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Abstract

Many real-world problems involving dynamics of solid or �uid bodies can be modeled

by hyperbolic partial di�erential equations (PDEs). Up to this point, only solutions

to selected PDEs are available. Many PDEs are physically or geometrically complex,

resulting in di�culties computing the analytical solutions. In this thesis, we focus

on numerical methods for approximating solutions to hyperbolic PDEs. Long-term

simulation for the motion of the body described by the PDE requires a method that

is not only robust and e�cient, but also produces small error because the error will

be propagated and accumulated over the course of the simulation. Therefore, we

use the so-called high order methods. In particular, we study Hermite methods and

Sobolev Discontinuous Galerkin methods. This thesis describes my contribution to

two high order methods, which includes the development of �ux-conservative Hermite

methods for nonlinear PDEs of conservation law type and Sobolev Discontinuous

Galerkin methods for general hyperbolic PDEs.
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Chapter 1

Introduction

My dissertation work concerns numerical methods to approximate solutions to hyper-

bolic partial di�erential equations (PDEs). Hyperbolic PDEs describe wave prop-

agation and particle transport arising in science and engineering. Some practical

applications of wave propagation are echolocation, electromagnetic waves in technol-

ogy, radar, and seismic natural disasters.

Some nocturnal animals such as microchiropteran bats, toothed whales and dol-

phins, a few birds, and some species of shrews use echolocation to navigate and

forage. In echolocation, the animals emit sound waves to the environment and when

the waves hit an object, they induce echoes. The echoes are then used to identify

the location of the objects in their vicinity, which is particularly useful when hunting

for food.

To improve safety in air tra�c, control systems rely on radar to determine the

location and velocity of nearby planes or objects. Radar is the reason why most

planes manage to arrive safely at their destinations despite the large number of

other planes; it also mitigates the e�ects of bad weather. Thanks to radar, we have

fewer plane crashes because the planes are able to maintain a safe distance from

1



Chapter 1. Introduction

Figure 1.1: Top: bat echocolocation, Courtesy of Arizona Board of Regents/ ASU
Ask A Biologist, source: https://askabiologist.asu.edu/echolocation, bot-
tom: tsunami wave, Courtesy of Pinterest, source: https://www.pinterest.com/

pin/38843615510124779.

other planes, buildings, and mountains.

Electromagnetic waves are used in human's lives, for example in communication

and medical science. Radio, telephone and wireless internet all rely on the transfer

of information via electromagnetic waves. Electromagnetic waves are also used in

the form of x-rays. X-rays are used to examine a patient's body for the purpose of

diagnosis, monitoring, or treatment of medical conditions. Since X-rays penetrate

tissues and bones, they can be used to produce an image of internal organs or the

structure of the human body. Furthermore, X-rays play an important role in cancer

therapy.

Waves can also be destructive, for example in earthquakes or tsunamis, which are

giant waves caused by earthquakes, volcanic eruptions, or sudden movement in the

Earth's tectonic plates under the sea. In particular, my home country, Indonesia,

2
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Chapter 1. Introduction

su�ered lost lives and homes of thousands of people due to a tsunami. On December

26, 2004, a powerful earthquake near the island of Sumatra triggered a tsunami

and damaged the northern part of the island within 10 minutes! According to US

Geological Survey Statistics, more than 200,000 people were killed or missing due to

the tsunami. I hope that in the future, this kind of tragic incident can be mitigated

by designing better emergency warning systems and improved building codes. As

scientists, we will always try to develop better numerical methods to simulate wave

propagation that in turn can be used to alleviate disasters.

Mathematically, wave propagation is modeled by hyperbolic PDEs. When simu-

lating wave propagation problems over a long period of time, information about the

shape and the amplitude of the waves must be transmitted as accurately as possible.

The error in approximating the solution committed by the numerical methods will

be of the form C1∆tq1 + C2h
q2 , where ∆t and h are the temporal and spatial grid

sizes, respectively, q1 and q2 are the order of accuracy in time and space respec-

tively, C1 and C2 are method-speci�c constants. High order methods (here de�ned

by min(q1, q2) ≥ 3) are suitable for the long-term simulation since the dispersion

error (the error resulting from the inability to numerically propagate a wave at a

given frequency at the physically correct speed) and the di�usion error (the error

caused by numerical excess damping of a wave at a given frequency) are smaller

than low order methods (de�ned by min(q1, q2) < 3). Besides being high order, a

good numerical method for wave propagation needs to be able to handle nonuniform

wave speeds (corresponding to waves propagating in nonhomogeneous media), and

complicated geometry, as the spatial domain associated with the PDE is not always

geometrically simple such as a box or a ball.

In the following chapter, we de�ne hyperbolic PDE for a �rst order (system of)

PDEs. For the rest of the dissertation, we assume that the PDEs are hyperbolic.

3



Chapter 2

Hyperbolic PDEs

We are interested in solving time-dependent initial value boundary problems. In

this work, we consider �rst-order PDEs in the spatial variable x and the temporal

variable t. In one space dimension, it is of the form

ut + f(u)x = s(x, t), (2.1)

where u : R×R→ Rm is a vector of m unknowns that we wish to solve in the PDE,

f(u) is the �ux function, s(x, t) is a source term. We can express Equation (2.1) in

quasilinear form

ut + f ′(u)ux = s(x, t). (2.2)

The matrix f ′(u) is called the �ux Jacobian matrix, of size m by m. If the matrix

f ′(u) has real eigenvalues and is diagonalizable, then the PDE (2.2) is hyperbolic.

When the Jacobian matrix f ′(u) has real eigenvalues but is not diagonalizable, the

PDE is weakly hyperbolic. If some or all eigenvalues of f ′(u) are non-real, then the

PDE is not hyperbolic.

We acknowledge that although the second-order wave equation utt = c2uxx is a

more well-known equation used to describe wave propagation, we assume that we

4



Chapter 2. Hyperbolic PDEs

can rewrite it as a �rst-order system, by introducing an auxiliary variable v = ut,ut = cvx

vt = cux.
(2.3)

Here, c denotes the wave speed. Similarly, for any second order or higher order

hyperbolic PDEs, we rewrite it as a system of �rst order hyperbolic PDEs. Next,

we describe a constant coe�cient scalar hyperbolic PDE, known as advection or

transport equation.

2.1 Advection Equation

The simplest example of a PDE is the scalar (m = 1) one-way wave equation, also

known as advection equation, given by

ut + cux = 0, (2.4)

where c is the wave speed, which we take to be constant. This equation has the

solution

u(x, t) = u0(x− ct), (2.5)

where u0(x) is the initial data at time t = t0. Intuitively, the solution at t = t∗ is

a translation of the solution at initial time t = t0 by the distance c(t∗ − t0) and in

a direction determined by the sign of c. When c is positive, the solution at initial

time u0(x) is translated to the right, and when c is negative, u0(x) is translated to

the left.

5



Chapter 2. Hyperbolic PDEs

Figure 2.1: The solution to Equation (2.4) with initial data consisting of a square
pulse. Here, we assume c > 0. The solution at a later time given is given by the
green curve and is a translation of initial data given by the blue curve.

2.2 Hyperbolic Systems

For systems of hyperbolic PDEs, the diagonalization of the Jacobian matrix f ′(u)

allows us to decouple the waves, where in the new coordinate system, the equations

look like (2.4). Since the eigenvalues of f ′(u) are real, we can list them

λ1 ≤ λ2 ≤ ...λm.

Further, since the m ×m matrix f ′(u) is diagonalizable, it has m linearly indepen-

dent eigenvectors and they form a basis for Rm. The corresponding eigenvectors

w1, w2, ..., wm are such that

f ′(u)wi = λiwi, i = 1, ...,m.

If we put the vectors w as the columns of the matrix W , then W is invertible

and we denote its inverse by W−1. We then use W to transform f ′(u) to a diagonal

matrix Λ containing the eigenvalues of f ′(u),

W−1f ′(u)W = Λ, (2.6)

i.e. Λ = diag(λ1, ..., λm).

6



Chapter 2. Hyperbolic PDEs

We can then substitute Equation (2.6) into Equation (2.2), to get

ut +WΛW−1ux = 0. (2.7)

Multiplying Equation (2.7) by W−1, we obtain

W−1ut + ΛW−1ux = 0. (2.8)

If f ′(u) is a constant matrix, so isW . Then, we haveW−1ut = (W−1u)t and similarly,

W−1ux = (W−1u)x. Now, letting q = W−1u gives us

qt + Λqx = 0. (2.9)

In other words, we can write Equation (2.9) as m decoupled advection equations

(qi)t + λi(qi)x = 0, i = 1, ...,m,

where qi is ith entry of vector q. The eigenvalues λ1, ..., λm are called the characteristic

speeds because they de�ne the speeds at which the information propagates along the

characteristic curves X(t) = x0 + λit.

Notice that the equation above is identical to Equation (2.4). Hence, the similar-

ity transformation enables us to conquer and divide the hyperbolic systems into m

advection equations that we know how to solve, see Section 2.1. Once allm advection

equations are solved, we use the relation u = Wq to obtain u.

2.3 Method of Characteristics

The method of characteristics �nds characteristic curves along which the PDE turns

into a system of Ordinary Di�erential Equations (ODEs). The idea is to perform

change of variables to reduce the number of independent variables to one. This

method always works when f ′(u) is a function of t and u only, and may not work

7



Chapter 2. Hyperbolic PDEs

for some problems where f ′(u) depends on the spatial variable(s) explicitly. We will

describe the method for scalar hyperbolic PDEs in one space dimension (m = 1),

since systems of hyperbolic (excluding weakly hyperbolic) PDEs can be decoupled

into scalar hyperbolic PDEs using similarity transformation.

In higher dimensions, there is no general method to �nd the solution to the PDE

analytically. However, we can exploit the symmetry of the problem to reduce the

number of dimensions by rewriting the equation in polar or spherical coordinates,

see [50]. Alternatively, we can use transform methods such as Fourier transform or

Laplace transform, see [17].

Let us try to understand how the method of characteristics works from a geometric

point of view. We will use the following arguments to derive the method:

• At any point (x∗, t∗, z∗) on the level surface F (x, t, z) = k, the gradient vector

∇F (x∗, t∗, z∗) is normal to the level surface passing through (x∗, t∗, z∗).

• For any surface with normal n, any vector on the surface that is orthogonal to

the normal n is tangent to the surface.

Suppose we have a solution u(x, t) to a scalar hyperbolic PDE, given by Equation

(2.2) with m = 1. Consider the graph of the function u(x, t) given by the surface S,

as illustrated in Figure (2.2), where z ≡ u(x, t). Since the surface S can be rewritten

as a zeroeth level surface of F (x, t, z) = u(x, t)− z, we have that the gradient vector
∇F = (ux(x̂, t̂), ut(x̂, t̂),−1) is normal to level surface F = u − z at point (x̂, t̂, ẑ).

Finally, writing Equation (2.2) as

(ux(x, t), ut(x, t),−1) · (f ′(u(x, t)), 1, s(x, t)) = 0,

we have that (f ′(u(x̂, t̂)), 1, s(x̂, t̂)) is tangent to the surface S at (x̂, t̂, û).

In the method of characteristics, we are looking for level curves (instead of level

surfaces) that are tangent to the vector �eld (f ′(u), 1, s(x, t)). We will explain the

8



Chapter 2. Hyperbolic PDEs

recipe to �nd these curves. First, assume that we have curve C parameterized by

an auxiliary variable ξ, i.e. the points on C are given by (x(ξ), t(ξ), z(ξ), where

z(ξ) = u(x(ξ), t(ξ)). Then using chain rule, we compute derivative of the solution u

with respect to the new variable ξ,

d

dξ
u(x(ξ), t(ξ)) =

∂u

∂x

dx

dξ
+
∂u

∂t

dt

dξ
. (2.10)

If we can �nd u(ξ) satisfying

dx

dξ
= f ′(u),

dt

dξ
= 1, (2.11)

du

dξ
= s(x(ξ), t(ξ)),

then u solves Equation (2.2). In other words, we want the tangent vector to curve C to
satisfy the system of ODEs (2.11) above. Along these curves, the PDE (2.2) turns into

a system of ODEs, as the independent variable is ξ only. Using the �rst two equations

of 2.11, we can solve for x(t) = f ′(u)t+α. These curves x(t) = f ′(u)t+α are known

as the characteristic curves, along which information propagates. Furthermore, when

the source term s(x, t) is zero, the solution becomes constant or unchanged along the

characteristic curves.

We will show how the method of characteristics can be used to solve the advection

equation given by (2.4). We �rst write the equation in terms of the characteristic

variable ξ, to get
∂u

∂t
+ c

∂u

∂x
≡ dt

dξ

∂u

∂t
+
dx

dξ

∂u

∂x
=

d

dξ
u(x(ξ), t(ξ)) = 0,

dx

dξ
= c,

dt

dξ
= 1,

du

dξ
= 0.

9



Chapter 2. Hyperbolic PDEs

−→n = (ux(x1, t1), ut(x1, t1),−1)

(x1, t1, u1)

S

Figure 2.2: Surface z = u(x, t), where u is the solution to the PDE and the normal
is (ux, ut,−1).

The solution to this system of ODEs is

x(ξ) = cξ + α1,

t(ξ) = ξ + α2,

u(ξ) = α3.

Solving for x in terms of t, we get the characteristic curves x = ct + α, where

α is some arbitrary constant. That means, for any �xed α, the solution u remains

constant along the line x = ct + α, hence u(x, t) is a function of α = x − ct, i.e.

u(x, t) = φ(x − ct). Since the initial data is given by u(x, 0) = u0(x), we can solve

for φ, to get φ = u0 and therefore u(x, t) = u0(x− ct).

10



Chapter 2. Hyperbolic PDEs

2.4 Domain of Dependence and Range of In�uence

Since waves propagate with �nite speed, the solution at a point in space-time do-

main only depends on certain points from previous times (points in the domain of

dependence) and can only a�ect solutions at certain points at later times (points in

the range of in�uence). For constant coe�cient linear hyperbolic PDEs, the solution

at (x∗, t∗) only depends on data at m points at initial time, (x∗−λit∗, 0), i = 1, ...,m.

The set of those points DD = {(x∗ − λit∗, 0)}, i = 1, ...,m is called the domain of

dependence. Conversely, any perturbation at (x∗, t∗) only a�ects the solutions at

RI = {(x∗ + λi∆t, t∗ + ∆t)}, i = 1, ...,m. RI is called the range of in�uence. See

Figure 2.3 for an illustration of domain of dependence and range of in�uence. In

general, the domain of dependence (similarly, range of in�uence) is a region in the

x-t plane, bounded by the characteristic curves. In the special case of constant linear

hyperbolic PDEs, the domain of dependence is bounded by straight lines.

The domain of dependence and range of in�uence can be understood using the

following example. Assume an earthquake occurs at points x∗1, (assuming time t =

t∗1), producing waves that propagate in all directions with constant speed c1 meters

per second. People standing to the right of the epicenter at a distance ∆x meters

away will feel the shaking e�ect ∆t = ∆x/c1 seconds later as the waves take time ∆t

seconds to reach these people. Thus, we can say that the ground shaking that these

people feel at time t = t∗1 + ∆t depends on the earthquake happening ∆t seconds

ago, with epicenter at ∆x meters away from them. Equivalently, the earthquake

in�uences those people standing ∆x meters away, ∆t seconds later.

11
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x

t

λ3

λ2λ1

domain of dependence

range of in�uence

Figure 2.3: Illustration of domain of dependence and range of in�uence. In this case,
the solution on the intersection among the three curves depends on the solution in
the domain of dependence and it a�ects the solution in the range of in�uence.

2.5 CFL Condition

The domain of dependence motivates the so-called CFL condition that an explicit

method must satisfy to be stable. In the advection equation ut+cux = 0, the solution

at initial time t = t0 is translated with distance ∆x = c∆t to obtain the solution at

time t = t0 +∆t. The same statement can be made for solution at t = tn. Expressing

it the other way around, to compute the solution at (xj, tn+1 = tn + ∆t), we need

to know the solution at (xj − c∆t, tn+1−∆t = tn). Therefore the numerical method

must incorporate the information at (xj − c∆t, tn) in order to compute the solution

at (xj, tn+1).

12
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c∆t < h

h

∆t

c∆t > h

h

∆t

Figure 2.4: The analytic domain of dependence is shaded region and the numerical
domain of dependence is given by black dots. On the left where c∆t ≤ h, the
numerical method may give convergent solutions, and on the right where c∆t > h,
the numerical method cannot converge to the exact solution. This is known as CFL
condition.

In general, in order to compute the exact solution analytically, we need to in-

corporate information from the analytical domain of dependence, de�ned in Section

2.4. On the other hand, we can approximate the solution using a numerical method,

where we discretize the equation and approximate the solution at discrete points.

For any discrete point (xj, tn), the numerical domain of dependence is de�ned as the

set of grid points (depending on the numerical method) used to compute the solution

at (xj, tn).

Suppose we have an explicit time stepping method which computes the solution

at (xj, tn+1) using the solution at discrete points on the previous time step t =

tn, tn−1, .... Tracing back the dependence to initial time t0, we get the numerical

domain of dependence of (xj, tn+1). To obtain a convergent solution, as the grid size

(h) is re�ned, the time step size ∆t must be chosen in such a way that the numerical

domain of dependence includes the analytical domain of dependence.

