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THE COMPENSATION FOR FEW CLUSTERS IN CLUSTERED
RANDOMIZED TRIALS WITH BINARY OUTCOMES

by

Lily Stalter

MS, Mathematics, University of New Mexico, 2018
BA, Mathematics, State University of New York at Plattsburgh

ABSTRACT

Cluster randomized trials are increasingly popular in epidemiological and medical
research. When analyzing the data from such studies it is imperative that the
hierarchical structure of the data be taken into account. Multilevel logistic regres-
sion is used to analyze clustered data with binary outcomes. Previous literature
shows that a greater number of clusters is more important than a large number
of subjects per cluster. This paper investigates if it is possible to compensate for
the increased bias found for parameter estimates when the number of clusters is
decreased. A simulation study was conducted where the absolute percent rela-
tive bias for each parameter estimate with 5 to 49 clusters and 10, 20, 30, 60,
90, 120, 150, 180, and 210 subjects per cluster were compared to the bias found
for corresponding parameter estimates when the number of clusters was 50 with
10 subjects per cluster. Maximum Likelihood, Restricted Maximum Likelihood,
and Generalized Estimating Equation methods, with multiple Intraclass Correla-
tion Coefficients were examined. For Maximum Likelihood estimates, results show
that it is possible to account for the effects of few clusters by increased sample
size when examining fixed effect parameter estimates. For variance components,
it was not possible to fully compensate under all conditions, but in general, the
trend found was that increasing the number of subjects per cluster either results
in decreased bias or the bias plateaued after a certain sample size. Further investi-
gation is needed on Restricted Maximum Likelihood and Generalized Estimating
Equation estimates, but results show that they do not perform well when the num-
ber of subjects per cluster is few. The results of this study are very informative
for researchers who are limited to few clusters.
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Chapter 1

Introduction

1.1 Background

Over the past twenty years, there has been an increase in the number of

studies that use hierarchical or clustered data structure (Austin and Merlo, 2017;

Hayes and Moulton, 2017; Eldridge and Kerry, 2012; Wang, Xie and Fisher, 2012).

Clusters frequently occur throughout the medical and epidemiological fields, where

binary outcomes are common. Examples of clustered data include patients nested

within hospitals, children nested within families, students nested within schools,

and individuals nested within communities. In Cluster Randomized Trials (CRTs),

clusters rather than individuals are randomly placed in the control or intervention

arm of the study. Responses are measured at the subject level but the unit of

randomization is the cluster (Austin 2007). CRTs prevent treatment contamina-

tion and may be necessary for certain intervention methods (van Breukelen and

Candel, 2012).

The randomization of clusters rather than individuals increases the complexity

of the design and analysis, since the independence assumption is often violated by

subjects within the same cluster (Rutterford et al., 2015). Therefore when ana-

lyzing data from CRTs, it is imperative that the hierarchical structure of the data

be taken into account. Failing to do so may result in underestimation of standard

errors and an inflation of type-I error rate for significance tests of regression co-

efficients (McNeish and Stapleton, 2014). The Intraclass Correlation Coefficient

(ICC) is a measure of how much subjects within a cluster are correlated (Wang,

1



Chapter 1. Introduction

Xie, and Fisher, 2012). Methods that can account for the dependence of individ-

uals within clusters are known as multilevel models (MLMs), hierarchical linear

models (HLMs), or mixed-effect models (Raudenbush and Bryk, 2002). In this

paper, we will refer to them as multilevel models. For binary outcomes, multilevel

logistic models are used to estimate the odds that an event will occur while taking

the dependency of data into account.

1.2 Objective

This study will investigate if increasing cluster size can compensate for the

increased bias experienced when few clusters are used in a multilevel logistic model.

We hypothesize that this may be true for some fixed parameter estimates, but not

for random effects. A review of multilevel logistic models, an overview of the

estimation methods used, and a review of the current literature are presented. A

simulation study is conducted that tests this hypothesis.

1.3 Linear Regression

To understand multilevel logistic models, we must first briefly review simple

linear regression and logistic regression. Unless otherwise noted, sections 1.3, 1.4,

and 1.5 are based on Sommet and Morselli (2017).

In linear regression the mean value of an outcome variable is predicted for a

particular value of the predictor variable. The equation for linear regression is

given by

Yi = β0 + β1 ∗Xi + εi (1.1)

...where Yi is the observed value of the outcome variable for subject i;

...Xi is the observed value of the predictor variable for subject i;

...β0 is the value of Yi when Xi = 0, known as the intercept;

...β1 is the coefficient for the independent variable Xi, known as the slope;

2



Chapter 1. Introduction

...εi is the residual, which is the difference between what is predicted for sub-

ject i and what is actally observed for subject i.

Interpretation of a simple linear regression model is straightforward; for every

one unit increase in Xi, on average one can expect to see Yi increase by βi units. If

β1 is not significantly different from zero, then the null hypothesis (H0), that there

is no significant relationship between the predictor variable and the outcome, can-

not be rejected. If β1 is significantly different from zero, then the null hypothesis

is rejected.

1.4 Logistic Regression

When the outcome of interest is binary, logistic regression must be used to

predict the conditional probability that an event of interest occurs for a particular

value of the predictor variable. The logistic function is represented by the equation

P (Yi = 1|Xi) =
exp(β0 + β1 ∗Xi)

1 + exp(β0 + β1 ∗Xi)
(1.2)

...where P (Yi = 1|Xi) is the conditional probability that the outcome variable

equals one for a given value Xi;

...exp is the exponent function;

...Xi, β0, and β1 are defined the same as in equation 1.1.

The logit transformation can be used to convert this s-shaped curve into a

straight line and allow for easier interpretation of results. The log-odds is the

logit of the conditional probability that the outcome variable equals one over the

probability that it equals zero. The logit function is the natural logarithm of the

odds, with the post-logit transformation logistic regression equation being

Logit(p) = log

(
p

1− p

)
= β0 + β1 ∗Xi (1.3)

3



Chapter 1. Introduction

...where p = P (Yi = 1|Xi) (Wang, Xie, and Fisher, p 117).

To interpret β1, we use the Odds Ratio (OR), where ORi = exp(βi). The

odds ratio is defined as the amount by which the odds of the outcome increase or

decrease when the value of the predicting variable, Xi, increases by one unit. For

example, suppose β1 = 2, then OR1 = exp(β1) = exp(2) ≈ 7.4, meaning that for

every one unit increase in the variable X1, we should expect to see the odds of

Y = 1 increase by 7.4. In the case of an odds ratio less than 1, the odds of Y = 1

decrease. Note that in logistic regression the notion of a residual is not necessary

as the distance between the observed and predicted values can only take on two

values, 0 or 1. If the OR is not significantly different from 1, one cannot reject

H0, where H0 is that the OR = 1. If the OR is significantly different from 1, one

rejects H0.

1.5 Multilevel Logistic Regression

When data has a hierarchical structure, a standard logistic regression model

will not produce accurate results because it does not take the dependency of

individuals into account. In this case, multilevel models must be used. Level-

1 variables refer to individual characteristics such as patient’s age and level-2

variables refer to cluster characteristics such as number of individuals that attend

a particular clinic. Level-1 characteristics can change within clusters, whereas

level-2 characteristics are the same for all subjects within a cluster. The odds

that the outcome variable equals one instead of zero are allowed to vary between

clusters. The functional form for multilevel logistic regression is given by

Logit(p) = β00 + (β10 + u1j) ∗ xij + u0j (1.4)

...where xij is the observed value of the predictor variable for subject i in cluster

j;

...β00 is the fixed effect intercept or the average log-odds that the outcome

4



Chapter 1. Introduction

variable equals one in the overall sample;

...u0j is the deviation of the cluster-specific intercept from the fixed effect in-

tercept, also known as the level-2 residual;

...β10 is the fixed effect slope or the average effect of the level-1 variable in the

overall sample;

...u1j is the deviation of the cluster-specific slope from the fixed effect slope,

or the residual term associated with the level-1 variable.

β00 + β10 ∗ xij is known as the fixed effect part of the model and u0j + uij ∗ xij

is the random effect part. The level-2 residual u0j is the amount the intercept

varies between clusters. The mean of these deviations is assumed to be zero and

the variance is known as the random intercept variance, var(u0j). The higher

the random intercept variance, the larger the variation of the log-odds from one

cluster to another. Interpretation of β10 is similar to that for logistic regression.

The residual term associated with the level-1 predictor, u1j, corresponds to the

deviation of the effects of the level-1 variable xij on a given cluster from the overall

effect of the level-1 variable, xij, across all clusters. Here the mean is also assumed

to be zero and the variance component is the random slope variance, var(u1j). The

higher the random slope variance, the larger the variation of the effect of xij from

one cluster to another. A non-significant random slope variance means that the

variation of the effect of xij is very close to zero, so β10 is effectively the same in

all clusters.

The ICC for a multilevel model is

ρ =
σ2
b

σ2
b + σ2

w

(1.5)

...where σ2
w is the within group variance and σ2

b is the between group variance

(Wang, Xie, and Fisher, 2012). The ICC may fall between 0 and 1, with ρ = 0

meaning that there is no within group homogeneity, so the model is reduced to a

fixed effect model (Wang, Xie, and Fisher, 2012).

5



Chapter 1. Introduction

1.6 Estimation Methods

Estimation is complex in multilevel models due to the need to compute both

regression coefficients and variance components (Wang, Xie, and Fisher, 2012).

There are several methods used to estimate parameters in multilevel logistic re-

gression. Here we give an overview of the methods used in this study.

1.6.1 Maximum Likelihood

The following section is referenced from Wang, Xie, and Fisher (2012), un-

less otherwise specified. In multilevel models, two matrices, G and R, must be

reasonably estimated.

G =

 σ2
u0 σ2

u01

σ2
u01 σ2

u1

 (1.6)

is the variance/covariance matrix for the level-2 residuals, shown here for a model

with a level-1 random intercept and a random slope coefficient.

R =



σ2 0 ... 0

0 σ2 ... 0

...
...

. . .
...

0 0 ... σ2


(1.7)

is the variance/covariance matrix for the level-1 residuals.

Maximum Likelihood (ML) estimation is commonly used to estimate the ma-

trices G and R. This type of estimation maximizes the Likelihood Function

L(β, θ, Y ) =

∫
f(Y | u)p(u)du (1.8)

...where β denoted the fixed effects;

...θ denotes the unknown parameters of variances and covariances;

6



Chapter 1. Introduction

...f(y | u) is the distribution of the outcomes measure conditional on the

random effect U;

...and p(u) is the distribution of the random effects.

Estimates are obtained by integrating over the distribution of the random

effects. Parameter estimates are those that maximize this marginal likelihood

function. In a linear model, this integral can be solved in closed form, while in

nonlinear multilevel models, this integral has an open form and hence must be

solved numerically. Two methods to do so are linearization which approximates

the integrated likelihood function using techniques such as Taylor series expansion

or integral approximation with numerical methods.

ML estimation is an iterative process, where initial starting values for param-

eter estimates are generated and these become the starting values for the next

iteration. This process is repeated until the estimates stabilize from one iteration

to the next, such that the specified convergence criterion is satisfied. If conver-

gence is not achieved this can indicate poor model specification or an inadequate

sample size.

ML estimates are consistent and asymptotically normal, meaning the maxi-

mum likelihood estimate will have an approximate normal distribution centered

on the true parameter value, thus making significance testing for parameters pos-

sible.

