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Abstract

Stable isotope sourcing is used to estimate proportional contributions of sources

to a mixture, such as in the analysis of animal diets, plant nutrient use, geochemistry,

pollution, and forensics. We focus on animal ecology because of the particular com-

plexities due to the process of digestion and assimilation. Parameter estimation has

been a challenge because there are often many sources and few isotopes leading to

an underconstrained linear system for the diet probability vector. This dissertation

offers three primary contributions to the mixing model community. (1) We detail and

provide an R implementation of a better algorithm (SISUS) for representing possible

solutions in the underconstrained case (many sources, few isotopes) when no vari-

ance is considered (Phillips and Gregg, 2003). (2) We provide general methods for

performing frequentist estimation in the perfectly-constrained case using the delta

method and the bootstrap, which extends previous work applying the delta method

to two- and three-source problems (Phillips and Gregg, 2001). (3) We propose two

Bayesian models, the implicit representation model estimating the population mean
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diet through the mean mixture isotope ratio, and the explicit representation model

estimating the population mean diet through mixture-specific diets given individ-

ual isotope ratios. Secondary contributions include (4) estimation using summaries

from the literature in lieu of observation-level data, (5) multiple methods for in-

corporating isotope ratio discrimination (fractionation) in the analysis, (6) the use

of measurement error to account for and partition more uncertainty, (7) estimation

improvements by pooling multiple estimates, and (8) detailing scenarios when one

model is preferred over another. We show that the Bayesian explicit representation

model provides more precise diet estimates than other models when measurement

error is small and informed by the necessary calibration measurements.
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1

Chapter 1

Introduction

The goal of stable isotope sourcing is to estimate the proportional contributions of

sources to a mixture. Such models are used in the analysis of animal diets, plant

nutrient use, geochemistry, pollution, and forensics. Stable isotope sourcing models

are increasingly used to help understand foodwebs, water sources in soils, plants, or

water bodies, geological sources for soils or marine systems, decomposition and soil

organic matter dynamics, tracing animal migration patterns, and evaluate manage-

ment scenarios (Phillips, 2001; Phillips and Koch, 2002; Phillips and Gregg, 2003;

Mart́ınez del Rio and Wolf, 2005). Furthermore, these models can be applied to

other data, such as trace element geochemistry in earth and environmental science,

and combined with stable isotope data to solve sourcing problems. Studies of trophic

interactions in food webs, the dynamics of nutrient allocation to tissues and repro-

duction, and the economics of animal behavior represent a few of the many topics

that animal biologists are increasingly calling on stable isotope methods to provide

quantitative, robust answers (Mart́ınez del Rio and Wolf, 2005). From a modeling

standpoint a rich application is in animal ecology because of the additional com-

plexity of the preferential assimilation of elements from given sources into different

tissues, so in this dissertation we focus our attention here. Stable isotopes provide
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quantitative insight into these interactions because animal tissues carry an isotopic

imprint of the processes and resources used for their synthesis (DeNiro and Epstein,

1978).

Stable isotope analyses of a consumer animal’s tissues (the “mixture”) and their

potential prey and diet (the “sources”) is a powerful and well-studied means of quan-

tifying relative contributions of isotopically distinct dietary components (Hobson and

Wassenaar, 1999). Stable isotope analysis provides several benefits in comparison

with traditional methods for quantifying diet, such as the analysis of stomach and

fecal contents (Cree et al., 1999). In particular, stable isotope analysis (1) provides

information for all the individuals sampled, including those with empty stomachs,

(2) avoids the bias resulting from the differential digestion of soft- vs. hard-bodied

prey, (3) provides information on the foods assimilated, not just ingested, (4) gives

information on diet assimilated over a relatively long time window, rather than just

the time “snapshot” provided by stomach and fecal analysis, (5) provides long-term

information on habitat use without the logistical difficulties of marking and resight-

ing, (6) can be performed using a variety of tissues depending on the time frame

of interest (e.g., bone can reflect life-long diet while blood reflects recent diet), and

(7) can be nonlethal (Hobson and Wassenaar, 2008, 1999). In this dissertation, we

assume the mixture’s diet has been stationary long enough that the isotope ratio of

the tissue of interest at the time of measurement represents the current diet of the

given sources consumed rather than reflecting what was consumed some time past.

Additionally, any processes affecting the observations should be stationary at the

time of observation. That is, source isotope ratio measurements should reflect the

diet of the mixture at the time of consumption.

Parameter estimation for source contributions has thus far been a challenge be-

cause there are often few isotopes to provide information on the many sources con-

sidered. In general, the equations used to model the mean structure represent phys-

ical or biological processes, and the associated parameters represent constants of
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these processes having a meaning outside the model. Also, there is a now wealth of

supplementary (prior) information available about the proportion values from stud-

ies reported in the literature concerning similar processes under similar conditions.

Also, supplemental information, such as measurement error, has traditionally been

discarded but can inform the analysis when appropriately incorporated in the model.

Since there are often more parameters to estimate than independent sources of data

and there is prior information, it is clearly of interest to envision a Bayesian approach.

1.1 Stable isotopes

The isotope ratio, �, is the fundamental measurement used as data for mixing models.

The isotope ratio is a normalized ratio of the number of the rarer to common isotopes

in a sample relative to an international standard given in parts per thousand (per

mil, h), � = 1000(Rsample/Rstandard− 1), where Rsample and Rstandard are the ratios of

the number of rare to common isotopes for the sample and standard, respectively (see

Appendix A). Carbon and nitrogen are among the most commonly used elements

used for diet sourcing. For example, the approximate isotope ratio ranges for bulk

tissues commonly used are −65h to −5h (V-PDB standard) for �13C and −2h to

+25h (air standard) for �15N (Hobson and Wassenaar, 2008, Tab. 2.1). The stable

isotope ratio is sometimes referred to as a “signature” since it may be characteristic of

the measured source. The I-dimensional vectors of isotope ratios will be designated

by �˜ for the mixture (consumer) and by �˜s for source s = 1, . . . , S.

Discrimination, Δ, or fractionation (see Appendix A for the technical difference)

is the systematic change of isotope ratios as elements are ingested, excreted, or catab-

olized (e.g., trophic fractionation, DeNiro and Epstein, 1981; Minagawa and Wada,

1984; Mart́ınez del Rio and Wolf, 2005). Discrimination is defined as the difference

of the isotope ratio in the source, �˜s, and the resulting isotope ratio in the mixture’s

tissues, �˜′s, as Δ˜ s = �˜′s − �˜s. Fractionation can vary depending on the characteristics
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of the consumer, such as diet composition or feeding rate (Vander Zanden and Ras-

mussen, 2001; Post, 2002; McCutchan et al., 2003; Vanderklift and Ponsard, 2003;

Mart́ınez del Rio and Wolf, 2005). Despite this substantial variability, studies typi-

cally assume constant fractionation rates and ignore the associated uncertainty (but

see Vander Zanden and Rasmussen, 2001). While fractionation is the correct and

accurate method for measuring the isotope ratio offset between two substances, it

relies on an equilibrium constant for the associated reaction, thus the discrimination

(or isotope separation) is often used in practice and is usually sufficiently accurate

(Hobson and Wassenaar, 2008, ch. 3.II).

Concentration refers to the proportional amount of each element a source con-

tains, such as carbon (C) and nitrogen (N). For example, some carnivores, such as

piscivores, eat just one class of foods (fish) which may exhibit a fairly restricted range

of C and N concentrations on a whole body basis. At the other extreme, omnivores

consume both plant and animal food sources which may differ greatly in C and N

concentrations. One might expect that the proportion of N derived from a N -rich

food source such as meat might be higher than from plant material.

Assimilation efficiency refers to the proportional amount of each element from

a source synthesized into the mixture’s tissues. When dietary sources provide an

element in just one macromolecular form then that element may be assimilated and

metabolized in a uniform fashion. For example, dietary N is supplied by protein,

which may be digested in a broadly similar fashion regardless of diet type. In con-

trast, dietary C can exist as carbohydrate, lipid, or protein, each with a distinct

�13C value (Schoeller et al., 1984). Dietary proteins and lipids may be preferentially

“routed” to synthesis of body proteins or lipids, respectively (Krueger and Sullivan,

1984; Ambrose and Norr, 1993; Tieszen and Fagre, 1993). In such a situation, C

isotopes in body proteins would be disproportionately labeled by dietary proteins,

leading to an over-estimate of the fraction of protein-rich foods in the consumer’s

diet. Similarly, dietary lipids may be routed to synthesis of body fat (Stott et al.,
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1997).

Although physiological ecologists estimate the assimilation efficiency for food

types and even specific nutrients routinely, there are few accounts of the efficiency

with which different elements are assimilated. Incorporating food stoichiometry in

the models described in this dissertation requires more empirical work. It requires

analyzing (or at least estimating) the food’s elemental composition and may require

determining the efficiency with which different elements in each diet are assimi-

lated. Field researchers may understandably complain that models incorporating

concentration and assimilation efficiency require additional data to the basic mixing

model (Robbins et al., 2002), but the simple linear mixing models that dominate

the literature are misleading if the elemental composition of diet components differs

substantially (Mart́ınez del Rio and Wolf, 2005). Considering the potential effect of a

source’s elemental composition and differential assimilation on isotopic incorporation

adds realism to mixing models.

1.1.1 Variation affecting stable isotope ratios

Observed stable isotope ratios may have substantial variability (Phillips and Gregg,

2001). Additional sources of variation to consider in the sampling design and analysis

of diet include tissue type differences in isotope ratio (Post et al., 2007), discrimi-

nation (Tieszen et al., 1983), concentration (Phillips and Koch, 2002), assimilation

efficiency (Mart́ınez del Rio and Wolf, 2005), sample preservation (Sarakinos et al.,

2002), and temporal and spatial variablility (Cabana and Rasmussen, 1996; Van-

der Zanden and Rasmussen, 1999; O’Reilly et al., 2002; Post, 2002; Hobson and

Wassenaar, 2008). Here we do not consider tissue type, sample preservation, tem-

poral, or spatial variability. We assume the tissues of the mixture (consumer) have

reached equilibrium given the current diet of known sources, and that the source

isotope ratio and discrimination distributions are invariant.
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1.2 Model components and formulations

The models described in this dissertation have three distinct components: the mean

defining equation, the data likelihoods, and the parameter priors. The mean defin-

ing equation specifies how the mixture population mean (or a subject-specific mix-

ture mean) isotope ratio relates to the diet-weighted average of the source isotope

ratio population means. The likelihood, or data sampling distribution, describes

probabilistic distributions of the data components. The prior, used in the Bayesian

formulation of the model, encapsulates prior belief about the parameters in the

model. Notational conventions use Roman characters for data and Greek characters

for parameters to be estimated, except those with a 0 subscript which are specified

as prior information.

Two model formulations are presented, differing only in the modeling of the diet

proportions. The primary parameter of interest is the population mean diet, �˜, and

this is estimated by implicitly or explicitly modeling the subject-specific mixture

diets, �˜j, j = 1, . . . , J . The implicit representation model does not model the

subject-specific diets directly, but treats the mixture isotope ratio observations as

drawn from a common population of mixture isotope ratios. This is what has been

done to date (Phillips and Gregg, 2001). The explicit representation model hi-

erarchically models the subject-specific isotope ratios conditional on subject-specific

diets and takes these diets as drawn from a distribution centered at the population

mean diet, �˜. This is a new approach.

1.2.1 Mean defining equation

The ecological literature refers to the mean defining equation as a mixing model

and a great deal of effort has gone into the correct formulation of this equation that

relates the mean isotope ratios of the sources to that of the mixture through the dry-
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weight biomass of the mixture diet. Phillips (2001), in his critique of mixing models,

argues that the linear mass-balance mixing model provides mathematically unbiased

expected values of the proportional contributions of dietary sources to a mixture.

Thus far, mixing models have a common linear structure that can be compactly rep-

resented using matrix notation �˜ = A�˜. The I-by-S matrix A includes population

mean isotope ratios for the sources, with I isotopes measured on S sources. The

vector �˜ includes the population mean isotope ratio for the mixture. Data informs

the contents of matrix A and vector �˜ and we are interested to estimate the mix-

ture population mean diet vector �˜ given the specified sources, where �˜ represents

population mean dry-weight biomass proportion of each source consumed.

The implicit representation model does not model the subject-specific mixture

diets directly, but implicitly uses the individual diets to get an estimate of the pop-

ulation mean diet through �˜ = A�˜. The explicit representation model does model

the subject-specific mixture diets and everything in this chapter can be modified

to include them by, �˜j = A�˜j, j = 1, . . . , J , where J is the number of individual

mixtures in the sample. It is then the role of the statistical model to estimate the

population mean diet, �˜, from the subject-specific diets, �˜j.