13
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CFL condition: The numerical domain of dependence must contain the

analytical domain of dependence, in the limit as ∆t and h approach zero.

For explicit methods, we have that for convergence, the time step size must satisfy∣∣∣∣λmax∆t

h

∣∣∣∣ ≤ Cmax,

where Cmax depends on the time discretization and λmax is the maximum eigenvalue

of the �ux Jacobian matrix f ′(u) given in Equation (2.2).

A time stepping method for PDEs evolves solutions at time t = tn to a later time,

let's say t = tn+1. Since for hyperbolic PDEs, the solution at a point in the space

time domain only depends on the solution at previous time within the neighborbood

of that point (not the whole domain), explicit time-stepping methods are usually

more e�cient to solve hyperbolic PDEs than implicit time-stepping methods. How-

ever, when explicit discretization leads to numerical sti�ness and hence strict CFL

conditions (small Cmax), implicit time-stepping methods may be preferred. We will

discuss the cause and some attempts to improve the time step size (or sometimes we

say improve CFL condition) in explicit methods in Chapter 7.
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Chapter 3

Conservation Laws

Conservation laws are a class of hyperbolic PDEs that model conservation of physical

properties, such as mass, momentum, and energy. In one spatial dimension the PDEs

that describe conservation laws can be written as Equation (2.1) with zero source

term,

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0, (3.1)

where u(x, t) is the state variable at location x and time t and f(u) is the �ux, or

the rate of �ow, of the state variable u.

The derivation of conservation laws arises from the observation that at any given

time t, the rate of change of the total quantity of the state variable u over some

small interval [x1, x2] must be equal to the net �ux f(u) into the interval through

the endpoints, with no quantity created or destroyed in the region [x1, x2], see Figure

3.1 for illustration. Mathematically, this can be expressed as

d

dt

∫ x2

x1

u dx = f(u(x1, t))− f(u(x2, t)). (3.2)

If the functions u and f(u) are smooth, then using the Fundamental Theorem of
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x1 x2

d

dt

∫ x2

x1

u dx
f(u(x1, t)) f(u(x2, t))

Figure 3.1: Conservation of �uid inside a pipe depends on the �ux at the end points
of the pipe.

Calculus, we can rewrite Equation (3.2) as

d

dt

∫ x2

x1

u(x, t) dx = −
∫ x2

x1

∂

∂x
f(u(x, t))dx, (3.3)

or equivalently,∫ x2

x1

[
∂u(x, t)

∂t
+

∂

∂x
f(u(x, t))

]
dx = 0. (3.4)

Since this equation is true for arbitrary x1 and x2, we obtain the di�erential form of

conservation law, as given in Equation (3.1).

The multi-dimensional conservation law has a similar form, except that it has the

�ux functions in y and z directions, which we will denote by g and h respectively,∫ z2

z1

∫ y2

y1

∫ x2

x1

[
∂u(x, y, z, t)

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
+
∂h(u)

∂z

]
dx dy dz = 0. (3.5)

3.1 Solving Conservation Laws with Variable Coef-

�cients or Nonlinearity

In Section 2.3, we saw that when the wave speed c is constant, the characteristics

are straight lines and the solution u is constant along the characteristics lines. In
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this section, we will describe the di�erence in the characteristics when the PDE has

variable coe�cients or nonlinearity.

Nonlinear Conservation Laws

The solution to nonlinear conservation laws ut + f(u)x = 0 can be found using the

method of characteristics given in Section 2.3. Since the source term in conservation

laws is zero, we have that the solution u is constant along the characteristics curves

given by x− f ′(u)t = K for some constant K. Hence, the solution is given by

u(x, t) = u0(x− f ′(u)t).

When the initial data is not constant, the curves are no longer straight lines but they

are curves that depend on x and t.

Variable Coe�cient Conservation Laws

Similarly, we can still use the method of characteristics, but �rst we need to write

the conservation law

ut + (c(x)u)x = 0, (3.6)

in quasilinear form,

ut + c(x)ux + c′(x)u = 0. (3.7)

The method of characteristics leads to

dx

dξ
= c(x), (3.8)

dt

dξ
= 1, (3.9)

du

dξ
= −c′(x(ξ)) u((x(ξ), t(ξ)). (3.10)

In this case, the characteristic curves are obtained by solving Equation 3.8 for x.

Since du
dξ
6= 0, the solution is not constant along characteristic curves. However, the

PDE still reduces to a system of ODEs.
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3.2 Weak Formulation

When the solution to Equation (3.1) contains discontinuities, the PDE does not make

sense in the classical sense since derivatives do not exist there. The idea behind

weak solutions is to require that the solution satis�es the PDE in a weaker sense by

removing the derivative in the equation onto a smooth test function. Since the PDE

has one derivative in x, we de�ne the test function to be continuously di�erentiable,

with compact support inside some domain [xL, xR]× [0, T ],

Ω = {φ(x, t) : R× [0,∞)→ R
∣∣φ(x, t) ∈ C1

0([xL, xR]× [0, T ])}. (3.11)

We then multiply the PDE (3.1) by a test function φ to get

0 =

∫ ∞
0

∫ ∞
−∞

(ut + f(u)x)φ(x, t)dxdt

=

∫ ∞
−∞

∫ ∞
0

utφ(x, t)dtdx+

∫ ∞
0

∫ ∞
−∞

f(u)xφ(x, t)dxdt

=

∫ ∞
−∞

[
lim
T→∞

(uφ)
∣∣t=T
t=0
−
∫ ∞

0

uφtdt

]
dx+∫ ∞

0

[
lim

N→−∞
lim
M→∞

(fφ)
∣∣M
N
−
∫ ∞
−∞

f(u)φxdx

]
dt

=−
∫ ∞
−∞

u(x, 0)φ(x, 0)dx−
∫ ∞
−∞

∫ ∞
0

uφtdtdx−
∫ ∞

0

∫ ∞
−∞

f(u)φxdxdt,

because

lim
T→∞

φ(x, T ) = lim
N→−∞

φ(N, t) = lim
M→∞

φ(M, t) = 0.

The weak formulation is then given by∫ ∞
−∞

u(x, 0)φ(x, 0)dx+

∫ ∞
0

∫ ∞
−∞

(uφt + f(u)φx) dxdt = 0. (3.12)

We note that since the derivatives appear on the test function, this formulation is

valid when u is discontinuous, for example when u contains a shock. We know that

if u satis�es the strong formulation (3.1), then it also satis�es the weak formulation
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(3.12) since the weak form (integral form) is derived from the strong form (PDE

form). Conversely, if u satis�es Equation (3.12) for all test function φ ∈ C1
0 and u is

smooth, then u is a classical solution to Equation (3.1).

3.3 Discontinuous Solutions

Equation (3.1) admits discontinuous solutions. There are two types of discontinuity

in the solution to (3.1):

• Contact discontinuity: a discontinuity that appears on the initial data and gets

propagated over time. In this case, the characteristic curves are parallel to the

wave in x− t plane, meaning the �nearby� waves propagate at the same speed.

• Shock: a discontinuity that appears due to intersecting characteristic curves.

Shocks can form even if the initial data is smooth.

The propagation speed of the discontinuity, vd can be computed according to

Rankine-Hugoniot jump condition

(uR − uL)vd = f(uR)− f(uL). (3.13)

Any weak solution satis�es the Rankine-Hugoniot condition across a jump disconti-

nuity. We note that the Rankine-Hugoniot condition does not guarantee physically

correct solutions.

In the presence of shocks, the time at which the characteristics �rst intersect is

called the breaking time, denoted by Tb. At time t = Tb, the solution has jump dis-

continuity, where ux takes in�nite value. After time t = Tb, the PDE does not have a

classical solution, in the sense that the solution obtained by following the character-

istics becomes multi-valued or does not exist. However, the weak formulation 3.12

enables us to compute the (weak) solution after the breaking time.
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3.4 Nonuniqueness

The weak formulation (3.12) provides us with the existence of a solution, but the

solutions are not necessarily unique. For example, consider the following nonlinear

conservation law that models tra�c �ow,

ut + (cmaxu(1− u))x = 0,

with initial data

u(x, 0) =

uL, if x < 0

uR, if x > 0.

The exact solution can be written as [50]

u(x, t) =


uL, if x/t ≤ cmax(1− 2uL)

1
2

(
1− x

cmaxt

)
if cmax(1− 2uL) ≤ x/t ≤ cmax(1− 2uR)

uR, if x/t ≥ cmax(1− 2uR).

(3.14)

As mentioned before, this initial value problem has other solutions, among which is

the following expansion shock

u(x, t) =

 uL, x/t < 1
2
(uL + uR)

uR, x/t > 1
2
(uL + uR).

(3.15)

One way to choose the physically correct solution is by using the vanishing viscos-

ity approach. We introduce a dissipation (viscous) term in Equation (3.1) to smooth

the jump discontinuity, preventing ux from becoming unbounded:

ut + f(u)x = νuxx. (3.16)

Away from discontinuities, the term uxx is small so the smoothing e�ect is negligible.

For discontinuous solutions, Equation 3.16 is a better model to the physical system
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described by Equation (3.1), because in general, physical quantities change continu-

ously with smooth transitions, and a discontinuous solution is just a mathematical

representation of a solution that changes rapidly.

In the mathematical model, the discontinuity can be approximated by a sequence

of smooth solutions with sharp gradients, obtained by introducing a small amount

of dissipation and taking the limit as the dissipation approaches zero. Furthermore,

it can be shown that the viscous equation (3.16) has a unique solution for t > 0,

ν > 0 [50]. As the viscous term vanishes (ν → 0), the solution to Equation (3.16)

is the physically correct weak solution to the corresponding inviscid equation, given

by Equation (3.1). Precisely, if uν is a solution to Equation (3.16), then

lim
ν→0

uν = u,

where u solves Equation (3.1). Intuitively, we can think of the dissipation term as a

small perturbation, and the solution to a well-posed PDE will converge to the correct

solution when the perturbation vanishes.

Another way to eliminate the nonuniqueness is by using the fact that the phys-

ically correct solution satis�es the entropy condition. The term entropy is derived

from the second law of thermodynamics which states that the entropy of a system is

nondecreasing over time. We will �nd that in the second solution in Equation (3.15),

the entropy jumps to a lower value across the expansion shock, which violates the

entropy condition. In following section, we will discuss entropy conditions that are

mathematically formulated to resolve the nonuniqueness problem.
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3.5 Entropy Condition

3.5.1 Lax Entropy Condition

Suppose a solution to the scalar conservation law, given by Equation (3.4), has a

discontinuity propagating with speed vd, where the solution to the left and right of

the discontinuity is denoted by uL and uR respectively. Then, this solution satis�es

Lax entropy condition if

f ′(uL) > vd > f ′(uR).

In other words, the speed vd, given by the Rankine-Hugoniot condition (3.13), at

which the discontinuity propagates, must be between the characteristic speeds of the

wave to the left and right of the discontinuity.

3.5.2 Entropy Inequality

The idea of the entropy inequality is to de�ne a scalar function called the entropy

function that satis�es the same conservation law as u (with a di�erent scalar �ux

function) when the solution u is smooth, but is not conserved at discontinuity. The

entropy function and the entropy �ux function are always scalar even when we solve

a system of hyperbolic PDEs. Unfortunately, the entropy inequality does not give

any information about contact discontinuity, so the discontinuity that we consider

here is shock.

When the solution u is smooth, the entropy function η(u) and its entropy �ux

ψ(u) satisfy the conservation law ν(u)t + ψ(u)x = 0. We integrate the entropy

equation on a small time interval from t1 to t2,∫ t2

t1

d

dt

∫ b

a

η(u)dxdt =

∫ t2

t1

ψ(u(x(a), t))− ψ(u(x(b), t))dt, (3.17)
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or ∫ b

a

η(u(x, t2))dx =

∫ b

a

η(u(x, t1))dx+

∫ t2

t1

ψ(u(x(a), t))−ψ(u(x(b), t))dt, (3.18)

Since the entropy is nondecreasing, we have∫ b

a

η(u(x, t2))dx ≥
∫ b

a

η(u(x, t1))dx+

∫ t2

t1

ψ(u(x(a), t))−ψ(u(x(b), t))dt. (3.19)

Note that the entropy function η is assumed to be concave, η′′(u) < 0, but when the

entropy function is convex, η′′(u) > 0, then the inequality in (3.19) is reversed.

Using the same recipe in Chapter 3 to derive the PDE form of the conservation

law from the integral form, we obtain the entropy inequality

η(u)t + ψ(u)x ≥ 0. (3.20)

Let us assume that the solution is smooth, so the inequality above becomes equality.

Then, we are going to determine what the entropy �ux ψ(u) should be. First, we

need to write Equation (3.20) in quasilinear form, assuming that both η and ψ are

smooth functions of the solution u,

η′(u)ut + ψ′(u)ux = 0. (3.21)

We compare this to the conservation law for u, scaled by η′(u),

η′(u)ut + η′(u)f ′(u)ux = 0, (3.22)

to obtain the relation between the entropy function and the entropy �ux

ψ′(u) = η′(u)f ′(u). (3.23)

In the case of systems of m hyperbolic PDEs, the derivatives η′(u) and ψ′(u) are

de�ned as the partial derivatives with respect to each component of u,

η′(u) =

[
∂η

∂u1
,
∂η

∂u2
, ...,

∂η

∂um−1
,
∂η

∂um

]
, (3.24)

23



Chapter 3. Conservation Laws

and similarly

ψ′(u) =

[
∂ψ

∂u1
,
∂ψ

∂u2
, ...,

∂ψ

∂um−1
,
∂ψ

∂um

]
. (3.25)

Furthermore, Equation (3.23) becomes a system of m×m equations, and for m > 2,

the solution is not guaranteed to exist since the system is overdetermined.

It can be shown that the solution u is the physically correct solution to (3.1) i� it

satis�es the entropy inequality, see [50,64] for example. For discontinuous solutions,

we need to use the weak formulation of entropy inequality, which can be obtained by

following the same recipe as in Section 3.2. Then, we need to show that there is an

entropy function (and the associated entropy �ux function) such that the solution

u satis�es the weak formulation of entropy inequality, for all test functions de�ned

in (3.11). It is not convenient to check the inequality against all test functions in

(3.11) or to �nd/construct a test function such that the entropy inequality does

not hold. Guermond, see [25�29], combined the idea of the entropy inequality and

the vanishing viscosity to regularize discontinuous solutions to the hyperbolic PDEs,

which we will discuss in detail in Chapter 7.
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Chapter 4

Spatial Discretizations for

Conservation Laws

Much of the contemporary research on numerical methods for PDE is centered around

developing methods that

• are stable and accurate,

• are e�cient,

• incorporate correct boundary conditions,

• work for discontinuous material (PDE with discontinuous coe�cients),

• work for complex geometry, and

• inherit physical properties such as conservation.

A major contribution of this thesis is the derivation, analysis and implementation

of �ux-conservative Hermite methods for conservation laws as discussed in Chapter
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6. Here we brie�y review other possible methods for numerical approximation of

conservation laws.

Conservation laws describe the conservation of some quantities that change in

space and time due to �ux. A good numerical method for conservation laws must re-

spect the conservation at the discrete level. For linear conservation laws, a consistent

and stable numerical method produces convergent solutions, by the Lax equivalence

theorem. However, for nonlinear conservation laws involving shocks, consistency and

stability are not enough to guarantee convergence. For nonlinear conservation laws,

we also need to address the issue of nonlinear stability and nonuniqueness of solu-

tions. An example where a consistent and stable method produces a wrong solution

(where the shock travels at an incorrect speed, therefore the solution violates the

entropy condition) can be found in [49]. The problem of convergence to non-physical

solutions can be eliminated by using a conservative method.

For hyperbolic PDEs of conservation law type, we can exploit the characteristic

structure to construct a conservative method. Godunov, in [20], proposed the so-

called reconstruct-evolve-average (REA) algorithm. The preliminary step in the

algorithm is to obtain a piecewise constant function U0 to approximate the solution

at initial time. On each cell Cj = (xj−1/2, xj+1/2), the approximate solution U0
j is the

cell average of the initial data u(x, t0) = u0(x),

U0
j =

1

h

∫
Cj

u0(x)dx,

where h = xj+1/2 − xj−1/2. The solution at time t = tn is evolved using the recipe

1. Reconstruct a piecewise polynomial û(x, tn) de�ned for all x on the domain

of the PDE, from the cell averages Un
j 's. For example, we can take the recon-

structed solution to be a piecewise constant function where û(x, tn) = Un
j when

x ∈ Cj.
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2. Evolve the reconstructed solution û(x, tn) exactly using method of character-

istic whenever possible. Otherwise we approximate the solution at t = tn+1,

û(x, tn+1). To derive the time evolution procedure, consider Equation (3.2) on

cell Cj, with x1 = xj−1/2, x2 = xj+1/2,

d

dt

∫
Cj

û(x, t)dx = f(û(xj−1/2, t))− f(û(xj+1/2, t)).

We then integrate both sides with respect to time from t = tn to t = tn+1,∫
Cj

û(x, tn+1)dx−
∫
Cj

û(x, tn)dx =

∫ tn+1

tn

f(û(xj−1/2, t))− f(û(xj+1/2, t))dt

Dividing by the grid size h, we have

1

h

(∫
Cj

û(x, tn+1)− û(x, tn)dx

)
=

1

h

∫ tn+1

tn

f(û(xj−1/2, t))− f(û(xj+1/2, t))dt.

