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1. Introduction

1.1 Background

During recent decades, awareness and concern about the negative im-

pact of eutrophication in the quality of water bodies has increased (Ansari

et al., 2010; HELCOM, 2013; Ansari and Gill, 2014). Eutrophication is the

excessive enrichment of surface waters with nutrients which promotes

the high production of especially, algae and cyanobacteria and results in

the depletion of oxygen in the water and decomposition of aquatic flora

and fauna. The attention drawn to the nutrients in municipal wastewa-

ter that cause eutrophication in the receiving watercourses and, on the

other hand, the advances in the best available techniques (BAT) have

been driving forces to more stringent wastewater treatment requirements

and regulations (Olsson et al., 2005; Olsson, 2012). In wastewater treat-

ment plants (WWTPs), the tightening treatment regulations lead towards

the addition of new process units, for instance for tertiary treatment pur-

poses, and towards the renewal of the existing units. A typical example

the process unit renewal in municipal wastewater treatment is the update

of the ammonium removal process towards total nitrogen removal. This

is usually achieved through the conversion of the biological reactor from

a single aerated tank to a sequence of anoxic and aerobic zones.

The subsequent increase in operational and management investments,

mostly associated with energy consumption and chemical dosing, stimu-

lates modern WWTPs to face the challenges of improving effluent qual-

ity, while guaranteeing efficient and safe operations and optimizing costs.

Achieving these goals is crucially dependent on the high-grade monitoring

and control of the process units (Olsson et al., 2005, 2014). For an effective

exploitation of advanced monitoring, control and optimization strategies
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in WWTPs, the real-time availability of primary process indicators is in-

valuable. Additionally, flexible and controllable actuators are required

(Olsson and Newell, 1999).

On-line instrumentation provides the plant operators and automation

systems with information on the process variables. These data are also

stored in the data acquisition systems of the plant for later analysis and

deployment purposes. Already in early publications, the challenges of

the reliable field measurements due to the harsh conditions in biologi-

cal wastewater treatment processes have been highlighted and discussed

(Molvar et al., 1976; Olsson, 1977). The typical problems of on-line instru-

mentation included solids deposition, slime build-up and precipitation,

which gave rise to poor performance and to the frequent need for main-

tenance of the instrumentation. Thereafter, considerable developments

in the on-line instrumentation in WWTPs have occurred, providing more

real-time information on the evolving process conditions (Gernaey et al.,

1998; Vanrolleghem and Lee, 2003; Vanrolleghem et al., 2006; Madsen

et al., 2011; Campisano et al., 2013; Olsson et al., 2014). In spite of these

developments, the instruments still tend to get fouled in the biological

treatment processes, resulting in an inadequate performance of sensors

(Olsson, 2012). In addition, all the field instruments are also subjected to

down-time, for instance, due to their maintenance. Also, some of the rel-

evant process variables are typically analyzed only in a laboratory, since

reliable and moderately-priced real-time instruments are not available.

This leads to considerably time-delayed responses unsuitable for the con-

trol of dynamic processes. For instance, a survey conducted in Finnish

WWTPs indicates that use of on-line measurements of the organic matter

content is rather exceptional and in none of the investigated plants were

those measurements being used in control loops (Haimi et al., 2009, 2010).

In the future, the introduction of new objectives and regulations may

further increase the process control requirements and, hence, the ne-

cessity for high-quality real-time information about a growing number

of variables. Such objectives may relate, for instance, to priority pollu-

tants in wastewater or greenhouse gases produced in wastewater treat-

ment (Poch et al., 2014). In addition, plant-wide control that merges

the control of process units of WWTPs (Olsson and Jeppsson, 2006) and

integrated control of the urban sewer-WWTP systems (Benedetti et al.,

2013) have been discussed and investigated. When these control perspec-

tives become the dominant reality in WWTPs, for example, by introducing

12
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multi-criteria optimization, the importance of reliable measurements of

the primary variables increases even more so, in order to avoid defective

control actions on plant-wide or system-wide scale.

One solution to the real-time measurement challenges relies on the

plentiful historical process data collected in the modern-day WWTPs. His-

torical data can be utilized together with mathematical modelling algo-

rithms for designing software tools that enhance the usability of the hard-

ware instruments. Data-derived modelling approaches can be used, for

instance, to estimate in real-time those variables that are crucial to an ef-

ficient process operation; however, their hardware measurements are not

sufficiently reliable and in some plants they do not exist at all (Lin et al.,

2007; Kadlec et al., 2009; Budka et al., 2014). Another common purpose

for data-derived models is for monitoring processes or instruments and,

thus providing operators with timely information about malfunctions or

chancing process states (Venkatasubramanian et al., 2003; Qin, 2011; Ge

et al., 2013). Such computer programs are often called software sensors

or soft sensors.

1.2 Objectives and scope of the research

The main motivation for this thesis was to investigate the possibility of

supporting the operation of a WWTP by introducing soft sensors. The

technical studies of the thesis concern the Viikinmäki WWTP in Finland.

It is a large-scale municipal facility where total nitrogen and phoshorus

are removed efficiently in a sequence of treatment process units. Both the

observations presented in the literature and the practical explorations of

the operational data of the plant indicate that the quality of on-line mea-

surements is occasionally inadequate. This diminishes the operational

efficiency when such measurements are used in process control and, fur-

thermore, does not motivate towards the inclusion of instruments in con-

trol loops. This problem was approached by examining the possibility

of using modelling techniques for providing practicable information that

complements the data produced by hardware instrumentation. Since the

WWTP was well instrumented and, therefore, there was plenty of acces-

sible historical data stored in the data acquisition system, data-derived

approaches were used in the studies. The following research questions

(RQs) are considered under this objective:
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1. What are the dominant trends in data-derived soft sensor applications

proposed for wastewater treatment systems and which modelling tech-

niques have been successfully used for soft sensor design?

2. How can historical process data and established real-time measure-

ments be used to provide a tool for supporting efficient process control

that conventionally relies on vulnerable field instruments?

3. How can hardware measurements and soft sensor estimates determin-

ing the same variable be used in a complementary manner to provide

the most reliable information for process monitoring and control?

4. What kind of software tool that has been designed using historical op-

erational data can efficiently detect and diagnose anomalies based on

unseen on-line measurements under dynamic process conditions?

As a starting point, Publication I answers RQ 1 by overviewing and

analysing a large number of studies where data-derived soft sensors have

been presented for biological wastewater treatment processes. Addition-

ally, research gaps were identified at this stage and they guided the choice

of the technical applications that were later investigated. Publication II

addresses RQ 2 by evaluating the performance of an array of soft sensors

designed for the on-line prediction of pollutant concentrations in a biolog-

ical tertiary treatment unit. Publication III focuses on the development of

a switching system that enables the selection between measurements or

corresponding estimates in the tertiary treatment process and, thus, pro-

vides an answer to RQ 3. Publication IV addresses RQ 4 by investigating

the applicability of methodologies for detecting and isolating process and

instrument anomalies in a full-scale activated sludge process.

This thesis aims to provide a theoretical backgrounds and practical ex-

amples of developing data-derived soft sensors. The soft sensor perfor-

mances are often studied by using data from pilot-scale processes or by

employing simulation platforms. However, the case studies presented in

this thesis concern the processes and data of a large-scale WWTP. One of

the motivations of the work as a matter of fact is to inspire researchers,

consultants and operators to consider implementations of soft-sensing ap-

plications in real-life treatment facilities.

Only data-derived modelling techniques are considered for the practi-

cal soft sensor development in this thesis. The employed methods in the

data-derived modelling techniques belong to multivariate statistics. The
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feasibility of methods affiliated with the other modelling families is not

examined. The presented case studies concern specific process units in a

well-monitored municipal WWTP. Only the process units of the wastew-

ater treatment line are investigated and, therefore, the sludge treatment

units of WWTPs or sewer networks are not explored in this thesis. The

proposed methodologies can without doubt be adapted to a large number

of WWTPs, as adequate historical data records are available in present-

day facilities equipped with plentiful on-line instruments.

1.3 Outline of the thesis

This dissertation is divided into seven chapters. After this introduction

to the thesis, biological wastewater treatment phenomena and process

units are briefly presented in Chapter 2, with specific consideration to the

WWTP that was considered in the experimental studies. Chapter 3 pro-

vides a brief description of soft sensors followed by a general framework

for designing data-derived soft sensors. Next, Chapter 4 summarizes case

studies where data-derived soft sensors based on multivariate statistical

methods have been proposed for biological treatment applications. Chap-

ter 5 describes those multivariate statistical techniques that are employed

in the technical studies presented in this thesis. Thereafter, the main re-

sults and findings of Publications I–IV are presented and discussed in

Chapter 6. Finally, the conclusions arising from the study are set out in

Chapter 7.
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2. Biological wastewater treatment

This Chapter begins with brief descriptions of the main phenomena that

biological wastewater treatment relies on. A particular consideration is

assigned to the activated sludge process. Thereafter, the treatment pro-

cess of the Viikinmäki WWTP is described as it was at the time of the

technical studies represented in Chapter 6 of this thesis. The objective

of the plant description is also to provide an overview of the process units

and real-time measurements of a typical modern WWTP designed for total

nitrogen removal. However, an exception to the conventional wastewater

treatment line concerns a rather uncommon tertiary treatment unit.

2.1 Introduction to biological wastewater treatment

Today’s municipal wastewater treatment aims at reducing concentrations

of nitrogen, phosphorus, organic matter (determined, for instance, as Bio-

chemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) or To-

tal Organic Carbon (TOC)) and Suspended Solids (SS) in influent wastew-

ater. The reason for removing these groups of compounds relates to their

negative effect on the qualities of water bodies where urban wastewa-

ter is carried. The removal targets are achieved by using several process

units, including biological, chemical and physical treatment methods. The

typical wastewater treatment units have evolved historically (Angelakis

and Rose, 2014) with the major driving forces in the evolution of the pro-

cess units in WWTPs during the recent decades being the tightening of

treatment regulations and changes in the catchment areas of the plants

(Dominguez and Gujer, 2006; Neumann et al., 2015).

Usually, the core of the wastewater treatment line is a biological reactor,

such as an Activated Sludge Process (ASP, Jenkins and Wanner, 2014). In

the ASP, a high concentration of activated sludge consisting mainly of bac-

17



Biological wastewater treatment

teria and protozoa is recycled in cascaded zones under different Dissolved

Oxygen (DO) conditions. Primary and secondary clarifiers are applied

for separation and thickening of sludge. To maintain sufficient micro-

biological population in the bioreactors, the thickened sludge from the

secondary clarifiers is recirculated into the bioreactor and, additionally,

internal sludge recirculation is used in many ASP configurations aimed

at total nitrogen removal. Other biological process units are also used for

corresponding wastewater treatment purposes, but the ASP is the most

popular one in today’s plants (Jenkins and Wanner, 2014).

Organic matter removal in biological treatment units is achieved by bac-

terial conversion to gaseous end-products, such as carbon dioxide in aer-

obic conditions (Metcalf & Eddy, 2003). Organic matter is also converted

into bacterial cells and is removed from the treatment process with the

excess sludge. The removal of the suspended particles is usually real-

ized with physical processes such as gravitational settling. The settling

process is often facilitated by adding chemicals for coagulating and floccu-

lating the solids. The larger flocs allow for the more efficient separation

of solids from liquid by settling for instance in a primary clarifier.

Nowadays, the ASP is especially used for nitrogen removal purposes

through the employment of nitrification and denitrification processes.

Nitrification is a two-step process taking place in aerobic conditions. Am-

monium in the wastewater is, first, converted to nitrite in the presence of

ammonium-oxidizing bacteria, which are typically chemoautotrophs such

as Nitrosomonas. According to Metcalf & Eddy (2003), an approximate

equation for this reaction is

55 NH+
4 +76 O2 +109 HCO–

3 → C5H7O2N+54 NO–
2 +57 H2O+104 H2CO3

In the second step of nitrification, nitrite is converted to nitrate by the

use of nitrite-oxidizing chemoautotrophic bacteria such as Nitrobacter.

An approximate equation for this reaction is

400 NO–
2+NH+

4+4 H2CO3+HCO–
3+195 O2 → C5H7O2N+3 H2O+400 NO–

3

The denitrification process, on the other hand, converts nitrate into

gaseous nitrogen and is realized by means of nitrate-reducing bacteria,

typically in anoxic conditions. There are several genera of bacteria capa-

ble of nitrate reduction, being primarily heterotrophs. Denitrification is a
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two-step process, the first one being the conversion of nitrate to nitrite. In

the second step, nitric oxide, nitrous oxide and nitrogen gas are produced

(Metcalf & Eddy, 2003), with the reactions of the whole denitrification

process being

NO–
3 → NO–

2 → NO → N2O → N2

Phosphorus removal is generally achieved using chemical precipitation,

usually, with ferric or aluminum salts. In addition, bacteria in wastewater

treatment processes consume phosphorus in the wastewater and phospho-

rus is thus incorporated into the bacterial biomass. Process configurations

targeting for Enhanced Biological Phosphorus Removal (EBPR, Oehmen

et al., 2007) also exist. In the EBPR process, polyphosphate-accumulating

organisms that accrue large quantities of polyphosphate within their cells

are selectively enriched in the bacterial community, while sludge contain-

ing excess phosphorus is removed from the process. In the EBPR process,

an additional anaerobic process stage and a more sophisticated sludge re-

circulation scheme are required in contrast with an ASP that aims at total

nitrogen removal and chemical phosphorus precipitation.

2.2 Description of the Viikinmäki WWTP

The Viikinmäki WWTP with its over 800 000 population equivalent is the

largest municipal plant in the Nordic countries. The plant is built inside

bedrock and it treats wastewater sewered from the Helsinki metropoli-

tan area. An average influent flow rate is approximately 250 000 m3/d of

which about 85% is domestic and 15% industrial wastewater. The wastew-

ater treatment line of the plant comprises bar screening, grit removal,

pre-aeration, primary sedimentation, activated sludge process, secondary

sedimentation and denitrifying post-filtration. The sludge treatment is

achieved with mesophilic digesters and subsequent sludge dewatering

systems. The biogas from the sludge digestion is utilized for electricity

and heat production, which covers about 50% and 100% of their demand

in the plant, respectively. Yearly averages of total nitrogen removal of

approximately 90%, total phosphorus removal of 95% and Biochemical

Oxygen Demand (BOD7) removal of 95% are achieved in the Viikinmäki

WWTP. The wastewater treatment line of the plant with the primary on-

line measurements is depicted in Figure 2.1. not all the measurements,
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for instance for the flow rates, are included in the figure. The primary

treatment units, secondary treatment unit (ASP), tertiary treatment unit

and sludge treatment units of the plant are briefly described in the fol-

lowing.
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AERATION

PRIMARY 
SETTLER

SECONDARY 
SETTLER

BIOLOGICAL 
FILTERS

BIOLOGICAL 
REACTOR

AIR COMPRESSORS

TO SLUDGE TREATMENT

SS

O2

EFFLUENTINFLUENT

COND
NH4NO3

ALK pH

SS
TPOP

T
P

NO3

OP
O2

NO3

T

N
O

3
O

P

NH4

COND

T

COND

TOP T

SS

SSSSSS

PRIMARY
SETTLER

Figure 2.1. Simplified layout for the wastewater treatment line of the Viikinmäki WWTP.

Primary treatment units

Bar screens are mechanical filters that consist of a series of vertical steel

bars. The aim of the bar screening is to remove coarse solid waste that

would disturb the operation of the process units downstream. The on-line

measurements of SS and temperature are performed before the screening

and of orthophosphate-phosphorus (OP) after the process unit.

Grit removal is realized in rectangular basins that are aerated from

the other long side. Grit is removed from the bottom of the basins with

scrapers whereas grease and oil are scraped from the surface of the wa-

ter in zones where turbulence is dampened. Ferrous sulphate and, when

needed, lime are added at the beginning of the grit removal basins. Fer-

rous sulphate is diluted in water and dosed for precipitating the soluble

phosphorus that wastewater contains. The ferrous ions (Fe2+) are oxi-

dized into ferric ions (Fe3+), which effectively precipitate the phosphate

ions (PO3−
4 ) corresponding for the vast majority of the soluble phospho-

rus in the influent wastewater. The precipitated solid phosphorus is then

removed from wastewater together with other solids in the subsequent

process units. Lime is added in wastewater to maintain the sufficient al-

kalinity level particularly for the bacteria in the activated sludge process

that is located further in the treatment line. The purpose of grit removal

is to decrease wear and need for maintenance on actuators, pipelines and

instrumentation downstream in the treatment line. Further, the removal

of grease and oil prevents disturbances in the biological process and wors-
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ening of the sludge settling properties. A temperature measurement is

installed in the grid removal basin and a conductivity measurement after

the unit.

After grit removal, wastewater is fed into a rectangular pre-aeration

basin. Excess sludge from the secondary sedimentation and reject water

from sludge treatment are mixed with wastewater before the pre-aeration

unit. The purpose of pre-aeration is to equalize the quality and flow rate

of wastewater entering the primary sedimentation lines, to ensure suffi-

cient mixing of chemicals and to increase DO concentration. The on-line

measurements of SS and conductivity are conducted in the pre-aeration

phase.

