourier transform of f

(see [Appendix, Definition 4.5.2]), we have

‖f̂(t)eiH0t‖ ≤ |f̂(t)| ‖eiH0t‖ ≤ |f̂(t)| = 1√
2π

∣∣∣∣∫
R
f(λ)e−iλtdλ

∣∣∣∣ ≤ 1√
2π

∫
R
|f(λ)|dλ

<∞,

and which implies that f̂(t)eiH0t ∈ B(H) for each t ∈ R. We first show that the

function t 7→ f̂(t)eiH0tx is continuous.

By the standard properties of spectral integral (see [Appendix, Theorem 4.3.6

(6)]), for x ∈ H, we have

‖f̂(t)eiH0t x− f̂(t0)eiH0t0 x‖2 =
∥∥∥∫

R

(
f̂(t)eiλt − f̂(t0)eiλt0

)
d(E(λ) x

∥∥∥2

=

∫
R

∣∣∣f̂(t)eiλt − f̂(t0)eiλt0
∣∣∣2d 〈E(λ)x, x〉 , t, t0 ∈ R,

(2.2.9)

where E is the spectral measure of H0 and 〈E(·)x, x〉 is a finite scalar measure defined

on the σ-algebra of Borel subsets of R. Since f ∈ L1(R), f̂ is continuous on R (see

[Appendix, Proposition 4.5.4]). Also, for each λ ∈ R, eiλt is a continuous function of

t in R. Therefore, f̂(t)eiλt is a continuous function of t in R for each λ ∈ R and, for

each λ ∈ R, we have

lim
t→t0

∣∣f̂(t)eiλt − f̂(t0)eiλt0
∣∣2 = 0, t, t0 ∈ R. (2.2.10)
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Since f ∈ L1(R), f̂ is bounded on R. So, there exists M > 0 such that

|f̂(t)| ≤M for all t ∈ R.

Using the last estimate, we have∣∣∣f̂(t)eiλt − f̂(t0)eiλt0
∣∣∣2 ≤ 4M2, t, t0 ∈ R.

Since 〈E(·)x, x〉 is a finite measure on R, we also have∫
R

4M2d 〈E(λ)x, x〉 <∞.

Therefore, by the Lebesgue dominated convergence theorem and (2.2.10), we get

lim
t→t0

∫
R

∣∣∣f̂(t)eiλt − f̂(t0)eiλt0
∣∣∣2d 〈E(λ)x, x〉 =

∫
R

0 d 〈E(λ)x, x〉 = 0. (2.2.11)

From (2.2.9) and (2.2.11), we have

lim
t→t0
‖f̂(t)eiH0t x− f̂(t0)eiH0t0 x‖2 = 0.

Since t0 ∈ R was arbitrary, the function t 7→ f̂(t)eiH0tx is continuous. For any

α ∈ H∗, the function t 7→ α(f̂(t)eiH0tx) is continuous from R to C, and hence,

measurable. Moreover, {f̂(t)eiH0tx : t ∈ R} ⊂ H is separable. By ([Appendix,

Definition 4.4.2]), the function t 7→ f̂(t)eiH0tx is separably-valued. Therefore, the

function t 7→ f̂(t)eiH0tx is measurable (see [Appendix, Theorem 4.4.3]). Also, since∫
R
‖f̂(t)eiH0tx‖ dt < ∞, by [Appendix, Theorem 4.4.5], t 7→ f̂(t)eiH0tx is Bochner

integrable. By [Appendix, Definition 4.4.4], there exists a sequence of simple functions

{sH0,x
n } that satisfies the assertions of the theorem.

If H0 is bounded, then t 7→ f̂(t)eiH0t is continuous in the uniform operator topol-

ogy. By an argument similar to the one above, we can show that the limit in (2.2.7)

exists in the uniform operator topology.

Lemma 2.2.13. Let H0 = H∗0 be an operator in a Hilbert space H and let f be such

that f , f̂ ∈ L1(R). Then,

f(H0) =
1√
2π

∫
R
f̂(t)eiH0tdt,

where the integral on the right is a Bochner integral and its convergence is evaluated

in the strong operator topology. Moreover, if H0 is bounded, then the integral can be

evaluated in the uniform operator topology.
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Proof. By the spectral theorem (see [Appendix, Theorem 4.3.8]),

H0 =

∫
R
λ dE(λ),

where E is the spectral measure of H0 on H defined on the σ-algebra of Borel subsets

of R and the convergence of the integral is understood in the strong operator topology.

Since f is a bounded continuous function on R, by [Appendix, Section 4.3.5], we have

f(H0) =

∫
R
f(λ)dE(λ).

By [Appendix, Theorem 4.3.6 (5)], we also have

〈f(H0)x, y〉 =

∫
R
f(λ)dw(λ), x, y ∈ H, (2.2.12)

where w(·) = 〈E(·)x, y〉 is a finite scalar measure defined on the σ-algebra of Borel

subsets of R. Since f, f̂ ∈ L1(R), by the Fourier inversion formula,

f(λ) =
1√
2π

∫
R
f̂(t)eiλtdt. Therefore, the equation (2.2.12) becomes

〈f(H0)x, y〉 =

∫
R

(
1√
2π

∫
R
f̂(t)eiλtdt

)
dw(λ). (2.2.13)

Since |eiλt| = 1,∫
R

(∫
R
|f̂(t)eiλt|dt

)
d|w|(λ) =

∫
R

(∫
R
|f̂(t)|dt

)
d|w|(λ) <∞, (2.2.14)

where the last inequality follows from the fact that f̂ ∈ L1(R) and |w|(·) is a finite

positive measure on R. Since R is a σ-finite measure space with respect to the

Lebesgue measure and (2.2.14) holds, by Fubini’s theorem the equation (2.2.13) can

be written as

〈f(H0)x, y〉 =
1√
2π

∫
R

(∫
R
eiλtdw(λ)

)
f̂(t)dt.

By [Appendix, Theorem 4.3.6 (5)], the last expression becomes

〈f(H0)x, y〉 =
1√
2π

∫
R

〈
eiH0tx, y

〉
f̂(t)dt =

1√
2π

∫
R

〈
f̂(t)eiH0tx, y

〉
dt. (2.2.15)

By Lemma 2.2.12, for x ∈ H, the function t 7→ f̂(t)eiH0tx from R to H is Bochner

integrable and, hence, there exists a sequence of simple functions {sH0,x
n } such that

f̂(t)eiH0tx = lim
n→∞

sH0,x
n (t)
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almost everywhere and ∫
R
f̂(t)eiH0tx dt = lim

n→∞

∫
R
sH0,x
n (t) dt

in H. By the continuity of an inner product, for all y ∈ H, we have

〈f̂(t)eiH0t x, y〉 = lim
n→∞
〈sH0,x
n (t), y〉 (2.2.16)

almost everywhere and〈
1√
2π

∫
R
f̂(t)eiH0tx dt, y

〉
=

1√
2π

lim
n→∞

〈∫
R
sH0,x
n (t) dt, y

〉
=

1√
2π

lim
n→∞

∫
R
〈sH0,x
n (t), y〉 dt. (2.2.17)

For all y ∈ H, we have

lim
n→∞

∣∣∣∣∫
R
〈sH0,x
n (t), y〉dt−

∫
R
〈f̂(t)eiH0t x, y〉 dt

∣∣∣∣
= lim

n→∞

∣∣∣∣∫
R
〈sH0,x
n (t)− f̂(t)eiH0tx, y〉 dt

∣∣∣∣
≤ lim

n→∞

∫
R

∣∣∣〈sH0,x
n (t)− f̂(t)eiH0tx, y〉

∣∣∣ dt
≤ lim

n→∞

∫
R

∥∥∥sH0,x
n (t)− f̂(t)eiH0tx

∥∥∥ ‖y‖ dt→ 0,

as n→∞ by the Bochner integrability of the function t 7→ f̂(t)eiH0tx (see [Appendix,

Definition 4.4.4]). Therefore, we have∫
R
〈f̂(t)eiH0t x, y〉 dt = lim

n→∞

∫
R
〈sH0,x
n (t), y〉 dt. (2.2.18)

By (2.2.17) and (2.2.18), we get〈
1√
2π

∫
R
f̂(t)eiH0tdt x, y

〉
=

1√
2π

∫
R
〈f̂(t)eiH0t x, y〉dt, for all y ∈ H.

Using the last equality, (2.2.15) can be written as

〈f(H0)x, y〉 =

〈
1√
2π

∫
R
f̂(t)eiH0tdt x, y

〉
, for all y ∈ H,

and, hence

f(H0)x =
1√
2π

∫
R
f̂(t)eiH0tx dt.
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Since x ∈ H was arbitrary, we have

f(H0) =
1√
2π

∫
R
f̂(t)eiH0t dt.

If H0 is bounded, then the last integral converges in the uniform operator topology

by Lemma 2.2.12.

Theorem 2.2.14. Let H0 = H∗0 be an operator in H and V = V ∗ ∈ B(H). If f is

such that f (j), f̂ (j) ∈ L1(R), j = 0, 1, ..., n, then

dn

dtn

∣∣∣
t=0
f(H0 + tV )

= n! · in√
2π

∫
R

∫ s0

0

...

∫ sn−1

0

f̂(s0) ei(s0−s1)H0V...V ei(sn−1−sn)H0V eisnH0 dsn...ds0,

where the integral on the right is a Bochner integral and its convergence is understood

in the strong operator topology. Moreover, if H0 is bounded, then the integral can be

evaluated in the uniform operator topology.

Proof. The theorem can be proved by induction on n. Here, we give the proof only

for n = 1, 2. We first prove for n = 1. By Lemma 2.2.13, we have

f(H0 + tV )− f(H0) =
1√
2π

∫
R
f̂(λ)eiλ(H0+tV )dλ− 1√

2π

∫
R
f̂(λ)eiλH0dλ

=
1√
2π

∫
R
f̂(λ)

(
eiλ(H0+tV ) − eiλH0

)
dλ. (2.2.19)

Using Lemma 2.2.10, the equation (2.2.19) can be written as

f(H0 + tV )− f(H0) =
1√
2π

∫
R
f̂(λ)

(∫ λ

0

ei(λ−x)(H0+tV )itV eixH0dx

)
dλ

=
i√
2π

∫
R

∫ λ

0

f̂(λ)ei(λ−x)(H0+tV )tV eixH0dx dλ. (2.2.20)

By the definition of first order operator derivative and using (2.2.20), we get

d

dt

∣∣∣
t=0
f(H0 + tV ) = lim

t→0

f(H0 + tV )− f(H0)

t

=
i√
2π

lim
t→0

∫
R

∫ λ

0

f̂(λ)ei(λ−x)(H0+tV )V eixH0dx dλ. (2.2.21)

Using Lemma 2.2.11, we have

lim
t→0

f̂(λ)ei(λ−x)(H0+tV )V eixH0 = f̂(λ)ei(λ−x)H0V eixH0 , λ, x ∈ R,
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where the limit is evaluated in the strong operator topology. We have∥∥∥f̂(λ)ei(λ−x)(H0+tV )V eixH0

∥∥∥ ≤ |f̂(λ)| ‖V ‖.

Also, we have ∣∣∣∣∫
R

∫ λ

0

|f̂(λ)|‖V ‖dx dλ
∣∣∣∣

= ‖V ‖
∣∣∣∣∫

R
|f̂(λ)|

(∫ λ

0

dx

)
dλ

∣∣∣∣
≤ ‖V ‖

∫
R
|λ||f̂(λ)|dλ

= ‖V ‖
∫
R
|iλf̂(λ)|dλ.

Since f̂ ′(λ) = iλf̂(λ) (see [Appendix, Proposition 4.5.6]) and f̂ ′(λ) ∈ L1(R), the

latter estimate becomes∣∣∣∣∫
R

∫ λ

0

|f̂(λ)|‖V ‖dx dλ
∣∣∣∣ ≤ ‖V ‖∫

R
|f̂ ′(λ)|dλ <∞.

Therefore, by [Appendix, Proposition 4.4.6], the function f̂(λ)ei(λ−x)H0V eixH0 is

Bochner integrable with respect to the Lebesgue measure dx× dλ and

i√
2π

lim
t→0

∫
R

∫ λ

0

f̂(λ)ei(λ−x)(H0+tV )V eixH0dx dλ

=
i√
2π

∫
R

∫ λ

0

f̂(λ)ei(λ−x)H0V eixH0dx dλ.

Using the last equality, (2.2.21) becomes

d

dt

∣∣∣
t=0
f(H0 + tV ) =

i√
2π

∫
R

∫ λ

0

f̂(λ)ei(λ−x)H0V eixH0dx dλ. (2.2.22)

Making the substitution λ = s0 and x = s1, the latter integral becomes

d

dt

∣∣∣
t=0
f(H0 + tV ) =

i√
2π

∫
R

∫ s0

0

f̂(s0)ei(s0−s1)H0V eis1H0ds1 ds0

and, hence, the theorem is proved for n = 1.

Next, we prove for n = 2. As in the equality (2.2.22), we can show

d

ds

∣∣∣
s=t
f(H0 + sV ) =

i√
2π

∫
R

∫ λ

0

f̂(λ)ei(λ−x)(H0+tV )V eix(H0+tV )dx dλ. (2.2.23)
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By the definition of second order operator derivative,

d2

dt2

∣∣∣
t=0
f(H0 + tV ) = lim

t→0

d

ds

∣∣∣
s=t
f(H0 + sV )− d

ds

∣∣∣
s=0

f(H0 + sV )

t
.