Now, writing the left hand side as cell averages, we have

Ûn+1
j − Ûn

j =
1

h

∫ tn+1

tn

f(û(xj−1/2, t))− f(û(xj+1/2, t))dt.

In some special cases, the integral on the right hand side can be computed

exactly. However, when the solution û changes with time at x = xj−1/2 and

x = xj+1/2, we can approximate the integral using û at t = tn or using numerical

quadrature.

3. Average the solution obtained in the evolution step to get new cell averages

Un+1
j =

1

h

∫
Cj

û(x, tn+1)dx

We repeat the REA algorithm until we reach the desired �nal time. The evolution

step is described in detail in [50, 65].

Finite Volume methods are the simplest Godunov methods where the recon-

structed solution is taken to be the cell average. The methods are popular in the
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�eld of computational �uid dynamics, and sample codes are available in the software

package Clawpack for linear and nonlinear hyperbolic PDEs. Despite being conserva-

tive, Finite Volume methods are �rst order, and therefore are not very accurate when

used for long-time simulation. To obtain a second order method, a linear piecewise

polynomial is used in the reconstruction step. In order to maintain conservation, we

need to choose the slope of the reconstructed solution carefully so that the cell aver-

age remains unchanged. A di�erent choice of slope leads to Fromm, Beam-Warming,

or Lax-Wendro� scheme.

For discontinuous solutions, the high order polynomial reconstruction is known

to produce oscillatory behavior. Techniques such as �ux limiters, Essentially Non-

Oscillatory (ENO) and Weighted ENO (WENO), and arti�cial viscosity have been

developed to improve or eliminate oscillations in the approximate solutions. The

�ux limiters use two �uxes, corresponding to a low order method and a high order

method. The �ux limiter determines weights assigned to the low order �ux and

high order �ux in di�erent parts of the solution. The idea is to use a high order

method when the solution is smooth and switch to a low order method when the

solution is discontinuous. Under the �ux limiter category, we �nd minmod, superbee,

monotonized central-di�erence, minmod- central scheme by Nessyahu and Tadmor

[53], van Leer method [66�70], hybrid method by Harten and Zwas [33], and the

�ux-corrected transport [7, 55, 73]. To construct an even higher order method, we

reconstruct the solution using a higher order polynomial, for example a piecewise

parabola [13].

Another approach to construct a high order method without oscillations is the

ENO/ WENO method. In the ENO method [36], given cell averages Un
j on k con-

tiguous cells (or k stencil), we can construct a polynomial of degree at most k − 1

whose cell average in each of the k cells matches with Un
j . Note that on each cell, we

have di�erent k-stencil options to construct the (k − 1)th degree polynomial. ENO
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method chooses the k cells so that the resulting polynomial has the least oscilla-

tions. Signi�cant amount of work has been put into developing ENO methods, see

for example [9,35,37,38,61,62]. The WENO method uses all possible k-stencils and

assigns more weight to the stencil that produces smooth polynomials, [40, 51].

The main idea of arti�cial viscosity was �rst proposed in [54]. Since then, the main

research in the arti�cial viscosity method focuses on designing a robust yet accurate

arti�cial viscosity method, which adds a su�cient amount of viscosity to regularize

shocks, but adds a relatively small amount of viscosity elsewhere. Some works of this

nature include PDE-based viscosity [41], weak local residual [48], and �ltering [72].

The entropy viscosity method, introduced by Guermond and Pasquetti [25], uses the

fact that the entropy residual takes the form of a Dirac delta distribution centered

at the shock. This property establishes the entropy residual as a natural shock

detector, that can be easily extended to higher dimensions and unstructured grids.

In essence, the entropy viscosity method provides the discretization method with

grid independent shock-capturing capability without compromising the high order of

accuracy away from the shocks, where the amount of viscosity is porportional to the

truncation error in the discretization of the residual.

Each of the methods described above eliminates or reduces oscillations by ex-

tracting information about oscillations that would occur if no further action is taken.

Then, the method adjusts the construction of the numerical solution to avoid the

appearance of spurious oscillations. In high order methods, the oscillations often

cannot be completely suppressed, so we can only hope for almost non-oscillatory so-

lutions. Alternatively, we can remove the oscillations after computing the solutions,

which is known as post-processing, [3, 12,58,59].
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4.1 Hermite Methods

First introduced by Goodrich, Hagstrom, and Lorenz in [21] for hyperbolic initial-

boundary value problems, Hermite methods use the solution and its �rst m deriva-

tives in each coordinate to construct an approximate solution to the PDE. These

methods have great explicit time stepping properties, e�cient memory consumption

and a high computation to communication ratio. They are thus suitable for par-

allel implementation on distributed, shared or hybrid memory platforms. One of

the main ingredients to Hermite methods' e�ciency is the use of a Cartesian grid,

which becomes a downside when implementing the method on complex geometry and

applying boundary conditions. The di�culty for complex geometry and boundary

condition can be remedied by hybridizing Hermite methods with another method

that handles boundary well, for example a Discontinuous Galerkin method [39]. The

hybrid Hermite-DG method is presented in [11].

In the formulation by Goodrich et al, the �ux is computed using polynomial rep-

resentation of the solution at the cell centers, and for nonlinear problems, the number

of terms representing the �ux function grows and therefore must be truncated. The

truncated �ux becomes discontinuous at cell interfaces, and as a consequence, conser-

vation is lost. We then developed a new class of �ux-conservative Hermite methods.

The conservation property represents a signi�cant improvement to the original Her-

mite methods [21]. The �ux-conservative Hermite methods improve the nonlinear

stability of the original Hermite methods. For the �ux-conservative methods, we

proved that the solution and its derivatives are evolved in a conservative manner.

Although this conservation property does not guarantee positive state variables, den-

sity for example, we still �nd that the new method is capable of simulating Lax's

and Sod's shock tube problems without any stabilization.
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4.2 Finite Element Methods (FEM) and Discontin-

uous Galerkin (DG) Methods

Finite Element methods [16, 63, 75] approximate a solution to a hyperbolic PDE

by projecting the solution into a �nite dimensional space VN . The approximate

solution is chosen so that the error in the solution is orthogonal to the projected

space VN (Galerkin orthogonality). The discretization of FEM is prescribed in the

weak or variational form, and the test functions live in the approximation space VN ,

therefore can be chosen as basis functions of VN . The formulation becomes convenient

when deriving a energy estimate to establish the stability of the method. Besides

the excellent stability results, the boundary implementation of FEM on complex

geometry is straightforward, and hence FEM can be implemented on unstructured

elements and curved boundaries.

FEM divides the domain of the PDE into a �nite number of non-overlapping

elements, hence also derives the name. The grid size h can vary from one element to

another. In each element, the solution is approximated by a linear combination of

basis functions of VN . We restrict the approximation space VN to polynomial spaces

since the error analysis in non-polynomial spaces can be complicated and the order

of the method becomes harder to compute. In polynomial space, the order of the

method, p, is dictated by the number of basis functions N . Convergence in FEM

can be obtained with h−re�nement (dividing the elements into smaller elements),

p−re�nement (increasing the number of polynomial basis, hence the order of the

method), or hp re�nement (h and p re�nements simultaneously), [4, 30].

For time evolution, we consider the Method of Lines (MOL) approach, where we

approximate the spatial derivatives in the PDE using spatial discretization of choice,

FEM for example, while leaving the temporal derivatives continuous. FEM spatial
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discretization of Equation 3.1 leads to a system of ODE,

M
dc

dt
= Sc + F, (4.1)

where c is a vector containing the degrees of freedom in the numerical solution, M is

the mass matrix, S is the sti�ness matrix, and F is the �ux vector. To accommodate

communication between elements, the basis functions in FEM are global, meaning

that the support of the basis functions expands over several elements. The global

nature of the coupling makes the mass matrix M di�cult to invert. Discontinuous

Galerkin methods, on the other hand, use local basis functions, which result in an

easily invertible block diagonal mass matrix M . The locality of the basis functions

induces discontinuity in the solution, but a penalty term on the �ux is introduced

to impose a weak continuity in the solution and hence stabilizes the method. For

solving conservation laws, Gassner developed energy stable DG methods [18,44].

Another contribution of this thesis is the derivation of Sobolev Discontinuous

Galerkin methods, where the solution is the best approximation measured in Sobolev

norm. It turns out that this formulation yields tame CFL conditions. We acknowl-

edge other e�orts in improving the CFL condition, including co-volume mesh based

�lter by Warburton and Hagstrom [71], modifying the numerical �ux [10], and hy-

bridizing Discontinuous Galerkin methods with Finite Di�erence methods [5].
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Temporal Discretization for

Conservation Laws

When solving time-dependent partial di�erential equations (PDE), most numerical

methods �rst discretize in space to obtain a system of ordinary di�erential equations

(ODE). In this case, solving a PDE can be reduced to simply solving an ODE and the

resulting scheme is called method of lines. For nonlinear PDEs with discontinuous

solutions, linear stability analysis itself is insu�cient to guarantee stability, since

linearly stable methods can have solutions with unphysical behavior such as spurious

oscillations or overshoots. To measure nonlinear stability in the numerical solution

un = (un1 , u
n
2 , ...) at time t = tn, we use total variation, de�ned as the sum of the

increments in grid values,

TV (un) =
∑
j

|unj − unj−1|. (5.1)

In conservation laws,

ut + f(u)x = 0, (5.2)
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the weak solution has the monotonicity preserving properties, see [19], where the

weak solution can not form new local extrema in x, and the value of a local minimum

is nondecreasing, while the value of a local maximum is nonincreasing. Therefore,

we ask that the numerical solution does not grow in time,

TV (un+1) ≤ TV (un), (5.3)

where un and un+1 are numerical solutions at time t = tn and t = tn+1 respectively.

A numerical method producing such solutions is said to have a Total Variation Di-

minishing (TVD) property. To guarantee this property, we discretize f(u)x in space

with a TVD spatial discretization, for example TVD �nite di�erence, or �nite ele-

ment approximation, and we arrive at a ODE of the form

ut = L(u). (5.4)

A suitable TVD time discretization is used to evolve solution u in time. Time dis-

cretization methods with TVD property are now termed Strong Stability Preserving

(SSP) time discretizations, due to the purpose of preserving stability.

When Equation 5.4 is discretized using Forward Euler method, we obtain

u(n+1) = u(n) + ∆tL(u(n)). (5.5)

High order Runge Kutta temporal discretizations that maintain the TVD property

have been developed, commonly known as Strong Stability Preserving Runge-Kutta

(SSPRK). These schemes, developed by Gottlieb and Shu in [23], express an qth stage

Runge-Kutta method as

u(i) =
i−1∑
k=0

(αiku
(k) + ∆tβikL(u(k))), i = 1, ..., q, (5.6)

u(0) = un, u(q) = un+1.
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When all αik and βik are nonnegative, the Runge-Kutta method above is a convex

combination of Forward Euler operators, but with time step (∆t)αik/βik. As a

consequence, spatial discretizations that result in TVD schemes when being paired

with Forward Euler time stepping can also be combined with SSPRK to obtain higher

order in time, possibly under a di�erent CFL condition. The goal of our experiments

is to understand when SSPRK is necessary and the bene�ts of using SSPRK time

discretization over non-SSPRK one.

We study the behavior of SSP and non-SSP Runge-Kutta methods for some test

problems. We use second-order (one-step) two-stage Runge-Kutta methods(RK(2,2))

for both SSP and non-SSP schemes as in [22]. For all the results presented below,

we assume that the term f(u)x has been discretized, so the problem reduces to an

ODE of the form ut = L(u). We consider a SSPRK(2,2) scheme given by

u(1) = un + ∆tL(un), (5.7)

un+1 =
1

2
un +

1

2
u(1) +

1

2
L(u(1)), (5.8)

and a non-SSPRK(2,2) scheme given by

u(1) = un − 20∆tL(un), (5.9)

un+1 = un +
41

40
u(1) − 1

40
L(u(1)). (5.10)

5.1 Burgers' Equation with Piecewise Constant Ini-

tial Data

In this nonlinear initial value problem taken from [23], we consider Burgers' equation

with �ux function f(u) = u2/2,

ut +

(
1

2
u2

)
x

= 0, (5.11)
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on the domain D = [−1, 1] with initial data

u0(x) =

1 x < 0,

−0.5 x > 0,
(5.12)

and �xed boundary conditions u(−1, t) = u(−1, 0) and u(1, t) = u(1, 0).

The term f =
(

1
2
u2
)
is discretized on uniform grid consisting of nx gridpoints

with ∆x spacing, xj = −1 + j∆x, j = 0, ..., nx, where fj denotes the approximation

of f(xj). We approximate the derivative of �ux fx =
(

1
2
u2
)
x
according to MUSCL

scheme,

(fj)x =
1

∆x

(
f̂j+1/2 − f̂j−1/2

)
,

where the numerical �ux f̂j+1/2 is de�ned by

f̂j+1/2 = h(u−j+1/2, u
+
j+1/2),

with

h(u−, u+) =

minu−≤u≤u+ 0.5u2 if u− ≤ u+,

maxu−≥u≥u+ 0.5u2 if u− > u+,
(5.13)

and

u−j+1/2 = uj +
1

2
minmod(uj+1 − uj, uj − uj−1),

u+
j+1/2 = uj+1 −

1

2
minmod(uj+2 − uj+1, uj+1 − uj).

Here, the minmod function is de�ned as

minmod(a, b) =
sign(a) + sign(b)

2
min(|a|, |b|).

The initial data contains a shock at x = 0. The shock moves at speed vs = 0.25,

which is computed using Rankine-Hugoniot conditions. The exact solution to the
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Figure 5.1: Comparison of non-SSPRK and SSPRK solutions for Burger's equation
with piecewise initial data described in Section 5.1. We were not able to run the
non-SSP scheme with higher CFL number than listed above.

initial value problem above is a translation of initial data with distance vsT , where

T is the simulation time. The solutions obtained with SSP and non-SSP schemes are

compared at time T = 0.5 with total number of gridpoints nx = 320. In Figure 5.1,

we see overshoot on the solution run with non-SSPRK that we don't observe on the

solution obtained with SSPRK. The total variations are plotted in Figure 5.2.

5.2 Burgers' Equation with Sinusoidal Initial Data

In this example taken from [22], we consider Burgers' equation

ut +

(
1

2
u2

)
x

= 0, (5.14)

on the domain D = [−1, 1] with initial data

u0(x) = 0.5− 0.25 sinπx (5.15)

and periodic boundary condition u(−1, t) = u(1, t).
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Figure 5.2: Comparison of TV between non-SSPRK and SSPRK for Burger's equa-
tion with piecewise initial data described in Section 5.1. The SSPRK results are
obtained with CFL= 1 while the non-SSPRK results are obtained with a much lower
CFL= 0.3. We were not able to run the non-SSP scheme with higher CFL number
than listed above for either case.

The term 1
2
(u2)x is discretized using upwind �ux,

1

∆x

(
f̂j+1/2 − f̂j−1/2

)
,

where the numerical �ux f̂j+1/2 is de�ned by

f̂j+1/2 = (uj)
2/2.

Using Forward Euler to discretize ut, we arrive at a scheme that looks like

un+1
j = unj − λ((unj )2 − (unj−1)2), (5.16)

where λ = 0.5∆t/∆x. Now, Harten's Lemma [34] says that if we can write an explicit

scheme as

un+1
j = unj + Cj+1/2(uj+1 − uj)−Dj−1/2(uj − uj−1)
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Figure 5.3: Comparison of non-SSPRK solutions with di�erent time step size for
Burger's equation with sinusoidal initial data described in Section 5.2.

with Cj+1/2, Dj−1/2 ≥ 0 and Cj+1/2 + Dj−1/2 ≤ 1, then the scheme is TVD. Using

this lemma along with the fact that the �ux f(u) = u2/2 and hence f ′(u) = u,

we conclude that the scheme given in Equation 5.16 is indeed TVD whenever the

CFL condition is satis�ed. Thus, we have a TVD scheme when replacing the time

stepping method with SSPRK according to the recipe in [23].

The solutions are computed up to time T = 2 with nx = 256. In Figure 5.3, we see

that reducing the timestep size (equivalently, CFL) in the non-SSP case eliminates

undershoot. The total variations are plotted in Figure 5.4. The total variation of

non-SSPRK with CFL= 0.3 is pretty much identical to the total variation of SSPRK

with CFL= 1 for this problem. However, when we increase the time step for non-

SSPRK, overshoots start to develop and consequently, the total variation increases.

The total variation eventually decreases since the solution is supposed to shrink after

a while.
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5.3 Advection Equation with Discontinuous Data

We consider a linear advection equation,

ut − ux = 0 (5.17)

on domain D = [−1, 1] with initial data

u0(x) =

0 x < 0.5,

1 x > 0.5,
(5.18)

and �xed boundary condition u(−1, t) = u(−1, 0) and u(1, t) = u(1, 0).

This problem decribes a wave advecting with speed a = −1, therefore the wave

is moving to the left. The exact solution of the problem described above is u(x, t) =

u0(x+ t). We run the simulation before the discontinuity hits the left boundary. The

total variation at initial time is TV (0) = |1− 0| = 1. Since the exact solution at any

time tn is just a translation of initial data to the left by tn, the total variation stays

constant over time.

In Figure 5.5, we present the error in the total variation as a function of time.