Primary sedimentation consists of seven treatment lines, each of which

are divided into two basins. The settled sludge is collected with scrap-

ers at the bottom of the basins into sludge pockets located at the begin-

ning of the tanks, which are also used to thicken the excess sludge. From

the sludge pockets, the thickened sludge is further pumped to the sludge

treatment. The scrapers are also used for removing surface sludge in the

basins to the surface sludge wells. The treated wastewater is collected

from the surface into overflow chutes and carried to the sequential process

units. If the sequential biological process units are partly by-passed due

to the too high influent flow rate, polymer and polyaluminum chloride are

added in the primary sedimentation in order to increase the efficiency of

mechanical and chemical treatment. Apart from conductivity, the on-line

measurements performed in the primary sedimentation units are listed

as the influent measurements to the bioreactor in Table 2.1.

Activated sludge process

The activated sludge process consists of a bioreactor and secondary sed-

imentation units, which are schematically represented in Figure 2.2. At

the time of the investigation, the ASP was divided into eight treatment

lines (the ninth ASP line has been introduced recently).

Each line begins with a non-aerated mixing zone where pre-settled

wastewater, return sludge from two secondary sedimentation basins and

internal recycle sludge flow are fed and which are mixed mechanically

with agitators. Next, the reactors are split in six cascaded zones, with the

anoxic zones enabling denitrification located near the input. The anoxic

volume defined by the number of the non-aerated zones is flexible. It

depends on the aeration mode, which is controlled in such a way that
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Figure 2.2. Simplified layout for a single ASP line and location of on-line measurements.

the effluent ammonium-nitrogen (NH4-N) concentration is within the set

target range while using the minimum required aerated volume. Time-

delays are also included in the aeration mode control scheme in order to

increase the stability of the control. In practice, Zone 1 is never aerated

and is mixed mechanically. Zones 2 and Zone 3 are equipped with ag-

itators and are either aerated or non-aerated (and mechanically mixed)

depending on the aeration mode in use. In contrast, Zones 4–6 are al-

ways aerated. The aeration of the zones is realized with air compressors

that blow air through disc-shaped fine bubble diffusers located at the bot-

tom of the basins. In addition to nitrogen removal, the amount of organic

matter in wastewater is reduced both in the aerobic and anoxic zones of

ASP. Some ferrous sulphate is added to the degassing zone located after

the last aerobic zone in order to complete the phosphorus removal of the

targeted level. The bioreactor including its influent and effluent is am-

ply monitored with the on-line measurements shown in Figure 2.2 and

collected with the TAGs and the units of measurement in Table 2.1.

The operational objective of the secondary sedimentation process is to

separate activated sludge from the wastewater and return an appropriate

amount of the settled sludge into the bioreactor. The mixed liquor flows to

the secondary sedimentation basins from the degassing zones by gravity.

The treatment lines are divided into two rectangular basins for each ASP

line. The mixed liquor is carried in the middle of the basins from where it

flows to both ends. The sludge is collected with scrapers at the bottom of

the basins to sludge pockets located in the middle of the tanks. From the

sludge pockets, the thickened sludge is carried to the return sludge pump-
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Table 2.1. Process variables in the ASP.

TAG Description Unit

BI-NH4 Bioreactor influent ammonium-nitrogen mg/l

BI-SS Bioreactor influent suspended solids mg/l

BI-Q Bioreactor influent wastewater flow rate m3/s

Z2-O2 Dissolved oxygen in zone 2 mg/l

Z3-O2 Dissolved oxygen in zone 3 mg/l

Z4-O2 Dissolved oxygen in zone 4 mg/l

Z5-O2 Dissolved oxygen in zone 5 mg/l

Z6-O2 Dissolved oxygen in zone 6 mg/l

Z6-SS Mixed liquor suspended solids in zone 6 g/l

BE-NH4 Bioreactor effluent ammonium-nitrogen mg/l

BE-NO3 Bioreactor effluent nitrate-nitrogen mg/l

BE-pH Bioreactor effluent pH –

BE-ALK Bioreactor effluent alkalinity mmol/l

QA Internal recycle flow rate m3/s

S1-QR Return sludge flow rate from settler 1 dm3/s

S2-QR Return sludge flow rate from settler 2 dm3/s

QW Excess sludge flow rate dm3/s

ing station and from there pumped further to the ASP’s mixing zone and

part of the sludge to the pre-aeration as excess sludge. Surface sludge is

removed by using separate scrapers. The clarified wastewater is collected

from the surface to overflow chutes at both ends of the basins and carried

further to the post-filtration process.

Denitrifying post-filtration process

The operational objective of the post-filtration treatment unit is to re-

move nitrate-nitrogen (NO3-N) contained in wastewater after the acti-

vated sludge treatment by means of denitrification. The post-filtration

unit receives wastewater from the secondary sedimentation. It consists of

ten Biostyr filters arranged in parallel, as depicted in Figure 2.3a. The

wastewater is equally distributed to ten filter cells and methanol diluted

in water is independently added to each line to provide an external car-

bon source to enhance denitrification (see, Figure 2.3b). The methanol

flow rate in each line is manipulated by a feedback loop that controls the

NO3-N concentration in the cell outlet. The NO3-N concentration in the

cell is measured in situ by means of an optical instrument.

Inside the cell, wastewater flows upwards through floating polystyrene

support media, on which biomass is attached. Due to the biomass attach-

ment, periodic backwashes are needed. The cells are usually backwashed

one at a time using the effluent wastewater with a counter-current air

23



Biological wastewater treatment

P

NO3

NO3

TP

OP

SSSS

O2

T
TOC

NO3

TP OP

L

LL L

L

Q

NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3 NO3

L L

Q

P

(a)

NO3

NO3

TP

OP

SSSS

O2

L
NO3

QM

QE

QM

QW

QW

P

P

T
TOC

NO3

TP OP

(b)

Figure 2.3. Schematic representation of the post-denitrification filtration unit (a) with a
highlight on one filter (b).
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Table 2.2. Process variables in the post-filtration unit.

TAG Description Unit

PI-NO3-N (1) Post-filtration influent nitrate-nitrogen (sensor 1) mg/l

PI-NO3-N (2) Post-filtration influent nitrate-nitrogen (sensor 2) mg/l

PI-SS(1) Post-filtration influent suspended solids (sensor 1) mg/l

PI-SS(2) Post-filtration influent suspended solids (sensor 2) mg/l

PI-O2 Post-filtration influent dissolved oxygen mg/l

PI-OP Post-filtration influent orthophosphate-phosphorus mg/l

PI-TP Post-filtration influent total phosphorus mg/l

Fi-QWW i-th Filter backwashing water flow rate m3/s

Fi-QWA i-th Filter backwashing air flow rate m3/s

Fi-QW (1) i-th Filter wastewater flow rate (line 1) m3/s

Fi-QW (2) i-th Filter wastewater flow rate (line 2) m3/s

Fi-QM (1) i-th Filter methanol flow rate (line 1) m3/h

Fi-QM (2) i-th Filter methanol flow rate (line 2) m3/h

Fi-P (1) i-th Filter pressure at the bottom kPa

Fi-P (2) i-th Filter pressure at the top kPa

Fi-NO3-N i-th Filter effluent nitrate-nitrogen mg/l

Fi-HL i-th Filter head loss m

Fi-CR i-th Filter clogging rate %

Fi-HRU i-th Filter hour in use 0-1

Fi-ITW i-th Filter intermediate time of backwash 0-1

PE-NO3-N Post-filtration effluent nitrate-nitrogen mg/l

PE-TOC Post-filtration effluent total organic carbon mg/l

PE-OP Post-filtration effluent orthophosphate-phosphorus mg/l

PE-TP Post-filtration effluent total phosphorus mg/l

PE-T Post-filtration effluent temperature ◦ C

flow. The backwash water is pumped to the pre-aeration unit. After filtra-

tion, the treated wastewater is discharged into the effluent channel where

streams from Filter 10 to 1 are collected. The unit is well monitored with

the on-line measurements illustrated in Figure 2.3 and listed with the

TAGs and the units of measurement in Table 2.2.

Sludge treatment

The excess sludge from primary and secondary sedimentation is treated

by anaerobic digestion, which is a bacterial process carried out in the ab-

sence of oxygen. In the Viikinmäki WWTP, four mesophilic digesters are

used for the sludge treatment. Digestion is realized as a two-step pro-

cess where the sludge goes through two digesters. In the sludge diges-

tion, complex proteins and sugars are broken down to form simpler com-

pounds. The process reduces the total mass of solids, destroys pathogens
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and produces biogas, which is collected. Sludge in the digesters is mixed

with mechanical agitators and recycle pumping. Anti-foaming chemical is

dosed in the digesters when needed. The total solids concentration of the

influent to the digestion process is measured in real-time.

After the anaerobic digestion, the sludge is pumped to intermediate

storage basins where the digestion process is stopped by means of aera-

tion and from there pumped further to dewatering which is realized with

centrifuges. Polyelectrolytes are used to enhance the dewatering of the

sludge. The polyelectrolyte feed is controlled by the on-line measured to-

tal solids load into the centrifuges with a feedforward strategy.

The dewatered sludge is processed into soil by composting. The biogas

produced in digestion is used for producing electricity and heat at the

plant’s power station, which consists of gas power engines, boilers and an

organic Rankine cycle system. The nitrogen-rich reject water from sludge

dewatering is fed first into equalization basins and, then, to sedimenta-

tion basins. The sludge separated in the reject water sedimentation pro-

cess is pumped back into the intermediate storage basins and the clarified

reject water back into the pre-aeration unit of the wastewater treatment

line.
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3. Data-derived soft sensors

Software sensors or soft sensors are virtual instruments that can be used

for similar purposes as their hardware counterparts. They are computer

programs and a model at their core will process information produced

typically by hardware instruments. On the basis of their internal model,

soft sensors are often divided into two main classes, phenomenological

(also called mechanistic, first-principles-driven, theoretical, deterministic

or white-box) and data-derived (also called data-driven, data-based, em-

pirical, process-history-based or black-box). Phenomenological soft sen-

sors are based on first-principle process models, whereas data-derived soft

sensors are built around process models derived from historical data. Sec-

tion 3.1 introduces the main modelling classes with emphasis on their use

in the wastewater treatment systems. The principles of the data-derived

soft sensors and their typical applications are also described. Section 3.2

provides a general framework for designing data-derived soft sensors. The

design steps and a number of potential techniques that can be applied to

them are briefly introduced and discussed.

3.1 Introduction to soft sensors

This section first discusses the phenomenological models specifically de-

veloped for wastewater treatment and their potential for real-time soft

sensor applications in the field of industry. Then, the basic concepts of

data-derived modelling and its employment in soft-sensing with a focus

on the wastewater treatment sector are provided.

In wastewater treatment, the most commonly used first principle mod-

els for the biological treatment processes belong to the Activated Sludge

Model family (ASM, Henze et al., 2000). The clarifying and thickening

processes taking place in settlers are often described using the Takács
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model (Takács et al., 1991) in engineering practice. Further, a number

of alternative one-dimensional settling models have been proposed by re-

searches (Li and Stenstrom, 2014), including also reactive settler mod-

els (Gernaey et al., 2006). As for phenomenological models for sludge

treatment, the Anaerobic Digestion Model is the most famous contribu-

tion (Batstone et al., 2002).

Phenomenological models are capable of describing both linear and non-

linear phenomena and of providing information on the internal states

of the process. The detailed phenomenological modelling approach has

proven to be efficient, for example, in wastewater treatment process de-

sign, renovation, employee training, optimization of the plant operation,

and in understanding the behaviour of the system and interactions of the

components (Gernaey et al., 2004; Hauduc et al., 2009; Phillips et al.,

2009; Brjdanovic et al., 2015). However, there are major challenges in

using the first-principle models for real-time applications. Characteriz-

ing the organic matter and determining the rate constants for the volatile

fatty acid uptake is challenging, expensive and time-consuming and, yet,

fundamental to the successful calibration of the model (Dochain and Van-

rolleghem, 2001; Petersen et al., 2003; Hauduc et al., 2011; Choubert

et al., 2013). The models are calibrated for certain operational conditions,

often for dry weather circumstances, which diminishes their on-line use

under the varying process states (Gernaey et al., 2004). The theoretical

limitations concerning several phenomenological activated sludge models

have also been recently reported by Hauduc et al. (2013). Moreover, the

high-dimensionality of detailed phenomenological models results in enor-

mous computational requirements and ill-conditioned problems due to the

interaction between fast and slow dynamics (Dochain and Vanrolleghem,

2001).

The large amount of process data are routinely measured in real-time

and collected in modern-day WWTPs. The on-line measurements and the

stored historical operational data permit data-driven modelling as an in-

teresting alternative for soft sensor design (Haimi et al., 2013c). Today,

data-derived soft sensors are becoming more common in the wastewa-

ter treatment sector, even though they are still not as widespread as,

for instance, in the process industry where soft sensors are extensively

exploited and have shown great potential (see e.g. Fortuna et al., 2007;

Kadlec et al., 2009; Kadlec, 2009; Slišković et al., 2011a). Data-derived

soft sensors have also been developed for a considerable number of ap-
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plications in mineral processing (González, 2010), building systems (Li

et al., 2011), bioprocessing (Luttmann et al., 2012), electronics (Liukko-

nen et al., 2012), the pharmaceutical industry (Gernaey et al., 2012), in

the manufacture of bio-therapeutics (Mandenius and Gustavsson, 2014)

and in the steel industry (Kano and Nakagawa, 2014).

A data-derived soft sensor is conventionally described as an input-

output process model. The model inputs typically consist of secondary

variables that are easy to measure reliably, with reasonable costs (of-

ten stated as easy-to-measure variables). The inputs are in the form of

measurements of the plant and, sometimes, numerically encoded expert

knowledge. The model outputs consist of information associated with

those primary variables whose reliable measurement is challenging or

high-priced (often stated as difficult-to-measure variables). The informa-

tion that the input and output variables contain is modelled empirically

in the soft sensor. A data-derived soft sensor model with its inputs (six

variables in this example) and output (one variable) is sketched in Figure

3.1.

Figure 3.1. Data-derived soft sensor described as an input-output model.

The range of tasks that can be performed by data-derived soft sensors

is broad. The original application area of soft sensors is the on-line pre-

diction of process variables that can only be measured at low sampling

rates or off-line. Another motivation for designing soft sensors for on-line

prediction tasks is the need for a back-up system for on-line hardware

measurements, which are crucial for the safe and successful operation of

a system. The input-output relationship is encoded in the historical data,

which are used to calibrate the soft sensor model. The calibrated model is

used for reconstructing the input-output relationship and it estimates the

output variables once new inputs are available. This type of soft sensors

addresses a supervised learning problem in the form of regression or clas-

sification. Other typical application areas are related to monitoring the

state of the process and to monitoring the state of the instrumentation. In

these cases, the outputs are information on the operation of the process

and the instruments, in the form of diagnostics and status characteriza-
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tion. Soft sensors of this kind usually address an unsupervised learning

problem in the form of dimensionality reduction or clustering.

3.2 Framework for designing data-derived soft sensors

This section addresses the practical steps to be undertaken in the de-

sign of data-derived soft sensors. Also, the most commonly used data-

derived modelling techniques are briefly discussed. An overview of the

design procedure is given in Figure 3.2. The procedure consists of several

independent steps: data acquisition, data pre-processing, model design

and model maintenance. Soft sensor development is an iterative process

where choices made during the design procedure often need to be recon-

sidered before the soft sensor is ready for deployment. A framework for

developing data-derived soft sensors has also recently been presented by

Budka et al. (2014).

Model
maintenance

Data acquisition

Data
collection

Data
inspection

Data pre-processing

Sample
selection

Variable
selection

Model design

Training, validation and testing

On-line
prediction

Process
monitoring

Sensor
monitoring

Model selection

Figure 3.2. Overview of the design steps for data-derived soft sensors. Figure adopted
from Publication I.

3.2.1 Data acquisition

The historical process and laboratory data are routinely stored in the data

acquisition system of WWTPs and are easily retrieved. Data collection

and subsequent data inspection are the first steps in soft sensor develop-

ment. During the initial inspection, a preliminary exploration of the mea-

surements is performed in order to obtain an overview of the prominent

structures in the data and to identify the presence of obvious problems

(e.g., locked measurements, missing and drifting data and measurements

outside the operating range of the instruments). Periods of instrument

calibrations and process unit maintenance are also annotated together

with a selection of representative operations. The data inspection typi-

cally requires a large amount of manual work and expertise in the under-
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lying processes. It typically includes an extensive investigation of time

series, scatter plots and histograms of data.

3.2.2 Data pre-processing

The remarkable characteristics of the data acquired in wastewater treat-

ment facilities are redundancy and, possibly, insignificance. Disturbances

that corrupt the measurements are also sometimes present. Often, the

amount and quality of the data together with their high dimensionality

can be a limiting factor for soft sensor development. Therefore, it is nec-

essary to prepare the data before they are processed by the soft sensor’s

model. Process understanding and a priori knowledge is required in this

phase (Kadlec and Gabrys, 2009). Such knowledge can be supported and

complemented by many statistical techniques for variable selection and

sample selection. Applicable methods for the data pre-processing have

also been discussed by Slišković et al. (2011b).

