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Abstract

In this document we solve some local connectivity problems in matrix representations

of the form C(TN) → Mn and C(TN) → Mn ← C([−1, 1]N) using the so called

toroidal matrix links, which can be interpreted as normal contractive matrix analogies

of free homotopies in algebraic topology.

In order to deal with the locality constraints, we have combined some techniques

introduced in this document with several versions of the Basic Homotopy Lemma

L.2.3.2, T.2.3.1 and C.2.3.1 obtained initially by Bratteli, Elliot, Evans and Kishimoto

in [4] and generalized by Lin in [19] and [22].
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Chapter 1

Introduction

In this document we study the solvability of some local connectivity problems via

constrained normal matrix homotopies in C∗-representations of the form

C(TN) −→Mn, (1.0.1)

for a fixed but arbitrary integer N ≥ 1 and any integer n ≥ 1. In particular we study

local normal matrix homotopies which preserve commutativity and also satisfy some

additional constraints, like being rectifiable or piecewise analytic.

We consider several versions of the Basic Homotopy Lemma L.2.3.2, T.2.3.1 and

C.2.3.1 obtained initially by Bratteli, Elliot, Evans and Kishimoto in [4] and gener-

alized by Lin in [19] and [22]. We combine the basic homotopy lemma with some

techniques introduced here and some other techniques from matrix geometry and

noncommutative topology developed by Loring [24, 27], Shulman [27], Bhatia [2],

Chu [8], Brockett [5], Choi [7, 6], Effros [6], Exel [11], Eilers [11], Elsner [12], Pryde

[31, 30], McIntosh [30] and Ricker [30], to construct the so called toroidal matrix links,

which we use to obtain the main theorems presented in Chapter 4, and which consist

on local connectivity results in matrix representations of the form 1.0.1 and also of

1



Chapter 1. Introduction

the form

C(TN) −→Mn ←− C([−1, 1]N). (1.0.2)

Toroidal matrix links can be interpreted as noncommutative analogies of free

homotopies in algebraic topology and topological deformation theory, they are intro-

duced in Chapter 3 together with some other matrix geometrical objects.

In Chapter 5 we present a connectivity technique developed by T. Loring which

provides us with very important imformation on the local uniform connectivity in

matrix representations of the form C(T2)→Mn.

Given δ > 0, a function ε : R → R+
0 and two matrices x, y in a set S ⊆ Mn such

that ‖x− y‖ ≤ δ, by a ε(δ)-local matrix homotopy between x and y, we mean a

matrix path X ∈ C([0, 1],Mn) such that X0 = x, X1 = y, Xt ∈ S and ‖Xt−y‖ ≤ ε(δ)

for each t ∈ [0, 1]. We write x ε y to denote that there is a ε-local matrix homotopy

betweeen x and y.

The motivation and inspiration to study local normal matrix homotopies which

preserve commutativity in C∗-representations of the form 1.0.1 and 1.0.2, came from

mathematical physics [16, §3] and matrix approximation theory [9].

The problems from mathematical physics which motivated this study are inverse

spectral problems, which consist on finding for a certain set of matrices X1, . . . , XN

which approximately satisfy a set of polynomial constraints R(x1, . . . , xN) on N NC-

variables, a set of nearby matrices X̃1, . . . , X̃N which approximate X1, . . . , XN and

exactly satisfy the constraints R(x1, . . . , xN). The problems from matrix approxima-

tion theory that we considered for this study, are of the type that can be reduced to

the study of the solvability conditions for approximate and exact joint diagonalization

problems for N -tuples of normal matrix contractions.

Since the problems which motivated the research reported in this document can

2



Chapter 1. Introduction

be restated in terms of the study local piecewise analytic connectivity in matrix rep-

resentations of the form Cε(T2) → Mn ← C(TN) and Cε(T2) → Mn ← C([−1, 1]N),

we studied several variations of problems of the form.

Problem 1.0.1 (Lifted connectivity problem) Given ε > 0, is there δ > 0 such

that the following conditions hold? For any integer n ≥ 1, some prescribed se-

quence of linear compressions κn : M2n → Mn, and any two families of N pair-

wise commuting normal contractions X1, . . . , XN and Y1, . . . , YN in Mn which sat-

isfy the constraints ‖Xj − Yj‖ ≤ δ, 1 ≤ j ≤ N , there are two families of N

pairwise commuting normal contractions X̃1, . . . , X̃N and Ỹ1, . . . , ỸN in M2n which

satisfy the relations: κ(X̃j) = Xj, κ(Ỹj) = Yj and ‖X̃j − Ỹj‖ ≤ ε, 1 ≤ j ≤ N .

Moreover, there are N peicewise analytic ε-local homotopies of normal contractions

X1, . . . ,XN ∈ C([0, 1],M2n) between the corresponding pairs X̃j, Ỹj in M2n, which

satisfy the relations Xj
tX

k
t = Xk

tX
j
t , for each 1 ≤ j, k ≤ N and each 0 ≤ t ≤ 1.

By solving problem P.1.0.1 we learned about the local connectivity of arbitrary δ-

close N -tuples of pairwise commuting normal contractions X1, . . . , XN and Y1, . . . , YN

in Mn, which was the main motivation of the research reported here. We also obtained

some results concerning to the geometric structure of the joint spectra (in the sense

of [30]) of the N -tuples.

For a given δ > 0, the study of the solvability conditions of problems of the

form P.1.0.1 provided us with geometric information about local deformations of

particular representations of the form C(TN) → A0 := C∗(U1, . . . , UN) ⊆ Mn and

C(TN)→ A1 := C∗(V1, . . . , VN) ⊆Mn, where U1, . . . , UN , V1, . . . , VN ∈ U(n) are pair-

wise commuting matrices such that ‖Uj − Vj‖ ≤ δ. By local deformations we mean a

family {At}t∈[0,1] ⊆Mn of abelian C∗-algebras, with At := C∗(X1
t , . . . ,X

N
t ) and where

X1
t , . . . ,X

N
t ∈ C([0, 1], Un) are ε(δ)-local matrix homotopies between U1, . . . , UN and

V1, . . . , VN for some function ε : R→ R+
0 .

3



Chapter 1. Introduction

The main results are presented in Chapter 4, in section §4.2 we use toroidal

matrix links to obtain some local piecewise analytic connectivity results which are

non-uniform in dimension. In sections §4.3, §4.4 and §4.5 we derive some uniform

local connectivity results.

Some applications to approximate solution of matrix equations on words are pre-

sented in Chapter 6.

4



Chapter 2

Preliminaries and Notation

2.1 Matrix Sets and Operations

Given two elements x, y in a C∗-algebra A, we will write [x, y] and Ad[x](y) to denote

the operations [x, y] := xy − yx and Ad[x](y) := xyx∗.

Given any C∗-algebra A and any element x in Mn(A), we will denote by diagn [x]

the operation defined by the expression

Mn(A) → Mn(A)

x 7→ diagn [x]
x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xn1 xn2 · · · xnn

 7→


x11 0 · · · 0

0 x22 · · · 0
...

...
. . .

...

0 0 · · · xnn

 .

Given a C∗-algebra A, we write N (A), H(A) and U(A) to denote the sets of

normal, hermitian and unitary elements in A respectively. We will write N (n), H(n)

and U(n) instead of N (Mn), H(Mn) and U(Mn). A normal element u in a C∗-algebra

5



Chapter 2. Preliminaries and Notation

A is called a partial unitary if the element uu∗ = p is an otrhogonal projection in

A, i.e. p satisfies the relations p = p∗ = p2, we denote by PU(A) the set of partial

unitaries in A and we write PU(n) instead of PU(Mn).

We write I, J, T1 and D2 to denote the sets I := [0, 1], J = [−1, 1], T1 := {z ∈

C| |z| = 1} and D2 := {z ∈ C| |z| ≤ 1}. For some arbitrary matrix set S ⊆ Mn

and some arbitrary compact set X ⊂ C, we will write S(X) to denote the subset of

elements in S described by the expression,

S(X) := {x ∈ S|σ(x) ∈ X}, (2.1.1)

for instance we can write N (n)(D2) to denote the set of nomal contractions. We will

denote by M∞ the C∗-algebra described by

M∞ :=
⋃
n∈Z+

Mn

‖·‖
. (2.1.2)

In this document we write 1n to denote the identity matrix in Mn. The symbol

Nn will be used to denote the diagonal matrices

Nn := diag [n, n− 1, . . . , 2, 1] . (2.1.3)

We will write Ωn and Σn to denote the unitary matrices defined by

Ωn := e
2πi
n

Nn = diag
[
1, e

2πi(n−1)
n , . . . , e

4πi
n , e

2πi
n

]
(2.1.4)

and

Σn :=

 0 1n−1

1 0

 . (2.1.5)

Remark 2.1.1 The unitary matrices Ωn and Σn are related, by the equation

Ωn = F ∗
nΣnFn,

where FN :=
(

1√
N
e

2πi(j−1)(k−1)
N

)
1≤j,k≤N

is the discrete Fourier transform (DFT) uni-

tary matrix.

6



Chapter 2. Preliminaries and Notation

Given an abstract object (group or C∗-algebra) A we write A∗N to denote the

operation consisting on taking the free product of N copies of A.

2.2 Joint Spectral Variation

2.2.1 Clifford Operators

Using the same notation as Pryde in [31], let R(N) denote the Clifford algebra over

R with generators e1, . . . , eN and relations eiej = −ejei for i 6= j and e2i = −1.

Then R(N) is an associative algebra of dimension 2N . Let S(N) denote the set

P({1, . . . , N}). Then the elements eS = es1 · · · esk form a basis when S = {s1, . . . , sk}

and 1 ≤ s1 < · · · < sk ≤ N . Elements of R(N) are denoted by λ =
∑

S λSeS where

λS ∈ R. Under the inner product 〈µ,=〉λ
∑

S λSµS, R(N) becomes a Hilbert space

with orthonormal basis {eS}.

The Clifford operator of N elements X1, . . . , XN ∈ Mn is the operator defined in

Mn ⊗ R(N) by

Cliff(X1, . . . , XN) := i
N∑
j=1

Xj ⊗ ej.