The plot on the left is performed using CFL= 1 and the one on the right uses CFL=

0.5. We conclude that the di�erence between SSPRK vs. non-SSPRK is practically

nonexistent. In addition to this problem, we tried di�erent initial data, di�erent

RK schemes, but SSPRK and non-SSPRK with comparable order of accuracy yield

pretty much identical TV. This observation is supported in [22] and turns out to be

correct. The reason is that in linear problems, most non-SSPRK schemes can be

rearranged as an SSPRK scheme in a way that is not possible in nonlinear problems.
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5.4 Summary

For nonlinear problems, non-SSPRK produces solutions with no overshoots/ under-

shoots. However, when there is enough dissipation in the numerical method itself,

SSPRK allows a larger time step thatn non-SSPRK. In linear PDEs, non-SSPRK

can be rearranged as SSPRK, so there is no clear advantage of using SSPRK.
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Figure 5.4: Comparison of TV between non-SSPRK and SSPRK for Burger's equa-
tion with sinusoidal initial data described in Section 5.2.
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Figure 5.5: Comparison of TV between non-SSPRK and SSPRK for the advection
equation with discontinuous initial data described in Section 5.3.

43



Chapter 6

Flux-conservative Hermite methods

for nonlinear conservation laws

This chapter has been submitted to Journal of Scienti�c Computing [45] and it is

now under revision.

Keywords: Hermite, conservative, high order method, the entropy viscosity method

Abstract: A new class of Hermite methods for solving nonlinear conservation laws

is presented. While preserving the high order spatial accuracy for smooth solutions in

the existing Hermite methods, the new methods come with better stability properties.

Arti�cial viscosity in the form of the entropy viscosity method is added to capture

shocks.

6.1 Introduction

Conservation laws model physical systems arising in tra�c �ows, aircraft design,

weather forecast, and �uid dynamics. Numerical methods for conservation laws ide-
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ally conserve quantities like mass or energy, and accurately capture various physical

components of the solutions, from small smooth scales to shock waves. The presence

of both smooth waves and shock waves, for example in shock-turbulence interaction

creates a challenge to the simulation of nonlinear conservation laws.

Shock waves typically appear in solutions to nonlinear conservation laws, and are

characterized by very thin regions where the solution changes rapidly. Approxima-

tion of shocks and small waves is challenging as the small and large scales need to

be solved simultaneously. Historically, low order �nite volume and �nite di�erence

methods equipped with �ux/slope limiters have been used to handle shocks, see for

example the textbooks [49, 50]. The drawback with low order methods is that they

cannot accurately propagate small scales over long distances and as a result, today

the research focus has gravitated towards high order accurate methods with shock

capturing capability.

Among high order methods, the weighted essentially non-oscillatory (WENO)

method, [40,51,60], has proven to be a method popular among practitioners. WENO

methods are still relatively dissipative which may be a drawback for turbulent sim-

ulations, [52]. Also, discontinuous Galerkin methods combined with shock captur-

ing, [15, 47], or selectively added arti�cial viscosity, [43, 56, 76], have received signif-

icant interest. The latter approach traces back to the arti�cial viscosity method by

Neumann and Richtmyer, [54] and the popular streamline di�usion method, [8, 41],

which computes the viscosity based on the residual of the PDE.

In this work, we advocate the combination of a high order method and selectively

added arti�cial viscosity. Speci�cally, we show how the entropy viscosity by Guer-

mond and Pasquetti, [25], can be implemented in our new �ux-conservative Hermite

methods.

First introduced by Goodrich, Hagstrom, and Lorenz in [21] for hyperbolic initial-
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boundary value problems, Hermite methods use the solution and its �rst m deriva-

tives in each coordinate to construct an approximate solution to the PDE. The

formulation by Goodrich et al. computes the �ux at the cell centers, which for non-

linear problems leads to discontinuous �uxes at cell interfaces. This discontinuity

results in loss of conservation.

To address the lack of conservation, we develop a new class of Hermite methods,

which share the basic features with the method in [21], such as interpolation and

time evolution, but di�ers in the computation of the �ux function. In the �ux-

conservative Hermite methods, the numerical �ux is computed at cell edges and then

interpolated to cell center for time evolution, hence by construction, the numerical

�ux is continuous at cell interface. Additionally, for nonlinear problems, it is more

e�cient to use one step methods than the Taylor series approach in [21], see [31,32].

Here we will use the standard Runge-Kutta method to evolve in time.

The rest of the chapter is organized as follows. In Section 6.2, we derive con-

servation laws and discrete conservation. Then, in Section 6.3, we describe Hermite

methods as �rst introduced by Goodrich et al. [21], followed by the description of the

�ux-conservative Hermite methods in Section 6.3.2. For shock capturing capability,

we implement the entropy viscosity method, which is explained in Section 6.4. In

Section 6.5, we present the results of simulation on Euler's equations, see [46] for

results on Burgers' equation.

6.2 Conservation Laws

A scalar conservation law in one space dimension takes the form

∂

∂t
u(x, t) +

∂

∂x
f(u(x, t)) = 0, (6.1)
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where u(x, t) is the state variable at location x and time t and f(u) is the �ux, or

the rate of �ow, of the state variable u.

The derivation of conservation laws comes from the observation that at any given

time t, the rate of change of the total quantity of the state variable u over some inter-

val [a, b] must be equal to the net �ux f(u) into the interval through the endpoints.

Mathematically, this can be expressed as

d

dt

∫ b

a

u dx = f(u(a, t))− f(u(b, t)). (6.2)

When approximating the solution to scalar conservation laws given by equation

(6.1), the PDE is typically discretized on a grid consisting of Nx cells where x0 = a

and xNx = b. It is desirable that the numerical method satis�es discrete conservation.

If the reconstructed solution ujh and �ux f jh on any cell Ij = [xj−1, xj] satisfy the

condition f jh|x=xj = f j+1
h |x=xj , j = 1, . . . , Nx − 1, we immediately �nd

∫ b

a

∂ujh
∂t

dx =
Nx∑
j=1

∫ xj

xj−1

∂ujh
∂t

dx

=
Nx∑
j=1

∫ xj

xj−1

∂

∂x
(−f jh) dx

=
Nx∑
j=1

(
f jh|x=xj−1

− f jh|x=xj

)
= f jh(u(a))− f jh(u(b)). (6.3)

The property that f jh|x=xj = f j+1
h |x=xj does not hold for the original Hermite

methods, and our goal here is to design a new Hermite method with this property.

Before describing our new method, we brie�y describe the original method.
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6.3 Hermite Methods

A Hermite method of order 2m + 1 approximates the solution to a PDE by an

element-wise polynomial that has continuous spatial derivatives up to order m at

the element's interfaces. In Hermite methods, the degrees of freedom are function

and spatial derivative values, or equivalently the coe�cients of the Taylor polynomial

at the cell center of each element. The evolution of the degrees of freedom on each

element can be performed locally.

6.3.1 Hermite Method in One Dimension

Consider again equation (6.1) on the domain D = [xL, xR]. Let Gp and Gd be the

primal grid and the dual grid, de�ned as

Gp = {xj = xL + jhx, j = 0, . . . , Nx} , (6.4)

Gd =

{
xj+1/2 = xL +

(
j +

1

2

)
hx, j = 0, . . . , Nx − 1

}
, (6.5)

where hx = (xR − xL)/Nx is the distance between two adjacent nodes. Let up and

ud be the approximations to the solution on the primal and dual grids, respectively.

At the initial time tn = t0 + n∆t, we assume that the approximation up on the

primal grid, the global piecewise polynomial

up(x, tn) =
m∑
k=0

ck(tn) (x− xj)k , x ∈ Idj = [xj−1/2, xj+1/2], (6.6)

is known. Starting from time t = tn on the primal grid Gp, we evolve the solution

one full time step by:
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Reconstruction by Hermite interpolation: We construct ud, the global Hermite

interpolation polynomial of degree (2m+ 1), on the dual grid. That is,

ud(x, tn) =
2m+1∑
k=0

bk(tn)
(
x− xj−1/2

)k
, x ∈ Ipj = [xj−1, xj], (6.7)

where the coe�cients bk(tn) are uniquely determined by the interpolation conditions

∂k

∂xk
ud(xi, tn) =

dk

dxk
up(xi, tn), k = 0, . . . ,m, i = j − 1, j. (6.8)

Time evolution: By rewriting equation (6.1) as ut = −f(u)x, it is obvious that in

order to evolve ud, we need to compute a polynomial approximation fd to the �ux

function f(u). We o�er two ways to obtain fd:

• Modal approach: Perform polynomial operations (addition, substraction, mul-

tiplication, and division) on ud and truncate the resulting polynomial to suit-

able degree.

• Pseudospectral approach: Compute a local polynomial f ∗h interpolating f(ud)

on a quadrature grid Gps inside Ipj , j = 1, . . . , Nx, and transform f ∗h to a Taylor

polynomial fd.

We di�erentiate fd in polynomial sense to get an approximation to the derivative of

the �ux function f(u)x. We usually use the modal approach unless this option is not

applicable. Next, we derive an ODE to evolve ud, or equivalently the coe�cients of

the Hermite interpolant c(t) = (c0(t), . . . , c2m+1(t))T , by insisting that the numerical

solution ud satisfy equation (6.1) along with derivatives of (6.1), at the cell centers

x = xj−1/2, j = 1, . . . , Nx. The resulting system of ODE for ck, k = 0, . . . , 2m+1, can

then be evolved independently on each Ipj with any ODE solver. The reconstruction

step provides the initial data, c(tn).
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Repeat on dual grid: At the end of the half time step, we have evolved the

degree 2m + 1 polynomial ud from time t = tn to t = tn+1/2. Before repeating

the above process, we truncate ud(x, tn+1/2) by removing the coe�cients ck, k =

m + 1, . . . , 2m + 1. We then repeat the above process (including the truncation) to

obtain up at time t = tn+1, see Figure 6.1 for illustration.

Example: Burgers' Equation

To illustrate the speci�cs of the time evolution, we consider Burgers' equation, with

f(u) = u2/2, approximated by fh = u2
h/2, where uh represents the degree (2m + 1)

interpolant on either of the grids. We can write

(uh)t + (fh)x = 0,

(uh)tx + (fh)xx = 0,

(uh)txx + (fh)xxx = 0, (6.9)

...
...

where

fh =
2m+1∑
k=0

bk(t)(x− xj−1/2)k.

The coe�cients bk are determined by truncated polynomial multiplication, that is

bk = 1
2

∑k
l=0 clck−l. Insisting that the approximate solution uh satisfy equation (6.9)

at the cell centers x = xj−1/2, we obtain

c′0(t)

c′1(t)
...

c′2m(t)

c′2m+1(t)


=



b1(t)

2 b2(t)
...

(2m+ 1) b2m+1(t)

0


. (6.10)
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While equation (6.10) is valid for any cell, the initial data for each cell are dif-

ferent from one cell to another. For a more detailed explanation and open source

implementations, see [2, 31,32].

c
c
c

c
c
c

s
s
s

s
s
s

s
s
s

I → I →

I → I →

I← I←

I← I←

T
↑

T
↑

T
↑

T
↑

T
↑

xj−1 xj− 1
2

xj xj+ 1
2

xj+1

tn

tn+ 1
2

tn+1

Figure 6.1: Illustration of the numerical process in one dimensional Hermite methods
for a full time step. Solid circles represent the primal grid Gp and open circles
represent the dual grid Gd. I is the Hermite interpolation operator and T is the
time evolution operator.

6.3.2 Flux-Conservative Hermite Methods

The numerical �ux fh obtained by the approach described above, is discontinuous at

cell interfaces when the �ux function f(u) is nonlinear. Numerically, the discontinuity

in the �ux induces numerical sti�ness. As a result, the time step often needs to be

taken very small. To remedy this, we propose new �ux-conservative Hermite methods

that impose �ux continuity by computing the numerical �ux at cell edges, and then

interpolate the numerical �ux to cell center.

To illustrate the di�erence between the original and �ux-conservative Hermite
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schemes, we plot the numerical �ux fh = u2
h/2 with m = 3 and for Nx = 3 cells in

Figure 6.2. The numerical �ux obtained using the original Hermite method, shown as

the blue curve, has discontinuities at cell interfaces. On the other hand, the numerical

�ux obtained by the �ux-conservative Hermite method, shown as the black curve, is

continuous everywhere.

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

Figure 6.2: Numerical �ux for Burgers' equation with random data, obtained by
original Hermite (blue), �ux-conservative Hermite (black).

The Construction of the New Method

The goal of our construction is to globally conserve the integral of uh and its m �rst

derivatives over one half time step, with ∆t̂ = ∆t/2.

In the �ux-conservative methods, we assume that the solution on the primal grid

at time tn is given by

up(x, tn) =
2m+1∑
k=0

ck(tn) (x− xj)k , x ∈ Idj = [xj−1/2, xj+1/2]. (6.11)

52



Chapter 6. Flux-conservative Hermite methods

Note that the degree of this polynomial is di�erent than in the original method. We

assume that the time stepping will be performed by an explicit one step method

requiring stage values. The evolution will be carried out at the cell center where

the stage values will be the derivative of the Hermite interpolant of the �ux. As

this interpolant is m times di�erentiable at the edges, it will result in a conserva-

tive discretization. Now, the time evolution of the approximate solution entails the

following steps.

Computation of the stage �uxes at the cell edges: For simplicity, assume that we

use the classic fourth order Runge-Kutta, then to construct the Hermite interpolants

for the four stages we �rst compute

F p
1 = f (up) ,

F p
2 = f

(
up +

∆t̂

2

dF p
1

dx

)
,

F p
3 = f

(
up +

∆t̂

2

dF p
2

dx

)
,

F p
4 = f

(
up + ∆t̂

dF p
3

dx

)
.

Note that inside the argument of f , we keep all the coe�cients of the polynomials up

to degree 2m + 1, while the nonlinearity f itself, which typically is a higher degree

polynomial, is truncated to degree 2m+ 1.

Reconstruction of solution and �uxes by Hermite interpolation: Next, we con-

struct ud and F d
i , i = 1, . . . , 4, the global Hermite interpolation polynomials of

degree (2m+ 1) of the solution and the �ux, respectively. Let wd represent ud or F d
i

and wp represent up or F p
i . Then,

wd(x, tn) =
2m+1∑
k=0

dk(tn)
(
x− xj−1/2

)k
, x ∈ Ipj = [xj−1, xj], (6.12)
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where the coe�cients dk(tn) are uniquely determined by the interpolation conditions

(at cell edges)

∂k

∂xk
wd(xi, tn) =

dk

dxk
wp(xi, tn), k = 0, . . . ,m, i = j − 1, j. (6.13)

Time evolution: Let the coe�cients of ud be ck and the coe�cients of F d
i be b

(i)
k .

Then, again assuming RK4, we have that for k = 0, . . . , 2m+ 1,

ck(tn + ∆t̂) = ck(tn) +
∆t̂

6
(k + 1)(b

(1)
k+1(tn) + 2b

(2)
k+1(tn) + 2b

(3)
k+1(tn) + b

(4)
k+1(tn)).

The updated solution on the dual grid is thus

ud(x, tn + ∆t̂) =
2m+1∑
k=0

ck(tn + ∆t̂)
(
x− xj−1/2

)k
, x ∈ Ipj = [xj−1, xj].

Repeat on dual grid: At the end of the half time step, we have evolved the degree

2m + 1 polynomial ud. We then repeat the above process to obtain up at time

t = tn+1.

We note that unlike the original method, the number of degrees of freedom that

we keep is twice as large, representing an increase in memory requirement. The

number of �oating point operations, however, to leading order, is the same as for the

original method (see the complexity analysis below).

Conservation

We now consider the conservation properties of the above scheme. Due to the fact

that the s �uxes used in the stages have m continuous derivatives we immediately

�nd that for periodic problems the following conservation statements hold.

Theorem 1. Assume we use the �ux-conservative Hermite method to evolve ut +

f(u)x = 0 with periodic boundary conditions. Further assume that ud(t, x) is the
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periodic degree 2m + 1 Hermite interpolating polynomial and that F d
i , i = 1, . . . , s

are the periodic degree 2m+ 1 polynomials Hermite interpolating the �uxes. Further,

let the coe�cients ck(t) of u
d on a cell be evolved from time t = tn to t = tn + ∆t̂ by

the one step method

ck(tn + ∆t̂)− ck(tn) + ∆t̂
s∑
i=1

αi(k + 1)b
(i)
k+1(tn) = 0, k = 0, . . . , 2m+ 1,

where b
(i)
k are the coe�cients of F d

i . Then, the following conservation statement

holds.

∑
j

∫ xj

xj−1

∂k

∂xk
ud(tn + ∆t̂, x)dx =

∑
j

∫ xj

xj−1

∂k

∂xk
ud(tn, x)dx,

k = 0, . . . , 2m + 2 − s. (6.14)

Proof. From the RK time stepping method for conservation laws (6.1) as

ud(tn+1/2)− ud(tn)

∆t̂
= ∆t̂

∑
i

αi
dF d

i

dx
, (6.15)

together with the continuity of m �rst derivatives of each of the F d
i , the result follows

immediately from the update formula. Note also that F d
i+1 is one order less accurate

than F d
i due to �ux di�erentiation during stage i.