Variable selection

The choice of the input variables is a crucial stage. Variable selection con-

sists of choosing those secondary variables that are the most informative

for the process being modelled, as well as those that provide the highest

generalisability. This step is fundamental because models are built from

a finite number of observations and having a model with too many inputs,

may lead to over-fitting and give rise to a large computational burden. In

addition, describing a process in terms of a few selected variables allows

one to retain interpretability.

The most commonly used techniques for variable selection are often cat-

egorized as filtering, wrapping and embedded methods (Guyon and Elis-

seeff, 2003; Lu et al., 2014). Embedded methods perform the variable

selection inside the soft sensor’s model and they are overviewed in Sub-

section 3.2.3. Filters and wrappers select variables and subsets of vari-

ables by ranking them on the basis of their significance for the task. The

wrappers combine two independent elements: (i) a relevance criterion: to

score an input variable or a group of input variables according to its in-

formative power; and (ii) a search procedure: for finding from among all

the available variables the subset that optimizes the chosen criterion. The

criterion is often based either on statistical dependence or model accuracy

measures. Given a criterion, the simplest strategy for variable selection

consists first of scoring all inputs and ranking them accordingly. A thresh-
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old for the score is then set and only the variables that score more than

the threshold are retained.

In many situations, the computational applicability of criterion-search

schemes is limited by the too large number of potential inputs. An al-

ternative approach to reduce the dimensionality of the problem consists

of producing a small number of combinations of the original variables.

New variables may be constructed on the basis of process knowledge (e.g.,

using balance calculations and averaging) or they can be derived using

statistical projection methods for dimensionality reduction (Lee and Ver-

leysen, 2007). Linear multivariate techniques such as Principal Compo-

nent Analysis (PCA, Jolliffe, 2002) and Partial Least Squares (PLS, Wold

et al., 2001) are the most common methods for learning a low-dimensional

representation of a set of data. PCA and PLS techniques are described in

Sections 5.1 and 5.3, respectively. The conventional PCA and PLS meth-

ods are commonly used for continuous processes, but when addressing

batch processes, the multiway nature of data is more appropriately pro-

cessed with the multiway variants of the techniques (Smilde et al., 2004).

Sample selection

When real data are analyzed, it is common that some observations are

different from the majority. Such observations are often called outliers.

They may be due to data acquisition mistakes or they correspond to ex-

ceptional process circumstances. In general, one can distinguish between

two main types of outliers: i) obvious outliers are observations that vio-

late physical or technological limitations and ii) non-obvious outliers are

observations that do not violate any threshold but still fall outside of typi-

cal ranges. Sample selection consists of discarding or pinpointing outlying

observations, since they are not necessarily representative of normal op-

erations and because their use may impair the performance of the soft

sensor model (Rosen et al., 2003). Alternatively, sample selection consists

of choosing only those observations that are truly representative of the

normal operation of the processes and instruments being modelled.

Multivariate statistics such as PCA and PLS, coupled with a model

residual analysis are frequently used in sample selection (Robinson et al.,

2005). However, these classical models are sensitive to outliers in the data

and to overcome such a limitation, their robust extensions should be used

instead (Rousseeuw and Hubert, 2011). Again, the classical approaches

are most conveniently used for continuous processes, whereas the multi-
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way variants are more suitable for batch processes (Hubert et al., 2012).

A conceptually different approach to sample selection is the applica-

tion of clustering and classification methods (Hastie et al., 2009). Clus-

tering and classification techniques aim at reducing the amount of data

by grouping the observations into subsets, either clusters or classes, that

consist of observations similar to each other but different from observa-

tions in other subsets. Clustering is essentially an unsupervised learn-

ing problem, whereas classification is an analogous supervised problem

based on pre-labelled data. The most popular techniques for clustering

are based on the k-means algorithm (Hartigan and Wong, 1979) and on

fuzzy c-means (FCM, Bezdek et al., 1984). Classification, on the other

hand, is typically performed using methods such as Linear Discriminant

Analysis (Fisher, 1936), Artificial Neural Networks (Haykin, 1999) and

Support Vector Machines (Cristianini and Shawe-Taylor, 2000).

3.2.3 Model design

Model design is a critical step in soft sensor development. In particular,

the model structure defines the specific application task and the selection

of the model parameters determines the generalization ability of the soft

sensor. However, a consistent approach to the task does not exist. Instead,

the model structure and parameters are often selected in an ad hoc man-

ner for each soft sensor (Kadlec et al., 2009). This is, firstly, due to the fact

that model design depends on the task at hand and, secondly, it is often

subjected to the developer’s past experience and personal preference.

Despite the lack of a consistent approach to model design, two main

tasks can be recognized: i) model structure selection and ii) model training,

validation and testing. The common practice suggests starting with sim-

ple model types, assessing their performances and then gradually increas-

ing complexity, as long as significant improvements are observed. Fur-

thermore, it is important that the models are not only accurate, but also

computationally efficient, interpretable and with a low maintenance cost.

In the following, the most popular model structures are briefly overviewed

and then the optimization of their parameters discussed.

Model structure selection

i. Models for on-line prediction: Such models address the problem of re-

constructing the functionality existing between the inputs that ideally are

low-cost measurements with a good analytical performance and the out-
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puts that often are difficult to measure precisely or with reasonable costs.

Usually, the inputs and the outputs take continuously varying real values

and their relationships can be modelled as a regression problem. Less

common is the case where the outputs take categorical values. In this

case, their relationship can be modelled as a classification problem (Duda

et al., 2000).

The simplest regression techniques assume the existence of a linear

input-output relationship and they fit a linear model to reconstruct it.

Most of the commonly used techniques belong to multivariate statistics

(Anderson, 2003), which examine relationships among multiple variables

at the same time. Ordinary Least Squares Regression (OLSR, Ryan,

2008), also known as Multiple Linear Regression, is based on the ordi-

nary least squares approximation of the linear model, which is simple

and sometimes accurate. The accuracy and interpretability of OLSR can

be improved by shrinking the regression coefficients, which is achieved

with models that also perform an embedded variable selection scheme

(Hastie et al., 2009). The most commonly used subset selection meth-

ods are Best Subset Selection, Forward and Backward Stepwise Selec-

tion, Forward Stagewise Regression, whereas popular shrinking methods

are Ridge regression, Least Absolute Shrinkage and Selection Operator

(LASSO) and Least Angle Regression (LARS). In situations with a large

number of inputs, multivariate statistical methods combining linear pro-

jection and linear regression can be used to reduce the dimensionality of

the modelling problem, at the price of interpretability. The most com-

monly used in this category of methods are Principal Component Regres-

sion (PCR) and PLS regression (PLSR).

A number of variants of the classical methods have been proposed in or-

der to improve the models’ performances in different applications. Adap-

tive and recursive extensions of PCR and PLSR (see Kadlec et al., 2011)

can be used for capturing the dynamic nature of process data. Typically

in these methods, the model is updated or re-constructed when a new

data sample or a block of new samples are available. The recursive meth-

ods update the data matrices by including new data according to certain

weights, which in the course of time are exponentially decreasing so that

old data are increasingly disregarded in comparisons with the new data

(Li et al., 2000). The Multiscale PCA (MSPCA, Bakshi, 1998) is a method

for separating the data in different time scales and, essentially, it is a com-

bination of multiresolution analysis (Strang and Nguyen, 1997) and PCA.
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In the Adaptive Multiscale PCA (AdMSPCA, Lennox and Rosen, 2002),

the models at each scale are made adaptive. Nonlinear kernel extensions

like KPCA and KPLS (Rosipal and Trejo, 2001) can be used in the pres-

ence of nonlinearities. In these methods, kernel functions, for instance

polynomial kernels, are used in the nonlinear mapping of the original

variables and, then, the originally linear operations of PCA or PLS are

performed (Schölkopf et al., 1998). Apart from the kernel extensions, sev-

eral other nonlinear generalizations applicable to PCA and PLS have also

been presented (see Jolliffe, 2002; de Leeuw, 2014, for references).

Other nonlinear methods do not necessarily rely on any assumption on

the input-output relationships. Nevertheless, they are widespread among

researchers and practitioners. Methods based on supervised artificial

neural networks (ANN, Haykin, 1999) and neuro-fuzzy systems (Fullér,

2000) are among the most popular.

An ANN is a network of artificial neurons arranged in layers and con-

nected to each other. The neurons nonlinearly transform the incoming

signals using an activation function and, then, they distribute the result

to the other neurons. The input-output relationship is encoded in the con-

nection weights, which are adapted to minimize the error between the

network outputs and the targets. In particular, Feedforward Neural Net-

works (FFNN, Haykin, 1999) have been popular in the wastewater treat-

ment sector.

Neuro-fuzzy systems combine the features of ANNs with the human-like

reasoning style of fuzzy systems, aiming at complementary techniques

and enhanced performance compared with the individual methodologies.

Typically in neuro-fuzzy systems, the first layer corresponds to input

variables, the middle layers encode fuzzy IF-THEN rules and the last

layer corresponds to the output variables. The advantages of neuro-fuzzy

systems include the ability of the ANN learning algorithms to learn both

fuzzy sets and fuzzy rules, as well as the potential to use a priori knowl-

edge. In particular, an Adaptive Network-based Fuzzy Inference System

(ANFIS, Jang, 1993) has been popular among soft sensor designers in the

wastewater treatment industry.

ii. Models for process and sensor monitoring: Such models address the

problem of detecting, identifying and diagnosing normal and abnormal be-

haviours in the processes and in the field instruments, using the easy-to-

measure process variables as inputs. Usually, no prior information about
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the outputs is available and it must be extracted from data using dimen-

sionality reduction and clustering approaches. In the less common case

where the output information is available, either as real or categorical

values, the input-output relationship can be modelled as a regression or a

classification problem, respectively.

In order to detect the occurrence of any variation having an exceptional

cause, univariate statistical control charts have been traditionally used to

monitor a small number of process variables. Examining one variable at

a time, as though they were independent, however, makes interpretation

and diagnosis extremely difficult in environments where a large number

of variables continuously vary relative to one another. However, when

the number of variables is large, one often finds that they are also highly

dependent on one another.

In the monitoring of the continuous processes and the hardware sen-

sors, the conventional and adaptive PCA and PLS methods are popular for

reducing the dimensionality of the variables of interest. An established

technique to isolate the variable(s) responsible for the detected anomalies

is to study their contributions to the model residual statistics. Another

traditional monitoring approach with PCA is to use low-dimensional scat-

ter plots defined by the most significant principal components, which in-

clude most of the information of the original variables. In such a way, the

transitions in the process or in the relationships between the supervised

sensors can be observed. When using PLS for process monitoring, the

output variables are usually difficult, or impossible, to determine in real-

time and they indicate the presence of anomalous situations. In wastew-

ater treatment, such variables are, for instance, indicators of the sludge

settling properties determined by field and laboratory experiments.

In the batch process, an additional dimension to the data structure is

addressed by the batch, the other dimensions representing time and the

variables. The Multiway PCA (MPCA) and PLS (MPLS) are commonly

used for dimensionality reduction when multiway data are considered,

for instance in the cases of the batch processes (Smilde et al., 2004). The

multiway extensions first unfold a three-dimensional data structure into

a two-dimensional structure and, then, PCA or PLS is executed. The mul-

tiway methods are sometimes called Unfold or Unfolding methods. Mul-

tilevel Component Analysis (MLCA, Timmerman, 2006) is an extension

of PCA that is useful if the variation in the data occurs on different lev-

els simultaneously. For monitoring the batch processes, MLCA enables
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separate interpretations of the transitions both within the batches and

between the batches in low-dimensional subspaces.

The Self-Organizing Map (SOM, Kohonen, 2001) is the most common

unsupervised ANN method and it has also been used in many wastewater

treatment applications. In the model training, the neurons adapt them-

selves to the relationships within a set of input signals and the SOM out-

puts a low-dimensional (usually two-dimensional) representation of the

patters encoded in the training data. In this representation, clusters cor-

responding to the characteristic features of the data are formed onto a

topographic map that provides an interpretation of the input information.

Clustering methods (Everitt et al., 2011) are applied for monitoring us-

ing the process variables or new variables created for instance by PCA

approaches as the model inputs. The observations among the training

data are grouped in the clusters based on their similarity. In the con-

ventional clustering approaches based, for example, on the k-means algo-

rithm, each observation belongs to one of the clusters. Instead, in fuzzy

clustering methods, each observation belongs to all the clusters to some

extent, represented by their fuzzy memberships. When introducing un-

seen data, their discrete properties can be observed by monitoring their

transition between the clusters defined in the model training step.

Model training, validation and testing

Most of the model types discussed in this subsection are characterized

by a number of basic parameters and a number of meta-parameters that

define their structure and optimize it in terms of its generalization per-

formances. The basic parameters of the models are, for instance, the re-

gression coefficients of linear regression methods, the connection weights

of neural and neuro-fuzzy systems, the loading components in multivari-

ate statistical methods like PCA and PLS. The meta-parameters are, on

the other hand, the number of components to be retained in methods like

PCA and PLS, the regularization parameter in linear shrinkage methods

like LARS and LASSO, the number of neurons and layers in the ANN and

neuro-fuzzy systems, and the number of clusters, among others. Before a

model is able to operate on new unseen observations, it has to be trained

to estimate its basic parameters and it has to be validated to optimize its

meta-parameters. Model validation is a highly important step in soft sen-

sor development, in which the designer estimates how well the model will

perform on the unseen data.
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Ideally, if enough data were available, the soft sensor developer would

set aside a validation set and use it to assess a model whose basic pa-

rameters are calibrated on a training set, for the different values of its

meta-parameters. After finding the optimal set of meta-parameters, the

developer would then calibrate the model to set its basic parameters, us-

ing all the available training data. The resulting model is eventually as-

sessed on an independent testing data set.

However, it may be difficult to obtain a sufficient amount of historical

data for training the model according to the aforementioned procedure.

In such a situation, the soft sensor developer has to rely on error estima-

tion techniques, like the simple and widely used cross-validation (Hastie

et al., 2009). K-fold cross-validation uses part of the training data to cali-

brate the model and a different part to validate it. The procedure consists

of, firstly, splitting the data in K roughly equal-size parts, secondly, to

set aside the k-th part and calibrating the model to the other K-1 parts

and, thirdly, to calculate a measure of model accuracy over the k-th part.

After repeating the procedure for all the K parts, the accuracies are com-

bined to give an average performance of the model, for a specific set of

meta-parameters. The model whose meta-parameters have the best gen-

eralization accuracy is finally trained and assessed against a testing data

set.

3.2.4 Model maintenance

After the successful design and implementation, it is not uncommon to ob-

serve a degradation of the performance of a data-derived soft sensor. Such

degradation is often due to changes in the process and instrumental char-

acteristics or operating conditions. In the wastewater treatment applica-

tions, the reason for this may be, for example, variations in the influent

wastewater composition, temperature and flow rate, instruments recali-

brations or operational changes inside the plant. To overcome such limi-

tations, soft sensors should be regularly maintained and updated as the

system characteristics change, but their manual and repeated redesign

should be avoided due to the heavy workload.

Many of the soft sensors currently found in full-scale environments do

not provide any automated mechanisms for their maintenance. A sug-

gested improvement for regular soft sensor maintenance is to statistically

analyze the residuals between the soft sensor estimates and the hardware

instrument measurements if they are available and, then, to perform the
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maintenance only when the analysis indicates that it is required (Abonyi

et al., 2014). However, this approach also necessitates a lot of manual

work.

To automatically cope with the changes in process characteristics and

operating conditions, a number of data-derived approaches have been de-

signed and are available for the soft sensor developer (Kadlec et al., 2011).

The majority of these approaches are inherently encoded in the adap-

tive and recursive versions of multivariate statistical methods like PCA

and PLS. Recently, Kaneko et al. (2014) proposed the use of multivari-

ate statistical process control to select an adequate adaptive PLS-based

soft sensor out of models employing three different adaptation techniques:

moving-window, just-in-time and time difference. Algorithms for design-

ing adaptive soft sensors based on just-in-time models have been reviewed

by Saptoro (2014). An approach related to the neuro-fuzzy methods also

providing adaptation possibilities is local learning (Atkeson et al., 1997).

An adaptive soft sensor developed in this framework was published in

Kadlec and Gabrys (2008). An alternative for the adaptive maintenance

approaches was presented by Chen et al. (2015) who developed a Kalman

filter (Kalman, 1960) based model mismatch index and a procedure for up-

dating soft-sensor PLS model on-line when significant degradation occurs.