Using (2.2.22) and (2.2.23), the last expression becomes

d2

dt2

∣∣∣
t=0
f(H0 + tV )

= lim
t→0

1

t

( i√
2π

∫
R

∫ λ

0

f̂(λ)ei(λ−x)(H0+tV )V eix(H0+tV )dx dλ

− i√
2π

∫
R

∫ λ

0

f̂(λ)ei(λ−x)H0V eixH0dx dλ
)

= lim
t→0

1

t

( i√
2π

∫
R

∫ λ

0

f̂(λ)
(
ei(λ−x)(H0+tV ) − ei(λ−x)H0

)
V eix(H0+tV )dx dλ

)
+ lim

t→0

1

t

( i√
2π

∫
R

∫ λ

0

f̂(λ)ei(λ−x)H0V
(
eix(H0+tV ) − eixH0

)
dx dλ

)
.

By Lemma 2.2.10, the latter expression becomes

d2

dt2

∣∣∣
t=0
f(H0 + tV )

= lim
t→0

1

t

i√
2π

∫
R

∫ λ

0

f̂(λ)

(∫ λ−x

0

ei(λ−x−y)(H0+tV )itV eiyH0dy

)
V eix(H0+tV )dx dλ

+ lim
t→0

1

t

i√
2π

∫
R

∫ λ

0

f̂(λ)ei(λ−x)H0V

(∫ x

0

ei(x−y)(H0+tV )itV eiyH0dy

)
dx dλ

=
i2√
2π

lim
t→0

∫
R

∫ λ

0

∫ λ−x

0

f̂(λ)ei(λ−x−y)(H0+tV )V eiyH0V eix(H0+tV )dy dx dλ

+
i2√
2π

lim
t→0

∫
R

∫ λ

0

∫ x

0

f̂(λ)ei(λ−x)H0V ei(x−y)(H0+tV )V eiyH0dy dx dλ. (2.2.24)

Using Lemma 2.2.11, it follows that

lim
t→0

f̂(λ)ei(λ−x−y)(H0+tV )V eiyH0V eix(H0+tV )

= f̂(λ)ei(λ−x−y)H0V eiyH0V eixH0 , λ, x, y ∈ R,

where the limit is evaluated in the strong operator topology. We have∥∥∥f̂(λ)ei(λ−x−y)(H0+tV )V eiyH0V eix(H0+tV )
∥∥∥ ≤ |f̂(λ)| ‖V ‖2.

Also, we have ∣∣∣∣∫
R

∫ λ

0

∫ λ−x

0

|f̂(λ)|‖V ‖2dy dx dλ

∣∣∣∣
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= ‖V ‖2

∣∣∣∣∫
R
|f̂(λ)|

∫ λ

0

(∫ λ−x

0

dy

)
dx dλ

∣∣∣∣
≤ ‖V ‖2

∫
R
|f̂(λ)|

∫ λ

0

|λ− x|dx dλ

≤ ‖V ‖2

∫
R
|(iλ)2f̂(λ)|dλ.

Since f̂ ′′(λ) = (iλ)2f̂(λ) (see [Appendix, Proposition 4.5.6]) and f̂ ′′(λ) ∈ L1(R), the

latter estimate becomes∣∣∣∣∫
R

∫ λ

0

∫ λ−x

0

|f̂(λ)|‖V ‖2dy dx dλ

∣∣∣∣ ≤ ‖V ‖2

∫
R
|f̂ ′′(λ)|dλ <∞.

Therefore, by [Appendix, Proposition 4.4.6], the function

f̂(λ)ei(λ−x−y)H0V eiyH0V eixH0 is Bochner integrable with respect to the Lebesgue mea-

sure dy × dx× dλ and

i2√
2π

lim
t→0

∫
R

∫ λ

0

∫ λ−x

0

f̂(λ)ei(λ−x−y)(H0+tV )V eiyH0V eix(H0+tV )dy dx dλ

=
i2√
2π

∫
R

∫ λ

0

∫ λ−x

0

f̂(λ)ei(λ−x−y)H0V eiyH0V eixH0dy dx dλ.

Similarly, we can show that

i2√
2π

lim
t→0

∫
R

∫ λ

0

∫ x

0

f̂(λ)ei(λ−x)H0V ei(x−y)(H0+tV )V eiyH0dy dx dλ

=
i2√
2π

∫
R

∫ λ

0

∫ x

0

f̂(λ)ei(λ−x)H0V ei(x−y)H0V eiyH0dy dx dλ.

Using the last two equalities, (2.2.24) becomes

d2

dt2

∣∣∣
t=0
f(H0 + tV ) =

i2√
2π

∫
R

∫ λ

0

∫ λ−x

0

f̂(λ)ei(λ−x−y)H0V eiyH0V eixH0dy dx dλ

+
i2√
2π

∫
R

∫ λ

0

∫ x

0

f̂(λ)ei(λ−x)H0V ei(x−y)H0V eiyH0dy dx dλ.

(2.2.25)

Making the substitution λ = s0, x = s2, and y = s1 − s2 in the first integral and the

substitution λ = s0, x = s1, and y = s2 in the second integral of (2.2.25), we obtain

the representation

d2

dt2

∣∣∣
t=0
f(H0 + tV )

= 2! · i2√
2π

∫
R

∫ s0

0

∫ s1

0

f̂(s0)ei(s0−s1)H0V ei(s1−s2)H0V eis2H0ds2 ds1 ds0
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and, hence, the theorem is proved for n = 2.

We now assume that H0 is bounded. Then, by Lemma 2.2.13

f(H0) =
1√
2π

∫
R
f̂(t)eiH0tdt,

where the convergence of the integral is evaluated in the uniform operator topology.

Similarly, the integral and limit in Lemma 2.2.10 and Lemma 2.2.11 can be evaluated

in the uniform operator topology. Using all these results and proceeding as above,

we see the integral in this lemma converges in the uniform operator topology.
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Chapter 3

Trace formulas in the case of

Hilbert-Schmidt resolvents

Let the resolvent of H0 belong to S2, that is,
∣∣(iI + H0)−1

∣∣ = (I + H2
0 )−1/2 ∈ S2;

V = V ∗ ∈ B(H); and f ∈ Cn
c ((a, b)), where Cn

c ((a, b)) is the space of n times

continuously differentiable functions on R that are compactly supported in (a, b) ⊂ R.

We show that there exists a unique locally finite real-valued measure µn = µn,H0,V ,

n ≥ 3, such that the following trace formula holds (see Theorem 3.1.7):

Tr

(
f(H0 + V )− f(H0)−

n−1∑
k=1

1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV )

)
=

∫
R
f (n)(t)dµn(t),

for f ∈ Cn
c ((a, b)). In the case of commuting H0 and V , we show that there exists a

locally integrable function ηn = ηn,H0,V , n ≥ 3, such that the following trace formula

holds (see Theorem 3.2.1):

Tr

(
f(H0 + V )− f(H0)−

n−1∑
k=1

1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV )

)
=

∫
R
f (n)(t)ηn(t)dt,

for f ∈ Cn
c ((a, b)).

Following delicate methods of noncommutative analysis developed in [18], we first

show that each summand in f(H0 + V )− f(H0)−
n−1∑
k=1

1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV ) is a trace

class operator (see Lemmas 3.1.1 and 3.1.5) and prove the estimate∣∣∣∣∣Tr

(
f(H0 + V )− f(H0)−

n−1∑
k=1

1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV )

)∣∣∣∣∣ ≤ Cn,a,b,H0,V · ‖f (n)‖∞,

where Cn,a,b,H0,V is a constant depending on a, b, H0 and V . Then, we use the Riesz

representation theorem for a functional in
(
Cc(R)

)∗
to find a unique locally finite
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real-valued measure µn that satisfies the result in Theorem 3.1.7. To prove Theorem

3.2.1, we simply prove the absolute continuity of the measure µn obtained in Theorem

3.1.7 using integration by parts.

3.1 Non-commutative perturbations

In this section, we assume that the initial operator H0 and its bounded perturbation

V do not commute, that is, H0V 6= V H0.

3.1.1 Trace Formulas

The main result is in Theorem 3.1.7. We have several auxiliary lemmas before the

main result.

Lemma 3.1.1. (See [18, Lemma 2.5]) Let H0 = H∗0 satisfy (I+H2
0 )−1/2 ∈ S2 and let

V = V ∗ ∈ B(H). Let f be a continuous compactly supported function on R. Then,

f(H0 + V ) ∈ S1 and

‖f(H0 + V )‖1 ≤ ‖f‖∞ ·
(
1 + max

s∈suppf
|s|2
)
· (1 + ‖V ‖+ ‖V ‖2) · ‖(I +H2

0 )−1/2‖2
2.

In particular, f(H0) ∈ S1 and

‖f(H0)‖1 ≤ ‖f‖∞ ·
(
1 + max

s∈suppf
|s|2
)
· ‖(I +H2

0 )−1/2‖2
2.

Lemma 3.1.2. (See [3, Lemma 2.1]) If f is such that f (j), f̂ (j) ∈ L1(R),

j = 0, 1, ..., n, then

f [n][λ0, ..., λn]

=
in√
2π

∫
R

∫ s0

0

...

∫ sn−1

0

f̂(s0) ei(s0−s1)λ0 ...ei(sn−1−sn)λn−1eisnλn dsn...ds0,

where f [n][λ0, ..., λn] is a divided difference of order n given by Definition 2.1.1.

Lemma 3.1.3. (See [3, Lemma 4.5]) Let H0 = H∗0 , ..., Hn = H∗n be defined in H
and let V1, ..., Vn ∈ B(H). If f is such that f (j), f̂ (j) ∈ L1(R), j = 0, 1, ..., n, then the

Bochner integral

TH0,...,Hn

f [n] (V1, ..., Vn)y (3.1.1)

:=
in√
2π

∫
R

∫ s0

0

...

∫ sn−1

0

f̂(s0) ei(s0−s1)H0V1...Vn−1e
i(sn−1−sn)Hn−1Vne

isnHny dsn...ds0

(3.1.2)
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exists for every y ∈ H and thus defines a bounded linear operator on H with the norm

bound ∣∣∣∣∣∣TH0,...,Hn

f [n] (V1, ..., Vn)
∣∣∣∣∣∣ ≤ 1

n!
·
∣∣∣∣∣∣f̂ (n)

∣∣∣∣∣∣
1
· ‖V1‖ · ... · ‖Vn‖.

Remark 3.1.4. TH0,...,Hn

f [n] (V1, ..., Vn) in the above lemma is a bounded multilinear map-

ping from B(H)×· · ·×B(H) to B(H). It follows immediately from Theorem 2.2.14 and

(3.1.2) that for V = V ∗ ∈ B(H) and f is such that f (j), f̂ (j) ∈ L1(R), j = 0, 1, ..., n,

1

n!
· d

n

dtn

∣∣∣
t=0
f(H0 + tV ) = TH0,...,H0

f [n] (V, ..., V )︸ ︷︷ ︸
n times

.

Lemma 3.1.5. (See [18, Lemma 3.6]) Let H0 = H∗0 satisfy (I+H2
0 )−1/2 ∈ S2 and let

V = V ∗ ∈ B(H). Denote u(t) = (1 + t2)1/2. Then, for every n ∈ N and f ∈ Cn+1
c (R),

1

n!
· d

n

dtn

∣∣∣
t=0
f(H0 + tV ) ∈ S1 and

∥∥∥ 1

n!
· d

n

dtn

∣∣∣
t=0
f(H0 + tV )

∥∥∥
1
≤ Cf,n · ‖(I +H2

0 )−1/2‖2
2 · ‖V ‖n,

where

Cf,1 ≤
√

2
(
‖(fu2)′‖2 + ‖(fu2)′′‖2

)
+ 2‖fu2‖∞ (3.1.3)

and for n ≥ 2,

Cf,n ≤
√

2

n!

(
‖(fu2)(n)‖2 + ‖(fu2)(n+1)‖2

)
+
n(n+ 3)

2
· max

1≤k≤n

{
‖f‖∞, ‖fu‖∞,

√
2

k!

(
‖f (k)‖2 + ‖f (k+1)‖2

)
,

√
2

k!

(
‖(fu)(k)‖2 + ‖(fu)(k+1)‖2

)}
× const · max

2≤j≤n

(
‖u(j)‖2 + ‖u(j+1)‖2

)2

. (3.1.4)

Lemma 3.1.6. Let f ∈ Cn+1
c ((a, b)), n ∈ N , and u(t) = (1 + t2)1/2. If Cf,n satisfy

(3.1.3) for n = 1 and (3.1.4) for n ≥ 2, then

Cf,n ≤ ‖f (n+1)‖∞ · Ca,b,n, n ∈ N, (3.1.5)

where

Ca,b,1 = 24 ·max
{

1, (b− a)2
}
·max

{
2, ‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b])

}
(3.1.6)
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and for n ≥ 2,

Ca,b,n =
[4(b− a)1/2

n!
+
n(n+ 3)

2
·max

{
1, 4(b− a)1/2

}
× const · max

2≤j≤n

(
‖u(j)‖2 + ‖u(j+1)‖2

)2]
· 2n ·max

{
1, (b− a)n+1

}
× max

0≤k≤n+1

{
2, ‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b]), ‖u(k)‖L∞([a,b])

}
. (3.1.7)

Proof. We prove the case n ≥ 2. The case n = 1 is similar to that of n ≥ 2 and,

hence, omitted. Here, we denote ‖ · ‖2 = ‖ · ‖L2([a,b]) and ‖ · ‖∞ = ‖ · ‖L∞([a,b]). For

f ∈ Cn+1
c ((a, b)),

‖f (j)‖2 ≤ ‖f (j)‖∞ · (b− a)1/2, 0 ≤ j ≤ n+ 1. (3.1.8)

Using (3.1.8), we obtain that

Cf,n

≤
√

2

n!