1.2.1.1 Basic mixing model

The basic mixing model, BMM, is the simplest mass-balance mixing model assuming

that the mean isotope ratio of the mixture equals the diet-weighted average of the

mean discrimination-corrected isotope ratio composition of the sources (DeNiro and

Epstein, 1978; Schwarcz, 1991; Phillips, 2001). Each coefficient �′is is the observed

isotope ratio value for isotope i from source s, �is, corrected by the addition of the

isotope ratio discrimination (or fractionation), Δis, �
′
is = �is + Δis. Coefficient �i is

the observed isotope ratio for isotope i in the mixture. It is sometimes convenient to
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represent the defining equation in matrix notation,

�˜ = A�˜ =
S∑
s=1

(�˜s + Δ˜ s)�s =
S∑
s=1

�˜′s�s (1.1)⎡⎢⎢⎢⎢⎢⎢⎣
�1

�2

...

�I

⎤⎥⎥⎥⎥⎥⎥⎦
I×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
�′11 �′12 ⋅ ⋅ ⋅ �′1S

�′21 �′22 ⋅ ⋅ ⋅ �′2S
...

...
...

...

�′I1 �′I2 ⋅ ⋅ ⋅ �′IS

⎤⎥⎥⎥⎥⎥⎥⎦
I×S

⎡⎢⎢⎢⎢⎢⎢⎣
�1

�2

...

�S

⎤⎥⎥⎥⎥⎥⎥⎦
S×1

. (1.2)

Mean diet vector �˜ is constrained to be a probability vector restricted to the simplex,

that is, the sum of the source proportions is 1 and each proportion is a number

between 0 and 1,

1 =
S∑
s=1

�s, 0 ≤ �s ≤ 1, s = 1, . . . , S. (1.3)

In certain situations it is convenient to augment �˜ and A with a row of ones to

include the simplex constraint forcing the diet proportions to sum to one, indicated

by an x subscript,

�˜x =

⎡⎣ �

1̃

⎤⎦ and Ax =

⎡⎣ A

1˜⊤
⎤⎦ for �˜x = Ax�˜. (1.4)

The model can also be written in the form 0˜ = B�˜, where B = A − �˜1˜⊤, or

alternatively

0˜ = B�˜ (1.5)⎡⎢⎢⎢⎢⎢⎢⎣
0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
�′11 − �1 ⋅ ⋅ ⋅ �′1S − �1

�′21 − �2 ⋅ ⋅ ⋅ �′2S − �2

...
...

...

�′I1 − �I ⋅ ⋅ ⋅ �′IS − �I

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
�1

�2

...

�S

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.6)
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If we incorporate the simplex constraint into the left and right hand sides of (1.6)

we get

⎡⎣ 0

1̃

⎤⎦ = Bx�˜ where Bx =

⎡⎣ B

1˜⊤
⎤⎦ . (1.7)

1.2.1.2 Extended mixing model

The concentration mixing model(CMM) makes more realistic modeling possible by

accounting for differences in the elemental concentrations in each source. Concentra-

tion describes the dry-weight biomass proportion of a source that is composed of a

given atomic element, such as certain terrestrial plants being about 0.44 carbon and

0.01 nitrogen, and certain terrestrial meat being about 0.52 carbon and 0.14 nitro-

gen. The CMM assumes that a source’s elemental contribution is proportional to the

contributed biomass times the elemental concentration in that source (Phillips and

Koch, 2002). Elemental concentrations of dietary sources can vary widely. Among

plants in terrestrial environments, for example, C:N ratios, the relative concentra-

tion of carbon to nitrogen, of leaves can vary by two orders of magnitude and animal

tissues may be an order of magnitude more enriched than plant materials with the

lowest C:N ratios (Sterner and Elser, 2002). For omnivores, such as a brown bear,

feeding on salmon as well as grasses and fruit, the nitrogen concentration of these ma-

terials can vary by an order of magnitude or more. As a consequence, using a mixing

model neglecting these differences in elemental concentrations can potentially pro-

duce large errors in estimates of source contributions to the bear’s diet (see Phillips

and Koch, 2002). Elemental concentrations of resources are easy to incorporate in

the model by measuring the mass of the sample before combusting in the elemental

analyzer and isotope ratio mass spectrometer.

The extended mixing model (EMM) further increases the realism and accuracy

of our mixing model by recognizing that the digestive efficiencies of consumers for
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different food types can vary considerably (Mart́ınez del Rio and Wolf, 2005). Ig-

noring the differences in the relative assimilation of nutrients derived from different

sources can produce significant errors in the estimation of source proportions (Koch

and Phillips, 2002). Using the brown bear example again, the assimilation efficiency

of the bear’s digestive system for salmon is much higher than that of grasses (around

1.00 versus 0.35) and may differ for carbon and nitrogen. The EMM acknowledges

that “you are what you assimilate”, and accounts for the large differences in the as-

similation efficiencies observed in omnivores eating both plant and animal materials

(DeNiro and Epstein, 1978; Koch and Phillips, 2002; Mart́ınez del Rio and Wolf,

2005).

The EMM estimates both the proportions of biomass consumed, �˜, and the pro-

portions of each assimilated element from each source, $is. Equation (1.8) extends

(1.1) by multiplying the proportions �s by the population mean concentration of ele-

ment i in source s, �is, and by the population mean mixture’s assimilation efficiency

of element i from source s, �is,

�i =

∑S
s=1 �

′
is�is�is�s∑S

s=1 �is�is�s
, i = 1, . . . , I. (1.8)

To write this in the matrix notation of (1.5), the form of (1.8) must first be rewritten

as

0 =
S∑
s=1

(�′is − �i)�is�is�s, i = 1, . . . , I, (1.9)

then we have

0˜ =

⎡⎢⎢⎢⎢⎢⎢⎣
(�′11 − �1)�11�11 ⋅ ⋅ ⋅ (�′1S − �1)�1S�1S

(�′21 − �2)�21�21 ⋅ ⋅ ⋅ (�′2S − �2)�2S�2S

...
...

...

(�′I1 − �I)�I1�I1 ⋅ ⋅ ⋅ (�′iS − �i)�IS�IS

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
�1

�2

...

�S

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.10)
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Given biomass proportions �s, the proportion of each element contributed by each

source, $is, may also be of interest, given by

$is =
�is�is�s∑S
s=1 �is�is�s

. (1.11)

The intermediate CMM, when assimilation efficiency is not considered, has �is ≡ 1

for all s = 1, . . . , S and i = 1, . . . , I. If the assimilation efficiency of an element

is the same for all sources, and this is true for each element, i.e., �is = �is∗ for

all s, s∗ = 1, . . . , S and i = 1, . . . , I, then the EMM and CMM are equivalent.

Additionally, if the concentration of an element is the same for all sources, and this

is true for each element, i.e., �is = �is∗ for all s, s∗ = 1, . . . , S and i = 1, . . . , I, then

the CMM and BMM are equivalent (Phillips and Koch, 2002).

1.2.1.3 Model assumptions

The results of the mixing models rely on the assumptions listed below. Some of

these assumptions regard the biological and biochemical nature of the data and

some regard statistical issues. Specifically, the assumptions regarding no variability

or uncertainty are for use in Chapter 3, and these assumptions are relaxed in later

chapters where variation is accounted for.

The BMM provides a base set of assumptions, with the CMM and EMM adding

and replacing some assumptions by incorporating additional information. To the

degree that these assumptions are met, the model will accurately predict feasible

proportional contributions of the sources to the mixture. However, inaccuracies may

be great for even small departures from the assumptions. The absence of variabil-

ity in the model will clearly underestimate the uncertainty in the estimates. Also,

for example, poor estimates of the multiplicative factors of concentration and as-

similation efficiency when they are near zero can introduce large errors. Nitrogen
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concentrations in plant material are often near zero and vary widely among plants,

while nitrogen concentrations from meat is often nearer one and varies little among

animals. Phillips and Koch (2002) provide a sensitivity analysis when specifying

concentration in the model.

The BMM has the following assumptions (b=basic). (b1) All nonignorable sources

contributing to the mixture have been included in the model. (b2) The contribu-

tion of a source to the mixture is proportional to the consumed dry-weight biomass.

(b3) Elemental concentrations of each element is the same for all sources, that is,

the sources are stoichiometrically identical (e.g., C:N is constant for all sources,

concentrations may vary in the CMM). (b4) Equal proportions of each element are

derived from a source (relaxed in CMM). (b5) Elemental assimilation efficiencies of

each element into the tissues of the mixture is the same for all sources, (assimilation

efficiencies may vary in the EMM). (b6) Elemental concentrations from all dietary

sources are completely homogenized in the mixture prior to tissue synthesis (this

assumption is not satisfied when, for example, a dietary shift has occurred more

recently than the tissue turnover time (Phillips and Eldridge, 2006)). (b7) Isotope

ratios for each element are the same for each source tissue type, be it carbohydrate,

lipid, protein, or other so that the biomass consumed does not depend on type and

proportion of each tissue consumed (this is not satisfied when, for example, dietary

proteins in the sources are preferentially routed to synthesis of body proteins in the

mixture) (Schoeller et al., 1984). (b8) There is no variation in the model inputs of

isotope ratio measurements, isotope ratio discriminations, elemental concentrations

in sources, and elemental assimilation of source tissues into the mixture (we will ad-

dress these variances in later chapters). (b9) The biological needs of the mixture are

met with the given solutions, for example, protein requirements and energy demands

are satisfied, when considering animals (Minagawa, 1992).

The CMM has the following assumptions (c=concentration). (c1) For each ele-

ment, the contribution of a source to the mixture is proportional to the consumed
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biomass times the elemental concentration in that source, replacing (b2). (c2) The

contribution of a source to the mixture’s elemental pool depends on how much of

each element that source contains, replacing (b3, b4). The remaining assumptions

are the same as for the BMM, namely (b1, b5–b9).

The EMM has the following assumptions (e=extended). (e1) For each element,

the contribution of a source to the mixture is proportional to the consumed biomass

times the elemental concentration in that source times the assimilation efficiency of

that element from that source, replacing (c1). (e2) The contribution of a source

to the mixture’s elemental pool depends on how much of each element that source

contains and how efficiently the element is assimilated into the mixture, replacing

(c2, b5). The remaining assumptions are the same as for the CMM, namely (b1,

b6–b9).

1.2.2 Alaskan bear example

The summaries in Table 1.1, plotted in the convex hull plot in Figure 1.1, reconstructs

a data subset from a two-isotope, three-source unique-solution example reused from

Koch and Phillips (2002, Table 1). Although these summaries are estimates we will

treat them as fixed for this illustration. The objective of the original study was to

model the biomass contribution of salmon, terrestrial meat, and fruit to the diet of an

average brown bear (Ursus arctos) from the Kenai Peninsula, Alaska, at a particular

time of year (Jacoby et al., 1999). Concentration for carbon is the proportion of

carbon in dry matter, and concentration for nitrogen is the proportion crude protein

in dry matter times the proportion nitrogen in protein. Assimilation for carbon is

the digestible proportion of dry matter, and assimilation for nitrogen is the digestible

proportion of dry matter times the protein digestibility proportion. Note that the

product of these concentration and assimilation values are what Koch and Phillips

(2002) report as Digest C and Digest N. Our results differ from theirs because they
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use Digest [C] and Digest [N] in their calculations, which is the Digest X divided by

the proportion digestible dry matter.

Table 1.1: Alaskan bear example, brown bear hair as a mixture of salmon, meat, and
fruit, using isotopes of carbon (i = 1) and nitrogen (i = 2) (Jacoby et al., 1999).

Isotope Ratios Discrimination Concentration Assim. Effic.
Mixture �1 �2

Brown bear −20.3 10.9

Sources �1s �2s Δ1s Δ2s �1s �2s �1s �2s
Salmon (s = 1) −20.5 13.2 1.2 2.3 0.548 0.118 1.00 1.00
Meat (s = 2) −21.5 3.9 4.9 4.0 0.515 0.141 1.00 1.00
Fruit (s = 3) −26.6 −0.9 3.3 4.1 0.45 0.0126 0.634 0.571

For the BMM in (1.1) the defining equation is⎡⎢⎢⎢⎣
−20.3

10.9

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−19.3 −16.6 −23.3

15.5 7.9 3.2

1 1 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
�1

�2

�3

⎤⎥⎥⎥⎦ , (1.12)

where, for example, �′12 = �12 + Δ12 = (−21.5 + 4.9) = −16.6. Concentration

and assimilation efficiencies are not used in the BMM. The first row represents the

equation for carbon, the second row is for nitrogen, and the third row is for the

simplex. The first column is for salmon, the second column is for meat, and the

third column is for fruit.