Two commonly used likelihood functions that can be used in multilevel model-

ing are the Full Maximum Likelihood (FML) and Restricted Maximum Likelihood

(REML), also sometimes referred to as residual Maximum Likelihood (Hox, 2010;

McNeish and Stapleton, 2016; Browne, 1998). In this paper we will refer to FML

simply as Maximum Likelihood Estimators (MLE). In the MLE method, both

regression coefficients and the variance components are included in the likelihood

function, therefore all parameters in the model are estimated simultaneously (Hox,

2010). In REML, only the variance components are included in the likelihood

function and the regression coefficients are estimated in the second estimation

7



Chapter 1. Introduction

step (Hox, 2010).

For a small number of groups, MLE and REML produce similar level-1 residual

variance or R matrix estimates, but REML has been shown to provide less biased

level-2 residual variances/covariances or the G matrix. MLE estimates of variance

components are known to be biased downwards unless there are a large number

of clusters (Eldridge and Kerry, 2012). REML, which has been developed more

recently, tends to provide less biased estimates and is also less computationally

intensive (Eldridge and Kerry, 2012). Little et al. (1996) discourages MLE esti-

mation because the variance components are often biased downward, resulting in

narrow confidence intervals.

MLE for binary outcomes can implemented by PROC NLMIXED when using

SAS (SAS/STAT(R) 14.1 User’s Guide: The NLMIXED Procedure). A psuedo-

maximum likelihood can also be implemented by designating METHOD=MSPL in

PROC GLIMMIX (SAS/STAT(R) 14.1 User’s Guide: The GLIMMIX Procedure).

For binary outcomes, a REML analogue known as Residual Pseudo-Likelihood

(RSPL) is used (Austin, 2010; SAS/STAT(R) 14.1 User’s Guide: The GLIMMIX

Procedure). RSPL in PROC GLIMMIX is identical to the REML method used in

PROC MIXED, a procedure for modeling continuous data (SAS/STAT(R) 14.1

User’s Guide: Comparing the GLIMMIX and MIXED Procedure).

1.6.2 Generalized Estimating Equations

The Generalized Estimating Equations (GEE) method was developed by Liang

and Zeger (1986) and fits a population average model for cluster randomized trials

(Eldridge and Kerry, 2012). In population average models, the mean population

response rather than the individual response is used for estimation, therefore they

do not have G-side effects (Hox, 2002; SAS/STAT(R) 14.1 User’s Guide: Proc

GLIMMIX Contrasted with Other SAS Procedures). The variance and covariance

of the random effect part of the multilevel model are estimated directly from the

residuals, which in the case of binary outcomes have a binomial distribution on the

8



Chapter 1. Introduction

linear scale (Hox, 2010; Eldridge and Kerry, 2012). After GEE estimates are ob-

tained for the variance components, an iterative Generalized Least Squares (GLS)

method is used to estimate the parameters (Hox, 2010). Within clusters, correla-

tion is treated as a nuisance parameter, which is estimated from the residuals and

used to correct estimates (Eldridge and Kerry, 2012).

A correlation structure must be specified in the modeling (Eldridge and Kerry,

2012). Variance estimators based on a specified correlation structure are known

as “model-based” (Eldridge and Kerry, 2012). If the correct correlation struc-

ture is specified, model-based estimators are more efficient. Sandwich estimators,

where the estimator is written as an approximate correlation matrix “sandwiched”

between two similar expressions of matrix algebra, are more robust to misspec-

ification of the correlation matrix (Eldridge and Kerry, 2012). Most researchers

use these robust estimators to analyze clustered data (Eldridge and Kerry, 2012).

However, when a small number of clusters are used, the sandwich variance esti-

mator can inflate type 1 error (Hayes and Moulton, 2017).

GEE estimates are faster to compute than ML estimates (Hox, 2002), but

since GEE models do not correspond to the full probability model for the data,

the likelihood of the data cannot be defined and therefore likelihood ratio tests

cannot be conducted (Hayes and Moulton, 2017).

In SAS, GEE models can be computed using PROC GENMOD, but this only

gives the fixed effect parameters (SAS/STAT(R) 14.1 User’s Guide: Model Fitting

in PROC GENMOD). For multilevel logistic mixed models with random effects, it

is only possible to do a “GEE type” estimation when using SAS (SAS/STAT(R)

14.1 User’s Guide: Fitting a Marginal (GEE-Type) Model). This is done through

PROC GLIMMIX.

9



Chapter 1. Introduction

1.7 Optimization

The above estimation techniques require evaluation of open form problems

to estimate parameters. To resolve this, an optimization technique must be used.

An optimization algorithm finds the global optimum for a general nonlinear min-

imization problem (SAS/STAT(R) 9.22 User’s Guide: Optimization Algorithms).

These techniques are iterative and require repeated computations of the function

value, the gradient vector, and the Hessian matrix for some techniques.

The following section references Chong and Zak (2001). Let f : Rn → R

be the real-valued function that we wish to minimize, known as the objective or

cost function. Since a maximum of f is a minimum of −f , we must only discuss

minimization. The vector x = [x1, x2, ..., xn]T ∈ Rn is known as the minimizer of

f over Ω, where Ω is a subset of Rn known as the constraint set. If Ω = Rn, the

problem is referred to as an unconstrained optimization problem. Let d ∈ Rn,

then d 6= 0 is known as a feasible direction at x ∈ Ω if there exists α0 > 0 such

that x+αd ∈ Ω for all α ∈ [0, α0]. Assume f ∈ C2, that is f is twice differentiable

with continuous first and second derivatives. If x∗ is a local minimizer of f over

Ω, then for any feasible direction d at x∗, we have

dT∇f(x∗) ≥ 0 (1.9)

where the gradient vector

∇f(x) = f′(x) =

(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xp

)T
. (1.10)

If x∗ is an interior point of Ω, then ∇f(x∗) = 0. Additionally, a second necessary

condition for the solution to x∗ to be a minimum is that

dTH(x∗)d ≥ 0, (1.11)

10



Chapter 1. Introduction

where the matrix H is the Hessian of f :

H = ∇2f(x) = f′′(x) =

(
∂2f

∂xi∂xj

)
p×p

. (1.12)

In the case that x∗ is an interior point of Ω, H(x∗) is positive definite.

When either the gradient vector or the Hessian matrix can not be computed

analytically they must be approximated discretely. This can be done using one

of a variety of search methods, such as steepest descent, the Newton-Raphson

algorithm, quasi-Newton methods, conjugate gradient, or trust region methods.

These iterative methods employ one or more convergence criteria that determine

when the algorithm has converged.

The optimization method used in this study was the trust region method,

implemented in SAS by TECH=TRUREG in the syntax for the regression model.

The trust region algorithm generates a sequence of points xk (Schultz, Schnabel,

Byrd, 2018). At the kth iteration, the quadratic model

ψk(w) = fk +∇fkp+
1

2
pTBkp (1.13)

...where fk is the function evaluated at xk;

...∇fk, is the gradient evaluated at xk;

...Bk is the Hessian evaluated at xk or some approximation of it;

...and p ∈ Rn is the candidate step (Schultz, Schnabel, Byrd, 2018).

An initial value for the trust radius, ∆k, is found. In SAS this region is

hyperelliptical (SAS/STAT(R) 9.22 User’s Guide: Optimzation Algorithms). The

size of the trust region is updated at each step. Each “minor iteration” uses the

current trust radius ∆k to compute a step

pk(∆k) = p(∇fk, Bk,∆k) (1.14)

and then compares the actual reduction of the objective function to the predicted
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reduction by the quadratic model (Schultz, Schnabel, Byrd, 2018):

pk =
fk − f(xk + pk(∆k))

fk − ψk(pk(∆k))
=

actual reduction of f

predicted model reduction of f
. (1.15)

If the step pk is close to 1, then the quadratic model is a good predictor and the

trust region can be increased (Nocedal and Wright, 1999). If pk is small, the the

trust region is reduced and the minor iteration is repeated (Shultz, Schnabel, and

Byrd, 2018). Trust region methods choose the step size and direction simultane-

ously (Nocedal and Wright, 1999).

The algorithm for the trust region method, as presented by Shultz, Schnabel,

and Byrd (1985), is as follows:

Algorithm 1 Trust Region

(0) Choose γ1, η1, η2 ∈ (0, 1), x1 ∈ Rn, ∆0 > 0, and let k = 1.
(1) Compute fk = f(xk), ∇k = ∇(xk), symmetric Bk ∈ Rn×n.
(2) Find ∆k and compute pk = pk(∆k) satisfying:
||pk|| ≤ ∆k and
(a) actual reduction of fk

predicted model reduction of fk
≥ η1 and

(b) either ∆k ≥ δk−1, or
∆k ≥ ||B−1k ∇k−1|| with Bk−1 positive definite, or
for some ∆ ≤ 1

γ1
∆k,

actual reduction of fk
predicted model reduction of fk

< η2 or
actual reduction of fk−1

predicted model reduction of fk−1
< η2

(3) Let xk+1 = xk + pk and k = k + 1.
(4) Go to (1)

1.8 Literature Review

Several “rules of thumb” have been recommended for the necessary number of

clusters and cluster size in CRTs. These are a sample size of 30 or greater at either

level for precise estimation, 50 groups each with 20 individuals if the cross-level

interaction is the parameter of interest, or 100 groups with 10 individuals per group

if the variance and covariance components are of interest (Hox, Moerbeek, and van

de Schoot, 2017; Hox, 2010). In reality, a small number of available clusters or

budget constraints often limit the number of clusters available to researchers. Few
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studies have examined the impact of sample size for CRTs with binary data and

no studies have examined if it is possible to compensate when using few clusters.

Several authors have presented formulas for calculating sample size in CRTs

(Rutterford et al., 2015; van Breukelen and Candel, 2012; Hemming et al., 2017;

Hayes and Bennett, 1999; Hemming and Taljaard, 2016; Hemming et al., 2011).

Formulas generally use either a fixed number of clusters, a fixed number of sub-

jects, or the ICC. Using the ICC can be difficult for researchers because it is

usually not known in the design phase of a study. Formulas for binary outcomes

are given in Rutterford et al. (2015) and Hemming et al. (2011). Rutterford et

al. (2015) states that for designs with few clusters, many of these calculations will

likely result in a underestimation of the required sample size.

For continuous outcomes, it has been shown that a larger number of clusters

is preferable over a large number of individuals per cluster (Maas and Hox, 2004;

Mok, 1995). Maas and Hox (2004), found that when 50 or fewer clusters were used

it led to bias estimates of the second level standard errors. Mok (1995) found that

when total sample size was fixed, smaller bias was achieved when more groups

with fewer individuals per group were used. Hemming et al. (2017) suggest that

the total sample size required can be greatly decreased by a slight increase in the

number of clusters.

Studies that have investigated binary outcomes have shown that, not only are a

large number of clusters better, but small cluster size can also cause greater bias for

the fixed effect point estimation and associated standard error estimation. Austin

(2010), Clark (2008), and Moineddin et al. (2007) all found that in circumstances

where 5 or fewer subjects per cluster were used there was an increase in bias,

regardless of the number of clusters. Moineddin et al. (2007) found bias to be

between 4% and 12% for level-1 fixed effect parameter estimates and 6% and 16%

for level-2 fixed effect parameter estimates in their smallest sample size tested,

30 clusters with 5 subjects per cluster. When the cluster size was increased to

30, this bias became negligible. Even with 50 clusters and 5 subjects per cluster

13



Chapter 1. Introduction

significant bias was found.

Moineddin found level-2 variance estimates were not biased when following

the 30-30 rule, however when cluster size was below 30 estimates were positively

biased, especially for those where the number of clusters was few. Similarly, Clark

(2008) found level-2 variance components to have bias exceeding 100% even with

more than 200 clusters, for cluster size of 2 and 5.