(
‖(fu2)(n)‖∞(b− a)1/2 + ‖(fu2)(n+1)‖∞(b− a)1/2

)
+
n(n+ 3)

2
· max

1≤k≤n

{
‖f‖∞, ‖fu‖∞,

√
2

k!

(
‖f (k)‖∞(b− a)1/2 + ‖f (k+1)‖∞(b− a)1/2

)
,

√
2

k!

(
‖(fu)(k)‖∞(b− a)1/2 + ‖(fu)(k+1)‖∞(b− a)1/2

)}
× const · max

2≤j≤n

(
‖u(j)‖2 + ‖u(j+1)‖2

)2

. (3.1.9)

Since

‖(fg)(k)‖∞ =
∥∥∥ k∑
j=0

(
k

j

)
f (j)g(k−j)

∥∥∥
∞
≤

k∑
j=0

(
k

j

)
‖f (j)‖∞‖g(k−j)‖∞

≤ 2k · max
0≤j≤k

‖f (j)‖∞ · max
0≤l≤k

‖g(l)‖∞,

for 0 ≤ i ≤ n+ 1, we have

‖(fu2)(i)‖∞ ≤ 2i · max
0≤j≤i

‖f (j)‖∞ · max
0≤l≤i

‖(u2)(l)‖L∞([a,b])

≤ 2n+1 ·max
{
‖f‖∞, ‖f ′‖∞, ..., ‖f (n+1)‖∞

}
×max

{
‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b]), ..., ‖(u2)(n+1)‖L∞([a,b])

}
. (3.1.10)

Since, for f ∈ Cn+1
c ((a, b)),

‖f (j)‖∞ ≤ ‖f (n+1)‖∞ · (b− a)n+1−j, 0 ≤ j ≤ n+ 1,
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(3.1.10) is bounded by

‖(fu2)(i)‖∞ ≤ 2n+1 · ‖f (n+1)‖∞ ·max
{

(b− a)n+1, (b− a)n, ..., 1
}

×max
{
‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b]), ..., ‖(u2)(n+1)‖L∞([a,b])

}
, (3.1.11)

for 0 ≤ i ≤ n + 1. Since max
1≤i≤n+1

{1, (b − a)i} ≤ max{1, (b − a)n+1}, (u2)′′ ≡ 2, and

(u2)(n+1) = 0, for n ≥ 2, (3.1.11) is bounded by

‖(fu2)(i)‖∞

≤ 2n+1 · ‖f (n+1)‖∞ ·max
{

1, (b− a)n+1
}
·max

{
2, ‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b])

}
≤ 2n+1 · ‖f (n+1)‖∞ ·max

{
1, (b− a)n+1

}
× max

0≤k≤n+1

{
2, ‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b]), ‖u(k)‖L∞([a,b])

}
, 0 ≤ i ≤ n+ 1.

(3.1.12)

Similarly, for 0 ≤ i ≤ n+ 1, we have

‖f (i)‖∞

≤ 2n+1 · ‖f (n+1)‖∞ ·max
{

1, (b− a)n+1
}

× max
0≤k≤n+1

{
2, ‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b]), ‖u(k)‖L∞([a,b])

}
. (3.1.13)

and

‖(fu)(i)‖∞

≤ 2n+1 · ‖f (n+1)‖∞ ·max
{

1, (b− a)n+1
}

× max
0≤k≤n+1

{
2, ‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b]), ‖u(k)‖L∞([a,b])

}
. (3.1.14)

Using (3.1.12)–(3.1.14), we obtain that

Cf,n ≤ ‖f (n+1)‖∞ ·
[23/2(b− a)1/2

n!
+
n(n+ 3)

2
·max

{
1, 23/2(b− a)1/2

}
× const · max

2≤j≤n

(
‖u(j)‖2 + ‖u(j+1)‖2

)2]
· 2n ·max

{
1, (b− a)n+1

}
× max

0≤k≤n+1

{
2, ‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b]), ‖u(k)‖L∞([a,b])

}
≤ ‖f (n+1)‖∞ ·

[4(b− a)1/2

n!
+
n(n+ 3)

2
·max

{
1, 4(b− a)1/2

}
× const · max

2≤j≤n

(
‖u(j)‖2 + ‖u(j+1)‖2

)2]
· 2n ·max

{
1, (b− a)n+1

}
× max

0≤k≤n+1

{
2, ‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b]), ‖u(k)‖L∞([a,b])

}
= ‖f (n+1)‖∞ · Ca,b,n, n ≥ 2,
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where Ca,b,n is given by (3.1.7).

Theorem 3.1.7. Let H0 = H∗0 satisfy (I + H2
0 )−1/2 ∈ S2 and let V = V ∗ ∈ B(H).

Then, there is a unique locally finite real-valued measure µn = µn,H0,V , n ≥ 3, with

total variation on the segment [a, b]∫
[a,b]

d|µn| ≤ 2 · Ca,b · ‖(I +H2
0 )−1/2‖2

2 ·
n−1∑
k=0

‖V ‖k, (3.1.15)

where

Ca,b = max
1≤k≤n−1

{
(b− a)n · (1 + a2 + b2), Ca,b,k · (b− a)n−1−k

}
, n ≥ 3, (3.1.16)

Ca,b,k is given by (3.1.6) for k = 1 and (3.1.7) for k ≥ 2, such that

Tr
(
f(H0 + V )− f(H0)−

n−1∑
k=1

1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV )

)
=

∫
R
f (n)(λ)dµn(λ),

for f ∈ Cn
c ((a, b)), a, b ∈ R.

Proof. Let n ≥ 3 and let

Rn,H0,V (f) := f(H0 + V )− f(H0)−
n−1∑
k=1

1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV ). (3.1.17)

By Lemmas 3.1.1 and 3.1.5, each summand on the right hand side of (3.1.17) is a

trace class operator. Therefore, taking trace on both sides of (3.1.17) and using the

linearity of the trace functional, we get

Tr
(
Rn,H0,V (f)

)
= Tr

(
f(H0 + V )

)
− Tr

(
f(H0)

)
−

n−1∑
k=1

Tr
( 1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV )

)
.

Using the triangle inequality, we get from the last expression∣∣∣Tr
(
Rn,H0,V (f)

)∣∣∣
≤
∣∣∣Tr
(
f(H0 + V )

)∣∣∣+
∣∣∣Tr
(
f(H0)

)∣∣∣+
n−1∑
k=1

∣∣∣∣Tr
( 1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV )

)∣∣∣∣ .
Since for A ∈ S1, |Tr(A)| ≤ ‖A‖1, the latter expression is bounded by∣∣∣Tr

(
Rn,H0,V (f)

)∣∣∣ ≤ ‖f(H0 + V )‖1 + ‖f(H0)‖1 +
n−1∑
k=1

∥∥∥∥ 1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV )

∥∥∥∥
1

.

(3.1.18)
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Again by Lemmas 3.1.1 and 3.1.5, (3.1.18) is bounded by∣∣∣Tr
(
Rn,H0,V (f)

)∣∣∣
≤
(
‖f‖∞ ·

(
1 + max

s∈suppf⊂(a,b)
|s|2
)
· (2 + ‖V ‖+ ‖V ‖2) +

n−1∑
k=1

Cf,k · ‖V ‖k
)

× ‖(I +H2
0 )−1/2‖2

2, (3.1.19)

where Cf,k satisfies (3.1.3) for k = 1 and (3.1.4) for k ≥ 2. By Lemma 3.1.6 and the

fact that
(
1 + max

s∈suppf⊂(a,b)
|s|2
)
≤ (1 + a2 + b2) applied in (3.1.19),∣∣∣Tr

(
Rn,H0,V (f)

)∣∣∣
≤
(
‖f‖∞ · (1 + a2 + b2) · (2 + ‖V ‖+ ‖V ‖2) +

n−1∑
k=1

‖f (k+1)‖∞ · Ca,b,k · ‖V ‖k
)

× ‖(I +H2
0 )−1/2‖2

2,

where Ca,b,k is given by (3.1.6) for k = 1 and (3.1.7) for k ≥ 2. For f ∈ Cn
c ((a, b)),

‖f (j)‖∞ ≤ ‖f (n)‖∞ · (b− a)n−j, 0 ≤ j ≤ n,

and, hence,∣∣∣Tr
(
Rn,H0,V (f)

)∣∣∣
≤ ‖f (n)‖∞ · ‖(I +H2

0 )−1/2‖2
2

×
(

(b− a)n · (1 + a2 + b2) · (2 + ‖V ‖+ ‖V ‖2) +
n−1∑
k=1

Ca,b,k · (b− a)n−1−k · ‖V ‖k
)
.

(3.1.20)

If Ca,b is given by (3.1.16), then(3.1.20) is bounded by∣∣∣Tr
(
Rn,H0,V (f)

)∣∣∣ ≤ Ca,b · ‖f (n)‖∞ · ‖(I +H2
0 )−1/2‖2

2 ·
(

2 + ‖V ‖+ ‖V ‖2 +
n−1∑
k=1

‖V ‖k
)

≤ 2 · Ca,b · ‖f (n)‖∞ · ‖(I +H2
0 )−1/2‖2

2 ·
n−1∑
k=0

‖V ‖k.

Hence, by the Riesz representation theorem for a functional in
(
Cc(R)

)∗
, there is a

unique locally finite real-valued measure µn = µn,H0,V , n ≥ 3, with total variation on

the segment [a, b] satisfying (3.1.15) such that

Tr
(
Rn,H0,V (f)

)
=

∫
R
f (n)(λ)dµn(λ).
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3.1.2 Example of a Self-adjoint operator with

Hilbert-Schmidt resolvent

In this section, we will make a specific choice of a Hilbert space H and a self-adjoint

operator H0 with Hilbert-Schmidt resolvent to which Theorem 3.1.7 applies. More

precisely, we takeH = L2([0, π]) and H0 a negative Laplacian with Dirichlet boundary

conditions. We show that H0 is self-adjoint (see Lemma 3.1.15) with Hilbert-Schmidt

resolvent (see Lemma 3.1.17) so that if V = V ∗ is any bounded perturbation, then

the result in Theorem 3.1.7 holds.

Let H = L2([0, π]) and denote

D = {f ∈ H : f ′ exists, f ′ is absolutely continuous, f ′′ ∈ H, and f(0) = f(π) = 0} .
(3.1.21)

Let H0 : D 7→ H be defined by

H0u = −u′′. (3.1.22)

The operator H0 given by the equation (3.1.22) is called a Sturm-Liouville oper-

ator. We will see that eigenvalues of H0 are real numbers and the resolvent operator

(H0 − λI)−1 of H0, where λ ∈ R is not an eigenvalue of H0 is a compact self-adjoint

operator. In order to compute the resolvent, we solve the inhomogeneous equation

(H0 − λI)u = f, u(0) = 0 = u(π).

We will show that (H0 − λI)−1 is an integral operator with square integrable kernel

called Green’s function of the Sturm-Liouville problem. Then, it follows that the

operator (H0 − λI)−1, λ ∈ R is not an eigenvalue of H0, is a compact self-adjoint

operator. Finally, we show that the resolvent operator (H0 − λI)−1 belongs to S2.

Definition 3.1.8. (See, e.g., [1, Section 2.4]) Green’s function for the Sturm-

Liouville operator given by the equation (3.1.22) is a function

g : [0, π]× [0, π] 7→ R

with the following properties:

1. g is symmetric, in the sense that

g(x, y) = g(y, x) for all x, y ∈ [0, π],

and g satisfies the boundary conditions in each variable x and y.

33



2. g is a continuous function on the square [0, π]× [0, π] and of class C2 on

[0, π]× [0, π]\ {(x, y) : x = y} , where it satisfies the differential equation

gxx(x, y) = 0.

3. The derivative gx has a jump discontinuity at x = y given by

gx(y+, y)− gx(y−, y) = lim
c→y+

gx(c, y)− lim
c→y−

gx(c, y) = −1.

Lemma 3.1.9. Let H0 : D 7→ H, where D is defined by the equation (3.1.21) be given

by

H0u = −u′′

and assume that

H0u = 0 =⇒ u = 0.

Then, the Green function g for H0 satisfying the Definition 3.1.8 is given by

g(x, y) =


x(π − y)

π
, 0 ≤ x ≤ y ≤ π

y(π − x)

π
, 0 ≤ y ≤ x ≤ π.

(3.1.23)

Proof. Let us choose non-zero solutions

u1(x) = x

and

u2(x) = π − x

of H0 u = 0 such that u1 satisfies the boundary condition at x = 0,

u1(0) = 0,

and u2 satisfies the boundary condition at x = π,

u2(π) = 0.