In the isotope ratio data space, Figure 1.1, each axis represents values of discrimination-

corrected isotope measurements for each pair of isotopes. Figure 1.1 plots the first

two rows of (1.12) as carbon/nitrogen pairs, (�′1s, �
′
2s). In particular, with carbon

on the horizontal axis and nitrogen on the vertical axis, salmon is (−19.3, 15.5) and

brown bear is (−20.3, 10.9). The convex hull is the set of lines connecting the “out-

side” sources. The hull is called “convex” because any line connecting two points on

the hull stays entirely inside or on the hull. A solution to (1.12) exists in the solution

space, Figure 3.1, if and only if the mixture brown bear lies inside all pairwise iso-

topic convex hulls. Two convex hulls are shown in Figure 1.1. The thin straight-lined
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Figure 1.1: Convex hull plot of the Alaskan bear example in Table 1.1. This plot
represents the isotope ratio data space of discrimination-corrected carbon and nitro-
gen isotope ratios. The thin straight-lined convex hull is from the BMM, and the
thick curved-lined hull is from the EMM.
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convex hull is from the BMM, and the thick curved-lined hull shows the effect of the

concentration and assimilation efficiency in the EMM to curve the lines in proportion

to the concentration-assimilation ratio, �is�is/�i∗s�i∗s, between sources. Typically,

the closer the isotope ratio values of the mixture are to a source’s discrimination-

corrected isotope ratio values, the more similar the mixture is isotopically to that

source, and the larger the contribution of that source to the mixture is able to be.

The matrix Ax in (1.12) is invertible, thus the solution �˜ to (1.12) is unique

for the BMM. The EMM also has a unique solution. Table 1.2 reports the unique

solutions for both the BMM and EMM. The first row gives proportions of biomass

from each of the three sources constituting the mixture using the BMM estimating

that brown bear hair was sourced from 0.59 salmon, from 0.10 meat, and from 0.31

fruit. In contrast, the EMM estimates 0.22, 0.20, and 0.58. Thus, the incorporation of

concentration and assimilation efficiency reverses the estimated importance of salmon

and fruit. Additionally, the EMM estimates that, in spite of the 0.20 contribution

of meat, 0.49 of the nitrogen present in the brown bear hair was sourced from the

meat.

Table 1.2: Unique solutions for the Alaskan bear example in Table 1.1 using the
BMM and the EMM.

Brown bear Salmon Meat Fruit
Model Proportions s = 1 s = 2 s = 3
BMM Biomass �1 = 0.59 �2 = 0.10 �3 = 0.31
EMM Biomass �1 = 0.22 �2 = 0.20 �3 = 0.58
EMM Carbon i = 1 $11 = 0.31 $12 = 0.27 $13 = 0.43
EMM Nitrogen i = 2 $21 = 0.44 $22 = 0.49 $23 = 0.07
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1.3 Goals and outcomes

The bear example in this chapter ignores the estimation of A and �˜ and, in general,

the solution of �˜ may not be unique. The aim of this dissertation is to address

estimation in both the frequentist and Bayesian paradigms using both the implicit

and explicit representation of the mean defining equation. Chapter 2 introduces the

mean defining equation representations and their justifications. Chapter 3 illustrates

a better algorithm for providing solutions to mixing models without variation when

there are many more sources than isotopes. Chapter 4 makes rigorous the frequentist

approaches for the basic mixing model, and provides general approaches using the

delta method and bootstrap. Chapter 5 introduces flexible Bayesian modeling for

the basic mixing model. Chapter 6 provides extentions, sets the stage for future

work, and concludes this dissertation.
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Chapter 2

Statistical framework for stable

isotope sourcing

2.1 Mean defining equation

The mean defining equation for the BMM, �˜ = A�˜, in Chapter 1 provides a rela-

tionship between the mixture isotope ratio mean, �˜, and the discrimination-corrected

isotope ratio means of the sources, A, through the mean mixture diet, �˜. Under what

conditions might it be reasonable that �˜ and �˜ represent mean values for the mix-

ture population? If we consider A to be fixed for each individual in the mixture

population, then it is reasonable to posit that a subject-specific diet, �˜j, satisfies

�˜j = A�˜j, where the resulting individual isotope ratio, �˜j, results from the diet of

the individual. Individuals within the population will have different �˜j values, con-

sequently there is a distribution for the �˜j values and a corresponding distribution

for �˜j. Without specifying these distributions we can say through linearity, given

that A is fixed, that E[�˜j] = E[A�˜j] = AE[�˜j], where �˜ ≡ E[�˜j] and �˜ ≡ E[�˜j].
There is evidence supporting modeling of subject-specific diets because differences

in diet lead to differences in the isotope ratios of individuals within a population



Chapter 2. Statistical framework for stable isotope sourcing 19

(Angerbjörn et al., 1994; Matthews and Mazumder, 2004; Urton and Hobson, 2005;

Araújo et al., 2007; Layman et al., 2007).

Depending on the number of isotopes and sources considered, three situations

regarding �˜ are possible. The underconstrained situation where S > I + 1 is

common, such as the mink example in Chapter 1, where the number of sources

considered is many greater than the number of isotopes. Because the dimension of

�˜ is greater than the number of equations this will typically lead to an infinite set of

solutions. Chapters 3 and 5 discuss this case. The perfectly constrained situation

where S = I+1 is ideal, such as the Alaskan bear example in Chapter 1, where the A

matrix augmented with a row of ones is square and nonsingular providing a unique

solution of �˜. Chapters 4 and 5 discuss this case when a unique solution exists.

The overconstrained situation, where S < I + 1, is less common but typically

requently occurs when there are two sources and carbon and nitrogen isotopes are

both measured. No solution is available using all the isotopes simultaneously, but we

discuss methods to provide a single “best” solution. This is discussed in Chapter 6

among other extentions.

Let �˜j have a density on the simplex with population mean E[�˜j] = �˜, and

consider A fixed. Because �˜j has 1 =
∑S

s=1 �js, we can write

�˜j =
S∑
s=1

�˜′s�js
=

S−1∑
s=1

(�˜′s − �˜′S)�js + �˜′S
= A∗�˜∗j + �˜′S,

where A∗ = [�˜′1− �˜′S, ⋅ ⋅ ⋅ , �˜′S−1− �˜′S] is an I × (S − 1)-dimensional matrix consisting

of the last column �˜′S taken from the first S − 1 columns of A and �˜∗j is an (S − 1)-

dimensional vector consisting of the first S−1 rows of �˜j. The density for �˜∗j defines

the density for �˜j. It is now clear that �˜j can have a density when S ≥ I+1 because
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�˜j ∈ ℝI and �˜j ∈ ℝS−1. Furthermore, the first two moments of this distribution,

given A, are

E[�˜j] = E[A�˜j] = E[A∗�˜∗j + �˜′S] = A∗E[�˜∗j ] + �˜′S = A∗�˜∗ + �˜′S ≡ A�˜
where �˜∗ = [�1, . . . , �S−1]⊤, and

Cov[�˜j] = Cov[A�˜j] = Cov[A∗�˜∗j + �˜′S] = A∗Cov[�˜∗j ]A∗⊤ = A∗Σ�˜∗A∗⊤.
Note that Σ�˜∗ is a square (S − 1)-dimensional matrix and the Cov[�˜j] is a square

I-dimensional matrix. In the absense of a parametric model for �˜j in the case

when S ≥ I + 1 it would be reasonable to allow Cov[�˜j] to be arbitrary, but Σ�˜∗
can be recovered from an estimate of Cov[�˜j] only when S = I + 1. Thus, in the

underconstrained case (S < I + 1) we assume �˜j has a density with mean A�˜ and

arbitrary covariance matrix. Further detail is given in Section 2.2.1.

2.1.1 Invertibility of Ax and Bx

In the perfectly constrained case (S = I + 1) it will be assumed with little loss

of generality that square matrix Ax will be invertible. The elements of Ax are

parameters defined over the real numbers. Over the field of real numbers, the set

of singular S-by-S matrices, considered as a subset of ℝS×S, has Lebesgue measure

zero. Thus, almost all S-by-S matrices are invertible. This does not guarantee that

Ax is invertible, but does make it invertible with probability 1. In the frequentist

analyses of Chapters 4 and 6 we assume that Ax is invertible, which implies that

�˜x = Ax�˜ has a unique solution. This is not an issue in the Bayesian analysis because

inverting Ax is not necessary.

Here we show that if Ax is invertible when S = I + 1, then Bx is also invertible.

The following are equivalent: (1) Ax is invertible, (2) the row rank of Ax is S, (3)
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ci ≡ 0,∀i = 1, . . . , S is the only set of ci ∈ ℝ such that cS1˜⊤+
∑S−1

i=1 ci�˜′ri = 0˜⊤, where

�˜′ri is row i of A. We need to show that this implies cS1˜⊤+
∑S−1

i=1 ci(�˜′ri −�i1˜⊤) = 0˜⊤.

Adding �i to all columns of row i is adding a multiple of 1˜⊤ to each row, thus we

have a new constant c∗S in statement (3) above, c∗S1˜⊤ = (cS1˜⊤−∑S−1
i=1 ci�i1˜⊤). Thus

Bx is invertible.

2.2 Two representations for the mixture diet

We consider two model formulations. The implicit representation, or means rep-

resentation, models the �˜j implicitly through the variation in the estimates of �˜ and

A to estimate �˜. The explicit representation, or subject-specific representation,

models the �˜j directly where each �˜j is defined as the function A�˜j and the �˜j are

distributed on the simplex with mean �˜.

In either representation, �˜j is assumed to have a density in the underconstrained

or perfectly constrained situations, when S ≥ I + 1, when �˜j has a density on

the simplex, as discussed above. It is important to take into account the structure

of the relationship between �˜j and underlying �˜j. In the implicit representation

the density is directly on �˜j and the �˜j are not modeled directly. In the explicit

representation the density is on �˜j which imposes a density on �˜j. We will develop

these models for the BMM, and they are easily extended to the EMM. We will use the

frequentist paradigm for the implicit representation, and Bayesian paradigm for both

the implicit representation and explicit representation. With multiple measurements

on individual mixtures, frequentist methods in principle can also be used effectively

with the explicit representation. This view of modeling the mean isotope ratio of

the mixture conditional on the source isotope ratios and the subject-specific diet

proportion vector suggests the two following hierarchical models.



Chapter 2. Statistical framework for stable isotope sourcing 22

2.2.1 Implicit representation

In the implicit representation we do not model the individual diet vectors, �˜j, but

consider the variation in the isotope ratio values in the mixture and sources to make

inference in the mean population diet, �˜. Let the mixture isotope ratio vectors have

E[�˜j] = �˜ and Cov[�˜j] = Σ�˜. The covariance matrix for the �˜j could conceivably be

anything, as noted in Section 2.1. The multivariate normal is a distribution allowing

for arbitrary mean vectors and covariances matrices, so as a first approximation we

can consider �˜j ∼ Normal(�˜,Σ�˜). We can write this as

�˜j = �˜ +  ˜j = A�˜ +  ˜j with  ˜j ∼ Normal(0˜,Σ�˜). (2.1)

The error term  ˜j represents between-individual variability. The implicit representa-

tion provides a framework for the modeling that has been developed to date (Phillips,

2001; Phillips and Koch, 2002; Phillips and Gregg, 2003; Mart́ınez del Rio and Wolf,

2005).

In the perfectly constrained situation (S = I + 1), the estimate of �˜ using fre-

quentist large sample theory is performed by substituting estimates for A and �˜ in

�˜ = A�˜ subject to 1˜⊤�˜ = 1, and solving to give �̂˜ = Â−1
x �̂˜x (Phillips, 2001; Phillips

and Gregg, 2001; Mart́ınez del Rio and Wolf, 2005). This is detailed in Chapter 4.

In the underconstrained situation (S > I + 1), IsoSource and SISUS are two

methods for representing the set of �˜ satisfying �˜x = Ax�˜. In Chapter 5.2.1 we

see that this approximates a Bayesian analysis where the posteriors for �˜ and A go

to point masses, that is the variance terms are effectively zero. Chapter 3 details

the no-variance approximation and Chapter 5 illustrates the implicit representation

model this method approximates.

In the overconstrained situation (S < I + 1), �˜j = A�˜j may not have a density.

Estimates for �˜ using frequentist large sample theory uses least squares strategies.
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The Bayesian paradigm uses the same model as in the other situations, and because

of measurement error and within-individual variation in the mixture isotope ratio

observations informing �˜j, both the observations and their means, �˜j, will have a

density.

2.2.2 Explicit representation

The explicit representation models the subject-specific diets, �˜j, through a subject-

specific version of (1.1), leading to an analogous way to make inferences about �˜
through

�˜j = A�˜j. (2.2)

The �˜js are latent variables, as they cannot be directly observed. We will assume

a distribution for �˜j which induces a distribution on �˜j. This strategy provides a

more natural way to think about the diet problem and a principled approach for

estimating �˜, elaborated on in Chapter 5.
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Chapter 3

Models without variation

In this chapter we describe an efficient algorithm for providing representative prob-

abilistic exact solutions to mixing models without variation. A common situation is

to have many more sources than isotopes, resulting in an underconstrained situation

(S > I + 1). In this situation there are multiple exact solutions to the defining rela-

tionship �˜x = Ax�˜ in (1.4), or equivalently [0˜⊤, 1]⊤ = Bx�˜ given in (1.7). This set of

solution vectors, �˜, is called the solution polytope. The strategy that Phillips and

Gregg (2003) introduced for providing solutions for �˜ has been to ignore variability

and uncertainty in parameter estimation and provide approximate deterministic so-

lutions to (1.4) using the BMM implemented in IsoSource software. With hundreds

of papers published using this method, people have tried to increase the computa-

tional efficiency (Lubetkin and Simenstad, 2004), and researchers continue to praise

IsoSource, and even use “IsoSource” in the title of their articles (Benstead et al.,

2006). Here we demonstrate a probabilistic sampling-based method, implemented in

the author’s SISUS R package, performing in many ways better than the qualitatively

similar deterministic methods.

