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Abstract

In this doctoral dissertation, we consider the Cauchy problem for the 3D in-

compressible Navier-Stokes equations. Here, we are interested in a smooth periodic

solution of the problem which happens to be a special case of a paper by Otto Kreiss

and Jens Lorenz. More precisely, we will look into a special case of their paper by

two approaches. In the first approach, we will try to follow the similar techniques as

in the original paper for smooth periodic solution. Because of the involvement of the

Fourier expansion in the process, we encounter with some intriguing factors in the pe-

riodic case which are absolutely not a part in the original paper. While in the second

approach, we decompose our solution space using the Helmholtz-Weyl decomposition

and introduce a new tool “the Leray projector” to eliminate the pressure term from

the Navier-Stokes equations and go from there. This approach is completely different

than the technique of dealing with the pressure term in the paper by Otto Kreiss and

Jens Lorenz.
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1 Introduction

1.1 Function Spaces and Some Notations

In this section, we introduce some notations and some standard function spaces that

we will require in our work. We are interested in a three dimensional flow, however

we will introduce notations and spaces for n ≥ 3. We focus on two domains without

boundaries and one with boundary:

• the whole space Rn.

• the n dimensional torus Tn.

• the n dimensional half space Rn
+.

Functions defined on the torus Tn = (R/2πZ)n can be realized as periodic func-

tions defined on all of Rn, i.e

u(x+ 2πk) = u(x) for all k ∈ Zn, x ∈ Rn.

It is also convenient at times to identify u with its restriction to the fundamental

domain [0, 2π)n. If u : Rn → Rn is a vector field then we can define the divergence of

u as

divu = ∇ · u =
n∑
i=1

Diui, Di = ∂/∂xi.

For higher order derivatives, we will employ multi-index notation. We write

α = (α1, α2, · · · , αn), αi ≥ 0 and |α| =
n∑
i=1

αi.

For a vector x = (x1, x2, · · · , xn) we define xα = xα1
1 x

α2
2 · · ·xαnn and similarly, we set

Dα = Dα1
1 · · ·Dαn

n .

For any simply connected domain with smooth boundary Ω ⊆ Rn, we use the following

notation for function spaces.

• C∞per(Rn) is the space of smooth 2π periodic functions.

• C∞c (Ω) is the space of all smooth function with compact support in Ω.
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• S(Rn) is the space of Schwartz functions on Rn, that is the space of all smooth

function such that

pk,α := sup
x∈Rn
|x|k|Dαu(x)|

is finite for every choice of k = 0, 1, 2 · · · and multi-index α ≥ 0.

• S ′(Rn) is the space of all tempered distributions on Rn.

• By Lp(Ω) for 1 ≤ p <∞, we denote the standard Lebesgue spaces of measurable

p-integrable functions with the norm

||u||p =

(∫
Ω

|u(x)|pdx
)1/p

.

• L∞(Ω) is space of bounded functions on Ω which is equipped with the standard

norm

|u|∞ := sup
x∈Ω
|u(x)|.

• For any j = 0, 1, 2, · · · , we set, for any multiindex α

|Dju(x)|∞ = max
|α|=j
|Dαu(x)|∞

i.e |Dju(x)|∞ measures all space derivatives of order j in maximum norm.

• Lploc(Ω) for 1 ≤ p ≤ ∞ consists of those functions that are contained in Lp(K)

for every compact subset K of Ω.

• For integer k > 0 and 1 ≤ p < ∞ the space W k,p(Ω) = {u ∈ Lp(Ω) : Dku ∈
Lp(Ω)} where Dk is weak derivative of order k. The standard norm in W k,p(Ω)

is given by

||u||p
Wk,p =

∑
|α|≤k

||Dαu||pLp .

• For any vector valued space X, we define Xσ = {u ∈ X : ∇ · u = 0}.

• For s ≥ 0 the Sobolev space Hs(Tn) consists of all function such that

||u||2Hs := (2π)n
∑
k∈Zn

(1 + |k|2s)|û(k)|2 <∞.
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• BMO consists function of bounded mean oscillation. See [16] page: 29.

• We denote [L2(Ω)]n = L2(Ω), [Hs(Ω)]n = Hs(Ω).

• L̇2(Tn) = {u ∈ L2(Tn) : û(0) = 0}.

• Żn = Zn\{(0, · · · , 0)}

• For a function u(x, t) where x ∈ Rn and t ∈ (0,∞), we denote u(t) = u(., t)

also |u(t)|∞ = maxx∈Rn |u(x, t)| for fixed t.

1.2 Motivation: A Brief History of the Navier-Stokes Equa-

tions

In this paper, we consider the three-dimensional incompressible Navier-Stokes equa-

tions. The three -dimensional incompressible Navier-Stokes equations form the funda-

mental mathematical model of fluid dynamics. Derived from basic physical principles

under the assumption of a linear relationship between the stress and the rate-of-strain

in the fluid, their applicability to real-life problems is undisputed. However, a rigor-

ous mathematical theory for these equations is still far from complete: in particular

there is no guarantee of the global existence of unique solution. The aim of this

introductory section is to give an overview of the existing results in the literature for

the existence and uniqueness of the solution of the Navier-Stokes equations.

The Navier-Stokes equations are a set of partial differential equations that de-

scribe fluid motion. Since we are interested in the 3D incompressible Navier-Stokes

equations, therefore we begin with x ∈ R3 as the space variable and t ∈ [0,∞)

as the time variable. We consider the fluid velocity field of a fluid with notation

u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and p(x, t) for the scalar pressure field. The con-

servation of linear momentum leads to

ut + (u · ∇)u+∇p = ν4u (1.1)

while the conservation of mass yields the divergence-free ( incompressible) condition

∇ · u = 0 (1.2)

where the viscosity constant is ν, and

u · ∇ = u1D1 + u2D2 + u3D3, Di =
∂

∂xi
, 1 ≤ i ≤ 3.
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Furthermore, we assume that

u(x, 0) = f(x) with ∇ · f = 0. (1.3)

Throughout this paper when referring to the Navier-Stokes equations, we will

normalize the constant ν so that ν = 1. In this work, we will consider the problem

on two types of domain:

i. the whole space R3 with a certain class of solution

ii. the torus T3 = (R\2πZ)3, sometimes described as the case of “periodic boundary

conditions” ; for mathematical convenience, we will also impose the zero-average

condition
∫
T3 u = 0.

These cases have the advantage that they do not involve any boundaries, which greatly

simplifies the analysis in many instances: when we carry out an analysis restricted to

these two cases, we will refer to the equation “ in the absence of boundaries”.

Equations that describe physical phenomena beg for solution, and the Navier-

Stokes equations are no exception. There is a vast wealth of literature devoted to

the solutions of Navier-Stokes equations (eg [4],[5],[6],[7],[8],[10],[11]). For example,

in 1934 Leray [15] constructed a global in time weak solution, and a local strong

solution in R3. So far, it is not achieved that whether such weak solution is unique

or the unique strong solution exists globally in time. This paper, among others,

reinforced the idea of specialized solutions. Among the different classes of solutions

studied for the Navier-Stokes equations one can find classical, strong, mild, weak,

very weak, uniform weak, and local Leray solutions. These different classes have

themselves produced a variety of methods designed to explore the various types of

solutions. Fourier analysis, statistical mechanics, distribution theory, and harmonic

analysis have all played a part in attempting to analyze the equations for over two

centuries. A large portion of this work focuses on the well-known fact that at its core,

the Navier-Stokes equation (1.1) is basically a non-linear heat equation. Thus, it can

be written using Duhamel’s principle in an integral form with heavy dependence on

the initial data u(x, 0) = f(x). Exploiting the integral form of the Navier-Stokes

equations has been used to explore other aspects of the solutions, such as existence,

uniqueness, and the dependence on initial data. For example, it is known that for

initial data u(x, 0) = f(x) ∈ L∞(Rn) the equations (1.1)- (1.3) admit a local in time
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( regular) solution u with the pressure p is determined by

p =
∑
i,j

RiRj(uiuj) (1.4)

where Ri is the Riesz transform ( [3], [8] ). For the Lr case, where 3 ≤ r < ∞, the

equations (1.1)-(1.3) admit a unique local in time solution u for some pressure p. If

u decays at the space infinity, then (1.4) follows a posteriori for Lr ([11]). Kato [10]

observed that for initial data f ∈ L∞(Rn), the constructed solution is bounded and

may not decay at the space infinity. So even if u solves (1.1)- (1.3) the equation (1.4)

may not follow. Kato further noted that in the most simple case, for x ∈ R3 and

t ∈ (0,∞), one could construct a solution of the form u(x, t) = g(t), p(x, t) = −g′(t)·x.

This function pair (u, p) solves (1.1) and (1.2) no matter what the function g(t) is.

So if u has constant initial data, the solution is not unique without assuming (1.4).

Not only does this demonstrate a non-uniqueness to the solution, it also implies a

non-decaying pressure spatially. Kato further observed that one would need to impose

some control on p to obtain uniqueness other than controlling u.

In [6], it was noted that uniqueness holds if u is bounded, and p is of the form

p(x, t) = π0 +
∑
i,j

RiRjπij (1.5)

for bounded functions π0 and πij. In particular, it was noted that for t ∈ (0, T ) for a

maximal time T , then

π0, πij ∈ L∞ ∩ L1
loc

The paper by Kato [10] improved upon the result by simply assuming that p ∈
L1
loc ∩ BMO. A theorem of Uchiyama [21] indicated that if a function g was BMO,

then it was of the form

g = ν0 +
∑
i,j

RiRjνij

with some νij, ν0 ∈ L∞(Rn).

As the pressure term is a key aspect in the analysis of the Navier-Stokes equations,

in chapter three, we will discuss the fact that the formal pressure term (and its

modification) is the solution of the Poisson pressure equation; it is the convolution of

the term
∑

i,j(Diuj)(Djui) with a Calderon-Zygmund kernel. It is of some interest to
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note the fact that if the velocity field has derivatives that are sufficiently smooth and

small at infinity, it then turns out that the pressure is additionally a Riesz potential (

see [18]). Interestingly, it is not obvious that such a pressure given by convolution is

periodic in space even u is smooth periodic in space. We will focus on some detail in

proving that the pressure given as a convolution is indeed smooth periodic, provided

u is smooth periodic in space.

Furthermore, the papers by Giga specifically [7], [8] , took a different approach,

and chose initial data in the space of bounded uniformly continuous functions (BUC)

in Rn, or in L∞(Rn). In the paper, it was shown that if the initial value function

u(x, 0) = f(x) was BUC, then so was the unique solution u. In this case, however,

the focus was on u as a solution to be integral ( heat equation ) version of the Navier-

Stokes equations. In Giga’s work, the set C([0, T ], BUC) was defined to be the set of

all bounded, uniformly continuous on [0, T ], and the set Cα was representative of the

set of Hölder continuous functions of order α. It was additionally shown in the same

paper that

u ∈ C([δ, T ];BUC) and t1/2∇u ∈ C([0, T ];BUC) (1.6)

and

∇u ∈ Cα([δ, T ];BUC)

for some α with 0 < α < 1/2 and δ such that 0 < δ < T . This showed that t1/2∇u
was bounded in some sense. An additional result was that if u(x, 0) = f(x) was a

BUC function with u satisfying the integral form of the solution to the Navier-Stokes

equations, and if ∇u ∈ Cα([δ, T ];BUC), then by writing

p =
∑
i,j

RiRj(uiuj)

we have (u, p) solving (1.1)-(1.2). However, again in [7], it was noted that if one

replaced the space BUC with L∞, the results were different. Expressions (1.6) are

replaced by

u ∈ Cw([δ, T ];L∞) and t1/2∇u ∈ Cw([0, T ];L∞)

where Cw is the space of all L∞ valued weakly continuous functions defined on [0, T ].

These results, among others, are similar to the results in the work by Kreiss-

Lorenz ([12]). The Kreiss-Lorenz paper is the main focus and source for this doctoral
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thesis. The main difference between the KL paper and the works of Kato and Giga is

the restriction on the solutions. The KL’s paper concentrates on classical solutions in

C∞(Rn) ∩ L∞(R3), while Kato and Giga’s ([8],[10]) developed solutions that existed

in the distributional sense.( eg.weakly continuous), with some sort of control on the

pressure term p. Additionally, Kato and Giga’s papers assumed their space of con-

tention to be Rn, for n ≥ 2. Their results obviously can be restricted to R3, where

the Kreiss-Lorenz results are only particular to R3. It must be noted that the KL

paper was able to construct similar results, but the only structure mentioned on the

pressure term was that it was simply a BMO valued function- no breakdown of the

pressure term into Riesz transforms is required or even alluded to.

2 The Kreiss-Lorenz Paper (KL)

In this section, we will discuss important aspects of the KL paper. Since our work

is closely related to the work of the Kreiss and Lorenz, it is worth discussing the

significant details of the paper to make it easier for the readers to understand this

doctoral dissertation. The KL paper considers the Cauchy problem for the three-

dimensional Navier-Stokes equations

ut + u · ∇u+∇p = 4u, ∇ · u = 0 (2.1)

with initial condition

u(x, 0) = f(x), x ∈ R3 (2.2)

where f ∈ L∞(R3) and also assumes ∇· f = 0 in the distributional sense for the sake

of compatibility. The main goal of the KL paper is to prove the following theorem:

Theorem 2.1. Consider the Cauchy problem for the Navier-Stokes equations (2.1)

and (2.2) where f ∈ L∞,∇ · f = 0. There is a constant c0 and for every j = 0, 1, · · · ,
there is a constant Kj so that

tj/2|Dju(., t)|∞ ≤ Kj|f |∞ for 0 < t ≤ c0/|f |2∞.

The constants c0 and Kj are independent of t and f .

Let us observe the key ideas of the KL paper that are used to prove theorem 2.1.

We will also outline the significant differences between the KL work and work in this

doctoral dissertation.
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It is not uncommon in the literature to consider the finite energy solution of the

Navier-Stokes equations.

That is ∫
|u(x, t)|2dx <∞.

That means u exists in L2. In contrast, the KL paper assumes only that u ∈ L∞(R3)∩
C∞(R3). Thus, the KL paper allows for an infinite energy. Their paper begins by

discussing the parabolic system

ut = 4u+Dig(u(x, t)), x ∈ R3, t ≥ 0, Di = ∂/∂xi (2.3)

with initial condition

u(x, 0) = f(x), f ∈ L∞(R3) (2.4)

on a maximum time interval 0 < t < T (f) where g was assumed to be quadratic in u.

It was shown that under the assumptions given on f and g that there is a constant

c0 > 0 with

T (f) > c0/|f |2∞

and

|u(·, t)|∞ ≤ 2|f |∞ for 0 < t ≤ c0/|f |2∞.

Additionally, the estimate of theorem 2.1 was shown for j = 1, 2 · · · for the solution

of the parabolic system (2.3) and (2.4).

The result obtained for the parabolic system is as important as the method used in

obtaining the main result of the original paper. The same method is used to analyze

the Navier-Stokes equations and obtain the similar bounds on the velocity field u and

its derivatives. Estimating u and its derivatives require the estimates on the pressure

and its derivatives. In the KL paper, the pressure is determined from the Poisson

equation and decomposed into the local and global part using the smooth cut-off

function and u and derivatives of u are being used to obtain the bounds on local

pressure and global pressure. To pursue the desire result, Kreiss and Lorenz rewrite

the Navier-Stokes equations

ut = 4u+Q, ∇ · u = 0, u = f at t = 0

8



with

Q = −∇p− u · ∇u

= −∇p−
∑
j

ujDju.