Model convergence also becomes more problematic when dealing with binary

outcomes (Moineddin et al., 2007; Paccagnella, 2011). In a study with unbalanced

groups, Paccagnella (2011) found conditions with fewer clusters had the greatest

rate of non-convergence. Moineddin’s et al. (2007) findings show that a small

number of clusters can affect convergence, but small cluster size has a greater

impact.

Lower convergence rates were also found in models with a lower prevalence

(McNeish and Stapleton, 2016). Moineddin et al. (2007) recommend a minimum

of 100 groups and 50 individuals per group for multilevel logistic regression models

where the outcome has a low prevalence to produce valid estimates. They also

found greater bias for all estimates when the prevalence of the outcome was 10%

as compared to 45%.

Few studies have examined the difference in estimation methods for binary

outcomes. Both Moineddin et al (2007) and Clark (2008) used MLE. Austin

(2010) studied several estimation methods and found meaningful bias for level-2

variance components in simulations with less than 30 clusters, when using MLE.

REML analogs, or Residual Pseudo-Likelihood (RSPL), still provided unbiased

variance component estimates even with 10 clusters and either 10 or 15 subjects

within each cluster (Austin 2010).

While more clusters may be preferable, real life scenarios often limit the num-

ber of available clusters, making it difficult to achieve the desired level of power

(Hox, 2010). Decreasing the number of groups can also inflate the standard error

estimates for both fixed and random effects (Theal et al., 2010). The few stud-
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ies that have investigated sample size for studies with binary outcomes show that

binary outcomes can be even more difficult to deal with than continuous outcomes.
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Methods

For all simulations conducted in this study, a multilevel logistic model with

one level-1 explanatory variable and one level-2 explanatory variable was used.

Therefore the level one equation for this model is:

log

(
pij

1− pij

)
= β0j + β1jx1ij. (2.1)

The level 2 equations are:

β0j = γ00 + γ01z1j + u0j, (2.2)

β1j = γ10 + γ11z1j + u1j. (2.3)

When written as one model, this becomes:

log

(
pij

1− pij

)
= γ00 + γ10xij + γ01z1j + γ11xijz1j + u0j + u1jxij, (2.4)

where u0j
u1j

 = N


0

0

 ,
σ2

0 σ01

σ01 σ2
1


 (2.5)

and pij is the probability that individual i in group j will experience the outcome,
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xij is the level-1 explanatory variable, and z1j is the level-2 explanatory variable

(Wang, Xie, and Fisher p 120). γ00 +γ10xij +γ01z1j +γ11xijz1j is referred to as the

fixed effect part of the model and u0j + u1jxij is the random effect part. γ11xijz1j

is a cross level interaction term where the coefficient γ11 shows how the slope of

equation 2.1, β1j, varies with z1j.

2.0.1 Simulation Conditions

Simulation conditions were chosen to be the same as the studies conducted

by Maas and Hox (2005) and Moineddin et al. (2007). For all simulations, the

fixed effect parameter estimates were set as γ00 = −1, γ01 = 0.3, γ10 = 0.3, and

γ11 = 0.3.

The ICC for a logistic model is

ρ =
σ2
u

σ2
u + σ2

e

(2.6)

...where σ2
e = π2

3
and σ2

u is the variance of the random intercept, u0j ∼ N(0, σ2
u)

(Eldridge and Kerry, 2012).

Three ICC conditions were tested, ρ = 0.04, ρ = 0.17, and ρ = 0.38. ρ = 0.17

falls within the range of commonly found ICCs described in Gulliford, Ukoumunne

and Chinn (1999), while ρ = 0.04 and ρ = 0.38 were included to test whether

an extreme ICC will further affect the accuracy of the estimates. The cluster

random components u0j and u1j are independent normal variables with mean 0

and standard deviations σ0 and σ1, respectively. Equation 2.6 was used to calculate

the variances of the random intercept, resulting in the values of 0.13, 0.67 and 2.0,

corresponding to ICCs of 0.04, 0.17 and 0.38, respectively. The standard deviation

σ0 also follows from the ICC, with σ0 = 0.36 for ρ = 0.04, σ0 = 0.82 for ρ = 0.17

and σ0 = 1.42 for ρ = 0.38. For all simulations σ1 = 1.

The level-1 and level-2 explanatory variables were generated from the stan-

dard normal distribution, using the RANNOR(SEED) call in SAS. A Bernoulli
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distribution with probability

pij =
exp(β0j + β1jxij)

1 + exp(β0j + β1jxij)
(2.7)

was used to generate the outcome. The prevalence of the outcome was approxi-

mately 30% in all simulations.

The number of groups was initially set to 50 clusters, with 10 subjects each.

This was used as the reference point to assess relative accuracy of parameter

estimates. For cluster sizes 5 through 49, the number of subjects per cluster was

set to 10, 20, 30, 60, 90, 120, 150, 180, and 210. For simplicity, cluster size was

not variable within a model, assuming balance design.

For the population parameter θ, let θ̂ be the associated parameter estimate,

then θ̂−θ
θ
× 100 is the percentage relative bias for θ. A 95% confidence interval

was created using the asymptotic standard normal distribution; therefore for pa-

rameter θ the confidence interval was θ ± 1.96 ∗ SE. This was used to access the

accuracy of the standard error of each parameter estimate.

All simulations were conducted in SAS 9.4 (SAS Institute, North Carolina,

US). 1000 data sets for each combination were generated.

2.0.2 Maximum Likelihood

The SAS procedure PROC NLMIXED was used for MLE estimation. The

optimization technique used was the trust region method (TRUREG), as it is

well suited for small problems and considered more stable than other similar

techniques (SAS/STAT(R) 9.22 User’s Guide: Optimization Algorithms). The

maximum number of iterations was 50, which is the default for the trust region

method when using PROC NLMIXED. The integration method was Adaptive

Gaussian Quadrature (AGQ), the default in PROC NLMIXED, where the num-

ber of quadrature points is selected adaptively (SAS/STAT(R) 9.22 User’s Guide:

The NLMIXED Procedure). The following SAS code was used:
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proc nlmixed data=test tech=trureg;
by rep nregion n;
ods listing close;
parms g00=&g00 g10=&g10 g01=&g01 g11=&g11 s0=&s0 s1=&s1
s01=0;
p0j=g00+g01*zj+u0j;
p1j=g10+g11*zj+u1j;
eta=p0j+p1j*xij;
p = exp(eta)/(1+exp(eta));
model yij binary(p);
random u0j u1j normal([0,0],[s0,s01,s1]) subject=region;
run;

2.0.3 Restricted Maximum Likelihood

To fit a REML analogue or Residual Pseudo-Likelihood model, we used PROC

GLIMMIX with METHOD=RSPL, which is the same as REML when using PROC

MIXED (Austin, 2010; SAS/STAT(R) 9.22 User’s Guide: Comparing the GLIM-

MIX and MIXED Procedure). Trust region optimization was used, with default

settings that are the same as those for PROC NLMIXED. The RANDOM state-

ment invokes the random slope and the random intercept. The following SAS code

was used:

proc glimmix data=test method=rspl;
by rep nregion n;
class rep nregion n;
model yij=xij zj xij*zj/dist=bin link=logit solution s;
random int xij/subject=region type=un gcorr ;
nloptions tech=trureg;
run;

2.0.4 Generalized Estimating Equations

PROC GLIMMIX was used to fit a GEE-type model. The EMPIRICAL op-

tion was used to invoke the sandwich estimator and the RANDOM statement was

used to incorporate random effects (SAS/STAT(R) 9.22 User’s Guide: Fitting a

Marginal (GEE-type) Model). Trust region optimization, with the default num-

ber of maximum iterations of 50, was implemented. An unstructured correlation
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structure was specified. The following SAS code was used:

proc glimmix data=test empirical;
by rep nregion n;
class rep nregion n;
model yij=xij zj xij*zj/dist=bin link=logit solution s;
random int xij/subject=region type=un gcorr ;
nloptions tech=trureg;
run;
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Results

For all simulated conditions, we investigated the cluster size necessary to de-

crease the absolute relative bias to within 0.25% of the reference bias for each

parameter. If increasing the cluster size decreased the absolute relative bias to

within 0.25% of the reference bias this was deemed “Complete Compensation.”

In the case that complete compensation was not found we looked for a plateau

point in the graph of absolute percent relative bias for each parameter and cluster

size, or a point for which bias is no longer increasing or decreasing as the clus-

ter size is increasing. If a plateau point was found this was deemed “Incomplete

Compensation.”

We also examined the convergence rate for various conditions and the accuracy

of the standard error estimate for each estimation technique.

3.1 Maximum Likelihood

3.1.1 Convergence and Inadmissible Solutions

The overall rates of convergence for ρ = 0.04, ρ = 0.17, and ρ = 0.38 were

97.3%, 98.9%, 99.3%, respectively. For each ICC, the lowest convergence rate was

approximately 72% which was found in models with 5 clusters and 10 subjects per

cluster - the smallest sample size tested. For both ρ = 0.17 and ρ = 0.38, models
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with as few as 8 clusters, but large number of subjects per cluster had a 100%

convergence rate. All non-converging models were excluded from the following

analysis.

In the case that the estimation procedure produces a negative variance esti-

mate, these solutions are deemed inadmissible and it is general practice to con-

strain these values to 0 (Maas and Hox, 2005). For all three ICC conditions only

admissible solutions were produced.

3.1.2 Parameter Estimates for ρ = 0.17

Table 3.1 shows the percent relative bias for selected simulation conditions,

when ρ = 0.17.

For fixed effect parameters, 87.62% of estimates fall within the guideline set by

Hoogland and Boomsma (1998) of point estimates lower than 5% being acceptable.

For the reference conditions of 50 groups with 10 subjects per group, the absolute

relative bias was 0.24% for γ00, 3.22% for γ01, 0.68% for γ10, and 1.18% for γ11.

The largest bias for each parameter was 4.7% for γ00, 16.8% for γ01, 23.0% for γ10,

and 13.8% for γ11. These were all found when number of groups was less than 30

(10, 6, 28, and 13 respectively) and when group size was 20 or less. The highest

bias of 23.0%, was found when the number of groups was 28 and group size was 20,

but for the same number of clusters, when group size was increased to 60 the bias

fell to below 11%. As shown by Table 3.1, the general trend for fixed parameters,

when ρ = 0.17, was that for a fixed number of clusters, increasing sample size

decreased the absolute relative bias.