Methods ignoring uncertainty inherent in parameter estimation are discouraged.

Their usefulness may be limited to providing quick and overly-precise estimates. For
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inference models accounting for uncertainty at all levels of uncertainty should be

used, such as those described in Chapter 5.

3.1 Relationship between data and solution spaces

The data consists of I discrimination-corrected isotope ratio means on each of S

sources, thus, the isotope ratio data is I-dimensional while the source proportion

solutions, �˜, are S-dimensional. Using the Alaskan bear example in Table 1.1, we now

describe the relationship defined by (1.4) between the I = 2-dimensional isotope ratio

data space shown in the convex hull plot in Figure 1.1 and the S = 3-dimensional

proportion solution space in Figure 3.1. To aid understanding and clarity we use

the BMM in this description, however, an analogous description can be given for the

EMM. We later use the EMM for the analysis. When the relevant data is available we

encourage consideration of the EMM for analyses, since large errors can be corrected

by incorporating accurately estimated concentration and assimilation information,

as seen by the difference in solutions in Table 1.2.

In the Alaskan bear example, because S = I + 1, there is a unique solution given

by �˜ = A−1
x �˜x, because A−1

x exists. However, often many sources but few isotopes

are considered, S > I + 1, and the solution is not unique. Thus, we will use a

subset of this small example to view a solution space without a unique solution as

an analogy to larger situations.

In the source-proportion solution space each axis represents proportions of biomass

contributed for each of S sources, and for S > 3 this is not plottable. In the Alaskan

bear example, S = 3. Figure 3.1 shows the solution space where the axes are labeled

for salmon, meat, and fruit. Each of the I + 1 linear equations, as rows in (1.12),

define an (S − 1)-dimensional hyperplane in the S-dimensional proportion solution

space. A common 2-dimensional plane is an example of a hyperplane, but in general
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Figure 3.1: Source-proportion solution space for salmon, meat, and fruit in the
Alaskan bear example using the BMM. The axes represent biomass contributions of
each source, �1, �2, and �3. The data in Table 1.1 assign the values in equations (1.1)
to define the planes in this image. The equilateral triangular plane is given by the
simplex equation, the plane heading back and up is given by the carbon equation,
and the plane heading downwards is given by the nitrogen equation. The intersection
of the carbon plane with the simplex is the line with endpoints c1=(0, 0.45, 0.55)
and c2=(0.75, 0, 0.25), and the intersection of the nitrogen plane with the simplex
is the line with endpoints n2=(0.63, 0, 0.37) and n3=(0.39, 0.61, 0). The solution
polytope is the intersection of the three planes, the point labeled “solution” at (0.59,
0.10, 0.31).
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a hyperplane is a “flat” subspace of any higher-dimensional space. The data plotted

in the isotope ratio data space in Figure 1.1 translate into the three 2-dimensional

planes shaded in Figure 3.1, one plane each for carbon, nitrogen, and the simplex.

The solution is the intersection of these three hyperplanes.

Next we show how first the simplex and then the isotope ratio data map onto

the solution space. The third row of (1.12) defines the simplex, as in (1.3), that

the biomass proportions sum to 1, 1 = �1 + �2 + �3. Three obvious solutions to

this equation are �˜ = [�1, �2, �3]⊤ = [1, 0, 0]⊤, [0, 1, 0]⊤, and [0, 0, 1]⊤. These points

define the extremes of the simplex hyperplane restricted to the unit cube, and will

always be an (S − 1)-dimensional equilateral triangular region. In Figure 3.1, the

pink equilateral triangle is the hyperplane corresponding to the simplex. Similarly,

the plane for carbon corresponding to the first row of (1.12) extends back and up,

and the plane for nitrogen corresponding to the second row of (1.12) extends down.

While these planes extend in space without limit, only the most illustrative fragment

is plotted, with bold lines representing intersections with the simplex.

If only one isotope ratio is considered with three sources there are likely an

infinite number of possible solutions, provided a solution exists. To illustrate this,

consider only the carbon isotope ratio, represented by the horizontal axis in isotope

ratio data space in Figure 1.1 observing the small points along the horizontal axis.

Abbreviate the mixture and sources by their first initial: brown bear by B, and

salmon, meat, and fruit by S, M , and F . The mixture B and sources (S,M,F ) are

ordered from low to high by isotope ratio values of carbon as F,B, S,M . It is clear

that if we remove M , by setting its proportion contribution to �2 = 0, that B can

be represented as a unique weighted average of F and S. This is solved by using

the two-equation system of the simplex, 1 = �1 + 0 + �3, and the carbon equation,

−20.3 = −19.3�1 − 16.6(0) − 23.3�3, and solving for the two-unknown proportions

giving �1 = 0.75 and �3 = 0.25. In Figure 3.1 this solution for carbon when �2 = 0 is

labeled c2 = [0.75, 0.00, 0.25]⊤. Similarly, if we remove S, by setting its proportion
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contribution to �1 = 0, then B can be represented as a unique weighted average of F

and M by 1 = 0 + �2 + �3 and −20.3 = −19.3(0)− 16.6�2 − 23.3�3 giving �2 = 0.45

and �3 = 0.55. In Figure 3.1, c3 = [0.00, 0.45, 0.55]⊤. However, again referring to the

horizontal axis in Figure 1.1, if F is removed, by setting its proportion contribution

to �3 = 0, B falls outside the interval of S and M , and so can not be represented

as a weighted average of S and M where both �1 and �2 are between 0 and 1,

0 ≤ �s ≤ 1, s = 1, 2. When all three sources are considered together, possible

solutions are weighted averages of these two unique solutions. The line connecting

endpoints c2 and c3 in Figure 3.1 indicates the infinite number of solutions given by

the intersection of the simplex and carbon hyperplanes. If carbon was considered

alone there would not be a unique solution, but the solutions would be all the points

along this line.

Similarly, the intersection of the nitrogen and simplex hyperplanes can be deter-

mined as a line segment with endpoints n3 = [0.39, 0.61, 0.00]⊤ and n2 = [0.63, 0.00, 0.37]⊤.

When carbon and nitrogen are considered together with the simplex then a

unique solution exists, because these three hyperplanes intersect at a point, �˜ =

[0.59, 0.10, 0.31]⊤. Equivalently, in this case there is a single solution vector �˜ satis-

fying (1.12), represented geometrically as the intersection point in Figure 3.1.

In principle, this method can find solutions in larger cases, when S > I + 1.

But the process can be automated in a way that does not rely on pictures such as

Figure 3.1.

3.1.1 Underconstrained case, mink

We use mink data from Ben-David et al. (1997) to compare the qualitative results of

SISUS and IsoSource. The mink data are discussed more completely in Section 5.4,

and our results differ from the analyses in Phillips (2001, Table 3) and Phillips and

Gregg (2003, Figure 4) because of discrepancies in their summarized values. For
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the BMM in (1.1) the mink data are summarized in (3.1) where the rows are for

carbon (�13C + Δ13C), nitrogen (�15N + Δ15N), and the simplex. The vector �˜x is

the mixture mink and the columns of matrix Ax are for the S = 7 sources of fish,

mussels, crabs, shrimps, rodents, amphipods, and ducks,

⎡⎢⎢⎢⎣
−15.11

13.81

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−14.23 −18.51 −15.28 −16.90 −24.61 −18.69 −21.38

14.68 10.74 12.20 12.96 10.07 15.00 14.92

1 1 1 1 1 1 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
�1

�2

...

�7

⎤⎥⎥⎥⎥⎥⎥⎦ .(3.1)

The plot in Figure 3.2 shows the convex hull of the sources encompassing the mink.

Because the mink is in the convex hull, there are feasible solutions. We can expect

high proportional contributions of fish and crabs because of the proximity of mink

to those sources on the boundary.

3.2 Algorithms for feasible solutions

The goal is to represent the solution polytope, the feasible solutions defined as

the set of all probability vectors �˜ satisfying the defining (1.4), �˜x = Ax�˜. This

applies to the BMM but also the EMM through the equivalent representation (1.7).

Equivalently, the solution polytope is defined as the intersection of the simplex and

isotopic hyperplanes, as previously illustrated in Figure 3.1. Each additional inde-

pendent linear constraint reduces the solution polytope by one dimension, where the

simplex and each isotopic equation are linear constraints.

A favorable property of the solution polytope is that it is convex, that is, a

line connecting any two points in the convex polytope will also be entirely inside the

polytope. Descriptively, “convex” indicates the polytope is like a cut diamond rather

than a star. The geometric fact used is that the intersection of convex objects, such



Chapter 3. Models without variation 30

−25 −20 −15

10
11

12
13

14
15

d13C

d1
5N

−25 −20 −15

10
11

12
13

14
15

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Fish

Mussels

Crabs

Shrimps

Rodents

AmphipodsDucks

Mink

●● ●●● ●●

FM CSR AD M

●

●

●

●

●

●
●

F

M

C

S

R

AD

M

Isotopic Mixing Convex Hull

SISUS: Stable Isotope Sourcing using Sampling

7 
 S

ou
rc

es

Mink :  Isotopic Signatures
Mink BMM, from Ben−David, et al (1997)

2 
Is

ot
op

es
:  

d1
3C

, d
15

N

Figure 3.2: Convex hull plot of the mink example using (3.1).



Chapter 3. Models without variation 31

as the proportion hypercube with simplex and isotopic hyperplanes, is necessarily

convex.

In the Alaskan bear example, if carbon is considered alone with the simplex there

are an infinite number of solutions given geometrically as the intersection of the

carbon and simplex hyperplanes. We will use this carbon-only situation to illustrate

the ideas often applied to larger examples, such as the mink data, when many more

sources are considered relative to isotopes measured, S > I + 1.

3.2.1 Deterministic approximate solutions via IsoSource

IsoSource is a popular deterministic algorithm used in stable isotope sourcing to

represent the solution polytope from underconstrained linear mixing models where

S > I + 1 (Phillips and Gregg, 2003; Phillips, 2006). IsoSource evaluates a user-

specified uniformly-spaced grid of points on the simplex, labeling a point a solution if

it satisfies the linear system in (1.4) within a user-specified tolerance (see Figure 3.3a).

These are points on or close to the solution polytope, consistent with all possible

solutions being equally likely a priori. This is a brute force strategy because no

information is used regarding the location of the solution polytope within the simplex.

For a fixed tolerance, decreasing the increment of the grid space hyperexponentially

increases the number of points evaluated, increasing both the number of solutions

returned and the time for the algorithm to execute. For a fixed increment, decreasing

the tolerance increases the accuracy of the solutions by excluding points far from the

solution polytope. Because the number of approximate solutions depends on the

dimension and sub-volume of the solution polytope, the increment grid spacing, and

the solution tolerance, it may be challenging to choose settings to balance the desire

for many solutions, accurate solutions, and acceptable execution time.
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3.2.2 Probabilistic exact solutions via SISUS

Recall, the goal is to represent the infinite number of solutions in the solution poly-

tope with a finite sample of solutions. If solutions are equally likely, a representation

of the solution polytope can be given by a sample where points from the solution

polytope are drawn with equal probability. If the solution polytope was always a

simple object, like a line, then this sampling would be straightforward. Because the

solution polytope can be quite complicated when the number of sources S is large,

like an asymmetrically cut diamond, a direct sampling strategy may not be avail-

able. In the following section we describe a probabilistic algorithm for providing a

user-specified number of exact solutions drawn uniformly from the solution polytope

regardless of the geometric complexity of the solution polytope. The algorithm con-

sists of two steps: first the vertices of the solution polytope are determined so the

exact location of the solution polytope is known (Fukuda and Prodon, 1996), then

probabilistic sampling is performed strictly from the polytope (Meeden and Lazar,

2006).

3.2.2.1 Uniform sampling of the solution polytope

The first step is to determine the vertices (and, therefore, the boundaries) of the

solution polytope. The method is complex to describe (Fukuda and Prodon, 1996),

but implemented in Fukuda (2005). The important point is that because the location

of the solution polytope is known, we can sample directly from the set of exact

solutions efficiently.

The second step is the probabilistic sampling from the solution polytope. Here

we describe some technical details regarding how we propose sampling uniformly

from the solution polytope using a Markov chain Monte Carlo (MCMC) algorithm.