Each element T =
∑

S TS ⊗ eS ∈Mn⊗R(N) acts on elements x =
∑

S xS ⊗ eS ∈ Cn⊗

R(N) by T (x) :=
∑

S,S′ Ts(xS′)⊗ eSeS′ . So Cliff(X1, . . . , XN) ∈ Mn ⊗ R(N) ⊆ L(Cn ⊗

R(N)). By ‖Cliff(X1, . . . , XN)‖ we will mean the operator norm of Cliff(X1, . . . , XN)

as an element of L(Cn ⊗ R(N)). As observed by Elsner in [12, 5.2] we have that

‖Cliff(X1, . . . , XN)‖ ≤
N∑
j=1

‖Xj‖. (2.2.1)

7



Chapter 2. Preliminaries and Notation

2.2.2 Joint Spectral Matchings

It is often convenient to have N -tuples (or 2N -tuples) of matrices with real spectra.

For this purpose we use the following construction, initiated by McIntosh and Pryde.

If X = (X1, . . . , XN) is a N -tuple of n by n matrices then we can always decompose

Xj in the form Xj = X1j + iX2j where the Xkj all have real spectra. We write

π(X) := (X11, . . . , X1N , X21, . . . , X2N) and call π(X) a partition of X. If the Xkj all

commute we say that π(X) is a commuting partition, and if theXkj are simultaneously

triangularizable π(X) is a triangularizable partition. If the Xkj are all semisimple

(diagonalizable) then π(X) is called a semisimple partition.

We say that N normal matrices X1, . . . , XN ∈ Mn are simultaneously diagonal-

izable if there is a unitary matrix Q ∈ Mn such that Q∗XjQ is diagonal for each

j = 1, . . . , N . In this case, for 1 ≤ k ≤ n, let Λ(k)(Xj) := (Q∗XjQ)kk the (k, k)

element of Q∗XjQ, and set Λ(k)(X1, . . . , XN) := (Λ(k)(X1), . . . ,Λ
(k)(XN)) ∈ CN . The

set

Λ(X1, . . . , XN) := {Λ(k)(X1, . . . , XN)}1≤k≤N

is called the joint spectrum of X1, . . . , XN . We will write Λ(Xj) to denote the j-

component of Λ(X1, . . . , XN), in other words we will have that

Λ(Xj) = {Λ(1)(Xj), . . . ,Λ
(N)(Xj)}.

The following theorem was proved in McIntosh, Pryde and Ricker [30].

Theorem 2.2.1 (McIntosh, Pryde and Ricker) Let X = (X1, . . . , XN) and Y =

(Y1, . . . , YN) be N-tuples of commuting n by n normal matrices. There exists a per-

mutation τ of the index set {1, . . . , n} such that

‖Λ(k)(X1, . . . , XN)−Λ(τ(k))(Y1, . . . , YN)‖ ≤ eN,0‖Cliff(X1−Y1, . . . , XN−YN)‖ (2.2.2)

for all k ∈ {1, . . . , n}.

8



Chapter 2. Preliminaries and Notation

In this theorem, eN,0 is an explicit constant depending only on N defined in [30,

(2.4)].

2.3 Amenable C∗-algebras and Basic Homotopy

Lemmas

The following lemma is proved by H. Lin in [20].

Lemma 2.3.1 (H. Lin.) For any ε > 0 and d > 0, there exists δ > 0 satisfying the

following: Suppose that A is a unital C∗-algebra and u ∈ A is a unitary such that

T1\σ(u) contains an arc with length d. Suppose that a ∈ A with ‖a‖ ≤ 1 such that

‖ua− au‖ < δ.

Then there is a self-adjoint element h ∈ A such that u = eih,

‖ha− ah‖ < ε and ‖eitha− aeith‖ < ε

for all t ∈ I. If, furthermore, a = p is a projection, we have∥∥∥∥∥pup− p+
∞∑
n=1

(iphp)n

n!

∥∥∥∥∥ < ε.

The following lemma was proved by H. Lin in [22] using L.2.3.1, since for any

integer n ≥ 1 and any u ∈ U(n), we will have that T1\σ(u) contains an arc with

length at least 2π/n.

Lemma 2.3.2 (H. Lin.) Let ε > 0, n ≥ 1 be an integer and M > 0. There exists

δ > 0 satisfying the following: For any finite set F ⊂ Mn with ‖a‖ ≤ M for all

a ∈ F , and a unitary u ∈Mn such that

‖ua− au‖ < δ for all a ∈ F ,

9



Chapter 2. Preliminaries and Notation

there exists a continuous path of unitaries {u(t)}t∈I ⊂ Mn with u(0) = u and u(1) =

1n such that

‖u(t)a− au(t)‖ < ε for all a ∈ F .

Morover,

Length({u(t)}) ≤ 2π.

2.3.1 Basic Homotopy Lemmas

Definition 2.3.1 (The obstruction Bott(u, v).) Given two unitaries in a K1-

simple real rank zero C∗-algebra A that almost commute, the obstruction Bott(u, v)

is the Bott element associated to the two unitaries as defined by Loring in [24]. It is

defined whenever ‖uv − vu‖ ≤ ν0, where ν0 is a universal constant. It is defined as

the K0-class

Bott(u, v) = [χ[1/2,∞)(e(u, v))]−

 1 0

0 0

 ,
where e(u, v) is a self-adjoint element of M2(A) of the form

e(u, v) =

 f(v) h(v)u+ g(v)

u∗h(v) + g(v) 1− f(v)

 ,

where f ,g,h are certain universal real-valued continuous functions on T1.

For details on the subject of K-theory for C∗-algebras the reader is referred to

[32].

Let us use a similar convention to the one used by H. Lin in [19]. Let us write

B to denote the class of unital C∗-algebras which are simple with real rank zero and

stable rank one. The following results were proved by H. Lin in [19].

10



Chapter 2. Preliminaries and Notation

Theorem 2.3.1 (H. Lin [19], Generalized basic homotopy lemma) Let X be

a finite CW co-mplex of dimension 1. Then, for any ε > 0 and any finite subset

F ⊂ C(X), there is δ > 0 and a finite subset G ⊂ C(X) satisfying the following:

Let A ∈ B with K1(A) = {0}, let h : C(X) → A be a unital homomorphism and let

u ∈ A be a unitary such that

‖[h(g), u]‖ < δ for all g ∈ G andBott1(h, u) = 0.

Then there exists a continuous rectifiable path of unitaries {ut : t ∈ [0, 1]} such that

u0 = u, u1 = 1A and ‖[h(f), ut]‖ < ε for all f ∈ F .

Moreover,

Length({ut}) ≤ π + ε.

Corollary 2.3.1 (Bratteli, Elliot, Evans, Kishimoto and Lin. [4]) Let ε > 0.

We have that there is δ > 0 satisfying the following: For any two unitaries u and v

in a unital C∗-algebra A ∈ B with K1(A) = {0} and if

‖[u, v]‖ < δ and Bott(u, v) = 0,

then there exists a continuous path of unitaries {ut}t∈I of A such that

u0 = u, u1 = 1 and ‖[ut, v]‖ < ε.

Morover,

Length(ut) ≤ π + ε.

11



Chapter 3

Matrix Varieties and Toroidal

Matrix Links

Let us denote by H a universal separable Hilbert space, by B(H) the C∗-algebra of

bounded operators on H, and for any given S ⊆ B(H) let us denote by Br(S) the

closed r-ball in S defined by Br(S) := {x ∈ S|‖x‖ ≤ r}.

Given some N ∈ Z+ and a set R(S) = R(y1, . . . , yN) of normed polynomial

relations on the N -set S := {y1, . . . , yN} of NC-variables, we will call the set Z[R]

described by

Z[R] := {x1, . . . , xN |R(x1, . . . , xN)} (3.0.1)

with x1, . . . , xN ∈ B1(B(H)), a noncommutative semialgebraic set.

Example 3.0.1 As an example of normed NC-polynomial relations we can consider

the set R(x, y) := {‖x4 − 1‖ ≤ 10−10, ‖y7 − 1‖ ≤ 10−10, ‖xy − yx‖ ≤ 1
8
, xx∗ = x∗x =

1, yy∗ = y∗y = 1}.

Given a NC-semialgebraic set Z[R], we will use the symbol EZ[R] to denote the

12



Chapter 3. Matrix Varieties and Toroidal Matrix Links

universal C∗-algebra

EZ[R] := C∗ 〈x1, . . . , xN |R(x1, . . . , xN)〉 , (3.0.2)

which we call the environment C∗-algebra of Z[R]. For details on universal C∗-

algebras described in terms of generators and relations the reader is referred to [26].

Definition 3.0.2 (Semialgebraic Matrix Varieties) Given J ∈ Z+, a system of

J polynomials p1, . . . , pJ ∈ Π〈N〉 = C 〈x1, . . . , xN〉 in N NC-variables x1, . . . , xN ∈

Π〈N〉 and a real number ε ≥ 0, a particular matrix representation of the noncommu-

tative semialgebraic set Zε,n(p1, . . . , pJ) described by

Zε,n(p1, . . . , pJ) := {X1, . . . , XN ∈Mn | ‖pj(X1, . . . , XN)‖ ≤ ε, 1 ≤ j ≤ J } ,

(3.0.3)

will be called a ε, n-semialgebraic matrix variety (ε, n-SMV), if ε = 0 we can

refer to the set as a matrix variety.

Example 3.0.2 As a first example, we will have that the set Zn := {X ∈ Mn|NnX

−XNn = 0} is a matrix variety defined by the set with one NC-polynomial relation

{NnX−XNn = 0}. If for some δ > 0, we set now Zn,δ := {X ∈Mn|‖[Nn, X]‖ ≤ δ},

the set Zn,δ is a matrix semialgebraic variety defined by the set with one normed NC-

polynomial relation {‖NnX −XNn‖ ≤ δ}.

Example 3.0.3 Other examples of matrix semialgebraic varieties, that have been

useful to understand the geometric nature of the problems solved in this document,

are described by the matrix sets Isoδ(x, y), STδ(x, y, u) and ST
(m)
δ (x, y, u), defined

for some given δ ≥ 0, m ≥ 1, any two normal contractions x and y and some fixed

but arbitrary unitary u in Mn, by the expressions

Isoδ(x, y) :=

(z, w) ∈ N (n)(D2)× U(n)

∣∣∣∣∣∣∣∣∣
‖xw − wz‖ = 0

‖[z, y]‖ = 0

‖z − y‖ ≤ δ

 ,

13
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STδ(x, y, u) :=

(z, v) ∈ N (n)(D2)× U(n)

∣∣∣∣∣∣∣∣∣
‖vx− zv‖ = 0,

‖[z, y]‖ = 0, ‖z − y‖ ≤ δ,

‖[u, x]‖ = ‖[u, y]‖ = 0.

 ,

ST
(m)
δ (x, y, u) :=


(z, v) ∈ N (n)(D2)× U(n)2

∣∣∣∣∣∣∣∣∣∣∣

‖vx− zv‖ = 0,

‖[z, y]‖ = 0, ‖z − y‖ ≤ δ,

‖[u, x]‖ = ‖[u, y]‖ = 0,

um = 1n.