Since the Wronskian W of u1 and u2 satisfies

W (y) =

∣∣∣∣∣u1(y) u2(y)

u′1(y) u′2(y)

∣∣∣∣∣
= u1(y)u′2(y)− u2(y)u′1(y)

= y(−1)− (π − y)(1)

= −π 6= 0, for all y ∈ [0, π],
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u1 and u2 are linearly independent.

Now define

g(x, y) =

C(y)u1(x)u2(y), 0 ≤ x ≤ y ≤ π

C(y)u1(y)u2(x), 0 ≤ y ≤ x ≤ π

=

C(y)x(π − y), 0 ≤ x ≤ y ≤ π

C(y)y(π − x), 0 ≤ y ≤ x ≤ π,
(3.1.24)

where

C(y) = − 1

W (y)
=

1

π
.

Substituting the value of C(y) in the equation (3.1.24), we get the equation (3.1.23).

Now it remains to show that all the properties of g(x, y) listed in the Definition

3.1.8 are satisfied. Clearly, g(x, y) = g(y, x) and hence g is symmetric. By the

equation (3.1.23), it follows that

g(0, y) = 0 = g(π, y) and g(x, 0) = 0 = g(x, π),

which shows that g satisfies the boundary conditions in each variable x and y. Thus,

the property 1 of Definition 3.1.8 is satisfied. The function g is obviously continuous

on [0, π]× [0, π]. Differentiating the equation (3.1.23) with respect to x, we get

gx(x, y) =


(π − y)

π
, 0 ≤ x < y ≤ π

−y
π
, 0 ≤ y < x ≤ π.

Therefore,

gxx(x, y) = 0 for x 6= y.

Thus, the property 2 of Definition 3.1.8 is satisfied. Finally,

gx(y+, y)− gx(y−, y) = lim
c→y+

gx(c, y)− lim
c→y−

gx(c, y)

= lim
c→y+

−y
π
− lim

c→y−

π − y
π

= −1,

which proves that property 3 of Definition 3.1.8 is also satisfied.
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Theorem 3.1.10. (See, e.g., [6, Chapter II, Proposition 4.7]) Let (X,Ω, µ) be a

finite measure space and let k ∈ L2(X×X,Ω×Ω, µ×µ). Then, the integral operator

K : L2(X,Ω, µ) 7→ L2(X,Ω, µ) defined by

(Kf)(x) =

∫
X

k(x, y)f(y)dµ(y)

is a compact operator and ‖K‖ ≤ ‖k‖L2.

The theorem below is a known result. We give here a simple and rigorous proof

for it.

Theorem 3.1.11. (See, e.g., [6, [Chapter II, Theorem 6.9]) Let H0 : D 7→ H, where

D is defined by the equation (3.1.21), be given by

H0u = −u′′

and assume that

H0u = 0 =⇒ u = 0.

Let g be the Green function for H0 given by the equation (3.1.23). Let G : H 7→ H be

the integral operator defined by

(Gf)(x) =

∫ π

0

g(x, y)f(y)dy. (3.1.25)

Then, G is a compact self-adjoint operator on H, Gf ∈ D for all f ∈ H, H0Gf = f

for all f ∈ H, and GH0h = h for all h ∈ D.

Proof. Since g(x, y) is continuous on [0, π]× [0, π] and [0, π]× [0, π] is compact, there

exists M > 0 such that |g(x, y)| ≤M for all x, y ∈ [0, π]× [0, π] . Since∫
[0,π]×[0,π]

|g(x, y)|2d(x× y) ≤M2π2 <∞,

G is compact according to Theorem 3.1.10. We now show that G is self-adjoint. For

f, h ∈ H,

〈Gf, h〉 =

∫ π

0

(Gf)(x)h̄(x)dx

=

∫ π

0

∫ π

0

g(x, y)f(y)h̄(x)dy dx.
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Since g is real valued and symmetric, the last expression becomes

〈Gf, h〉 =

∫ π

0

∫ π

0

ḡ(y, x)h̄(x)f(y)dy dx (3.1.26)

By the Hölder inequality, we get∫ π

0

|f(y)|dy ≤
(∫ π

0

1dy
)1/2(∫ π

0

|f(y)|2dy
)1/2

=
√
π
(∫ π

0

|f(y)|2dy
)1/2

<∞.

Similarly, we can show ∫ π

0

|h̄(x)|dx <∞.

Also, we have |ḡ(y, x)| = |g(x, y)| ≤M for all x, y ∈ [0, π]× [0, π]. Therefore, we have∫ π

0

(∫ π

0

|ḡ(y, x)h̄(x)f(y)|dy
)
dx <∞. (3.1.27)

Since [0, π] is a finite measure space with respect to the Lebesgue measure and the

equation (3.1.27) holds, by Fubini’s theorem the equation (3.1.26) can be written as

〈Gf, h〉 =

∫ π

0

f(y)

∫ π

0

ḡ(y, x)h̄(x)dx dy

=

∫ π

0

f(y)Gh(y)dy

= 〈f,Gh〉 ,

which proves that G is self-adjoint.

Let us fix some f ∈ H and let h = Gf . We wish to show that h ∈ D. We have

h(x) =

∫ π

0

g(x, y)f(y)dy

=

∫ x

0

g(x, y)f(y)dy +

∫ π

x

g(x, y)f(y)dy

=

∫ x

0

y(π − x)

π
f(y)dy +

∫ π

x

x(π − y)

π
f(y)dy

=
π − x
π

∫ x

0

yf(y)dy +
x

π

∫ π

x

(π − y)f(y)dy.

By the Hölder inequality, we get∫ π

0

|yf(y)|dy ≤
(∫ π

0

|y|2dy
)1/2(∫ π

0

|f(y)|2dy
)1/2

<∞,
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which implies that yf(y) ∈ L1([0, π]). Similarly, we can show that (π − y)f(y) ∈
L1([0, π]). Therefore,

h1(x) :=

∫ x

0

yf(y)dy

and

h2(x) :=

∫ π

x

(π − y)f(y)dy

are absolutely continuous, and

h′1(x) = xf(x) for almost every x ∈ [0, π],

and

h′2(x) = −(π − x)f(x) for almost every x ∈ [0, π].

Therefore, we have

h′(x)

=
π − x
π

xf(x)− 1

π
h1(x)− x

π
(π − x)f(x) +

1

π
h2(x) for almost every x ∈ [0, π]

=
1

π

(
h2(x)− h1(x)

)
for all x ∈ [0, π], (3.1.28)

since h1 and h2 are absolutely continuous on [0, π]. Therefore, h′ is also absolutely

continuous on [0, π]. Differentiating the equation (3.1.28), we get

h′′(x) =
1

π

(
h′2(x)− h′1(x)

)
=

1

π

(
− (π − x)f(x)− xf(x)

)
= −f(x) for almost every x ∈ [0, π]. (3.1.29)

Since f ∈ H, h′′ ∈ H. Also, h(0) = 0 = h(π). Hence, h ∈ D.

To show H0Gf = f for all f ∈ H, let h = Gf . Then, H0h = −h′′ = f by the

equation (3.1.29).

To show GH0u = u for all u ∈ D, let u ∈ D. Then, H0u ∈ H. Since H0Gf = f

for all f ∈ H, H0GH0u = H0u, which implies that H0(GH0u − u) = 0. Since

kerH0 = {0}, it follows that GH0u = u for all u ∈ D.
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Lemma 3.1.12. Let λ ∈ R\ {n2}∞n=0. Let L = (H0 − λI) : D 7→ H, where D is

defined by the equation (3.1.21), be given by

Lu = −u′′ − λu

and assume that

Lu = 0 =⇒ u = 0.

Then, the Green function g for L satisfying Definition 3.1.8 is given by

g(x, y) =


sin
√
λx sin(

√
λπ −

√
λy)√

λ sin
√
λπ

, 0 ≤ x ≤ y ≤ π

sin
√
λy sin(

√
λπ −

√
λx)√

λ sin
√
λπ

, 0 ≤ y ≤ x ≤ π.

(3.1.30)

Proof. Let us choose non-zero solutions

u1(x) = sin
√
λx

and

u2(x) = sin(
√
λπ −

√
λx)

of Lu = 0 such that u1 satisfies the boundary conditions at x = 0,

u1(0) = 0,

and u2 satisfies the boundary condition at x = π,

u2(π) = 0.

Since the Wronskian W of u1 and u2 satisfies

W (y) =

∣∣∣∣∣u1(y) u2(y)

u′1(y) u′2(y)

∣∣∣∣∣
= u1(y)u′2(y)− u2(y)u′1(y)

= − sin
√
λy
√
λ cos(

√
λπ −

√
λy)− sin(

√
λπ −

√
λy)
√
λ cos

√
λ y

= −
√
λ sin(

√
λy +

√
λπ −

√
λy)

= −
√
λ sin

√
λ π 6= 0, for all y ∈ [0, π],
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u1 and u2 are linearly independent.

Now define

g(x, y) =

C(y)u1(x)u2(y), 0 ≤ x ≤ y ≤ π

C(y)u1(y)u2(x), 0 ≤ y ≤ x ≤ π

=

C(y) sin
√
λx sin(

√
λπ −

√
λy), 0 ≤ x ≤ y ≤ π

C(y) sin
√
λy sin(

√
λπ −

√
λx), 0 ≤ y ≤ x ≤ π,

(3.1.31)

where

C(y) = − 1

W (y)

=
1√

λ sin
√
λπ
.

Substituting the value of C(y) in the equation (3.1.31), we get the equation (3.1.30).

Now it remains to show that all the properties of g(x, y) listed in the Definition

3.1.8 are satisfied. Clearly, g(x, y) = g(y, x) and hence g is symmetric. By the

equation (3.1.30), it follows that

g(0, y) = 0 = g(π, y) and g(x, 0) = 0 = g(x, π),

which shows that the property 1 of Definition 3.1.8 is satisfied. The function g is

obviously continuous on [0, π] × [0, π]. Differentiating the equation (3.1.30) with

respect to x, we get

gx(x, y) =


cos
√
λx sin(

√
λπ −

√
λy)

sin
√
λπ

, 0 ≤ x < y ≤ π

− sin
√
λy cos(

√
λπ −

√
λx)

sin
√
λπ

, 0 ≤ y < x ≤ π.

Again differentiating the last equation with respect to x, we get

gxx(x, y) =


−
√
λ sin

√
λx sin(

√
λπ −

√
λy)

sin
√
λπ

, 0 ≤ x < y ≤ π

−
√
λ sin

√
λy sin(

√
λπ −

√
λx)

sin
√
λπ

, 0 ≤ y < x ≤ π.

For x < y,

− gxx(x, y)− λg(x, y)

=

√
λ sin

√
λx sin(

√
λπ −

√
λy)

sin
√
λπ

− λ sin
√
λx sin(

√
λπ −

√
λy)√

λ sin
√
λπ

= 0.
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Similarly, for x > y,

− gxx(x, y)− λg(x, y)

=

√
λ sin

√
λy sin(

√
λπ −

√
λx)

sin
√
λπ

− λ sin
√
λy sin(

√
λπ −

√
λx)√

λ sin
√
λπ

= 0.

Thus, the property 2 of Definition 3.1.8 is satisfied. Finally,

gx(y+, y)− gx(y−, y) = lim
c→y+

gx(c, y)− lim
c→y−

gx(c, y)

= lim
c→y+

− sin
√
λy cos(

√
λπ −

√
λc)

sin
√
λπ

− lim
c→y−

cos
√
λc sin(

√
λπ −

√
λy)

sin
√
λπ

=
− sin(

√
λy +

√
λπ −

√
λy)

sin
√
λπ

= −1.

Therefore, the property 3 of Definition 3.1.8 is also satisfied.

In Theorem 3.1.11, we saw that if 0 is not an eigenvalue of H0, the resolvent

H−1
0 exists and is a compact self-adjoint operator. The following theorem is similar

to Theorem 3.1.11 where we show that the resolvent (H0 − λI)−1 exists and is a

compact self-adjoint operator for any nonzero λ ∈ R which is not an eigenvalue of

H0.

Theorem 3.1.13. Let λ ∈ R\ {n2}∞n=0. Let L = (H0 − λI) : D 7→ H, where D is

defined by the equation (3.1.21), be given by

Lu = −u′′ − λu

and assume that

Lu = 0 =⇒ u = 0.

Let g be the Green function for L given by the equation (3.1.30). Let G : H 7→ H be

the integral operator defined by

(Gf)(x) =

∫ π

0

g(x, y)f(y)dy. (3.1.32)

Then, G is a compact self-adjoint operator on H, Gf ∈ D for all f ∈ H, LGf = f

for all f ∈ H, and GLh = h for all h in D.
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Proof. The proof that G is a compact self-adjoint operator follows exactly as in The-

orem 3.1.11.

Let us fix some f ∈ H and let h = Gf . We wish to show that h ∈ D. We have

h(x)

=

∫ π

0

g(x, y)f(y)dy

=

∫ x

0

g(x, y)f(y)dy +

∫ π

x

g(x, y)f(y)dy

=

∫ x

0

sin
√
λy sin(

√
λπ −

√
λx)√

λ sin
√
λπ

f(y)dy +

∫ π

x

sin
√
λx sin(

√
λπ −

√
λy)√

λ sin
√
λπ

f(y)dy

=
sin(
√
λπ −

√
λx)√

λ sin
√
λπ

∫ x

0

sin
√
λyf(y)dy +

sin
√
λx√

λ sin
√
λπ

∫ π

x

sin(
√
λπ −

√
λy)f(y)dy.