The pressure can be determined by the Poisson equation

−4p =
∑
i,j

DiDj(uiuj)

=
∑
i,j

(Diuj)(Djui).

Dropping the t-dependence in the notation, one gets formally,

p(x) =
1

4π

∑
i,j

∫
1

|x− y|
DiDj(uiuj)(y)dy.

This was decomposed into local and global part, p = ploc + pglb , as follows : Choose

a C∞ cut-off function φ(r) with

φ(r) = 1 for 0 ≤ r ≤ 1, φ(r) = 0 for r ≥ 2.

Then, for δ > 0, define

ploc(x) =
1

4π

∑
i,j

∫
|x− y|−1DiDj(φ(δ−1|x− y|)ui(y)uj(y))dy. (2.5)

The global part, pglb = p− ploc, is determined correspondingly with φ replaced by

1− φ. For the application purpose in the later section, it will be chosen that δ =
√
t.

The KL paper provides suitable bounds on ploc, Dploc and Dpglb. The problem

with the integral for the pressure is that it may fail to exist because of the fact that

u ∈ L∞. If the integral fails to exists the subsequent calculations and bounds are

essentially incorrect. At the end of the paper, however a modification

p∗(x, t) = PV
∑
i,j

1

4π

∫ (
Gij(x− y)−Gij(y)

)
(uiuj)(y, t)dy

where G(y) = |y|−1 and

Gij(y) = DiDjG(y)

9



was given.

The modification was claimed to solve the Poisson pressure equation and has

benefit of being bounded as long as |x| < R for some R > 0 by an application

of the Mean- Value Theorem. We will also prove that claim when the solution to

the Navier-Stokes equations is considered to be smooth periodic in space. Thus the

modified pressure integral exists even if the velocity field u may not have any decay

at space infinity.

Consider a modified kernel

Gij(x− y)−Gij(y)

so the modified pressure term becomes p∗(x, t) = p(x, t) + C(t) where C(t) is a time

dependent constant. Notice, in the Navier-Stokes equation only space derivatives of

the pressure term appears, therefore adding or subtracting a suitably chosen time

dependent constant would not matter.

It can be shown that the modified pressure solves the Poisson pressure equation

and it also satisfies the estimates:

|plc|∞ ≤ C(|u|2∞ + δ|u|∞|Du|∞);

|Dplc|∞ ≤ c(δ−1|u|2∞ + δ|Du|2∞);

|Dpgl|∞ ≤ cδ−1|u|2∞.

These estimates are required to obtain the main estimates in the original paper,

however, they are not discussed rigorously in the KL paper for the modified pressure

term and for its higher order derivatives.

Since we are interested in the smooth periodic solution of the Navier-Stokes equa-

tions, we are concerned whether we will be able to obtain similar estimates on the

periodic pressure so that we could follow the same techniques as in the KL paper.

Expecting the periodic pressure term of the same underlying structure as the modified

pressure would not be surprising for the purpose of obtaining the similar estimates as

in the KL paper. While dealing with the pressure in later section, we will keep that

thing in our mind so that the pressure term possesses same underlying structure as

the modified pressure.

On the other hand proving theorem 2.1 in the KL paper is identical to the results

of the parabolic problem (2.3) and (2.4). This will prove that all derivatives of u are

bounded in maximum norm by the max norm of initial function f ∈ L∞(R3) in some

maximum interval (0, T (f)) for 0 < T (f) ≤ ∞.
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The next section of this doctoral dissertation will be focused on how to prove

the KL paper when the initial function f ∈ C∞per(R3) which is a special case of the

KL paper and our main work for this dissertation. The difficulties in doing so lie

on the fact that whether we will be able to obtain estimates on the pressure and its

derivatives as in the KL paper. However, for the parabolic system in the periodic

case seems working exactly the same way as in the KL paper by the availability of

the Poisson summation formula.

3 The KL Paper in Periodic Case

This section of this doctoral dissertation will be concentrated in details of obtaining

the estimates of theorem 2.1 when the initial data is smooth periodic. It is well-

known that the unique smooth periodic solution of (2.1), (2.2) for f ∈ C∞per(Rn)

exists in a maximum interval of time 0 ≤ t < T (f) for some T (f) ≤ ∞. Since our

data are smooth periodic, we will seek the use of the Fourier expansion in the process

of establishing many auxiliary results to prove theorem 2.1 whereas this was not the

case in the KL paper since their solution is of class L∞(R3) ∩ C∞(R3). For that

purpose, we will consider the Cauchy problem for 3D incompressible Navier-Stokes

equations (2.1) and (2.2) where f ∈ C∞per(R3).

To follow the techniques of the KL paper, we are required to establish some

auxiliary results of the heat equations in a torus Tn for n ≥ 3.

3.1 Periodic Heat Flow in Rn

Consider the Cauchy problem associated to the heat equation with periodic boundary

conditions, that is

ut(x, t) = 4u(x, t) ∀ (x, t) ∈ Rn × [0,∞), (3.1)

u(x, 0) = f(x) ∀ x ∈ Rn. (3.2)

Though we are considering smooth periodic initial function for the Navier-Stokes

equations, for now we can relax the assumption of smoothness on f and consider

f ∈ Cper(Rn). Taking the Fourier expansion of the PDE (3.1) and the initial condition

in (3.2) we get, for k ∈ Zn,

ût(k, t) = −|k|2û(k, t),

û(k, 0) = f̂(k).

11



For each fixed k, this is an initial value problem for an ordinary differential equation.

The unique solution is given by

û(k, t) = e−|k|
2tf̂(k). (3.3)

To satisfy the initial condition, we use the superposition

u(x, t) =
∑
k∈Zn

e−|k|
2teik·xf̂(k). (3.4)

Formally, (3.4) can also be written as an integral operator

u(x, t) =
∑
k∈Zn

[
1

(2π)n

∫
Tn
e−ik·yf(y)dy

]
e−|k|

2teik·x

=
1

(2π)n

∫
Tn
θ(x− y, t)f(y)dy (3.5)

where

θ(x, t) =
∑
k∈Zn

e−|k|
2teik·x, t > 0 (3.6)

is the periodic heat kernel in Rn.

Proposition 3.1. The series in (3.4) and (3.6) and their term by term derivatives of

all orders, converge absolutely and uniformly on Rn × [t,∞) for all t > 0. Both are

solutions of the heat equation on Rn × (0,∞) and both belong to C∞(Rn × (0,∞)).

The initial condition is satisfied as limt→0+ θ(., t) ∗ f = f in the maximum norm.

Proof. Left to the reader.

There are other possible expansion for the periodic heat kernel. For example, in

one dimension, it is easy to see that

θ(x, t) = 1 + 2
∞∑
k=1

cos(kx)e−k
2t.

Thus the periodic heat kernel is a real valued function. But the fact that it is also

a non-negative function is not so obvious. Analogous facts hold in higher dimension

as well.

Next, we are going to state the Poisson summation formula and use it to prove that

the heat kernel given by (3.6) is non-negative function.

(The Poisson Summation Formula) Suppose f ∈ C(Rn), satisfies |f(x)| ≤
C(1 + |x|)−n−ε for some ε > 0, C > 0 and |f̂(ξ)| ≤ C(1 + |ξ|)−n−ε then∑

k∈Zn
f(x+ 2πk) =

1

(2π)n

∑
k∈Zn

f̂(k)eik·x. (3.7)

12



where

f̂(ξ) =
1

(2π)n/2

∫
Rn
f(x)e−iξ·xdx

is the Fourier transform of f in Rn.

Proof. The proof can be found in most standard Fourier Analysis books.

With the use of the Poisson Summation Formula, we prove the following important

proposition for this section.

Proposition 3.2. Let θ = θ(x, t) be the function defined in (3.6). Then for all t > 0,

x ∈ Rn

θ(x, t) =
∑
k∈Zn

(
π

t

)n/2
exp

[
−|x+ 2πk|2

4t

]
. (3.8)

Proof. Let us take the function f(x, t) = 1

(4πt)
n
2
e
−|x|2

4t for t > 0, x ∈ Rn. The Fourier

transform of f with respect to the space variable is given by f̂(ξ, t) = e−|ξ|
2t. It is not

difficult to see that f satisfies the requirements in the Poisson summation formula.

Therefore, applying the Poisson summation formula, we get

1

(2π)n

∑
k∈Zn

f̂(k, t)eik·x =
∑
k∈Zn

f(x+ 2πk, t)

∑
k∈Zn

e−|k|
2teik·x = (2π)n

∑
k∈Zn

1

(4πt)
n
2

e
−|x+2πk|2

4t

θ(x, t) =
∑
k∈Zn

(
π

t

)n
2

e
−|x+2πk|2

4t .

It is obvious from (3.8), the periodic heat kernel is non-negative, real valued

function. Next, we are going to state properties of the heat kernel which will justify

that the heat kernel is an approximation of identity. Later, we will be using these

properties of the heat kernel to obtain some auxiliary results for the solution to the

heat equation in periodic case.

Proposition 3.3. Let θ(x, t) be the function defined in (3.8). Then θ(x, t) ∈ C∞(Rn×
(0,∞)) and

i. θ(x, t) ≥ 0 for all (x, t) ∈ Rn × (0,∞).

ii. 1
(2π)n

∫
Tn θ(x, t)dx = 1 for all t ∈ (0,∞).
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iii. limt→0+
∫
Tn\Bδ(0)

θ(x, t)dx = 0 for all δ ∈ (0, π).

Proof. Left to the reader.

With the heat kernel of the form (3.8) in hand and with proposition 3.3, we now

are ready to establish some auxiliary results of the heat equation for periodic initial

data. For that purpose, let us rewrite the Cauchy problem associated to the heat

equation for f ∈ Cper(Rn). That is

ut = 4u, u = f at t = 0. (3.9)

The solution of (3.9) is denoted by

u(t) := u(., t) = e4tf = θ ∗ f

where θ(x, t) = θt(x) = 1/(4πt)n/2e
−|x|2

4t , t > 0. It is well-known that the solution of

(3.9) satisfies the following estimates:

|e4tf |∞ ≤ |f |∞, t ≥ 0 (3.10)

|Dje4tf |∞ ≤ Cjt
−j/2|f |∞, t > 0, j = 1, 2, · · · (3.11)

Here, and in the following, C,Cj, etc. denote positive constants that are independent

of t and f .

Proposition 3.4. Let F ∈ Cper(Rn × [0, T ]). Then the solutions of

ut = 4u+ F (x, t), u = 0 at t = 0 (3.12)

ut = 4u+DiF (x, t), u = 0 at t = 0 (3.13)

respectively obey the estimates

|u(t)|∞ ≤ 2t1/2 max
0≤s≤t

{s1/2|F (s)|∞} (3.14)

|u(t)|∞ ≤ C max
0≤s≤t

{s1/2|F (s)|∞}. (3.15)

Proof. In the following, we will use F (t) := F (., t) to be consistent with the notations.

To prove (3.14), let us write the solution of (3.12) using the Duhamel’s principle

u(x, t) =

∫ t

0

e4(t−s)F (x, s)ds (x ∈ Rn, t ≥ 0)
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We estimate u(t) as

|u(t)|∞ ≤
∫ t

0

|F (s)|∞ds

=

∫ t

0

s−1/2s1/2|F (s)|∞ds

≤ max
0≤s≤t

{s1/2|F (s)|∞}
∫ t

0

s−1/2ds

≤ 2t1/2 max
0≤s≤t

{s1/2|F (s)|∞}.

To estimate the solution of (3.13), we note that Di commutes with the heat semi-

group. Again, using the Duhamel’s principle we have

u(t) =

∫ t

0

e4(t−s)DiF (s)ds

=

∫ t

0

Die
4(t−s)F (s)ds.

Using (3.11) for j = 1 we get

|u(t)|∞ ≤ C

∫ t

0

(t− s)−1/2|F (s)|∞ds

= C

∫ t

0

(t− s)−1/2s−1/2s1/2|F (s)|∞ds

|u(t)|∞ ≤ C max
0≤s≤t

{s1/2|F (s)|∞}
∫ t

0

(t− s)−1/2s−1/2ds,

since
∫ t

0
(t − s)−1/2s−1/2ds = C for some C > 0 independent of t. In particular, for

t = 1, we have C =
∫ 1

0
(1− s)−1/2s−1/2ds. Therefore

|u(t)|∞ ≤ C max
0≤s≤t

{s1/2|F (s)|∞}.

3.2 Estimates for Parabolic System

In this section, we consider the system

ut = 4u+Dig(u), Di = ∂/∂xi (3.16)

u = f at t = 0 (3.17)
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where g : Rn → Rn is assumed to be quadratic in u and f ∈ C∞per(Rn). It is well known

that the solution is C∞per in a maximal interval 0 ≤ t < T (f) where 0 < T (f) ≤ ∞.

Let us set

F (x, t) = g(u(x, t)) for x ∈ Rn, 0 ≤ t < T (f)

and consider u as the solution of the inhomogeneous heat equation ut = 4u + DiF .

Since g(u) is quadratic in u, therefore there exists a constant Cg > 0 with

|g(u)| ≤ Cg|u|2, |gu(u)| ≤ Cg|u| for all u ∈ Rn. (3.18)

All second u- derivatives of g are constant. Next, we introduce the following important

theorem.

Theorem 3.5. Under the assumptions on f and g as mentioned above, the solution

of (3.16) and (3.17) satisfy the following:

(a) There is a constant c0 > 0 with

T (f) >
c0

|f |2∞
(3.19)

and

|u(t)|∞ ≤ 2|f |∞ for 0 ≤ t ≤ c0

|f |2∞
. (3.20)

(b) For every j = 1, 2, · · · , there is a constant Kj > 0 with

tj/2|Dju(., t)|∞ ≤ Kj|f |∞ for 0 < t ≤ c0

|f |2∞
. (3.21)

The constants c0 and Kj are independent of t and f .

Proof. To prove (a), let Cg denote the constant in (3.18) and C denote the constant

in (3.15). Set c0 = 1
16C2

gC
2 . Using the Duhamel’s principle, solution of (3.16) and

(3.17) can be written as

u(t) = e4tf +

∫ t

0

e4(t−s)DiF (s)ds.

Using (3.10) and (3.15), we get

|u(t)| ≤ |f |∞ + C max
0≤s≤t

{s1/2|F (s)|∞}.
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Suppose (3.20) does not hold then we can find some t0 with 0 < t0 < c0/|f |2∞ such

that |u(t0)|∞ = 2|f |∞. Using (3.18), we have |F (s)|∞ ≤ Cg|u(s)|2∞ ≤ Cg|u(t0)|2∞. So

all these give us

2|f |∞ = |u(t0)|∞ ≤ |f |∞ + CCgt
1/2
0 max

0≤s≤t0
|u(s)|2∞

2|f |∞ ≤ |f |∞ + CCgt
1/2
0 4|f |2∞.