The random directions symmetric mixing algorithm has three steps (Boneh and

Golan, 1979; Smith, 1980). (0) Choose a starting point inside the solution polytope,
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�˜(0) ∈ P , and set counter r = 0. In practice, this is an interior point of the polytope

after a short burn-in of the algorithm. (1) This step does all the work: Generate

a random direction d uniformly distributed over a direction set inside the solution

polytope D ⊆ ℜS, find the line set L = P ∩{�˜(r) + ld, l ∈ ℜ}, and generate a random

point �˜(r+1) uniformly distributed over L. Descriptively, we draw a line segment

through the current point �˜(r) to the edges of the polytope along that direction and

in the opposite direction, then generate the next point �˜(r+1) uniformly at random

from that line segment. In this way we move around the polytope collecting a

representative sample. (2) If we have the desired number of samples, r = R, then

stop. Otherwise, increment the counter r ← r + 1 and return to step (1).

The sample generated converges to the uniform distribution over an arbitrary

polytope, at worst at an exponentially fast rate, which would be slow (Smith, 1984).

However, our convex polytope is a best-case scenario converging almost immediately

with small samples.

SISUS uses the implementation of the random directions symmetric mixing algo-

rithm in R package polyapost, function constrppprob (R Development Core Team,

2006; Lazar and Meeden, 2003; Meeden and Lazar, 2006). The number of sources

S and isotopes I may both be large, provided S ≥ I + 1. A representation of the

solution space is quickly available with small sample sizes and running time changes

roughly linearly as a function of the number of sources S, later shown in Table 3.1.

Sample sizes of R = 1000 and 10000 appear reasonable for exploration and publica-

tion, respectively. Standard MCMC diagnostics are used to monitor the quality of

convergence. The sisus R package may be downloaded from CRAN or run online

at http://StatAcumen.com/sisus.
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3.2.2.2 MCMC convergence diagnostics

Convergence diagnostics are a standard way of determining the quality of a sample

drawn using an MCMC procedure, a number of which are implemented in SISUS via

CODA (Plummer et al., 2006). SISUS uses the diagnostics to evaluate the sample

and provides a global pass/fail status, with specific suggestions if the sample fails any

of the diagnostics. Gelman et al. (1995, sec. 11.11) provide a short history regarding

simulation and monitoring convergence.

A few diagnostics implemented are trace plots, autocorrelations, Geweke’s conver-

gence diagnostic, Heidelberger and Welch’s convergence diagnostic, and Raftery and

Lewis’s diagnostic. Geweke’s convergence diagnostic, as implemented, tests whether

the mean of first 0.10 of samples is different from the last 0.50, and suggest a mini-

mum length of burn-in to make these two means not statistically different (Geweke,

1992). Heidelberger and Welch’s convergence diagnostic uses the Cramer-von-Mises

statistic to test whether the sampled values come from a stationary distribution

(Heidelberger and Welch, 1981, 1983). Raftery and Lewis’s diagnostic determines

the sample size required for estimating quantiles with a specified precision (Raftery

and Lewis, 1992, 1995).

3.2.3 Illustration of IsoSource and SISUS solution sampling

methods

We analyze the Alaskan bear example using the EMM for the carbon isotope only,

that is, excluding the nitrogen information. For the EMM using carbon only, (1.9)



Chapter 3. Models without variation 35

defines each element of B, so that [0˜⊤, 1]⊤ = Bx�˜ in (1.7) is

⎡⎣ 0

1

⎤⎦ =

⎡⎣ 0.548 1.906 −0.856

1 1 1

⎤⎦
⎡⎢⎢⎢⎣
�1

�2

�3

⎤⎥⎥⎥⎦ , (3.2)

where, for example, 1.906 = ((−21.5 + 4.9) + 20.3)(0.515)(1). SISUS provides so-

lutions to the EMM directly, while (though undocumented) IsoSource can provide

solutions to the EMM by inputting into the software a transposed �˜ vector in the

mixture fields and a transposed A matrix in the sources fields. Figure 3.3 shows the

simplex and carbon hyperplanes and their intersection solution polytope as a line.

Note that the carbon hyperplane intersects the simplex at a different line than the

BMM example in Figure 3.1 due to the concentration and assimilation information

in the EMM. Also, the carbon hyperplane now passes through the origin, due to

the centering in (1.9). Figure 3.3a shows an example of the IsoSource deterministic

sampling strategy, with a grid increment of 0.02 and tolerance of 0.1 where 117 of the

1326 points evaluated are determined approximate solutions. Notice that the points

evaluated are uniform over the simplex, but the approximate solutions provided are

only roughly uniform near the solution polytope. Figure 3.3b shows one realization

of R = 117 exact probabilistic solutions from SISUS which are qualitatively similar

to the deterministic approximate solutions of IsoSource, yet algorithmic advantages

are clear. The exact probabilistic solutions from SISUS converge quickly to a uniform

distribution over the solution polytope.

3.2.4 Execution time, solution predictability, and solution

accuracy

There are several reasons why the probabilistic approach (SISUS) is preferred over

the deterministic approach (IsoSource). These are (1) the relatively short execution
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Figure 3.3: EMM Alaskan bear example using carbon (and not nitrogen) finding
solutions for (3.2). (a) IsoSource evaluates points on the lattice over the simplex,
returning 117 approximate solutions of the 1326 evaluated points. (b) SISUS samples
117 exact solutions uniformly over the solution polytope.
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time, (2) the predictability of the number of solutions, and (3) the solution accuracy.

Below we use a fabricated example to illustrate the differences in these approaches.

To compare the results of the probabilistic SISUS algorithm to the deterministic

IsoSource algorithm, we use subsets of the problem shown in (3.3). The values in

this matrix were chosen to provide solutions to the problem sizes we study, but

are otherwise essentially random within a range of integers centered at 0. The full

problem has S = 10 sources and I = 5 isotope ratios, as that is the extent of the

problem size that IsoSource is programmed to solve. For each example, Table 3.1

specifies a given value for S and I, and the problem is defined by choosing the first S

columns and first I rows plus the simplex constraint of (3.3). For example, the subset

where S = 5 and I = 2 uses the first five columns of the matrix (ignoring the last

five columns) and uses the first two rows and the last row for the simplex (ignoring

the third through fifth rows). Table 3.1 reports the results of an execution time

comparison between SISUS and IsoSource running on a PC (Dell Optiplex GX260

with Intel Pentium 4 2.40GHz CPU with 512 MB RAM) without any additional

significant processes running.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 −2 2 0 5 −6 3 1

2 −1 1 −2 0 3 −4 2 5 −6

−3 −1 1 2 3 −4 0 5 −2 7

4 2 −1 1 −2 −3 −4 6 0 5

−5 1 3 4 −5 0 2 −2 6 −1

1 1 1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
�1

�2

...

�10

⎤⎥⎥⎥⎥⎥⎥⎦ (3.3)

For SISUS we obtain R exact solutions for each problem size by finding 100×R

solutions and keeping every 100th to increase the independence of the samples (not

currently important) and to improve solution polytope coverage (helpful only for

small samples).
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For IsoSource the number of iterations is given by the choose formula

it =

(
100/inc+ S − 1

S − 1

)
,

where it is the number of iterations necessary to cover the simplex at increments of

inc in percent values for S sources (Phillips and Gregg, 2003, eq. 3). Observe the

hyperexponential growth in iterations in Table 3.1 when either S or inc increases.

In Table 3.1 we make the following observations. The time for SISUS increases up

to a few minutes while IsoSource increases to hours. For SISUS a specified number

of exact solutions are requested and the time to obtain those solutions grows nearly

linearly with the number of sources S and quadratically with R due to time for

memory allocation. For IsoSource an increment and tolerance are specified which

determines a hyperexponentially growing number of iterations with the number of

sources, then approximate solutions are returned which are within the tolerance of

an exact solutions. Time scales roughly linearly with the number of iterations. For

SISUS, the computation time for R = 10000 exact solutions triples from 10 seconds

to 30 seconds, increasing roughly linearly with S = 3 to 10. Not shown in the table,

SISUS provides exact solutions for each of these cases in 2 seconds or less when

R = 1000. For R = 20000 and 30000 exact solutions the times nearly triple from 45

to 120 and 100 to 230 seconds over S = 3 to 10. The time reported here is only the

time for sampling, and additional time is used to read the data and create plots. On

this computer we obtain roughly one million iterations per second for IsoSource, so

we can predict the length of time for IsoSource’s very large cases. For small problems

(S = 5), IsoSource takes only a few seconds. But as the problem size increases, the

time jumps to hours. A few cases to note: (1) For S = 5, as I increases (I = 1, 2, 3)

and the solution polytope decreases in dimension (d = 3, 2, 1) the solutions become

more difficult to find for IsoSource resulting in fewer or no approximate solutions.

(2) For S = 8, I = 5, inc = 2 with a tolerance of tol = 0.01 finds no solutions

after almost 6 minutes of computation, but increasing the tolerance to a very wide
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margin of 0.10 provides over 3000 approximate solutions. Therefore, the solution

polytope is not close enough to the simplex grid to find solutions with an increment

of 2 with tolerance 0.01. (3) Further, for S = 8, I = 5, increasing the increment

to 1 with a tolerance of 0.01 finds only 19 approximate solutions after over 8 hours

of computation. (4) The largest example, S = 10, I = 5, inc = 2, finds only 1

approximate solution after almost 5 hours of computation, and larger increments fail

to find any approximate solutions. Note that setting the increment to 1 will increase

the running time to roughly 68 days. In each of these cases, SISUS provides 10000

exact solutions in less than 30 seconds.

Obtaining a predictable number of solutions is valuable for reliable analysis. The

initial step in SISUS of identifying the boundaries of the solution polytope allows

quick sampling of a selected number of exact solutions. Because IsoSource does

not know where the solution polytope is located in the simplex, it iterates over the

entire simplex returning approximate solutions when within the tolerance. Thus, the

number of approximate solutions is unpredictable through a complex relationship of

S, I, inc, and tol, and the model equations. This point is clearly shown in the

IsoSource sol column of Table 3.1. Obtaining a large number of solutions is not

an indication of the quality of the solutions, though having only a few solutions is

unlikely to represent the solution polytope well.

Raftery and Lewis’s diagnostic (Raftery and Lewis, 1992) is used in SISUS as a

quality check of the MCMC sampling by determining the number of samples required

to estimate a quantile of the marginal distribution of the solution polytope to within

a given relative accuracy with a prespecified probability. Note that because the

solution polytope is bounded and we know the extremes exactly, the number of

suggested solutions will be overestimated by this diagnostic. For the mink example,

where S = 7 and I = 2, the disgnostic recommends R = 1522 samples to estimate the

first quantile, q = 0.01, with an accuracy of half a percentage point with probability

0.95. That is, in 95% of samples of size 1522 we expect the estimate of the first
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quantile to be within half a percent relative to the true quantile, with accuracy

increasing with sample size.

Table 3.1: Comparison of execution time and number of solutions for SISUS and
IsoSource. Column labels are number of sources S, number of isotopes I, number
of SISUS solutions R, and time in seconds. IsoSource parameters are increment inc,
tolerance tol, number of iterations it, number of solutions, and time in seconds.

Size SISUS IsoSource
S I sol (R) time (s) inc tol it sol time (s)
5 1 10000 13 2 0.01 316251 4023 1
5 1 20000 44 1 0.01 4598126 89726 4
5 2 10000 13 2 0.01 316251 45 1
5 2 20000 45 1 0.01 4598126 1535 4
5 3 10000 12 2 0.01 316251 0 1
5 3 30000 99 1 0.01 4598126 18 4

7 2 30000 150 1 0.01 1705904746 265021 (27 m) 1631

8 2 10000 22 5 0.01 888030 424 1
8 2 20000 79 2 0.01 264385836 24162 344
8 2 30000 158 1 0.01 26075972546 5747298 (8.2 h)
8 5 10000 20 5 0.01 888030 0 1
8 5 20000 77 2 0.01 264385836 0 344
8 5 2 0.10 264385836 3167 344
8 5 30000 177 1 0.01 26075972546 19 (8.2 h) 29488

10 2 10000 26 10 0.01 92378 103 1
10 2 20000 90 5 0.01 10015005 3455 18
10 2 30000 (4 m) 228 2 0.01 12565671261 850563 (5 h) 17990
10 5 10000 25 10 0.01 92378 0 1
10 5 20000 90 5 0.01 10015005 0 18
10 5 30000 203 2 0.01 12565671261 1 (4.8 h) 17373
10 5 1 0.01 4263421511271 ? (68 days)
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3.3 Results

3.3.1 Accuracy of SISUS and IsoSource

We use the mink data in Table 5.7 to illustrate that while the results using the proba-

bilistic method of SISUS and the deterministic method of IsoSource are qualitatively

similar, there are some important differences that favor the use of the probabilistic

method.