.

3.1 Toroidal Matrix Links

3.1.1 Finsler manifolds, matrix paths and toroidal matrix

links

Definition 3.1.1 (Finsler manifold) A Finsler manifold is a pair (M,F ) where

M is a manifold and F : TM → [0,∞) is a function (called a Finsler norm) such

that

• F is smooth on TM\{0} =
⋃
x∈M{TxM\{0}},

• F (v) ≥ 0 with equality if and only if v = 0,

• F (λv) = λF (v) for all λ ≥ 0,

• F (v + w) ≤ F (v) + F (w) for all w at the same tangent space with v.

Given a Finsler manifold (M,F ), the length of any rectifiable curve γ : [a, b]→M

is given by the length functional

L[γ] =

∫ b

a

F (γ(t), ∂tγ(t)) dt,

14
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where F (x, ·) is the Finsler norm on each tangent space TxM .

The pair (N , ‖ · ‖) is a Finsler manifold, where N denotes the set of normal

matrices N (of any size) and ‖ · ‖ denotes the operator norm.

Definition 3.1.2 (Matrix path curvature) Given a piecewise-C2 matrix path γ :

[0, 1]→ N , we define its curvature κ[γ] to be

κ[γ] :=
1

‖∂tγ(t)‖

∥∥∥∥∂t( ∂tγ(t)

‖∂tγ(t)‖

)∥∥∥∥ .
Definition 3.1.3 (Matrix flows) Given n ≥ 1, a mapping φ : R+

0 ×Mn → Mn,

(t, x) 7→ xt will be called a matrix flow in this document. If we have in addition that

σ(xt) = σ(xs) for every t, s ≥ 0, we say that the matrix flow is isospectral.

Definition 3.1.4 (interpolating path) Given two matrices x and y in Mn and a

matrix flow φ : I ×Mn → Mn such that φ0(x) = x and φ1(x) = y, we say that the

corresponding path {xt}t∈I := {φt(x)}t∈I ⊆ Mn is a solvent path for the interpolation

problem x y.

Definition 3.1.5 (`‖·‖) Given a matrix path {xt}t∈I in Mn we will write `‖·‖(xt) to

denote the length of {xt}t∈I with respect to the operator norm which is defined by the

expression

`‖·‖(xt) := sup
m−1∑
k=0

‖xtk+1
− xtk‖,

where the supremum is taken over all partitions of I as 0 = t0 < . . . < tm = b. If the

function x ∈ C(I,Mn) is a piecewise C1 function, then

`‖·‖(xt) =

∫
I
‖∂txt‖dt.

Definition 3.1.6 (‖ · ‖-flatness) A set S of Mn is said to be ‖ · ‖-flat if any two

points x, y ∈ S can be connected by a path {xt}t∈I ⊆ S such that `‖·‖(xt) = ‖x− y‖.

15
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Definition 3.1.7 (Toroidal matrix link) Given any two normal contractions x, y

in Mn, a toroidal matrix link is any normal path xt := K[Tt(l(x))] induced by a locally

normal matrix flow T : I ×MN → MN with N ≥ n, together with a locally normal

compression K : MN → Mn with relative lifting map l : Mn → MN , which satisfy

the interpolating conditions K[T0(l(x))] = x and K[T1(l(x))] = y together with the

constraints ‖K[Tt(l(x))]‖ ≤ 1 for each t ∈ I.

Remark 3.1.1 In the particular case where [K(Tt(l(x))),K(Tt(l(y)))] = 0 for each

t ∈ I, whenever [x, y] = 0, we call T a toral matrix link.

Remark 3.1.2 The curved nature of the matrix varieties (as Finsler sub-mani-

folds of N ) whose local connectivity is studied in this document, induces an obstruc-

tion to local connectivity via entirely flat toroidal matrix links in general. The toroidal

matrix links T ⊂ C([0, 1],N ) we have used to solve the connectivity problems which

motivated this study satisfy the constraint

0 ≤ κ[T ] ≤ 2

`‖·‖(T )
, ∀T ∈ T.

3.1.2 Embedded matrix flows in solid tori

Given some fixed but arbitrary W ∈ U(n), using the operation diagn : Mn →Mn one

can define the mapping D : U(n)×Mn → D2, determined by the expression.

U(n)×Mn → D2 (3.1.1)

(W,x) 7→ DT[W ](x) (3.1.2)

(W,x) 7→ {(diagn [WxW ∗])k,k}1≤k≤n (3.1.3)

It is clear that diag [DT[W ](x)] = diagn [WxW ∗] and that diag [DT[1n](x)] = diagn [x],

because of this when W = 1n we will write D(x) instead of DT[1n](x).

16
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Given a matrix flow I × N (n)(D2) → N (n)(D2), (t, x) 7→ Xt(x), one can identify

X with the set of flow lines in D2×T1 determined by {(D(Xt(x)), e2πit)}t∈I. The geo-

metric picture determined by the mapping cylinder N (n)(D2)× I→ D2×T1, (x, t) 7→

(D(Xt(x)), e2πit) will be called the embedded matrix mapping cylinder relative to the

flow X. We can think of the embedded matrix mapping cylinder in topological terms

as a deformation described by the expression DX,Z2 , which is defined as

DX,Z2 [Z1 × I] :=
(Z1 × I) t Z2

Z1  X1 Z2

, (3.1.4)

where Z1 and Z2 are some prescribed matrix varieties such that x ∈ Z1 and y ∈ Z2.

Example 3.1.1 (Graphical example in M3) Let us set û3 := e
2πi
3

N3. For some

prescribed W3 ∈ U(3), we can obtain a graphical example of a particular geometric

picture of the computation of the embedded matrix mapping cylinder relative to the

interpolating flow u which solves the problem û3  W3û3W
∗
3 .

Let us set

Z1 := {z ∈ U(3)|[û3, z] = 0},

Z2 := {z ∈ U(3)|[W3û3W
∗
3 , z] = 0}.

Using projective methods, we can trace specific flow lines along the matrix flows

corresponding to the dynamical deformation Du,Z2 [Z1×I], which solve the interpolation

problem û3  W3û3W
∗
3 .

A particular (approximate) geometric picture of the matrix deformation induced

by the toral matrix link {ut}t∈I in Mn, projected in D2 × T1 via DT[û3](·) is presented

in figures F.3.1-F.3.3.

Alternative methods to trace particular flow lines on mapping cylinders can be

otained using matrix homotopies, which can be done using similar methods to the

ones implemented in [8].
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Figure 3.1: Projected matrix mapping cylinder corresponding to the orbit u[0, 1
2
](û3)

in M3.

Figure 3.2: Projected matrix mapping cylinder corresponding to the orbit uI(û3) in
M3.

Figure 3.3: Embedded matrix mapping cylinder corresponding to the orbit uI(û3) in
M3.

3.2 Environment algebras and localization

Definition 3.2.1 (Environment algebra (of a matrix algebra)) Given a mat-

rix algebra A ⊆ Mn, a universal C∗-algebra EA := C∗1 〈x1, . . . , xm|R(x1, . . . , xm)〉 for

18
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which there is a matrix representation EA � EA ⊆ Mn such that A ⊆ EA, will be

called an environment algebra for A.

Let us consider the universal C∗-algebras C(J), C(T1), C(T1) ∗C C(T1), Cδ(T2)

and Cδ(J× T1), defined in terms of generators and relations by the expressions.

C(J) := C∗1

〈
u
∣∣∣ h∗ = h, ‖h‖ ≤ 1

〉

C(T1) := C∗1

〈
u
∣∣∣ uu∗ = u∗u = 1

〉

C(T1) ∗C C(T1) := C∗1

〈
u, v

∣∣∣∣∣∣ uu
∗ = u∗u = 1,

vv∗ = v∗v = 1

〉

Cδ(T
2) := C∗1

〈
u, v

∣∣∣∣∣∣∣∣∣
uu∗ = u∗u = 1,

vv∗ = v∗v = 1,

‖uv − vu‖ ≤ δ

〉

Cδ(J× T1) := C∗1

〈
h, u

∣∣∣∣∣∣∣∣∣
h∗ = h, ‖h‖ ≤ 1

uu∗ = u∗u = 1,

‖hu− uh‖ ≤ δ

〉

Let us consider now a local matrix representation result that we will use later in

the construction of particular representation schemes.

19



Chapter 3. Matrix Varieties and Toroidal Matrix Links

Lemma 3.2.1 For every integer n ≥ 1, there are s2, un, vn ∈ U(M∞) such that the

diagram

C(T1)∗2

����

// // C∗ 〈(Z/n)∗2〉 // // C∗n(un, vn)

C∗ 〈Z/n ∗ Z/2〉 // // C∗n(s2, vn) Mn

commutes, where s2 ∈ H(n), un and vn are unitary elements in Mn.

Proof. Since we have that C(T1)∗2 ' C∗ 〈F2〉 ' C∗(Z∗2), by universality of the

C∗-representa-tions

C∗(Z∗2) ' C∗

〈
u, v

∣∣∣∣∣∣ uu
∗ = u∗u = 1,

vv∗ = v∗v = 1

〉

C∗((Z/n)∗2) ' C∗

〈
u, v

∣∣∣∣∣∣∣∣∣
uu∗ = u∗u = 1,

vv∗ = v∗v = 1,

un = vn = 1

〉

C∗(Z/n ∗ Z/2) ' C∗

〈
u, v

∣∣∣∣∣∣∣∣∣
uu∗ = u∗u = 1,

vv∗ = v∗v = 1,

un = v2 = 1

〉
,

and by the structural properties of Mn, it is enough to find for any n ∈ Z+, up to

unitary congruence in Mn, three unitaries s2, un, vn ∈ U(n) such that C∗(s2, vn) =

Mn = C∗(un, vn) and unn = vnn = s22 = 1n, this can be done by taking for any

n ∈ Z+ the orthogonal projection p := diag [1, 0, . . . , 0] ∈ H(n) and the matrix

s2 = 1 − 2p ∈ H(n), setting un := Ωn and vn := Σn for n ≥ 2 and u1 = v1 = 1

for n = 1, by functional calculus and direct computations it is easy to verify that

s2, un, vn ∈ U(n) for every n ∈ Z+, and that s2 = s∗2, it is also easy to verify that the

system of matrix units { ei,j,n }1≤i,j≤n and un can be expressed as words in C∗(s2, vn)

for every n ∈ Z+, it is also clear that p = e1,1,n and hence, s2 can be written as

linear combinations of words in C∗(un, vn), we will then have that C∗ 〈Z/n ∗ Z/2〉�

20



Chapter 3. Matrix Varieties and Toroidal Matrix Links

C∗(vn, s2) and C∗ 〈Z/n∗2〉� C∗(un, vn) by the universal properties of C∗ 〈Z/2 ∗ Z/n〉

and C∗ 〈Z/n∗2〉 respectively, since it can be easily verified that

unn = vnn = s22 = 1n,

from these facts and the universal property of C(T1)∗2 ' C∗ 〈F2〉 ' C∗ 〈Z∗2〉, the

result follows. �

Remark 3.2.1 It can be seen that for any matrix C∗-subalgebra A ⊆ Mn, there is

δ > 0 such that both C(T1) ∗C C(T1) and Cδ(T2) are environment algebras of A. It

can also be seen that for any abelian C∗-subalgebra D ⊆Mn, C(T1) is an environment

algebra of D.