This gives

1 ≤ 4CCgt
1/2
0 |f |∞,

thus t0 ≥ 1/(16C2C2
g |f |2∞) = c0/|f |2∞. This contradiction proves (3.20). Moreover, if

T (f) is finite then we will have lim supt→T (f) |u(t)|∞ =∞. This validates the estimate

T (f) > c0/|f |2∞.

Next, we prove estimate (3.21) by induction on j. The base case j = 0 is proved

by estimate (3.20). Suppose j ≥ 1 and assume for 0 ≤ k ≤ j − 1

tk/2|Dku(t)|∞ ≤ Kk|f |∞ for 0 ≤ t ≤ c0/|f |2∞. (3.22)

Here c0 is the same constant as defined in part (a). Now, we apply Dj to the equation

ut = 4u+Dig(u) to obtain

vt = 4v +Dj+1g(u), v := Dju.

Use the Duhamel’s principle to obtain

v(t) = Dje4tf +

∫ t

0

e4(t−s)Dj+1g(u(s))ds.

Using (3.11) we get

tj/2|v(t)|∞ ≤ C|f |∞ + tj/2
∣∣∣∣∫ t

0

e4(t−s)Dj+1g(u(s))ds

∣∣∣∣
∞
. (3.23)

We split the integral into ∫ t/2

0

+

∫ t

t/2

=: I1 + I2.
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In what follows, we allow the constant C to change from line to line. Again, using

the fact that Dj+1 commutes with the heat semigroup we obtain

|I1(t)| =
∣∣∣∣∫ t/2

0

Dj+1e4(t−s)g(u(s))ds

∣∣∣∣
∞

≤
∫ t/2

0

|Dj+1e4(t−s)g(u(s))ds|∞ds

≤ C

∫ t/2

0

(t− s)−(j+1)/2|g(u(s))|∞ds

= C|f |2∞t(1−j)/2.

The integrand in I2 has singularity at s = t. Therefore, we can move only one

derivative from Dj+1g(u) to the heat semi-group.( If we move two or more derivatives

then the singularity becomes non-integrable) Thus we have

|I2(t)|∞ =

∣∣∣∣∫ t

t/2

De4(t−s)Djg(u(s))ds

∣∣∣∣
∞

≤ C

∫ t

t/2

(t− s)−1/2|Djg(u(s))|∞ds. (3.24)

Recall g(u) is quadratic in u. Therefore

|Djg(u)|∞ ≤ C|u|∞|Dju|∞ + C

j−1∑
k=1

|Dku|∞|Dj−ku|∞.

We try to bound the sum in the above expression. By induction hypothesis (3.22) we

get

C

j−1∑
k=1

|Dku(s)|∞|Dj−ku(s)|∞ ≤ C

j−1∑
k=1

s−k/2|f |∞s(k−j)/2|f |∞

≤ Cs−j/2|f |2∞

where C is independent of t and f but depends on j. Next, we obtain

|Djg(u(s))|∞ ≤ C|u(s)|∞|Dju(s)|∞ + Cs−j/2|f |2∞.

Therefore

|I2(t)|∞ ≤ C

∫ t

t/2

(t− s)−1/2(|u(s)|∞|Dju(s)|∞ + s−1/2|f |2∞)ds

≤ C

∫ t

t/2

(t− s)−1/2|u(s)|∞|Dju(s)|∞ds+ C

∫ t

t/2

(t− s)−1/2s−j/2|f |2∞ds.
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Second integral in the above expression can be bounded by C|f |2∞t(1−j)/2 because∫ t
t/2

(t− s)−1/2s−j/2ds = Ct(1−j)/2 and the first integral is bounded by∫ t

t/2

(t− s)−1/2|u(s)|∞|Dju(s)|∞ds ≤ C|f |∞
∫ t

t/2

(t− s)−1/2s−j/2sj/2|Dju(s)|∞ds.

≤ C|f |∞t(1−j)/2 max
0≤s≤t

{sj/2|Dju(s)|∞}.

We use these bounds to bound the integral in (3.23). We have v = Dju. Then

maximizing the resulting estimate for tj/2|Dju(t)|∞ over all derivatives Dj of order j

and setting

φ(t) := tj/2|Dju(t)|∞

we obtain the following estimate

φ(t) ≤ C|f |∞ + Ct1/2|f |2∞ + C|f |∞t1/2 max
0≤s≤t

φ(s) for 0 ≤ t ≤ c0/|f |2∞.

Since t1/2|f |∞ ≤
√
c0 then Ct1/2|f |2∞ ≤ C

√
c0|f |∞. Therefore

φ(t) ≤ Cj|f |∞ + Cj|f |∞t1/2 max
0≤s≤t

φ(s) for 0 ≤ t ≤ c0/|f |2∞. (3.25)

Let us fix Cj so that the above estimate holds and set

cj = min

{
c0,

1

4C2
j

}
.

First, let us prove the following

φ(t) < 2Cj|f |∞ for 0 < t < cj/|f |2∞.

Suppose there is a smallest time t0 such that 0 < t0 < cj/|f |2∞ with φ(t0) =

2Cj|f |∞.Then using (3.25), we obtain

2Cj|f |∞ = φ(t0) ≤ Cj|f |∞ + 2C2
j |f |2∞t

1/2
0 ,

thus

1 ≤ 2Cj|f |∞t1/20 gives t0 ≥ cj/|f |2∞.

which contradicts the assertion. Therefore, we proved the estimate

tj/2|Dju(t)|∞ ≤ 2Cj|f |∞ for 0 ≤ t ≤ cj/|f |2∞. (3.26)
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If

Tj :=
cj
|f |2∞

< t ≤ c0

|f |2∞
=: T0 (3.27)

then we start the corresponding estimate at t − Tj. Using part (a) we have |u(t −
Tj)|∞ ≤ 2|f |∞ and obtain

T
j/2
j |Dju(t)|∞ ≤ 4Cj|f |∞. (3.28)

Finally, for any t satisfying (3.27),

tj/2 ≤ T
j/2
0 =

(
c0

cj

)j/2
T
j/2
j

and (3.28) yield

tj/2|Dju(t)|∞ ≤ 4Cj

(
c0

cj

)j/2
|f |∞.

This completes the proof of theorem 3.5.

3.3 The pressure term in the Navier-Stokes Equations

This section of my work will be focused to an analysis of the pressure term in the

Navier-Stokes equations. The pressure term can be determined from the Poisson

equation which can be obtained by taking the divergence on the both sides of the

momentum equations of the Navier-Stokes equations. The main focus of this section

would be deriving a suitable smooth periodic pressure term that solves the Navier-

Stokes equation along with the velocity field u. Before we get started determining

such pressure and study its underlying structure, we start by establishing some known

results of solutions of the Poisson equation in R3 to make readers familiar about them.

In addition, we would like to focus that Proposition 3.6 and 3.7 of this sections are

classical results, though I have provided very nice proofs with carefully added details.

Let us consider the following Poisson equation

−4p = g, g ∈ C2
0(R3). (3.29)

A solution of (3.29) is given by

p(x) =
1

4π

∫
R3

g(y)

|x− y|
dy. (3.30)

=
1

4π
G ∗ g (3.31)
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where G(x) = 1
|x| . Because the singularity at y = x is integrable and g ∈ C2

0(R3), the

integral given by (3.30) exists in the classical sense.

On the other hand, since g ∈ C∞0 (R3), we can also implement the Fourier trans-

form to obtain the solution of the Poisson equation as follows:

Let us assume apriori that p̂ is well-defined, and since g ∈ C2
0(R3) ⊂ L2(R3) we have

|ξ|2p̂(ξ) = ĝ(ξ) ξ ∈ R3,

p̂(ξ) =
1

|ξ|2
ĝ(ξ) for ξ 6= 0.

We know that the Fourier transform is an isomorphism between the spaces L2(R3),

therefore p̂ ∈ L2(R3) and we can write

p(x) =
1

(2π)3/2

∫
R3

p̂(ξ)eix·ξdξ

=
1

(2π)3/2

∫
R3

ĝ(ξ)

|ξ|2
eix·ξdξ

=
1

(2π)3/2

∫
R3

ĝ(ξ)

|ξ|2
eix·ξdξ

=
1

(2π)3/2

∫
R3

1

|ξ|2

(
1

(2π)3/2

∫
R3

g(y)e−iy·ξdy

)
eix·ξdξ

=
1

(2π)3

∫
R3

∫
R3

eiξ·(x−y)

|ξ|2
g(y)dydξ

=
1

(2π)3

∫
R3

(
PV

∫
R3

eiξ·(x−y)

|ξ|2
dξ

)
g(y)dy

=
1

(2π)3
(G ∗ g)(x) (3.32)

where G(x) = PV
∫
R3

eix·ξ

|ξ|2 dξ is called the Poisson kernel in R3. Next, we prove the

following:

Proposition 3.6. If (3.31) and (3.32) solve the same Poisson equation (3.29) then

PV
1

(2π)3

∫
R3

eiξ·x

|ξ|2
dξ =

1

4π|x|
. (3.33)

Proof. For x = 0, both sides of (3.33) become infinity. Therefore, let x 6= 0. In

addition, the singularity at ξ = 0 in the integral of (3.33) is integrable whereas the

slow decay of the integrand at space infinity not absolutely integrable. Therefore, the

integral on the left of (3.33) needs to be treated as the limit of

lim
R→∞

1

(2π)3

∫
|ξ|<R

eiξ·x

|ξ|2
dξ.
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Therefore let us write

PV
1

(2π)3

∫
R3

eiξ·x

|ξ|2
dξ = lim

R→∞

1

(2π)3

∫
|ξ|<R

eiξ·x

|ξ|2
dξ for R > 0.

First, let us prove this proposition for x = (0, 0, x3), x3 > 0, therefore, we get

PV

∫
R3

eiξ3x3

|ξ|2
dξ = lim

R→∞

∫
|ξ|<R

eiξ3x3

|ξ|2
dξ

Changing into spherical polar coordinates, we obtain

PV

∫
R3

eiξ3x3

|ξ|2
dξ = lim

R→∞

∫ 2π

0

∫ π

0

∫ R

0

eirx3 cos θ

r2
r2 sin θdrdθdφ

= (2π) lim
R→∞

∫ R

0

∫ π

0

eirx3 cos θ sin θdθdr

Simple substitution yields

PV

∫
R3

eiξ3x3

|ξ|2
dξ = (2π) lim

R→∞

∫ R

0

∫ 1

−1

eirx3ududr

= 2π lim
R→∞

∫ R

0

eirx3u

irx3

]1

−1

dr

= 4π lim
R→∞

∫ R

0

sin rx3

rx3

dr

=
4π

x3

lim
R→∞

∫ R

0

sinu

u
du.

Since
∫∞

0
sinu
u
du = π

2
, we get

PV

∫
R3

eiξ3x3

|ξ|2
dξ =

2π2

x3

.

Therefore,

PV
1

(2π)3

∫
R3

eiξ3x3

|ξ|2
dξ =

1

(2π)3

2π2

x3

=
1

4πx3

for x3 > 0.

Proceeding exactly same way as above for x3 < 0, we obtain

PV
1

(2π)3

∫
R3

eiξ3x3

|ξ|2
dξ = − 1

4πx3

.

Finally for any x3 6= 0, we get

PV
1

(2π)3

∫
R3

eiξ3x3

|ξ|2
dξ =

1

4π|x3|
.
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Thus, we have proved the proposition for x = (0, 0, x3). Moreover, we proved that

the integral on (3.33) exists in the principal value sense for x 6= 0. Next, we rotate

and scale the point x to prove the proposition in general case.

Let us rotate the point x = (0, 0, x3) by some orthonormal matrix A so that y = Ax

with |x| = |y| . Then

PV
1

(2π)3

∫
R3

eiy·ξ

|ξ|2
dξ = PV

1

(2π)3

∫
R3

eiAx·ξ

|ξ|2
dξ

= PV
1

(2π)3

∫
R3

eix·A
T ξ

|ξ|2
dξ.

Let AT ξ = η. We also know |ξ| = |η| and |detA| = 1. Therefore, with this change of

variable, we obtain

PV
1

(2π)3

∫
R3

eiy·ξ

|ξ|2
dξ = PV

1

(2π)3

∫
R3

eix·η

|η|2
|detA|dη

= PV
1

(2π)3

∫
R3

eix·η

|η|2
dη

= PV
1

(2π)3

∫
R3

eix3η3

|η|2
dη

=
1

4π|x3|

=
1

4π|y|
.

Finally, let us scale the point y obtained by rotating the point x as z = αy where

α 6= 0 , α ∈ R. Clearly |z| = |α||y|. Then,

PV
1

(2π)3

∫
R3

eiz·ξ

|ξ|2
dξ = PV

1

(2π)3

∫
R3

eiαy.ξ

|ξ|2
dξ

= PV
1

(2π)3

∫
R3

eiy·αξ

|ξ|2
dξ.

Simple change of variable αξ = η gives

PV
1

(2π)3

∫
R3

eiz·ξ

|ξ|2
dξ = PV

1

(2π)3

∫
R3

eiy·η

|η|2
|α|2 dη
|α|3

= PV
1

(2π)3

∫
R3

eiy·η

|α||η|2
dη

=
1

4π|y||α|

=
1

4π|z|
.

This completes the proof of proposition 3.6.
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The Poisson equation with periodic boundary conditions is of considerable interest

in this part of our work. First, we find a solution of the partial differential equation

−4p(x, t) = g(x, t) (3.34)

with periodic boundary condition: or in an alternative form, to compute the integral

p(x, t) =

∫
T3

G(x− y)g(y, t)dy (3.35)

where g ∈ C∞per(R3) and T3 = [0, 2π)3. The G(x) in (3.35) is the Green’s function of

the Poisson equation (3.34) and is given by

G(x) =
1

(2π)3

∑
k∈Z3

k 6=0

eik·x

|k|2
(3.36)

Apparently, the solution of (3.35) exists and can be given by

p(x) =
∑
k∈Z3

k 6=0

p̂(k)eik·x (3.37)

where p̂(k) = 1
(2π)3

∫
T3

eik·y

|k|2 g(y)dy. Notice, we have suppressed the t-dependence in

our notation.

The series in (3.37) does not converge absolutely; however, because of some oscilla-

tions in the summand, the series still manages to converge for x 6= 0. At the same

time, we would like to modify the series given in (3.36) so that the convergence of

such series is easy to observe. For that purpose, we proceed via the Fourier expansion

on the Poisson equation (3.34)

p̂(k) =
1

|k|2
ĝ(k)

= ĝ(k)

∫ ∞
0

e−|k|
2τdτ

= ĝ(k)

∫ α

0

e−|k|
2τdτ + ĝ(k)

∫ ∞
α

e−|k|
2τdτ, for α > 0

= ĝ(k)

∫ α

0

e−|k|
2τdτ + ĝ(k)

e−|k|
2α

|k|2

= p̂1(k) + p̂2(k).
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Let us rewrite (3.37)

p(x) =
∑
k∈Z3

k 6=0

p̂(k)eik·x

=
∑
k∈Z3

k 6=0

(
p̂1(k) + p̂2(k)

)
eik·x

=
∑
k∈Z3

k 6=0

p̂1(k)eik·x +
∑
k∈Z3

k 6=0

p̂2(k)eik·x

= p1(x) + p2(x).