By the Hölder inequality, we get∫ π

0

| sin
√
λyf(y)|dy ≤

(∫ π

0

| sin
√
λy|2dy

)1/2(∫ π

0

|f(y)|2dy
)1/2

<∞,

which implies that sin
√
λyf(y) ∈ L1([0, π]).

Similarly, we can show that sin(
√
λπ −

√
λy)f(y) ∈ L1([0, π]). Therefore,

h1(x) :=

∫ x

0

sin
√
λyf(y)dy

and

h2(x) :=

∫ π

x

sin(
√
λπ −

√
λy)f(y)dy

are absolutely continuous, and

h′1(x) = sin
√
λxf(x) for almost every x ∈ [0, π],

and

h′2(x) = − sin(
√
λπ −

√
λx)f(x) for almost every x ∈ [0, π].

Therefore, we have

h′(x) =
sin(
√
λπ −

√
λx)√

λ sin
√
λπ

sin
√
λxf(x)−

√
λ cos(

√
λπ −

√
λx)√

λ sin
√
λπ

h1(x)

− sin
√
λx√

λ sin
√
λπ

sin(
√
λπ −

√
λx)f(x) +

√
λ cos

√
λx√

λ sin
√
λπ

h2(x)

=
cos
√
λx

sin
√
λπ

h2(x)− cos(
√
λπ −

√
λx)

sin
√
λπ

h1(x) for all x ∈ [0, π], (3.1.33)
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since cos
√
λx, h2(x), cos(

√
λπ −

√
λx), and h1(x) are all absolutely continuous on

[0, π]. Therefore, h′(x) is also absolutely continuous on [0, π]. Differentiating the

equation (3.1.33), we get

h′′(x) =
cos
√
λx

sin
√
λπ

h′2(x)−
√
λ sin

√
λx

sin
√
λπ

h2(x)− cos(
√
λπ −

√
λx)

sin
√
λπ

h′1(x)

−
√
λ sin(

√
λπ −

√
λx)

sin
√
λπ

h1(x)

= −cos
√
λx

sin
√
λπ

sin(
√
λπ −

√
λx)f(x)−

√
λ sin

√
λx

sin
√
λπ

h2(x)

− cos(
√
λπ −

√
λx)

sin
√
λπ

sin
√
λxf(x)−

√
λ sin(

√
λπ −

√
λx)

sin
√
λπ

h1(x)

= −sin(
√
λx+

√
λπ −

√
λx)f(x)

sin
√
λπ

− λh(x)

= −f(x)− λh(x) for almost every x ∈ [0, π]. (3.1.34)

Since both f and h are in H, h′′ is also in H. Also, h(0) = 0 = h(π). Hence, h ∈ D.

To show LGf = f for all f ∈ H, let h = Gf . Then, Lh = −h′′ − λh = f by the

equation (3.1.34).

To show GLh = h for all h ∈ D, let h ∈ D. Then, Lh ∈ H. Since LGf = f for

all f ∈ H, LGLh = Lh, which implies that L(GLh − h) = 0. Since ker L = {0}, it

follows that GLh = h.

Lemma 3.1.14. Let H0 : D 7→ H, where D is defined by the equation (3.1.21), be

given by

H0f = −f ′′. (3.1.35)

Then, the eigenvalues of H0 are {n2}∞n=1 each of multiplicity one. The eigenspace of

the eigenvalue n2 is span {sin(nx)}.

Proof. Let us consider the equation

H0f = λf (3.1.36)

under the boundary conditions

f(0) = f(π) = 0. (3.1.37)

By the equations (3.1.35) and (3.1.36),

f ′′ + λf = 0. (3.1.38)
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Let us first consider the case where λ > 0. The general solution of the equation

(3.1.38) is given by

f(x) = A cos
√
λx+B sin

√
λx. (3.1.39)

Applying the boundary conditions given by the equation (3.1.37), we get

0 = f(0) = A cos 0 +B sin 0,

which gives A = 0, and

0 = f(π) = A cos
√
λπ +B sin

√
λπ.

Since A = 0, the latter expression becomes B sin
√
λπ = 0. If B = 0, then by the

equation (3.1.39) we will have a trivial solution of the equation (3.1.38) for all λ > 0,

and the trivial solution is not admissible as an eigenfunction. So, we assume B 6= 0

and this implies that sin
√
λπ = 0. Therefore, we have

√
λπ = nπ, n ∈ N , that is,

λn = n2, n ∈ N.

If λ = 0, then f(x) = A + Bx is the general solution of the differential equation

(3.1.38). After applying the boundary conditions given by the equation (3.1.37), we

get both A and B to be zero, which implies f to be a trivial solution. Therefore,

λ = 0 cannot be an eigenvalue of H0.

Let λ < 0. Then, the general solution of the differential equation (3.1.38) is given

by

f(x) = c1e
√
−λx + c2e

−
√
−λx.

Applying the boundary conditions given by the equation (3.1.37), we get 0 = f(0) =

c1 + c2, which gives c1 = −c2, and

0 = f(π) = c1e
√
−λπ + c2e

−
√
−λπ.

Since c1 = −c2, the latter expression equals

0 = c1

(
e
√
−λπ − e−

√
−λπ
)
.

Since
√
−λ > 0, e

√
−λπ 6= e−

√
−λπ. Therefore, we have c1 = c2 = 0, which implies

f to be a trivial solution. So, λ < 0 cannot be an eigenvalue of H0. Therefore, the

eigenvalues of H0 are {n2}∞n=1 each of multiplicity one and the eigenspace of n2 is

span {sin(nx)}.
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Lemma 3.1.15. Let H0 : D 7→ H, where D is defined by the equation (3.1.21), be

given by

H0u = −u′′.

Then, H0 is a self-adjoint operator.

Proof. To prove that H0 is a self-adjoint operator, we must show H0 = H∗0 , where H∗0

is the Hilbert-adjoint of H0. We first show that H0 is symmetric. For f, g ∈ D,

〈H0f, g〉 =

∫ π

0

(H0f)ḡdx

= −
∫ π

0

f ′′ḡdx

= −f ′ḡ
∣∣∣π
0

+

∫ π

0

ḡ′f ′dx

= 0 + ḡ′f
∣∣∣π
0
−
∫ π

0

ḡ′′fdx

= 0−
∫ π

0

ḡ′′fdx

= 〈f,H0g〉 ,

which proves that H0 is symmetric. Since H0 is symmetric, it follows that H0 ⊂ H∗0 ,

that is, D(H0) = D ⊂ D(H∗0 ) and H0 = H∗0
∣∣
D. Now, it suffices to show that H∗0 ⊂ H0.

By Lemma 3.1.14, 0 is not an eigenvalue of H0 and hence by Theorem 3.1.11, the

operator G given by the equation (3.1.25), whose domain is all of H and range D, is

the inverse of H0. Therefore, the range of H0, denoted by R(H0), is all of H, that is,

R(H0) = H. Let u ∈ D(H∗0 ), then H∗0 u ∈ H. Since R(H0) = H, there exists some

v ∈ D such that H∗0 u = H0 v. But H0 ⊂ H∗0 implies that H∗0 v = H0 v. Therefore,

we have H∗0 u = H∗0 v, that is, H∗0 (u− v) = 0. Since N (H∗0 ) = R(H0)⊥ = {0}, u = v.

Thus, u ∈ D and H∗0 ⊂ H0.

Lemma 3.1.16. Let H0 : D 7→ H, where D is defined by the equation (3.1.21), be

given by

H0u = −u′′.

Then, the resolvent of H0 is compact.

Proof. Since the eigenvalues of H0 are {n2}∞n=1, for λ 6= n2, (H0 − λI)u = 0 implies

u = 0, for u ∈ D. If λ = 0, then by Theorem 3.1.11, it follows that the operator

45



G given by the equation (3.1.25) is the inverse of H0 and compact. Thus, H−1
0 is a

compact operator. If λ ∈ R\ {n2}∞n=0, then by Theorem 3.1.13, it follows that the

operator G given by the equation (3.1.32) is the inverse of (H0 − λI) and compact.

Therefore, (H0−λI)−1 is a compact operator for all λ ∈ R\ {n2}∞n=1. Since a compact

operator is bounded, and (H0 − λI)−1 exists and compact for all λ ∈ R\ {n2}∞n=1, it

follows that such λ belongs to the resolvent set of H0, that is, λ ∈ ρ(H0). Since H0

is self-adjoint, λ ∈ C\R implies λ ∈ ρ(H0). Therefore, ρ(H0) = C\ {n2}∞n=1. Let

λ0 ∈ R\ {n2}∞n=1 and λ ∈ ρ(H0) be such that λ 6= λ0. By the resolvent identity

[17, Theorem VI.5], we have

(H0 − λI)−1 = (H0 − λ0I)−1 + (λ− λ0)(H0 − λI)−1(H0 − λ0I)−1. (3.1.40)

Since (H0−λI)−1 is bounded and (H0−λ0I)−1 is compact, (H0−λI)−1 ·(H0−λ0I)−1

is compact. Therefore, the right hand side of the equation (3.1.40) is compact, and

hence (H0 − λI)−1 is compact. Thus, the resolvent of H0 is compact.

Lemma 3.1.17. Let H0, D, and H be as in Lemma 3.1.16. Then, the resolvent of

H0 belongs to S1, and, hence, to S2.

Proof. Let µ ∈ ρ
(
(H0 − λI)−1

)
. Then,

(
(H0 − λI)−1 − µI

)−1
is a bounded linear

operator. Since

(H0 − λI)−1 − µI = µ
(
µ−1I − (H0 − λI)

)
(H0 − λI)−1,

it follows that(
(H0 − λI)−1 − µI

)−1
= (H0 − λI)

(
µ−1I − (H0 − λI)

)−1
µ−1.

The last expression is equivalent to

(H0 − λI)−1
(
(H0 − λI)−1 − µI

)−1
µ =

(
µ−1I − (H0 − λI)

)−1
. (3.1.41)

Since the left hand side of the equation (3.1.41) is a bounded linear operator, it follows

that
(
µ−1I− (H0−λI)

)−1
=
(
(µ−1 +λ)I−H0

)−1
is a bounded linear operator. Since

the spectrum of H0 is {n2}∞n=1,

µ−1 + λ 6= n2, n ∈ N.

The latter expression is equivalent to

µ 6= 1

n2 − λ
, n ∈ N.

46



Therefore, ρ
(
(H0 − λI)−1

)
⊂ C\

{
1

n2 − λ

}∞
n=1

. Next, choose µ ∈ C\
{

1

n2 − λ

}∞
n=1

.

Then, µ−1 + λ 6= n2, n ∈ N. Since the spectrum of H0 is {n2}∞n=1, it follows that(
(µ−1 + λ)I −H0

)−1
=
(
µ−1I − (H0 − λI)

)−1
is a bounded linear operator. By the

equation (3.1.41), we conclude that
(
(H0−λI)−1−µI

)−1
is a bounded linear operator,

which shows that µ ∈ ρ
(
(H0−λI)−1

)
and hence C\

{
1

n2 − λ

}∞
n=1

⊂ ρ
(
(H0−λI)−1

)
.

Thus, ρ
(
(H0 − λI)−1

)
= C\

{
1

n2 − λ

}∞
n=1

i.e. σ
(
(H0 − λI)−1

)
=

{
1

n2 − λ

}∞
n=1

. Let

µn =
1

n2 − λ
, n ∈ N. Since nonzero points in the spectrum of compact operators are

eigenvalues [17, Theorem VI.15] and

∞∑
n=1

|µn| <∞,

we conclude that the resolvent of H0 belong to S1, and, hence to S2.

3.2 Commutative Perturbations

In this section, we assume that the initial operator H0 and its bounded perturbation

V commute, that is, H0V = V H0.

3.2.1 Trace Formulas

Theorem 3.2.1. Let H0 = H∗0 satisfy (I + H2
0 )−1/2 ∈ S2 and let V = V ∗ ∈ B(H).

Also, let H0V = V H0. Then, there is a locally integrable function ηn = ηn,H0,V , n ≥ 3,

with total variation on the segment [a, b]∫
[a,b]

|ηn(λ)|dλ ≤ 2 · Ca,b · ‖(I +H2
0 )−1/2‖2

2 ·
n−1∑
k=0

‖V ‖k, (3.2.1)

where

Ca,b = max
1≤k≤n−1

{
(b− a)n · (1 + a2 + b2), Ca,b,k · (b− a)n−1−k

}
, n ≥ 3,

Ca,b,k is given by (3.1.6) for k = 1 and (3.1.7) for k ≥ 2, such that

Tr
(
f(H0 + V )− f(H0)−

n−1∑
k=1

1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV )

)
=

∫
R
f (n)(λ)ηn(λ)dλ, (3.2.2)

for f ∈ Cn
c ((a, b)), a, b ∈ R.
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Proof. By Theorem 3.1.7, there is a unique locally finite real-valued measure

µp = µp,H0,V , p ≥ 3, with total variation on the segment [a, b]∫
[a,b]

d|µp| ≤ 2 · Ca,b · ‖(I +H2
0 )−1/2‖2

2 ·
p−1∑
k=0

‖V ‖k,

where

Ca,b = max
1≤k≤p−1

{
(b− a)p · (1 + a2 + b2), Ca,b,k · (b− a)p−1−k

}
, p ≥ 3,

Ca,b,k is given by (3.1.6) for k = 1 and (3.1.7) for k ≥ 2, such that

Tr
(
Rp,H0,V (f)

)
=

∫
R
f (p)(λ)dµp(λ).