Figure 3.1 shows the necessary cluster size needed to achieve complete or in-

complete compensation for each parameter and various number of clusters. For

fixed effect parameters, even for a very few number of clusters, complete com-

pensation was achieved by taking a large number of subjects per cluster. For 5

clusters, the smallest simulated, absolute relative bias within 0.25% of the refer-

ence bias was achieved for γ00 with group size 150, γ01 with group size 180, and γ11
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Table 3.1: Absolute percent relative bias of MLE estimates with ρ = 0.17

Number of Clusters Cluster Size % Converged γ00 γ10 γ01 γ11 σ0 σ1

50 10 100 0.245 0.687 3.225 1.178 10.277 6.981
40 10 99 0.876 0.391 2.117 5.315 12.551 9.098

20 100 0.121 1.396 1.649 5.147 8.959 8.915
30 100 0.057 0.605 1.334 1.732 9.322 6.233
60 100 1.566 0.916 2.071 0.477 8.177 5.639
90 100 0.504 1.513 2.087 0.342 7.601 7.053
120 100 0.548 1.822 2.318 0.678 6.428 6.397
150 100 0.01 2.2 2.701 0.299 7.641 6.599
180 100 0.483 0.002 0.998 2.209 6.6 5.899
210 100 0.798 2.364 1.201 1.177 6.792 6.025

30 10 99 0.236 2.474 3.832 0.573 15.945 14.965
20 100 1.169 1.017 2.736 3.188 12.567 12.719
30 100 0.611 2.196 1.983 2.049 12.946 9.867
60 100 0.424 0.8 0.589 6.097 9.206 7.238
90 100 0.91 3.494 1.256 3.7 8.537 8.084
120 100 0.089 1.361 0.186 4.09 10.271 8.003
150 100 0.046 1.135 1.15 3.272 9.893 7.876
180 100 0.386 0.173 1.259 4.28 9.236 8.246
210 100 0.197 0.766 0.791 4.766 7.744 7.499

20 10 96 0.612 2.158 0.584 6.608 17.406 16.143
20 100 0.377 2.138 0.079 0.451 18.543 13.685
30 100 0.883 3.025 0.414 2.896 17.031 13.962
60 100 0.271 0.519 1.056 6.841 14.935 9.943
90 100 0.329 1.163 0.482 0.728 13.866 11.662
120 100 0.015 0.919 0.696 0.309 14.695 13.125
150 100 0.597 1.055 1.095 2.339 14.274 12.518
180 100 0.081 0.591 0.551 5.094 14.439 13.541
210 100 0.163 0.09 0.739 2.663 14.858 12.087

10 10 87 4.735 2.121 12.194 3.437 29.407 24.544
20 96 2.262 7.939 8.593 2.378 29.93 23.907
30 98 1.452 3.721 5.671 2.942 26.164 24.687
60 100 1.444 1.283 2.034 1.908 30.546 25.849
90 100 1.712 1.792 3.368 0.037 26.864 25.743
110 100 1.358 1.746 0.387 2.205 26.54 28.121
120 100 1.611 2.999 4.996 0.623 25.596 27.081
150 100 1.386 0.575 3.357 3.516 24.268 24.36
180 100 1.162 1.049 0.939 0.003 25.247 26.097
210 100 0.837 0.396 2.417 1.052 26.374 25.811

5 10 72 1.161 2.579 6.414 3.046 36.467 23.819
20 80 1.379 1.958 5.87 5.98 40.23 25.98
30 85 1.071 3.781 0.784 1.942 35.289 27.072
60 90 0.367 0.062 0.199 4.654 45.119 38.783
90 93 0.346 3.966 2.782 1.141 46.272 41.775
110 94 0.598 9.633 2.342 1.141 48.434 47.914
120 95 0.911 2.61 0.727 0.621 46.03 48.055
150 96 0.298 4.272 3.733 2.21 45.991 48.178
180 95 0.486 11.215 0.543 4.314 48.524 49.374
210 96 0.325 6.222 1.103 0.605 49.343 48.938
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with group size 210. For γ10, with 5 groups, only incomplete compensation was

achieved, but for 9 groups and 210 subjects, complete compensation was achieved.

Figure 3.1: Number of clusters needed for compensation, MLE with ρ = 0.17

For the random variance components, overall much larger absolute relative

biases were found. Only 1.46% were lower than 5%, across all number of clusters

and group sizes. The smallest biases were found for a large number of groups
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and a large number of subjects per cluster. With 50 clusters and 10 subjects per

cluster, the absolute relative bias for σ0 was 10.28% and for σ1 was 6.98%. As

shown in Figure 3.1, for the random intercept variance, complete compensation

was only achieved for 26 or more clusters. For the random slope variance, 37 or

more clusters were needed for complete compensation.

Incomplete compensation was achieved for even 5 clusters with 90 subjects per

cluster for both random variance components. Although a plateau was found, the

highest absolute relative biases, those greater than 30%, were found in simulations

with less than 10 clusters. For a fixed number of subjects per cluster decreasing the

number of clusters resulted in an increase in bias. When the number of clusters

was fixed, the trend for both variance components was that the bias decreased

as cluster size increased. The exceptions to this were in conditions where very

few clusters were used, such as 5 clusters, where increasing cluster size actually

resulted in an increase in bias that eventually plateaued.

3.1.3 Parameter Estimates for ρ = 0.04

For ρ = 0.04, 93.53% of fixed parameter estimates and 2.22% of random pa-

rameter estimates had percent relative bias less than 5%.

For fixed parameter estimates, the reference bias was 0.9% for γ00, 1.9% for

γ01, 0.3% for γ10, and 0.1% for γ11. For all except γ11, complete compensation was

found with as few as 5 clusters, shown in Figure 3.2. For the interaction term γ11,

complete compensation was only achieved with 38 clusters, with 210 subjects per

cluster and 49 clusters and 180 subjects. The largest bias for each parameter was

5.1% γ00, 12.3% for γ01, 12.5% for γ10, and 10.5% for γ11.
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Figure 3.2: Number of clusters needed for compensation, MLE with ρ = 0.04

For the random slope variance and the random intercept variance, for most

conditions increasing the number of subjects per cluster resulted in an increase in

bias, shown in Table 3.2. This resulted in complete compensation not being found

for most clusters sizes, shown in Figure 3.2. For σ0, complete compensation was

achieved with 18 clusters with 150 subjects per cluster and for cluster sizes greater
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Table 3.2: Absolute percent relative bias of MLE estimates with ρ = 0.04

Number of Clusters Cluster Size % Converged γ00 γ10 γ01 γ11 σ0 σ1

50 10 96 0.875 0.32 1.891 0.045 20.191 4.805
40 10 95 1.643 0.773 1.982 0.02 21.698 6.95

20 99 0.21 2.354 1.431 1.865 19.747 6.084
30 100 0.322 1.46 0.767 3.219 14.329 6.5
60 100 0.324 0.749 0.347 2.572 9.775 8.292
90 100 0.388 0.634 0.16 2.78 10.598 7.886
120 100 0.076 2.665 0.52 0.254 8.456 6.777
150 100 0.079 1.209 0.178 2.352 8.921 7.349
180 100 0.399 1.701 0.293 0.695 9.423 7.889
210 100 0.406 1.718 1.177 0.537 5.426 6.227

30 10 92 1.959 1.218 3.801 5.647 32.664 5.416
20 98 0.819 0.466 2.862 5.165 22.617 8.016
30 99 0.603 1.426 1.181 5.434 17.62 7.724
60 100 0.902 4.309 0.533 4.101 12.902 9.814
90 100 0.502 1.793 1.289 2.738 13.652 8.97
120 100 0.534 1.998 1.251 1.06 10.734 9.063
150 100 0.622 0.583 1.249 2.054 11.445 9.502
180 100 0.475 1.563 0.423 1.578 10.79 9.134
210 100 0.57 2.647 0.82 2.353 10.039 8.125

20 10 90 2.273 1.36 3.141 1.43 29.961 6.224
20 95 0.026 2.074 1.709 4.142 28.966 7.414
30 97 1.567 1.652 1.137 1.098 29.194 8.208
60 99 0.203 1.339 0.74 3.582 22.064 12.535
90 100 0.466 1.571 0.095 2.07 18.252 14.934
120 100 0.146 2.807 0.421 1.56 15.939 14.078
150 100 0.085 3.203 1.459 0.087 16.336 12.662
180 100 0.568 4.475 0.698 2.858 17.725 14.111
210 100 0.028 0.801 0.941 2.52 14.342 13.324

10 10 88 2.87 2.923 10.339 10.515 266.263 24.56
20 96 1.275 2.922 7.127 7.038 252.98 24.662
30 97 0.967 0.312 1.522 1.35 249.318 25.559
60 100 0.268 3.067 4.49 8.389 260.082 24.878
90 100 1.653 1.318 0.582 4.348 269.97 25.399
120 100 0.948 0.7 6.342 0.903 263.422 25.358
150 100 0.422 1.394 4.496 8.513 269.431 25.93
180 100 0.142 2.063 5.764 3.921 277.166 25.446
210 100 0.272 0.194 6.083 6.375 274.484 24.715

5 10 73 3.567 0.142 3.286 1.614 46.881 5.79
20 75 1.72 0.292 3.462 8.005 51.978 6.181
30 80 1.081 0.43 1.493 1.343 51.518 6.015
60 79 0.417 3.339 0.022 3.457 60.829 8.48
90 81 0.37 0.561 0.17 1.362 58.173 15.732
110 85 0.675 6.764 0.781 1.995 59.42 22.681
120 84 0.219 0.971 1.142 2.483 55.809 21.199
150 87 0.015 2.181 3.191 0.489 50.599 15.292
180 90 0.98 1.249 1.513 2.023 59.489 22.302
210 91 0.457 0.408 0.212 0.82 52.955 28.69
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than 18. For σ1, complete compensation was only achieved for 48 clusters and 150

subjects per cluster. The absolute relative biases were more extreme for ρ = 0.04,

with the highest bias for σ0 and σ1 being 297.9% and 32.5%, respectively. For σ0,

this is much higher than the highest bias found when ρ = 0.17, of 49.3%. These

results show that in the case of a small ICC, increasing sample size may actually

be detrimental to the accuracy of the variance components when using MLE.

3.1.4 Parameter Estimates for ρ = 0.38

For ρ = 0.38, 86.5% of fixed parameter estimates and 2.96% of random param-

eter estimates had absolute percent relative bias less than 5%. The reference bias

was 0.3% for γ00, 4.7% for γ01, 1.6% for γ10, 1.8% for γ11, 4.4% for σ0 and 7.6% for

σ1. For γ00 complete compensation was achieved with as few as 8 clusters and for

all other fixed effect parameter estimates it was achieved with as few as 6 by using

210 subjects per cluster, see Figure 3.3. The largest biases for fixed parameter

estimates were 4.8%, 18.0%, 13.0%, and 17.1%, for γ00, γ01, γ10, γ11, were again

found in conditions with 10 or fewer clusters, as shown in Table 3.3.

The trends seen when ρ = 0.38 are similar those seen when ρ = 0.17. For the

variance components: as number of clusters decreased, bias increased. Increasing

the number of subjects per cluster either decreased the bias or resulted in a plateau.