In addition, Fujiwara et al. (2009) and Zhu et al. (2011) have discussed the

development of maintenance-free soft sensors for on-line prediction using

local linear regression methods.
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4. Applications of multivariate statistics
-based soft sensors in biological
wastewater treatment

In this Chapter, an overview of case studies where soft sensors have been

proposed for biological wastewater purification is given. Since the exper-

imental research in this thesis concerns soft sensor development using

multivariate statistics, only the works where those methods have been

exploited are considered. However, other data-derived modelling fami-

lies have also been used in soft sensor design. Such families are, for

example, artificial neural networks (Capodaglio et al., 1991; Bongards,

2001; Çinar, 2005; Ráduly et al., 2007; Lee et al., 2008; Rustum et al.,

2008; Aguado et al., 2009; Dellana and West, 2009; Dürrenmatt and Gu-

jer, 2012; Bagheri et al., 2015) and neuro-fuzzy systems (Tay and Zhang,

1999; Civelekoglu et al., 2007; Fernandez et al., 2009; Huang et al., 2010;

Wan et al., 2011; Dzakpasu et al., 2015). In addition, hybrid methods that

combine two or more modelling approaches have been proposed for soft

sensor design in WWTPs (Côté et al., 1995; Cohen et al., 1997; Choi and

Park, 2001; Lee et al., 2005; Kim et al., 2009; Rustum, 2009; Liu et al.,

2014).

In the following, the case studies that concern both municipal and in-

dustrial wastewater treatment applications are considered and the inves-

tigations of full-scale, pilot-scale and laboratory-scale processes as well

as simulated processes are included. In particular, the presented studies

are divided according to the applications of the soft sensors: on-line pre-

diction (Section 4.1); process monitoring and fault detection (Section 4.2);

and instrument monitoring and fault detection (Section 4.3). The case

studies are arranged according to methods and processes in the following

order: classical methods for continuous applications; the extensions of the

classical methods for continuous applications; and any methods for batch

applications.
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4.1 On-line prediction

A common application for the data-derived soft sensors in wastewater

treatment systems involves predicting the primary process variables.

Multivariate methods, especially PLS and its extensions, are one of the

typical techniques used for the on-line prediction tasks. Nitrogen and

COD concentrations along with the variables describing the sludge set-

tling properties have been popular predicted outputs. However, a wide

range of primary variables has been approximated, depending, for in-

stance, on the process type and on the treatment regulations. The predic-

tion applications in the overviewed publications are summarized in Table

4.1, where studies are arranged in the same order as they appear in the

text.

Conventional multivariate techniques have been found adequate for soft

sensor design in several studies. In an early application, Aarnio and

Minkkinen (1986) used PLS to estimate the Total Phosphorus (TP) and

COD concentrations and turbidity as indicators of the effluent quality in a

municipal ASP. The authors found the methodology feasible for recogniz-

ing the reasons for sludge bulking episodes, which diminish the quality

of the treated effluent. Blom (1996) designed a PLS model for estimat-

ing the influent TP concentration in a municipal WWTP and considered

the model accuracy based on daily laboratory analyses to be acceptable.

Teppola et al. (1999b) used OLSR, PCR and PLS models for predicting

Diluted Sludge Volume Index (DSVI) and COD removal in the ASP of

a paper mill. They also investigated updating the static models with a

Kalman filter which remarkably improved the predictions of DSVI, but

did not notably increase the performance of the COD prediction. Jans-

son et al. (2002) examined soft sensors in a municipal ASP for estimating

phosphate-phosphorus (PO4-P) and TP concentrations, the data of which

were acquired with sampling campaigns and laboratory analyses. The au-

thors found PLS models to be the most precise of the tested methods and

the model accuracies to improve by including past observations using the

finite impulse response filter (Mitra and Kaiser, 1993). The soft sensor es-

timates could have been used in the precipitation chemical dosage control

improving the system in use at the time of the study. Amaral et al. (2013)

explored the prediction of Sludge Volume Index (SVI) and Mixed Liquor

Suspended Solids (MLSS) in a laboratory-scale ASP in the presence of in-

tentionally caused sludge settling disturbances. PCA and decision trees
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(Quinlan, 1986) were used to cluster samples according to four operating

conditions: pinpoint flocs formation, filamentous bulking, viscous bulking

and normal conditions. The accuracies of the individual models for each

cluster were found to be considerably better than the accuracies of the

models that covered all the samples.

In a few case studies, spectral data have been used as inputs into PLS

models. Galinha et al. (2012) investigated PLS-based prediction in a pilot-

scale Membrane Bioreactor (MBR). In MBRs, suspended solids are sepa-

rated with membranes instead of the secondary settlers of the conven-

tional ASPs and, therefore, considerably larger MLSS concentrations can

be used. In the study, the spectroscopy data was compressed using Par-

allel Factor Analysis (PARAFAC, Bro, 1997) and, subsequently, its most

descriptive components were applied as PLS inputs along with conven-

tional process variables. The transmembrane pressure (TMP) indicating

the membrane fouling and the permeate COD concentrations were pre-

cisely estimated, but the nutrient and MLSS approximations were less

satisfying. PLS-based estimations applying spectral data have also been

proposed by Chen et al. (2014) in an airport WWTP application with Inter-

val PLS (IPLS, Andersen and Bro, 2010) and by Platikanov et al. (2014)

in a municipal WWTP application with the classical method.

A number of multivariate variants have been proposed for overcoming

the challenges of the nonlinear and time-evolving nature of WWTPs. Yoo

et al. (2004) predicted process variables in ASPs with the conventional

PLS, Quadratic PLS (QPLS, Baffi et al., 1999) and Fuzzy PLS (FPLS,

Bang et al., 2003) using the Benchmark Simulation Model 1 (BSM1, Ger-

naey et al., 2014) and an industrial ASP as the test environments. BSM1

is a virtual test platform for the performance assessment of control and

monitoring strategies for the ASP. In the case of the BSM1 application, the

FPLS model predicted most precisely the outputs, which were the efflu-

ent NH4-N and NO3-N concentrations. In the real-plant application, the

outputs were SVI and the reductions of cyanide and COD. The PLS and

QPLS showed a slightly better prediction performance than the FPLS, but

the prediction of SVI was challenging due to the influent disturbances.

Lee et al. (2007) proposed Robust Adaptive PLS (RAPLS) for prediction

in an Anaerobic Filter (AF) treating industrial wastewater. In the AFs,

wastewater is carried through a bed of medium on which anaerobic bac-

teria grow. The effluent Total Oxygen Demand (TOD) and the produc-

tion rate of methane were successfully estimated with the presented tech-
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nique.

Woo et al. (2009) predicted the effluent COD, Total Nitrogen (TN) and

cyanide concentrations in an ASP treating cokes wastewater. While the

conventional PLS was not capable of modelling the outputs satisfactorily,

Neural Network PLS (NNPLS, Qin and McAvoy, 1992) achieved improved

estimation accuracies. The best prediction performance was, however,

obtained by a KPLS model. The models were further compared using

the Bayesian Information Criterion (Leonard and Hsu, 1999), which con-

firmed the ability of KPLS to outperform the other investigated methods

when considering both accuracy and complexity. Dürrenmatt and Gujer

(2012) compared Generalized Least Squares Regression (GLSR, Kariya

and Kurata, 2004), ANN and Random Forest (RF, Breiman, 2001) meth-

ods for approximating COD and NH4-N concentrations in a municipal

ASP. Even though GLSR estimates were not the most accurate, the au-

thors considered the transparency of the GLSR models to be a signifi-

cant advantage, for instance, compared with the opaqueness of the ANNs.

Therefore, they considered the interpretability to justify the selection of

GLSR for soft sensor development. Sulthana et al. (2014) proposed Fuzzy

PCR (FCPR) for approximating the COD and BOD reductions in a munic-

ipal Lagoon Treatment Process (LTP), where earthen basins are used as

reactors and surface aerators are exploited to provide the required oxygen

and mixing. The authors found the output estimations to be precise using

daily measurements as the inputs, but a larger training data set would

have been needed for coping with a wider range of process conditions.

Most of the treatment processes considered in the reviewed studies

were continuous, though batch processes for purifying wastewaters were

also considered. Sequencing Batch Reactors (SBRs) containing activated

sludge are operated according to a different number of phases, such as

filling, aeration, mixing, settling and decanting. The phases and their

lengths depend on the treatment targets. A study by Aguado et al. (2006)

compared the performances of several approaches based on PCR, PLS

and ANNs for predicting the PO4-P concentration profile in a pilot-scale

SBR treating synthetic sewage and operated for the EBPR purpose. The

authors found the batchwise unfolding MPLS models outperformed the

other techniques used for the estimation task.
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4.2 Process monitoring and fault detection

Classical multivariate techniques and their extensions have been widely

used in the development of soft sensors aimed at monitoring the biological

WWTPs. Pioneering work on the applications of multivariate statistics

and developing adequate methods for monitoring the ASPs in the pulp

and paper industry was done by Mujunen (1999) and Teppola (1999) and

for monitoring the municipal ASPs by Rosen (2001) and Lennox (2002).

Supervising the batch reactors for wastewater treatment using multivari-

ate techniques has been extensively investigated by Aguado (2005) and

Villez (2007). The reviewed studies that aimed at monitoring treatment

processes are summarized in Table 4.2.

Table 4.2. Process monitoring and process fault detection applications of soft sensors in
the reviewed publications. M = municipal, I = industrial, L = laboratory-scale,
P = pilot-scale, S = simulated.

Publication Method(s) Appl. Process
Rosen and Olsson (1998) PCA, PLS M ASP

Teppola et al. (1999a) PCA + FCM I ASP

Tomita et al. (2002) PCA S ASM1

Olsson et al. (2003) PCA M ASP

Miettinen et al. (2004) PCA, PARAFAC M LTP

Dias et al. (2008) PCA L ASP

Moon et al. (2009) PCA + K-means M ASP

Teppola et al. (1997) PLS + autocorrelation function I ASP

Teppola et al. (1998) PLS + FCM I ASP

Mujunen et al. (1998) PLS I ASP

Teppola and Minkkinen (1999) PLS + FCM/PCM I ASP

Rosen and Yuan (2001) APCA + FCM S BSM1

Rosen et al. (2002) APCA + FCM S BSM1

Rosen et al. (2003) PCA, APCA M ASP

Aguado and Rosen (2008) PCA, APCA, MPCA S BSM1_LT

Lee et al. (2008) PCA, APCA M ASP

Rosen and Lennox (2001) PCA, APCA, MSPCA M ASP

Mirin and Wahab (2014) PCA, MSPCA M ASP

Lennox and Rosen (2002) APCA, AdMSPCA M ASP

Yoo et al. (2003) FPCR, PCR I ASP

Maere et al. (2012) PCA + GK, EFPCA + GK L MBR

Aguado et al. (2007b) MPLS L SBR

Aguado et al. (2007a) MPCA L SBR

Villez et al. (2008) MPCA + LAMDA P SBR

The conventional PCA technique has been used for process-state iden-

tification especially in earlier applications. Rosen and Olsson (1998) ap-

plied PCA for monitoring the operational states in a municipal ASP. After

building a PCA model using the samples representing the normal oper-

ating conditions, they monitored deviations from the normal process be-
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haviour with the two-dimensional score plot. Teppola et al. (1999a) pro-

posed combined approaches of PCA and FCM clustering for monitoring

and visualizing process states and seasonal fluctuations in an ASP treat-

ing wastewater from a paper mill. In the pulp and paper industry, the

main treatment goal is to oxidize the organic compounds in the wastew-

ater instead of targeting nutrient removal. Actually, nitrogen and phos-

phorus usually need to be added in order to maintain a sufficient balance

between organic matter and nutrients for the microbiological population.

In this work, the researchers were able to detect and isolate an excess

addition of phosphorus into the influent wastewater. Tomita et al. (2002)

applied a PCA model for the analysis and disturbance detection in a simu-

lated ASP. They found three groups of process variables that successfully

characterized the system behaviour. Olsson et al. (2003) employed PCA

for monitoring a municipal ASP as an example of using information tech-

nology for decision support purposes. They identified separate clusters

that describe the operational states and applied a score plot for monitor-

ing shifting of the new data between the clusters. Miettinen et al. (2004)

investigated the use of PCA and PARAFAC for characterizing the opera-

tion of a municipal multistage LTP. The results established that the oper-

ational states and the ponds where particular reactions occurred could be

identified using both methods, which complemented each other well. Dias

et al. (2008) employed PCA for monitoring perturbations in a laboratory-

scale ASP and used spectral data as the model inputs. The authors found

the application to be successful in monitoring the process states and the

wastewater quality. Moon et al. (2009) published a methodology for the

identification of the operational states in a municipal ASP by means of

PCA and K-means clustering. They identified five operational groups and

demonstrated that the proposed operational map could visually provide

information on the dynamic trends of the process states.

Moreover, conventional PLS has been employed for process monitoring.

Teppola et al. (1997) used PLS combined with an auto-correlation function

(Massart et al., 1988) for modelling DSVI and COD, nitrogen and phos-

phorus reductions in the ASP of a paper mill in order to detect process

shifts. Whereas the model was able to explain DVSI well, it did not yield

a good performance in relation to the reductions due to scarce data rep-

resenting the daily values of the variables. Nevertheless, the researchers

concluded that the disturbance was successfully isolated in almost in ev-

ery case. In another soft sensor application, Teppola et al. (1998) com-
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bined PLS with FCM clustering aiming at novel monitoring tools for the

ASP of a paper mill. The methodology was successfully applied in mon-

itoring DSVI, with seasonal variations, for instance, being recognized in

the process. Mujunen et al. (1998) applied PLS for monitoring three ASPs

treating wastewater from the pulp and paper industry. Sludge settling

properties determined with SVI and DSVI were monitored and used for

identifying the process states associated with poor treatment efficiency

caused by bulking sludge. The authors found that the sampling frequency

of the 2–3 day composite samples and the daily mean values of on-line

measurements were too low for modelling the peak values successfully.

Rosen and Olsson (1998) demonstrated the use of PLS for monitoring the

operational states of a municipal WWTP when considering the effluent

turbidity as the model output. The process variables associated with the

disturbances were isolated by analyzing the variables’ contributions to

the model residuals. Teppola and Minkkinen (1999) combined PLS with

FCM and Possibilistic C-means (PCM, Krishnapuram and Keller, 1993)

clustering methods for monitoring the ASP of a paper mill. The authors

demonstrated the use of the combined methodologies for real-time process

monitoring.

Adaptive PCA (APCA) extensions have been proposed for WWTP mon-

itoring in a number of publications for improved adjustment to the dy-

namic conditions. Rosen and Yuan (2001) used APCA and FCM cluster-

ing for monitoring and control set point definition in a case study where

a simulated step-feed ASP was used as a test bench. In a step-feed ASP,

the wastewater is fed at several stages in the bioreactor. The influent

data for a preliminary version of BSM1 modified with an extreme NH4-

N load disturbance was applied in the simulations. The authors defined

five operational states with the procedure: normal operation, storm with

sewer flush-out, storm, rain and high NH4-N load. Supervisory control

strategies determining the set-points of the manipulated variables were

successfully applied in the occurrence of the specific operational states.

Later, Rosen et al. (2002) utilized the same process-state estimation ap-

proach in an investigation of a predictive supervisory controller during

extreme events. Rosen et al. (2003) focused on the challenges of multi-

variate monitoring in wastewater treatment. The authors did not find

the conventional PCA to be adequate for dealing with the process dynam-

ics of a municipal ASP, but an adaptive scaling of the model parameters

improved the monitoring performance considerably. Aguado and Rosen
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(2008) investigated efficient monitoring tools for municipal ASPs. The

dynamic influent data of the BSM1 long-term model (BSM1_LT, Rosen

et al., 2004) that was modified to include a realistic set of process distur-

bances was used in the study. The researchers used PCA approaches and

FCM clustering for monitoring the operational states and for tracing the

most likely disturbance causes. They also found the performance of the

monitoring tool to improve significantly when an APCA method was used

instead of the classical PCA. An example of a practical implementation

was provided by Lee et al. (2008) who applied APCA for the real-time re-

mote monitoring of small-scale municipal ASPs. They noticed that the

APCA models overcame the problem of evolving dynamics and reduced

the number of false alarms significantly. The models were used to pro-

vide the plant operators with an early warning of an anomalous process

behaviour.

Other types of extensions to the conventional multivariate techniques

have also been presented for inspecting the process units. Rosen and

Lennox (2001) proposed Multiscale PCA (MSPCA), a combination of PCA

and multiresolution analysis (Strang and Nguyen, 1997), which decom-

poses measurement signals into several time scales, for monitoring a mu-

nicipal ASP. Both MSPCA and APCA techniques had the potential to over-

come the challenges created by time-varying process conditions, but the

MSPCA was shown to provide more information about the process dis-

turbances. Mirin and Wahab (2014) recently used the MSPCA approach

to monitor a municipal step-feed ASP. The authors indicated the employ-

ment of MSPCA to reduce the number of false alarms in comparison with

the conventional PCA method. Lennox and Rosen (2002) continued de-

veloping the MSPCA to be more adequate for the field of operation and

proposed Adaptive Multiscale PCA (AdMSPCA). The authors compared

the performances of the AdMSPCA and APCA techniques and indicated

AdMSPCA showed the ability to adapt to a much broader range of pro-

cess changes. Yoo et al. (2003) presented a Fuzzy Principal Component

Regression (FPCR) method for adaptive monitoring of an industrial ASP

and demonstrated the technique was able to distinguish between a large

process change and a short disturbance. Maere et al. (2012) investigated

the use of three different PCA approaches combined with the Gustafson-

Kessel fuzzy clustering algorithm (GK, Gustafson and Kessel, 1979) for

monitoring membrane fouling in a laboratory-scale MBR. The authors

found the Expert-driven Functional PCA (EFPCA, Ramsay and Silver-
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man, 2005) to be the most suited for the monitoring task out of the tested

PCA approaches. However, they concluded that a larger training data set

would have been needed for the correct classification of all samples and

that a full-scale study would widen the validity of the proposed monitor-

ing approach.