If f ∈ Cn
c ((a, b)), a, b ∈ R, then Rp,H0,V (f) for 3 ≤ p ≤ n are well defined and

Tr
(
Rn,H0,V (f)

)
=

∫
R
f (n)(λ)dµn(λ) (3.2.3)

and

Tr
(
Rn−1,H0,V (f)

)
=

∫
R
f (n−1)(λ)dµn−1(λ). (3.2.4)

By Theorem 2.2.14, we have

dn−1

dtn−1

∣∣∣
t=0
f(H0 + tV )

= (n− 1)! · i
n−1

√
2π

∫
R

∫ s0

0

...

∫ sn−2

0

f̂(s0) ei(s0−s1)H0V...V eisn−1H0 dsn−1...ds0. (3.2.5)

Since H0V = V H0, by spectral theorem, it follows that

eiH0tV = V eiH0t, for all t ∈ R. (3.2.6)

Using (3.2.6), (3.2.5) becomes

dn−1

dtn−1

∣∣∣
t=0
f(H0 + tV )

= (n− 1)! · i
n−1

√
2π

∫
R

∫ s0

0

...

∫ sn−2

0

V n−1f̂(s0)eis0H0 dsn−1...ds0

= (n− 1)! · i
n−1

√
2π
· V n−1

(n− 1)!

∫
R
sn−1

0 f̂(s0)eis0H0 ds0

=
V n−1

√
2π

∫
R
(is0)n−1f̂(s0)eis0H0 ds0

=
V n−1

√
2π

∫
R
f̂ (n−1)(s0)eis0H0 ds0

= V n−1f (n−1)(H0), (3.2.7)
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where the last equality follows from Lemma 2.2.13. Since f (n−1) is a continuous

compactly supported function on R, by Lemma 3.1.1 it follows that f (n−1)(H0) ∈ S1

and

‖f (n−1)(H0)‖1 ≤ ‖f (n−1)‖∞ ·
(
1 + max

s∈suppf⊂(a,b)
|s|2
)
· ‖(I +H2

0 )−1/2‖2
2

≤ ‖f (n−1)‖∞ · (1 + a2 + b2) · ‖(I +H2
0 )−1/2‖2

2.

Since V n−1 ∈ B(H) and S1 is a ∗-ideal in B(H), it follows that V n−1f (n−1)(H0) ∈ S1

and

‖V n−1f (n−1)(H0)‖1 ≤ ‖V ‖n−1 · ‖f (n−1)‖∞ · (1 + a2 + b2) · ‖(I +H2
0 )−1/2‖2

2. (3.2.8)

From (3.2.7) and (3.2.8), we see that
1

(n− 1)!

dn−1

dtn−1

∣∣∣
t=0
f(H0 + tV ) ∈ S1 and

1

(n− 1)!

∣∣∣∣Tr
( dn−1

dtn−1

∣∣∣
t=0
f(H0 + tV )

)∣∣∣∣
≤ 1

(n− 1)!

∥∥∥∥ dn−1

dtn−1

∣∣∣
t=0
f(H0 + tV )

∥∥∥∥
1

≤ 1

(n− 1)!
· ‖V ‖n−1 · ‖f (n−1)‖∞ · (1 + a2 + b2) · ‖(I +H2

0 )−1/2‖2
2.

Hence, by the Riesz representation theorem for a functional in
(
Cc(R)

)∗
, there is a

unique locally finite real-valued measure νn−1 := νn−1,H0,V with total variation on the

segment [a, b] ∫
[a,b]

d|νn−1| ≤
(1 + a2 + b2)

(n− 1)!
· ‖(I +H2

0 )−1/2‖2
2 · ‖V ‖n−1,

such that

1

(n− 1)!
Tr
( dn−1

dtn−1

∣∣∣
t=0
f(H0 + tV )

)
=

∫
R
f (n−1)(λ)dνn−1(λ). (3.2.9)

Since νn−1 is finite real-valued measure on R, the function Fνn−1 : R 7→ R defined by

Fνn−1(λ) := νn−1

(
(−∞, λ]

)
is a distribution function of νn−1 and∫

R
f (n−1)(λ) dνn−1(λ) =

∫
R
f (n−1)(λ) dFνn−1(λ)

(by parts) = −
∫
R
f (n)(λ)νn−1((−∞, λ]) dλ.
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Using the last equality, (3.2.9) becomes

1

(n− 1)!
Tr
( dn−1

dtn−1

∣∣∣
t=0
f(H0 + tV )

)
= −

∫
R
f (n)(λ)νn−1((−∞, λ]) dλ. (3.2.10)

Similarly, from (3.2.4), we get

Tr
(
Rn−1,H0,V (f)

)
=

∫
R
f (n−1)(λ) dµn−1(λ) = −

∫
R
f (n)(λ)µn−1((−∞, λ]) dλ.

(3.2.11)

Using (3.2.10) and (3.2.11), we get

Tr
(
Rn,H0,V (f)

)
= Tr

(
Rn−1,H0,V (f)

)
− 1

(n− 1)!
Tr
( dn−1

dtn−1

∣∣∣
t=0
f(H0 + tV )

)
=

∫
R
f (n)(λ)

(
νn−1((−∞, λ])− µn−1((−∞, λ])

)
dλ. (3.2.12)

From (3.2.3) and (3.2.12), we have∫
R
f (n)(λ) dµn(λ) =

∫
R
f (n)(λ)

(
νn−1((−∞, λ])− µn−1((−∞, λ])

)
dλ,

which along with the uniqueness of µn implies that µn is absolutely continuous and

its density equals

ηn(λ) = µn−1((−∞, λ])− νn−1((−∞, λ]).

Thus, ηn satisfies (3.2.2). (3.2.1) follows from (3.1.15).

3.2.2 The case of a Laplacian perturbed by multiplication by

a constant

In this section, we will give an example of a Hilbert space H, a self-adjoint operator

H0 with Hilbert-Schmidt resolvent, and a bounded self-adjoint perturbation V to

which Theorem 3.2.1 applies in the cases when n = 1 and n = 2. We consider the

same H and H0 as in Section 3.1.1 and define V as in (3.2.13). We first prove that

V is a bounded self-adjoint operator on H (see Lemma 3.2.2). The fact that H0 has

a compact resolvent (see Lemma 3.1.16) will ultimately help us to find the spectral

representation for f(H0 + tV ), t ∈ R (see Corollary 3.2.6) so that we can compute

the expression on the left hand side of (3.2.2). Finally, we find the locally integrable

functions ξ = η1,H0,V (see (3.2.20)) and η = η2,H0,V (see (3.2.27)) and prove the main
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results in Lemma 3.2.9 (case n = 1) and Lemma 3.2.10 (case n = 2), respectively.

In Lemmas 3.2.12 and 3.2.13, we generalize the example to more general class of

functions, that is, to the Schwartz class functions.

Let V : H 7→ H be defined by

(V f)(x) = cf(x), (3.2.13)

where c ∈ R. Clearly, the operator V is bounded. The lemma below shows that the

operator V is self-adjoint.

Lemma 3.2.2. Let V : H 7→ H be defined by the equation (3.2.13). Then, V is

self-adjoint.

Proof. For f, g ∈ H,

〈V f, g〉 =

∫ π

0

(V f)ḡdx

=

∫ π

0

(cf)ḡdx

=

∫ π

0

fcgdx

= 〈f, V g〉 ,

which proves that V is self-adjoint.

We need the following theorem to give the spectral representation for H0.

Theorem 3.2.3. (See [17, Theorem VI.16]) Let T be a compact self-adjoint operator

on a Hilbert space H. Then, there is a complete orthonormal basis, {φn}∞n=1, for H
so that Tφn = λnφn and λn → 0 as n→∞.

Lemma 3.2.4. Let H0 be defined by the equation (3.1.22). Then, the spectral repre-

sentation of H0 is given by

H0 =
∞∑
n=1

n2Pn2 ,

where

Pn2 =
2

π
〈·, sin(nx)〉 sin(nx).

51



Proof. Since H−1
0 is a compact self-adjoint operator with eigenvalues

{
1

n2

}∞
n=1

, by

Theorem 3.2.3, there is a complete orhonormal basis {ψn} for H so that

H−1
0 ψn =

1

n2
ψn,

1

n2
→ 0 as n→∞.

The latter expression is equivalent to

H0ψn = n2ψn, n ∈ N.

By Lemma 3.1.14, we have

H0 sin(nx) = n2 sin(nx), n ∈ N,

and the multiplicity of n2 is one. Therefore, ψn = α · sin(nx) for some scalar α.

In particular, we take ψn =
sin(nx)√
π/2

, n ∈ N so that

{
sin(nx)√
π/2

}∞
n=1

is a complete

orthonormal basis for H. Let f ∈ D ⊂ H, then

f(x) =
∞∑
n=1

an
sin(nx)√
π/2

,

where

an =

〈
f(x),

sin(nx)√
π/2

〉
=

√
2

π

∫ π

0

f(x) sin(nx)dx.

Similarly, we have

g(x) := H0f(x) =
∞∑
n=1

bn
sin(nx)√
π/2

,

where

bn =

〈
g(x),

sin(nx)√
π/2

〉
=

√
2

π

∫ π

0

g(x) sin(nx)dx.

Since

bn =

〈
g(x),

sin(nx)√
π/2

〉
=

〈
H0f(x),

sin(nx)√
π/2

〉
=

〈
f(x),

H0 sin(nx)√
π/2

〉

=

〈
f(x),

n2 sin(nx)√
π/2

〉
= n2

〈
f(x),

sin(nx)√
π/2

〉
= n2an,

52



we have the following representation

H0f(x) =
∞∑
n=1

n2an
sin(nx)√
π/2

. (3.2.14)

If we define an operator Pn2 : H 7→ H by (Pn2f)(x) =

√
2

π
an sin(nx), then clearly

Pn2 is the orthogonal projection of H onto the eigenspace of H0 corresponding to n2.

Therefore, the equation (3.2.14) can be written as

H0f(x) =
∞∑
n=1

n2Pn2f(x), (3.2.15)

completing the proof of the lemma.

Lemma 3.2.5. Let H0 and V be defined by (3.1.22) and (3.2.13), respectively. Then,

for any t ∈ R, the spectral representation of H0 + tV is given by

H0 + tV =
∞∑
n=1

(ct+ n2)
2

π
〈·, sin(nx)〉 sin(nx). (3.2.16)

Proof. Since H0 = H∗0 has compact resolvent and V = V ∗ is a bounded operator, by

[2, Lemma 1.3] H0 + tV , for t ∈ R, also has compact resolvent. Since the eigenvalues

of H0 + tV are {ct+ n2}∞n=1 each of multiplicity one and eigenspace of (ct + n2) is

span {sin(nx)}, the proof exactly follows as in the case of H0.

Corollary 3.2.6. For f ∈ C3
c (R) and t ∈ R, the spectral representation of f(H0+tV )

is given by

f(H0 + tV ) =
∞∑
n=1

f(ct+ n2)
2

π
〈·, sin(nx)〉 sin(nx). (3.2.17)

For t = 0 and t = 1, we have from Corollary 3.2.6

f(H0) =
∞∑
n=1

f(n2)
2

π
〈·, sin(nx)〉 sin(nx) (3.2.18)

and

f(H0 + V ) =
∞∑
n=1

f(c+ n2)
2

π
〈·, sin(nx)〉 sin(nx), (3.2.19)

respectively.
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Remark 3.2.7. Since any compact subset δ of R contains finitely many eigenvalues

of H0 + tV , t ∈ [0, 1], it follows that the spectral measure EH0+tV (δ) has a finite rank,

and Tr
(
EH0+tV (δ)

)
equals the number of eigenvalues of H0 + tV in the set δ.

Lemma 3.2.8. Let H0 and V be defined by (3.1.22) and (3.2.13), respectively. For

a < 1, let

ξ(λ) := Tr
(
EH0

(
(a, λ]

)
− EH0+V

(
(a, λ]

))
.

Then for 0 < c < 3, we have

ξ(λ) =


0 if a < λ < 1

1 if n2 ≤ λ < c+ n2

0 if c+ n2 ≤ λ < (n+ 1)2,

(3.2.20)

for n ∈ N.

Proof. The proof directly follows from Remark 3.2.7.

The following two lemmas demonstrate the results of [2, Theorem 2.5] and

[18, Theorem 3.10], respectively, for a specific choice of H, H0, and V . Moreover, the

method of our proof is purely computational and does not rely on the proof given in

[2, Theorem 2.5] and [18, Theorem 3.10].

Lemma 3.2.9. Let H0 and V be as in the equations (3.1.22) and (3.2.13), respectively

and 0 < c < 3. Let f ∈ C3
c

(
(a, b)

)
, a, b ∈ R and a < 1. Then,

Tr
(
f(H0 + V )

)
− Tr

(
f(H0)

)
=

∫
R
f ′(λ)ξ(λ)dλ,

where ξ(λ) is given by the equation (3.2.20).