Again, the exception to this was when less than 10 clusters were used. In this case

the bias initially increased and then plateaued as sample size increased. For σ1,

complete compensation was initially achieved when 29 clusters with 210 subjects

per cluster were used. For σ0, only incomplete compensation was found. The

highest absolute bias for the random components were found in conditions with

the fewest clusters, with the highest bias for σ0 and σ1 being 50.2% and 52.1%,

respectively.
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Table 3.3: Absolute percent relative bias of MLE estimates with ρ = 0.38

Number of Clusters Cluster Size % Converged γ00 γ10 γ01 γ11 σ0 σ1

50 10 100 0.339 1.574 4.729 1.757 4.433 7.614
40 10 100 0.761 0.175 3.724 1.936 9.484 8.869

20 100 0.208 0.602 4.312 3.849 7.91 8.94
30 100 0.91 1.86 2.817 1.237 8.329 6.995
60 100 0.963 0.573 0.923 0.353 6.753 6.396
90 100 0.136 2.54 4.781 0.311 7.417 6.56
120 100 0.015 1.438 2.381 0.466 7.113 6.569
150 100 0.053 1.299 5.64 2.817 7.092 6.328
180 100 0.594 1.145 4.092 2.404 6.151 5.116
210 100 1.208 1.134 3.655 1.286 7.18 5.979

30 10 100 0.615 3.898 5.214 2.383 9.65 14.652
20 100 0.493 2.264 0.202 1.57 8.42 10.112
30 100 0.792 2.685 2.972 0.314 7.841 10.682
60 100 1.225 1.481 4.858 0.118 7.401 8.278
90 100 0.625 0.363 3.425 0.328 7.452 9.243
120 100 0.755 0.218 3.133 3.305 8.127 9.52
150 100 1.138 1.753 3.558 3.964 7.043 8.741
180 100 1.799 1.277 4.293 1.39 6.373 9.845
210 100 1.028 2.013 5.726 2.087 8.003 8.576

20 10 98 3.182 3.608 2.722 7.496 18.316 20.866
20 100 1.001 3.457 4.625 5.182 13.212 14.766
30 100 1.453 0.071 0.703 2.288 13.005 17.304
60 100 0.351 0.694 0.499 0.195 12.552 12.159
90 100 1.082 1.145 2.831 3.287 12.472 13.269
120 100 0.043 2.004 1.436 0.466 11.68 14.576
150 100 0.524 0.711 1.005 0.44 12.457 12.988
180 100 1.398 1.908 4.649 0.196 13.06 12.764
210 100 0.839 2.093 1.892 0.291 12.954 12.643

10 10 91 0.6 3.155 7.66 5.314 33.91 38.977
20 97 1.337 1.459 13.977 0.496 28.516 31.578
30 99 0.411 0.213 17.96 6.527 29.75 30.055
60 100 3.05 4.507 9.384 5.693 25.353 27.609
90 100 1.65 6.236 14.349 0.349 25.867 27.574
120 100 0.482 3.657 12.044 0.752 25.539 27.157
150 100 2.778 4.585 11.631 2.064 23.701 27.913
180 100 3.397 2.804 8.632 2.202 26.461 27.517
210 100 2.756 2.636 11.892 3.519 25.623 26.868

5 10 72 2.712 4.527 4.546 8.134 42.229 43.837
20 81 1.822 10.064 0.524 10.138 41.895 48.23
30 86 0.457 5.749 10.738 2.363 43.309 50.238
60 92 0.584 5.151 5.988 4.554 44.965 49.793
90 94 0.396 11.645 6.253 7.343 44.413 52.072
120 96 0.815 1.708 7.226 6.391 46.795 51.92
150 97 0.261 4.029 9.157 7.891 49.11 50.75
180 96 0.775 1.936 2.003 5.381 50.244 50.342
210 97 2.541 7.948 6.38 2.604 49.073 50.701
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Figure 3.3: Number of clusters needed for compensation, MLE with ρ = 0.38

3.1.5 Standard Errors
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Table 3.4: Noncoverage of the 95% CI by
ICC for MLE

Parameter ICC
0.04 0.17 0.38

γ00 0.094 0.089 0.084
γ01 0.094 0.088 0.086
γ10 0.097 0.088 0.084
γ11 0.095 0.088 0.084
σ0 0.188 0.17 0.165
σ1 0.167 0.169 0.121

Table 3.5: Noncoverage of the 95% CI by number of clusters
for MLE

Parameter Number of Clusters

5 10 20 30 40

γ00 0.24 0.125 0.086 0.073 0.061

γ01 0.231 0.125 0.083 0.069 0.072

γ10 0.239 0.119 0.078 0.076 0.069

γ11 0.246 0.12 0.077 0.07 0.064

σ0 0.459 0.181 0.174 0.138 0.115

σ1 0.443 0.253 0.164 0.128 0.108

Table 3.6: Noncoverage of the 95% CI by cluster size for MLE

Parameter Group Size

10 20 30 60 90 120 150 180 210

γ00 0.119 0.092 0.084 0.084 0.084 0.084 0.083 0.083 0.083

γ01 0.118 0.093 0.082 0.085 0.082 0.084 0.083 0.085 0.084

γ10 0.118 0.092 0.087 0.085 0.083 0.094 0.083 0.083 0.084

γ11 0.117 0.093 0.084 0.085 0.085 0.083 0.082 0.083 0.082

σ0 0.209 0.183 0.165 0.165 0.165 0.17 0.127 0.167 0.167

σ1 0.172 0.155 0.155 0.164 0.163 0.166 0.167 0.17 0.168

The coverage of a 95% Wald confidence interval was used to assess the accuracy

of standard error estimates. Whether or not the confidence interval contained the

true parameter was assessed for each parameter. The nominal non-coverage rate

is 5%. Table 3.5 shows the effect of several number of clusters on the noncoverage
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of the 95% confidence interval. Table 3.6 shows the effect of cluster size on the

noncoverage and the effects of ICC on noncoverage are shown in Table 3.4.

Table 3.5 shows that for the fixed effect parameter estimates, number of groups

can impact the accuracy of the standard errors. For 40 groups, the noncoverage

rate for all fixed parameter estimates was 6.1%, but with 5 groups it was 24%.

The noncoverage rates are even greater for variance components. From this we

can see that when few clusters are used the 95% confidence interval is too narrow,

indicating that the estimated standard errors are too small (Maas and Hox, 2005).

Table 3.6 shows that standard error estimates are more accurate for a larger

number of subjects per cluster, but the difference is less pronounced. For σ1, with

both 10 subjects per group and with 180 subjects per group, the noncoverage rate

was 17% for both. Similarly to Table 3.5 it can be seen that the noncoverage rate

is higher for the variances components than the fixed effect parameter estimates.

Table 3.4 again shows that the coverage rates are better for fixed effect param-

eter estimates.

A 95% confidence interval coverage of 92.5% or less shows that the standard

errors were underestimated and a coverage of 97.5% or greater shows that the

standard errors were overestimated (Bradley, 1978). The findings shown here

indicate that for both fixed effect parameter estimates and the variances, the

standard errors were too small.

3.2 Restricted Maximum Likelihood

3.2.1 Convergence

For REML with ρ = 0.17, the convergence rate for all models was 99.34%.

When ρ = 0.04 the convergence rate was 97% and when ρ = 0.38 there was

99.44% convergence of models. Lower convergence rates were found in models
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with a small total sample size. Nonconverging models were excluded from the

following analysis.

PROC GLIMMIX applies a lower boundary of 0 to all variance components,

so there were no inadmissible solutions (Kiernan, Tao, and Gibs, 2009).

3.2.2 Parameter Estimates for ρ = 0.17

About 61% of fixed effect parameter estimates were below 5% for ρ = 0.17.

For the reference simulation, the average absolute relative bias for γ00 was 12.21%,

for γ01 was 10.71%, for γ10 was 19.22%, and for γ11 was 16.10%. The highest

absolute percent relative bias found for each fixed parameter estimate was as

follows: 12.53% for γ00 with 48 clusters and 10 subjects per cluster, 21.87% for

γ10 with 35 clusters and 10 subjects per cluster, 20.45% for γ01 with 5 clusters

and 20 subjects per group, and 36.07% for γ11 with 5 clusters and 10 subjects per

group. Low absolute relative biases were found in conditions with a large number

of subjects per cluster, regardless of the number of clusters, as shown by Table

3.7. As shown in Figure 3.4, complete compensation was achieved for each fixed

effect parameter with a low number of subjects per cluster.

For the random effect variance components, only 7.02% of estimates had abso-

lute relative bias less than 5%. The reference bias for σ0 was 34.91% and 43.03%

for σ1. For a fixed number of subjects per clusters, 10, decreasing the number of

clusters resulted in an decrease in bias until the number of clusters reached 10,

where the bias then increased as clusters decreased. Increasing the sample size

within each cluster resulted in an even further decrease in the bias. The lowest

absolute percent relative bias for σ0 was 0.33% found for 6 clusters and 20 sub-

jects per cluster. For σ1 the lowest bias, 0.77%, was found for 5 clusters, with 30

subjects per cluster. However, in general, smaller bias was found in conditions

with a large total sample size (refer to Table 3.7). Complete compensation was

achieved for all number of clusters simulated with a cluster size of twenty or less,
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Table 3.7: Absolute percent relative bias of REML estimates with ρ = 0.17

Number of Clusters Cluster Size % Converged γ00 γ10 γ01 γ11 σ0 σ1

50 10 100 12.209 19.216 10.702 16.095 34.907 43.028
40 10 100 11.249 18.091 10.731 16.73 33.886 42.949

20 100 8.371 9.431 10.174 10.174 21.433 27.033
30 100 5.768 7.223 6.875 8.55 16.905 21.059
60 100 3.363 6.044 3.796 2.261 10.413 13.794
90 100 2.532 5.005 3.043 0.559 7.505 10.085
120 100 1.858 3.263 3.047 2.201 5.985 7.976
150 100 1.271 4.134 2.431 1.566 5.696 7.486
180 100 0.997 1.249 2.441 0.466 4.288 6.828
210 100 0.269 2.893 2.796 0.531 2.914 4.853

30 10 99 8.764 17.159 10.298 12.005 31.496 41.268
20 100 6.78 10.957 13.085 10.66 20.683 27.758
30 100 5.187 6.674 8.966 4.844 14.882 20.231
60 100 2.335 10.164 6.889 0.943 9.799 12.128
90 100 1.424 6.464 4.733 0.699 6.879 10.184
120 100 0.648 4.262 3.817 0.61 6.961 8.2
150 100 0.066 3.369 4.865 0.149 5.39 7.508
180 100 0.329 3.13 4.098 0.755 3.563 6.27
210 100 0.468 5.172 4.02 0.381 3.687 5.617

20 10 98 8.84 16.331 11.363 12.662 27.564 33.07
20 100 6.791 6.763 7.716 13.903 21.307 28.172
30 100 4.257 8.066 4.752 5.202 17.228 20.468
60 100 3.554 5.202 3.582 6.057 10.612 11.679
90 100 2.194 4.31 3.198 0.158 6.616 9.051
120 100 2.301 1.302 3.238 3.919 6.208 9.184
150 100 1.916 1.276 0.678 0.425 6.352 6.446
180 100 0.778 1.082 2.904 2.374 7.421 6.958
210 100 0.416 2.197 4.525 2.497 5.694 7.014

10 10 90 6.915 17.336 1.028 14.225 11.392 14.702
20 97 4.193 6.686 1.52 9.903 13.828 17.637
30 99 2.683 4.628 8.749 7.074 15.986 15.271
60 100 0.721 0.187 1.357 8.585 13.279 13.288
90 100 1.006 4.965 3.653 9.009 11.981 11.353
120 100 1.371 2.16 3.137 6.69 13.78 11.361
150 100 0.46 1.228 4.979 5.356 9.265 12.805
180 100 0.579 2.94 4.713 4.11 9.66 10.205
210 100 0.215 2.46 5.624 1.832 9.409 8.574

5 10 63 11.341 6.464 16.391 36.073 44.721 46.661
20 81 9.068 11.295 20.451 13.029 17.141 12.554
30 86 3.775 8.176 1.881 2.697 6.698 0.775
60 93 0.903 7.184 2.898 3.688 12.437 12.795
90 95 1.931 8.216 1.599 1.58 14.931 14.14
120 96 2.631 4.197 2.38 0.647 17.78 19.861
150 97 0.685 3.695 1.867 1.969 17.661 16.753
180 97 1.492 2.608 5.367 3.566 21.654 18.502
210 98 2.719 3.184 4.576 3.829 20.789 18.777
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Figure 3.4: Number of clusters needed for compensation, REML with ρ = 0.17

most likely due to the high biases found for the reference conditions.
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3.2.3 Parameter Estimates for ρ = 0.04

Figure 3.5: Number of clusters needed for compensation, REML with ρ = 0.04

When the ICC was small, the trend for all REML estimates was similar to

those seen when ρ = 0.17, but with slightly lower convergence rates. 73.5% of

fixed effect estimates and 16.4% of random effect variance estimates had bias less
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Table 3.8: Absolute percent relative bias of REML estimates with ρ = 0.04

Number of Clusters Cluster Size % Converged γ00 γ10 γ01 γ11 σ0 σ1

50 10 95 6.774 15.793 5.566 13.724 7.136 33.808
40 10 95 5.895 13.24 6.838 12.31 6.934 34.341