To summarize, in the original Hermite scheme, computation of numerical �uxes

is performed at the cell center using the interpolated solution. The �ux-conservative

Hermite scheme requires a computation (and storage) of numerical �uxes at the cell

edges and the interpolation of those �uxes to the cell center. Refer to Figure 6.3 for

an illustrative comparison between the schemes.
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original scheme
xj−1 xj xj+1

(Iu)j− 1
2

fj− 1
2
(Iu)

(Iu)j+ 1
2

fj+ 1
2
(Iu)

�ux conservative scheme
xj−1 xj xj+1

fj−1(u) fj(u) fj+1(u)

(If)j− 1
2

(If)j+ 1
2

Figure 6.3: Original vs. Flux Conservative Hermite Methods. Here, we dropped the
subscript h in all the computed quantities for compactness.

6.3.3 The Flux-Conservative Hermite Method in Two Dimen-

sions

Now, let us consider a conservation law

ut + (f(u))x + (g(u))y = 0, (6.16)

on the domain D = [xL, xR]× [yB, yT ]. Let Gp and Gd be the primal and dual grids,

de�ned as

Gp = {(xi, yj)} = (xL + ihx, yB + jhy), i = 0, . . . , Nx, j = 0, . . . , Ny, (6.17)

Gd =

{
(xi+1/2, yj+1/2) =

(
xL +

(
i+

1

2

)
hx, yB +

(
j +

1

2

)
hy

)}
,

i = 0, . . . , Nx − 1, j = 0, . . . , Ny − 1, (6.18)

where hx = (xR − xL)/Nx and hy = (yT − yB)/Ny are the distances between two

adjacent nodes in x and y directions respectively.

The extension of the �ux-conservative method from one dimension is straightfor-

ward. Writing equation (6.16) as ut = −f(u)x − g(u)y and letting ud(t) represent
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the two-dimensional tensor product Hermite interpolant of the data on the primal

grid we can write the RK4 time stepping of ud(tn) to time t = tn + ∆t̂ as

ud(tn + ∆t̂)− ud(tn)

∆t̂
=
Kd

1 + 2Kd
2 + 2Kd

3 +Kd
4

6
. (6.19)

The left hand side of equation (6.19) is an approximation to ut and the right hand

side is an approximation to stage values of −(f(u)x + g(u)y). Similar to the one

dimensional case we have

Kd
1 = −(F d

1 )x − (Gd
1)y,

Kd
2 = −(F d

2 )x − (Gd
2)y,

Kd
3 = −(F d

3 )x − (Gd
3)y,

Kd
4 = −(F d

4 )x − (Gd
4)y.

Here, for example, F d
i is the degree 2m + 1 tensor product polynomial that inter-

polates f(up + γi∆t̂F
p
i ) and its m �rst derivatives in x and y at the four adjacent

primal grid-points.

6.3.4 Comparison of Computational Costs

The time evolution portion of the Hermite methods are performed by a one step

method with nK stages, involving computation of the �ux function, interpolation

of the solution and, in the �ux-conservative method, the �uxes, and di�erentiation

of �uxes. For the purpose of this comparison, we assume Burgers' �ux function

f(u) = u2/2 in 1D or f(u) = g(u) = u2/2 in 2D. Each 1-dimensional Hermite

interpolation is equivalent to a multiplication by a (2m + 2) by (2m + 2) matrix.

If we use the recipe above, each 2-dimensional Hermite interpolation corresponds

to 2× (2m+ 2) one-dimensional interpolations. The factor (2m + 2) comes from

the the fact that the y dimension brings in (2m + 2) interpolations in 1D and the

multiplicative factor 2 comes from the fact that we interpolate in y direction on both
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�ux computation interpolation

original nKd(2m+ 2)2d 22d−1
(2m+ 2)d+1

�ux-conservative nKd(2m+ 2)2d (1 + nKd)22d−1
(2m+ 2)d+1

Table 6.1: Comparison of costs in original and �ux-conservative Hermite methods,
nK is the number of stages in Runge-Kutta method, d is the spatial dimension.

the left and right edges of the cell. In 3D, we have 4 interpolations in the z direction,

each brings in (2m+2) times interpolations in 2D, and so on. We summarize the cost

of the method, corresponding to the number of multiplications involved, in Table 6.1.

The number of interpolation in the �ux-conservative Hermite method is nKd 22d−1

more than the original Hermite method. We note that the �ux-conservative scheme

can be simpli�ed to just two �ux interpolations by adding up the F 's and G's, but

in this chapter, we interpolate each �ux separately. There is also an additional

cost of di�erentiation at cell corners, but it is negligible compared to the cost of

interpolation.

6.4 The Entropy Viscosity Method

Given a PDE of the form (6.1), there exists an entropy function E(u) and its cor-

responding entropy �ux function F (u) =
∫
E ′(u)f ′(u) du such that the entropy

residual satis�es

rEV (u) ≡ Et(u) +∇ · F (u) ≤ 0. (6.20)

This inequality can be used to select the physically correct solution to (6.1) or (6.16).

The direction of the inequality can vary from one problem to another, but the residual

takes a nonzero value only at shocks. In essence, the entropy viscosity (EV) method

uses the fact that the residual approaches a Dirac delta function centered at shocks

to construct a nonlinear dissipation. The resulting dissipation is small away from
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shocks and has a su�cient amount to regularize the shocks. The details of EV for

conservation laws are described in detail in [24] but we summarize its most important

features here.

Consider the conservation law whose right hand side has been replaced by a

viscous term, ut +∇ · f(u) = ∇ · (ν∇u), with ν = νh(x, t) given by

νh(x, t) := min(νEV , νmax), (6.21)

where νEV is the entropy-based viscosity and νmax is a viscosity whose size depends

on the largest eigenvalue of the �ux function f(u), representing the maximum wave

speed. The discretized entropy-based viscosity νEV is then given by

νEV (x, t) = αEVC1(uh)h
β|rEV (uh)|, (6.22)

where β is a positive scalar, αEV is a user de�ned constant and C1(uh) is some

PDE-speci�c normalization.

At shocks, the entropy residual approaches Dirac delta function, so we instead

use

νmax(x, t) = αmax hmax
y∈Vx

C2(uh(y, t)), (6.23)

where αmax is another user de�ned constant, C2 serves as the maximum wave speed

and Vx is some neighborhood of x. The Vx neighborhood can either be �local�, i.e.

containing only a few cells around x, or �global�, i.e. Vx = D, where D is the domain

of the PDE. In this work, we use global Vx.

In recent papers, the parameter β is chosen to be 2, but we found that this

may prevent convergence for moving shocks, see [46] where we also argue that β =

1 is a more appropriate choice. In essence our argument is as follows. As the

entropy residual approaches a Dirac delta distribution, a consistent discretization of
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the residual with a single shock must satisfy

Nx−1∑
j=0

hj(rEV )j = 1, (6.24)

where hj = xj+1 − xj. Thus, we expect (rEV )j ∼ h−1
j near the shock. When β = 2,

the two terms νEV and νmax are both O(h). Since the parameters are tuned on a

coarse grid and the terms C1 and C2 in (6.22)-(6.23) also change with the grid size,

the selection of the minimum of νEV and νmax does not necessarily �converge� as the

grid gets re�ned. If instead we choose β = 1, then νEV = O(1) while νmax = O(hj),

and the particular choice of αEV is thus irrelevant in the limit hj → 0 as the selection

mechanism will eventually select νmax at the shocks.

While the explicit formula for C1 and C2 varies from one PDE to another, the

core of the entropy viscosity method remains the same. The size of the entropy

residual gives us a sense of relative distance to the shock, which is then used to take

the following actions: near a shock, EV uses su�ciently large dissipation, νh = νmax,

and away from a shock, EV uses entropy-based dissipation, νh = νEV .

6.5 Numerical Examples

We start by con�rming that the rates of convergence, 2m+1, (in space) are the same

for the new �ux-conservative method as for the original method.

6.5.1 Convergence for a Smooth Solution

We solve Burgers' equation on the domain x ∈ [−π, π] and impose periodic boundary

conditions. The initial data is u(x, 0) = − sin(x) + 0.3 and we evolve the solution

until time t = 0.4. The timestep is chosen as ∆t = CFLhx/maxx |u(x, 0)|, with
CFL = 0.1.
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Table 6.2: Convergence study of smooth solution to Burgers' equation

hx π/2 π/4 π/8 π/16 π/32

l∞-err m = 1 2.30(-01) 5.85(-02) 1.09(-02) 1.42(-03) 1.80(-04)
Rate 1.97 2.43 2.94 2.98
l∞-err m = 2 4.85(-02) 5.47(-03) 2.19(-04) 7.25(-06) 1.97(-07)
Rate 3.15 4.64 4.92 5.20
l∞-err m = 3 1.09(-02) 6.59(-04) 7.71(-06) 4.70(-08) 2.73(-10)
Rate 4.04 6.42 7.36 7.43

In Table 6.2, we display the maximum error at the �nal time computed against a

reference solution computed using m = 5 and hx = π/64. We can see from the table

that the rates of convergence are consistent with the predicted rate 2m+ 1.

We next present a sequence of experiments displaying the performance of the

Hermite-Runge-Kutta-4-Entropy-Viscosity method for Euler's equations (with arti-

�cial viscosity).

6.5.2 Euler's equations in One Dimension

We consider Euler's equations which represent conservation of mass, momentum, and

energy,


ρ

ρu

E


t

+


ρu

ρu2 + p

(E + p)u


x

=


0

0

0

 . (6.25)

Here, ρ is the mass density, ρu is the momentum density, u is the velocity, and E

is the internal energy per unit mass. Furthermore, we assume an ideal gas with the
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equation of state

E =
p

γ − 1
+
ρu2

2
, (6.26)

where γ = 1.4 is the adiabatic index and p is the pressure.

To regularize Equation (6.25), we add a viscous term (ν(ρ, ρu,E)Tx )x, where the

coe�cient ν is obtained using the entropy viscosity method. Thus, the viscous Eulers'

equations can be written as
ρ

ρu

E


t

+


ρu− νρx

ρu2 + p− ν(ρu)x

(E + p)u− νEx


x

=


0

0

0

 . (6.27)

We note that an alternative to this simple viscosity would be to use the full Navier-

Stokes equations.

Entropy Viscosity (EV) method for 1D Euler's equations

The discretized viscosity coe�cient ν = νh is given in terms of primitive variables

ρ, p, and u,

νh = min(νmax, νEV ), (6.28)

νEV =αEV hx ρh(x, t)|rEV (x, t)|, (6.29)

νmax =αmax hx ρh(x, t) max
y∈D

(
|uh(y, t)|+

√
γTh(y, t)

)
, (6.30)

where Th = ph/ρh is the temperature, hx is the grid size and

rEV = ∂tSh + ((uS)h)x ≥ 0, (6.31)

is the entropy residual for the entropy function Sh(ph, ρh) = ρh
γ−1

log
(
ph
ργh

)
and its

corresponding entropy �ux (uS)h.
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An Improved Entropy Viscosity

The entropy viscosity method discretizes the entropy residual using the numerical

solution. In theory, the entropy residual is large at shocks, and zero at contact

discontinuities (where no arti�cial viscosity is needed). However, our experience

is that the discretization of the entropy equation may also trigger the maximum

viscosity at contact discontinuities. To the left in Figure 6.4, we see a space-time

diagram of the entropy residual for Sod's problem in logarithm scale. Note that a

relatively large amount of residual is produced at the contact discontinuity.

Figure 6.4: Space time diagram of the magnitude of entropy residual |rE| (left) and
|∆u rE| (right) for Sod's problem. Blue is small, red is big. Simulations performed
with νS ∝ rE (left) and νS ∝ ∆u rE (right). With the new sensor |∆u rE|, the
residual, hence the viscosity is driven to zero along contact discontinuity (thicker red
line in the middle disappears with the new sensor).

To eliminate this undesired behavior along the contact discontinuity, we use the

fact that the velocity of the �uid, u, is a Riemann invariant along the second charac-

teristic �eld. Since u is continuous at the contact discontinuity but not at a shock,

the product of the increment in the velocity ∆uj and (rE)j is small at contact dis-

continuities but still large at shocks. We incorporate the term ∆u into the improved

entropy viscosity

νEV = αEV hx ρh(x, t)|∆u||rEV (x, t)|.
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Figure 6.5: Numerical solution (dotted lines) obtained using entropy viscosity pro-
portional to |rE| (left) and |∆u rE| (right) for Sod's problem are plotted against the
exact solution (solid lines). We plot density (blue), velocity (green), and pressure
(red). Contact discontinuity is sharper using the new sensor |∆u rE|.

To this end we take νE and νmax as a piecewise constant function on each cell.

Thus, we compute the discretized density ρh, velocity uh, temperature Th, entropy

function Sh and entropy �ux uSh at cell center in pointwise manner. Now, to get

the entropy residual given in (6.31), we compute temporal and spatial derivatives

using �nite di�erences. Using the notation Sh = Snj to denote the approximate

�ux function S at x = xj, t = tn, we discretize the term ∂tS
n
j using second order

Backward Di�erence formula

∂tS
n
j =

3Snj − 4Sn−1
j + Sn−2

j

2∆t
. (6.32)

Similarly, the term ∂x(uS)nj is approximated by the centered �nite di�erence

∂x(uS)nj =
(uS)nj+1 − (uS)nj−1

2hx
. (6.33)
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hx 1.25(-02) 6.25(-03) 3.13(-03) 1.56(-03) 7.81(-04) 3.91(-04)
L1 error 3.44(-03) 2.29(-03) 1.40(-03) 7.96(-04) 4.46(-04) 2.49(-04)
Rate 0.59 0.71 0.81 0.83 0.84

Table 6.3: Convergence study on Euler's equation with stationary shock.

6.5.3 Experiments in One Dimension with Euler's Equations

We now present results obtained using our Hermite-RK4-EV method for a stationary

shock, the Lax, the Sod, and the Shu-Osher problem. For experiments where we use

more than one resolution, the EV parameters are tuned on the coarsest grid. In the

1D Euler's equations simulations, the timestep is chosen as ∆t = CFLhx/maxx |(u±
c)(x, 0)|, where c =

√
γp/ρ is the speed of sound, with CFL values given in Table

6.3.

Stationary shock problem

By solving the Riemann problem, we decide the states corresponding to a stationary

shock. The goal of this experiment is to investigate the stability and accuracy of

EV in the presence of shocks. Since small oscillations coming from shocks could

potentially pollute the �smooth� regions, this is also a test for how well EV removes

numerical artifacts. The computational domain isD = [−0.5, 0.5] with the stationary

shock given by

(ρ, u, p)(x, t) =

(0.84, 1.08, 0.56) x < 0,

(1, 0.9, 0.71) x > 0.
(6.34)

The boundary condition are imposed by setting the solution at the boundary so

that it coincides with the solution at initial time. We perform a grid re�nement

study and report the errors in the density in Table 6.3. We also present the ratio
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between successive errors. It appears that the rate of convergence for the L1 error is

approaching 7/8.

Lax's and Sod's Shock Tube Problems

Lax's and Sod's problems come from physical experiments in which a gas tube is

separated by a membrane into two sections. The gas in each section is uniform in

the y and z direction, so the problem is modeled as a 1-dimensional shock tube. The

gas in the left section is kept at a di�erent state than the gas in the right section. At

time t = 0, the membrane is punctured. In the problem setup, the Euler's equations

are solved on the domain D = [−0.5, 0.5] with initial data

(ρ, u, p)(x, 0) =

(0.445, 0.698, 3.528) x < 0

(0.5, 0, 0.571) x > 0
(6.35)

for Lax, and

(ρ, u, p)(x, 0) =

(1, 0, 1) x < 0

(0.125, 0, 0.1) x > 0
(6.36)

for Sod. For both problems, we impose �xed boundary condition so that the solution

on the boundary is the same as at the initial time. The solution is computed up to

time t = 0.16 for Lax's problem and time t = 0.1644 for Sod's problem.

The solution to Riemann problems such as Lax's and Sod's shock tubes contains

3 waves propagating from the discontinuity at the initial time. The second wave is a

contact discontinuity, where the discontinuity is translated over time. The �rst and

third waves are nonlinear, and can take either rarefaction waves or shock waves.

The results for density ρ, velocity u and pressure p are plotted against the exact

solution in Figure 6.6. In each plot, we use Nx = 100 elements. The entropy

viscosity parameters used are given in Table 6.4. In both problems, the shocks are
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Problem CFL m αEV αmax
Lax 0.2 3 0.5 0.08
Sod 0.15 3 0.2 0.08
Shu-Osher 0.15 3 0.01 0.05
Stationary shock 0.2 3 10 0.3

Table 6.4: Parameters for examples in 1D Euler's equations.

resolved better than the contact discontinuities. Although the shock strength is only

of medium size for both problems, some experts considered these tough test cases

for non-characteristic-based high order schemes [61].
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Figure 6.6: Left: Lax shock tube, right: Sod shock tube. Dashed lines are the
numerical solutions, solid lines are the exact solutions. Numerical solutions are ob-
tained using Nx = 100 elements. The color blue represents density, green represents
velocity, and red represents pressure.
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The Shu-Osher Problem

The Shu-Osher problem poses di�culties for numerical methods due to the sinusoidal

interacting with the shock. Here the domain is D = [−5, 5] with initial data

(ρ, u, p)(x, 0) =

(3.86, 2.63, 10.33) x < −4,

(1 + 0.2 sin(5x), 0, 1) x > −4,
(6.37)

and with �xed boundary condition so that the solution on the boundary coincides

with the solution at the initial time. The solution is computed up to time t = 1.8

and compared against a computed solution on a much �ner grid. We use Nx = 80

to obtain the numerical solution in Figure 6.7, where we interpolate the solution

on to a �ner grid. The �exact� solution is computed on a grid with Nx = 1280.