Multiway methods have been popular in the process monitoring of batch

processes. Aguado et al. (2007b) used a MPLS to correlate several on-

line variables with the phosphorus removal efficiency in a laboratory-scale

SBR aiming at EBPR. They identified conductivity as a suitable variable

for monitoring the process upsets associated with a negative effect on the

phosphorus removal efficiency. Aguado et al. (2007a) compared different

multivariate techniques for fault detection and diagnosis in a laboratory-

scale SBR operated for an EBPR purpose. The authors found the MPCA

methodology to be straightforward and consistent in the monitoring and

diagnosis of process abnormalities. Villez et al. (2008) applied a combi-

nation of MPCA and Learning Algorithm for Multivariable Data Analysis

(LAMDA, Aguilar-Martin and López de Mántaras, 1982) clustering for an

analysis of a pilot-scale SBR. They showed the combined methodology pro-

vided an efficient and robust tool for screening and interpreting data from

a batch process.

4.3 Instrument monitoring and fault detection

Another soft sensor application type used in wastewater treatment is the

monitoring and fault detection of hardware instrumentation. These types

of soft sensors also provide a decision support system for the maintenance

of hardware sensors and analyzers. PCA and PLS approaches have been

applied in instrument monitoring and for identifying reasons for sensor

anomalies, such as bias, drift, complete failure and precision degradation.

The sensor monitoring applications in the reviewed publications are sum-

marized in Table 4.3.

Classical PCA methods have been considered in a few investigations.

Yoo et al. (2008) proposed PCA for sensor anomaly identification and

sensor reconstruction. The case study concerned a laboratory-scale Sin-

gle reactor system for High activity Ammonium Removal Over Nitrite

(SHARON) process that performs partial nitrification and treats wastew-

ater streams containing high nitrogen concentrations. In particular, two

realistic fault scenarios concerning a DO sensor were successfully tested.
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Table 4.3. Instrument monitoring and instrument fault detection applications of soft
sensors in the reviewed publications. M = municipal, I = industrial, L =
laboratory-scale, P = pilot-scale, S = simulated.

Publication Method(s) Appl. Process
Yoo et al. (2008) PCA L SHARON

Alferes et al. (2013) PCA M ASP

Tao et al. (2013) PCA P SBR

Lee et al. (2004) PCA, APCA S BSM1

Lee et al. (2006) PCA, APCA S BSM1

Baggiani and Marsili-Libelli (2009) APCA M ASP

Lee et al. (2009) PLS, MSPLS I AF

Alferes et al. (2013) used PCA and the model residual statistics for mon-

itoring sensors at the inlet of a municipal WWTP. As the model inputs,

they used eight on-line measured variables that consisted of four pairs

of redundant measurements. In a provided example, the other turbidity

sensor was defective and the anomaly was correctly detected and isolated.

Tao et al. (2013) investigated the underlying sensor anomalies in a pilot-

scale SBR. Four on-line measured process variables were applied as the

inputs to the PCA model. The researchers illustrated that the fault causes

could be successfully identified by the methodology that combined the in-

formation provided by the loadings and scores of the model.

Advanced multivariate variants have been studied for instrument mon-

itoring purposes. Lee et al. (2004) proposed a PCA-based sensor anomaly

detection and isolation application using the BSM1 protocol as a test envi-

ronment. They used a time-lagged APCA model to identify faults in seven

sensors. Two case studies were tested: the precision degradation of the

influent NH4-N sensor and the bias in the influent flow rate sensor. In

particular, a reconstruction method based on the ratio between two kinds

of modelling residuals was applied for identification. The APCA model

detected and isolated defective sensors clearly and consistently in both of

the cases. Lee et al. (2006) applied APCA for sensor fault detection in

the BSM1 platform. The studied anomaly scenarios included the influent

NH4-N sensor corrupted by a drifting fault, the influent flow rate sensor

corrupted by the bias fault and the NO3-N sensor in the ASP corrupted by

precision degradation. The authors indicated that the proposed approach

performed well for sensor anomaly detection and in identifying the failing

sensors efficiently. However, a limitation of the proposed technique con-

cerned its inability to identify the malfunctioning sensors that cause pro-

cess transitions, i.e. the situations when a faulty instrument is connected
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to a control loop. Baggiani and Marsili-Libelli (2009) studied APCA mod-

els for real-time fault detection and isolation in an ASP treating municipal

wastewater and septic tank discharges. In particular, the measurements

of one NH4-N and two NO3-N sensors were used as the model inputs. The

abnormalities were classified into three categories: sensor faults, spikes

and process anomalies. The researchers demonstrated that the models

were capable of detecting all the investigated faults. In addition, the sen-

sors responsible for the faults were isolated by studying the contributions

of input variables to the model residuals. Lee et al. (2009) proposed a

Multiscale PLS (MSPLS) algorithm combining PLS and wavelet analysis

(Strang and Nguyen, 1997) for sensor fault detection. As a case study,

the methodology was used for anomaly detection in an AF process treat-

ing petrochemical industry wastewater. The fault detection ability of the

MSPLS approach was found to be good and, moreover, it was shown to

properly diagnose the detected sensor failures and to provide scale-level

information about the fault characteristics.
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5. Multivariate methods used in soft
sensor development

Multivariate statistical analysis concerns analyzing relationships among

data in high dimensions. In particular, the multivariate statistical tech-

niques deal with data comprising multiple variables simultaneously, in

contrast with the univariate statistical techniques that handle the ob-

servations of only one variable at time. Multivariate statistics is also

considered an important discipline in chemometrics, which is the science

of extracting information from chemical systems by data-driven means

(Wold, 1995). In the wastewater treatment sector, research where multi-

variate techniques have been used under the domain of chemometrics has

also been conducted (e.g., Teppola, 1999; Rosen, 2001; Haimi and Hurme,

2004; Haimi, 2006).

A number of classical multivariate techniques are available for re-

searchers to convert high-dimensional data into easily interpretable and

actionable information. Novel variants of the classical methods are also

being developed continuously in order to find adequate solutions for dif-

ferent applications and problems. In this chapter, the multivariate statis-

tical methods and their extensions that are applied in the experimental

research presented in Chapter 6 of this thesis are described: Principal

Component Analysis, Ordinary Least Squares Regression, Partial Least

Squares Regression and k-Nearest Neighbor Local Linear Regression.

5.1 Principal Component Analysis

5.1.1 Conventional PCA

Principal Component Analysis (PCA, Jolliffe, 2002) is a multivariate sta-

tistical technique for learning a low-dimensional representation of a set

of data. PCA extracts the dominant patterns in the data by eliminating
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information redundancy due to variables cross-correlation. PCA searches

in the original data space for new directions that are maximally indepen-

dent in a linear sense, hence uncorrelated. In such a way, PCA identi-

fies the principal directions in which the data varies. Before performing

PCA, data are often autoscaled i.e. centered around the sample mean and

scaled with respect to their unit variance in order to give the variables the

same influence in the PCA model. However, in every case autoscaling is

not appropriate before performing PCA and, in addition, there are several

other options for centering and scaling data (Bro and Smilde, 2003; van

den Berg et al., 2006).

Let X indicate a K ×D data matrix with the K observations

each comprising D variables. Each of the K observations x(k) =

[x1(k), . . . , xd(k), . . . , xD(k)]
′ at time k represents a point in the D-

dimensional data space. PCA factorizes the K ×D data matrix X using

eigenvalue decomposition, to obtain

X = TP′ +E (5.1)

where T is a K × S score matrix, P is a D × S loading matrix and E is

a K ×D residual matrix. S is the number retained Principal Compo-

nents (PCs) and each of the K measurements at time k is modelled as a

S-dimensional point t(k) = x(k)P. The scores are understood as the new

coordinates of the point in a (sub)space whose directions are defined by

the set of loadings {p1, . . . ,ps, . . . ,pS}, or PCs, which are eigenvectors of

the covariance matrix X′X. Typically, most of the variation in the data

can be explained by retaining a small number of PCs compared with the

original dimension of the data matrix X ( i.e. S « D). The discarded PCs

are associated with the smallest eigenvalues λ and they represent the

directions with the least variance among the data.

The example in Figure 5.1 demonstrates the projection of data from the

original space into the principal subspace. The observations are shown in

the original space defined by three variables, X1, X2 and X3 (Figure 5.1a).

A plane defined by two PCs (PC 1 and PC 2) is depicted in the original

space (Figure 5.1b). The direction of PC 1 is associated with the largest

variation among the observations. PC 2 is orthogonal to PC 1 and, within

that constraint, it describes the largest possible variation left in the data.
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(a) (b)

Figure 5.1. Observations in an original three-dimensional space (a) and in a principal
subspace formed by two PCs (b).

Methods for selecting a subset of PCs

A large number of methods have been presented for selecting a suffi-

cient subset of PCs, including heuristic and statistical approaches (Jack-

son, 1993; Valle et al., 1999; Jolliffe, 2002). The heuristic methods are

experience-based techniques, for instance graphical procedures. Their

justification is that they have often been found to work sufficiently for se-

lecting the number of retained PCs in practice. The statistical approaches

base the choice of an adequate subset of PCs on significance tests. For

example, in a wide range of cross-validation methods (Hastie et al., 2009;

Arlot and Celisse, 2010) the estimated values of a data set that has not

been used for building the PCA model are compared statistically with the

actual values. Some of the common methods for determining the number

of retained PCs are collected in Table 5.1. Only the methods that are used

for selecting a sufficient subset of PCs or other latent variables in the

experimental studies presented in Chapter 6 are described below. How-

ever, references for the detailed procedures of other relevant approaches

to assessing the number of retained PCs are provided in Table 5.1.

One of the most applied methods for selecting the number of the re-

tained PCs is Cumulative Percent Variance (CPV). The eigenvalues as-

sociated with PCs correspond to the variance explained by each dth PC,

{1, ...d, ..., D}. Therefore, the cumulative variance that is explained by the

first d PCs is:

CPV (d) =

∑d
i=1 λi∑D
i=1 λi

× 100% (5.2)

Jolliffe (2002) has stated that a sufficient cutoff for CPV in the selection of
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Table 5.1. Popular heuristic and statistical methods for selecting the subset of retained
Principal Components in a PCA model.

Method Reference(s)
Heuristic:

Cumulative Percent Variance Jolliffe (2002)

Cut-off limit for value of λ Kaiser (1960); Jolliffe (1972)

Maximum eigengap Davis and Kahan (1970)

Scree diagram Cattell (1966)

Log-eigenvalue diagram Farmer (1971)

Statistical:

Cross-validation Wold (1978); Diana and Tommasi (2010)

Bootstrapping Diaconis and Efron (1983)

Variance of reconstruction error Qin and Dunia (2000)

Partial correlations Velicer (1976)

the number of the retained PCs, corresponding for the dimensionality S of

the subspace, is often in the range 70–90%. However, the adequate mini-

mum CPV is application-specific and dependent on the subjective evalua-

tion of the modeller.

The eigengap technique (Davis and Kahan, 1970) can be used for select-

ing an appropriate number of PCs for the models. When the eigenvalues

are sorted in descending order λ1 ≥, ...,≥ λd ≥, ...,≥ λD, the eigengap is

defined as μd = λd−λ(d+1), with d = {1, ...D−1}. The index d of the eigen-

value associated with the largest eigengap defines the dimensionality S

of the projection subspace i.e. S = argmaxμd.

Leave-One-Out (LOO) is a standard resampling method used in a cross-

validation procedure (Stone, 1974). One sample in the training data set

is excluded at the time and the value of the excluded sample is estimated

using the learned model. The procedure is repeated for each sample, in

other words as many times as there are observations K in the training

data set. The cross-validation accuracies are then measured in terms of an

appropriate statistic that describes the deviations between the measured

and estimated values. LOO cross-validation is performed for models with

d retained PCs (or other latent variables) and d resulting in the smallest

value of the error statistic defines the dimension S.
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Statistics for monitoring the variability in data

The Hotelling’s T 2 statistic and the Q statistic (Jackson and Mudholkar,

1979) and their confidence limits, T 2
lim and Qlim (Atkinson et al., 2004;

Nomikos and MacGregor, 1995, respectively), are often employed, for in-

stance, in process monitoring. The T 2 statistic measures the (normalized)

Mahalanobis distance (Mahalanobis, 1936) of the projected observation

t(k) from the origin of the principal component subspace:

T 2(k) = t(k)Λ−1t(k) (5.3)

where Λ−1 denotes a diagonal matrix with the inverse of the eigenvalues

associated with the retained PCs. An example of T 2 in a space defined

by 2 PCs is shown with a red double-headed arrow in Figure 5.2a. The Q

statistic measures the (orthogonal) distance of an observation x(k) from

its reconstruction x̂(k) = t(k)P′ on the principal component subspace (in-

dicated with a red double-headed arrow in Figure 5.2b):

Q(k) =

D∑
d=1

(xd(k)− x̂d(k))
2 (5.4)

The confidence limits T 2
lim and Qlim are calculated for a certain confi-

dence level z = {0, ..., 1}. Typically, the values given for z range between

0.95 and 0.99, a low z value providing a stricter T 2
lim and Qlim than a large

z value. The appropriate confidence level is case-specific and it is set by

the user of the PCA technique.

(a) (b)

Figure 5.2. T 2 measures the distance from the origin of the principal subspace to the
projected observation; the plane formed by PC 1 and PC2 viewed from the
top (a). Q measures the distance of an observation to its reconstruction on
the subspace; the plane formed by PC 1 and PC2 viewed from the side (b).

Squared Mahalanobis distances of normally distributed scores are ap-

proximately χ2
S-distributed. Hence, the cut-off value T 2

lim for the score

distances can be determined as χ2
S,z, where z refers to the set confidence

level (Atkinson et al., 2004).

The distribution of orthogonal distances is not known exactly. However,
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it can be well approximated by a scaled chi-squared distribution with or-

thogonal distances to the power of 2/3 approximately normally distributed

with estimated mean μ and variance σ2 of the Q statistic. The threshold

value Qlim is then determined as (μ̂+ σ̂z)
3 with z denoting the (z × 100)%

quantile of the Gaussian distribution (Nomikos and MacGregor, 1995).

An alternative technique is to use a single statistic that integrates the

information provided by the T 2 and Q statistics. The weighted combi-

nation of the T 2 and Q statistics, J statistic (Raich and Çinar, 1996) is

formulated as

J(k) = λT 2(k) + (1− λ)Q(k) (5.5)

where λ is a parameter that gives weight for the observations inside the

principal component subspace over the observations outside the principal

component subspace (0 ≤ λ ≤ 1). Confidence limit Jlim is determined as

a weighted combination of T 2
lim and Qlim using the same value of λ as for

calculating the J statistic. Other combined indices of T 2 and Q have also

been presented, for instance, by Yue and Qin (2001).

The variables’ contributions to the T 2 and Q statistics (MacGregor et al.,

1994) can be investigated, for instance, when a T 2
lim and Qlim violation

takes place in the monitored process. The contributions along the dth PC

to the T2 statistic are calculated as

c(k) = x(k)diag(pd) (5.6)

Particularly, diag(pd) denotes the diagonal matrix of the column vector pd

and x(k) denotes the vector of original data at time k. The contributions

for a PCA model with d PCs to the Q statistic are calculated as follows

e(k) = x(k)− x̂(k) (5.7)

where x̂(k) denotes its reconstruction using a model with d PCs. The

reconstruction x̂(k) is determined as follows: x̂(k) = t(k)pd.

Alternatives for the conventional contribution analysis that can also be

used in the modular soft sensor design procedure presented in the thesis

have been proposed. One of them is reconstruction-based contribution

method that is based the reconstruction of a monitoring statistic, typically

T 2 or Q, along the direction of a variable (Alcala and Qin, 2009).
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5.1.2 Robust PCA

The conventional PCA method is strongly affected by anomalous obser-

vations and the estimation of the center of the data (usually, the sample

mean) that is employed for the centering of the data is affected by outliers

that deviate significantly from the other members of the data set. Robust

PCA methods try to address such shortcomings by applying robust statis-

tic estimators for location (the center of the data) and scale (the entries in

the covariance matrix) that are more resistant to outliers. A large number

of robust PCA extensions have been presented in the literature and refer-

ences for these methods are available, for instance, in the review papers

by Frosch Møller et al. (2005); Rousseeuw et al. (2006); Rousseeuw and

Hubert (2011); Bro and Smilde (2014).

One of the robust PCA variants is called the Reflection-based Algorithm

for Principal Components Analysis (RAPCA, Hubert et al., 2002). The

general concept of PCA, such as score and loading matrices that were

introduced in Subsection 5.1.1, apply also for this robust PCA variant.