3.2.1 Localized matrix representations

Definition 3.2.2 (Localized N-tuples in N (n)(D2)N) Given two integers N ≤

M and a universal C∗-algebra L(z1, . . . , zM) := C∗ 〈z1, . . . , zM |RL(z1, . . . , zM)〉, we

say that two N-tuples X1, . . . , XN and Y1, . . . , YN of normal contractions in Mn are

δ-localized with respect to L(z1, . . . , zM), if there are Z1, . . . , ZM ∈ N (n)(D2) such

that

C∗(Z1, . . . , ZN) ⊆ C∗(Z1, . . . , ZM)� L(z1, . . . , zM)

and max1≤j≤N{‖Xj − Zj‖, ‖Yj − Zj‖} ≤ δ.

Given two abelian C∗-subalgebras D1, D2 ⊆ Mn and any two normal matrices

N1, N2 ∈ Mn with distinct eigenvalues such that [N1, X1] = [N2, X2] = 0 for every

X1 ∈ D1 and every X2 ∈ D2, let us set A := C∗(N1, N2) ⊆ Mn, the situation in

R.3.2.1 can be ilustrated via the following diagram of C∗-representations.
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Cδ(T2)

Cδ(J× T1)

OO

EA

OO

C∗(N1)

''

88

BB

@@

// C∗(N2)

ff

^^

\\

ww
A

D1

77

OO

// D2

OO

gg

(3.2.1)

3.3 Dimensionality Reduction of Matrix Semialge-

braic Varieties

Definition 3.3.1 (Dimensionality reduction condition (DRC)) Given any in-

teger n ≥ 1, any δ > 0 and N pairwise commuting normal contractions X1, . . . , XN

in Mn, we say that normal contractions have the dimensionality reduction condition

(DRC), if there are a number M ≤ N , M indices j1 < · · · < jM ∈ {1, . . . , N} and

a set of N functions FN := {f1, . . . , fN} ⊂ C(D2,D2), such that for each 1 ≤ k ≤ N

we have ‖Xk − fk(Xj1 , . . . , XjM )‖ ≤ δ. If the functions f1, . . . , fN and the number

δ > 0 do not depend on n, we will say X1, . . . , XN have the uniform dimension-

ality reduction condition (UDRC). We will write dimδ(Λ(X1, . . . , XN))) = M or

dimU
δ (Λ(X1, . . . , XN))) = M if the normal contraction X1, . . . , XN = N have that

(DRC) or (UDRC) respectively, because of the corresponding geometric implica-

tions in the joint spectrum Λ(X1, . . . , XN) of X1, . . . , XN .
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Example 3.3.1 (DRC in an approximate Matrix 2-Sphere) Given δ > 0, any

three pairwise commuting matrices X1, X2, X3 ∈ H(n) and two functions f2, f3 ∈ C(J)

such that 
‖X2

1 +X2
2 +X2

3 − 1n‖ ≤ δ,

‖f2(X1)−X2‖ ≤ δ,

‖f3(X1)−X3‖ ≤ δ.

We will have that dimδ(Λ(X1, X2, X3)) = 1.

Example 3.3.2 (DRC in an approximate Matrix 3-Sphere) Given δ > 0, any

four pairwise commuting matrices X1, X2, X3, X4 ∈ H(n) and two functions f3, f4 ∈

C(J2) such that 
‖X2

1 +X2
2 +X2

3 +X2
4 − 1n‖ ≤ δ,

‖f3(X1, X2)−X3‖ ≤ δ,

‖f4(X1, X2)−X4‖ ≤ δ.

We will have that dimδ(Λ(X1, X2, X3, X4)) = 2.

Example 3.3.3 (DRC in a Matrix 2-Torus) Given δ > 0, two pairwise commut-

ing matrices U1, U2 ∈ U(n) and one function f2 ∈ C(T1,T1) such that ‖U2−f2(U1)‖ ≤

δ. We will have that dimδ(Λ(U1, U2)) = 1.

Lemma 3.3.1 (Non-derogatory normal approximants) Given any δ > 0 and

any two normal matrices X, Y in Mn such that ‖X−Y ‖ ≤ δ, there is a nonderogatory

matrix X̃ such that, max{‖X̃ −X‖, ‖X̃ − Y ‖} ≤ 3
2
δ.

Proof. Let us set δ′ := 1
2

min{minxj ,xk∈σ(X){|xj − xk| | xj 6= xk}, δ}. By chang-

ing basis if necessary we can assume that X is diagonal, by applying permutation

congruence transformations in necessary we can also assume that X has a diag-

onal block decomposition X = X1 ⊕ X2 ⊕ . . . ⊕ Xr. Given any diagonal block

X(j) := diag [xj1 , . . . , xjm ] = diag [xj1 , . . . , xj1 ] of m repeated eigenvalues of X, we
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can form the block X̃(j) := diag [xj1 , . . . , xjm ] + diag

[{
(k−1)δ′
m−1

}
1≤k≤m

]
, we will have

that the matrix X̃ := X̃(1) ⊕ · · · ⊕ X̃(r) satisfies the inequality ‖X − X̃‖ ≤ 1
2
δ, more-

over, we will also have that ‖X̃ − Y ‖ ≤ ‖X̃ −X‖+ ‖X − Y ‖ ≤ 3
2
δ and we are done.

�

Definition 3.3.2 (Nearby generators) Given δ > 0 and N normal contractions

X1, . . . , XN in Mn, we call a non-derogatory normal contraction X̃ like the one de-

scribed in L.3.3.1 a δ-nearby generator of X1, . . . , XN . The reason for this is that

C∗(X1, . . . , XN) ⊆ C∗(X̃).

Remark 3.3.1 It is important to notice that if we allow δ > 0 to depend on n, any

N normal contractions X1, . . . , XN ⊆Mn will satisfy dimδ(Λ(X1, . . . , XN)) = 1.
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Local Matrix Connectivity

4.1 Topologically controlled linear algebra and

Soft Tori

Definition 4.1.1 (Controlled sets of matrix functions) Given δ > 0, a func-

tion ε : R → R+
0 , a finite set of functions F ⊆ C(T1,D2) and two unitary matrices

u, v ∈ Mn such that ‖uv − vu‖ ≤ δ, we say that the set F is δ-controlled by Ad[v] if

the diagram,

C∗(u, v) C∗(u)oo

Ad[v]

��

{u}
Ad[v]

��

ı
oo

f

≈ε(δ) &&

C∗(vuv∗)

ff

{vuv∗}ı
oo

f
// N (n)(D2)

commutes up to an error ε(δ) for each f ∈ F .

Remark 4.1.1 The C∗-homomorphism Cδ(T2) → C∗(u, v) allows us to see that the

Soft Torus Cδ(T2) provides an environment algebra for any δ-controlled set of matrix

functions.
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Lemma 4.1.1 (Existence of δ-JMP) Given any δ ≥ 0, for any 2 families of N

pairwise commuting normal matrices x1, . . . , xN and y1, . . . , yN such that ‖xj−yj‖ ≤ δ

for each 1 ≤ j ≤ N , there are a constant cN (which depends only on the number of

matrices in each family) and a permutation matrix T ∈ U(n) such that, ‖T λ(xj)T −

λ(yj)‖ ≤ cNδ for each 1 ≤ j ≤ N .

Proof. From T.2.2.1 we will have that there is a permutation τ of the index set

{1, . . . , n} such that for each 1 ≤ k ≤ n we have that

|Λ(k)(xj)− Λ(τ(k))(yj)| ≤ ‖Λ(k)(x1, . . . , xN)− Λ(τ(k))(y1, . . . , yN)‖

≤ eN,0‖Cliff(x1 − y1, . . . , xN − yN)‖. (4.1.1)

Using 2.2.1 and as a consequence of 4.1.1 we can find a permutation matrix T ∈ U(n)

such that

‖T ∗diag [Λ(xj)] T − diag [Λ(yj)] ‖ ≤ eN,0‖Cliff(x1 − y1, . . . , xN − yN)‖(4.1.2)

≤ eN,0Nδ, 1 ≤ j ≤ N. (4.1.3)

It can be seen that cN := eN,0N and T satisfy the required conditions in the statement

of the lemma and we are done. �

Remark 4.1.2 Any permutation T satisfying the normed relation in the conclu-

sion of L.4.1.1 will be called a joint matching permutation (JMP) for the matrices

x1, . . . , xy and y1, . . . , yN .

Remark 4.1.3 If for the matrices x1, . . . , xN and y1, . . . , yN in L.4.1.1, we consider

a basis in which y1, . . . , yN are diagonal, then there is a unitary W ∈ Mn and a

(JMP) T ∈Mn such that

‖Wdiag [Λ(xj)]W
∗ − T diag [Λ(xj)] T ∗‖ ≤ ‖Wdiag [Λ(xj)]W

∗ − yj‖

+‖yj − T diag [Λ(xj)] T ∗‖

≤ (1 + cN)‖xj − yj‖ ≤ (1 + cN)δ.
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It can be seen that the previous inequalities provide us with a particular representation

of a δ-controlled set of matrix functions.

4.2 Local piecewise analytic connectivity

In this section we will present some piecewise analytic local connectivity results in

matrix representations of the form Cε(T2)→Mn ← C(TN) and Cε(J×T1)→Mn ←

C(JN).