Table 3.2 compares the summaries returned by both SISUS and IsoSource. SISUS

summaries are from 10000 exact solutions, and using 30000 gives the same results

to the precision presented. IsoSource summaries are from 790 approximate solutions

using an increment of 1% (the finest resolution allowed) and a tolerance of 0.01.

Time to compute the feasible solutions are similar to those given in Table 3.1 for

S = 7 sources and I = 2 isotopes, with SISUS running one-tenth of the time as

IsoSource. Minimum, maximum, mean, and standard deviation of feasible source

contributions are compared. The minimum and maximum bounds reported by SISUS

are exact based on the vertices of the solution polytope. The extremes reported by

IsoSource differ because they are approximate. The mean values estimate the center

of the solution polytope and are consistent between methods. The standard deviation

values of IsoSource are larger than for SISUS. While not obvious from the results

here, because IsoSource uses a tolerance around the mixture values, the degree of

error associated with each source’s proportion values may be different. Also, the

effect on the results is minor for centering the values before using IsoSource, as in

(1.9), as compared to the results reported using (1.1).

To visualize the solution polytope, projections into one-dimensional lines and two-

dimensional planes are made. The samples provide an empirical representation of the

solution polytope. If, for example, all points of the solution polytope are assumed a

priori equally likely, consistent with a uniform distribution over the solution polytope,
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Table 3.2: Selected numerical summaries for the mink example based on SISUS
and IsoSource methods. Values represent feasible source contributions of biomass to
mink.

SISUS IsoSource
Sources Min Max Mean SD Min Max Mean SD
Fish 0.52 0.76 0.630 0.038 0.53 0.77 0.626 0.046
Mussels 0.00 0.20 0.040 0.033 0.00 0.20 0.044 0.039
Crabs 0.04 0.37 0.230 0.051 0.03 0.36 0.224 0.062
Shrimps 0.00 0.27 0.054 0.044 0.00 0.25 0.061 0.053
Rodents 0.00 0.06 0.012 0.010 0.00 0.06 0.010 0.012
Amphipods 0.00 0.11 0.022 0.018 0.00 0.10 0.022 0.022
Ducks 0.00 0.07 0.014 0.012 0.00 0.07 0.013 0.014
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then the projected one- and two-dimensional histograms approximate the marginal

densities of the solution polytope. The solution polytope is an S−I−1 = 7−2−1 = 4-

dimensional object in S = 7-dimensional space. The solution scatterplot using SISUS

in Figure 3.4 is comparable to Phillips and Gregg (2003, Figure 5) using IsoSource.

The diagonal has 1-dimensional projections shown as marginal histograms of feasible

source contributions. The off-diagonals show 2-dimensional projections into planes

of paired sources. The upper triangle includes points for each of the 10000 exact

solutions of SISUS. Notice that the regions are triangular and reach to the extent of

the triangles, while in Phillips and Gregg (2003, Figure 5) the entire solution polytope

is not revealed (in particular Crab/Shrimp). Finding solutions at the extremes of

the solution polytope appears difficult for IsoSource. The lower triangle includes

two-dimensional density histograms to show where the majority of the points are.

3.4 Discussion

The ability to quickly sample a user-specified number of exact solutions accurately

representing the solution polytope favors the probabilistic method, which SISUS uses.

This approach provides a probabilistic guarantee that the solution polytope will be

uniformly represented by a sample of any specified size. The validity of this method

for inference is subject to the model assumptions provided in Section 1.2.1.3.

3.4.1 Probabilistic interpretation

It is natural to want to interpret the source proportion solutions probabilistically.

The purpose of chapters 5 and 6 of this dissertation is to consider probabilistic

methods. With regards to what we have discussed so far, if a proportion p of the

solution polytope is between bounds a and b for source s, then we may want to

infer that with probability p the contribution of source s is between a and b. This
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Figure 3.4: Mink BMM example marginal histograms along diagonal, scatter-
plot of paired source contributions on the upper diagonal, and corresponding two-
dimensional density histograms on the lower diagonal. These are equivalently one-
and two-dimensional empirical projections of the solution polytope.
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interpretation is consistent with the model �˜x = Ax�˜ given in (1.4) with the following

two additional assumptions. First, the isotope ratio, discrimination, concentration,

and assimilation efficiency parameters are estimated without measurement error and

not subject to uncertainty, Thus, the only solutions are those defined by the solution

polytope. Second, all proportion values �˜ are equally likely a priori, corresponding

to a uniform distribution over the simplex. This means that before observing �˜
and A any set of proportions summing to 1 is as likely as any other. Given the

data, the intersection of the linear constraints defines the solution polytope, and this

region of feasible solutions inherits the uniform property assumed on the simplex.

It is consistent with these model assumptions that we can interpret the solutions

probabilistically. This heuristic argument will be made more rigorous in Section 5.2.1.

An obvious point is that it is unreasonable to assume the values of �˜ and A

are known. In practice, the values of �˜ and A are sums and products of means

estimated with error. It is the Bayesian probabilistic method of obtaining feasible

solutions that will allow us to implement models including variation and uncertainty

in the underconstrained case. The following chapters model these sources of variation

to remedy this point.



46

Chapter 4

Frequentist methods, BMM

Frequentist methods in this chapter apply to the perfectly constrained case (S =

I+1) of the implicit representation model. We develop the model by starting with the

defining equation (1.1) and sequentially adding variation to model componenets. We

generalize the delta method-based model by Phillips and Gregg (2001) and provide

an easy-to-implement method using the implicit function theorem. We also introduce

the use of the bootstrap for stable isotope sourcing problems. Further, estimation

procedures of discrimination-corrected isotope ratios using regression is developed.

Results are demonstrated on two- and three-source datasets.

The BMM is �˜ = A�˜ where the columns of A are the discrimination-corrected

source isotope ratios. For convenience in the frequentist framework �˜ and A are

appended with a row of 1˜⊤ to incorporate the simplex condition, denoted �˜x =

Ax�˜. Phillips and Gregg (2001) apply asymptotic results to calculate approximate

variances and confidence intervals for source proportions to account for variability

in the isotope ratios of the sources and the mixture. These measures of uncertainty

can be used in cases where there is a unique solution, when matrix Ax is square

and full rank with S sources and I = S − 1 isotopes. They derive the large sample

solutions for two cases, S = 2 and S = 3, and provide an Excel workbook to perform
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the calculations. Their solution can incorporate correlation within the isotope ratios

of a source or mixture. We generalize their work and compare the results between

frequentist and bootstrap methods.

4.1 Estimation

For the BMM all model components are derived from isotope ratio measurements for

mixtures, sources, and diet experiments, where diet experiments give diet and tissue

measurements used to estimate discrimination. We use the multivariate method of

moment estimates as described in Christensen (2001, Ch. 1) to estimate parame-

ters of the model for isotope ratios and various methods for discriminations. While

natural variations in C and N isotope ratios are generated by different biochemical

and ecological processes, and Phillips and Koch (2002) claim that an assumption of

independence of isotope ratios is probably valid in most cases, Figure 4.2 shows a

clear example of correlation. We model correlation between isotopes.

4.1.1 Mixture isotope ratios

For a sample of mixtures, j = 1, . . . , J , in the mixture population we observe isotope

ratio measurements, b˜j. Commonly, only one measurement per individual is made,

but this work can be generalized to include multiple measurements on each individ-

ual. We use the one-sample multivariate model to estimate the mixture population

mean isotope ratio �˜ as described in Christensen (2001, sec. 1.3). Let the sample of
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J observed mixture isotope ratios be

⎡⎢⎢⎢⎢⎢⎢⎣
b˜⊤1
b˜⊤2...
b˜⊤J

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
b11 ⋅ ⋅ ⋅ b1I

b21 ⋅ ⋅ ⋅ b2I

...
...

...

bJ1 ⋅ ⋅ ⋅ bJI

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.1)

so that each row is a distinct sample of I isotope ratios. Population mean �˜ is

estimated with sample mean b̄˜ where

b̄˜⊤ =
1

J

J∑
j=1

b˜⊤j = [b̄1, ⋅ ⋅ ⋅ , b̄I ], (4.2)

and population covariance Cov[b˜j] = Σb˜ is estimated with

Sb˜ =
1

J − 1

J∑
j=1

(b˜j − b̄˜)(b˜j − b̄˜)⊤. (4.3)

Also, let Sb̄˜= Sb˜/J .

Relative to the implicit representation discussed in Section 2.2.1, we are marginal-

izing out the subject-specific isotope ratio vectors �˜j. That is, if E[�˜j] = �˜ and

Cov[�˜j] = Σ�˜, then b˜j = �˜j + "˜j has E[b˜j] = �˜ and Cov[b˜j] = Σ�˜+ Σ"˜ ≡ Σb˜ when "˜j
has mean zero and is independent of �˜j. Assuming �˜j and "˜j are normally distributed

would lead to a normal distribution for the b˜js.

4.1.2 Source isotope ratios

Estimating source isotope ratios, �˜s, is the same as for mixtures, and each observed

source individual is likely to have only a single measurement. For each independent
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source, s = 1, . . . , S, we observe a sample of isotope ratio measurements, d˜sk, k =

1, . . . , Ks. Let the Ks observed isotope ratios for source s be

⎡⎢⎢⎢⎢⎢⎢⎣
d˜⊤s1
d˜⊤s2...
d˜⊤sKs

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
d1s1 ⋅ ⋅ ⋅ dIs1

d1s2 ⋅ ⋅ ⋅ dIs2
...

...
...

d1sKs ⋅ ⋅ ⋅ dIsKs

⎤⎥⎥⎥⎥⎥⎥⎦ (4.4)

with mean �˜s estimated with d̄˜s where

d̄˜⊤s =
1

Ks

Ks∑
k=1

d˜⊤sk = [d̄1s, ⋅ ⋅ ⋅ , d̄Is], (4.5)

and population covariance Cov[d˜s] = Σd˜s is estimated with

Sd˜s =
1

Ks − 1

Ks∑
k=1

(
d˜sk − d̄˜s

)(
d˜sk − d̄˜s

)⊤
. (4.6)

Also, let Sd̄˜s = Sd˜s/Ks.

4.1.3 Discrimination

Discrimination, Δ˜ s, is an offset reflecting the difference in isotope ratio of the source

and the resulting isotope ratio in the mixture due to the digestive process. Discrim-

inations can be derived for each source separately or derived for a set of sources

simultaneously via regression. The strategy in both cases is to feed a captive sample

of consumers (mixtures) a single-source diet until the consumer’s tissues of interest

reaches equilibrium, then the isotope ratio difference of the diet and the consumer’s

tissues can be compared. If this is done for a range of diets, then a regression

can be applied to the range of diets. Caut et al. (2009) recommend the use of a
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diet-dependent discrimination factor (DDDF) because of the differences in discrim-

ination for Δ13C and Δ15N among different taxonomic classes of animals, among

tissue types, and among diets. Using DDDFs can make large differences (> 2h)

in discrimination for carbon and nitrogen compared to using a discrimination calcu-

lated from a different species or tissue, or applying a common discrimination for all

sources.

In the single-diet case, the discrimination is the isotope ratio difference between

the mixture tissue (T) and the source diet (D), Δ˜ s = �˜sT − �˜sD. As in Section 4.1.2,

these quantities are estimated by

d̄˜sT =
1

KsT

KsT∑
k=1

d˜sTk and

d̄˜sD =
1

KsD

KsD∑
k=1

d˜sDk
with estimated covariances

Sd˜sT =
1

KsT − 1

KsT∑
k=1

(
d˜sTk − d̄˜sT

)(
d˜sTk − d̄˜sT

)⊤
and

Sd˜sD =
1

KsD − 1

KsD∑
k=1

(
d˜sDk − d̄˜sD

)(
d˜sDk − d̄˜sD

)⊤
.

Also, let Sd̄˜sT = Sd˜sT/KsT and Sd̄˜sD = Sd˜sD/KsD. The data from the diet experiment

provide estimated discrimination Δ̂˜ s = d̄˜sT − d̄˜sD with estimated covariance SΔ̂˜s =

Sd̄˜sT + Sd̄˜sD . The method based on regression over a range of diets is illustrated as

part of the bear example in Section 4.3.1.3.

4.1.4 Sources ensemble

The columns of A are estimated by plugging in the estimates for the source isotope

ratios and discriminations. �˜′s = �˜s + Δ˜ s is estimated with �̂˜′s = d̄˜s + Δ̂˜ s, with



Chapter 4. Frequentist methods, BMM 51

estimated covariance S
�̂˜′s = Sd̄˜s + SΔ̂˜s . The estimates of Ax and �˜x are therefore

Âx = [Â⊤, 1˜]⊤ and b̄˜x = [b̄˜⊤, 1]⊤.