20 98 5.038 7.347 6.702 6.924 18.78 22.797
30 99 4.086 5.674 5.683 6.005 13.811 16.634
60 99 2.367 4.63 2.604 3.555 8.665 12.139
90 97 1.558 3.647 2.65 1.073 7.419 9.373
120 97 1.481 0.254 1.037 3.176 4.895 7.588
150 98 1.295 3.471 1.826 0.045 4.964 6.953
180 97 0.902 0.746 1.675 2.038 4.293 6.943
210 97 0.562 1.825 2.64 2.012 0.714 5.5

30 10 94 4.534 16.224 5.59 8.611 0.902 30.839
20 98 4.246 9.526 8.235 3.764 10.916 22.39
30 99 3.24 8.727 5.677 2.068 11.992 16.029
60 99 1.826 9.26 2.968 1.147 7.537 11.758
90 99 1.533 5.045 3.118 0.014 8.754 8.993
120 98 0.997 5.42 2.904 1.681 4.635 7.135
150 98 0.798 2.994 2.931 0.632 5.035 6.974
180 98 0.739 3.428 0.827 0.15 4.16 6.306
210 98 0.534 4.259 2.131 0.295 3.483 5.24

20 10 92 4.983 10.988 0.716 8.953 41.748 26.902
20 96 4.776 7.575 6.488 11.838 4.089 19.603
30 98 2.307 8.903 4.352 8.245 8.43 14.942
60 99 2.418 3.649 3.296 7.66 9.718 11.166
90 99 1.296 2.564 2.47 2.61 7.15 10.316
120 99 1.653 0.471 0.889 4.415 5.592 8.769
150 99 1.375 1.346 0.306 1.443 5.721 6.094
180 98 0.457 2.935 0.695 4.332 6.485 8.311
210 99 0.981 0.035 1.374 3.528 3.52 6.699

10 10 83 3.594 11.173 1.753 16.138 103.547 3.658
20 92 1.92 9.106 2.15 7.213 36.787 12.74
30 95 0.507 2.884 0.512 6.333 21.952 11.595
60 98 1.482 4.887 0.747 6.226 0.331 14.715
90 99 1.039 7.193 0.367 7.957 7.171 10.414
120 99 1.444 4.303 0.931 5.773 9.205 11.523
150 99 0.327 4.695 2.357 2.149 7.475 9.732
180 99 0.313 2.989 3.869 5.905 6.252 10.165
210 99 0.003 2.461 3.984 7.124 9.516 8.755

5 10 56 0.21 2.219 5.691 19.825 361.119 53.543
20 73 1.348 8.761 8.954 2.509 171.745 5.885
30 80 2.119 7.349 2.925 13.798 78.527 0.481
60 87 0.356 1.408 2.472 5.049 22.521 13.207
90 90 1.042 14.623 1.953 5.646 5.124 17.705
120 91 1.606 3.719 3.115 0.286 6.289 19.812
150 92 1.029 6.832 0.421 4.158 0.171 17.878
180 93 0.121 4.921 2.403 2.198 11.019 17.486
210 94 1.676 2.628 0.663 1.66 9.761 17.029
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than 5%.

For fixed effect parameter estimates, biases tended to decrease as cluster size

increased. The highest biases were found when there were 10 subjects per cluster,

regardless of the number of clusters. Similar to REML estimates with ρ = 0.17

simulations, the reference bias was comparatively high for fixed effect parameter

estimates, resulting in complete compensation being found for most simulated

conditions.

For σ0, bias increased as number of clusters decreased. For a fixed number of

clusters the bias for σ0 decreased as sample size increased, except in the cases of

very few clusters (10 or less). For σ1, the general trend seen is that as cluster size

increased the bias decreased, again with the exception of 10 or less clusters. The

highest bias for both σ0 and σ1 were for 5 clusters with 10 subjects per cluster.

In such cases, an eventual plateau was seen in the bias, so it was designated

as incomplete compensation. Complete compensation was found for σ0 with 11

clusters and 180 subjects per cluster. For σ1 complete compensation was found

with 5 clusters and 20 subjects per cluster.

3.2.4 Parameter Estimates for ρ = 0.38

For a large ICC, we see similar trends as when using REML estimation with

ρ = 0.17, but with slightly higher convergence rates. Approximately 53% of fixed

effect estimates and 3.45% of random effect estimates were within the acceptable

limit of 5%. For fixed effect parameter estimates, the bias tended to be highest

when the number of subjects was equal to ten and decreased as the cluster size

increased. Similar to REML estimates with smaller ICCs, the lowest biases were

found when the number of subjects per cluster was large. The relatively high bias

found for the reference bias, resulted in compete compensation being found for all

fixed effect estimates with a small number of subjects per cluster.

The trend towards high bias when the number of subjects per cluster was

also found for the random variance components. It can be seen in Table 3.9
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that increasing the sample size within each cluster resulted in a decrease in bias.

As with REML estimates with small ICCs, for 10 subjects per cluster the bias

decreased as number of clusters decreased. With fewer than 10 clusters, the bias

increased again with cluster size fixed. High biases were found with a low number

of subjects per cluster, regardless of number of clusters. Complete compensation

was found for both variances components for all number of clusters simulated,

which is shown in Figure 3.6.
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Table 3.9: Absolute percent relative bias of REML estimates with ρ = 0.38

Number of Clusters Cluster Size % Converged γ00 γ10 γ01 γ11 σ0 σ1

50 10 100 16.793 21.732 16.008 19.899 37.62 51.335
40 10 99 15.451 20.488 15.865 17.63 36.261 51.551

20 100 11.447 14.336 12.631 13.592 25.293 30.553
30 100 8.452 10.263 7.729 7.2 19.807 24.513
60 100 4.441 7.545 6.993 3.062 12.445 14.411
90 100 2.55 4.555 4.426 0.927 9.887 11.603
120 100 1.884 2.014 3.637 0.369 8.129 8.328
150 100 1.108 5.105 2.818 0.562 6.547 7.324
180 100 0.603 1.339 4.949 0.497 5.136 7.11
210 100 0.433 1.49 1.585 1.332 4.944 5.263

30 10 99 13.989 18.226 17.22 18.046 35.163 50.497
20 100 10.238 14.314 14.317 9.014 24.655 30.791
30 100 6.568 7.866 15.551 4.839 18.996 23.416
60 100 3.061 8.561 9.956 4.917 12.138 13.076
90 100 0.591 6.382 7.352 0.086 9.502 10.559
120 100 0.226 3.722 7.905 1.985 7.894 8.268
150 100 0.298 4.69 7.648 1.783 6.431 6.722
180 100 1.073 2.552 4.701 1.062 5.095 6.271
210 100 0.43 4.571 6.221 1.159 5.5 4.674

20 10 96 13.158 21.094 13.654 12.296 32.584 44.826
20 100 10.811 8.896 6.931 15.391 24.348 29.055
30 100 7.031 9.786 8.753 7.187 19.374 24.374
60 100 5.193 5.995 4.552 5.228 13.122 12.709
90 100 2.692 2.921 8.616 0.53 10.045 10.483
120 100 2.663 1.121 2.435 2.893 8.025 10.017
150 100 1.978 2.115 1.39 2.244 7.466 7.37
180 100 0.926 0.257 6.435 2.077 7.434 6.819
210 100 0.868 0.097 4.695 2.359 7 6.111

10 10 87 12.511 18.105 5.482 10.505 25.368 21.962
20 96 9.223 11.161 5.702 6.149 18.834 20.777
30 98 5.01 4.058 10.667 13.864 19.228 18.399
60 100 1.165 0.493 5.405 9.018 12.867 13.893
90 100 1.553 2.784 9.404 5.303 11.924 13.127
120 100 1.456 1.564 8.622 1.76 10.713 11.653
150 100 0.878 1.992 9.771 4.858 8.401 11.56
180 100 2.08 1.473 7.007 4.218 11.293 10.876
210 100 1.6 1.146 11.846 4.231 9.407 10.504

5 10 100 10.712 0.5 24.184 1.008 0.59 57.241
20 72 12.783 12.693 2.851 19.836 11.065 19.351
30 80 8.494 19.571 0.669 8.444 18.693 3.435
60 85 3.133 0.195 0.731 6.439 18.067 8.853
90 90 3.368 10.957 2.75 7.746 21.212 12.812
120 93 4.283 2.412 0.375 4.408 16.923 18.779
150 94 3.937 4.265 6.859 1.308 22.602 15.214
180 95 1.833 1.249 3.94 4.1 23.512 16.484
210 96 5.262 5.316 9.9 2.854 20.257 15.685
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Figure 3.6: Number of clusters needed for compensation, REML with ρ = 0.38

3.2.5 Coverage of the 95% Confidence Intervals

The 95% Wald Confidence Interval was again used to assess the accuracy of

the standard errors for REML estimates. Table 3.10 shows the noncoverage rates

by ICC. The fixed effect standard errors were mostly within the acceptable range
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set by Bradley (1978) across all ICCs. The noncoverage rates were higher for the

variance component standard errors.

Table 3.11 shows the noncoverage rate by the number of clusters. For all

estimates, fixed and random, noncoverage rates were highest when only 5 clusters

were used.

The noncoverage rate by group size is shown in Table 3.12. The variance

component standard errors were underestimated across all cluster sizes, but non-

coverage was much worse for simulations with fewer clusters.

It appears that for REML estimates many standard error estimates were still

too small, especially for conditions with few clusters or small group size.

Table 3.10: Noncoverage of the 95% CI
by ICC for REML

Parameter ICC

0.04 0.17 0.38

γ00 0.073 0.078 0.076

γ01 0.061 0.066 0.067

γ10 0.067 0.068 0.069

γ11 0.062 0.063 0.064

σ0 0.187 0.154 0.185

σ1 0.187 0.173 0.183

Table 3.11: Noncoverage of the 95% CI by number of clusters
for REML

Parameter Number of Clusters

5 10 20 30 40

γ00 0.124 0.088 0.072 0.069 0.068

γ01 0.111 0.074 0.061 0.057 0.057

γ10 0.115 0.081 0.058 0.075 0.074

γ11 0.127 0.076 0.053 0.058 0.060

σ0 0.392 0.190 0.156 0.147 0.162

σ1 0.385 0.183 0.165 0.155 0.188
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Table 3.12: Noncoverage of the 95% CI by cluster size for REML

Parameter Group Size

10 20 30 60 90 120 150 180 210

γ00 0.096 0.086 0.079 0.074 0.071 0.069 0.069 0.068 0.070

γ01 0.059 0.063 0.061 0.066 0.064 0.066 0.067 0.069 0.067

γ10 0.070 0.066 0.069 0.068 0.070 0.068 0.068 0.068 0.069

γ11 0.062 0.063 0.062 0.064 0.064 0.063 0.064 0.064 0.063

σ0 0.334 0.223 0.181 0.151 0.144 0.143 0.135 0.133 0.130

σ1 0.333 0.235 0.201 0.161 0.146 0.144 0.139 0.138 0.131

3.3 Generalized Estimating Equations

3.3.1 Convergence

The overall convergence rates for GEE were 99.28% when ρ = 0.17, 96.97%

when ρ = 0.04, and 99.41% when ρ = 0.38. The lowest convergence rate was seen

for models with ρ = 0.04 and 5 clusters with 10 subjects per cluster. For large

total sample sizes, the rate of convergence was 100%. This data is shown in Table

3.13 for selected conditions.