Note that even if we use a coarse grid, we can still get roughly the shape of the

solution, especially away from the shock. However, when smooth waves are present

(see blue oscillatory line to the left of shock) and too close to the shock, these waves

get damped.

6.5.4 Euler's equations in Two Dimensions

The two dimensional inviscid Euler equations are given by
ρ

ρu

ρv

E


t

+


ρu

ρu2 + p

ρuv

(E + p)u


x

+


ρv

ρuv

ρv2 + p

(E + p)v


y

=


0

0

0

0

 . (6.38)

Here, ρ is the mass density, ρu and ρv are the momentum density, u and v are the

velocity in x and y directions respectively and E is the internal energy per unit mass.

Furthermore, we assume an ideal gas with equation of state

E =
p

γ − 1
+
ρ(u2 + v2)

2
, (6.39)
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Figure 6.7: Shu-Osher problem. Dashed lines are the numerical solutions, solid lines
are the �exact� solutions. Numerical solutions are computed using Nx = 80 elements,
�exact� solutions are computed on a much �ner grid, with Nx = 1280 elements. The
color blue represents density, green represents velocity, and red represents pressure.

where γ = 1.4 is the adiabatic index and p is the pressure. For all experiments below,

the timestep is chosen as ∆t = CFLhx/maxx |(u± c)(x, 0)|, where c =
√
γp/ρ is the

speed of sound, with CFL values given in Table 6.5. We then add viscosity term

∇ · (ν∇(ρ, ρu, ρv, E)T ) to regularize the inviscid equation.

Problem CFL m αEV αmax
Explosion/implosion 0.2 3 0.1 0.2
Vortex-shock interaction 1 0.2 3 0.01 0.04
Vortex-shock interaction 2 0.2 3 0.05 0.07
Jet 0.2 3 0.03 0.2

Table 6.5: Parameters for examples in 2D Euler's equations.
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6.5.5 Entropy Viscosity Method for Euler's Equations in Two

Dimensions

The entropy viscosity is identical to the 1D version given in (6.28), with the exception

that it takes the velocity in both directions into account.

νh = min(νmax, νEV ), (6.40)

νEV =αEV h ρh(x, t)(|∆u|+ |∆v|)|rEV (x, t)|, (6.41)

νmax =αmax h ρh(x, t) max
y∈D

(√
u2
h(y, t) + v2

h(y, t) +
√
γTh(y, t)

)
, (6.42)

where Th = ph/ρh is the temperature, h = min(hx, hy) is the grid size, ∆u and ∆v

are the value of the jumps in the velocity in x and y directions respectively, and

rEV = ∂tSh + ((uS)h)x + ((vS)h)y ≥ 0. (6.43)

To discretize the entropy residual rEV , we again use BDF for the time derivative

and centered �nite di�erences for the spatial derivatives,

∂x(uS)njk =
(uS)nj+1,k − (uS)nj−1,k

2hx
, (6.44)

∂y(vS)njk =
(vS)nj,k+1 − (vS)nj,k−1

2hy
. (6.45)

On the domain [xL, xR]×[yB, yT ], we use the subscript jk to indicate that the variable

attached is evaluated at x = xL + jhx and y = yB + khy.

Explosion/Implosion Test

First we solve a radially symmetric Riemann problem from Toro [65]. The compu-

tational domain is D = [−1, 1] × [−1, 1], and the initial data corresponding to an

expanding wave is

(ρ, u, v, p)(r, t) =

(1, 0, 0, 1) r < 0.4,

(1, 0, 0, 0.1) r > 0.4.
(6.46)
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Figure 6.8: Solution to explosion/implosion problem at time t = 0.25. To the left:
explosion, to the right: implosion. The numerical solutions (circles) are computed
using Nx = Ny = 100 elements.

For an imploding wave, the initial data is,

(ρ, u, v, p)(r, t) =

(1, 0, 0, 1) r > 0.4,

(1, 0, 0, 0.1) r < 0.4.
(6.47)

The boundary conditions are imposed by setting the solution on the boundary so

that it stays the same as the solution at the initial time. The simulation is performed

until time t = 0.25, before any waves reach the boundary of the domain. We plot the

2D solution in Figure (6.8). In Figure (6.9), we present a cross section of the density

at time t = 0.25 with Nx = Ny = 100 elements against computed �exact� solution

obtained with Nx = Ny = 400 elements.

Shock Vortex Interaction

Next we consider the interaction of a shock and a vortex. In general shock-vortex

interactions can produce small scales in the form of acoustic waves, and other in-

teresting wave patterns. It has received substantial interest in the literature, see for

example [14,15,57,74].
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Figure 6.9: Cross section of the density for radially symmetric problem along x axis
at time t = 0.25. To the left: explosion, to the right: implosion. The numerical
solutions (circles) are computed using Nx = Ny = 100 elements, �exact� solutions
(solid lines) are computed using Nx = Ny = 400 elements.

In this experiment, a strong stationary shock with Mach number 2/
√

1.4 ≈ 1.69

collides with a weak vortex with a Mach number 6/2π ≈ 0.81. The computational

domain is D = [−9, 3]× [−4, 4] and the initial data is

(ρ, u, v, p)(r, t) =

(ρvor, uvor, vvor, pvor) x > −4,

(2.18,−0.92, 0, 3.17) x < −4,
(6.48)

where

ρvor =

[
1− (γ − 1)β2

8γπ2
e1−x2−y2

]1/(γ−1)

(6.49)

uvor = 2− β

2π
ye(1−x2−y2)/2 (6.50)

vvor =
β

2π
xe(1−x2−y2)/2 (6.51)

pvor = ργ, (6.52)

and β = 6.

As the vortex passes through the shock, the shock is distorted and the vortex

is compressed into an elliptical shape. This phenomena is due to the fact that the
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vortex is relatively weak compared to the shock. The results are consistent with [74].

In Figure 6.10, we compare snapshots of the density Schlieren using two di�erent sets

of entropy viscosity parameters, see Table 6.5. Although the schlierens are plotted on

the same color scale, notice that the structures are more pronounced in the pictures

on the right column.

Fluid Flow in Jet

As a �nal example we simulate a planar Mach 2/
√

1.4 ≈ 1.69 jet. The domain

D = [−15, 55]× [−17.5, 17.5] is discretized using of 500× 250 cells. The initial data

is

(ρ, u, v, p)(x, y, t) = (1, 0, 0, 1). (6.53)

We model the jet nozzle by a simple momentum forcing over a 1× 1 patch at the

left edge of the computational. The jet is started impulsively causing a relatively

strong compression to be generated. This wave sharpens up to a shock wave that is

handled by the entropy viscosity as it is propagated from the nozzle and out into a

damping absorbing layer of super-grid type, see [1].

In Figures (6.11)-(6.13) we display snapshots of the vorticity, dilatation and den-

sity Schlieren. We note that the viscosity we use here is purely for the regularization

of shocks so there is no reason to believe that the �ow that we compute resembles re-

ality. Nevertheless, the example illustrates the new methods ability to handle rapidly

started �ows. Also, it is likely that the particular form of the arti�cial viscosity does

not e�ect the robustness of the method.
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6.6 Conclusion

In conclusion we have demonstrated that �ux-conservative Hermite methods are

suitable for solving nonlinear conservation laws, especially in the presence of shocks.

The new methods still converges at a rate of (2m+ 1) for smooth problems.

The adaptation of the entropy viscosity method to Hermite methods successfully

suppresses oscillations near shocks, but we �nd that our current implementation

is quite dissipative when solving the Shu-Osher problem. For contact waves we

proposed a modi�cation to the entropy viscosity method which eliminates a large

amount of the spurious viscosity at contact discontinuities.
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Figure 6.10: The density schlieren at di�erent times, from top to bottom t ≈ 1.97, t ≈
2.95, t ≈ 3.94 and t ≈ 4.92. Left: vortex shock interaction 1, right: vortex interaction
2, with parameters given in Table 6.5. The numerical solutions are obtained with
Nx = 720, Ny = 480 elements.
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Figure 6.11: The vorticity at di�erent times, from left to right, top to bottom t =
103.26, t = 118.93, t = 134.89, and t = 150.14. The numerical solutions are obtained
with Nx = 500, Ny = 250 elements.
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Figure 6.12: The dilatation at di�erent times, from left to right, top to bottom
t = 103.26, t = 118.93, t = 134.89, and t = 150.14. The numerical solutions are
obtained with Nx = 500, Ny = 250 elements.
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Figure 6.13: The density schlieren at di�erent times, from left to right, top to bottom
t = 103.26, t = 118.93, t = 134.89, and t = 150.14. The numerical solutions are
obtained with Nx = 500, Ny = 250 elements.
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Chapter 7

On the scaling of entropy viscosity in

high order methods

This chapter has been accepted for publication as part of ICOSAHOM 2016 proceed-

ing. To appear in Springer Lecture Notes in Computational Science and Engineering

(Book 119) [46].

Abstract: In this work, we outline the entropy viscosity method and discuss how

the choice of scaling in�uences the size of viscosity for a simple shock problem. We

present examples to illustrate the performance of the entropy viscosity method under

two distinct scalings.

7.1 Introduction

Hyperbolic partial di�erential equations (PDE) are used to model various �uid �ow

problems. In the special case of 1-dimensional linear constant coe�cient scalar hy-

perbolic problems, the solutions to these PDE are simply a translation of the initial
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data. However, for nonlinear problems the solution may deform, and as a result,

shock waves can form even if the initial data is smooth [50].

In computational �uid dynamics, it is desirable that numerical methods capture

shock waves and maintain a high accuracy for smooth waves. Low order methods

have su�cient numerical dissipation to regularize shock waves but obtaining accurate

solutions in smooth regions can become expensive. On the other hand, high order

methods are capable of achieving high accuracy at a reasonable cost. Their low

numerical dissipation enables such accuracy, but on the downside, it limits their

ability to regularize shock waves.

Various techniques have been implemented to capture shocks while maintaining

high accuracy, at least away from shocks. There are two major classes of shock

capturing techniques: shock detection techniques, where we �nd slope limiters [50],

Essentially Non-Oscillatory (ENO) and Weighted ENO (WENO) [60], and arti�cial

viscosity techniques, where we �nd �ltering [56,72], the PDE-based viscosity method

[41], the entropy viscosity method [24], among others.

In this work, we focus on the entropy viscosity method. In essence, the entropy

viscosity method provides shock capturing without compromising the high accuracy

away from the shock. An important advantage of this method is that it generalizes

very easily to higher dimensions and unstructured grids.

As a model problem, we consider Burgers' equation

ut + f(u)x = 0, (7.1)

where f = u2

2
. Physically correct solutions to (7.1) can be singled out by requiring

that they satisfy an entropy inequality such as

rEV = Et + Fx ≡
(
u2

2

)
t

+

(
u3

3

)
x

≤ 0. (7.2)
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The entropy residual, rEV , is zero wherever u is smooth. If the solution u contains

a shock, then the entropy residual takes the form of a negative Dirac distribution

centered at the location of the shock, xs, i.e. rEV = −C δ(x − xs). The property

that the entropy residual is unbounded at a shock was �rst used by Guermond and

Pasquetti in [24], as a way to selectively introduce viscosity. The arti�cial viscosity,

ν, proposed in [24], de�ned as the minima of two viscosities

ν = min(νmax, νEV ), (7.3)

becomes the coe�cient of the viscous term in the viscous Burgers' equation,

ut + f(u)x = (νux)x. (7.4)

Here, νmax is the Lax-Friedrich viscosity whose size depends on discretization and

the largest eigenvalue (in absolute value), λLF, of the �ux Jacobian, Df(u)
Du

. The sec-

ond viscosity νEV is proportional to the magnitude of the entropy residual (in fact, a

discretization of the entropy residual) and will thus be zero (or small after discretiza-

tion) away from discontinuities. In theory, the entropy residual becomes unbounded

at a shock, numerically however, the entropy residual rEV remains bounded with

the size of the residual depending on the discretization size. As we will see below,

this subtle di�erence has consequences for how to choose the scaling of the viscosity

terms in the entropy viscosity method.

On a grid with step size h, the second viscosity νEV can be expressed as

νEV (x) = αEV h
β|rEV (x)|, (7.5)

with a parameter αEV that requires tuning. In recent papers on entropy viscosity

method, see e.g. [26�29, 76], the parameter β is chosen to be 2, but the original

paper [25] uses β = 1. It is unclear to us why the later works prefer β = 2. Here,

we will present analysis and computational results that suggest the original scaling

β = 1 is a more natural choice. We note that the entropy residual is typically scaled
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by ‖E − E‖∞, with the over-bar indicating a spatial average, but as this quantity

is roughly constant in the problems presented here, we omit it for simplicity and

without consequence.

The rest of the chapter is organized as follows. In Section 7.2, we describe di�erent

discretizations of (7.4) that we consider in this chapter; in Section 7.3, we present

an analysis of how the entropy viscosity ν depends on the two viscosities, νEV and

νmax, under di�erent scaling for a model problem. In Section 7.4, we then conduct

experiments with the entropy viscosity method where β takes on values 1 or 2 and

compare the results.

7.2 Numerical methods

We will consider the discretization of (7.4) by our conservative Hermite method [45],

a standard discontinuous Galerkin (dG) method [39] and a simple �nite volume type

discretization [50]. For all the discretizations we let the domain xL ≤ x ≤ xR be

discretized by the regular grid xi = xL + i h, i = 0, . . . , n, h = (xR − xL)/n.

The degrees of freedom for the �nite volume method are cell averages centered at

the grid points. For the Hermite method, the degrees of freedom are the coe�cients

of node centered Taylor polynomials of degree m and for the dG method, they are

the (m + 1) coe�cients of element-wise (we take an element to be Ωi = [xi−1, xi])

expansions in Legendre polynomials. For smooth solutions the spatial accuracy of

the Hermite method is 2m+ 1 and m+ 1 for the dG method.

All three methods use the classic fourth order Runge-Kutta method to evolve the

semi-discretizations in a method-of-lines fashion.

In the Hermite method, we evaluate the �uxes and their derivatives at the nodes

(element edges) for the four stages in the RK method. Precisely, for the �rst stage
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we compute the slope fh1 = 1
2
T [(uh1)2]− ν

h

duh1
dx

for the Taylor polynomial uh1 = uh ap-

proximating the solution at the �rst stage. Here T [(uh1)2] is the truncated polynomial

multiplication of uh1 with itself and
duh1
dx

is the derivative of the polynomial. At the

next stage, the solution is uh2 = uh+ (∆t/2)
2

dfh1
dx
, the slope is fh2 = 1

2
T [(uh2)2]− ν

h

duh2
dx

and

so on. Once the stage slopes fhs , s = 1, . . . , 4 and their spatial derivatives are known,

we perform a Hermite interpolation to the element centers of the solution and the

spatial derivatives of the stage slopes. These are then used to evolve the element

centered Hermite interpolant of uh to t = tn + ∆t/2. As the Hermite interpolant

is of higher degree than the original Taylor polynomial, we conclude a half-step by

truncating it to the appropriate degree. To advance the solution a full time step, the

half-step process is repeated starting from the element centers.

To handle the arti�cial viscosity in the dG method, we use the approach of Bassi

and Rebay [6] with a Lax-Friedrichs �ux for the advective term and alternating �uxes

for the viscous term. The nonlinear terms are constructed explicitly and de-aliased

by over-integration [42].

For the �nite volume method, we let ui ≈ u(xi) be a grid function approximating

the solution and fi+ 1
2

= fi+ 1
2
(ui, ui+1) be an approximation to the �ux at xi+ 1

2
. To

compute the time derivatives, we use the spatial approximation

dui
dt
≈
fi+ 1

2
− fi− 1

2

h
, (7.6)

where

fi+ 1
2
(ui, ui+1) =

1

2

(
ui + ui+1

2

)2

−
(
νi + νi+1

2

)
ui+1 − ui

h
. (7.7)

When νi = 0, the above discretization is linearly stable (when paired with a suitable

time-stepping method) but is not non-linearly stable, and we thus add arti�cial

viscosity to stabilize it.

For all three discretizations, we approximate the time derivative of the entropy

function, Et, by a backward di�erence. This approach is explicit as we use the current
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solution to compute E at the current time before evolving the solution in time. The

residual (and hence the viscosity) is kept on each element / grid-point over each step.

To approximate the entropy �ux derivative Fx using the Hermite method, we

compute the derivative of the truncated polynomial multiplication T [uhT [(uh)2]] at

the node. For the dG method, we evaluate the �ux F on a Legendre-Gauss-Lobatto

(LGL) grid and di�erentiate it to get an approximation for Fx. The residual on an

element is taken to be the maximum of the absolute value of the residual on the LGL

grid. In the �nite volume method Fx is approximated by

dFi
dx

=
Fi+ 1

2
− Fi− 1

2

h
, where, Fi+ 1

2
=

1

3

(
ui + ui+1

2

)3

.