4.1.5 Dunlin two-source example

Evans Ogden et al. (2005) quantify the proportional use that Calidris alpina pacifica

(dunlin) made of terrestrial farmland vs. marine estuarine resources on the Fraser

River Delta, British Columbia, using stable isotope analysis (�13C, �15N) of blood

from 268 dunlin over four winters, 1997 through 2000. These shorebirds spend the

winter in temperate areas and frequently use estuarine and supratidal (upland) feed-

ing habitats (Figure 4.1). This has management implications since loss or reduction

of agricultural habitat adjacent to estuaries may negatively impact shorebird fitness.

We analyze 234 dunlin (of the 268) captured between October and April over

the winters of 1997–1998 through 1999–2000, and in November 2000, using mistnets

and a floating clap net placed around the Fraser Delta (Figure 4.1). The data was

provided by K. A. Hobson from Evans Ogden et al. (2005).

As an aside, there are two primary photosynthetic pathways in plants and these

produce two distinct isotope ratio ranges (Cerling et al., 1997). The carbon isotopic

composition of CO2 in the atmosphere, which is what the plants use in photosyn-

thesis, is about −6 to −7h. Most plants are C3 plants, so-called because the first

organic carbon compound made in photosynthesis contains three carbon atoms. The

carbon isotopic fractionation of such C3 plants is very large, so that plant material

from such plants (including rice, wheat, soybeans and potatoes) has �13C values be-

tween −33 and −23h, with an average of about −26h. By far most of the plants in

the world are C3 plants. C3 plants must keep the openings in their leaves (stomata)

wide open through which they take up CO2 during photosynthesis, which means

that they lose water through these openings. Plants that live in dry regions (for

which water loss is a problem) or in salty water (where loss of fresh water is a prob-
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Figure 4.1: Agricultural lands in the Fraser River Delta (gray shading). Arrows
indicate locations of dunlin capture and invertebrate sampling. Numbers indicate
year of sampling for dunlin commencing 1997–1998. Letters indicate type of source
invertebrates sampled: A = terrestrial invertebrates, B = estuarine invertebrates.
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lem) have adapted by using a different pathway during the photosynthetic reaction,

which allows them to open the stomata sparingly. This pathway is called the C4

reaction because the first organic compound formed contains four carbon atoms. C4

plants show less isotopic fractionation of carbon than C3 plants, and have �13C val-

ues ranging from −16 to −9h, with an average about −13h. Plants using the C4

reaction pathway include most tropical grasses and salt marsh grasses, and corn is

an important C4 crop plant.

The relative contribution of terrestrial vs. marine-derived protein in the diets of

birds has been estimated using stable-carbon (�13C) and nitrogen (�15N) isotope ra-

tios because foodweb components differ significantly and predictably between marine

and C3 terrestrial ecosystems (reviewed by Hobson, 1999). The evidence suggests

that isotopic incorporation into body tissues does not vary with an organism’s age

(e.g., Minagawa and Wada, 1984). Differences in isotopic discrimination factors be-

tween individuals are small (e.g., Hobson and Clark, 1993), so individual differences

in isotope ratio values can usually be ascribed to individual differences in diet. Dun-

lin were consistently observed flying into and feeding in terrestrial habitats during

diurnal and nocturnal habitat surveys at high tide (Evans Ogden, 2002), and the

few alternate terrestrial habitats available are not recognized as frequently used by

dunlin, e.g., suburban and industrial areas, wooded areas, a golf course, and a bog

(Butler and Campbell, 1987; Shepherd, 2001). Thus, we assumed that terrestrial

isotope ratio values reflected diet assimilated via feeding in agricultural fields. Our

isotopic model was based, then, on delineating protein inputs from a terrestrial C3

ecosystem (about −26h) versus estuarine mudflats that experienced mixed marine

and freshwater inputs (about −13h). Using the data, Evans Ogden et al. (2005)

were not able to distinguish between the different types of agricultural fields in which

birds fed, but data on selection of field type are presented elsewhere (Evans Ogden,

2002).
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4.1.5.1 Mixture isotope ratios

Summary isotope ratio values for the J = 234 dunlin blood measurements are

b̄˜ =

⎡⎣ −16.81

12.13

⎤⎦ and Sb˜ =

⎡⎣ 10.27 2.48

2.48 1.99

⎤⎦
and summarized in Table 4.1. Figure 4.2 illustrates the correlation of the carbon and

nitrogen isotope ratios for blood (r = 0.549, p-value < 2.2×10−16), and the data are

clearly not normal, especially carbon, with an apparent truncation of larger values.

Table 4.1: Dunlin blood summaries for carbon (i = 1) and nitrogen (i = 2).

Isotope ratios J b̄1 SD SE(b̄1) b̄2 SD SE(b̄2) r
Dunlin blood 234 −16.81 3.205 0.2095 12.13 1.409 0.0921 0.549

4.1.5.2 Source isotope ratios

Summary isotope ratio values for the K1 = 16 terrestrial and K2 = 21 marine source

measurements are

d̄˜1
=

⎡⎣ −25.36

6.05

⎤⎦ Sd˜1 =

⎡⎣ 1.72 0.74

0.74 1.59

⎤⎦
d̄˜2

=

⎡⎣ −13.98

10.94

⎤⎦ Sd˜2 =

⎡⎣ 10.55 −0.47

−0.47 3.80

⎤⎦
and summarized in Table 4.2. Figure 4.3 also shows that the carbon and nitrogen

isotope ratios are not statistically significantly correlated for terrestrial (r = 0.447,

p-value = 0.083) or marine (r = −0.075, p-value = 0.748) sources.
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Table 4.2: Terrestrial and marine summaries for carbon (i = 1) and nitrogen (i = 2).

Isotope ratios K d̄1s SD SE(d̄1s) d̄2s SD SE(d̄2s) r
Terrestrial 16 −25.36 1.313 0.3283 6.05 1.261 0.3152 0.447
Marine 21 −13.98 3.248 0.7087 10.94 1.948 0.4251 −0.075

4.1.5.3 Discrimination

Evans Ogden et al. (2004) conducted a diet experiment consisting entirely of foods

of terrestrial C3 origin on four control birds. Food samples were archived weekly

throughout the experiment so isotope ratio variation between weeks could be de-
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Figure 4.2: Dunlin blood �13C and �15N observations with SE intervals of the mean
and bivariate normal 95% confidence and prediction ellipses. Marginal distributions
with estimated normal distributions.
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termined. Sample isotope ratio values for the dunlin blood and diet in a control

experiment are shown in Figure 4.4 and summarized in Table 4.3, as in Section 4.1.3.

The estimated discrimination, Δ̂˜ s, is the difference between the average blood, d̄˜T
,

and diet, d̄˜D
, isotope ratios, i.e., Δ̂˜ s = d̄˜T

− d̄˜D
. We will assume that the discrimi-

nation is the same for both marine and terrestrial sources, that is, Δ˜ 1 = Δ˜ 2. The

estimated covariance of Δ̂˜ s is

SΔ̂˜s = Sd˜T/4 + Sd˜D/28

=

⎡⎣ 0.0262 0.0039

0.0039 0.0030

⎤⎦+

⎡⎣ 0.0052 0.0004

0.0004 0.0033

⎤⎦ =

⎡⎣ 0.0313 0.0043

0.0043 0.0063

⎤⎦ .
The isotope ratios are not statistically significantly correlated for blood (r = 0.087,

p-value = 0.553) or diet (r = 0.447, p-value = 0.661).

Table 4.3: Dunlin blood and diet isotope ratio values for carbon (i = 1) and nitrogen
(i = 2) and the discrimination between the two.

Isotope ratios K d̄1s SD SE(d̄1s) d̄2s SD SE(d̄2s) r
Blood 4 −23.28 0.323 0.1617 6.50 0.109 0.0545 0.087
Diet 28 −24.63 0.380 0.0719 3.55 0.306 0.0578 0.447

Isotope ratios Δ̂1 SE(Δ̂1) Δ̂2 SE(Δ̂2)
Discrimination 1.35 0.1770 2.95 0.0795

4.1.5.4 Mixture and discrimination-corrected source ensemble

It is convenient to combine the source isotope ratios and discrimination estimates to

visualize the effective relationships among the sources and the mixture. In Table 4.4

are the combined summaries, where the discrimination-corrected source isotope ra-

tios, �̂′is = d̄is + Δ̂is, plotted in Figure 4.5 have SE(�̂′is)
2 = SE(d̄is)

2 + SE(Δ̂is)
2.
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Figure 4.4: Diet experiment terrestrial diet and dunlin blood �13C and �15N obser-
vations with SE intervals of the mean and bivariate 95% data and confidence ellipses.
Marginal distributions with estimated normal distributions.

4.2 Implicit representation

The implicit representation perfectly constrained case solves for �˜ in �˜x = Ax�˜, when

Ax is square and nonsingular, with �˜ = A−1
x �˜x. The easiest large sample analysis

Table 4.4: Estimated parameters for the population means of mixture and
discrimination-corrected source isotope ratios for carbon (i = 1) and nitrogen (i = 2).

Estimates b̄1 SE(b̄1) b̄2 SE(b̄2) r
Dunlin −16.81 0.209 12.13 0.092 0.549

Estimates �̂′1s SE(�̂′1s) �̂′2s SE(�̂′2s)
Terrestrial −24.01 0.373 9.00 0.325
Marine −12.63 0.731 13.88 0.432
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assumes �˜ sums to one, but does not force it to be nonnegative, thus the analysis

is performed without assuming anything about �˜, not even that �˜ is a probability

vector. We are interested in the sampling distribution for �̂˜ when the components of

Ax and �˜x are subject to variability. This section discusses the use of large sample

and bootstrap methods. Recall that in Chapter 3 we discussed providing solutions

to �˜x = Ax�˜ assuming that �˜x and Ax were known. In practice we estimate �˜ with b̄˜
and A with Â, substituting the estimates into the defining equation, and solving for

�̂˜ to estimate �˜. In particular �̂˜ = Â−1
x b̄˜x where Âx = [Â⊤, 1˜]⊤ and b̄˜x = [b̄˜⊤, 1]⊤. We

use the dunlin example with carbon (I = 1) and the terrestrial and marine sources

(S = 2) to illustrate the various methods.

Example 4.2.1. Dunlin point estimate using carbon

We substitute the estimates for �˜x and Ax into the defining equation and solve for

�̂˜,

Âx =

⎡⎣ −24.01 −12.63

1 1

⎤⎦ giving Â−1
x =

⎡⎣ −0.0879 −1.110

0.0879 2.110

⎤⎦
and

b̄˜x =

⎡⎣ −16.81

1

⎤⎦ giving �̂˜ = Â−1
x b̄˜x =

⎡⎣ 0.367

0.633

⎤⎦
as the estimated proportional contributions of terrestrial and marine sources to the

dunlin diet. △

The solution �˜ = A−1
x �˜x makes sense when �˜ is on the simplex, and this happens

when �˜x is in the convex hull of {�′i1, . . . , �′iS}, as described in Section 3.1. Therefore,

for each i = 1, . . . , I, there must exist s and s∗ such that �′is ≤ �i ≤ �′is∗ and that this

results in �i being contained in all pairwise isotopic convex hulls, and these indicies s

and s∗ may be different for each i. Given this, by the law of large numbers, for large
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enough sample sizes the estimates will also satisfy �̂′is ≤ b̄i ≤ �̂′is∗ , for all i, implying

that Âx will eventually be invertible and �̂˜ = Â−1
x b̄˜x will be a probability vector.

4.2.1 Variation in mixture only, large samples

Let Ax be fixed and known and �˜x be subject to uncertainty and estimated as in

Section 4.1. We use defining equation (1.1) augmented with a row of ones and

substitute the estimate b̄˜x to yield �̂˜ = A−1
x b̄˜x. That

b̄˜x ∼̇ Normal
(
�˜x,Σb˜x/J

)
, where Σb˜x =

⎡⎣ Σb˜ 0

0 0

⎤⎦ ,
implies that

�̂˜ ∼̇ Normal
(
�˜, A−1

x (Σb˜x/J)A−⊤x

)
.

Example 4.2.2. One-isotope, two-source example (I = 1, S = 2)

Assume we have a random sample of size J from the mixture population. In this

case, we need only to derive the estimation of �1, since �2 = 1− �1. The estimated

proportion vector is

�̂˜ = A−1
x b̄˜x =

1

�′11 − �′12

⎡⎣ 1 −�′12

−1 �′11

⎤⎦⎡⎣ b̄1

1

⎤⎦ =

⎡⎣ b̄1−�′12
�′11−�′12
�′11−b̄1
�′11−�′12

⎤⎦ , (4.7)

with estimated covariance

Σ̂�̂˜ = A−1
x (Sb˜x/J)A−⊤x

=
1

J(�′11 − �′12)2

⎡⎣ 1 −�′12

−1 �′11

⎤⎦⎡⎣ s2
b˜ 0

0 0

⎤⎦⎡⎣ 1 −1

−�′12 �′11

⎤⎦
=

s2
b˜

J(�′11 − �′12)2

⎡⎣ 1 −1

−1 1

⎤⎦ ,
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implying

V̂ar[�̂1] =
s2
b˜

J(�′11 − �′12)2
. (4.8)

In this case A−1
x will exist if �′11 ∕= �′12, when the determinant of Ax is not zero, which

occurs when the source mean discrimination-corrected isotope ratios are distinct from

each other. Also, note that the variance increases as the source values are more

similar since it is more difficult to distinguish between the sources. △

Example 4.2.3. Mixture variation dunlin carbon

Let s2
b˜ = 10.270 and J = 234 as in Table 4.1, then

Σ̂�̂˜ = 0.000339

⎡⎣ 1 −1

−1 1

⎤⎦ and SD[�̂1] = 0.0184.