3.3.2 Parameter Estimates

For GEE with ρ = 0.17, only 60.84% of fixed effect parameter estimates fell

below 5% in absolute value. For the reference simulation, the average absolute

relative bias for γ00 was 12.21%, for γ01 was 10.71%, for γ10 was 19.22%, and

for γ11 was 16.10%. For almost all simulated conditions, the absolute relative

bias was below the reference bias, resulting in complete compensation, shown in

Figure 3.7. The largest bias found, 36.073%, was found in the smallest sample

size tested, 5 clusters, with ten subjects per cluster, for the interaction term γ11.

43



Chapter 3. Results

Figure 3.7: Number of clusters needed for compensation, GEE with ρ = 0.17

Other comparatively large biases were found in simulations with ten or twenty

subjects per cluster, even if the number of clusters was larger. The smallest biases

were found for conditions with a large number of subjects per cluster, regardless

of number of cluster.

For random effects, only 8.13% were below 5%. The reference bias for σ0 was
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34.91% and σ1 was 43.03%. The highest absolute relative bias for each σ0 and σ1

was again found for 5 clusters, with ten subjects per cluster. Smaller biases were

found when the number of clusters was greater than 40 and the cluster size was

larger than 150. As shown in Figure 3.7, complete compensation was achieved for

all number of clusters, with a cluster size of twenty or less.

The similarities of Table 3.13 and Table 3.7 are noted and discussed in a later

section.

For ρ = 0.04 and ρ = 0.38, the results are again quite similar to the corre-

sponding ICCs when using REML estimation. This can be seen by comparing

Table 3.14 to Table 3.8 and Table 3.15 to Table 3.9. For this reason these results

are not presented in detail.
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Table 3.13: Absolute percent relative bias of GEE estimates with ρ = 0.17

Number of Clusters Cluster Size % Converged γ00 γ10 γ01 γ11 σ0 σ1

50 10 100 12.209 19.216 10.702 16.095 34.907 43.028
40 10 100 11.249 18.091 10.731 16.73 33.886 42.949

20 100 8.371 9.431 10.174 10.174 21.433 27.033
30 100 5.735 7.15 6.864 8.516 16.943 21.055
60 100 3.363 6.044 3.996 2.261 10.413 13.826
90 100 2.512 5.037 3.025 0.557 7.556 10.107
120 100 1.839 3.3 3.047 2.238 5.985 7.895
150 100 1.271 4.134 2.344 1.785 5.696 7.432
180 100 0.946 1.267 2.569 0.671 4.154 6.718
210 100 0.329 3.012 2.711 0.784 3.052 4.683

30 10 99 8.764 17.159 10.298 12.005 31.496 41.268
20 100 6.78 10.957 13.085 10.66 20.683 27.758
30 100 5.187 6.674 8.966 4.844 14.882 20.231
60 100 2.335 10.164 6.889 0.943 9.799 12.128
90 100 1.424 6.464 4.733 0.699 6.879 10.184
120 100 0.648 4.262 3.817 0.61 6.961 8.2
150 100 0.066 3.369 4.865 0.149 5.39 7.508
180 100 0.329 3.13 4.098 0.755 3.563 6.27
210 100 0.468 5.172 4.02 0.381 3.687 5.617

20 10 98 8.84 16.331 11.363 12.662 27.564 33.07
20 100 6.791 6.763 7.716 13.903 21.307 28.172
30 100 4.257 8.066 4.752 5.202 17.228 20.468
60 100 3.554 5.202 3.582 6.057 10.612 11.679
90 100 2.183 4.317 3.209 0.35 6.713 9.039
120 100 2.231 1.313 3.179 3.809 6.265 9.245
150 100 1.916 1.276 0.678 0.425 6.352 6.446
180 100 0.776 1.106 3.008 2.36 7.443 6.931
210 100 0.394 2.087 4.474 2.066 5.709 6.992

10 10 90 6.915 17.336 1.028 14.225 11.392 14.702
20 97 4.193 6.686 1.52 9.903 13.828 17.637
30 99 2.683 4.628 8.749 7.074 15.986 15.271
60 100 0.721 0.187 1.357 8.585 13.279 13.288
90 100 1.018 4.624 3.605 8.756 11.954 11.272
120 100 1.371 1.468 2.932 6.594 13.78 11.413
150 100 0.46 1.276 5.049 5.356 9.073 12.805
180 100 0.579 2.94 4.713 4.11 9.66 10.205
210 100 0.215 2.46 5.624 1.832 9.409 8.574

5 10 63 11.341 6.464 16.391 36.073 44.721 46.661
20 81 9.068 11.295 20.451 13.029 17.141 12.554
30 86 3.775 8.176 1.881 2.697 6.698 0.775
60 93 0.903 7.184 2.898 3.688 12.437 12.795
90 95 1.931 8.216 1.599 1.58 14.931 14.14
120 96 2.631 4.197 2.38 0.647 17.78 19.861
150 97 0.685 3.695 1.867 1.969 17.661 16.753
180 97 1.492 2.608 5.367 3.566 21.654 18.502
210 98 2.719 3.184 4.576 3.829 20.789 18.777
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Table 3.14: Absolute percent relative bias of GEE estimates with ρ = 0.04

Number of Clusters Cluster Size % Converged γ00 γ10 γ01 γ11 σ0 σ1

50 10 95 6.774 15.793 5.566 13.724 7.136 33.808
40 10 95 5.895 13.24 6.838 12.31 6.934 34.341

20 98 5.038 7.33 6.611 7.226 18.78 22.797
30 99 4.022 6.078 5.071 6.119 14.236 16.961
60 99 2.362 4.253 2.488 3.367 8.666 12.062
90 98 1.674 4.166 2.053 1.571 8.355 9.305
120 97 1.451 0.593 1.112 2.96 4.877 7.573
150 97 1.449 3.49 1.878 0.045 5.183 6.953
180 97 0.929 0.725 1.658 2.28 4.009 6.969
210 97 0.648 2.461 2.355 2.168 0.457 5.5

30 10 94 4.534 16.224 5.59 8.611 0.902 30.839
20 98 4.246 9.526 8.235 3.764 10.916 22.39
30 99 3.24 8.703 5.55 2.087 11.927 16.018
60 99 1.813 9.274 2.968 0.929 7.371 11.772
90 99 1.531 4.887 3.204 0.192 8.904 8.966
120 98 1.007 4.897 2.916 1.904 4.619 6.845
150 98 0.798 3.439 2.587 0.74 4.701 7.105
180 98 0.66 3.37 1.48 0.444 3.525 6.036
210 98 0.438 3.347 2.205 0.586 3.073 5.421

20 10 92 4.983 10.988 0.716 8.953 41.748 26.902
20 97 4.731 7.473 6.493 11.875 3.998 19.597
30 98 2.307 8.903 4.352 8.245 8.435 14.942
60 99 2.397 3.431 3.117 7.677 9.456 11.306
90 99 1.23 2.407 2.316 2.305 7.15 10.316
120 99 1.676 0.471 0.876 4.132 5.684 8.792
150 99 1.405 1.925 0.146 1.157 5.761 6.253
180 99 0.532 2.42 0.841 4.47 6.399 8.141
210 99 0.981 0.646 1.632 4.309 3.52 6.854

10 10 83 3.594 11.173 1.753 16.138 103.547 3.658
20 92 1.92 9.106 2.15 7.213 36.787 12.74
30 95 0.507 2.884 0.512 6.333 21.952 11.595
60 98 1.482 4.887 0.747 6.226 0.331 14.715
90 99 1.039 7.193 0.367 7.957 7.171 10.414
120 99 1.444 4.303 0.931 5.773 9.205 11.523
150 99 0.327 4.695 2.357 2.149 7.475 9.732
180 99 0.313 2.989 3.869 5.905 6.252 10.165
210 99 0.003 2.461 3.984 7.124 9.516 8.755

5 10 56 0.21 2.219 5.691 19.825 361.119 53.543
20 73 1.348 8.761 8.954 2.509 171.745 5.885
30 80 2.119 7.349 2.925 13.798 78.527 0.481
60 87 0.356 1.408 2.472 5.049 22.521 13.207
90 90 1.042 14.623 1.953 5.646 5.124 17.705
120 91 1.606 3.719 3.115 0.286 6.289 19.812
150 92 1.029 6.832 0.421 4.158 0.171 17.878
180 93 0.121 4.921 2.403 2.198 11.019 17.486
210 94 1.676 2.628 0.663 1.66 9.761 17.029
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Table 3.15: Absolute percent relative bias of GEE estimates with ρ = 0.38

Number of Clusters Cluster Size % Converged γ00 γ10 γ01 γ11 σ0 σ1

50 10 100 16.793 21.732 16.008 19.899 37.62 51.335
40 10 100 15.451 20.488 15.865 17.63 36.261 51.551

20 100 11.447 14.336 12.631 13.592 25.293 30.553
30 100 8.452 10.263 7.729 7.2 19.807 24.513
60 100 4.441 7.545 6.993 3.062 12.445 14.411
90 100 2.55 4.555 4.426 0.927 9.887 11.603
120 100 1.884 2.014 3.637 0.369 8.129 8.328
150 100 1.108 5.105 2.818 0.562 6.547 7.324
180 100 0.603 1.339 4.949 0.497 5.136 7.11
210 100 0.433 1.49 1.585 1.332 4.944 5.263

30 10 100 13.989 18.226 17.22 18.046 35.163 50.497
20 100 10.238 14.314 14.317 9.014 24.655 30.791
30 100 6.568 7.866 15.551 4.839 18.996 23.416
60 100 3.061 8.561 9.956 4.917 12.138 13.076
90 100 0.442 6.387 7.388 0.119 9.565 10.564
120 100 0.205 3.642 7.871 1.798 7.832 8.213
150 100 0.27 4.69 7.648 1.783 6.229 6.722
180 100 1.073 2.552 4.701 1.197 5.002 6.36
210 100 0.439 4.41 6.234 1.145 5.57 4.69

20 10 99 13.158 21.094 13.654 12.296 32.584 44.826
20 100 10.811 8.896 6.931 15.391 24.348 29.055
30 100 7.031 9.786 8.753 7.187 19.374 24.374
60 100 5.193 5.995 4.552 5.228 13.122 12.709
90 100 2.692 2.921 8.616 0.53 10.045 10.483
120 100 2.663 1.121 2.435 2.893 8.025 10.017
150 100 2.118 2.151 1.581 2.407 7.506 7.35
180 100 1.02 0.443 6.345 2.123 7.441 6.753
210 100 0.828 0.122 4.591 1.935 6.964 6.083

10 10 93 12.511 18.105 5.482 10.505 25.368 21.962
20 98 9.223 11.161 5.702 6.149 18.834 20.777
30 99 5.01 4.058 10.667 13.864 19.228 18.399
60 100 1.165 0.493 5.405 9.018 12.867 13.893
90 100 1.553 2.784 9.404 5.303 11.924 13.127
120 100 1.5 1.765 9.055 1.76 10.763 11.824
150 100 0.878 1.992 9.771 4.858 8.401 11.56
180 100 2.08 1.473 7.007 4.218 11.293 10.876
210 100 1.624 1.187 11.374 4.527 9.367 10.565

5 10 68 10.712 0.5 24.184 1.008 0.049 56.3
20 81 12.777 12.922 3.971 20.277 11.065 19.351
30 88 8.48 19.002 0.749 7.208 18.693 3.158
60 94 3.041 0.016 1.791 6.814 18.254 8.984
90 95 3.398 10.299 2.961 7.656 21.086 12.812
120 97 4.133 2.19 1.707 5.32 16.923 18.935
150 97 4.194 4.853 6.587 0.77 22.341 15.534
180 98 1.744 1.248 4.112 4.155 23.495 16.279
210 97 5.464 4.568 10.041 3.06 20.257 15.685
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Figure 3.8: Number of clusters needed for compensation, GEE with ρ = 0.04
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Figure 3.9: Number of clusters needed for compensation, GEE with ρ = 0.38

50



Chapter 3. Results

3.3.3 Coverage of the 95% Confidence Intervals

The noncoverage rates found for GEE standard error estimates were slightly

higher than for either MLE or REML estimates. Table 3.16 shows that the stan-

dard errors were underestimated for all estimates across all ICCs.