Take

p1(x) =
∑
k∈Z3

p̂1(k)eik·x

=
∑
k∈Z3

ĝ(k)

∫ α

0

e−|k|
2τdτeik·x.

The Lebesgue dominated convergence theorem allows us to write

p1(x) =

∫ α

0

(∑
k∈Z3

ĝ(k)e−|k|
2τeik·x

)
dτ

=

∫ α

0

∑
k∈Z3

̂(g ∗ θτ )(k)eik·xdτ.

Note that θt is the n-dimensional heat kernel. Since F−1(e−|ξ|
2τ )(x) = e−|x|

2/4τ

(4πτ)3/2
for

τ > 0, here F is the Fourier transform in R3, and using the Poisson summation

formula we obtain

p1(x) =
∑
k∈Z3

∫ α

0

(∫
T3

e−|x−y+2πk|2/4τ

(4πτ)3/2
g(y)dy

)
dτ

=

∫
T3

∑
k∈Z3

∫ α

0

e−|x−y+2πk|2/4τ

(4πτ)3/2
dτg(y)dy.
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Also

p2(x) =
∑
k∈Z3

k 6=0

p̂2(k)eik·x

=
∑
k∈Z3

k 6=0

ĝ(k)
e−|k|

2τ

|k|2
eik·x

=
∑
k∈Z3

k 6=0

e−|k|
2τ

|k|2
1

(2π)3

∫
T3

g(y)e−ik·ydyeik·x

=
1

(2π)3

∫
T3

∑
k∈Z3

k 6=0

eik·(x−y)

|k|2
e−|k|

2τg(y)dy.

Finally, we arrive at the following expression

p(x) = p1(x) + p2(x)

=
1

(2π)3

∫
T3

(∑
k∈Z3

k 6=0

eik·(x−y)

|k|2
e−|k|

2α +
1

8π
√
π

∑
k∈Z3

∫ α

0

e−|x−y+2πk|2/4ττ−3/2dτ

)
g(y)dy.

(3.38)

Hence, we have proved the following proposition.

Proposition 3.7. The expression in (3.38) solves the Poisson equation (3.34) with

the Green’s function of the form

G(x) =
∑
k∈Z3

k 6=0

eik·x

|k|2
e−|k|

2α +
1

8π
√
π

∑
k∈Z3

∫ α

0

e−|x+2πk|2/4ττ−3/2dτ for α > 0.

Next, we will connect the Poisson equation to the Navier Stokes equations. To do

this, we apply the divergence operator ∇· to both sides of the momentum equation

of the Navier-Stokes equations along with the divergence free condition ∇·u = 0 and

obtain

−4p = g (3.39)

where

g(x, t) =
3∑

i,j=1

DiDj(ujui)(x, t).
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The pressure term in the Navier Stokes equations can be determined by the Poisson

equation (3.39). Dropping the t-dependence in our notation we formally have

p(x) =
1

4π

∑
i,j

∫
G(x− y)DiDj(uiuj)(y)dy (3.40)

where G(x) = 1
|x| is called the Poisson kernel in R3.

There are couple of concerns in the integral (3.40). First, the singularity at y = x,

and second slow decay of the integrand for large y. However, singularity at y = x

is harmless because it is integrable. On the other hand the slow decay may cause

the non-existence of the integral. The integral (3.40) may not exist in the classical

sense but the Calderon- Zygmund theory of singular integrals guarantees that p is in

the space of bounded mean oscillation(BMO). Our main goal while dealing with the

pressure is to obtain a smooth periodic pressure such that (u, p) solves the Navier-

Stokes equations with appropritate initial condition. The pressure given by (3.40)

is nowhere close to the type that we are looking for because either non-existence of

the integral or the requirements of the periodic pressure. Since we are still interested

to follow the techniques of the paper by Kreiss and Lorenz, we motivate ourselves

to produce a smooth periodic pressure with the same underlying structure as the

pressure in (3.40). To proceed in that direction, we next start with the following

definition.

Definition 3.8. Let (u, p) be a solution to the Navier-Stokes equations (2.1) and

(2.2) with f ∈ C∞per(R3) and suppose that u ∈ C∞per(R3) for 0 ≤ t < T for some

T <∞. The modified Poisson pressure is given by

p∗(x, t) =
1

4π

∑
i,j

∫ [
Gij(x− y)−Gij(y)

]
(uiuj)(y, t)dy (3.41)

where for i, j ∈ {1, 2, 3},

Gij(x) = DiDj(|x|−1) (3.42)

where G(x) = |x|−1.

In the following, we would be focused to show the existence of the integral (3.41) in

the principal value sense and p∗ is a smooth periodic pressure so that (u, p∗) solves the

Navier-Stokes equations (2.1),(2.2) with f ∈ C∞Per(R3). Before we do so we introduce

the following elementary results for the kernel given by (3.42) and (3.43) whose proofs

are left for reader since they are standard exercise problems of multivariable calculus.
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Proposition 3.9. Let S2
x,a denote a sphere of radius a and centered at x ∈ R3 and

dS denote the element of surface measure of sphere in R3, then for i, j ∈ {1, 2, 3}

∫
S2
x,a

(xi − yi)(xj − yj)dSy =

 0 if i 6= j

4πa4

3
if i = j.

Proposition 3.10. For i, j ∈ {1, 2, 3}

Gij(x− y) =
3(xi − yi)(xj − yj)

|x− y|5

and

Gjj(x− y) =
3(xj − yj)2 − |x− y|2

|x− y|5

then ∫
S2
x,a

Gij(x− y)dSy = 0.

Proposition 3.11. Let Ω = {y ∈ R3 : ε < |x−y| < δ, x ∈ R3} for any ε, δ > 0. Then∫
Ω

Gij(x− y)dSy = 0 for any i, j ∈ {1, 2, 3}.

Lemma 3.12. Let Gij be the kernel given by (3.42) and (3.43). Then

|Gij(x− y)−Gij(y)| ≤ C|x|
|y|4

for |y| > 2|x|.

Proof. Let us define

φ(t) = Gij(y − tx), 0 ≤ t ≤ 1.

For |y| > 2|x|, fundamental theorem of calculus applies and gives

Gij(y − x)−Gij(y) = φ(1)− φ(0) =

∫ 1

0

φ′(t)dt

and

|Gij(y − x)−Gij(y)| = |φ(1)− φ(0)| ≤ max
0≤t≤1

|φ′(t)|.

Obtain

φ′(t) = −x · ∇Gij(y − tx)
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and by Cauchy-Schwarz inequality

|φ′(t)| ≤ |x||∇Gij(y − tx)| ≤ C|x|
|y − tx|4

.

For 0 ≤ t ≤ 1 and |y| > 2|x| we have

|y − tx| ≥ |y| − t|x| ≥ |y| − |x| ≥ |y| − |y|
2

=
|y|
2
.

Thus,

max
0≤t≤1

|φ′(t)| ≤ C|x|
|y|4

.

This proves lemma 3.12.

Lemma 3.13. Suppose that Gij(y) is the kernel defined by (3.42) and (3.43). Then

for any δ > 0 and fixed x ∈ R3,

PV

∫
|x−y|<δ

Gij(x− y)g(y)dy <∞ (3.43)

where g(y) = (uiuj)(y), for any i, j ∈ {1, 2, 3}. However, a Lipschitz continuous g

would suffice for the result of this lemma to be valid.

Proof. For any fixed x ∈ R3 and 0 < ε < δ, denote

I(x) :=

∫
ε<|x−y|<δ

Gij(x− y)g(y)dy.

Since g ∈ C∞per(R3) and using the proposition (3.11) for any x ∈ R3, we can get∫
ε<|x−y|<δ

Gij(x− y)g(x)dy = 0.

Therefore, we can also write

I(x) =

∫
ε<|x−y|<δ

Gij(x− y)[g(y)− g(x)]dy.

Using |Gij(x− y)| ≤ C
|x−y|3 for some C > 0 yields

|I(x)| ≤ C

∫
ε<|x−y|<δ

1

|x− y|3
|g(y)− g(x)|dy.

Next, we determine the suitable bound for |g(y)−g(x)|. Let us start with the following

g(y)− g(x) = (uiuj)(y)− (uiuj)(x)

= ui(y)uj(y)− ui(y)uj(x) + ui(y)uj(x)− ui(x)uj(x)
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and

|g(y)− g(x)| ≤ |ui(y)||uj(y)− uj(x)|+ |uj(x)||ui(y)− uj(x)|

≤ |u|∞|u(y)− u(x)|+ |u|∞|u(y)− u(x)|

= 2|u|∞|u(y)− u(x)|.

Let

φ(t) = u(x+ (y − x)t), 0 ≤ t ≤ 1.

Then

φ(1)− φ(0) =

∫ 1

0

φ′(t)dt

=

∫ 1

0

∇u(x+ (y − x)t) · (y − x)dt.

Therefore

|u(y)− u(x)| = |φ(1)− φ(0)| ≤ max
0≤t≤1

|∇u(x+ (y − x)t)||y − x|

|u(y)− u(x)| ≤ |∇u|∞||y − x|.

Since u ∈ C∞per(R3), we obtain

|g(y)− g(x)| ≤ 2|u|∞|∇u|∞|y − x|

≤ C|y − x|.

Hence

|I(x)| ≤ C

∫
ε<|x−y|<δ

1

|x− y|3
|g(y)− g(x)|dy

≤ C

∫
ε<|x−y|<δ

1

|x− y|2
dy.

Changing into polar coordinates gives

|I(x)| ≤ C

∫ δ

ε

r2/r2dr = C(δ − ε).

Finally

PV

∫
|x−y|<δ

Gij(x− y)g(y)dy = lim
ε→0

∫
ε<|x−y|<δ

Gij(x− y)g(y)dy

= lim
ε→0

I(x)

≤ lim
ε→0

C(δ − ε)

= Cδ <∞.
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Finally, we have proved that the integral given by (3.44) exists. Hence the Lemma

3.14 is proved.

Next, we are ready to state and prove an important theorem of this section of our

work.

Theorem 3.14. Suppose that (u, p) is a solution to the Navier-Stokes equations

(2.1) and (2.2) with f ∈ C∞per(R3) and suppose that u ∈ C∞per(R3) , t ∈ [0, T ) for some

T ≤ ∞. Then for any fixed x ∈ R3 the modified Poisson pressure given by

(3.41) exists and does not grow faster than a logarithmic function of |x| as x→∞.

Proof. In what follows, we suppress the t-dependence in our notations and denote

g(y) = (uiuj)(y). In addition, we allow the constant to change line to line. First, if

x = 0 then p∗(x) = 0, therefore there is nothing to prove. Let x 6= 0 be fixed and

write the integral given by (3.41) as

p∗(x) = PV
∑
i,j

C

∫
|y|<2|x|

[
Gij(x− y)−Gij(y)

]
g(y)dy

+ PV
∑
i,j

C

∫
|y|>2|x|

[
Gij(x− y)−Gij(y)

]
g(y)dy

= I1 + I2

where

I1(x) = PV
∑
i,j

C

∫
|y|<2|x|

[
Gij(x− y)−Gij(y)

]
g(y)dy

= PV
∑
i,j

C

∫
|y|<2|x|

Gij(x− y)g(y)dy − PV
∑
i,j

C

∫
|y|<2|x|

Gij(y)g(y)dy

= J1 + J2.

From the lemma 3.13 for fixed x, we obtain

|J2(x)| ≤ C|x|

≤ C.

Denote the ball of radius r and centered at x ∈ R3 by Br(x). For some ε > 0, write

J1(x) = PV
∑
i,j

∫
|y|<2|x|

Gij(x− y)g(y)dy

=
∑
i,j

C

∫
|y|<2|x|\Bε(x)

Gij(x− y)g(y)dy + PV
∑
i,j

C

∫
Bε(x)

Gij(x− y)g(y)dy

= J∗1 + J∗∗1 .
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Again, from lemma 3.13, we immediately get

|J∗∗1 (x)| ≤ Cε.

Let us notice that {y ∈ R3 : |y| < 2|x|\Bε(x)} ⊂ {y ∈ R3 : ε < |x− y| < 3|x|} to get

|J∗1 (x)| ≤
∑
i,j

C

∫
ε<|x−y|<3|x|

|Gij(x− y)||g(y)|dy.

Using lemma 3.13 again we get

|J∗1 (x)| ≤
∑
i,j

C

∫
ε<|x−y|<3|x|

|Gij(x− y)||g(y)|dy

≤ C(3|x| − ε)

≤ C.

Therefore, we have the following estimate for J1:

|J1(x)| ≤ |J∗1 (x)|+ |J∗∗2 (x)|

≤ C + Cε

≤ C.

We obtain

|I1(x)| ≤ |J1(x)|+ |J2(x)|

≤ C.

Next, we will find bound for I2 which is given by

I2(x) = lim
R→∞

∑
i,j

C

∫
2|x|<|y|<R

[
Gij(x− y)−Gij(y)

]
g(y)dy.

Use lemma 3.12 to obtain

|I2(x)| ≤ lim
R→∞

∑
i,j

C

∫
2|x|<|y|<R

|x|
|y|4

dy

= lim
R→∞

∑
i,j

C|x|
∫

2|x|<|y|<R

1

|y|4
dy.

Evaluating the integral using the polar coordinates gives us

|I2(x)| ≤ lim
R→∞

∑
i,j

C|x|
[

1

2|x|
− 1

R

]
≤ lim

R→∞

∑
i,j

C

[
1

2
− |x|

R

]
≤ C, for any x ∈ R3.
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Therefore

|I(x)| ≤ |I1(x)|+ |I2(x)|

≤ C.

Hence, we proved that the modified Poisson pressure p∗ given by (3.41) is bounded for

fixed x. This proves that the integral equation given by (3.41) exists in the principal

value sense. Now, it remains to prove the p∗ does not grow faster than the logarithmic

function of |x| for large x. For that, choose |x| > 1. Let us write p∗ as

p∗(x) = PV
∑
i,j

C

∫
|y|<2|x|

[
Gij(x− y)−Gij(y)

]
g(y)dy

+ PV
∑
i,j

C

∫
|y|>2|x|

[
Gij(x− y)−Gij(y)

]
g(y)dy

= p∗1 + p∗2.

Notice, the estimate for p∗2 is same as that for I2 in the previous case. Therefore

|p∗2(x)| ≤ C.

Here

p∗1(x) = PV
∑
i,j

C

∫
|y|<2|x|

[
Gij(x− y)−Gij(y)

]
g(y)dy

= PV
∑
i,j

C

∫
|y|<2|x|

Gij(x− y)g(y)dy − PV
∑
i,j

C

∫
|y|<2|x|

Gij(y)g(y)dy

We can write the above integral as

p∗1(x) =
∑
i,j

C

∫
|y|<2|x|\B1(x)

Gij(x− y)g(y)dy + PV
∑
i,j

C

∫
B1(x)

Gij(x− y)g(y)dy

− PV
∑
i,j

C

∫
|y|<1

Gij(y)g(y)dy −
∑
i,j

C

∫
1<|y|<2|x|

Gij(y)g(y)dy

= T1 + T2 + T3 + T4.

Applying lemma 3.13, we immediately get

|T2(x)| ≤ C and |T3(x)| ≤ C.