We note that more sophisticated discretizations of the entropy residual could be

considered. In particular, a higher order approximation to rEV would result in a

higher rate of convergence for smooth solutions, but as we are mainly concerned

with the scaling β, we did not pursue such discretizations here. In fact, in our

experience, the results concerning the choice of scaling are not a�ected by the order

of the accuracy of the approximation to rEV . This will be discussed in Section 7.3.

We also de�ne νmax to be the classical Lax-Friedrich viscosity, which for Burgers'

equation takes the form

νmax = αmaxhmax |u|, (7.8)

where the maximum is taken globally.

Finally, for the purpose of comparison we also present some results computed

using the sub-cell resolution smoothness sensor of Persson and Peraire, [56]. The

smoothness sensor compares the L2 energy content of the highest (Fourier or expan-

sion) mode with the total L2 energy on an element and then maps its ratio (which

is an indicator of the smoothness) into the size of the arti�cial viscosity. Precisely,

if the approximate dG solution on an element is uh =
∑m

k=0 ûkPk, with Pk being an
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orthogonal basis, we compute the smoothness as s = log10(‖ûmPm‖2/‖uh‖2) and the

viscosity as

ν =


0 s < s0 − κ,
ε0h s > s0 + κ,

ε0h
2

(
1 + sin

(
π(s−s0)

2κ

))
otherwise.

When applied to the Hermite method, we �rst project the Taylor polynomials

centered at two adjacent grid-points into an orthogonal Legendre expansion on the

element de�ned by the grid-points and then proceed as above.

7.3 Impact of the h-scaling on the selection mecha-

nism

To study how the selection mechanism depends on the shock speed and the size of the

jump, consider a solution of the Burgers' equation consisting of a Heaviside function

H with left state ul and right state ur, given by

u(x, t) = ul + ∆uH (x− vst) . (7.9)

This corresponds to a shock of size |∆u| = |ur−ul| moving with speed vs = 0.5(ul +

ur). Solutions of the form (7.9) always have a negative ∆u value since Lax entropy

condition for Burgers' equation dictates ul = f ′(ul) > vs > f ′(ur) = ur.

For simplicity, we use the short hand notation H for H (x− vst). A direct com-
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putation

ut +

(
u2

2

)
x

= (ul + ∆uH (x− vst))t

+
1

2
(u2

l + 2ul∆uH (x− vst) + (∆u)2H (x− vst))x

= −vs∆uH ′ +
(
ul∆u+

(∆u)2

2

)
H ′

=

(
−ul + ur

2
(∆u)H ′

)
+

(
(∆u)ulH

′ +
(∆u)2

2
H ′
)

= −∆u

(
ul + ul + ∆u

2

)
H ′ + ∆u

(
2ul + ∆u

2

)
H ′

= 0,

shows that (7.9) is a solution of (7.1). Further, it can be shown that the entropy

residual (7.2) for (7.9) is

rEV =
(∆u)3

12
H ′(x− xs) =

(∆u)3

12
δ(x− xs). (7.10)

That is, the size of the entropy residual grows with the cube of ∆u.

Now, by the properties that de�ne the Dirac delta function δ, we have∫ ∞
−∞

δ(x)dx = 1. (7.11)

Thus, a consistent discretization of the Dirac delta function δ0, ..., δn on a grid

x0, ..., xn must obey the condition

n−1∑
j=0

hjδj = 1, (7.12)

where hj = xj+1 − xj. For any approximation with a �nite width stencil, we must

have δj ∼ h−1
j and we thus expect rEV to behave like (∆u)3/h on a uniform grid. We

therefore proceed with the analysis using the discrete approximation rEV = (∆u)3/h.

Using this expression for rEV , we estimate the viscosity ν by the minimum of

νEV = αEV h
β−1|(∆u)3| and νmax = αmaxhmax(|ul|, |ur|). (7.13)
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Table 7.1: Size of µE and µmax for di�erent size of shock speed (vs) with respect to
the size of the jump (∆u) in the entropy viscosity method.

Case νEV νmax

|vS| � |∆u| αEV h
β−1|∆u|3 αmaxh|vs|

|vs| ≈ |∆u| αEV h
β−1|∆u|3 2αmaxh|vs|

|vs| � |∆u| αEV h
β−1|∆u|3 0.5αmaxh|∆u|

The comparison between the size of νEV and νmax in various scenarios is reported

in Table 7.1. If β = 2, then the two viscosities νEV and νmax scale as h. For a

problem with multiple shocks, the homogeneity in h-scaling introduces an additional

di�culty in determining αEV . Should it be chosen based on the largest or smallest

shock? What if new shocks appear during the course of the computation? To avoid

answering these questions, we instead consider β = 1. Now νEV = O(1) while

νmax = O(h), and the particular choice of αEV is thus irrelevant since as h→ 0, the

selection mechanism will eventually select νmax at the shocks. We will provide an

example to illustrate the two-shock dilemma in Section 7.4.3.

7.4 Experiments

In this section, we describe the experiments and present a convergence study in L2

norms, and also study the e�ects of the scaling in the entropy viscosity method on the

convergence under grid re�nement. For all the examples we solve Burgers' equation

and vary the initial data. In each problem, we report the L2-errors (the L1-errors

behave quantitatively similar).

The solutions are obtained using the following methods: H1 and H2 refer to

Hermite-entropy viscosity method for β = 1 and β = 2 respectively, DG1 and DG2

refer to dG-entropy viscosity method for β = 1 and β = 2 respectively, FV1 and FV2

refer to �nite volume-entropy viscosity method with β = 1 and β = 2 respectively,
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DGP and HP refer to dG and Hermite method with smoothness sensor respectively.

The size of the time step is chosen close to the stability limit, which in the cases

considered here results in the error being dominated by the spatial discretization.

Figure 7.1: Convergence of the di�erent methods for stationary (left) and moving
(right) shocks.

7.4.1 A single shock

In this example, we compute the solution to (7.1) on the domain D = [−1, 1] with

the initial data imposed as the exact solution

u(x, t) =

−0.5 + vs, x ∈ [−1, vst),

0.5 + vs, x ∈ [vst, 1],
(7.14)

at time t = 0. Here vs is the shock speed which we choose to be either vs = 0

corresponding to a stationary shock or vs = 0.1 corresponding to a moving shock.

We solve until time t = 1 for the two di�erent shock speeds and perform a grid

re�nement study using a dG method of order 5, a Hermite method of order 9, and
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the Finite Volume method, all using the classical fourth order Runge-Kutta time

stepping. For the Hermite method, we �x (max |u|)∆t/h = 0.3, for the dG method,

the time step is set as ∆t/h = 0.0625 and for the Finite Volume method, the time

step is set according to (max |u|)∆t/h = 0.9.

The L2 norm of errors in the numerical solution uh are plotted against the di�erent

grid sizes for di�erent methods, see Figure 7.1. In the stationary shock experiment,

FV1 and FV2 use (αEV , αmax) = (0.7, 0.5) and (10, 0.5) respectively, DG1 and DG2

use (αEV , αmax) = (1, 0.25) and (10, 0.25) respectively, H1 and H2 use (αEV , αmax) =

(1, 0.4) and (10, 0.4) respectively, DGP and HP use (s0, κ, ε0) = (−1, 2, 0.5) and

(log10(1/256), 1, 0.125) respectively.

The parameters for moving shock experiment are (αEV , αmax) = (0.7, 0.5) and

(10, 0.5) for FV1 and FV2 respectively, (αEV , αmax) = (1, 0.25) and (10, 0.25) for

DG1 and DG2 respectively, (αEV , αmax) = (1, 0.4) and (10, 0.4) for H1 and H2 re-

spectively, (s0, κ, ε0) = (2 log10(1/256), 1, 0.5) and (log10(1/256), 1, 0.125) for DGP

and HP respectively.

To the left in Figure 7.1, we display convergence results for the stationary shock.

In this case, the results indicate that all methods produce convergent solutions with

roughly the same rates of convergence. The rate of convergence is limited by the

smoothness of the solution but as can be seen in the same �gure, the error levels are

lower for the higher order methods. It is interesting to note that the smallest errors

are observed for the computations using the smoothness-based sensor.

The results for the moving shock, displayed to the right in Figure 7.1, are quite

di�erent. Now, for the high order methods, we observe convergence only when we

use the entropy viscosity with β = 1. When we use the entropy viscosity with β = 2

or when we use the smoothness based sensor, the errors clearly saturate as the grid

is re�ned. The errors for the low order Finite Volume method are still reduced with
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Figure 7.2: Average in time of nm, number of elements using Lax-Friedrich viscosity
νmax, versus the number of elements (n). Left: stationary shock, right: moving shock.

the grid size, independent of the scaling in the entropy viscosity method.

To understand why the convergence results obtained with β = 1 and β = 2 in

the moving shock example do not agree, we study where the Lax-Friedrich viscosity

νmax is activated in the vicinity of the shock. We know that when the viscosity is

chosen to be just the Lax-Friedrich type viscosity, then under a suitable Courant

number, the solution will converge to the correct vanishing viscosity solution of the

conservation law [50].

It seems that the Lax-Friedrich viscosity is necessary in some neighborhood of

the shock, and the size of this neighborhood becomes an important factor in the

convergence of the solution to the moving shock problem. In Figure 7.2, we plot

the average (in time) of the number of elements nm which use the Lax-Friedrich

viscosity νmax as a function of total number of elements n for the stationary shock

(left) and for the moving shock (right). We see that nm is roughly constant for both

β = 1 and β = 2 in the stationary shock. In the moving shock problem, nm stays

constant for β = 2 as in the stationary shock, but grows slowly for β = 1 (note the
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log-scale). While the growth in nm is irrelevant in the convergence in the stationary

shock example, it seems to play an important role in determining the convergence in

the moving shock example.

7.4.2 Sinusoidal to N wave

Next, we consider the smooth 2-periodic initial data

u(x, 0) = − sin(πx) + 0.5, (7.15)

which develops into a single N wave.

In Figure 7.3, we present the L2 norm of the errors at t = 0.1 before the shock

forms (left) and at t = 1 after the shock forms (right). The spatial and temporal

discretization of the PDE itself is performed with a high order method, so rate of

convergence that we observe in Figure 7.3 is limited by either the discretization of the

arti�cial viscosity or the smoothness of the solution, whichever is more restrictive.

For this N-wave experiment, FV 1 and FV 2 use (αEV , αmax) = (2, 0.5) and

(20, 0.5) respectively, DG1 and DG2 use (αEV , αmax) = (0.1, 0.125) and (1, 0.125)

respectively, H1 and H2 use (αEV , αmax) = (0.4, 0.4) and (5, 0.4), DGP and HP use

(s0, κ, ε0) = (2 log10(1/256), 2, 0.05) and (log10(1/256), 1, 0.125) respectively.

The discretization of the entropy residual rEV is only �rst order due to the use

of backward-Euler, so we expect the entropy-based viscosity νEV to be (β + 1)th

accurate, i.e. 2nd order when β = 1 or 3rd order when β = 2. This analysis agrees

with the convergence plot to the left in Figure 7.3. To the right, we observe the same

phenomena as in the moving shock example described in Section 7.4.1. We also note

that the shock in this sinusoidal wave is also moving.
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Figure 7.3: Convergence of the di�erent methods for a smooth initial data, left:
before shock forms, right: after shock forms. The dashed lines are h2 and h3.

7.4.3 Shocks of di�erent size

To complement the analysis in Section 7.3, we next consider a problem with a big

shock and a small shock on the same simulation. According to the analysis, the

entropy viscosity will capture the small shock when β = 1, but not when β = 2. In

this setup, we start with an existing shock of size ∆u1 = 0.5 and a small sinusoidal

wave that develops into an N-wave of size ∆u2 = 0.2. Thus, we consider Burgers'

equation on [−1, 5] with initial data

u(x, 0) =



0 x ∈ [−1,−0.5),

−0.1 sin(2πx) x ∈ [−0.5, 0.5),

0 x ∈ [0.5, 4.5),

−0.5 x ∈ [4.5, 5],

(7.16)

and �xed boundary condition u(−1, t) = 0 and u(5, t) = −0.5.

The solution initially consists of a shock and a smooth sine wave, which are

placed far away from each other so they never interact. Over time, the sinusoidal
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wave develops into a N-wave. In Figure 7.5, we present the numerical solutions at

time t = 2 for di�erent grid resolutions, obtained with a Hermite method of order 9

and dG method of order 5. In these plots, we can see that the shock is resolved for

both values of β, however, the N-wave comes with some overshoots when β = 2 for

all the �ner grid resolutions, see Figure 7.5.

For this two-shock experiment, DG1 and DG2 use (αEV , αmax) = (0.5, 0.25)

and (10, 0.25) respectively, H1 and H2 use (αEV , αmax) = (1, 0.125) and (50, 0.125)

respectively.

Because the magnitude of this N-wave is small, the entropy residual at the N-

wave is relatively small compared to that at the existing shock. On one hand, β = 1

results are free from overshoots when the grid is re�ned, but β = 2 results do have

overshoots, see Figure 7.4-7.5.

7.5 Conclusion

In summary, we have performed a convergence study for Burgers' equation with

various initial data. We demonstrated that the entropy viscosity method with β = 2

does not produce convergent results (�xing the parameters αEV and αmax) in the

cases where the shock is moving or more than one shock is present. Therefore,

we recommend readers to use β = 1; to achieve desired accuracy or better rate of

convergence, use a higher order approximation of the residual.
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Figure 7.4: E�ect of the choice of scaling on a small perturbation near a larger shock.
The results in the left and right column are for β = 1 and β = 2 respectively. The
upper �gures display the results for the dG method and the lower �gures display
the results for the Hermite method. The black curve is for a simulation using 320
elements and the black uses 2560.
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Figure 7.5: E�ect of the choice of scaling on a small perturbation near a larger shock.
Same as in Figure 7.4 but zoomed in.
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Chapter 8

Sobolev Discontinuous Galerkin

Methods

We consider solving conservation laws of the type ut + f(u)x = 0 using a Discon-

tinuous Galerkin (DG) method. The problem with the current DG formulation is

that to obtain a high order spatial approximation, the time step must be reduced

dramatically. To understand the cause of small time step size, consider solving the

PDE ut + f(u)x = 0 above using modal DG. The numerical solution uh is expressed

as a polynomial expansion

uh =
N∑
n=0

cnpn,

where pn is a polynomial of degree n and cn is its coe�cient in the expansion. A high

order DG method can be obtained using large N . The spatial derivative of solution in

the PDE is then approximated by the spatial derivative of the approximate solution

uh. On Figure 8.1, we plot Legendre polynomials of degree 0 to 5, along with their

derivatives. Observe that the derivatives get large towards the endpoints.

Naturally, we use the derivative of these polynomials to approximate the deriva-

tive of the solution to hyperbolic PDEs. We know that the spatial dependence for
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Figure 8.1: Plot of Legendre polynomials and their derivatives. Legendre polynomials
are commonly used as a a basis for polynomial approximation in [−1, 1]. The size of
the Legendre polynomials is normalized to unity. The derivatives get large near the
endpoints for high degree polynomials.

solution to a wave propagation problem is of the form u = einx, with derivative

d

dx
einx = in einx

and hence the size of the derivative is n times the size of the solution∣∣∣∣dudx
∣∣∣∣ ≤ n‖u‖∞.

We associate one mode in Fourier space (which looks like einx) with a mode pn
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in the polynomial expansion of uh. The derivative of pn satis�es Markov-Bernstein

inequalities on x ∈ [−1, 1],∣∣∣∣ ddxpn(x)

∣∣∣∣ ≤ min

(
n2,

n√
1− x2

)
‖pn‖∞.

Note that near the endpoints x = ±1, the size of the derivative grows like n2

times the size of the function pn. For large n, the size of the approximate derivative

is much larger than the actual derivative. Furthermore, the formulation of DG

method evaluates derivatives throughout the element including the endpoints, and

as a consequence, the spectral radius of the spatial discretization in DG grows very

fast with n and in turn causes numerical sti�ness. The numerical sti�ness induces

restrictive CFL condition, or small time step.

In this new method, we use an even number of degrees of freedom, 2q. In general,

our methods are built from 2l/s distinct variational equations. The variable s indi-

cates the increase in number of derivatives applied in between each variational equa-

tion. For example, a method which uses 10 degrees of freedom can use s = 1, 2, or 5

and we denote these methods as degree 10-stride methods, where stride can take on

values 1,2,5. As a short hand notation, we use SOB-DG(10,1) etc.

To illustrate the SOB-DG method, consider SOB-DG(6,2) with 6 degrees of free-

dom and stride s = 2. In the standard DG method, we would assign all test functions

to the variational formulation,∫
Dq
ψj

(
∂uqh
∂t

+ a
∂uqh
∂x

)
dx =

∫
∂Dq

ψj(au
q
h − (au)∗) · n̂ dr, (8.1)

Test functions: ψj = 1, x, x2, x3, x4, x5.

In the SOB-DG, we distribute the test functions to di�erent variational equations.