RAPCA is a dimension reduction method based on projection pursuit (Li

and Chen, 1985). In RAPCA, the spatial L1-median (Daszykowski et al.,

2007) is used as the robust center of the data, around which the data are

centered instead of the sample mean. The L1-median μ̂R is defined as the

point θ in the original data space that minimizes the sum of Euclidean

distances to all the observations x(k) with k = (1, ..., k, ...,K):

μ̂R = argmin
θ

K∑
k=1

‖ x(k)− θ) ‖ (5.8)

where ‖ ... ‖ represents the L1 norm (Galpin and Hawkins, 1987). The

robust scale in the RAPCA procedure is measured using the Qn estimator

(Rousseeuw and Croux, 1993), which is essentially the first quartile of all

pairwise distances between two data samples, i and j. For any univariate

data set (z1, ..., zn), the Qn estimate is defined as

Qn = 2.2219 · d · {|zi − zj |; i < j} (5.9)

where d is a small sample correction factor that approaches 1 for increas-

ing n.

The robust principal components are constructed starting from the di-

rection p1 (or eigenvector, in analogy with the conventional PCA) such
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that the scale (the robust equivalent of standard deviation) of the robustly

centered observations x(k) projected onto p1 is maximal. In analogy with

the conventional PCA, the squared robust scale of the projections onto

the first eigenvector represents the first eigenvalue of the RAPCA model.

Once p1 is found, the observations x(k) are projected onto the orthogo-

nal complement of p1. The next direction p2 is found in this orthogonal

complement by looking for the direction that maximizes the second robust

scale of the observations projected onto p2. At each step, the working di-

mensionality is reduced by one and the procedure can be continued until

all the sources of variation have been accounted for.

5.1.3 Moving-window PCA

A major limitation of PCA-based monitoring in many industrial appli-

cations is that once the model has been built, it is time-invariant while

the processes are time-varying. When such models are used, false inter-

pretations on the instrumental conditions and process operations might

result. This is because a PCA model describes the process conditions rep-

resented by the training period and is applicable to testing only in corre-

sponding conditions. However, if the conditions change considerably dur-

ing the testing period, the trained model is no longer valid. PCA methods

based on moving-windows have been proposed for monitoring tasks when

processes with considerable dynamic behaviour are considered in order to

overcome some of the deficiencies of the static PCA approach (Ku et al.,

1995; Baggiani and Marsili-Libelli, 2009; Kadlec et al., 2011).

In the moving-window approach (Kruger and Xie, 2012), historical data

from a time period defined by the window-length L are used for building

PCA models. New PCA models are built at the time intervals of a shift-

size Z. In such a manner, a window shifts along time and a new model is

trained at each step by including the newest data (of the size Z) and ex-

cluding the oldest ones (of the size Z). In addition, the unseen testing data

sets associated with each PCA model are of the size Z. This procedure is

depicted for n PCA models in Figure 5.3.

The moving-window models can be categorized as sample-wise and

block-wise models (Kadlec et al., 2011). In the sample-wise techniques,

Z corresponds to each data sample coming in, i.e. the PCA model is re-

calculated after every new sample. When the process operating condi-

tions change abruptly, sample-wise moving-window models are efficient

in monitoring (Choi et al., 2006). As for the block-wise moving-window
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Figure 5.3. Moving-window monitoring procedure using fixed window-lengths L and
fixed shift-sizes Z with 1. . .n PCA models. Figure adopted from Publication
IV.

techniques, Z corresponds for a certain number of samples or samples of a

certain time period after which the PCA model is recalculated. The advan-

tages of the block-wise moving-window techniques include a low compu-

tational cost in comparison with the sample-wise techniques. The block-

wise techniques also reduce the risk of recalculating the model based

on an anomalous observation (Choi et al., 2006). Conventionally, in the

moving-window applications each model covers the same window-length

L, and also the shift-size Z is fixed (Kadlec et al., 2011).

Even though the moving-window PCA extension provides considerable

advantages over the static PCA approach in the monitoring of time evolv-

ing processes, one of its limitations is the fixed window-length. This is due

to the fact that rapidness of the process transitions varies. In general, if

the process changes rapidly, the window-length should be shortened and

when the changes are slow, a large window-length should be preferred

(He and Yang, 2008). For this reason, adaptive window-lengths have been

considered (Kadlec et al., 2011). Two of the approaches where window-

lengths adapt are described in the following.

In the approach presented by He and Yang (2008), L for each model

{1, ..., n, ..., N} in the moving-window procedure is defined as:

L(n) =Lmin + (Lmax − Lmin) exp

{
−
(
α
‖Δb(n− 1)‖

‖Δb0‖
+ β

‖ΔR(n− 1)‖
‖ΔR0‖

)γ}
(5.10)

where Lmin and Lmax are minimum and maximum window-lengths, re-

spectively. ‖Δb(n − 1)‖ is the Euclidean vector norm (Deza and Deza,

2014) of the difference between the previous two consecutive 1×D mean
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vectors, b(n− 1) and b(n− 2), calculated from training data. Correspond-

ingly, ‖ΔR(n − 1)‖ is the Euclidean matrix norm (Deza and Deza, 2014)

of the difference between the two consecutive D×D correlation matrices,

R(n − 1) and R(n − 2). ‖Δb0‖ and ‖ΔR0‖ represent the Euclidean vec-

tor norm of difference between two consecutive mean vectors and the Eu-

clidean matrix norm of the difference between two consecutive correlation

matrices in reference conditions, respectively. They are calculated corre-

spondingly as ‖Δb(n − 1)‖ and ‖ΔR(n − 1)‖, using two sets of reference

data that are associated with normal process conditions without anoma-

lous observations. Three parameters are used for tuning the function; α

and β are weights given for ‖Δb(n− 1)‖/‖Δb0‖ and ‖ΔR(n− 1)‖/‖ΔR0‖,

respectively, and γ is an exponential parameter that affects the sensitivity

of L to the process change.

With the approach of Ayech et al. (2012), the window-lengths are deter-

mined accordingly:

L(n) = Lmax − (Lmax − Lmin)[1− exp(−δ(‖ΔRref (n− 1)‖))] (5.11)

where ‖ΔRref (n − 1)‖ is the Euclidean matrix norm of the difference be-

tween R(n − 1) and Rref . Otherwise ‖ΔRref (n − 1)‖ is calculated like

‖ΔR(n − 1)‖, but instead of using the second previous correlation matrix

in its calculation, Rref representing the correlation matrix of a reference

data set is utilized. The parameter δ controls the sensitivity of the change

in L.

Figure 5.4. Moving-window monitoring procedure using adaptive window-lengths L and
fixed shift-sizes Z with 1. . .n PCA models. Figure adopted from Publication
IV.

The monitoring procedure with a moving-window PCA approach, where

window-lengths adapt, follows the same principles as the approach with

a fixed window-length. The procedure using an adaptive moving-window

PCA technique for n models is visualized in Figure 5.4.
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5.2 Ordinary Least Squares Regression

Regression models are input-output models where the relationships be-

tween the (explanatory) input variables and the (dependent) output vari-

ables are estimated statistically. Let X indicate an input data matrix with

the K observations from D variables and y indicate an output column ma-

trix with the K observations from one variable.

Ordinary Least Squares Regression (OLSR, Björk, 1996; Ryan, 2008)

regression is a classical method that learns a reconstruction of the func-

tionality between the D-dimensional input observations x(k) and the out-

put observations y(k). This is done by estimating the regression vector

β = [β1, ..., βD]
′ that parameterizes the linear model

y(k) = β′x(k) + r(k) (5.12)

where r(k) is the residual additive noise. The least-biased estimation of

β is based on a criterion that minimizes the residual sum of squares by

globally fitting a D-dimensional hyperplane over the training data.

Once β is defined using the training data, the calibrated OLSR model is

usually tested using an unseen data set. After satisfying testing perfor-

mance, the model can be used, e.g., for estimating new output ŷ(k) values

by introducing new input observations x(k) when they are available.

5.3 Partial Least Squares Regression

Partial Least Squares Regression (PLSR, Wold, 1975; Wold et al., 2001) is

a global linear regression method that learns a model between the K ×D

input matrix X and the K × E output matrix Y. Specifically, E stands

for the number of output variables and it often, though not necessarily,

is equal to one. Instead of using the original input variables, the fitting

in PLSR is an iterative procedure and it is based on original variables’

decomposition in latent variables. The variable’s decomposition aims at

maximizing simultaneously the variance in the inputs and the covariance

between the inputs and the outputs. The PLSR model is a parametric

model that has an additional meta-parameter, the number S of latent

variables to be retained. The basic equations of PLSR are as follows:

X = TP′ +E (5.13)
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Y = UQ′ + F (5.14)

Y = XB+ F (5.15)

where Equation 5.13 that concerns the decomposition of the input matrix

X similarly as in PCA, Equation 5.1. U and Q are the K × S score ma-

trix and E × S loading matrix for the outputs Y, respectively, and F is a

K × E residual matrix. B is a D × E matrix of regression coefficients that

describes the relation between the latent variables of X and Y.

Similarly as in PCA, the subset of retained latent variables needs to

be selected when using PLSR. For testing the predictive significance of

the different number of retained latent variables in a PLSR model, cross-

validation methods have become standard (Wold et al., 2001). For in-

stance, LOO cross-validation is a potential technique for this task.

5.4 Local Linear Regression based on k -Nearest Neighbours

Local Linear Regression (LLR) techniques (e.g. Stone, 1977; Cleveland

and Devlin, 1988) are nonlinear regression methods that are based on

the same principle as OLSR. The main difference between the LLR and

OLSR methods is the approach used in the estimation of the regression

coefficients β. The LLR methods fit linear models by locally weighted

least squares instead of global fitting, which is performed, for instance, in

the OLSR method. In other words, the local fitting procedure is executed

only in the neighbourhood of the input observation x(k) for which the out-

put y(k) is to be predicted. Therefore, LLR has the feature of simplicity

of traditional linear regression and, in spite of such, it can overcome the

drawback of low model accuracy with which linear regression is often as-

sociated. For a random input test observation x(k), LLR estimates its

output as ŷ(k) = β̂
′
x(k) by fitting a hyperplane over the local neighbour-

hood Jx(k) of x(k) :

β̂ = argmin
β

∑
x∈Jx(k)

(y(k)− β′x(k))2 (5.16)

The definition of the neighbourhood and the number of neighbours are

crucial in LLR. Several strategies for the definition of locality are avail-

able when LLR is used in soft sensor development (Zhu et al., 2011). In

k-Nearest Neighbour LLR (k-NN LLR, Stone, 1977), the neighbourhood of
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the input observation x(k) is defined by the K of its neighbours, according

to a predefined metric. Conventionally, the Euclidean distance is used for

determining the nearness of the observations. The size K is the meta-

parameter of k-NN LLR models. Usually, K is either fixed beforehand or

determined by using cross-validation.
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6. Results and discussion

This Chapter summarizes the main results and discusses the findings of

Publications I–IV. In Section 6.1, the status and the trends of the data-

derived soft sensors presented for biological WWTPs are analyzed. Sec-

tion 6.2 addresses soft sensors designed for on-line prediction in biological

post-filters. A novel system enabling the complimentary use of the afore-

mentioned soft sensors and the corresponding hardware instruments is

discussed in Section 6.3. Finally, a soft sensor designed for anomaly detec-

tion purpose in an ASP is presented in Section 6.4. More comprehensive

information on the works is provided in the original publications.

6.1 Status of data-derived soft sensors in biological wastewater
treatment

The status of data-derived soft sensors proposed for biological wastewater

treatment processes was investigated by reviewing about 100 case studies

that were available in literature. The works were published between 1986

and 2012 and they covered processes from laboratory-scale to full-scale

operations for both municipal and industrial wastewater treatment. The

specific foci of the research were:

• Applications of the data-derived soft sensors;

• Data-derived methods used in soft sensor design;

• Wastewater treatment systems in data-derived soft sensor proposals.
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6.1.1 Soft sensor applications

Data-derived soft sensor applications were divided in the review into the

following categories:

• On-line prediction of the primary process variables;

• Process monitoring and fault detection;

• Instrument monitoring and fault detection.

The review showed that on-line prediction has been the most widely

used application of the data-driven soft sensors in biological wastewater

treatment. This is demonstrated in Figure 6.1, where the shares of the ap-

plications have been divided into the studies published in 2005 or earlier

and the studies published between 2005 and 2012.

Figure 6.1. Amounts of the soft sensor applications in the reviewed publications. The
case studies are divided into the works published in 2005 or earlier and the
works published in 2005–2012. Figure adopted from Publication I.

The on-line predictions are typically employed for enhancing process

monitoring and control in WWTPs by complementing the conventional

approach that relying on the information obtained from the hardware in-

strumentation. Especially during the past decades, the treatment regula-

tions typically applying to organic matter removal have most importantly

affected the operation and process configurations of WWTPs. However,

the variables describing the content of organic matter have been chal-

lenging to measure in real-time and information about them was mostly

provided by the laboratory analyses of daily or grab samples. For these

reasons, the content of organic matter has been the most commonly pre-

dicted output that enable monitoring its dynamic behaviour. Nitrogen

compounds have been the estimated primary variables in an extensive

number of soft sensor applications, especially in more recent studies. This
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finding is associated with the trend that present-day municipal treatment

processes are being designed, in particular, for nutrient removal.

Process monitoring has been another popular application among soft

sensor developers, especially in the earlier publications (Figure 6.1). This

is partly explained by a few researches having actively published stud-

ies in the process-monitoring field at the turn of the millennium, whereas

soft sensors for on-line prediction have been developed by a more diverse

group of researchers over the course of the investigated time span. Any

specific process variable is not typically estimated in the process monitor-

ing applications. Instead, the tools such as model residual indexes or po-

sitions on operational maps that provide information about the status of

the process are often the model outputs. In addition, data-derived models

for sensor and analyzer monitoring have been proposed recently, but the

rather small number of existing publications suggests that the research

area is still emerging in the wastewater treatment sector. The scarce

number of publications indicates that data-derived instrument monitor-

ing should be more intensively addressed by the scientific community. The

quantity of sensors has increased in the plants due to the evolution of the

process configurations, while the reliable information produced by the in-

struments has become more crucial in conjunction with the introduction

of more advanced control schemes. This provides further motivation for

future research in the domain of instrument anomaly detection.

6.1.2 Methods for soft sensor design

A number of data-derived techniques for developing soft sensors exists.

Based on the frequencies of their reported use in the reviewed literature,

the following main modelling families were recognized:

• Principal component analysis;

• Partial least squares;

• Supervised artificial neural networks;

• Self-organizing maps;

• Neuro-fuzzy systems.

Most commonly, different multivariate and ANN methodologies have

been used for the development of the data-derived soft sensors in biolog-
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ical wastewater treatment. The distribution of the main method families

is presented in Figure 6.2.

PCA
22%

PLS
12%

Supervised
ANN
40% SOM

8%

Neuro-fuzzy
7%

Other
11%

Figure 6.2. The distribution of the main method families employed for the data-derived
soft sensor design in the reviewed publications. Figure adopted from Publi-
cation I.

Among the main modelling families, different techniques and exten-

sions of the conventional methodologies were deployed depending e.g. on

the considered application. Supervised ANN techniques were the most

popular methods for predicting the primary variables, the other popular

methods being the ANFIS and PLS approaches. PCA techniques were

employed in the majority of the studies targeting monitoring of treatment

processes and instruments.

Due to the dynamic and nonlinear nature of the wastewater treatment

processes, the conventional multivariate techniques were often found to

be unsatisfying for soft sensor development as such. Therefore, a number

of adaptive and nonlinear PCA and PLS extensions were proposed and

were demonstrated to be more feasible for soft sensor design, especially

in the more recent studies. In particular, the adaptive approaches were

shown to overcome the difficulties associated with the changing process

conditions. As for the nonlinear extensions, researchers have established

them to be adequate for on-line prediction tasks, but in all the case stud-

ies the performance of nonlinear methods was not found to be superior

to linear methods. Researchers have also indicated that multiway exten-

sions are useful, in particular, for monitoring and analysis of SBRs and

have exhibited the multiscale approaches for extracting the features of

treatment processes in different time-scales. In addition, the PCA meth-

ods were popular pre-processing techniques applied in many soft sensors,

which indicates the potential of PCA techniques in the compression of in-

formation contained in the high-dimensional data.

As discussed in Subsection 3.2.3, the choice of the methodologies not
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only depends on the considered application, but also on other issues such

as personal preferences and backgrounds. Regional traditions and trends

for employing different method families were investigated based on the

affiliation of the first authors of the papers. In Europe, the multivari-

ate techniques have most often been applied in soft sensor design. In

addition, SOM has been widely used by European researchers compared

with others. The Asian and North American research communities have

preferred the supervised ANNs. Additionally, ANFIS accounts for a more

significant share of the selected methodologies in Asia in comparison with

the other regions. The reviewed papers from other continents are so few

that any representative analysis could not be done.

6.1.3 Investigated wastewater treatment systems

The survey covered data-derived soft sensor investigations in different

types of biological wastewater treatment systems, which were divided into

the following categories:

• Municipal;

• Industrial;

• Pilot-scale and laboratory-scale;

• Simulated.

The distribution between the different wastewater treatment systems

in the case studies is shown in Figure 6.3. The soft sensors designed for

the full-scale municipal and industrial treatments systems accounted for

the majority of the explored works. Pilot- and laboratory-scale processes

were used in a significant share of the investigations, most of them be-

ing SBRs. Only a few full-scale batch processes were included while the

continuous treatment processes were typically full scale. The simulated

processes proved to be popular in the reviewed case studies, where the

BSM platforms were by far the most popular virtual test environments.