To estimate T1, we observe that {y ∈ R3 : |y| < 2|x|\B1(x)} ⊂ {y ∈ R3 : 1 < |x−y| <
3|x|} and |Gij(x− y)| ≤ C

|x−y|3 , for some C > 0. Therefore
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|T1(x)| ≤
∑
i,j

C

∫
1<|x−y|<3|x|

|Gij(x− y)|dy

≤
∑
i,j

C

∫
1<|x−y|<3|x|

1

|x− y|3
dy.

Changing into polar form gives

|T1(x)| ≤
∑
i,j

C

∫ 3|x|

1

1

r
dr

≤ C ln 3|x|.

Similarly,

|T4(x)| ≤ C ln 2|x|

≤ C ln 3|x|.

Therefore, we obtain the following bound for p∗1

|p∗1(x)| ≤ |T1(x)|+ |T2(x)|+ |T3(x)|+ |T4(x)|

≤ C(1 + ln 3|x|).

Combine the results from above, we get a bound for

|p∗(x)| ≤ |p∗1(x)|+ |p∗2(x)|

≤ C(1 + ln 3|x|).

Finally, we have proved that the modified Poisson pressure exists and does not grow

faster than logarithmic function of |x| for large x.

Theorem 3.15. Let

p∗(x, t) = PV
∑
i,j

1

4π

∫
R3

[Gij(x− y)−Gij(y)](uiuj)(y, t)dy (3.44)

Then p∗ is a solution to the Poisson equation

−4p(x, t) =
∑
i,j

(Diuj)(Djui)(x, t). (3.45)

Proof. Once again, we will suppress the t-dependence in our notations. Suppose,

there is an R > 0 such that 2|x| < R. Let us introduce a C∞ cut-off function φ(r)
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with φ(r) = 1 if 0 ≤ r ≤ R and 0 for r ≥ R + 1. We write p∗ using this cut-off

function as follows:

p∗(x) = PV
∑
i,j

1

4π

∫
R3

[Gij(x− y)−Gij(y)](φ(|y|)− (1− φ(|y|)))(uiuj)(y)dy

= PV
∑
i,j

1

4π

∫
|y|<R+1

[Gij(x− y)−Gij(y)]φ(|y|)(uiuj)(y)dy

+
∑
i,j

1

4π

∫
|y|>R

[Gij(x− y)−Gij(y)](1− φ(|y|))(uiuj)(y)dy

= p∗loc(x) + p∗glb(x).

Using integration by parts and the fact that the φ vanishes on the boundary, we

obtain

p∗loc(x) =
∑
i,j

1

4π

∫
|y|<R+1

[G(x− y)−G(y)]DiDj(φ(|y|)uiuj)(y)dy

=
∑
i,j

1

4π

∫
|y|<R

[G(x− y)−G(y)]DiDj(uiuj)(y)dy

+
∑
i,j

1

4π

∫
R<|y|<R+1

[G(x− y)−G(y)]DiDj(φ(|y|)uiuj)(y)dy

= I1(x) + I2(x).

Then

4xp
∗
loc = 4xI1(x) +4xI2(x).

It is known that for values of y different from x, we have

4xG(x− y) = 0 and 4xGij(x− y) = 0

This clearly implies 4xp
∗
glb(x) = 0 and 4xI2(x) = 0. Therefore, we arrive at

4xp
∗(x) = 4xI1(x)

= PV
∑
i,j

1

4π

∫
|y|<R

4xG(x− y)DiDj(uiuj)(y)dy

= PV
1

4π

∫
|y|<R

4xG(x− y)
∑
i,j

DiDj(uiuj)(y)dy

= −
∑
i,j

DiDj(uiuj)(x)

= −
∑
i,j

(Diuj)(Djui)(x).

This completes the proof of theorem 3.15.
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As per our quest of a smooth periodic pressure that has same underlying structure

as the BMO valued pressure in (3.40), we have just been able to construct a modified

pressure (3.45) which solves the Poisson equation (3.46) and exists in the principal

value sense. However, we are still left to show that such modified pressure is smooth

periodic for a smooth periodic velocity field.

Recall, we used the Fourier expansion on the Poisson equation (3.34) and formally

obtained a smooth periodic pressure (3.38) . However, the problem persist with the

fact that such pressure in (3.38) does not obviously have same underlying structure as

the pressure used in the Kreiss and Lorenz paper. Therefore, we prove the following

theorem which is an essential part of this paper.

Theorem 3.16. If p given by (3.38) and p∗ given by (3.45) solve the same Poisson

pressure equation (3.46) then p(x, t) = p∗(x, t) + C(t) for some constant C that

depends only on t. This concludes, p∗ is also a smooth periodic solution of the

Poisson pressure equation (3.46).

Proof. Let p1 = p− p∗. Then p1 is harmonic in R3. Suppose for any x1, x2 ∈ R3 with

x1 6= x2, we apply volume version of the mean value property of harmonic function

to obtain

p1(x1) =
1

vol(Br(x1))

∫
Br(x1)

p1(y)dy

and

p1(x2) =
1

vol(Br(x2))

∫
Br(x2)

p1(y)dy

where dy is element of volume measure of sphere and r > 0 be arbitrarily large.

Let A = Br(x1)\Br(x2) ∪Br(x2)\Br(x1).Then

|p1(x1)− p1(x2)| ≤ 1

vol(Br(0))

∫
A

|p1(y)|dy

≤ 1

vol(Br(0))

∫
A

|p(y)− p∗(y)|dy

≤ 1

vol(Br(0))

∫
A

(
|p(y)|+ |p∗(y)|

)
dy.

Since p(y, t) in (3.38) is bounded in R3× [0, T ] for some T > 0 and from theorem 3.14,

we have |p∗(y, t)| ≤ C(1 + ln 3|y|) where C depends on t which we have suppressed in
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our notations. Therefore, we get

|p1(x1)− p1(x2)| ≤ 1

vol(Br(0))

∫
A

C(1 + ln 3|y|)dy

≤ C

vol(Br(0))
(1 + ln 3r)vol(A).

Notice if B = Br+|x1−x2|(x1)\Br−|x1−x2|(x2) then vol(A) ≤ vol(B). Also it is not

difficult to see the vol(B) = O(r2). To this end, we have

|p1(x1)− p1(x2)| ≤ C(1 + ln 3r)O(r2)

r3

Therefore as r →∞, we obtain p1(x1) = p1(x2) for any x1, x2. Hence we proved that

p1 is a constant function of x which proves p(x, t) = p∗(x, t)+C(t). Finally, we proved

p∗ is also a smooth periodic solution of the Poisson pressure equation (3.46).

3.4 Bounds on the Pressure Derivatives

To prove the result analogous to the main theorem of the KL paper, we require the

estimates on the pressure derivatives. Since we are in the periodic case, it is natural to

expect to use the periodic pressure given by (3.38). However, this periodic pressure is

not in the convenient form to obtain the estimates as we wish to follow the techniques

of KL’s paper. In theorem 3.16, we proved that the modified pressure coincides with

periodic pressure (3.38) in torus T3. This fact influences us to use modified pressure

to obtain necessary estimates using the similar techniques as in the KL paper.

Lemma 3.17. Let u be a solution to the Navier-Stokes equations (2.1) and (2.2)

with f ∈ C∞per(R3) and ∇ · f = 0 where pressure p(x, t) = p(x) is given by, for some

constant C0 > 0,

p(x) =
∑
i,j

C0

∫
R3

[Gij(x− y)−Gij(y)](uiuj)(y)dy.

Then there is a constant C > 0, independent on t, δ and f so that the following

estimates hold:

|ploc|∞ ≤ C(|u|2∞ + δ|u|∞|Du|∞) (3.46)

|Dploc|∞ ≤ C(δ−1|u|2∞ + δ|Du|2∞) (3.47)

|Dpglb|∞ ≤ Cδ−1|u|2∞. (3.48)

where ploc and pglb are defined in page 9 equation (2.5).
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Proof. Follow Lemma 4.1 of [12].

In the KL paper, estimates on the higher order pressure derivatives were not

achieved despite their need while obtaining the estimates on the higher order deriva-

tives on the velocity field. In addition, the KL paper leaves the proof of the main

theorem for the readers by giving an illustrative proof for the parabolic system (3.16)

and (3.17). To fullfil the gap left by the KL paper, we start with the following theorem

which provides the estimates on the higher order derivatives of the pressure.

Theorem 3.18. Consider the Navier-Stokes equations

ut = 4u+Q, ∇ · u = 0 u = f at t = 0

where

Q = −∇p− u · ∇u.

Let j ≥ 1 and assume that for 0 ≤ k ≤ j − 1, there are constants c0 and Kk

independent of t, f such that

tk/2|Dku(t)|∞ ≤ Kk|f |∞ for 0 < t ≤ c0

|f |2∞
. (3.49)

Then there exists a constant C independent of t and f and for 1 ≤ l ≤ 3 such that

|Djploc(x)|∞ ≤ C(|f |∞|Dju|∞ + t−j/2|f |2∞) (3.50)

and

|Djpglb(x)|∞ ≤ C|f |2∞t−j/2. (3.51)

Proof. Let us begin by applying Dj−1 to ut = 4u+Q to get

vt = 4v +Dj−1Q, v := Dj−1u

By taking the divergence on both side of the above equations we have the Poisson

equation

4q = −
∑
i,k

DiDk(D
j−1(uiuk)) q := Dj−1p

A solution of this Poisson equation is given by q = qloc + qglb where

qloc(x) =
∑
i,k

C0

∫
|x− y|−1DiDk(φ(δ−1|x− y|)Dj−1(uiuk)(y))dy (3.52)
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and

qglb(x) =
∑
i,j

C0

∫
|x− y|−1DiDk((1− φ(δ−1|x− y|))Dj−1(uiuk)(y))dy (3.53)

where φ(r) = 1 for 0 ≤ r ≤ 1 and 0 if r ≥ 2 is C∞ cut-off function whose argument

is always δ−1|x− y| in this proof which we will suppress in our notations.

To estimate |Dqloc|∞, we first apply Dl,x = ∂/∂xl under the intergral sign of (3.53)

and obtain

Dl,xqloc(x) =
∑
i,k

C0

∫
B(x,2δ)

Dl,x(|x− y|−1)DiDk(φD
j−1(uiuk)(y))dy

+
∑
i,k

C0

∫
B(x,2δ)

|x− y|−1(DiDk(Dl,x(φ))Dj−1(uiuk))(y)dy

= I1 + I2

To estimate I1, we first estimate
∑

i,kDiDk(φD
j−1(uiuk)) in maximum norm. In the

following it is also important to use
∑

i,kDiDk(uiuk) =
∑

i,k(Diuk)(Dkui).

∑
i,k

DiDk(φD
j−1(uiuk)) =

∑
i,k

{DiDkφD
j−1(uiuk) +DkφDiD

j−1(uiuk)

+DiφDkD
j−1(uiuk) + φDj−1(Diuk)(Dkui)}

=
∑
i,k

(J1 + J2 + J3 + J4)(i, k)

Let us first estimate the following:

|Dl(uiuk)|∞ =

∣∣∣∣ l∑
m=0

C(l,m)DmuiD
l−muk

∣∣∣∣
∞

≤ C

l∑
m=0

|Dmu|∞|Dl−mu|∞

≤ C(|u|∞|Dlu|∞ +
l−1∑
m=1

|Dmu|∞|Dl−mu|∞

≤ C(|u|∞|Dlu|∞ + t−m/2|f |∞t−(l−m)/2|f |∞)

≤ C(|u|∞|Dju|∞ + t−l/2|f |2∞) (3.54)

Let us estimate J1:

|J1|∞ = |DiDkφD
j−1uiuk|∞ ≤ |DiDkφ|∞|Dj−1uiuk|∞
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It is not difficult to observe that |Diφ| ≤ Cδ−1 and |DiDkφ|∞ ≤ Cδ−2. Also, the use

of (3.55) give the estimate for J1 as

|J1|∞ ≤ Cδ−2(|u|∞|Dj−1u|∞ + t−(j−1)/2|f |2∞).

Furthermore, using ( 3.50) one more time we get

|J1|∞ ≤ Cδ−2t−(j−1)/2|f |2∞.

To estimate J2, we again use (3.55) and proceed as

|J2|∞ ≤ |Dkφ|∞|Dj(uiuk)|∞
≤ Cδ−1(|u|∞|Dju|∞ + t−j/2|f |2∞
≤ Cδ−1(|f |∞|Dju|∞ + t−j/2|f |2∞)

J3 has same estimate as J2. Next, we estimate J4 with the use of (3.55) one more

time to get

|J4|∞ ≤ |φ|∞|Dj−1(Diuk)(Dkui)|∞
≤ C(|Du|∞|Dju|∞ + t−(j+1)/2|f |2∞)

≤ C(t−1/2|f |∞|Dju|∞ + t−(j+1)/2|f |2∞)

Hence

∣∣∣∣∑
i,k

DiDk(φD
j−1(uiuk))

∣∣∣∣
∞
≤ C|J1|∞ + · · · |J4|∞

≤ Cδ−2t−(j−1)/2|f |2∞ + Cδ−1(|f |∞|Dju|∞ + t−j/2|f |2∞)

+ C(t−1/2|f |∞|Dju|∞ + t−(j+1)/2|f |2∞)

Note |Dl,x|x− y|−1|∞ ≤ |x− y|−2 and estimate |I1|∞ as

|I1|∞ ≤ C|DiDk(φD
j−1(uiuk)|∞

∫
B(x,2δ)

|x− y|−2dy

≤ Cδ{Cδ−2t−(j−1)/2|f |2∞ + Cδ−1(|f |∞|Dju|∞ + t−j/2|f |2∞)

+ C(t−1/2|f |∞|Dju|∞ + t−(j+1)/2|f |2∞)}

Choose
√
δ = t, then

|I1|∞ ≤ C(|f |∞|Dju|∞ + t−j/2|f |∞).
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The estimates on |I2|∞ can be obtained in the very similar way as for |I1|∞ without

integration by parts. Therefore, estimate (3.51) in the theorem 3.18 follows.