Theorem 4.2.1 (Local normal toral connectivity) Given ε > 0 and any n ∈

Z+, there is δ > 0 such that, for any 2N normal contractions x1, . . . , xN and y1, . . . ,

yN in Mn which satisfy the relations [xj, xk] = [yj, yk] = 0, 1 ≤ j, k ≤ N,

‖xj − yj‖ ≤ δ, 1 ≤ j ≤ N,

there exist N toroidal matrix links X1, . . . , XN in Mn, which solve the problems

xj  yj, 1 ≤ j ≤ N,

and satisfy the constraints  [Xj
t (xj), X

k
t (xk)] = 0,

‖Xj
t (xj)− yj‖ ≤ ε,

for each 1 ≤ j, k ≤ N and each t ∈ I. Moreover,

`‖·‖(X
j
t (xj)) ≤ ε, 1 ≤ j ≤ N.

Proof. By changing basis if necessary, we can assume that y1, . . . , yN are diagonal.

Let us set M := max1≤j≤N ‖xj − yj‖. By L.4.1.1 and R.4.1.3 we will have that there
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are diagonal matrices x̃1, . . . , x̃N in N (n)(D2), W ∈ U(n) and a constant cN , such

that xj := Wx̃jW
∗ and

‖Wx̃j − x̃jW‖ ≤ (1 + cN)M, 1 ≤ j ≤ N. (4.2.1)

By taking any diagonal hermitain matrix H with distinct eigenvalues and by

setting A := C∗(W,H), we can now solve the interpolation problems using the generic

matrix models C∗(y1, . . . , yN) ⊆ C∗(H) and C∗(x1, . . . , xN) ⊆ C∗(WHW ∗) related to

the environment algebra EA = Cδ(J× T1) via a diagram of the form 3.2.1.

As a consequence of L.2.3.1, L.2.3.2 and the normed inequalities 4.2.1, we have

that for any εcN δ > 0, we can find δ > 0 and a unitary path W ∈ C(I,Mn) defined

by the expression Wt := e−itHW for each t ∈ I, where HW ∈ Mn is a hermitian

matrix such that eiHW = W , and is defined by HW := h(W ), for some function

h : Ωα
d,s → [−1, 1], and where σ(W ) ⊂ Ωα

d,s := {ei(πt+α)| − 1 + s < t < 1 − s} ⊂ T1,

with s, α ∈ R chosen in such a way that T1\Ωα
d,s contains an arc of length d (with

d ≥ 2π/n). Using the path W , we can construct N toroidal matrix links of the form

Xj
t :=

 Ad[W2t](xj), 0 ≤ t ≤ 1
2
,

(2− 2t)x̃j + (2t− 1)yj,
1
2
≤ t ≤ 1,

(4.2.2)

which solve the problems xj  yj, locally preserve normality and commutativity and

for ε := (1 + cN) max{εcN δ, δ} ≥ 0 satisfy the ‖ · ‖-distance constraints

‖Xj
t − yj‖ ≤ ‖Xj

t − x̃j‖+ ‖yj − x̃j‖

≤ εcN δ + cNδ

≤ ε

(1 + cN)
+

cNε

(1 + cN)
= ε,
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together with the ‖ · ‖-length constraints

`‖·‖(X
j
t ) ≤ `‖·‖(Ad[Wt](xj)) + ‖x̃j − yj‖ (4.2.3)

=

∫
I
‖∂tAd[Wt](xj)‖dt+ ‖x̃j − yj‖ (4.2.4)

= ‖[HW , x̃j]‖+ ‖x̃j − yj‖ (4.2.5)

≤ εcN δ + cNδ ≤ ε, (4.2.6)

which hold whenever ‖xj − yj‖ ≤ δ, 1 ≤ j ≤ N , and we are done. �

Corollary 4.2.1 (Local hermitian toral connectivity) Given ε > 0 and any in-

teger n ≥ 1, there is δ > 0 such that, for any 2N hermitian contractions x1, . . . , xN

and y1, . . . , yN in Mn which satisfy the relations [xj, xk] = [yj, yk] = 0, 1 ≤ j, k ≤ N,

‖xj − yj‖ ≤ δ, 1 ≤ j ≤ N,

there exist N toroidal matrix links X1, . . . , XN in Mn, which solve the problems

xj  yj, 1 ≤ j ≤ N,

and satisfy the constraints 
[Xj

t (xj), X
k
t (xk)] = 0,

Xj
t (xj) = (Xj

t (xj))
∗,

‖Xj
t (xj)− yj‖ ≤ ε,

for each 1 ≤ j, k ≤ N and each t ∈ I. Moreover,

`‖·‖(X
j
t (xj)) ≤ ε, 1 ≤ j ≤ N.

Proof. Since for any α ∈ R, any pair of hermitian matrices x, y ∈ H(n) and any

partial unitary z ∈ PU(n), we have that x+ α(y − x) and zxz∗ are also in H(n), the

result follows as a consequence of L.4.1.1, R.4.1.3 and T.4.2.1. �
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Theorem 4.2.2 (Local unitary toral connectivity) Given any ε ≥ 0 and any

integer n ≥ 1, there is δ ≥ 0 such that given any 2N unitary matrices U1, . . . , UN

,V1, . . . , VN in Mn which satisfy the relations [Uj, Uk] = [Vj, Vk] = 0,

‖Uk − Vk‖ ≤ δ,

for each 1 ≤ j, k ≤ N , there are toroidal matrix links u1, . . . , uN in Mn which solve

the interpolation problems

Uk  Vk, 1 ≤ k ≤ N,

and also satisfy the relations
[ujt , u

k
t ] = 0,

(ujt)
∗ujt = ujt(u

j
t)
∗ = 1n,

‖ujt − Vj‖ ≤ ε,

for each t ∈ I and each 1 ≤ j, k ≤ N . Moreover, `‖·‖(u
j
t) ≤ ε, 1 ≤ j ≤ N .

Proof. By changing basis if necessary we can assume that V1, . . . , VN are diagonal

matrices. Let us set M := maxj{‖uj− vj‖}. By L.4.1.1 and R.4.1.3 we will have that

there are W ∈ U(n), diagonal unitaries Ṽ1, . . . , ṼN ∈ Mn and a constant cN , such

that Uj = WṼjW
∗ and

‖WṼj − ṼjW‖ ≤ (1 + cN)M, 1 ≤ j ≤ N. (4.2.7)

By taking any diagonal unitary U with distinct eigenvalues and setting A :=

C∗(W,U), we can obtain generic matrix models C∗(V1, . . . , VN) ⊆ C∗(U) and C∗(U1,

. . . , UN) ⊆ C∗(WUW ∗) to solve the interpolation problems, which are related to the

environment algebra EA = Cδ(T2) via a diagram of the form 3.2.1.

As a consequence of the inequalities 4.2.7 and by applying L.2.3.1 and L.2.3.2,

we have that for any εcN δ > 0, there are δ > 0 and a unitary path W ∈ C(I,Mn)
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defined by the expressionWt := e−itHW for each t ∈ I, where HW ∈Mn is a hermitian

matrix such that eiHW = W , and is defined by HW := h(W ), for some function

h : Ωα
d,s → [−1, 1], and where σ(W ) ⊂ Ωα

d,s := {ei(πt+α)| − 1 + s < t < 1 − s} ⊂ T1,

with s, α ∈ R chosen in such a way that T1\Ωα
d,s contains an arc of length d (with

d ≥ 2π/n).

Using the path W , we can construct N local commutativity preserving piecewise

smooth unitary paths, that will be defined for each 1 ≤ j ≤ N by

ujt :=

 Ad[W2t](Uj), 0 ≤ t ≤ 1
2
,

e(2t−1) ln(Ṽ
∗
j Vj)Ṽj,

1
2
≤ t ≤ 1.

(4.2.8)

It can be seen that the unitary toral matrix links 4.2.8 solve the interpolation problems

Uj  Vj, 1 ≤ j ≤ N , and locally preserve commutativity. As a consequence of the

evident ‖ · ‖-flatness of U(C∗(U)), if we set ε := (1 + cN) max{εcN δ, δ} we can use

L.2.3.1 and L.2.3.2 again to obtain for each 1 ≤ j ≤ N the ‖ · ‖-distance estimates

‖ujt − Vj‖ ≤ ‖ujt − Ṽj‖+ ‖Ṽj − Vj‖

≤ εcN δ + cNδ

≤ ε

1 + cN
+

cNε

1 + cN
= ε.

for each t ∈ I, together with the ‖ · ‖-length estimates

`‖·‖(u
j
t) ≤ `‖·‖(Ad[Wt](Uj)) + `‖·‖(e

t ln(Ṽ ∗j Vj)Ṽj)

=

∫
I
‖∂tAd[Wt](Uj)‖dt+ ‖Ṽj − Vj‖

= ‖[HW , Ṽj]‖+ ‖x̃j − yj‖

≤ εcN δ + cNδ ≤ ε,

which hold whenever ‖Uj − Vj‖ ≤ δ for each 1 ≤ j ≤ N , and we are done. �

Theorem 4.2.3 (Locally symmetric toral linking) Given ε > 0 and any n ∈

Z+, there is δ > 0 such that, for any 2N normal contractions x1, . . . , xN , y1, . . . , yN
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and any unitary matrix u in Mn which satisfy the relations [u, xj] = [u, yj] = [xj, xk] = [yj, yk] = 0, 1 ≤ j, k ≤ N,

‖xj − yj‖ ≤ δ, 1 ≤ j ≤ N,

there exist N toroidal matrix links X1, . . . , XN in Mn, which solve the problems

xj  yj, 1 ≤ j ≤ N,

and satisfy the constraints [u,Xj
t (xj)] = [Xj

t (xj), X
k
t (xk)] = 0,

‖Xj
t (xj)− yj‖ ≤ ε,

for each 1 ≤ j, k ≤ N and each t ∈ I. Moreover,

`‖·‖(X
j
t (xj)) ≤ ε, 1 ≤ j ≤ N.

Proof. By changing basis if necessary, we can assume that y1, . . . , yN and u are

diagonal. We will have that u commutes with both x1, . . . , xN and y1, . . . , yN , this

constraint will force the matrices x1, . . . , xN to have a block structure of the form,

xj :=


X

(j)
1,1 0 · · · 0

0 X
(j)
2,2 · · · 0

...
...

. . .
...