Proof. Since f ∈ C3
c

(
(a, b)

)
, a, b ∈ R and a < 1, both the sums given by the equations

(3.2.18) and (3.2.19) are finite sums. Therefore, the operators f(H0) and f(H0 + V )

are finite rank operators, and hence trace class operators. Using the equations (3.2.18)

and (3.2.19), we have

Tr
(
f(H0 + V )

)
− Tr

(
f(H0)

)
= Tr

( ∞∑
n=1

f(c+ n2)
2

π
〈·, sin(nx)〉 sin(nx)

)
− Tr

( ∞∑
n=1

f(n2)
2

π
〈·, sin(nx)〉 sin(nx)

)
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=
∞∑
n=1

f(c+ n2)Tr
( 2

π
〈·, sin(nx)〉 sin(nx)

)
−
∞∑
n=1

f(n2)Tr
( 2

π
〈·, sin(nx)〉 sin(nx)

)
=
∞∑
n=1

f(c+ n2)−
∞∑
n=1

f(n2)

=
∞∑
n=1

(
f(c+ n2)− f(n2)

)
. (3.2.21)

Now using the equation (3.2.20), we have∫
R
f ′(λ)ξ(λ)dλ =

∫
(a,1)

f ′(λ)ξ(λ)dλ+

∫
[1,c+1)

f ′(λ)ξ(λ)dλ+

∫
[c+1,4)

f ′(λ)ξ(λ)dλ

+

∫
[4,c+4)

f ′(λ)ξ(λ)dλ+

∫
[c+4,9)

f ′(λ)ξ(λ)dλ+

∫
[9,c+9)

f ′(λ)ξ(λ)dλ

+ ...+

∫
[n2,c+n2)

f ′(λ)ξ(λ)dλ+

∫
[c+n2,(n+1)2)

f ′(λ)ξ(λ)dλ+ ...

= 0 +

∫
[1,c+1)

f ′(λ)dλ+ 0 +

∫
[4,c+4)

f ′(λ)dλ+ 0 +

∫
[9,c+9)

f ′(λ)dλ+ 0

+ ...+ 0 +

∫
[n2,c+n2)

f ′(λ)dλ+ 0 + ...

= f(c+ 1)− f(1) + f(c+ 4)− f(4) + f(c+ 9)− f(9)

+ ...+ f(c+ n2)− f(n2) + ...

=
∞∑
n=1

(
f(c+ n2)− f(n2)

)
. (3.2.22)

Combining the equations (3.2.21) and (3.2.22) completes the proof of the lemma.

Lemma 3.2.10. Let H0 and V be as in the equations (3.1.22) and (3.2.13), respec-

tively and 0 < c < 3. Let f ∈ C3
c

(
(a, b)

)
, a, b ∈ R and a < 1. Then,

Tr
(
f(H0 + tV )− f(H0)− d

dt

∣∣∣
t=0
f(H0 + tV )

)
=

∫
R
f ′′(λ)η(λ)dλ,

where

η(λ) = µ((a, λ])−
∫ λ

a

ξ(t)dt, (3.2.23)

µ is a locally finite measure on R given by the equation (3.2.26) and ξ is given by the

equation (3.2.20).
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Proof. Using the fact that f ∈ C3
c

(
(a, b)

)
, a, b ∈ R and a < 1, we have from the

equations (3.2.17) and (3.2.18)

d

dt

∣∣∣
t=0
f(H0 + tV ) = lim

t→0

f(H0 + tV )− f(H0)

t

= lim
t→0

1

t

(
∞∑
n=1

f(ct+ n2)
2

π
〈·, sin(nx)〉 sin(nx)

−
∞∑
n=1

f(n2)
2

π
〈·, sin(nx)〉 sin(nx)

)

=
∞∑
n=1

lim
t→0

f(ct+ n2)− f(n2)

t

2

π
〈·, sin(nx)〉 sin(nx)

=
∞∑
n=1

cf ′(n2)
2

π
〈·, sin(nx)〉 sin(nx), (3.2.24)

and the latter sum is a finite sum. Thus,
d

dt

∣∣∣
t=0
f(H0 + tV ) is a finite rank operator

and hence a trace class operator. Taking the trace on both sides of the equation

(3.2.24), we get

Tr
( d
dt

∣∣∣
t=0
f(H0 + tV )

)
=
∞∑
n=1

cf ′(n2). (3.2.25)

Let A be a subset of R and define

δn2(A) =

1 if n2 ∈ A

0 if n2 /∈ A

and

µ(A) =
∞∑
n=1

c δn2(A).

Then, µ is a locally finite measure on R. For 0 < c < 3 and a < 1, the measure µ

satisfies

µ((a, λ]) =


0 if a < λ < 1

nc if n2 ≤ λ < c+ n2

nc if c+ n2 ≤ λ < (n+ 1)2,

(3.2.26)

for n ∈ N.

Let ξ be as in the equation (3.2.20). Then, for a < λ < 1,∫ λ

a

ξ(t)dt =

∫ λ

a

0 dt = 0.
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For 1 ≤ λ < c+ 1,∫ λ

a

ξ(t)dt =

∫
(a,1)

ξ(t)dt+

∫
[1,λ]

ξ(t)dt = 0 + (λ− 1) = λ− 1.

For c+ 1 ≤ λ < 4,∫ λ

a

ξ(t)dt =

∫
(a,1)

ξ(t)dt+

∫
[1,c+1)

ξ(t)dt+

∫
[c+1,λ]

ξ(t)dt = 0 + (c+ 1− 1) + 0 = c.

For 4 ≤ λ < c+ 4,∫ λ

a

ξ(t)dt =

∫
(a,1)

ξ(t)dt+

∫
[1,c+1)

ξ(t)dt+

∫
[c+1,4)

ξ(t)dt+

∫
[4,λ]

ξ(t)dt

= 0 + (c+ 1− 1) + 0 + (λ− 4) = c+ λ− 4.

For c+ 4 ≤ λ < 9,∫ λ

a

ξ(t)dt

=

∫
(a,1)

ξ(t)dt+

∫
[1,c+1)

ξ(t)dt+

∫
[c+1,4)

ξ(t)dt+

∫
[4,c+4)

ξ(t)dt+

∫
[c+4,λ]

ξ(t)dt

= 0 + (c+ 1− 1) + 0 + (c+ 4− 4) + 0 = 2c.

Therefore, in general, we have

∫ λ

a

ξ(t) dt =


0 if a < λ < 1

(n− 1)c+ λ− n2 if n2 ≤ λ < c+ n2

nc if c+ n2 ≤ λ < (n+ 1)2,

for n ∈ N.

Thus, we have

η(λ) = µ((a, λ])−
∫ λ

a

ξ(t) dt

=


0 if a < λ < 1

c+ n2 − λ if n2 ≤ λ < c+ n2

0 if c+ n2 ≤ λ < (n+ 1)2,

(3.2.27)

for n ∈ N.

Now using the equation (3.2.27), we get∫
R
f ′′(λ)η(λ)dλ =

(∫
(a,1)

+

∫
[1,c+1)

+

∫
[c+1,4)

+

∫
[4,c+4)

+...+

∫
[n2,c+n2)

+

∫
[c+n2,(n+1)2)

+...
)
f ′′(λ)η(λ)dλ
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=

∫
[1,c+1)

f ′′(λ)(c+ 1− λ)dλ+

∫
[4,c+4)

f ′′(λ)(c+ 4− λ)dλ+ ...

+

∫
[n2,c+n2)

f ′′(λ)(c+ n2 − λ)dλ+ ...

Integrating by parts, we obtain∫
R
f ′′(λ)η(λ)dλ

= (c+ 1− λ)f ′(λ)
∣∣∣c+1

1
+

∫
[1,c+1)

f ′(λ)dλ+ (c+ 4− λ)f ′(λ)
∣∣∣c+4

4

+

∫
[4,c+4)

f ′(λ)dλ+ ...+ (c+ n2 − λ)f ′(λ)
∣∣∣c+n2

n2
+

∫
[n2,c+n2)

f ′(λ)dλ+ ...

= −cf ′(1) + f(c+ 1)− f(1)− cf ′(4) + f(c+ 4)− f(4)− ...

− cf ′(n2) + f(c+ n2)− f(n2)− ...

=
∞∑
n=1

(
f(c+ n2)− f(n2)− cf ′(n2)

)
. (3.2.28)

Combination of the equations (3.2.21), (3.2.25), and (3.2.28), concludes the proof of

the lemma.

Remark 3.2.11. A formula similar to (3.2.23) holds in the case of arbitrary H0 = H∗0

(without restrictions on the resolvent of H0) and V = V ∗ ∈ S1 (see [10]).

Lemma 3.2.12. Let H0 and V be as in the equations (3.1.22) and (3.2.13), respec-

tively, and 0 < c < 3. Let f ∈ S(R), where S(R) denotes the set of all Schwartz

functions on R. Then,

Tr
(
f(H0 + V )

)
− Tr

(
f(H0)

)
=

∫
R
f ′(λ)ξ(λ)dλ,

where ξ is as in Lemma 3.2.8 with a ∈ R replaced by −∞.

Proof. Since f ∈ S(R), there exists Mk,l > 0 such that

sup
x∈R
|x|k |f (l)(x)| ≤Mk,l,

for all integers k, l ≥ 0. In particular, for x = n2, n ∈ N, and k = 1 we have

|f (l)(n2)| ≤ Ml

n2
,
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for all integers l ≥ 0. Since
∞∑
n=1

Ml

n2
<∞, we have

∞∑
n=1

|f (l)(n2)| <∞, (3.2.29)

for all integers l ≥ 0. By Lemma 3.2.5, we have

H0 + tV =
∞∑
n=1

(ct+ n2)Pn2 ,

where

Pn2 =
2

π
〈·, sin(nx)〉 sin(nx).

Since f ∈ S(R), it is bounded and continuous on R. Therefore by functional calculus

(see [Appendix, Section 4.3.5]), we have

f(H0 + tV ) =
∞∑
n=1

f(ct+ n2)Pn2 . (3.2.30)

In particular, when t = 0 and t = 1, we have

f(H0) =
∞∑
n=1

f(n2)Pn2 . (3.2.31)

and

f(H0 + V ) =
∞∑
n=1

f(c+ n2)Pn2 .

From the inequality (3.2.29), we have
∞∑
n=1

|f(n2)| <∞. Similarly, it follows that

∞∑
n=1

|f(c+ n2)| <∞. Therefore, both f(H0) and f(H0 + V ) are trace class operators,

and

Tr
(
f(H0)

)
=
∞∑
n=1

f(n2) (3.2.32)

and

Tr
(
f(H0 + V )

)
=
∞∑
n=1

f(c+ n2). (3.2.33)
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From the equations (3.2.32) and (3.2.33), we get

Tr
(
f(H0 + V )− f(H0)

)
=
∞∑
n=1

(
f(c+ n2)− f(n2)

)
. (3.2.34)

If we proceed exactly as in Lemma 3.2.9, we get∫
R
f ′(λ)ξ(λ)dλ =

∞∑
n=1

(
f(c+ n2)− f(n2)

)
. (3.2.35)

Combining the equations (3.2.34) and (3.2.35) completes the proof of the lemma.

Lemma 3.2.13. Let H0 and V be as in the equations (3.1.22) and (3.2.13), respec-

tively, and 0 < c < 3. Let f ∈ S(R), where S(R) denotes the set of all Schwartz

functions on R. Then,

Tr
(
f(H0 + tV )− f(H0)− d

dt

∣∣∣
t=0
f(H0 + tV )

)
=

∫
R
f ′′(λ)η(λ)dλ,

where η is as in Lemma 3.2.10 with a ∈ R replaced by −∞.

Proof. Using the equations (3.2.30) and (3.2.31), we have

d

dt

∣∣∣
t=0
f(H0 + tV ) = lim

t→0

f(H0 + tV )− f(H0)

t

= lim
t→0

1

t

(
∞∑
n=1

f(ct+ n2)Pn2 −
∞∑
n=1

f(n2)Pn2

)

= lim
t→0

∞∑
n=1

f(ct+ n2)− f(n2)

t
Pn2 . (3.2.36)

Since ‖Pn2‖ = 1, by the Mean Value Theorem, for all t ∈ (0, 1), we have∥∥∥∥f(ct+ n2)− f(n2)

t
Pn2

∥∥∥∥ =

∣∣∣∣f(ct+ n2)− f(n2)

t

∣∣∣∣ = c|f ′(mn2)|, mn2 ∈ (n2, ct+ n2).

From the equation (3.2.29), it follows that
∞∑
n=1

c|f ′(mn2)| < ∞. Therefore by the

Weierstrass M-test for a series of functions with values in a Banach space,
∞∑
n=1

f(ct+ n2)− f(n2)

t
Pn2 converges uniformly in t ∈ (0, 1). Therefore, the equation

(3.2.36) becomes

d

dt

∣∣∣
t=0
f(H0 + tV ) =

∞∑
n=1

lim
t→0

f(ct+ n2)− f(n2)

t
Pn2

=
∞∑
n=1

cf ′(n2)Pn2 .
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Since
∞∑
n=1

c|f ′(n2)| <∞,
d

dt

∣∣∣
t=0
f(H0 + tV ) is a trace class operator and

Tr
( d
dt

∣∣∣
t=0
f(H0 + tV )

)
=
∞∑
n=1

cf ′(n2). (3.2.37)

Combining (3.2.32), (3.2.33), and (3.2.37), we have

Tr
(
f(H0 + V )− f(H0)− d

dt

∣∣∣
t=0
f(H0 + tV )

)
=
∞∑
n=1

(
f(c+ n2)− f(n2)− cf ′(n2)

)
.