To prove the estimate (3.52), we now apply Dl,x under the integral sign in (3.54)

Dl,xqglb(x) =
∑
i,k

C0

∫
|x−y|>δ

(Dl,xDiDk(|x− y|−1))(1− φ)Dj−1(uiuk)(y)dy

+
∑
i,k

C0

∫
|x−y|>δ

(DiDk(|x− y|−1)(Dl,x(1− φ))Dj−1(uiuk))))dy

= I3 + I4

We will need the following:∣∣∣∣ ∫
|x−y|>δ

Dl,xDiDk(|x− y|−1)dy

∣∣∣∣ ≤ Cδ−1

and from (3.55) for l = (j − 1) we obtain

|Dj−1(uiuk)|∞ ≤ C|f |2∞t−(j−1)/2

Hence for
√
δ = t we have

|I3|∞ ≤ C|f |2∞t−j/2

To estimate I4, recall that φ′ 6= 0 on [1, 2], therefore

I4(x) =
∑
i,k

C0

∫
δ<|x−y|<2δ

DiDk(|x− y|−1)(Dl,x(1− φ))(Dj−1(uiuk)(y)dy

Also we will use the fact∣∣∣∣ ∫
δ<|x−y|<2δ

DiDk(|x− y|−1dy

∣∣∣∣ ≤ C ln 2 ≤ C,

|Dl,x(1− φ)|∞ ≤ Cδ−1

and same as before

|Dj−1(uiuk)|∞ ≤ C|f |2∞t−(j−1)/2

We now estimate |I4|∞:

|I4|∞ ≤
∣∣∣∣∑
i,k

C0

∫
δ<|x−y|<2δ

DiDk(|x− y|−1)(Dl,x(1− φ))(Dj−1(uiuk)(y)dy

∣∣∣∣
∞

≤ C|Dl,x(1− φ)|∞|Dj−1(uiuk)|∞
∣∣∣∣ ∫

δ<|x−y|<2δ

DiDk(|x− y|−1dy

∣∣∣∣
≤ Cδ−1|Dj−1(uiuk)|∞
≤ Cδ−1|f |2∞t−(j−1)/2
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Using
√
δ = t we have

|I4|∞ ≤ C|f |2∞t−j/2

Hence

|Dl,xqglb| ≤ |I3|∞ + |I4|∞
≤ Ct−j/2|f |2∞

Hence the estimate (3.52) in theorem 3.18 follows.

3.5 Estimates for the Navier-Stokes Equations

Recall that

ut = 4u+Q, Q = −∇p− u · ∇u, u = f at t = 0.

We write Q = Qloc +Qglb with

Qloc = −∇ploc −
∑
j

Dj(uju),

Qglb = −∇pglb.

Theorem 3.19. (Kriess and Lorenz ’001) Consider the Cauchy problem for the

Navier-Stokes equations (2.1) and (2.2), where f ∈ C∞per(R3) and ∇ · f = 0. Then

there is a constant c0 > 0, and for every j = 0, 1, 2 · · · there is a constant Kj such

that for an interval

0 < t ≤ c0

|f |2∞
we have

tj/2|Dju(t)|∞ ≤ Kj|f |∞.

The constants c0 and Kj are independent of t and f .

Using the estimates in lemma 3.17 and the heat equation estimates (3.10), (3.14)

and (3.15), we will prove the following:

Lemma 3.20. Set

V (t) = |u(t)|∞ + t1/2|Du(t)|∞, 0 < t < Tf . (3.55)

There is a constant C > 0 , independent of t and f , so that

V (t) ≤ C|f |∞ + Ct1/2 max
0≤s≤t

V 2(s), 0 < t < Tf . (3.56)
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Proof. Using lemma 3.17 with δ = t1/2, we have

|ploc|∞ + |uju|∞ ≤ C(|u|2∞ + t1/2|u|∞|Du|∞,

|Qloc| ≤ C(t−1/2|u|2∞ + t1/2|Du|2∞,

|Qglb|∞ ≤ Ct−1/2|u|2∞.

Since ut = 4u+Qloc+Qglb and since Qloc is obtained by applying one space derivative

to the term ploc and uju, we obtain from (3.10),(3.14),(3.15) and above estimates

|u(t)|∞ ≤ |f |∞ + C max
0≤s≤t

(s1/2|u(s)|2∞ + s|u(s)|∞|Du(s)|∞) + Ct1/2 max
0≤s≤t

|u(s)|2∞

≤ |f |∞ + Ct1/2 max
0≤s≤t

(|u(s)|2∞ + s|Du(s)|2∞)

≤ |f |∞ + Ct1/2 max
0≤s≤t

V 2(s).

For v(t) = Dku(t), we have

vt = 4v +DkQ

with

|Q|∞ ≤ C(t−1/2|u|2∞ + t1/2|mcDu|2∞).

Therefore, by (3.11) for j = 1 and by (3.15),

|v(t)|∞ ≤ Ct−1/2|f |∞ + C max
0≤s≤t

{s1/2|Q(s)|∞}

≤ Ct−1/2|f |∞ + C max
0≤s≤t

{s1/2(s−1/2|u(s)|2∞ + s1/2|Du(s)|2∞)}

≤ Ct−1/2|f |∞ + C max
0≤s≤t

{|u(s)|2∞ + s|Du(s)|2∞}

which gives

t1/2|v(t)|∞ ≤ C|f |∞ + Ct1/2 max
0≤s≤t

V 2(s).

The lemma is proved.

Lemma 3.20 allows us to estimate |u(t)|∞ and |Du(t)|∞ in terms of |f |∞ in a small

time interval.

Lemma 3.21. Let C > 0 denote the constant in (3.57) and set

c0 =
1

16C4

Then Tf > c0/|f |2∞ and

|u(t)|∞ + t1/2|Du(t)|∞ < 2C|f |∞ for 0 ≤ t <
c0

|f |2∞
. (3.57)
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Proof. Recall the definition of V (t) from (3.56). If (3.58) does not hold, then denote

by t0 the smallest time with V (t0) = 2C|f |∞. Using (3.54) we have

2C|f |∞ = V (t0)

≤ C|f |∞ + Ct
1/2
0 4C2|f |2∞,

thus

1 ≤ 4C2t
1/2
0 |f |∞,

thus t0 ≥ c0/|f |2∞. This contradiction proves (3.55) and Tf > c0/|f |2∞.

PROOF OF THEOREM 3.19

Lemma 3.21 proves theorem 3.19 for j = 0 and 1. In this part, we use the induction

argument as in the proof of theorem 3.5 to prove theorem 3.19. Let us suppose j ≥ 1

and assume that for 0 ≤ k ≤ j − 1

tk/2|Dku(t)|∞ ≤ Kk|f |∞ for 0 ≤ t ≤ c0

|f |2∞
. (3.58)

Applying Dj to ut = 4u+Q(s), and letting v := Dju, we obtain

vt = 4v +DjQ

and the solution

v(t) = Dje4tf +

∫ t

0

e4(t−s)DjQ(s)ds.

We must now estimate

|v(t)|∞ = |Dju(t)|∞.

Note that

|v(t)|∞ =

∣∣∣∣Dje4tf +

∫ t

0

e4(t−s)DjQ(s)ds

∣∣∣∣
∞

≤ |Dje4tf |∞ +

∣∣∣∣ ∫ t

0

e4(t−s)DjQ(s)ds

∣∣∣∣
∞

≤ |T1|∞ + |T2|∞.
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Use of (3.11) gives us

|T1|∞ ≤ |Dje4tf |∞ ≤ Cjt
−j/2|f |∞

where Cj is a constant independent of t and f . Next, we consider T2:

T2 =

∫ t

0

e4(t−s)DjQ(s)ds

=

∫ t/2

0

e4(t−s)DjQ(s)ds+

∫ t

t/2

e4(t−s)DjQ(s)ds

= J1 + J2.

First, we consider J1. Applying integration by parts j times, on the interval [0, t/2],

the integral exists and we compute

|J1|∞ =

∣∣∣∣ ∫ t/2

0

e4(t−s)DjQ(s)ds

∣∣∣∣
∞

=

∣∣∣∣ ∫ t/2

0

Dje4(t−s)Q(s)ds

∣∣∣∣
∞

≤
∫ t/2

0

|Dje4(t−s)Q(s)|∞ds

≤ C

∫ t/2

0

(t− s)−j/2|Q(s)|∞ds.

Recall from lemma 3.20 and with the induction assumption

|Q(s)|∞ ≤ C(s−1/2|u(s)|2∞ + s1/2|Du(s)|2∞)

≤ C(s−1/2|f |2∞ + s1/2s−1|f |2∞
≤ Cs−1/2|f |2∞.

Then using
∫ t/2

0
(t− s)−j/2s−1/2ds = Ct(1−j)/2 we obtain

|J1|∞ ≤ C|f |2∞t(1−j)/2.

While estimating J2, we can only transfer from DjQ to the heat semigroup one

derivative. Moving more derivatives will cause the integral to be non-integrable.

Applying integration by parts yields

J2 =

∫ t

t/2

e4(t−s)DjQ(s)ds

=

∫ t

t/2

De4(t−s)Dj−1Q(s)ds
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Note that |Dj−1Q|∞ ≤ C(|f |∞|Dju|∞ + t−j/2|f |2∞) follows from (3.51) and (3.52) .

Therefore, J2 can be estimated as

|J2|∞ =

∣∣∣∣ ∫ t

t/2

De4(t−s)Dj−1Q(s)ds

∣∣∣∣
∞

≤
∫ t

t/2

|De4(t−s)Dj−1Q(s)|∞ds

Using (3.11) for j = 1 and using the estimate for |Dj−1Q|∞ obtained above we get

|J2|∞ ≤ C

∫ t

t/2

(t− s)−1/2(|f |∞|Dju(s)|∞ + s−j/2|f |2∞)ds

≤ C|f |∞
∫ t

t/2

(t− s)−1/2|Dju(s)|∞ds+ C|f |2∞
∫ t

t/2

(t− s)−1/2s−j/2ds

≤ S1 + S2.

To estimate S1 and S2 we need∫ t

t/2

(t− s)−1/2s−j/2ds = Ct(1−j)/2 for some constant C > 0.

We consider S1:

S1 = C|f |∞
∫ t

t/2

(t− s)−1/2|Dju(s)|∞ds

= C|f |∞
∫ t

t/2

(t− s)−1/2s−j/2sj/2|Dju(s)|∞ds

≤ C|f |∞ max
0≤s≤t

{sj/2|Dju(s)|∞}
∫ t

t/2

(t− s)−1/2s−j/2ds

≤ C|f |∞t(1−j)/2 max
0≤s≤t

{sj/2|Dju(s)|∞}.

Next for S2:

|S2|∞ ≤ C|f |2∞
∫ t

t/2

(t− s)−1/2s−j/2ds

≤ C|f |2∞t(1−j)/2.

Therefore, we have

|J2|∞ ≤ S1 + S2

≤ C|f |∞t(1−j)/2 max
0≤s≤t

{sj/2|Dju(s)|∞}+ C|f |2∞t(1−j)/2.
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Thus T2 has the estimate

|T2|∞ ≤ |J1|∞ + |J2|∞
≤ C|f |∞t(1−j)/2 max

0≤s≤t
{sj/2|Dju(s)|∞}+ C|f |2∞t(1−j)/2.

We finally bound |v(t)|∞ :

tj/2|v(t)|∞ ≤ tj/2C

(
t−j/2|f |∞ + |f |∞t(1−j)/2 max

0≤s≤t
{sj/2|Dju(s)|∞}+ |f |2∞t(1−j)/2

)
≤ C|f |∞ + C|f |2∞t1/2 + C|f |∞t1/2 max

0≤s≤t
{sj/2|Dju(s)|∞}.

Now, as v = Dju, we maximize the resulting estimates tj/2|Dju|∞ over all derivatives

Dj of order j and derive

tj/2|Dju|∞ ≤ Cj|f |∞ + Cj|f |2∞t1/2 + Cj|f |∞t1/2 max
0≤s≤t

{sj/2|Dju(s)|∞}.

Here, define

ψ(t) := tj/2|Dju|∞

We have the estimate

ψ(t) ≤ Cj|f |∞ + Cj|f |2∞t1/2 + Cj|f |∞t1/2 max
0≤s≤t

ψ(s).

Recall the assumption that

0 ≤ t ≤ c0

|f |2∞
, c0 =

1

16C4

where C is the constant from lemma 3.20 equation (3.57). Then

t1/2|f |∞ ≤
√
c0

and the term C|f |2∞ is bounded by

C|f |2∞t1/2 = (C|f |∞)(|f |∞t1/2) ≤ C|f |∞
√
c0 = C

√
c0|f |∞.

so that

ψ(t) ≤ Cj|f |∞ + C
√
c0|f |∞ + C|f |∞t1/2 max

0≤s≤t
ψ(s)

≤ (Cj + C
√
c0)|f |∞ + C|f |∞t1/2 max

0≤s≤t
ψ(s)

≤ Cj|f |∞ + Cj|f |∞t1/2 max
0≤s≤t

ψ(s).
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Thus we have

ψ(t) ≤ Cj|f |∞ + Cj|f |∞t1/2 max
0≤s≤t

ψ(s) for 0 ≤ t ≤ c0

|f |2∞
. (3.59)

We note that the constant Cj is a maximum of all constants appearing in the above

and is independent of t and f . Fix this constant so that (3.60) holds. Let

cj = min

{
c0,

1

4C2
j

}
.

We first claim that

ψ(t) < 2Cj|f |∞ for 0 ≤ t <
cj
|f |2∞

.

Suppose not. Then let 0 < t0 < cj/|f |2∞ denote the smallest time with ψ(t0) =

2Cj|f |∞. Then from (3.60)

2Cj|f |∞ = ψ(t0) ≤ Cj|f |∞ + Cj|f |∞t1/20 max
0≤s≤t

ψ(s)

≤ Cj|f |∞ + Cj|f |∞t1/20 2Cj|f |∞
= Cj|f |∞ + 2t

1/2
0 C2

j |f |2∞.

Therefore,

Cj|f |∞ ≤ t
1/2
0 2C2

j |f |2∞

gives

1 ≤ 2Cj|f |∞t1/20 .

This forces

t0 ≥
1

4|f |2∞C2
j

≥ cj
|f |2∞

a contradiction. So we must have

tj/2|Dju|∞ ≤ 2Cj|f |∞ for 0 ≤ t ≤ cj
|f |2∞

Then the statement is true for j with Kj = 2Cj. Now, suppose that

Tj :=
cj
|f |2∞

< t ≤ c0

|f |2∞
=: T0 (3.60)

Then we restart the argument at t− Tj. As Tj < t ≤ T0, 0 < t− Tj ≤ T0− Tj ≤ T0 .
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From lemma 3.21, we have

|u(t− Tj)|∞ ≤ 2|f |∞.

and we obtain

T
j/2
j |Dju|∞ ≤ 4Cj|f |∞ (3.61)

Finally, for any t with (3.61), we have

tj/2 ≤ T
j/2
0 =

(
c0

cj

)j/2
T
j/2
j .

Now from (3.62) we have

tj/2|Dju|∞ ≤ T
j/2
0 |Dju|∞

≤
(
c0

cj

)j/2
T
j/2
j |Dju|∞

≤ 4Cj

(
c0

cj

)j/2
|f |∞

= Kj|f |∞.

Hence, we have a Kj for which tj/2|Dju|∞ ≤ Kj|f |∞, and this completes the proof of

the theorem 3.19 which is a goal of this dissertation.

4 The KL Paper in Periodic Case by Eliminating

the Pressure

As we discussed in previous sections, the pressure term in the Navier-Stokes equations

plays a significant role in obtaining the main estimates in the KL paper. However, in

this section we introduce another approach of dealing with the pressure term in the

Navier-Stokes equations. Since we are considering the Navier-Stokes equations “in the

absence of the boundaries” , i.e on Tn or on Rn, we will introduce the Helmholtz-Weyl

decomposition in the case of torus. The corresponding results for the whole space

can be proved similarly. We note here that the KL paper is in R3, however, we will

generalize their work for n ≥ 3 in this part of our work by the ” functional analytic”

approach. Next, we are going to introduce the classical theory of the Helmholtz-Weyl

decomposition [17] in L2, for a domain without boundaries to give some insight for

readers.
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4.1 Helmholtz-Weyl Decomposition

Since solutions of the Navier-Stokes equations are required to be divergence free, it

is useful to define and characterize subspaces of the standard spaces that consist of

divergence-free functions. We use the following notations in this section:

L2 := [L2]n and Hs := [Hs]n.