0 0 0 X
(j)
m,m

 , 1 ≤ j ≤ N,

for some m ≤ n. Let us set M := maxj{‖xj − yj‖}, by L.4.1.1 and R.4.1.3 we will

have that there are W ∈ U(n), diagonal normal contractions x̃1, . . . , x̃N ∈ Mn and a

constant cN , such that xj = Wx̃jW
∗ and

‖Wx̃j − x̃jW‖ ≤ (1 + cN)M, 1 ≤ j ≤ N. (4.2.9)

For each 1 ≤ j ≤ N and each 1 ≤ k ≤ m, let us consider the joint spectral decompo-

sitions X
(j)
k,k = WkΛ(X

(j)
k,k)W

∗
k and let us set W := W1 ⊕ · · · ⊕Wm.
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Since T1\σ(W ) contains an arc of length at least 2π/n, we can apply a similar

functional calculus trick to the one implemented in the proof of L.2.3.1 to find a

hermitian matrix HW := h(W ), for some h : Ωα
d,s → [−1, 1] (with Ωα

d,s defined as in

T.4.2.1), such that W = eiHW . By hypothesis and elementary functional calculus we

will have that

uHWu
∗ = uh(W )u∗ = h(uWu∗) = h(W ) = HW , (4.2.10)

and this implies that if we set Xj
t (xj) := eitHW x̃je

itHW , then [u,Xj
t (xj)] for each t ∈ I.

The result now follows by using a similar argument to the one used for the proof of

T.4.2.1. �

4.3 Almost Z/m-centralized normal matrices

In this section we will present an application of L.2.3.1 and L.2.3.2 which is less

general than T.4.2.1 since it considers a much simpler geometric situation, we include

this result because of its potential applications to the (uniform) approximate solution

of matrix and operator equations and to the solution of constrained inverse eigenvalue

problems.

Definition 4.3.1 Given δ > 0 any integer n ≥ 1, some fixed but arbitrary integer

m ≥ 1, a matrix representation Z/m→ U(n),Z/m 3 1Z/m 7→ G ∈ U(n) (where 1Z/m

is the generator of Z/m) and a subset S ⊆ N (n), we say that the set S is (Z/m, δ)-

centralized with respect to G, if ‖[G, s]‖ ≤ δ for each s ∈ S. In particular we say that

a matrix x ∈ N (n) is (Z/m, δ)-centralized if ‖[G, x]‖ ≤ δ. (The explicit reference to

G will be omitted when it is clear from the context.)

Lemma 4.3.1 (Approximate almost Z/m-centralized normal matrices) For

any ε > 0 and a matrix representation Z/m → U(n),Z/m 3 1Z/m 7→ G ∈ U(n),
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there is δ > 0 such that, for any N pairwise commuting (Z/m, δ)-centralized matrices

X1, . . . , XN ∈ N (n)(D2) there are N pairwise commuting (Z/m, 0)-centralized matri-

ces X̃1, . . . , X̃N ∈ N (n)(D2) and N toral matrix links T 1, . . . , T N ∈ C(I,Mn) which

solve the problems Xj  X̃j and satisfy the constraints ‖T jt − X̃j‖ ≤ ε for each t ∈ I

and 1 ≤ j ≤ N . Moreover, `‖·‖(T jt ) ≤ ε, 1 ≤ j ≤ N .

Proof. The correspondence 1Z/m 7→ G implies that GM = 1n. By elementary

representation theory we have that for each 1 ≤ j ≤ N , the matrices

X̃j :=
1

m

m−1∑
j=0

GXj(G
m)∗,

will satisfy the relations [G, X̃j] = 0. Using similar techniques to the ones imple-

mented in the proof of [28, L.2.3] we can obtain the estimates

‖X̃j‖ =
1

m

∥∥∥∥∥
m−1∑
j=0

GXj(G
m)∗

∥∥∥∥∥ ≤ ‖Xj‖

and

‖GXj −XjG‖ ≤ ‖GXjG
∗ − X̃j‖+ ‖X̃j −Xj‖

= ‖GXjG
∗ −GX̃jG

∗‖+ ‖X̃j −Xj‖

≤ 2‖X̃j −Xj‖

≤ 2m(m− 1)

2m
‖[G, Xj]‖ = (m− 1)‖[G, Xj]‖,

for each 1 ≤ j ≤ N . It is clear now that we can find δ > 0 small enough such that, by

using L.2.3.1 and L.2.3.2 we can procced as in the proof of T.4.2.1 to find the solvent

toral matrix links T 1, . . . , T N ∈ C(I,Mn), and we are done. �

4.4 Lifted local piecewise analytic connectivity

Definition 4.4.1 (Symmetry dilations) Given any unitary u ∈Mn, we will write

ûs to denote its corresponding unitary dilation ûs := (Σ2 ⊗ 1n)(u∗ ⊕ u) in M2n.
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Definition 4.4.2 (Standard dilations) We will denote by κ the matrix compres-

sion M2n →Mn defined by the mapping

κ : M2n →Mn,

 x11 x12

x21 x22

 7→ x11.

We say that X ∈M2n is a standard dilation of x ∈Mn if x = κ(X).

In this section we will derive some uniform connectivity results by using a dilation

technique consisting on constructing for any normal contraction x ∈ Mn and any

unitary w ∈ U(n) which satisfy the relation ‖wx − xw‖ ≤ Cδ for some constants

C, δ ≥ 0, the matrix dilations ŵ := w ⊕ w∗ and x̂ := Ad[ŵ](x ⊕ x) in M2n. Using

the symmetry dilation ŵs of w we can obtain the normed relations ‖wx − xw‖ =

‖ŵsx̂− x̂ŵs‖ = ‖wxw∗ ⊕ w∗xw − x⊕ x‖ ≤ Cδ.

Theorem 4.4.1 (Lifted local toral connectivity) Given ε > 0, there is δ > 0

such that, for any 2N normal contractions x1, . . . , xN and y1, . . . , yN in Mn which

satisfy the relations  [xj, xk] = [yj, yk] = 0, 1 ≤ j, k ≤ N,

‖xj − yj‖ ≤ δ, 1 ≤ j ≤ N,

there exist N pairwise commuting normal contractive standard dilations xj 7→ X̂j ∈

M2n, 1 ≤ j ≤ N and N toroidal matrix links X1, . . . , XN in C(I,M2n), which solve

the problems

X̂j  yj ⊕ yj, 1 ≤ j ≤ N,

and satisfy the constraints  [Xj
t , X

k
t ] = 0,

‖Xj
t − yj ⊕ yj‖ ≤ ε,

for each 1 ≤ j, k ≤ N and each t ∈ I. Moreover,

`‖·‖(X
j
t ) ≤ ε, 1 ≤ j ≤ N.
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Proof. By changing basis if necessary, we can assume that y1, . . . , yN are diagonal.

Let us set M := max1≤j≤N ‖xj − yj‖. By L.4.1.1 and R.4.1.3 we will have that there

are diagonal matrices x̃1, . . . , x̃N in N (n)(D2), W ∈ U(n) and a constant cN , such

that xj := Wx̃jW
∗ and

‖Wx̃j − x̃jW‖ ≤ (1 + cN)M, 1 ≤ j ≤ N. (4.4.1)

It can be seen that if for each 1 ≤ j ≤ N , we set X̃j := x̃j⊕x̃j, X̂j := Ad[W⊕W ∗](X̃j)

and ŷj := yj ⊕ yj, then we will have that xj 7→ Ad[Ŵs](X̃j) = X̂j, 1 ≤ j ≤ N are N

standard normal contractive dilations of x1, . . . , xN , we will also have that

‖ŴsX̃j − X̃jŴs‖ ≤ (1 + cN)M, 1 ≤ j ≤ N. (4.4.2)

Since Ŵs ∈ U(2n) ∩ H(2n), we will have that Ŵs can be represented as Ŵs =

ei
π
2
(Ŵs−12n) for any n ≥ 1. We also have that there is a unitary path {Wt}t∈I ⊂ M2n

with Wt := ei
π(1−t)

2
(Ŵs−12n), which satisfies the conditions W0 = Ŵs, W1 = 12n, to-

gether with the normed estimates,

‖WtX̃j − X̃jWt‖ = | cos(πt/2)|‖ŴsX̃j − X̃jŴs‖

≤ ‖ŴsX̃j − X̃jŴs‖ ≤ (1 + cN)M,

for each 1 ≤ j ≤ N and each 0 ≤ t ≤ 1. Moreover, for each 1 ≤ j ≤ N we have that

`‖·‖(Ad[Wt](X̃j)) =

∫
I
‖∂tAd[Wt](X̃j))‖dt,

=
π

2
‖ŴsX̃j − X̃jŴs‖ ≤

π(1 + cN)

2
M.

By using a similar argument to the one implemented in the proof of T.4.2.1, we

can now construct the solvent toral matrix links X1, . . . , XN ∈ C(I,M2n) in a uniform

way, and we are done. �

Remark 4.4.1 It can be seen that by using the technique implemented in the proof

of T.4.4.1 one can obtain lifted versions of T.4.2.2, C.4.2.1 and T.4.2.3.
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Remark 4.4.2 As a consequence of T.4.4.1 we can derive simple detection meth-

ods to identify families of pairwise commuting matrices in Mn that can be connected

uniformly via piecewise analytic toral matrix links. The existence of these detection

methods raises some interesting questions for further studies.

Let us denote by C∗ε 〈Z/2×Z〉 the universal C∗-algebra defined by the expression

C∗ε 〈Z/2× Z〉 := C∗1

〈
u, v

∣∣∣∣∣∣∣∣∣
uu∗ = u∗u = u2 = 1,

vv∗ = v∗v = 1,

‖uv − vu‖ ≤ ε

〉
.

Remark 4.4.3 We can interpret T.4.4.1 as an existence theorem of solutions to lifted

connectivity problems defined on matrix representations of the form

C∗ε 〈Z/2× Z〉 // C∗(Ûs, V̂ ) //M2n

��

C∗〈F2〉 //

88

Cδ(T2) // C∗(U, V )

OO

//Mn

,

with Ûs = (Σ2 ⊗ 1n)(U∗ ⊕ U) and V̂ = V ⊕ V .

Matrix Klein Bottles: Local matrix deformations and special symmetries

Using T.4.4.1 we can solve all connectivity problems (together with their softened

versions) in Mn that can be reduced to connectiviy problems of the form x ε x
∗ in

N (n)(D2), with xx∗ = x∗x, ‖x‖ ≤ 1, x∗ = TxT and T 2 = 1n.

Remark 4.4.4 For each ε ∈ [0, 2], we can use the previously described symmetries

and DT to interpret
⋃
x∈Mn

{x ε x
∗} as matrix analogies of the Klein bottle.

By a softened matrix Klein bottle we mean that the symmetries are softened,

in particular we can consider the connectiviy problems x  ε x
∗ and y  ε y

∗ in
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N (n)(D2) subject to the normed constraints ‖xy− yx‖ ≤ δ, yy∗ = y∗y, ‖x‖, ‖y‖ ≤ 1,

‖x∗ − TxT‖, ‖xT − Ty‖ ≤ δ and T 2 = 1n. The details regarding to the solvability of

these local connectivity problems will be the subject of future work.