In SOB-DG(6,2), we have dof/s = 3 variational equations, given by Equation (8.2-
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8.4), ∫
Dq
ψj

(
∂uqh
∂t

+ a
∂uqh
∂x

)
dx =

∫
∂Dq

ψj(au
q
h − (au)∗) · n̂ dr, (8.2)

Test functions: ψj = 1, x

∫
Dq

∂2ψj
∂x2

∂2

∂x2

(
∂uqh
∂t

+ a
∂uqh
∂x

)
dx =

∫
∂Dq

∂2ψj
∂x2

(
∂2(auqh − (au)∗)

∂x2

)
· n̂ dr, (8.3)

Test functions: ψj = x2, x3, but notice ψ′′j ∈ span{1, x}

∫
Dq

∂4ψj
∂x4

∂4

∂x4

(
∂uqh
∂t

+ a
∂uqh
∂x

)
dx =

∫
∂Dq

∂4ψj
∂x4

(
∂4(auqh − (au)∗)

∂x4

)
· n̂ dr, (8.4)

Test functions: ψj = x4, x5, but notice ψ′′′′j ∈ span{1, x}

8.1 Eigenvalue Analysis

We report the eigenvalues of the spatial discretization operator of SOB-DG for advec-

tion equation. In Figure 8.2, we plot the eigenvalues of SOB-DG with �xed degrees

of freedom, dof = 12, with stride varies from s = 1 to s = 12. Notice that the

increase in the spectral radii is monotone with s. In Figure 8.3, we �x the stride

while varying the degrees of freedom. As illustrated in the �gure, the spectra look

identical for a �xed stride, independent of the number of degrees of freedom.

8.2 Stability Results

We will prove stability of the method for the advection equation ut+aux = 0. In this

proof, we can't get the energy estimate to be nonpositive, but we can only obtain

boundedness.
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Figure 8.2: Spectrum of SOB-DG with �xed dof , di�erent s ranging from s = 1 to
s = 12

De�nition The Sobolev space of index (l, p), where l is a nonngative integer and

p ≥ 1 is de�ned by

W l,p(Ω) = {u : Dαu ∈ Lp(Ω) for all |α| ≤ l}
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Figure 8.3: Spectrum of SOB-DG is independent of the number of degrees of freedom.
Here, (dof, s): (12,2), red squares, (10,2), black dots, (12,3), purple squares, and
(6,3), blue dots
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.

Lemma 2. Let S = span{φk, φk+1, ...} be a polynomial space on domain Ω ⊂ R

where φk is a polynomial of degree k. Then, for any u ∈ S, the (Sobolev) seminorm
|u|m,p,Ω de�ned by

|u|pm,p,Ω = ‖Dmu‖p0,p,Ω =

∫
Ω

|Dmu|pdx (8.5)

is a norm on S, given that m ≤ k.

Proof. To show that |u|pk,p,Ω is a norm, we only need to show that |u|k,p,Ω = 0 implies

u ≡ 0. Since S consists of continuous functions, (
∫

Ω
|Dmu|pdx)1/p is zero only when

Dmu ≡ 0 (results from Lp spaces). Suppose u ∈ S. Then, we can write u =∑∞
j=k cjφj. Hence, Dmu =

∑∞
j=k cjD

mφj. Since m ≤ k, we decrease the degree of

each φj by m, but none of them vanishes. As a consequence, to obtain Dmu ≡ 0, we

must have cj = 0 for all j ≥ k, due to linear independency of polynomials of distinct

degree.

We prove the stability for ut + ux = 0 using 4 dofs. The formulation is as follows∫
Dq

(
∂uqh
∂t

Ψi +
∂uqh
∂x

Ψi

)
dx =

∫
∂Dq

(uqh − u∗)Ψi · n̂, (8.6)

Ψi = P0, P1∫
Dq

(
D2
x

∂uqh
∂t

D2
xΨi +D2

x

∂uqh
∂x

D2
xΨi

)
dx =

∫
∂Dq

D2
x(u

q
h − u∗)D2

xΨi · n̂ (8.7)

Ψi = P2, P3.

Based on the variational formulation, we decompose the solution uqh into two parts,

uqh = uI + uII , with uI ∈ span{P0, P1}, uII ∈ span{P2, P3}, where the superscript q
has been supressed for compactness. Then, D2

xu
q
h = D2

xu
II .∫

Dq
D2
x

∂uqh
∂t

D2
xu

q
h +D2

x

∂uqh
∂x

D2
xu

q
hdx = D2

x(u
q
h − u∗)D2

xu
q
h|
xqR
xqL
. (8.8)
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This gives us

1

2

d

dt
‖D2

xu
q
h‖2 +

1

2
(D2

xu
q
h)

2|x
q
R

xqL
= D2

x(u
q
h − u∗)D2

xu
q
h|
xqR
xqL

1

2

d

dt
‖D2

xu
q
h‖2 = D2

x(u
q
h − u∗)D2

xu
q
h −

1

2
(D2

xu
q
h)

2|x
q
R

xqL
(8.9)

Now, using similar format of the �ux as standard dG (but for D2
xu instead of u), we

obtain that the right hand side is bounded by 0. Adding up the contribution from

all cells, we have that the total energy in D2
xuh,

|u|m=2,p=2,D = ‖D2
xuh‖D =

∑
q

‖D2
xu

q
h‖ (8.10)

decreases over time. For uI , we use Equation 8.6 and recall that the test function Ψi

only lives in space of linear function, so in the energy estimate, we replace it by uI

to get ∫
Dq

(
∂uqh
∂t

uI +
∂uqh
∂x

uI
)
dx = (uqh − u∗)uI |

xqR
xqL∫

Dq

(
∂(uI + uII)

∂t
uI +

∂(uI + uII)

∂x
uI
)
dx = (uI + uII − u∗)uI |x

q
R

xqL∫
Dq

(
∂uI

∂t
uI +

∂uII

∂t
uI +

∂uI

∂x
uI +

∂uII

∂x
uI
)
dx = (uI − u∗)uI + uIIuI |x

q
R

xqL

1

2

∂

∂t
‖uI‖2

Dq +

∫
Dq

(
∂uII

∂t
uI − uII(uI)x

)
dx = (uI − u∗)uI |x

q
R

xqL
− 1

2
(uI)2|x

q
R

xqL

(8.11)

Notice that the right hand side of the above equation looks like the boundary con-

tribution in standard dG, so by choosing an appropriate numerical �ux u∗, we can

bound the right hand side by zero. Furthermore, the integral on the left hand side

can be moved to right hand side and then using Cauchy-Schwartz inequality, we

obtain
d

dt
‖uI‖2

D ≤ 2

Q∑
q=1

(
‖uIx‖Dq‖uII‖Dq + ‖uIIt ‖Dq‖uI‖Dq

)
.

Noting that the energy in D2
xu

II decreases (see Equation 8.10)and by using analysis

in modal DG, we have that the energy in uII decreases as well, so the energy in uI

is bounded.
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8.3 Numerical Experiments

In this experiment, we look at di�erent Sobolev DG methods for computing the so-

lution to transport equation ut + aux = 0. Here, each element carries 2l degrees of

freedom. In general, our methods are built from 2l/s distinct variational equations.

The variable s indicates the increase in number of derivatives applied in between each

variational equation. For example, a method which uses 10 degrees of freedom can

use s = 1, 2, or 5 and we denote these methods as degree 10-stride methods, where

stride can take on values 1,2,5. As a short hand notation, we use SOB-DG(10,1) etc.

The �rst method we test, denoted by SOB-DG(2l,l), uses an additional equation,

which requires that the lth derivative of the PDE also satis�es the variational form.

Precisely, the method takes the form∫
Ωq

(
∂uqh
∂t

+
∂auqh
∂x

)
Ψidx =

∫
∂Ωq

(auqh − (au)∗)Ψi · n̂,

i = 0, ..., l − 1,∫
Ωq

(
∂l

∂xl
∂uqh
∂t

+
∂l

∂xl
∂auqh
∂x

)
∂lΨi

∂xl
dx =

∫
∂Ωq

(
∂lauqh
∂xl

− ∂l(au)∗

∂xl

)
∂lΨi

∂xl
· n̂ (8.12)

i = l, ..., 2l − 1.

The second method we test, denoted by SOB-DG(2l,2), uses (l − 1) additional

equations, which require that even derivatives of the PDE also satisfy the variational

form. This method can be formulated as∫
Ωq

(
∂2r

∂x2r

∂uqh
∂t

+
∂2r

∂x2r

∂auqh
∂x

)
∂2rΨi

∂x2r
dx =

∫
∂Ωq

(
∂2rauqh
∂x2r

− ∂2r(au)∗

∂x2r

)
∂2rΨi

∂x2r
· n̂

(8.13)

i = 2r, 2r + 1, r = 0, 1, ..., l − 1.

To study the order of accuracy in 1 dimension, we solve the transport equation
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Figure 8.4: Plots of the error in u as a function of h in 1D advection equation. On
the top, from left to right, SOB-DG(2l,l) method and SOB-DG(2l,2) method with
central �ux, on the bottom, from left to right, SOB-DG(2l,l) method and SOB-
DG(2l,2) method with upwind �ux.

ut + aux = 0 on [−1, 1], t > 0 with periodic boundary conditions and with initial

data u(x, 0) = sin(πx). The discretization is performed on a uniform grid xj =

−1+jh, j = 0, ..., N, h = 2/N . The time evolution is done using Taylor time stepping

method, to enable less restrictive time stepping size. In Figure 8.4, we report the L2

error in the solution uh after 10 temporal periods. Estimated rates of convergence

can be found in Table 8.1.

To assess the e�ciency of di�erent SOB-DG methods, we solve ut + ux = 0 on
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l 1 2 3 4 5 6
SOB-DG(2l,l) central 2.41 3.90 3.96 6.88 9.30 10.69
SOB-DG(2l,2) central 1.96 3.89 5.70 7.53 9.44 11.40
SOB-DG(2l,l) upwind 0.18 5.46 6.34 8.09 11.07 10.35
SOB-DG(2l,2) upwind 2.77 4.88 7.98 10.54 12.95 15.23

Table 8.1: Rates of convergence obtained from a linear least square �t to the data
in Figure 8.4.

(s,Q) E(t = 1) E(t = 10) E(t = 100)
(2,14) 9.18(-8) 1.07(-4) 6.14(-1)
(2,28) 5.76(-11) 2.05(-9) 1.98(-4)
Rate 10.6 15.7 11.6
(6,8) 3.47(-9) 3.73(-9) 5.96(-9)
(6,16) 1.14(-12) 1.56(-12) 2.51(-12)
Rate 11.6 11.2 11.2
(12,5) 2.13(-8) 2.09(-8) 2.09(-8)
(12,10) 5.12(-12) 7.02(-12) 3.01(-11)
Rate 12.0 11.5 9.4

Table 8.2: Maximum errors in SOB-DG over space and time in 1D advection equa-
tion. Here, the number of elements Q has been scaled for matching computation cost
among di�erent methods. Here, s: stride, E : error.

the periodic domain x ∈ D = [0, 2], with initial data u = sin(πx). We �x the degrees

of freedom to be 12, and we also use upwind �ux throughout the simulation for all

cases. We �nd that all SOB-DG produce a 12th order method, see Table 8.2.

8.4 Extension to Higher Dimensions

The idea in SOB-DG can be extended to two dimensions using tensor product. In

general, we use (2l)2 degrees of freedom. To illustrate how the SOB-DG works in

2D, we write the equations when we have l = 2, corresponding to 16 degrees of
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freedom, with stride s = 2. For two dimensional advection ut +ux +uy = 0, we have

4 variational equations,

∫
Dq
ψj

(
∂uqh
∂t

+
∂uqh
∂x

+
∂uqh
∂y

)
dxdy =

∫
∂Dq

ψj(u
q
h − u∗) · n̂dr, (8.14)

Test functions: ψj(x, y) = φj(x)ζj(y), φj(x) = 1, x, ζj(y) = 1, y

∫
Dq

∂2ψj
∂x2

∂2

∂x2

(
∂uqh
∂t

+
∂uqh
∂x

+
∂uqh
∂x

)
dxdy =

∫
∂Dq

∂2ψj
∂x2

(
∂2(uqh − u∗)

∂x2

)
·n̂dr, (8.15)

Test functions: ψj(x, y) = φj(x)ζj(y), φj(x) = x2, x3, ζj(y) = 1, y

∫
Dq

∂2ψj
∂y2

∂2

∂y2

(
∂uqh
∂t

+
∂uqh
∂x

+
∂uqh
∂y

)
dxdy =

∫
∂Dq

∂2ψj
∂y2

(
∂2(uqh − u∗)

∂y2

)
·n̂dr, (8.16)

Test functions: ψj(x, y) = φj(x)ζj(y), φj(x) = 1, x, ζj(y) = y2, y3

∫
Dq

∂4ψj
∂x2∂y2

∂4

∂x2∂y2

(
∂uqh
∂t

+
∂uqh
∂x

+
∂uqh
∂y

)
dxdy =

∫
∂Dq

∂4ψj
∂x2∂y2

(
∂4(uqh − u∗)
∂x2∂y2

)
·n̂dr,

(8.17)

Test functions: ψj(x, y) = φj(x)ζj(y), φj(x) = x2, x3, ζj(y) = y2, y3

In the following experiment, we solve ut + ux + uy = 0, on the periodic domain

x ∈ D = [−1, 1]. The initial data is u0(x, y) = sin(πx) sin(πy). We use l = 2,

corresponding to 4th order method in the spatial direction and we also use central

�ux. In Table 8.3, we present a convergence study on the error under grid re�nement.

We obtain a fourth order convergence.
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(s,Q) E(t = 1) Rate
(2,10) 6.13(-4)
(2,20) 4.40(-5) 3.78
(2,40) 2.91(-6) 3.92
(2,80) 1.84(-7) 3.98
(2,160) 1.15(-8) 3.99

Table 8.3: Convergence study for 2D advection equation.

Standard DG Sobolev DG
High order High order

�Strong� stability in L2 norm �Weaker� stability in Sobolev norm
Unstructured grids Unstructured grids
CFL: N∆t/∆x ≤ C CFL: s∆t/∆x ≤ C
Handle boundary well Derivatives at boundary?

Table 8.4: Comparison between Standard DG and Sobolev DG.

8.5 Comparison between Standard and Sobolev DG

In this section, we summarize the strengths and weaknesses of the two Discontinuous

Galerkin methods. Note that the CFL condition in the Sobolev DG now depends on

the stride, instead of the number of degrees of freedom (equivalently, the number of

basis functions).
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Chapter 9

Conclusions and Future Work

This thesis focuses on the development and analysis of high order numerical meth-

ods for long simulation of wave propagation problems. The majority of this work

deals with hyperbolic partial di�erential equations of conservation law type. We saw

earlier in Chapter 4 that a conservative method guarantees convergence of numerical

solutions to conservation laws. Moreover, to approximate discontinuous solutions,

the numerical method should produce oscillation-free solutions, as these oscillations

are not physical and may a�ect the stability of the method.

Numerical methods under the category of Method of Lines discretize in space

while leaving the temporal discretization continuous. In Chapter 5, we implemented

Runge-Kutta schemes with Total Variation Diminishing (TVD) property, or com-

monly known as Strong-Stability-Preserving Runge-Kutta (SSPRK). These schemes

were developed to evolve the solution to conservation laws while eliminating over-

shoots and undershoots, and hence maintaining the TVD property. We found

that for linear problems, there is no signi�cant di�erence in the solutions evolved

by the SSPRK and non-SSPRK schemes. However, for nonlinear problems, the

SSPRK schemes are more e�cient at producing oscillation-free solutions than the
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non-SSPRK schemes.

In Chapter 6, we developed a new class of Hermite methods, �ux-conservative

Hermite methods, for solving nonlinear conservation laws. While preserving the high

order spatial accuracy for smooth solutions in the existing Hermite methods, the

new methods come with better stability properties. The adaptation of the entropy

viscosity method to Hermite methods successfully suppresses oscillations near shocks,

but we �nd that our current implementation is quite dissipative when solving shocks

near high frequency sinusoidal waves. For contact waves we proposed a modi�cation

to the entropy viscosity method which eliminates a large amount of the spurious

viscosity at contact discontinuities.

In Chapter 7, we implemented the Entropy Viscosity (EV) method to di�erent

high order methods to eliminate oscillations that otherwise appear near discontinuity.

We then discussed how the scaling in the method in�uences the size of viscosity, hence

the quality of the solution. The EV method involves two tuning parameters, αEV

and αmax, which we �xed when performing grid re�nement study. We demonstrated

that under the �rst scaling (β = 2), the solutions do not converge when the shock

is moving or more than one shock is present. On the other hand, under the second

scaling (β = 1), the solutions do converge, whether in stationary, moving, or multiple

shocks situations.

In Chapter 8, we developed a new class of Discontinuous Galerkin Methods,

Sobolev Discontinuous Galerkin methods (Sobolev DG), where the error is minimized

in Sobolev norm. It turns out that the new formulation allows for a larger time step.

However, the error in the Sobolev DG grows faster than the error in the standard

DG.
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Chapter 10

Future Work

In terms of temporal discretizations, we plan to do the following:

1. Experiment with other non-SSPRK schemes not mentioned in the paper(s) and

compare them with SSPRK schemes.

2. Perform a study to obtain e�cient TVD spatial discretizations for any PDE,

possibly in a system of equations or in higher dimensions.

3. Test the schemes on examples not considered in any literature before.

In terms of spatial discretizations, we plan to do the following:

1. Analyze the stability of hybrid Hermite-Sobolev-DG methods.

2. Implement a stable hybridization of Hermite-Sobolev-DG methods.

3. Extend Sobolev DG methods to handle boundary.

4. Explore the possibility of adopting the entropy viscosity technique for con-

structing nonre�ecting boundary conditions.
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