We will show that any u ∈ L2 can be written in a unique way as the sum

u = h+∇g,

where the vector function h is divergence free ( in a weak sense) and g belongs to H1.

In other words

L2 = H ⊕G

where H is a space of divergence-free functions ( satisfying an appropriate boundary

condition) and G is the space of gradient of functions in H1. For n = 3 this theorem

is a variant of a well-known result due to Helmholtz (1858) that a C2 vector field on

R3 that decays sufficiently fast at infinity can be written uniquely as

f = curlh+∇g.

Since ∇ · curlh = 0 the decomposition of a sufficiently regular function into the curl

and the gradient is an example of the decomposition in which we are interested in

this section.

For the consideration of the Navier-Stokes equations in the absence of the bound-

ary, i.e on Tn or Rn, we will prove the validity of the Helmholtz-Weyl decomposition

in the case of a torus. The corresponding results for the whole space can be proved

similarly. We will also introduce two concepts related to such a decomposition: the

Leray projector P onto divergence-free functions, defined by setting P(u) = h when

u = h+∇g, and the Stokes operator A = −P4.

4.2 The Helmholtz-Weyl Decomposition on Torus

In the case of torus, we will decompose only the homogeneous space L̇2 (rather than

all of L2), since we will always include the zero-averaging condition when considering

the Navier-Stokes equations in this setting.

50



In order to prove the decomposition L̇2 = H⊕G, we need to define the appropriate

spaces H and G in this context. We begin with H(Tn) . If u is given by u(x) = ûke
ik·x

then a straightforward computation shows that

divu(x) = i(k · ûk)eik·x.

So this function u is divergence-free if and only if ûk is orthogonal to k. This leads

to the following definition.

Definition 4.1. We define the space H = H(Tn) as{
u ∈ L̇2 : u =

∑
k∈Żn

ûke
ik·x, ûk = û−k and k · ûk = 0 for all k ∈ Ż3

}

and equip H with the L2-norm.

Since in this definition of the space H, we implicitly consider functions given as the

limit of smooth functions, we need to clarify in what sense these limits are “divergence

free”.

Definition 4.2. Let Ω ⊆ Rn a simply connected domain. A function u ∈ L1(Ω) is

weakly divergence free if

〈u,∇ϕ〉 = 0 for every ϕ ∈ C∞c (Ω).

Lemma 4.3. Each u ∈ H(Tn) is weakly divergence free and moreover

〈u,∇ϕ〉 = 0 for all ϕ ∈ H1(Tn).

Proof. If u ∈ H is given by

u(x) =
∑
l∈Żn

ûle
il·x

and ϕk(x) = e−ik·x then

∫
Tn
u(x) · ∇ϕk(x)dx =

∫
Tn
ûke

ik·x · ∇e−ik·xdx = −i
∫
Tn
ûk · k = 0,

since ûk · k = 0 for all k ∈ Żn. The result follows since any ϕ ∈ H1(Tn) can be

approximated arbitrarily closely in H1 by real-valued finite linear combinations of

the functions ϕk by the norm in H1 = W 1,2(Tn).
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Definition 4.4. The space G on the torus Tn, n ≥ 3 is defined as

G(Tn) = {u ∈ L2 : u = ∇g, where g ∈ Ḣ1(Tn)}.

We assume here that g belongs to Ḣ1 (rather than to H1) in order to obtain the

uniqueness of g in the resulting Helmholtz-Weyl decomposition.

Corollary 4.5. The space H and G are orthogonal in L2(Tn) i.e

〈h,∇g〉 = 0

for every h ∈ H and ∇g ∈ G.

We can now state the first result of this chapter, which is the existence of the

Helmholtz-Weyl decomposition on the torus. In this simple case we are able to prove

the existence of such a decomposition with very explicit calculation.

Theorem 4.6. ( Helmholtz-Weyl decomposition on Tn ) The space L̇2(Tn) can be

written as

L̇2 = H ⊕G,

i.e every function u ∈ L̇2 can be written in a unique way as

u = h+∇g (4.1)

where the vector-valued function h belongs to H and the scalar function g belongs to

Ḣ1. Moreover, if in addition u belongs to Ḣs, s > 0, then h ∈ Ḣs and g ∈ Ḣs+1.

Proof. Take u ∈ L̇2 and write it in the form

u(x) =
∑
k∈Żn

ûke
ik·x.

Write the vector coefficients ûk as the linear combination of k and a vector wk per-

pendicular to k in Cn,

ûk = αkk + wk

Here αk = ûk · k/|k|2 ∈ C, wk ∈ Cn, and wk · k = 0 . Notice that

|ûk|2 = |αk|2|k|2 + |wk|2. (4.2)
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We therefore have

u(x) =
∑
k∈Żn

ûke
ik·x =

∑
k∈Żn

(αkk + wk)e
ik·x

=
∑
k∈Żn

(−iαk)∇eik·x +
∑
k∈Żn

wke
ik·x

= ∇g(x) + h(x)

where

g(x) :=
∑
k∈Żn

(−iαk)eik·x and h(x) :=
∑
k∈Żn

wke
ik·x.

Since wk · k = 0 for every k, we conclude that h is (weakly) divergence free. Thus to

show that we have obtained the required decomposition as in (4.1), we only need to

show that g ∈ Ḣ1 and h ∈ L̇2. To this end, we notice that

||g||2
Ḣ1 =

∑
k∈Żn

|αk|2|k|2, and ||h||2 =
∑
k∈Żn

|wk|2.

Taking into account (4.2), we get

||h||2 + ||∇g||2 = ||u||2.

From this equality (and also directly from Corollary 4.5), it follows that g belongs

to Ḣ1, and h belongs to H. Multiplying (4.2) by |k|2s it follows that if u ∈ Ḣs then

g ∈ Ḣs+1 and h ∈ Ḣs. Finally, the uniqueness of this representation follows easily,

since using Corollary 4.5, we have

(h1 − h2) + (∇g1 −∇g2) = 0 =⇒ ||h1 − h2 +∇g1 −∇g2||2 = 0

=⇒ ||h1 − h2||2 + ||∇g1 −∇g2||2 = 0,

so h1 = h2 and ∇g1 = ∇g2. Since both g1 and g2 have mean zero, it follows that

g1 = g2. We notice that the decomposition of L2(Tn) is now straightforward, since

we obviously have

L2(Tn) = Rn ⊕H(Tn)⊕G(Tn)

Theorem 4.7. The space L2(Rn) can be decomposed as

L2(Rn) = H(Rn)⊕G(Rn),

53



where

H(Rn) := {u : u ∈ L2(Rn), divu = 0}

G(Rn) := {w ∈ L2(Rn) : w = ∇g and g ∈ Ḣ1(Rn)}.

Proof. See theorem 2.7 of [17].

The Helmholtz-Weyl decomposition allows us to define the Leray projector, the

orthogonal projector onto the space of divergence-free functions.

Definition 4.8. On the torus and on the whole space the Leray projector P is given

by

Pu = v ⇐⇒ u = v +∇w

where v ∈ H and ∇w ∈ G. On the whole space we have

P : L2(Rn)→ H(Rn),

while on the torus we prefer to have a restricted domain of P:

P : L̇2(Tn)→ H(Tn),

because on Tn we will always consider solution of the Navier-Stokes equations with

zero mean.

The Leray projector can be computed in a very straightforward way when we

consider functions in the absence of boundaries. For example, if u belongs L̇2(Tn)

and is given by u(x) =
∑

k∈Żn ûke
ik·x then the Leray projection of u is given by the

formula

Pu(x) =
∑
k∈Żn

(
ûk −

ûk · k
|k|2

k

)
eik·x. (4.3)

In general, the Leray projector is defined by

P = (Pij)1≤i,j≤n, Pij = δij +RiRj (4.4)

where Ri = (−4)−1/2Di is the ith Riesz transformation and δij is the Kronecer delta

function. On the torus ( and on the whole space ), the Leray projector commutes with

any derivatives. This follows from the linearity of P and the fact that differentiation

of a function u given by u(x) = ûke
ik·x reduces to multiplication by a constant.
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Lemma 4.9. The Leray projector P on the torus and on the whole space commutes

with any derivative:

P(Dju) = Dj(Pu), j = 1, 2, · · ·n Dj = ∂/∂xj

for all u ∈ Ḣ1.

Proof. We consider the case of a torus: Let u be given by ûke
ik·x. For any such u we

have

PDj(u) = P(ikju) = ikjPu.

By the linearity of P the result holds for any finite combination of such functions.

The general case now follows since P : Ḣs → Ḣs, s = 0, 1, and Dj : Ḣ1 → L̇2 are all

continuous.

4.3 Estimates of the Navier-Stokes Equations

In this section, we will prove the main theorem of the KL paper in periodic case using

different approach than the proof provided in previous section for the same theorem.

Introduction of the new tool like the use of “the Leray projector” eliminates the role of

the pressure in obtaining the required estimates whereas in the KL paper they spend

good amount of time in obtaining the estimates on the pressure and its derivatives.

Let us recall the Navier-Stokes equations one more time

ut + u · ∇u+∇p = 4u, ∇ · u = 0 (4.5)

and

u(x, 0) = f(x) (4.6)

where f ∈ C∞per(Rn). Roughly speaking, we could have relaxed the smoothness on

f because the solution of the Navier-Stokes equations immediately becomes smooth

when t > 0 even for very rough initial data. Therefore it is natural to consider

f ∈ C∞per(Rn) in this setting. We also consider ∇ · f = 0 for the sake of compatibility.

We transform the Navier-Stokes equations into the abstract differential equation

for u

ut = 4u− P(u · ∇)u (4.7)
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by eliminating the pressure, where P is defined by (4.3) is the Leray projector on a

torus. Note that (4.7) is obtained by applying the Leray projector with the properties

P(∇p) = 0,P(4u) = 4u since ∇ · u = 0.

Use the solution operator e4t of the heat equation to transform the abstract differ-

ential equation into an integral equation

u(t) = e4tf −
∫ t

0

e4(t−s)P(u · ∇u)(s)ds. (4.8)

This integral equation has a unique solution which is called a mild solution of the

Navier-Stokes equations. In [8], it is proved that such mild solution is indeed a

strong (local in time) solution of the Navier-Stokes equations. Next, we introduce an

analogous system of the Navier-Stokes equations (4.7) and use it to prove the main

theorem of our work.

Since P(u · ∇u) =
∑

j DjP(uju), for 1 ≤ i, j ≤ n, it is appropriate to consider the

system

ut = 4u+DiPg(u), t ≥ 0 (4.9)

with

u(x, 0) = f(x) where f ∈ C∞Per(Rn) (4.10)

and g : Rn → Rn is quadratic in u. It is well-known that the solution of (4.9) and

(4.10) is C∞per in a maximal interval 0 ≤ t < Tf where 0 < Tf ≤ ∞.

Let us consider u is the solution of the system ut = 4u + DiP(g(u(x, t))) and recall

g is quadratic in u thus, there is a constant Cg such that we have the following:

|g(u)| ≤ Cg|u|2, |gu(u)| ≤ Cg|u|, for all u ∈ Rn. (4.11)

In the following lemmas and theorem, we will allow the constant change C,Cj change

line to line as per the need for convenience in writing and they are independent of t

and the initial function f .

Theorem 4.10. Under the assumptions on f and g mentioned above, the solution

of (4.9) and (4.10) satisfies the following:

(a) There is a constant c0 > 0 with

Tf >
c0

|f |2∞
(4.12)

and

|u(t)|∞ ≤ 2|f |∞ for 0 ≤ t ≤ c0

|f |2∞
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(b) For every j = 1, 2 · · · , there is a constant Kj > 0 with

tj/2|Dju|∞ ≤ Kj|f |∞ for 0 < t ≤ c0

|f |2∞
. (4.13)

The constants c0 and Kj are independent of t and f .

Before proving theorem 4.10, we prove the following auxiliary results. We will also

let F (x, t) = g(u(x, t)) for the corollary that follows lemma 4.11.

Lemma 4.11. Let for any F ∈ C∞per(Rn) and for any multiindex α such that |α| = j

where j ≥ 1 then

|Dje4tPF |∞ ≤ Cjt
−j/2|F |∞ for t > 0

for some constant Cj > 0 independent of t and F .

Proof. Let us first denote e4tF = θ ∗ F where θ(x, t) is the n dimensional periodic

heat kernel given by (3.8). For ξ ∈ Zn, recall the Fourier cofficient of θ(x, t) given

by F(θ(x, t))(ξ) = θ̂(x, t)(ξ) = e−t|ξ|
2
, t > 0 . Now for any t > 0, any choice of

k, l ∈ {1, 2, · · · , n} and for any multiindex α such that |α| = j, the operator Dje4tPkl
on the Fourier side is given by

F(Dje4tPklFl)(ξ) = (−iξ)αF(e4tPklFl)(ξ)

= C(−iξ)αF(θ(x, t))(ξ)F(PklFl)(ξ)

= C(−iξ)αe−t|ξ|2
(
δkl −

ξkξl
|ξ|2

)
F(Fl)(ξ)

= C(−iξ)αe−t|ξ|2δklF(Fl)(ξ)

− C(−iξ)αξkξlF(Fl)(ξ)

∫ ∞
t

e−τ |ξ|
2

dτ.

Using the Fourier expansion, we can write

Dj(e4tPklFl)(x) = C
∑
ξ∈Zn

(−iξ)αδkle−t|ξ|
2F(Fl)(ξ)e

iξ·x

+ C
∑
ξ∈Zn

(−iξ)α(iξk)(iξl)F(Fl)(ξ)e
iξ·x
∫ ∞
t

e−τ |ξ|
2

dτ

= (−1)jCδklD
j
∑
ξ∈Zn

e−t|ξ|
2F(Fl)(ξ)e

iξ·x

+ C(−1)j
∫ ∞
t

∑
ξ∈Zn

(iξ)α(iξk)(iξl)e
−τ |ξ|2F(Fl)(ξ)e

iξ·xdτ

= (−1)jCδklD
je4tFl + (−1)jC

∫ ∞
t

DjDkDle
4τFldτ

= I1 + I2.
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From (3.11) we have |I1|∞ ≤ Cjt
−j/2|Fl|∞, and

|I2|∞ ≤ Cj|Fl|∞
∫ ∞
t

τ−(j+2)/2dτ

≤ Cjt
−j/2|Fl|∞.

Therefore

|Dje4tPklFl|∞ ≤ |I1|∞ + |I2|∞
≤ Cjt

−j/2|Fl|∞.

Hence Lemma 4.11 is proved.

Corollary 4.12. Let F ∈ C∞per(Rn × [0, T ]) for some T > 0 then the solution of

ut = 4u+DiPF, u = 0 at t = 0 (4.14)

satisfies

|u(t)|∞ ≤ Ct1/2 max
0≤s≤t

|F (s)|∞. (4.15)

Proof. The solution of (4.14) is given by

u(t) =

∫ t

0

e4(t−s)DiPF (s)ds

and

|u(t)|∞ ≤
∫ t

0

|e4(t−s)DiPF (s)|∞ds.