4.5 Dimensionality Reduction and Local C0 con-

nectivity

Theorem 4.5.1 (UDRC constrianed unitary toral connectivity) Given any

ε > 0 and d > 0, there is δ ≥ 0, such that for any two families of N pairwise commut-

ing unitaries U1, . . . , UN and V1, . . . , VN in Mn, such that dimU
δ (Λ(U1, . . . , UN)) = 1

and T1\σ(Uj) contains an arc of length d, 1 ≤ j ≤ N , there are N toral unitary matrix

links Z1, . . . , ZN ∈ C(I,Mn) which solve the problems Uj  Vj for each 1 ≤ j ≤ N ,

and also satisfy the normed relations ‖Zj
t − Vj‖ ≤ ε, for each t ∈ I and 1 ≤ j ≤ N .

Moreover, `‖·‖(Z
j
t ) ≤ 2π + ε, for each 1 ≤ j ≤ N .

Proof. Given any ε > 0. Let us assume that V1, . . . , VN are diagonal. Since we have

that dimU
δ (Λ(U1, . . . , UN)) = 1, by using L.4.1.1 and R.4.1.3 we will have that there

are δ ≥ 0, k ∈ {1, . . . , N}, W ∈ U(n), Ṽ1, . . . , ṼN ∈ U(n), f1, . . . , fN ∈ C(T1,T1) and

a constant cN such that, ‖fj(Uk) − Uj‖ ≤ δ, WṼjW
∗ = Uj, ‖[Ṽj,W ]‖ ≤ (1 + cN)δ

and [Ṽj, Vl] = 0 for each 1 ≤ j, l ≤ N .

Since T1\σ(Uj) contains an arc of length d > 0, 1 ≤ j ≤ N , by following a similar

argument to the one used by Loring in [24, §6] we will have that Bott(W, Ṽk) = 0.

Since Ṽk ∈ U(n) and f1, . . . , fN ∈ C(T1,T1), δ > 0 can be rescaled to δ ≤ ε
3+cN

in such a way that by using the basic homotopy lemma (C.2.3.1), we can now find a

unitary path W ∈ C(I,Mn) such that for each t ∈ I and each 1 ≤ j ≤ N

‖fj(WtṼkW∗t )− fj(Ṽk)‖ ≤
ε

3 + cN
, (4.5.1)
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and this implies that

‖ṼjWt −WtṼj‖ ≤ 2‖Uj − fj(Uk)‖+ ‖Wtfj(Ṽk)− fj(Ṽk)Wt‖

= 2‖Uj − fj(Uk)‖+ ‖fj(WtṼkW∗t )− fj(Ṽk)‖

≤ 2δ +
ε

3 + cN
,

for each t ∈ I and each 1 ≤ j ≤ N . Moreover, `‖·‖(Wt) ≤ 2π + ε
3+cN

.

We can use the path W to construct N toral unitary matrix links Z1, . . . , ZN ∈

C(I,Mn) of the form

Zj
t :=

 Ad[W2t](Uj), 0 ≤ t ≤ 1
2
,

e(2t−1) ln(Ṽ
∗
j Vj)Ṽj,

1
2
≤ t ≤ 1.

(4.5.2)

It can be seen that the unitary toral matrix links described by 4.5.2 solve the interpo-

lation problems Uj  Vj, 1 ≤ j ≤ N , and locally preserve commutativity. For each

1 ≤ j ≤ N , we can obtain the ‖ · ‖-distance estimates

‖Zj
t − Vj‖ ≤ ‖Zj

t − Ṽj‖+ ‖Ṽj − Vj‖

≤ 2δ +
ε

3 + cN
+ cNδ ≤ ε.

for each t ∈ I, together with the ‖ · ‖-length estimates

`‖·‖(Z
j
t ) ≤ `‖·‖(Ad[Wt](Uj)) + `‖·‖(e

t ln(Ṽ ∗j Vj)Ṽj)

≤ 2`‖·‖(Wt) + ‖Ṽj − Vj‖

≤ 2π +
ε

3 + cN
+ cNδ ≤ 2π + ε,

and we are done. �
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Chapter 5

Loring’s unitary connectivity

technique

Suppose Ut and Vt are unitary matrices in Mn(C) for t = 0 and t = 1 and we define

Ut = U0e
t ln(U∗0U1) (5.0.1)

and

Vt = V0e
t ln(V ∗0 V1). (5.0.2)

For t = 0 or t = 1 the C∗-algebra generated by Ut and Vt is abelian, so select a MASA

Ct ∼= Cn in each case. Let

A(C0, C1) = {X ∈ C ([0, 1],Mn(C))|X(0) ∈ C0 and X(1) ∈ C1} .

Lemma 5.0.1 (Loring) The C∗-algebra A(C0, C1) has stable rank one.

Proof. Starting with X continuous with X(t) in Ct at the endpoints, we can adjust

this by a small amount, leaving the endpoints in Ct, to get X piece-wise linear,

with the endpoints of every linear segment having no spectral multiplicity and being
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Chapter 5. Loring’s unitary connectivity technique

invertible. Using Kato’s theory of analytic paths, we can get a piece-wise continuous

unitary Ut and piece-wise analytic scalar paths λn(t) so that the new path Y ≈ X

satisfies

Y (t) = Ut


λ1(t)

. . .

λn(t)

U∗t .
There may be finitely may places where Y (t) is not invertible. These places will

be in the interior of the segment so in an open interval where Ut is continuous. A

small deformation of some of the λj will take the path through invertibles. We have

not moved the endpoints in the second adjustment so the constructed element is in

A(C0, C1) and close to X.�

Lemma 5.0.2 (Loring) The endpoint-restriction map ρ : A(C0, C1) → C0 ⊕ C1

induces an injection on K0.

Proof. The kernel of ρ is C ([0, 1],Mn(C)) which has trivial K0-group. So this result

follows from the exactness of the usual six-term sequence in K-theory.�

Lemma 5.0.3 (Loring) Given unitaries U and V in A(C0, C1), with ‖[U, V ]‖ ≤ ν0

as in D.2.3.1 (so the Bott index makes sense), Bott(U, V ) is the trivial element of

K0 (A(C0, C1)).

Proof. By the previous lemma, we need only calculate Bott(ρ(U), ρ(V )). These

unitaries are in a commutative C∗-algebra so they have trivial Bott index.�

Theorem 5.0.2 (Loring) Given ε > 0, there exists δ > 0 so that for all n, given uni-

tary matrices U0, U1, V0, V1 in Mn(C) with U0V0 = V0U0, U1V1 = V1U1, ‖U0 − U1‖ ≤ δ

and ‖V0 − V1‖ ≤ δ, then there exists continuous paths Ut and V1 between the given

pairs of unitaries with each Ut and Vt unitary, and with UtVt = VtUt, ‖Ut − U0‖ ≤ ε

and ‖Vt − V0‖ ≤ ε for all t.
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Chapter 5. Loring’s unitary connectivity technique

Proof. The paths Ut and Vt defined in equations 5.0.1 and 5.0.2 will be almost com-

muting unitary elements of A(C0, C1). By Lemma 5.0.1 we may apply [10, Theorem

8.1.1] regarding approximating in A(C0, C1) by commuting unitaries. Lemma 5.0.3

tells us there is no invariant to worry about, so we can find At and Bt close of Ut

and Vt that are commuting continuous paths of unitaries with At and Bt in Ct for

t = 0, 1. The unitary elements in the commutative Ct are locally connected, so we

can find a short path from U0 and V0 to A0 and B0, and likewise at the other end.

Concatenating, we get a paths of commuting unitary matrices from U0 and V0 to U1

and V1 so that at every point we are close to some pair (Ut, Vt). These then are all

close to U0 and V0. �
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Chapter 6

Local Deformation of Matrix

Words

Given a finite set C := {c1, . . . , cM} ⊂ Mn of normal contractions which con-

tains the identity matrix 1n ∈ Mn and some fixed but arbitrary integer L > 0,

by a mixed matrix word of length L we mean a function WL : MM
n × M2N

n →

Mn, (c1, . . . , cM , x1, . . . , x2N) 7→ cj1x
k1
j1
· · · cjLx

kL
jL

on 2N matrix variables X := {x1,

. . . , x2N}, where cjl ∈ C and kl ∈ Z+
0 , 1 ≤ l ≤ L. The number deg(WL) :=

max1≤l≤L{kl} will be called the degree of the word WL. We call the sets C and

X matrix coefficient and matrix variable sets respectively.
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Chapter 6. Local Deformation of Matrix Words

6.1 Matrix Equations on Words

By a system of matrix equations on words, we mean expressions of the form
Eq

(1)(x1, . . . , xN) :=
∑J1

j=1 α1,jW1,Lj(C, x1, . . . , xN , x
∗
1, . . . , x

∗
N) = 0,

...

Eq
(p)(x1, . . . , xN) :=

∑Jp
j=1 αp,jWp,Lj(C, x1, . . . , xN , x

∗
1, . . . , x

∗
N) = 0.

(6.1.1)

Example 6.1.1 For an example of a matrix equation on words we can consider an

equation of the form

UX −X∗U = R,

where X is a normal matrix variable in Mn and the matrice U and R are normal

contractions in Mn. In this case the coefficient set is C := {U,R, 1n} and the variable

set is X := {X}.

Example 6.1.2 For an example of a system a matrix equations on words we can

consider a system of matrix equations of the form UX −X∗U = R,

V Y + U∗XV = S,

where X and Y are normal matrix variables in Mn and the matrices U, V,R and S

are normal contractions in Mn. In this case the coefficient set is C := {U, V,R, S,

1n} and the variable set is X := {X, Y }.

Given δ > 0, an N -tuple X1, . . . , XN in Mn is called a δ-approximate solution of

6.1.1 if we have that
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
‖Eq

(1)(X1, . . . , XN)‖ ≤ δ,
...

‖Eq
(p)(X1, . . . , XN)‖ ≤ δ.

(6.1.2)

6.1.1 Perturbation and relative lifting of matrix words

Given any expression of the form

Eq(x1, . . . , xN) :=
J∑
j=1

αjWLj(C, x1, . . . , xN , x
∗
1, . . . , x

∗
N).