While pilot- and laboratory-scale processes and simulated protocols pro-

vide valuable opportunities for development of the modelling methodolo-

gies and control systems, the tests on full-scale processes are typically

more challenging due to the unforeseen features of real-life conditions and

data. Therefore, full-scale experiments provide irreplaceable platforms
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Municipal
38%

Industrial
25%

Simulated
19%

Pilot/Lab
18%

Figure 6.3. The distribution of the wastewater treatment systems for which the data-
derived soft sensors were designed in the reviewed publications. Figure
adopted from Publication I.

for designing and piloting soft sensors when aiming at their practical im-

plementations in WWTPs. However, initial studies about the soft sen-

sor performances using simulated processes, particularly when integrated

with a realistic influent disturbance generator (Gernaey et al., 2011; Mar-

tin and Vanrolleghem, 2014) can definitely support full-scale experiments

and executions.

6.2 Soft sensors for on-line prediction in biological post-filtration

The objective of the study was to develop an array of soft sensors that

estimate in real-time primary process variables in the denitrifying post-

filtration unit of the Viikinmäki WWTP. The process unit is described in

Section 2.2. The goal was to provide a back-up system for the hardware

sensors employed in process control and, in that manner, to ensure the

cost-efficient operation of the unit. The initial work on designing the soft

sensors is presented in Mulas et al. (2012), whereas a complete applica-

tion is available in Publication II.

6.2.1 Development of soft sensors

The investigation addresses a denitrifying post-filtration unit that con-

sists of ten parallel filter cells where methanol is dosed as a carbon source

to enhance nitrogen removal. Methanol flow to each filter is manipulated

by a feedback loop controlling the NO3-N concentration in the outlet of the

cell. Therefore, reliable analyses of NO3-N contents are essential because

of the economic and environmental implications due to incorrect methanol

dosing. To sustain the correct dosing, an array of soft sensors that predict
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on-line the NO3-N concentrations was developed. To design the soft sen-

sors, process measurements were collected for three years of operations

recorded as hourly averages, in which form the long-term data are stored

in the plant. The first-year data were used for model training and data

from the second and third years for testing the models’ performances.

Sample selection

The sample selection was approached as a problem of outlier detection

where the goal was to discard anomalous observations as dissimilar from

the global behaviour of the data, initially described in Haimi et al. (2011).

RAPCA models with the subset of retained PCs selected using the CPV

approach were considered for this task. For the filter-specific input sam-

ple selection, the T 2 and Q statistics were employed and the samples that

respected T 2
lim and Qlim were maintained. For the output sample selection,

a RAPCA model was built for the matrix that contained NO3-N concentra-

tions of each filter and the J statistic with the weight coefficient λ set to

be equal to 0.1 was employed. The data where J did not exceed Jlim were

retained.

Variable selection

The selection of the variables to be used for the models among all the can-

didate inputs was the next task. Since the design of the filters is ideally

similar, the subset of input variables was logically seen to be correspond-

ing to all the filters. Variable selection was pragmatically approached

starting from the physical understanding of the nitrogen removal process.

The aim was for regression models that have only a few representative

variables but are accurate and intelligible. Based on the described ap-

proach and the target, six soft sensor inputs xRij shown in Table 6.1 were

selected to estimate the output ŷi in Filter i. The symbol j refers to the

sequence number of the input.

Model selection

Simplicity was one of the main requirements for allowing an easy imple-

mentation of the soft sensors in the plant’s control system. Mainly for

this reason, linear regression methods OLSR and PLSR were considered

for the models at their core. However, it is also well known that many

subprocesses within a WWTP show a nonlinear behaviour and that non-

linear models might give more accurate approximations. For that reason,

a nonlinear k-NN LLR method was also considered.
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Table 6.1. Input and output variables used for the regression soft sensor models.

Symbol TAG Description Unit

xR
i1 PI-NO3-N Post-filtration influent nitrate-nitrogen mg/l

xR
i2 PE-NO3-N Post-filtration effluent nitrate-nitrogen mg/l

xR
i3 PE-T Post-filtration effluent temperature ◦ C

xR
i4 Fi-HL i-th Filter head loss m

xR
i5 Fi-QW i-th Filter wastewater flow rate m3/s

xR
i6 Fi-QM i-th Filter methanol flow rate m3/h

ŷi Fi-NO3-N i-th Filter effluent nitrate-nitrogen mg/l

6.2.2 Performance of soft sensors

The samples of the training period were used for calibrating the regres-

sion models and for optimizing the number of latent variables for the

PLSR models with the LOO cross-validation technique. The accuracies

of the soft sensors were tested using Root Mean Squared Errors (RMSE)

between the NO3-N measurements and estimates during the testing pe-

riod as the criterion. RMSE is defined as follows:

RMSE =

(
1

K

K∑
k=1

(y(k)− ŷ(k))2
)1/2

(6.1)

where y(k) and ŷ(k) denote the measurement at time k and its recon-

struction, respectively. The experimental results summarized in Table

6.2 showed that the overall accuracy achieved by the soft sensors in terms

of RMSE was about 0.2 mg/l, which is comparable with the nominal res-

olution of the hardware sensors. Interestingly, only minor improvements

compared with the linear modelling approaches were achieved with the k-

NN LLR models. It is worth noting that OLSR and PLSR always achieved

identical accuracies due to the fact that the number S of latent variables

determined for the PLSR models was equal to the dimensionality D of the

original input space used by OLSR.

Even though the amply instrumented unit does not suffer from lack of

on-line data in normal operational situations, there are periods of sensor

malfunctions and downtime. For instance, about one week of measure-

ments of continuous process operation in Filter 7 were inaccurate due to

failing (Figure 6.4b). At the same time and under similar operating con-

ditions, the dependence between the measurements and estimates using

both the OLSR and the k-NN LLR in the Filter 3 was strong (Figure 6.4a).

The NO3-N estimates in Filter 7 were available during the investigated
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Table 6.2. Estimation accuracies of the soft sensors using the different modelling tech-
niques in terms of RMSE (mg/l).

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

OLSR 0.40 0.18 0.15 0.16 0.19

PLSR 0.40 0.18 0.15 0.16 0.19

k-NN LLR 0.37 0.20 0.15 0.15 0.18

Filter 6 Filter 7 Filter 8 Filter 9 Filter 10

OLSR 0.18 0.25 0.25 0.26 0.31

PLSR 0.18 0.25 0.25 0.26 0.31

k-NN LLR 0.16 0.26 0.23 0.24 0.28

period and, based on the prediction accuracy in the other examined filter,

they could have been used for process monitoring and for methanol dosage

control instead of the erroneous hardware sensor measurements. By us-

ing estimates in this manner when available, process monitoring and con-

trol would not suffer from out-of-order measurements or lack of data, for

instance, during instrumentation maintenance. That is of prime impor-

tance, since the methanol flow rates are manipulated by feedback loops

controlling the NO3-N concentrations and methanol responds to a major

share of the chemical costs in the plant (Sundell, 2008). Since the esti-

mation models were able to reconstruct the dynamics in the faulty filters

and to accurately estimate the output concentrations, they also provide a

useful tool for validating the existing instrumentation.

(a) (b)

Figure 6.4. Measured and estimated NO3-N concentrations in Filter 3 (c) and Filter 7
(d). Figure adopted from Publication II.

Unlike in many studies presented in Chapter 4, the performances of

linear and nonlinear modelling methods were not found to differ much

from each other. This demonstrates that the choice of method should

be application-specific. One reason for relatively similar performance

might relate to the fairly short retention time of about 25 min of the

post-filtration unit. Most of the studies showing benefits of the nonlinear
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approaches concern ASPs with retention times of several hours. In this

case, simpler linear methods would be selected due to the model selection

criterion preferring computationally light and transparent models.

From a wider perspective, the study further demonstrates the poten-

tial benefits for monitoring and supervision of WWTPs through the use of

data-derived soft sensors. Such devices can be used as inexpensive back-

up systems for conventional analytical instrumentation. Even though this

research considered real-time estimation in specific process units, denitri-

fying post-filters, which has not been investigated previously with multi-

variate techniques, a corresponding soft sensor modelling approach can

be applied to other units in WWTPs. The only major requirements for

this are the availabilities of an adequate historical operation data set and

on-line measurements.

6.3 Switching system allowing the complementary use of
measurements and estimates

The soft sensors described in Section 6.2 were further investigated. In

particular, the aim was to develop a system for automatic selection of

whether to use a soft sensor estimate or a hardware measurement at any

time individually in each filter. Usually, the presented switching systems

for choosing between estimates and measurements simply prefer mea-

surements whenever they are available. Otherwise, estimates are to be

employed as back-ups (e.g., Bhuyan, 2011). However, the target of the sys-

tem development was to enable a complementary use of measurements

and estimates providing the best available information for the process op-

eration. The preliminary version of the switching system is presented in

Haimi et al. (2013b) and, later, it has been finalized as described at length

in Publication III.

6.3.1 Development of the switching system

The reasoning employed in the sample selection step of the soft sensor de-

sign (Subsection 6.2.1) was adapted to rank the samples. Specifically, the

ranking of the input data was connected to the assessment of soft sensor

estimates, while the ranking of the output data concerned the hardware

measurements. Two independent rankings were combined into a filter-

specific preferability index that suggested whether to use measurements
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or estimates, given the current situation.

Ranking of the soft sensor estimates

In the soft sensor ranking procedure, the quality of the input data used for

the regression models was considered instead of the actual estimates. The

presented approach to ranking the quality of the estimates considering

each Filter i at any time k consisted of the following conditions:

1. Existence of all the soft sensor input signals xPS
ij ;

2. Availability of the T 2 and Q statistics from the model of Filter i;

3. Respects of the statistics’ confidence limits T 2
lim and Qlim.

A soft sensor estimate in Filter i that satisfied its three (two, one or

none) conditions could be denoted as 3E (2E, 1E or 0E, respectively). As the

procedure was based on a filter-specific approach, the labels given to the

estimates in each filter at the same time were different.

Ranking of the hardware sensor measurements

The reasoning of the output sample selection procedure could also have

been applied in the ranking of the NO3-N measurements. However, a lim-

itation of using a similar logic was derived from the fact that the approach

considered the global quality of the signals from ten filter cells and, there-

fore, an anomalous measurement signal in one or a few filter(s) could have

led to a violation of Jlim.

For this reason, the output data were further examined by using an

analysis of the variables’ contributions to T 2 and Q along with their sta-

tistical control limits (e.g., Oakland, 2003), determined independently for

each Filter i. The upper and lower control limits for the contributions to

the statistics were defined using the observations that represented nor-

mal operating conditions (see e.g., Westerhuis et al., 2000; Choi and Lee,

2005). The contribution analysis with the control limits provided an addi-

tional condition for the ranking of the measurements:

1. Existence of the hardware sensor measurement xPH
i in Filter i;

2. Availability of the J statistic from the model concerning all filters;

3. Respect of the statistic’s confidence limit Jlim;

4. Respects of the contribution control limits of T 2 and Q of Filter i.
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A hardware sensor measurement Fi-NO3-N in Filter i that satisfied its

four (three, two, one or none) conditions could be denoted as 4M (3M, 2M,

1M or 0M) at any time k. The first condition concerned the existence of a

filter-specific NO3-N measurement whereas the measurements from all

the filters were needed for continuing the assessment by computing J .

The label 3M was given in two different cases considered as representing

the same severity level: (i) when Jlim was violated, but both the control

limits were respected, or (ii) when Jlim was respected, but one or both of

the control limits were violated.

Switching map

The above-described rankings were employed for deciding whether it is

preferable to use estimates or measurements. The possible combinations

of the given E and M labels are depicted in the switching map in Figure 6.5.

Each combination was quantified in such a way that the suitability of one

option over the other was determined numerically with the preferability

index P combining the rankings :

P =
l(M)− l(E)√
l(M)2 + l(E)2

(6.2)

where l(M) is the distance of an observation on the map from the origin

(0E,0M), along the y-axis and l(E) is the corresponding distance along the x-

axis. If P > 0, the measurement is to be preferred, whereas the estimates

are favored if P < 0. When P = 0, the quality of both options is ranked as

equal. The larger the absolute value of P is, the more obvious the choice

is. The P values are used to dye the map as shown in the colorbar.

0E 1E 2E 3E

4M

3M

2M

1M

0M
−1

−0.5

0

0.5

1

Figure 6.5. Switching map showing the combinations of soft sensor estimates and hard-
ware sensor measurements denoted with different rankings. Figure adopted
from Publication III.
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6.3.2 Use of the switching system

The shares of hits in the different positions on the switching maps, con-

sidering three years of filter-specific operations, are depicted in Figure

6.6. The sizes of the red dots represent the proportional shares of the

hits in each position. Most of the maps are relatively similar, indicating

consistency in the ranks. However, some variation between maps can be

observed. For instance, in Filter 1 there are more hits in the position 3E,0M

compared with the other filters, expressing a situation when the measure-

ment signal was not available, but the corresponding soft sensor estimate

was of a good quality. In Filter 7, the ratio of the hits in the positions 3E,4M

and 3E,3M is smaller in comparison with the other filters, indicating more

violations of the control limits when Jlim was often globally respected.
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Figure 6.6. Shares of the hits in different positions on the switching maps for the in-
dividual filters indicated as the sizes of the red dots. Figure adopted from
Publication III.

Percentages of the preferred options according to the proposed switch-

ing procedure and the situations when neither the measurement nor the

estimate were available over three years are presented in Table 6.3. The

hardware measurements were preferred in the largest share of the oc-

casions in all filters (38.4–54.6%), but the use of the estimates was also

favored in many situations (38.7–39.1%). When both measurements and

estimates were of equal quality (6.0–22.4%), the one to be used could have

be chosen based on the previous occasion when one of them was preferred

(P �= 0).

The proposed switching system is a novel tool tested for a tertiary treat-

ment unit in a large municipal WWTP. The main benefit of the system
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Table 6.3. Percentages of the preferred choices for measurement or estimation, when
both were of equal quality and when neither of them were available, for all
the filters over three years.

Filter 1 2 3 4 5 6 7 8 9 10
Measurement 45.1 50.5 54.3 54.6 52.1 54.3 38.4 46.6 53.4 42.7

Estimate 38.7 39.1 39.0 38.9 38.8 38.9 39.1 39.0 38.7 39.0

Both equal 16.0 10.4 6.7 6.0 9.1 6.5 22.4 14.3 7.8 18.3

Neither available 0.2 0.0 0.0 0.5 0.0 0.3 0.1 0.1 0.1 0.0

is in enabling the complementary use of measurements and estimates

based on their quality rankings, always preferring the best information

available. For instance, when the NO3-N measurements in a filter cell

evolve from a normal concentration range to an abnormal range and, at

the same time, the NO3-N estimates show consistent behaviour, the val-

ues of the preferability index typically suggest employing the estimates in

the process operation. Usually in WWTPs, the additional carbon source is

fed into the anoxic part of an ASP, but in the plant considered, methanol

is dosed in the post-filtration unit that finalizes the nitrogen removal of

the targeted level. Therefore, the proposed switching system that prefers

more valid information about the NO3-N concentrations would support

the efficient operation of the unit and secure achieving the treatment

goals.

Typically, soft sensor estimates are not used in conjunction with hard-

ware measurements. Instead, they provide the on-line approximations of

variables that are otherwise only analyzed in a laboratory or are used as

back-ups only when real-time instruments suffer from down-time. The

novelty of the presented system results from combining the rankings

based on well-established techniques such as PCA, model residual statis-

tics, contribution analyses, and control limits in a simple and understand-

able manner that enhances the process operation. The switching system

was developed using the data of a rather uncommon treatment unit, but

its basic principles can be adapted also to other applications involving

data-derived real-time estimates and hardware measurements that are

alternatives for each other. However, because the output ranking in this

case concerns measurements from ten filters, in a case dealing with only

one process unit and one output signal, some adaptation is required. In

such a case, for example, univariate control charts with confidence limits

could be used to rank the quality of the outputs.
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6.4 Soft sensor for anomaly detection in an activated sludge
process

An anomaly detection and isolation system was developed for the acti-

vated sludge process in Viikinmäki WWTP. The considered ASP is de-

scribed in Section 2.2. The aim of designing the soft sensor tool was to

provide the operators with an early warning of process and instrument

abnormalities. This would also motivate a more efficient use of the hard-

ware sensors in the process operation. A preliminary version the soft sen-

sor design and discussion on the performance of the system are presented

in Haimi et al. (2013a) and are available in completed and detailed forms

especially in Publication IV.

6.4.1 Development of soft sensors

Sample selection

The process data considered in the study concern one ASP line. The col-

lected data covered two years of process operations recorded as hourly

average values. Sample selection considered discarding only the obvi-

ous outliers that violated the technological limitations of hardware in-

struments. Such observations were considered the measurements that

exceeded the instrument range or that were associated with unfeasible

zero-values.

Variable selection

From all the acquired data, the variables selected for anomaly monitoring

are collected in Table 6.4. The primary criterion in variable selection was

their potentiality to be employed in the future advanced control schemes.