Using lemma 4.11 for j = 1 and with the fact that Di commutes with the heat

semi-group, we obtain

|u(t)|∞ ≤ max
0≤s≤t

|F (s)|∞
∫ t

0

(t− s)−1/2ds.

Hence we obtain

|u(t)|∞ ≤ Ct1/2 max
0≤s≤t

|F (s)|∞.

Lemma 4.13. Denote u by the solution of (4.9) and (4.10). And let Cg and C

denote the constants in (4.11) and (4.15) respectively; set c0 = 1
16C2C2

g
. Then we have

Tf > c0/|f |2∞ and

|u(t)|∞ < 2|f |∞ for 0 ≤ t <
c0

|f |2∞
. (4.16)
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Proof. Suppose (4.16) does not hold, then we can find the smallest time t0 such that

|u(t0)|∞ = 2|f |∞. Since t0 is the smallest time, so we have t0 < c0/|f |2∞. Now by

(3.10) and (4.15), we have

2|f |∞ = |u(t0)|∞
≤ |f |∞ + Ct

1/2
0 max

0≤s≤t0
|g(s)|∞

≤ |f |∞ + CCgt
1/2
0 max

0≤s≤t0
|u(s)|2∞

≤ |f |∞ + CCgt
1/2
0 4|f |2∞.

This gives

1 ≤ 4CCgt
1/2
0 |f |∞,

therefore t0 ≥ 1/(16C2C2
g |f |2∞) which is a contradiction. Therefore (4.16) must hold.

The estimate Tf > c0/|f |2∞ is valid since lim supt→Tf |u(t)|∞ =∞ if Tf is finite.

PROOF OF THEOREM 4.10

Lemma 4.13 provides the proof of part (a) of the theorem 4.10. Next we prove

the estimate (4.13) of part (b) of the theorem 4.10 using induction on j. Let j > 1

and assume

tk/2|Dku(t)|∞ ≤ Kk|f |∞, for 0 ≤ t ≤ c0

|f |2∞
and 0 ≤ k ≤ j − 1. (4.17)

One more time, let us denote Dα = Dα1
1 · · ·Dαn

n by Dj if |α| = j for any multiindex

α. Let us apply Dj to the equation ut = 4u+DiPg(u) where g is quadratic in u to

obtain

vt = 4v +Dj+1P(g(u)), v := Dju,

v(t) = Dje4tf +

∫ t

0

e4(t−s)Dj+1P(g(u(s)))ds.

Using (3.11) we get

tj/2|v(t)|∞ ≤ C|f |∞ + tj/2
∣∣∣∣∫ t

0

e4(t−s)Dj+1P(g(u(s)))ds

∣∣∣∣
∞
. (4.18)

We split the integral into ∫ t/2

0

+

∫ t

t/2

=: I1 + I2.
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and obtain

|I1(t)| =
∣∣∣∣∫ t/2

0

Dj+1e4(t−s)P(g(u(s)))ds

∣∣∣∣
∞

≤
∫ t/2

0

|Dj+1e4(t−s)P(g(u(s)))ds|∞ds.

Using the inequality in lemma 4.11 along with the equality (4.11), we get

|I1(t)|∞ ≤ C

∫ t/2

0

(t− s)−(j+1)/2|g(u(s))|∞ds

≤ C|f |2∞t(1−j)/2.

The integrand in I2 has singularity at s = t. Therefore, we can move only one

derivative from Dj+1Pg(u) to the heat semigroup.( If we move two or more derivatives

then the singularity becomes non-integrable.) Thus we have

|I2(t)|∞ =

∣∣∣∣∫ t

t/2

De4(t−s)DjP(g(u(s)))ds

∣∣∣∣
∞
.

Since the Leray projector commutes with any derivatives in a domain without bound-

ary, therefore

|I2(t)|∞ =

∣∣∣∣ ∫ t

t/2

De4(t−s)P(Djg(u(s)))ds

∣∣∣∣
∞
.

If we use lemma 4.11 for j = 1, we obtain

|I2(t)|∞ ≤
∫ t

t/2

(t− s)−1/2|Djg(u(s))|∞ds. (4.19)

Since g(u) is quadratic in u, therefore

|Djg(u)|∞ ≤ C|u|∞|Dju|∞ +

j−1∑
k=1

|Dku|∞|Dj−ku|∞.

By induction hypothesis (4.17) we have

j−1∑
k=1

|Dku(s)|∞|Dj−ku(s)|∞ ≤ Cs−j/2|f |2∞. (4.20)

Integral (4.19) can be estimated as below:

|I2(t)|∞ ≤ C

∫ t

t/2

(t− s)−1/2

(
C|u(s)|∞|Dju(s)|∞ +

j−1∑
k=1

|Dku(s)|∞|Dj−ku(s)|∞
)
ds

≤ J1 + J2.
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Using (4.20) and
∫ t
t/2

(t− s)−1/2s−j/2 = Ct(1−j)/2 to obtain the following

|J2(t)|∞ ≤ C|f |2∞t(1−j)/2.

and

|J1(t)|∞ = C

∫ t

t/2

(t− s)−1/2|u(s)|∞|Dju(s)|∞ds

≤ C|f |∞
∫ t

t/2

(t− s)−1/2s−j/2sj/2|Dju(s)|∞ds

≤ C|f |∞t(1−j)/2 max
0≤s≤t

{sj/2Dju(s)|∞}.

We use these bounds to bound the integral in (4.18). We have v = Dju. Then

maximizing the resulting estimate for tj/2|Dju(t)|∞ over all derivatives Dj of order j

and setting

φ(t) := tj/2|Dju(t)|∞

we obtain the following estimate

φ(t) ≤ C|f |∞ + Ct1/2|f |2∞ + C|f |∞t1/2 max
0≤s≤t

φ(s) for 0 ≤ t ≤ c0

|f |2∞
.

Since t1/2|f |∞ ≤
√
c0 then Ct1/2|f |2∞ ≤ C

√
c0|f |∞. Therefore

φ(t) ≤ Cj|f |∞ + Cj|f |∞t1/2 max
0≤s≤t

φ(s) for 0 ≤ t ≤ c0/|f |2∞. (4.21)

Let us fix Cj so that the above estimate holds and set

cj = min

{
c0,

1

4C2
j

}
.

First, let us prove the following

φ(t) < 2Cj|f |∞ for 0 ≤ t <
cj
|f |2∞

.

Suppose there is a smallest time t0 such that 0 < t0 < cj/|f |2∞ with φ(t0) = 2Cj|f |∞.

Then using (4.21) we obtain

2Cj|f |∞ = φ(t0) ≤ Cj|f |∞ + 2C2
j |f |2∞t

1/2
0 ,

thus

1 ≤ 2Cj|f |∞t1/20 gives t0 ≥ cj/|f |2∞.
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which contradicts the assertion. Therefore, we proved the estimate

tj/2|Dju(t)|∞ ≤ 2Cj|f |∞ for 0 ≤ t ≤ cj/|f |2∞. (4.22)

If

Tj :=
cj
|f |2∞

< t ≤ c0

|f |2∞
=: T0 (4.23)

then we start the corresponding estimate at t − Tj. Using lemma (4.13), we have

|u(t− Tj)|∞ ≤ 2|f |∞ and obtain

T
j/2
j |Dju(t)|∞ ≤ 4Cj|f |∞. (4.24)

Finally, for any t satisfying (4.23),

tj/2 ≤ T
j/2
0 =

(
c0

cj

)j/2
T
j/2
j

and (4.24) yield

tj/2|Dju(t)|∞ ≤ 4Cj

(
c0

cj

)j/2
|f |∞.

This completes the proof of Theorem 4.10.

Next, we prove a few lemmas needed for the proof of Theorem 4.16 below, the

analogue of Theorem 4.10 in the Navier-Stokes case.

Lemma 4.14. Let us denote u by the solution of the Navier-Stokes equations (4.5)

and (4.6) with f ∈ C∞Per(Rn) and set

V (t) = |u(t)|∞ + t1/2|Du(t)|∞, 0 < t < T (f). (4.25)

There is a constant C > 0 independent of t and f so that

V (t) ≤ C|f |∞ + Ct1/2 max
0≤s≤t

V 2(t), 0 < t < T (f). (4.26)

Proof. Using (3.10) in the integral equation of the solution of the Navier-Stokes equa-

tion (4.6) we obtain

|u(t)|∞ ≤ |f |∞ +

∣∣∣∣ ∫ t

0

∇ · e4(t−s)P(u⊗ u)ds

∣∣∣∣
∞
.
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The use of the inequality in lemma 4.11 for j = 1 yields

|u(t)|∞ ≤ |f |∞ + C

∫ t

0

(t− s)−1/2|u(s)|2∞ds

= |f |∞ + C

∫ t

0

(t− s)−1/2s−1/2s1/2|u(s)|2∞ds

≤ |f |∞ + C max
0≤s≤t

{s1/2|u(s)|2∞}
∫ t

0

(t− s)−1/2s−1/2ds.

Since
∫ t

0
(t − s)−1/2s−1/2ds = C which is independent of t, we have the following

estimate

|u(t)|∞ ≤ |f |∞ + C max
0≤s≤t

{s1/2|u(s)|2∞}

|u(t)|∞ ≤ |f |∞ + Ct1/2 max
0≤s≤t

V 2(s). (4.27)

Let 1 ≤ k ≤ n and for v(t) = Dku(t), we have

vt = 4v −DkP((u · ∇)u), v = Dkf at t = 0.

Then

v(t) = Dke
4tf −

∫ t

0

e4(t−s)DkP((u · ∇)u(s))ds. (4.28)

Since Dk commutes with the heat semigroup, therefore we can move Dk to e4t and

obtain

v(t) = Dke
4tf −

∫ t

0

Dke
4(t−s)P((u · ∇)u(s))ds (4.29)

We can estimate the integral in (4.29) in the following way:∣∣∣∣ ∫ t

0

Dke
4(t−s)P((u · ∇)u(s))ds

∣∣∣∣
∞
≤
∫ t

0

|Dke
4(t−s)P((u · ∇)u(s))|∞ds

≤ C

∫ t

0

(t− s)−1/2|(u · ∇)u(s)|∞ds

≤ C

∫ t

0

(t− s)−1/2s−1/2s1/2|u(s)|∞|Du(s)|∞ds

≤ C max
0≤s≤t

{s1/2|u(s)|∞|Du(s)|∞}
∫ t

0

(t− s)−1/2s−1/2ds

≤ C max
0≤s≤t

{|u(s)|2∞ + s|Du(s)|2∞}.

Therefore v(t) in (4.29) can be estimated as

|v(t)|∞ ≤ Ct−1/2|f |∞ + C max
0≤s≤t

{|u(s)|2∞ + s|Du(s)|2∞}

t1/2|Du(t)|∞ ≤ C|f |∞ + Ct1/2 max
0≤s≤t

V 2(t). (4.30)

Using (4.27) and (4.30), we have proved lemma 4.14.
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Lemma 4.15. Let u be the same as in the previous lemma. Also let C > 0 denote

the constant in estimate (4.30) and set

c0 =
1

16C4
.

Then T (f) > c0/|f |2∞ and

|u(t)|∞ + t1/2|Du(t)|∞ < 2C|f |∞ for 0 ≤ t <
c0

|f |2∞
. (4.31)

Proof. We prove this lemma by contradiction after recalling the definition of V (t) in

(4.25). Suppose that (4.31) does not hold, then denote by t0 the smallest time with

V (t0) = 2C|f |∞. Use (4.26) and obtain

2C|f |∞ = V (t0)

≤ C|f |∞ + Ct
1/2
0 4C2|f |2∞,

thus,

1 ≤ 4C2t
1/2
0 |f |2∞,

therefore t0 ≥ c0/|f |2∞. This contradiction proves (4.31) and T (f) > c0/|f |2∞.

Lemma 4.15 derives the bounds (4.13) of theorem 4.10 for the solution of the

Navier-Stokes equations for j = 0 and j = 1. By an induction argument as in the

proof of Theorem 4.10 one obtains the following.

Theorem 4.16. Consider the Cauchy problem for the Navier-Stokes equations (4.5)

and (4.6), where f ∈ C∞per(Rn) and ∇ · f = 0. Then there is a constant c0 > 0, and

for every j = 0, 1, 2 · · · there is a constant Kj such that for an interval

0 < t ≤ c0

|f |2∞

we have

tj/2|Dju(t)|∞ ≤ Kj|f |∞.

The constants c0 and Kj are independent of t and f .
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5 Future Work

We consider the Navier-Stokes equations in the n-dimensional half space Rn
+, for

n ≥ 3;

ut + u · ∇u+∇p = −4u for x ∈ Rn
+, t > 0,

∇ · u = 0 for x ∈ Rn
+, t > 0,

u|t=0 = f for x ∈ Rn
+,

u|xn=0 = 0 for t > 0


(5.1)

where f ∈ L∞(Rn
+) and we assume ∇ · f = 0 in the sense of distribution.

In [2], it is proved that (5.1) has strong (local in time) solution. Our goal will

be to obtain the apriori estimates in terms of the maximum norm for the solution of

(5.1). Eventually, we would be interested to prove the main theorem of the KL paper

in the half space setting.

If we transform (5.1) into the abstract differential equations

ut + Au = −P(∇ · (u⊗ u)) (5.2)

where u · ∇u = ∇ · (u⊗ u) and A = −P4 is the Stokes operator and P is the Leray

projector. The Leray projector in halfspace has explicite form and is given by

Pg(x) = g(x) +∇x

∫
Rn+
∇yN (x, y) · g(y)dy,

when gn|xn = 0. This integral needs to be treated carefully as per the the assumptions

on g. Here,

N (x, y) = G(x− y) +G(x− y∗),

where y∗ = (y1, · · · , yn−1,−yn), G(x) = 1
n(2−n)ωn

|x|2−n, if n ≥ 3 and G(x) = 1
2π

ln |x|
if n = 2, and ωn denotes the surface area of the unit sphere in Rn. Using the solution

operator of the Stokes equations in Rn
+ , the solution of (5.2) is formally expressed in

the integral form

u(t) = e−Atf −
∫ t

0

e−A(t−s)P∇ · (u⊗ u)(s)ds. (5.3)

Solonnikov [20] has expressed the solution operator of the Stokes equations in Rn
+ in

the integral form

e−Atf =

∫
Rn+
K(x, y, t) · f(y)dy,
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where K = (Kij)i,j=1,2···n is defined by

Kij(x, y, t) = δij(θ(x− y, t)− θ(x− y∗, t))

+ 4(1− δjn
∂

∂xj

∫ xn

0

∫
Rn−1

∂

∂xi
G(x− z)θ(z − y∗, t)dz. (5.4)

where θ(x, t) is the n dimensional heat kernel given in section 3.

Our goal will be to prove the KL main theorem (namely theorem 4.10 on this

paper) when the initial data is in L∞(Rn
+). More precisely, we try to obtain the

estimate of the derivatives of the velocity in terms of the maximum norm for some

maximum interval of time. To do that, it is necessary to have the pointwise estimate

of the kernel of the operator Dje−AtPdiv. Unfortunately, Dj and e−AtP are not

commutative. This is the main difficulty in obtaining the desired result in half space

case.
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