Let us restrict the variable subset Y := {x1, . . . , xN} in such a way that its elements

only take values on the unit ball of normal elements in Mn for some fixed but arbitrary

integer n ≥ 1, let us also impose the restriction xjxk = xkxj 1 ≤ j, k ≤ N , we will

have that Eq(x1, . . . , xN) can be represented by the expression

Eq(x1, . . . , xN) :=
J∑
j=1

αjW̃Lj(C, x1, . . . , xN),

where W̃Lj(C, x1, . . . , xN) is a mixed matrix word with respect to C and Y. If we

consider now two N -tuples of pairwise commuting normal matrices X1, . . . , XN and

X̃1, . . . , X̃N in Mn, such that ‖Xj − X̃j‖ ≤ δ for some fixed but arbitrary number

δ > 0, it can be seen that if we define the numbers dj := deg(W̃Lj), then there is a

number C̃ := C̃(α1, . . . , αJ , d1, . . . , dJ , J) > 0 such that

‖Eq(X1, . . . , XN)− Eq(X̃1, . . . , X̃N)‖ ≤ C̃δ.
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Chapter 6. Local Deformation of Matrix Words

Let us now consider the mappings L : Mn →M2n and K : M2n →Mn, defined by the

expressions

L(X) := 12 ⊗X,

K

 x11 x12

x21 x22

 := x11.

It is clear that L is a relative lift of K, if we write Êq(x1, . . . , xN) to denote the function

MM
2n ×MN

2n →M2n described by the expression

Êq(x1, . . . , xN) :=
J∑
j=1

αjW̃Lj(L(C), x1, . . . , xN),

we will have that

‖Êq(L(X1), . . . ,L(XN))− Êq(L(X̃1), . . . ,L(X̃N))‖ = ‖L(Eq(X1, . . . , XN)

−Eq(X̃1, . . . , X̃N))‖

≤ C̃ max
1≤j≤N

‖Xj − X̃j‖

≤ C̃δ. (6.1.3)

A further reduction

Given any system of matrix equations on words like 6.1.1 with pairwise commuting

normal contractive matrix variable set, using the unitaries ΣN ∈ MN defined by

2.1.5 in §2.1 together with the mappings ΣN := Ad[ΣN ⊗ 1n] we can lift any matrix

equation on words in Mn to matrix equations in MNn of the form
LEq

(1)(x1, . . . , xN) :=
∑J1

j=1 α1,jW1,Lj(N,X1, . . . ,XN) = 0,
...

LEq
(p)(x1, . . . , xN) :=

∑Jp
j=1 αp,jWp,Lj(N,X1, . . . ,XN) = 0.

(6.1.4)
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Chapter 6. Local Deformation of Matrix Words

Where N is some set of pairwise commuting normal matrix contractions in MNn

with contains 1Nn and X1, . . . ,XN are pairwise commuting matrix variables in MNn,

and where we have that any δ-approximate solution of 6.1.1 can be recovered from a

corresponding lifted δ-approximation solution of 6.1.4.

6.2 Local Homotopies and Approximation Solu-

tion of Matrix Equations

Since L is a lift of K, it can be seen that X1, . . . , XN are δ-approximate solutoins

to 6.1.1, then L(X1), . . . ,L(XN) will be δ-approximate solutions of the transformed

system of matrix equations described by the expressions
Ê

(1)
q (x1, . . . , xN) = 0,

...

Ê
(p)
q (x1, . . . , xN) = 0.

(6.2.1)

Using the inequality 6.1.3 and T.4.4.1 we can derive the following result.

Theorem 6.2.1 Given ε > 0, there is δ > 0 such that the following holds: Given

any integer n ≥ 1 and any system of matrix equations on words in normal pairwise

commuting matrix variables of the form:
Eq

(1)(x1, . . . , xN) :=
∑J1

j=1 α1,jW1,Lj(C, x1, . . . , xN) = 0,
...

Eq
(p)(x1, . . . , xN) :=

∑Jp
j=1 αp,jWp,Lj(C, x1, . . . , xN) = 0.

(6.2.2)

For any two N-tuples of pairwise commuting normal matrices X1, . . . , XN and Y1,

. . . , YN in Mn such that, ‖Eq
(j)(X1, . . . , XN)‖ ≤ δ, ‖Eq

(j)(Y1, . . . , YN)‖ ≤ δ 1 ≤ j ≤ p
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Chapter 6. Local Deformation of Matrix Words

and 
‖Eq

(1)(X1, . . . , XN)− Eq
(1)(Y1, . . . , YN)‖ ≤ δ,

...

‖Eq
(p)(X1, . . . , XN)− Eq

(p)(Y1, . . . , YN)‖ ≤ δ,

(6.2.3)

there are, a mapping Φ : Mn → M2n and N picewise analytic pairwise commuting

normal contractive matrix matrix paths X1, . . . , XN ∈ C([0, 1],M2n), such that Xj is

ε-local with respect to the pair Φ(Xj),L(Yj), 1 ≤ j ≤ N , and such that
‖Ê(1)

q (X1
t , . . . , X

N
t )− Ê

(1)
q (L(Y1), . . . ,L(YN))‖ ≤ ε,

...

‖Ê(p)
q (X1

t , . . . , X
N
t )− Ê

(p)
q (L(Y1), . . . ,L(YN))‖ ≤ ε,

(6.2.4)

for each t ∈ [0, 1].

Proof. Since by 6.1.3, given ε > 0, there is δ > 0 such that
‖Eq

(1)(X1, . . . , XN)− Eq
(1)(Y1, . . . , YN)‖ ≤ δ,

...

‖Eq
(p)(X1, . . . , XN)− Eq

(p)(Y1, . . . , YN)‖ ≤ δ.

(6.2.5)

Moreover, by T.4.4.1 there are a unitary W ∈ U(n) and N picewise analytic pairwise

commuting normal contractive matrix paths X1, . . . , XN ∈ C([0, 1],M2n), such that

and Xj is ε-local with respect to the pair Φ(Xj),L(Yj), 1 ≤ j ≤ N , with Φ :=

Ad[1n ⊕W ∗
n
2] ◦ L and such that

‖Ê(r)
q (X1

t , . . . , X
N
t )− Ê(r)

q (L(Y1), . . . ,L(YN))‖ ≤ C̃r max
1≤j≤N

‖Xj
t − L(Yj)‖ ≤ ε,

(6.2.6)

where C̃r is some constant (that does not depend on the size of the matrices), for

each 1 ≤ r ≤ p and each t ∈ [0, 1], and we are done. �
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Hints and Future Directions

The detection (recognition) of almost localized matrix representations of universal

C∗-algebras that can be connected uniformly via piecewise analytic paths induces

interesting problems which are topological/K-theoretical and computational in na-

ture. Motivated by Loring’s connectivity technique we consider that the study of

uniform local matrix connectivity in C∗-representations of the form C(TN) → Mn

and Cε(T2) → Mn ← C(TN) will present interesting challenges and questions that

will be the subject of future study. In particular we are interested in the application

of T.4.4.1 to the study of the question. Is C∗〈F2 × F2〉 RFD? (This is equivalent to

Connes’s embedding problem.)

Let us consider now relative lifting problems of the form.

Problem 7.0.1 Given any ε > 0, an integer k ≥ 1 and a sequence of norm decreasing

linear compressions κn : Mkn →Mn. Is there δ > 0 such that the following conditions

hold? For any two families of N pairwise commuting normal contractions X1, . . . , XN

and Y1, . . . , YN in Mkn and M polynomials p1, . . . , pM ∈ C[x1, . . . , x2N ] such that

‖Yj −Xj‖ ≤ δ,

‖pl(X1, . . . , XN , Y1, . . . , YN)‖ ≤ δ (7.0.1)
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and

‖pl(κn(X1), . . . , κn(XN), κn(Y1), . . . , κn(YN))‖ ≤ δ (7.0.2)

for each 1 ≤ j ≤ N and 1 ≤ l ≤ M . We have that there are N pairwise com-

muting normal contractions X̃1, . . . , X̃N in Mnk and N piecewise analytic normal

contractive matrix paths X1, . . . ,XN ∈ C([0, 1],Mkn) which satisfy the relations:

κn(Xj) = κn(X̃j), ‖X̃j − Yj‖ ≤ ε, Xj
0 = X̃j, Xj

1 = Yj and ‖Xj
t − Yj‖ ≤ ε, together

with the normed constraints

‖pl(κn(X1
t ), . . . , κn(XN

t ), κn(Y1), . . . , κn(YN))‖ ≤ ε (7.0.3)

for each 1 ≤ l ≤M , 1 ≤ j ≤ N and each t ∈ [0, 1].

A better understanding of the geometric and combinatorial nature of problems

of the form P.7.0.1, can lead to the solution of some conjectures related to matrix

approximation problems, and which have been stated by Chu in [9], in the language

of matrix homotopies. It would also allow one to find matrix based proofs of classical

conjectures in matrix analysis and operator theory, restated in matrix terms by K.

M. R. Audenaert and F. Kittaneh in [1].

Using a similar approach one can provide answers to some questions in topologi-

cally controlled linear algebra in the sense of [14], raised by M. H. Freedman.

Another area where a better understanding of the solvability conditions of problem

P.7.0.1 could have important implications, is the study of solvability conditions of

lifting problems related to the connectivity and asymptotic behavior of the matrix

representations C(TN)→Mn ← C([−1, 1]N).

The construction and generalization of detection methods like the ones mentioned

in the remark R.4.4.2 of theorem T.4.4.1 together with their implications on inverse

spectral problems, will be the subject of future studies.
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A better understanding of the geometric and approximate combinatorial nature of

toroidal matrix links would provide a mutually benefitial interaction between matrix

flows in the sense of Brockett [5] and Chu [9], topologically controlled linear algebra

in the sense of Freedman and Press [14] and matrix geometric deformations in the

sense of Loring [25], Hajac and Masuda [15], and Woronowicz [34]. This also may

provide some novel generic numerical methods to study and compute normal ma-

trix compressions, sparse representations and dimensionality reduction of large scale

matrices.

Using the dynamical techniques presented in this document, it seems possible to

find more mutually benefitial connections betweeen C1-realizations of the toroidal

matrix links studied here and the solution to some problems in the theory of matrix

equations and matrix approximation. These connections will be the object of further

studies.

Another interesting questions are motivated by the the possibility of using piece-

wise analytic toral matrix links to study the local deformation properties of matrix

representations of the form Cε(T1) oα Z/2 → Mn (where α denotes the standard

flip) via softened matrix Klein bottles. These problems are related to: Galois cor-

respondence in the sense of Landstad, Olsen and Pedersen, spectral decomposition

problems with time reversal symmetry in quantum theory and deformation theory for

C∗-algebras in the sense of Loring, Dadarlat Hajac and Woronowicz.

The combination of toroidal matrix links with some matrix lifting techniques along

the same lines of the proof of T.4.4.1, seem also promising on the solvability of some

conjectures studied numerically on [28].
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