The only investigated sensor that at the time of the research used in the

aeration control was BE-NH4. However, it was also included because the

initial data inspection showed frequent unexpected peaks. The presence

of problems in the measurement reliability of all the selected variables

was detected in the data inspection step. Therefore, an adequate anomaly

detection system would increase the feasibility of the investigated vari-

ables for process control purposes. DO sensors were not considered be-

cause they were already successfully used in the aeration control and the

data inspection did not reveal any signs of unreliability.
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Table 6.4. Process variables considered for the anomaly detection study in the ASP.

Symbol TAG Description Unit

x1 BI-NH4 Bioreactor influent ammonium-nitrogen mg/l

x2 BI-SS Bioreactor influent suspended solids mg/l

x3 BI-Q Bioreactor influent wastewater flow rate m3/s

x4 Z6-SS Mixed liquor suspended solids in zone 6 g/l

x5 BE-NH4 Bioreactor effluent ammonium-nitrogen mg/l

x6 BE-NO3 Bioreactor effluent nitrate-nitrogen mg/l

x7 BE-pH Bioreactor effluent pH –

Model selection and parametrization

PCA-based models were considered for the soft sensor development and

the T 2 and Q statistics were employed in the anomaly detection proce-

dure. In the preliminary studies, the stationary PCA was found to be

inadequate for the considered application due to the excessive number

of alarms in the model testing. Thus, adaptive PCA methods were used

that aimed at better adjustment to the time-evolving processes. Specifi-

cally, moving-window approaches with fixed window-lengths MWPCA and

two variants with adaptive window-lengths (He and Yang, 2008; Ayech

et al., 2012, denoted AMWPCA_1 and AMWPCA_2 hereafter, see Subsec-

tion 5.1.3) were explored.

Several parameters had to be adjusted for the anomaly monitoring pro-

cedure. A separate data set was used for the selection of the window-

length calculation parameters for the AMWPCA approaches and the shift-

sizes for all the investigated approaches.

To calculate the window-lengths L adaptively, the minimum window-

length Lmin was set at 24 h (1 day) and the maximum window-length

Lmax at 168 h (1 week). The chosen values associate with the diurnal

and weekly trends typical for the influent flow rate and concentrations

in municipal WWTPs (Henze et al., 2008). In the selection of the param-

eters and the shift-sizes of the AMWPCA methods, sufficient responses

in the window-lengths to changes among the relationship of the process

variables were targeted. On the other hand, the practicable anomaly de-

tection sensitivity of the monitoring systems was required. Such param-

eters were chosen that satisfied both the criteria. For the tested MWPCA

method, window-length and shift-size were selected to approximately cor-

respond to the average levels of those in the AMWPCA techniques.
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Anomaly monitoring procedure

A 30-day period at the beginning of the acquired data set was, first,

cleaned from the samples exceeding T 2
lim or Qlim and, then, used for defin-

ing the reference values for the AMWPCA approaches. In the on-line mon-

itoring, the PCA models were built with a standardized training data set

Xtrn defined by the window-length and the thresholds T 2
lim and Qlim were

calculated for every model. The eigengap technique was applied for select-

ing a subset of retained PCs individually for each model. Finally, T 2
lim and

Qlim were used in monitoring a testing data set Xtst comprised of samples

of a time span defined by the shift-size. The variables’ contributions to T 2

and Q were examined for isolating the fault source in the cases of T 2
lim and

Qlim violations.

If the required proportion P of the samples in Xtrn was not available due

to the discarding procedure in the sample selection step, the model was

not considered representative and the previous valid model was main-

tained. The required P value varied depending on L, the criterion being

stricter for shorter windows in order to have sufficiently samples for build-

ing descriptive PCA models.

A detailed description of the anomaly monitoring algorithm is available

in Publication IV. Simplifying, the main steps of the monitoring procedure

for the AMWPCA approaches are:

1. Calculating the references ‖Δb0‖ and ‖ΔR0‖ (AMWPCA_1), or Rref

(AMWPCA_2) using Xref off-line;

2. Calculating the window-length L using Xtrn at the intervals set by Z;

3. Calculating the PCA model and the statistics’ confidence limits T 2
lim

and Qlim at the intervals set by Z;

4. Calculating T 2 and Q for each incoming sample of Xtst;

5. If T 2 > T 2
lim and/or Q > Qlim, calculating the variables’ contributions to

T 2 and/or Q for isolating the anomaly source.

The step 1 is performed only once off-line, whereas the other steps con-

sider on-line anomaly monitoring. For the anomaly detection procedure

using MWPCA, only the steps 3− 5 described above are considered.
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6.4.2 Performance of soft sensors

The shares of normal and anomalous observations among the testing data

using the different approaches are collected in Table 6.5. The slight dif-

ference between the monitoring performances of AMWPCA_1 and AMW-

PCA_2 is explained by their significantly dissimilar average window-

lengths, 101.6 h and 58.3 h, respectively. A corresponding divergence oc-

curred also in their variabilities, which can be seen in Figure 6.7 where

their window-lengths are depicted. A different choice of the function pa-

rameters would naturally impact the monitoring performances of the ap-

proaches. The AMWPCA_1 technique was found to be widely adjustable

whereas the tuning capacity of AMWPCA_2 was indicated to be more lim-

ited. The anomaly monitoring performance of MWPCA, defined in terms

of the total number of the detected anomalies, corresponded with the

AMWPCA_2 approach. In the MWPCA method, the selection of window-

length was indicated to affect considerably the anomaly detection sensi-

tivity, the models with smaller windows being stricter.

Table 6.5. Shares of normal and anomalous samples in testing data using the different
moving-window PCA methods.

Method Normal, % Anomalous, %

AMWPCA_1 76.7 23.3

AMWPCA_2 78.9 22.1

MWPCA 78.9 22.1

The variables most frequently found to be responsible for anomalies

were the same for all the approaches when investigating the largest con-

tributions during the threshold violations. BI-NH4 was isolated most of-

ten as the fault source, followed by BI-SS. All the approaches suggested

BI-Q and Z6-SS as causing the smallest number of anomalies. The av-

erage number of retained PCs ranged between 2.25 and 2.30 using the

different approaches. On average, the models reconstructed 72.3–75.5%

of the total variation with different approaches.

The experimental results showed that when adequate window-lengths

were defined, drifts and peaks in measurements as well as process anoma-

lies can be detected. Moreover, the correct isolation of the variables

causing the anomalies was demonstrated. The results indicated that the

AMWPCA_1 approach successfully modified the window-lengths accord-

ing to the changes taking place among the relationship of the considered
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Figure 6.7. Time series of the window-lengths of the investigated anomaly monitoring
approaches. Figure adopted from Publication IV.

process variables. For the techniques with adapting window-lengths, the

tuning of the parameters of the window-length definition equations and

of the shift-sizes specifying the model recalculation intervals proved to be

the critical factors for the anomaly monitoring performances.

One of the motivations for the investigation from a scientific perspec-

tive was to search for adequate techniques for instrument monitoring

in WWTPs, the area being scarcely researched earlier as concluded in

Subsection 6.1.1. This goal was approached by using not only well-

established moving-window techniques but also their recently proposed

adaptive window-length variants for exploring their suitability for the

considered application. Also the number of retained PCs was defined

specifically for each model, instead of using the same number of PCs

throughout the monitoring as is often the case in moving-window applica-

tions.

The starting point being instrument monitoring, the scope of the work

was later extended to also include monitoring process anomalies that, in

the worst case, can cause significant operational problems in biological

treatment units such as ASPs. An example of this is a sudden drop of pH

in the ASP that gives rise to a long-term diminishing of nitrification due

to the decreased growth-rate of the ammonium-oxidizing bacteria. Such a

change in a process variable, pH in this case, can be rapidly detected with

the investigated techniques, as demonstrated in the original publication

and an early warning for the process operators can be provided. There-

fore, the use of a soft sensor for anomaly monitoring could prevent severe

problems in the treatment units.

As for the practical perspective, the proposed techniques could be in-

stalled as an inexpensive software tool for monitoring sensor and pro-

cess abnormalities. This would also increase the potential of sensors to

be used in advanced control schemes, such as the model predictive con-

troller proposed for the considered ASP (Mulas et al., 2015). However,
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more studies for optimizing the model parameters should be performed

before the system is implemented. In addition, assessing the false alarm

rate of the monitoring system would be beneficial in order to facilitate its

successful adoption. The presented algorithm could easily be extended to

include more sensors and adapted for other process units in WWTPs that

are equipped with abundant on-line instrumentation.
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This thesis has been concerned with the development of data-derived soft

sensors for biological wastewater treatment systems by means of multi-

variate statistical techniques. The main motivation for this was to design

software tools that enable more efficient and safer process operation by

complementing the information produced by the conventional instrumen-

tation. As today’s treatment plants are amply instrumented, extensive

historical process data are stored in their data acquisition systems. The

historical data contain plentiful information on the process operation and

provide invaluable material for the data-derived soft sensor design. In

point of fact, the development of the soft sensors in the thesis was real-

ized by utilizing the historical process data and mathematical algorithms,

coupled with the process understanding also needed for the task. On the

other hand, the high dimensionality of the measured data provided a mo-

tivation for using multivariate techniques instead of univariate methods.

The employed multivariate statistical techniques include principal com-

ponent analysis with its extensions and least squares based regression

methods.

The thesis presents a framework for designing data-derived soft sensors

that is general in nature. The trends in soft sensor development in the

wastewater sector and the research gaps were analyzed based on an

extensive number of case studies presented in the literature. An array

of soft sensors for on-line prediction was developed for supporting the

cost-efficient operation of the biological post-filtration unit of a large-scale

municipal WWTP. The performance of the soft sensors was demonstrated

to be good, with accuracies comparable with the hardware sensors.

The on-line estimation study was extended by developing a switching

system that enables the complementary use of the aforementioned soft

sensor estimates and the corresponding measurements of the existing
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hardware instruments. The system was based on real-time ranking of the

qualities of the measurement and prediction data. Finally, a soft sensor

for detecting process and instrument anomalies in the activated sludge

process of the same WWTP was designed. Adaptive methods based on

moving-window techniques were successfully used in this application for

coping with the time-evolving process conditions.

The results of the thesis give rise to both theoretical and practical im-

plications. The most important ones are summarized in the following.

• Novel approaches to using multivariate techniques for developing data-

derived soft sensors for biological wastewater treatment applications

were provided. Both classical multivariate methods and their exten-

sions were employed in an innovative manner in the different steps of

the soft sensor design based on the requirements set by the acquired op-

erational data and the tasks at hand. Some of these techniques have not

been used in wastewater treatment applications earlier and, hence, the

thesis presents new approaches for the development of software tools

and provides inspiration for future studies. These techniques include

robust, nonlinear and adaptive multivariate methods, the feasibility of

which for the field of operation was investigated. Different options for

defining the window-lengths of the adaptive models were also examined.

In addition, the thesis addresses an on-line estimation task in a rather

uncommon treatment unit, the denitrifying post-filtration, which has

not earlier been considered in corresponding research.

• The possibility of using both hardware instrument measurements and

soft sensor estimates in a complimentary way in the process operation

was demonstrated by means of the proposed switching system. Based on

earlier literature, that is not a typical manner of exploiting soft sensors.

Contradicting, soft sensor estimates usually serve as back-up options for

existing instruments when they suffer down-time or they are used when

hardware sensors are not applied at all in measuring the process vari-

ables. This proposal, in particular, opens new insights for the scientific

community, not only when dealing with wastewater treatment, but also

with relevance for other industrial sectors.

• The presented results provide novel examples about the design of soft

sensors based on the real-life data of a large municipal WWTP. Imple-
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mentation of these kinds of software aiming at improved information

for control purposes would allow for safer process operation under the

tight treatment regulations and demanding economic constraints. The

designed tools can be used, for instance, to secure an appropriate chem-

ical dosing and for providing an early warning about process and on-

line instrument malfunctioning. Therefore, the adaptation of presented

frameworks and ideas provides plant operators and engineering compa-

nies involved in the wastewater sector with new perspectives and flexi-

bly designable tools that complement the traditionally used automation

and instrumentation in the industry. Additionally, corresponding soft

sensors can be adapted to other fields of industry when sufficiently op-

erational data are available.

The findings of this thesis and the experience accrued during the doc-

toral work provide several insights for further development and future

research.

Soft sensor development is a time-consuming task. In particular, the

pre-processing of the data acquired from the plant requires a considerable

effort. Therefore, developing frameworks for automated pre-processing

would provide considerable benefits in comparison with the typical man-

ual approach. Also, the model maintenance step is of high importance

for the successful soft sensor implementation under time-evolving pro-

cess conditions. More practical experiences and reports of the soft sensor

maintenance, for instance, by means of model adaptation would be bene-

ficial for future soft sensor developers.

Particularly in the wastewater treatment sector, research focusing on

hardware instrument monitoring has been limited. The treatment units

and their sequence in the treatment lines have become more complex and

this progression is likely to continue into the future. Thus, process control

needs are growing more varied, which makes the role of reliable real-time

information about primary variables even more crucial. For this reason,

more attention should be paid to developing of practicable techniques for

sensor monitoring. This would motivate, for instance, a more intensive

use of the sensors close to the inlet of WWTPs in feedforward control and,

hence, support the adaptation of operation practices to the changing pro-

cess conditions in advance.

A switching system for using soft sensor estimates and instrument mea-

surements in a consistent and complementary manner was proposed in
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this thesis. The economic evaluation of the switching system operated

practically with closed control loops in comparison with the traditional

approaches, where only estimates or only measurements are employed,

would be useful. Additionally, it would be beneficial to investigate alter-

natives and improvements to the presented switching system.

More practical experience of the use of soft sensors in WWTPs would be

needed, especially as the literature suggests that only a small share of

the proposed soft sensors have actually been implemented in the plants.

The reasons for the scarce number of reported soft sensor implemen-

tations might be diverse. Kordon (2012) has recognized, for instance,

the following issues as limiting the application of intelligent systems

in industry: wrong expectations of the final users from the technology;

lack of professional marketing of the developed systems; the proposals

looking too academic or not understandable; and underestimating the

maintenance and support needs. All of these are things worth considering

and discussion when researchers develop soft sensors for wastewater

treatment practitioners. In fact, many implemented soft sensors in

WWTPs have been designed by people who actually work in the facilities

and, hence, understand the properties of the software tool and how

it responds to the assigned operational problem (Lumley, 2002; Cecil,

2004; Äijälä and Lumley, 2006; Cecil and Kozlowska, 2010), although

university researchers (Bongards, 2001; González and López García,

2006; Lee et al., 2008) and experts from engineering companies (Boger,

1992; Cohen et al., 1997) have also reported practical implementations.

In any case, close co-operation between the researchers and the plant

operators is needed for successful software development. An increased

number of references of soft sensor implementations in WWTPs would,

without doubt, raise interest in applying these tools in the wastewater

industry.

The data-derived soft sensors employing multivariate statistical tech-

niques proved to be capable of extracting easily understandable and prac-

ticable information that the high-dimensional data contain. The use of

such soft sensors allows for the more intensive use of real-time mea-

sured data and, consequently, for more advanced process operations that

satisfy the treatment targets of the wastewater treatment facilities cost-

efficiently.
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28,70 64,47 3,69 0,04 3,51 1,37 10,41 5,37 0,28 0,41 105,35 5,73 8,72 0,66 0,85

28,45 66,29 3,67 0,03 3,48 1,91 9,29 5,40 0,28 0,41 106,08 8,55 8,07 0,66 0,93

29,12 73,56 3,66 0,39 3,54 2,31 8,49 5,43 0,29 0,49 115,73 4,28 7,64 0,76 0,99

30,17 83,63 3,60 2,20 3,57 3,05 8,42 5,48 0,28 0,55 127,65 4,31 7,36 0,90 1,05

30,77 94,52 3,53 3,52 3,49 3,96 8,83 5,53 0,25 0,53 129,08 8,60 7,04 0,98 1,13

31,50 103,17 3,51 3,43 3,48 4,42 9,13 5,58 0,23 0,51 128,63 6,14 6,72 1,04 1,23

32,28 106,71 3,55 3,45 3,47 4,46 9,33 5,61 0,24 0,49 129,08 4,30 6,59 1,15 1,30

32,37 113,42 3,57 3,51 3,46 4,30 9,32 5,62 0,24 0,50 129,78 6,75 6,74 1,33 1,33

32,08 133,56 3,57 3,52 3,46 4,20 9,34 5,62 0,24 0,52 129,89 8,59 6,89 1,45 1,31

31,68 144,09 3,56 3,47 3,48 4,04 9,44 5,61 0,23 0,52 129,80 4,28 6,97 1,49 1,29

31,22 151,33 3,56 3,46 3,48 3,70 9,47 5,59 0,23 0,49 129,08 4,29 6,97 1,52 1,26

31,26 159,42 3,58 3,36 3,50 3,32 9,60 5,58 0,24 0,51 127,28 8,59 7,07 1,56 1,20

31,08 146,50 3,60 3,36 3,50 2,74 10,35 5,56 0,24 0,49 127,00 8,57 7,42 1,60 1,15

30,23 127,33 3,60 3,45 3,49 2,22 11,08 5,55 0,24 0,51 128,34 4,28 7,72 1,60 1,11
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