(3.2.38)

If we proceed exactly as in Lemma 3.2.10, we get∫
R
f ′′(λ)η(λ)dλ =

∞∑
n=1

(
f(c+ n2)− f(n2)− cf ′(n2)

)
. (3.2.39)

Combining the equations (3.2.38) and (3.2.39) completes the proof of the lemma.
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Chapter 4

Appendix

4.1 Compact Operators

In this section, we discuss compact operators and its classes. We refer the reader to

[4] and [17] for more details.

Definition 4.1.1. [17, Chapter VI, Section 5] A bounded linear operator T : H 7→ H
is called compact if for every bounded subset B of H, the image T (B) is relatively

compact, i.e., the closure T (B) is compact.

We denote the set of all compact operators on H by K(H).

Theorem 4.1.2. [4, Theorem 3.9.4] Let T ∈ K(H). Then every nonzero λ ∈ σ(T )

is an eigenvalue of T and the set of eigenvalues of T is countable with 0 only the

possible point of accumulation of that set. If the dimension of H is infinite, then

σ(T ) contains 0.

Definition 4.1.3. [4, Chapter 11, Section 4] The Schatten-von Neumann ideal of

compact operators denoted by Sp are defined by

Sp =

{
A ∈ K(H) : ‖A‖p :=

( ∞∑
k=1

spk(A)
) 1

p
<∞

}
, p ∈ [1,∞),

where sk(A) are the singular numbers of A (i.e., the eigenvalues of |A| =
√
A∗A).

The norm ‖A‖p :=
( ∞∑
k=1

spk(A)
) 1

p
is called the Schatten p−norm of A.

Note that S1 and S2 in the above definition are called the trace class and the

Hilbert-Schmidt class of operators, respectively.
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Definition 4.1.4. [17, Chapter VI, Section 6] The map Tr : S1 7→ C given by

Tr(A) =
∞∑
n=1

〈Aφn, φn〉 ,

where {φn} is any orthonormal basis, is called the trace of A and it is independent of

the choice of the basis {φn}.

4.2 Convergence of a Sequence of Operators

Definition 4.2.1. [12, Definition 4.9-1] Let X and Y be normed spaces. A sequence

{Tn} of operators Tn ∈ B(X, Y ) is said to be convergent to T ∈ B(X, Y )

(1) in the uniform operator topology if

‖Tn − T‖ → 0, as n→∞;

(2) in the strong operator topology if

‖Tnx− Tx‖ → 0, as n→∞ for all x ∈ X;

(3) in the weak operator topology if

|f(Tnx)− f(Tx)| → 0, as n→∞ for all x ∈ X and for all f ∈ Y ′.

4.3 Spectral Measure and Spectral Integral

The material in this section is standard and found in many books in Functional

Analysis. We refer the reader to chapters 5 and 6 of [4] for more details.

4.3.1 Spectral Measure

Definition 4.3.1. [4, Chapter 5, Section 1] Let (Ω,Σ) be a measurable space and

P = P(H) be the set of all orthogonal projections on H. Then, a spectral measure

E on (Ω,Σ) with respect to H is a mapping E : Σ 7→ P satisfying the following two

conditions.

(1) E is countably additive, that is for any sequence {δn}∞n=1 of pairwise disjoint sets

from Σ, we have E(
∞⋃
n=1

δn) =
∞∑
n=1

E(δn), where the latter series converges in the strong

operator topology.

(2) E(Ω) = I, where I is the identity on H.
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Using the additivity of E, one can prove the following additional properties.

Theorem 4.3.2. [4, Theorems 5.1.1 and 5.1.2] Let E be a spectral measure on (Ω,Σ)

with respect to H and let {δn}n∈N be measurable subsets of Ω.

(1) For δ1, δ2 ∈ Σ, we have

E(δ1)E(δ2) = E(δ2)E(δ1) = E(δ1 ∩ δ2).

In particular, E(δ1)E(δ2) = 0 if δ1 ∩ δ2 = ∅.
(2) If δn ⊂ δn+1 for all n ∈ N, then

lim
n→∞

E(δn) = E
( ∞⋃
n=1

δn

)
,

where the limit is evaluated in the strong operator topology.

(3) If δn+1 ⊂ δn for all n ∈ N, then

lim
n→∞

E(δn) = E
( ∞⋂
n=1

δn

)
,

where the limit is evaluated in the strong operator topology.

Note that every spectral measure E generates a family of finite scalar measures

〈E(δ)ξ, η〉, ξ, η ∈ H and δ ∈ Σ.

4.3.2 Spectral Integral of Bounded Measurable Functions

Definition 4.3.3. [4, Chapter 5, Section 3] Let (Ω,Σ,H, E) be a spectral measure

space and let S(Ω, E) denote the set of all simple functions on Ω. Then the integral

of f ∈ S(Ω, E) with respect to E is the operator TEf defined by

TEf =

∫
Ω

f(ω)dE(ω) :=
n∑
k=1

αkE(δk), (4.3.1)

where f ∈ S(Ω, E) is of the form

f =
n∑
k=1

αkχδk , αk ∈ C, δk ∈ Σ, k = 1, ..., n,
n⋃
k=1

δk = Ω, n ∈ N,

and χδ is a characteristic function of the set δ ∈ Σ.

The spectral integral defined by the equation (4.3.1) satisfies the following prop-

erties.
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Theorem 4.3.4. [4, Chapter 5, Section 3] Let TEf be as in (4.3.1), f, g ∈ S(Ω, E),

Tf a shorthand of TEf , f̄ a complex conjugate of f , and I the identity on H. Then

(1) Tαf+βg = αTf + βTg, α, β ∈ C;

(2) Tfg = TfTg = TgTf ;

(3) (Tf )
∗ = Tf̄ ;

(4) Tf = I, for f ≡ 1;

(5) 〈Tfξ, η〉 =
∫

Ω
f(λ) d 〈E(λ)ξ, η〉 , ξ, η ∈ H;

(6) ‖Tfξ‖2
H =

∫
Ω
|f(λ)|2 d 〈E(λ)ξ, ξ〉;

(7) ‖Tf‖ = ‖f‖∞,

where ‖ · ‖H and ‖ · ‖ denote respectively the norm on H and the operator norm on

B(H).

Definition 4.3.5. [4, Chapter 5, Section 3] Let (Ω,Σ,H, E) be a spectral measure

space. Then, the integral of a bounded measurable function f on Ω with respect to E

is defined by

Tf :=

∫
Ω

f(ω)dE(ω) = lim
n→∞

∫
Ω

fn(ω)dE(ω), (4.3.2)

where the limit is evaluated in the operator norm on B(H), and {fn}n∈N is an arbitrary

sequence of simple functions converging uniformly to f .

Theorem 4.3.6. [4, Chapter 5, Section 3] Let Tf be as in (4.3.2), f, g bounded

measurable functions on Ω, f̄ a complex conjugate of f , and I the identity on H.

Then

(1) Tαf+βg = αTf + βTg, α, β ∈ C;

(2) Tfg = TfTg = TgTf ;

(3) (Tf )
∗ = Tf̄ ;

(4) Tf = I, for f ≡ 1;

(5) 〈Tfξ, η〉 =
∫

Ω
f(λ) d 〈E(λ)ξ, η〉 , ξ, η ∈ H;

(6) ‖Tfξ‖2
H =

∫
Ω
|f(λ)|2 d 〈E(λ)ξ, ξ〉;

(7) ‖Tf‖ = ‖f‖∞,

where ‖ · ‖H and ‖ · ‖ denote respectively the norm on H and the operator norm on

B(H).

4.3.3 Spectral Theorem for Bounded Self-adjoint Operators

Theorem 4.3.7. [17, Theorem VII.8] Let H0 be a bounded self-adjoint operator on

H. Let [a, b] ⊂ R such that σ(H0) ⊂ [a, b]. Then there exists a unique spectral measure
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E := EH0 on the Borel σ-algebra B([a, b]) such that

H0 =

∫
[a,b]

λdE(λ),

where the convergence of the integral is understood in the uniform operator topology.

4.3.4 Spectral Theorem for Unbounded Self-adjoint

Operators

Theorem 4.3.8. [17, Theorem VIII.6] Let H0 be a self-adjoint operator in H. Then

there exists a unique spectral measure E := EH0 on the Borel σ-algebra B(R) such

that

H0 =

∫
R
λdE(λ),

where the convergence of the integral is understood in the strong operator topology.

4.3.5 Functional Calculus

Let f be a bounded measurable function on Ω and let us write f(H0) for the spectral

integral Tf of Definition 4.3.5. Then, we have

f(H0) =

∫
R
f(λ)dE(λ).

The assignment f → f(H0) is called the functional calculus of the self-adjoint operator

H0.

4.4 Bochner Integrals

The Bochner integral is the natural generalization of the Lebesgue integral to func-

tions that take values in a Banach space. In this section, we give a definition of the

Bochner integral and state a version of the dominated convergence theorem for it.

For more details about the topic, we refer the reader to [19].

Definition 4.4.1. [19, Definition 4.1] A function f defined on a measure space

(X,Σ, µ) with values in a Banach space B is said to be weakly measurable if for

any α ∈ X∗, the numerical function α(f(x)) of x is measurable. f(x) is said to be

measurable if there exists a sequence of simple functions with values in a Banach space

B convergent to f(x) µ-a.e. on X.
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Recall that a simple function with values in a Banach space B is a function of the

form

f =
N∑
n=1

bnχδn , N ∈ N,

where bn ∈ B and the sets δn ∈ Σ are disjoint.

Definition 4.4.2. [19, Definition 4.2] A function f defined on a measure space

(X,Σ, µ) with values in a Banach space B is said to be separably-valued if its range

{f(x) : x ∈ X} is separable. It is µ-almost separably-valued if there exists a measur-

able set B of µ-measure zero such that {f(x) : x ∈ X \B} is separable.

Theorem 4.4.3. (B. J. Pettis)[19, Theorem 4.3] A function f defined on a measure

space (X,Σ, µ) with values in a Banach space B is measurable if and only if it is

weakly measurable and µ-almost separably-valued.

Definition 4.4.4. [19, Chapter V, Section 5] A function f defined on a measure

space (X,Σ, µ) with values in a Banach space B is said to be Bochner µ-integrable

if there exists a sequence of simple functions {fn}n≥1 which converges to f µ-a.e. in

such a way that

lim
n→∞

∫
X

‖fn − f‖Bdµ = 0.

In this case, the Bochner µ-integral of f is defined by∫
X

fdµ = lim
n→∞

∫
X

fndµ.

Theorem 4.4.5. (S. Bochner)[19, Theorem 5.1] Let (X,Σ, µ) be a measure space.

A measurable function f with values in a Banach space B is Bochner µ-integrable if

and only if ‖f(x)‖B is µ-integrable.

Proposition 4.4.6. (Dominated convergence theorem) Let fn : X 7→ B be a sequence

of functions, each of which is Bochner µ-integrable. Assume that there exist a function

f : X 7→ B and a µ-integrable function g : X 7→ C such that

(1) lim
n→∞

fn = f µ-almost everywhere;

(2) ‖fn‖B ≤ |g| µ-almost everywhere.

Then, f is Bochner µ-integrable and we have

lim
n→∞

∫
X

‖fn − f‖Bdµ = 0.

In particular we have

lim
n→∞

∫
X

fndµ =

∫
X

fdµ.
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4.5 The Schwartz class and the Fourier Transform

The material discussed in this section is standard and found in many books in Fourier

Analysis. We refer the reader to [9] and [15] for more details.

4.5.1 The Class of Schwartz Functions

Definition 4.5.1. [9, Definition 2.2.1] A C∞ complex-valued function f on R is called

a Schwartz function if for every integers k, l ≥ 0 there exists a constant Mk,l > 0 such

that

sup
x∈R
|x|k |f (l)(x)| ≤Mk,l.

The set of all Schwartz functions on R is denoted by S(R).

4.5.2 The Fourier Transform

Definition 4.5.2. [9, Chapter 2.2.4] Let f ∈ L1(R). Then the Fourier transform of

f denoted by f̂ is given by

f̂(t) =
1√
2π

∫
R
f(λ)e−iλt dλ.

Proposition 4.5.3. (Riemann-Lebesgue Lemma)[15, Lemma 8.5.1] For a function

f ∈ L1(R) we have that

|f̂(t)| → 0 as |t| → ∞.

Proposition 4.5.4. [9, Exercise 2.2.6] If f ∈ L1(R), then f̂ is uniformly continuous

on R.

Definition 4.5.5. [9, Chapter 2.2.4] Let g ∈ L1(R). Then the inverse Fourier trans-

form of g denoted by (g)∨ is given by

(g)∨(λ) =
1√
2π

∫
R
g(t)eiλt dt.

Note that if both f, f̂ ∈ L1(R), then we have (f̂)∨ = f a.e.

Proposition 4.5.6. (See [15, Chapter 7, Section 3]) If f is such that f (j), f̂ (j) ∈
L1(R), j = 0, 1, ..., n, then

f̂ (j)(λ) = (iλ)j f̂(λ), j =, 1, ..., n.
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