In Table 3.17 it can be seen that coverage was slightly improved by an increase

in the number of clusters, but the noncoverage rates for all components were much

too high in conditions with 5 or 10 clusters.

Increasing cluster size appears to improve standard error estimates for variance

components, as seen in Table 3.18. For fixed effect components with increased

cluster size there were minimal differences in noncoverage.

As with MLE and REML, it appears that the standard errors were underesti-

mated.

Table 3.16: Noncoverage of the 95% CI
by ICC, GEE

Parameter ICC

0.04 0.17 0.38

γ00 0.098 0.100 0.100

γ01 0.114 0.118 0.117

γ10 0.088 0.089 0.092

γ11 0.110 0.114 0.114

σ0 0.188 0.155 0.184

σ1 0.187 0.173 0.182
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Table 3.17: Noncoverage of the 95% CI by number of clusters
for GEE

Parameter Number of Clusters

5 10 20 30 40

γ00 0.233 0.132 0.089 0.080 0.080

γ01 0.306 0.170 0.108 0.087 0.075

γ10 0.231 0.125 0.073 0.084 0.082

γ11 0.321 0.174 0.095 0.087 0.080

σ0 0.392 0.190 0.156 0.147 0.163

Table 3.18: Noncoverage of the 95% CI by cluster size for GEE

Parameter Group Size

10 20 30 60 90 120 150 180 210

γ00 0.120 0.108 0.101 0.097 0.093 0.091 0.092 0.090 0.092

γ01 0.107 0.114 0.111 0.118 0.115 0.121 0.121 0.123 0.121

γ10 0.091 0.086 0.090 0.089 0.088 0.090 0.091 0.090 0.090

γ11 0.106 0.110 0.109 0.116 0.113 0.116 0.117 0.114 0.115

σ0 0.335 0.223 0.181 0.151 0.145 0.144 0.135 0.134 0.131

σ1 0.328 0.231 0.199 0.161 0.146 0.139 0.140 0.140 0.133
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Discussion

4.0.1 Complete Compensation versus Incomplete Compen-

sation

The aim of this study was to investigate if it was possible to compensate for

the use of fewer clusters. For this reason we did not adhere to the “rules of thumb”

for clusters and number of clusters when choosing our reference condition. This

resulted in overall high bias for the variance components.

For conditions where complete compensation was found, increasing the number

of subjects per cluster can effectively account for the increased bias found when

the number of clusters was decreased. For most of the conditions tested, complete

compensation was found for all fixed effect parameter estimates, but this was not

the cases for the random effects.

There are several possible scenarios for why incomplete compensation was only

found for some conditions. As per the definition used in this paper, a decreased

absolute relative bias was only deemed complete compensation if the absolute

relative bias fell to within 0.25% of the reference bias and remained within that

threshold for all increased sample sizes thereafter. There were conditions for which

complete compensation was achieved, but then increased cluster size resulted in a
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slight increase in bias to above the designated complete compensation point. In

this case it was only deemed incomplete compensation.

It is also possible that complete compensation may be achieved for a number

of subjects greater than those tested in this study. However, this may be true

only to a point. The point of diminishing returns, or the point were observations

begin to make a negligible contribution, is described by Hemming et al. (2007).

This can be seen in situations where the sample size is increased but the number

of clusters is not, resulting in the power of the study leveling off (Hemming et

al., 2007). To examine this further we conducted one simulation, using MLE with

ρ = 0.17, where for 5, 10, 20, 30, 40, and 50 clusters we increased the cluster size

to 1,000. The results are shown in Table 4.1. When this table is compared to

Table 3.1, it can be seen that the absolute percent relative bias plateaued.

Table 4.1: Absolute percent relative bias with 1000 subjects per cluster

Number of Clusters γ00 γ10 γ01 γ11 σ0 σ1

40 0.026 2.428 0.184 2.093 6.854 7.247

30 0.569 0.076 1.268 1.118 9.321 7.855

20 0.383 2.566 1.864 0.795 12.552 13.350

10 0.532 2.404 1.963 4.561 26.998 24.680

5 1.310 2.306 6.400 14.547 49.872 51.478

For some conditions, it is also possible that complete compensation is not

possible. For all conditions in this study where complete compensation was not

found, the criterion for incomplete compensation was met. Incomplete compensa-

tion does not indicate that the bias is low, only that it plateaued as the number

of subjects continued to increase. An incomplete compensation point shows that

after that point no or only minimal improvements will be made in accuracy by

increasing the number of subjects per group further.
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4.0.2 Comparison of Estimation Methods

The results found for GEE and REML estimates, with ρ = 0.17, are extremely

similar. The greatest difference can be seen in the coverage of the 95% confidence

interval for standard error estimates, where a small number of clusters appears to

result in higher noncoverage rates for GEE estimates than for REML estimates.

SAS documentation on how to implement each method, along with the syntax

from Austin (2010), was used to develop the syntax for each of these estimation

methods (Austin, 2010; SAS/STAT(R) 9.22 User’s Guide: Fitting a Marginal

(GEE-type) Model). The similarity is most likely due to the fact that only a

GEE-type estimator is implemented through PROC GLIMMIX, not the true GEE

method. In PROC GLIMMIX parameters are estimated using likelihood-based

techniques, not by the method of moments, as they would in a true GEE model

(SAS/STAT(R) 9.22 User’s Guide: PROC GLIMMIX Contrasted with Other SAS

Procedures). Researchers should be aware of this fact when looking to use GEE

for multilevel logistic regression. An option to truly find GEE estimates for binary

outcomes would be to use PROC GENMOD. In this study we did not implement

PROC GENMOD, as it only estimates fixed effect parameters (SAS/STAT(R)

9.22 User’s Guide: Model Fitting in PROC GENMOD).

Between MLE and REML, more distinct differences were found. For fixed

effect parameter estimates, on average larger percent relative biases were found for

REML estimates, with only 60.96% falling below 5% in absolute value, compared

to 87.62% that were below 5% MLE estimates, when ρ = 0.17. However, for

REML complete compensation could be achieved for a much smaller number of

subjects per cluster. This may be due to the fact that the reference bias for

REML was relatively high compared to other simulated conditions. This follows

the pattern that higher biases are found for REML estimates for conditions with

small cluster sizes.

When examining the absolute relative bias for variance components in both

methods (ρ = 0.17), it is interesting to note some differences. For REML esti-
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mates, it appears that the number of subjects per cluster is of greater importance

as the largest biases were found for small clusters sizes, across all number of clus-

ters. For MLE, the largest biases were found for conditions with a small number of

clusters, regardless of number of subjects per cluster. This indicates that when us-

ing MLE estimation it is more important to have a larger number of clusters. This

matches the previous literature, in which it is frequently noted that more clusters

is better (Eldridge and Kerry, 2012; Moineddin et al., 2007; Clark, 2008). Most

of this research, such as that done by Moineddin et al. (2007) and Clark (2008),

implemented MLE. The findings from this study show, for REML estimations, the

number of subjects per cluster may actually be more important.

For all methods the standard errors were underestimated. REML estimation

had slightly better coverage rates for conditions where the number of groups was

small. MLE standard error variance component estimates were better than REML

when a small group size was used.

In general MLE estimates behaved more as expected than REML estimates.

When using REML, an increase in group size resulted in a decrease in bias while

the number of subjects per group was fixed. The increase in bias has been noted

by Austin (2010), who also found an increase in bias as the number of clusters

increased from 10 to 20 when using PROC GLIMMIX.

To investigate this behavior seen in REML and GEE estimates, we conducted

another simulation where we fixed the number of subjects per cluster as 10 and

tested 5, 7, 10, 13, 17, 20, 30, 40, and 50 clusters. The absolute percent bias

for each estimate is shown in Table 4.2 for REML estimates and Table 4.3 for

GEE estimates. In this simulation the lowest biases were found when the ratio of

number to clusters to cluster size was close to 1. Further research is needed on

this subject.
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Table 4.2: Absolute percent relative bias for REML estimates with 10 subjects
per cluster

Number of Clusters γ00 γ10 γ01 γ11 σ0 σ1

50 13.27 10.68 17.49 14.87 35.04 44.36

40 12.18 13.41 15.22 12.63 36.03 41.59

30 11.18 10.19 15.49 17.41 29.61 41.24

20 8.34 7.83 2.59 7.77 25.77 34.46

17 9.31 6.50 13.12 13.85 22.34 34.05

13 7.77 1.83 7.78 5.88 20.23 22.02

10 6.07 0.05 4.82 2.39 6.70 13.02

7 3.59 6.27 8.55 4.87 18.21 20.78

5 5.40 7.28 13.76 0.07 73.64 69.48

Table 4.3: Absolute percent relative bias for GEE estimates with 10 subjects per
cluster

Number of Clusters γ00 γ10 γ01 γ11 σ0 σ1

50 12.97 10.22 17.31 22.77 37.29 43.64

40 12.75 7.80 20.00 12.56 35.23 39.91

30 11.27 10.90 17.65 13.10 30.60 40.13

20 12.46 11.10 14.26 9.30 29.21 36.84

17 10.32 6.00 17.75 12.20 24.26 31.27

13 7.79 8.43 12.51 7.19 15.50 21.05

10 5.72 4.93 11.73 8.48 5.50 15.09

7 4.62 6.76 0.48 3.41 11.20 13.02

5 1.08 26.41 0.24 1.04 57.46 62.44

4.0.3 Impact of ICC

For MLE estimates, increasing cluster size appears to increase bias for variance

components when the ICC is small. This trend was not seen for larger ICCs.

For REML and GEE, simulations with a higher ICC had a higher convergence

rate. Across all three ICCs, the trends seen for varying sample sizes were similar,

but in general higher biases were found when the ICC was large. This may be due
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to Design Effect (DE) which is how much the standard errors are underestimated

in a clustered sample compared to a simple random sample. The DE is used to

calculate how much the sample size must be increased to achieve the same power

as a study that used a simple random sample (Maas and Hox, 2005). To calculate

DE, the following formula can be used:

DE = 1 + (n− 1)ρ (4.1)

...where n is the average number of subjects per cluster (Rutterford et al.,

2015). From this formula, ican be seen that a larger ICC leads to a larger design

effect, resulting in the need for a larger overall sample size.
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Conclusion

Our findings suggest that for fixed effect parameter estimates it is possible to

compensate for the use of few clusters when using MLE. For all conditions, high

biases were found for the random variance components. If complete compensation

was found at all it was only for a number of clusters close to the reference bias. For

few clusters, incomplete compensation was found when complete compensation

was not. Further study is needed on REML and GEE estimates. However, it

appears that when the variance components are of interest, REML estimation

should not be used when the number of subjects per group is few.

Limitations of this study include the inability to perform a true GEE model

while still investigating the random effect components. The time required to run

each simulation limited the number of simulations per condition to 1,000 and the

variety of conditions we were able to test.

This study could be extended in several ways. A larger variety of ICCs could be

tested, as could various other optimization techniques. The impact of prevalence

should also be examined. Doing so would give researchers even more insight as to

what sample size is necessary to compensate for the use of few clusters.

Our findings show that under certain conditions it is possible to compensate

for the use of few clusters. This result is highly relevant and useful for current

epidemiological and medical research.
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