△

4.2.2 Variation in mixture and sources, large samples

Let both Ax and �˜x be subject to uncertainty and estimated as in Section 4.1. We use

our defining equation (1.1) and substitute the estimates b̄˜x and Âx to yield b̄˜x = Âx�̂˜.

In the following Theorem 4.2.4, elements of A are discrimination-corrected source

isotope ratios, �′is as in Section 4.1.5.4. Later in the implicit function theorem in

Section 4.2.2.1 we separate �′is = �is + (�iT − �iD) into its individual components.

Both treatments of �′is can be implemented using both the delta method and the

implicit function theorem.

Theorem 4.2.4. Delta method

Let �˜y = [Vec[A]⊤, �˜⊤]⊤, the stacked columns of A and �˜, where �′is is the discrimination-

corrected source isotope ratio as in Section 4.1.4. Let L be the derivative of �˜ =
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�˜(A, �˜) ≡ �˜(�˜y) with respect to the elements of A and �˜,

L =

⎡⎢⎢⎢⎣
∂�1
∂�′11

⋅ ⋅ ⋅ ∂�1
∂�′I1

∂�1
∂�′1S

⋅ ⋅ ⋅ ∂�1
∂�′IS

∂�1
∂�1

⋅ ⋅ ⋅ ∂�1
∂�I

...
... ⋅ ⋅ ⋅ ...

...
...

...

∂�S
∂�′11

⋅ ⋅ ⋅ ∂�S
∂�′I1

∂�S
∂�′1S

⋅ ⋅ ⋅ ∂�S
∂�′IS

∂�S
∂�1

⋅ ⋅ ⋅ ∂�S
∂�I

⎤⎥⎥⎥⎦
S×(S2−1)

.

Let y˜k = [Vec[Â]⊤, b̄˜⊤]⊤ with common sample size, K, for each column of Â and b̄˜,
and let

√
Ky˜k have covariance matrix Ω. If the central limit theorem holds, that

√
K
(
y˜k − �˜y

)
L−→ Normal

(
0˜,Ω) , (4.9)

then by the Delta method we have

√
K
(
�̂˜ − �˜) L−→ Normal

(
0˜,LΩL⊤

)
. (4.10)

Therefore, an approximate distribution for �̂˜ is

�̂˜ ∼̇ Normal
(
�˜,V) ,

where V = L(Ω/K)L⊤. □

In practice, Ω is estimated with Ω̂ and L with L̂. Also, it is convenient to include

different sample sizes for sources and mixture in Ω̂/K as Ω̂k, defined later in (4.14).

Substitute estimated covariances to give an approximate covariance for �̂˜ as

V̂ = L̂Ω̂kL̂
⊤ = L̂

⎡⎢⎢⎢⎢⎢⎢⎣
S
�̂˜′1 . . .

S
�̂˜′S

Sb̄˜

⎤⎥⎥⎥⎥⎥⎥⎦ L̂⊤.

The sample sizes in the estimates �̂˜′1, . . . , �̂˜′S, and b̄˜ are assumed to increase to infinity

at the same rate. See Section 4.2.2.1 for a more precise definition.
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Example 4.2.5. One-isotope, two-source example (I = 1, S = 2)

As in (4.7), we can write

�̂˜ =

⎡⎣ (b̄1 − �̂′12)(�̂′11 − �̂′12)−1

(�̂′11 − b̄1)(�̂′11 − �̂′12)−1

⎤⎦ . (4.11)

For the covariance matrix V̂ we need

Ω̂k =

⎡⎢⎢⎢⎣
s2
�̂′11

s2
�̂′12

s2
b/J

⎤⎥⎥⎥⎦
and

L =

⎡⎣ ∂�1
∂�′11

∂�1
∂�′12

∂�1
∂�1

∂�2
∂�′11

∂�2
∂�′12

∂�2
∂�1

⎤⎦
=

⎡⎣ (�′12 − �1)(�′11 − �′12)−2 (�1 − �′11)(�′11 − �′12)−2 (�′11 − �′12)−1

(�1 − �′12)(�′11 − �′12)−2 (�′11 − �1)(�′11 − �′12)−2 −(�′11 − �′12)−1

⎤⎦
= (�′11 − �′12)−1

⎡⎣ −�1 −�2 1

�1 �2 −1

⎤⎦ .
The natural estimates for �′is and �i are substituted to give L̂. The resulting covari-

ance matrix is the 2× 2 matrix L̂Ω̂kL̂
⊤ with diagonal elements

Var[�̂1] = Var[�̂2] = (�̂2
1s

2
�̂′11

+ �̂2
2s

2
�̂′12

+ s2
b/J)/(�̂′11 − �̂′12)2

and off-diagonal elements Cov[�̂1, �̂2] = −Var[�̂1]. As in (4.8), the denominator

scales the variance, and may substantially determine the magnitude. In addition

is the additional cost of estimating A, where the variance component for s2
�̂′11

, for

example from (4.11), contributes more to the variance of �̂1 when b̄1 is further from

�̂′11 than closer. △
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Example 4.2.6. Mixture and source variation dunlin carbon

Âx and b̄˜x are defined in example 4.2.1, and variances are given in Table 4.4.

Var[�̂′11] = 0.3732 and Var[�̂′12] = 0.7312 are substituted for s2
�̂′11

and s2
�̂′12

above,

and s2
b̄1

= 0.04389. Calculation results in a standard deviation for �̂1 about 2.5 times

larger than with mixture variation alone,

V̂ = 0.002132

⎡⎣ 1 −1

−1 1

⎤⎦ , and SD[�̂1] = 0.0462.

Recall that the sample sizes are all less than 30, see Tables 4.2 and 4.3, which suggests

that this example may not be a good candidate for this large sample method. △

The implicit-function method that follows provides a general way to perform the

calculations of matrix L in the delta method, and the results will be the same.

4.2.2.1 Implicit-function method

The following theorems and corollary in stable isotope notation is adapted from

Benichou and Gail (1989). This general result includes discrimination estimated

separately from the isotope ratio values, as in the dunlin example. The formulas

simplify if, in place of isotope ratio values, discrimination-corrected isotope ratio

values are used, and the formulas expand if the discrimination is decomposed into

its constituent diet experiment components. Let �˜y be a vector of population means

for all elements in matrix B = A − �˜1˜⊤ as in (1.5) for the BMM. The order of the

elements is not important, provided the ordering is consistent with the matrices Ω,

G, and H defined later. We choose the ordering

�˜y = [�11, . . . , �I1, �11T, . . . , �I1T, �11D, . . . , �I1D, . . . , (4.12)

�1S, . . . , �IS, �1ST, . . . , �IST, �1SD, . . . , �ISD, �1, . . . , �I ],
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a 1 × n vector, where n = 3SI + I = (3S + 1)(S − 1), since I = S − 1. There are

three elements in the BMM associated with each source-isotope pair, and one element

for each mixture isotope. Let y˜k be the vector of sample means corresponding to

population means, �˜y,
y˜k = [d̄11, . . . , d̄I1, d̄11T, . . . , d̄I1T, d̄11D, . . . , d̄I1D, . . . , (4.13)

d̄1S, . . . , d̄IS, d̄1ST, . . . , d̄IST, d̄1SD, . . . , d̄ISD, b̄1, . . . , b̄I ].

Let the q distinct sample sizes associated with the elements of y˜k, km, m = 1, . . . , q,

with k =
∑q

m=1 km, approach infinity at a common rate such that km/k
p−→ p′m >

0,m = 1, . . . , q. Finally, let the covariance matrix, Ωk, associated with y˜k be a block

diagonal matrix of the covariance matrices associated with the correlated elements of

y˜k. That is, let Cov[d̄˜s] = Σd̄˜s , Cov[d̄˜sT] = Σd̄˜sT , and Cov[d̄˜sD] = Σd̄˜sD , s = 1, . . . , S,

and let Cov[b̄˜] = Σb̄˜, where each covariance depends on the sample size informing

that estimate independent of the others. Then

Ωk = BlkDiag[Σd̄˜1 ,Σd̄˜1T ,Σd̄˜1D , . . . ,Σd̄˜S ,Σd̄˜ST ,Σd̄˜SD ,Σb̄˜]. (4.14)

Theorem 4.2.7. Implicit Function Theorem

Let O be an open subset of the (S + n)-dimensional space with elements [�˜⊤, �˜y] =

(�1, . . . , �S, �y1, . . . , �yn). Let real functions gi, i = 1, . . . , S, be continuous in O and

have continuous first partial derivatives in O satisfying gi(�˜, �˜y) = 0 at some point

(�˜0, �˜0y) in O. Define

G =

[
∂gi
∂�i′

]
S×S

, i, i′ = 1, . . . , S. (4.15)

If the determinant ∣G∣ ∕= 0 at (�˜0, �˜0y), then there exists an open rectangular region

in O satisfying

∣�s − �0s∣ < "s, s = 1, . . . , S, and (4.16)

∣�ym − �0ym∣ < "m, m = 1, . . . , n, (4.17)



Chapter 4. Frequentist methods, BMM 67

and there exists a set of S real functions fs mapping each element in �˜y in region

(4.17) to a single �˜ in region (4.16) such that �˜ = (�1, . . . , �S)⊤ = (f1(�˜y), . . . , fS(�˜y))⊤
and gi(�˜, �˜y) = 0, i = 1, . . . , S. Moreover, the functions fs, s = 1, . . . , S, are contin-

uous and have continuous first partial derivatives [∂fs/∂�˜y]S×n which are elements

of the matrix product −G−1H, where

H =

[
∂gi
∂�˜y

]
S×n

. (4.18)

□

The implicit function theorem thus asserts the existence, in a neighborhood of

(�˜0, �˜0y), of the explicit functions fs needed to apply Theorem 4.2.4, the delta method

(Taylor and Mann, 1983, Chap 8).

Theorem 4.2.7 can be applied to the BMM. Such an open subset O exists because

proportions �s ⊂ ℝ1, s = 1, . . . , S, and all isotope values are contained in ℝ1,

thus taking O ≡ ℝS+n is one possible open subset. Functions gi are the ith row,

i = 1, . . . , S, of the difference of the right-hand side from the left-hand side of (1.5),

⎡⎣ B

1˜⊤
⎤⎦�˜ −

⎡⎣ 0

1̃

⎤⎦ = 0˜,
or, alternatively, Bx�˜ − [0˜⊤, 1]⊤ = 0˜. Specifically,

gi(�˜⊤, �˜y) = [�i1 + (�i1T − �i1D)− �i, . . . , �iS + (�iST − �iSD)− �i] �˜ (4.19)

= 0

for i = 1, . . . , I, and

gS(�˜, �˜y) = �1 + ⋅ ⋅ ⋅+ �S − 1 = 0 (4.20)
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for i = S.

The implicit function Theorem 4.2.7 sets L = −G−1H in the delta method The-

orem 4.2.4, where G = Bx for the BMM and H is defined in (4.18). The implicit

function theorem requires that G−1 exists, which will by assumption when G = Bx

as shown in Section 2.1.1. The main result relies on the following corollary.

Corollary 4.2.8. Let �˜y be as in Theorem 4.2.4. Suppose there exists a unique S×1

vector �˜0 satisfying gi(�˜0, �˜0y) = 0, i = 1, . . . , S, that the functions fs are continuous

with continuous first partial derivatives in an open set containing (�˜0, �˜0y), and that

G, defined in Theorem 4.2.7, has ∣G∣ ∕= 0 evaluated at (�˜0, �˜0y). To each y˜k there

corresponds a unique solution �̂˜k = (f1(y˜k), . . . , fS(y˜k))⊤ with gi(�̂˜k, y˜k) = 0, i =

1, . . . , S. As k increases, by the strong law of large numbers, y˜k goes almost surely

to �˜0y and �̂˜k goes almost surely to �˜0. Then,

√
k(�̂˜k − �˜0)

L−→ Normal(0˜,G−1HΩ(G−1H)⊤), (4.21)

where G and H are evaluated at (�˜0, �˜0y) (Benichou and Gail, 1989). □

If Ω̂ is a consistent estimator of Ω evaluated at y˜k then the asymptotic covariance

G−1HΩ(G−1H)⊤ can be consistently estimated by substituting Ω̂ for Ω and by

substituting Ĝ−1Ĥ evaluated at (�̂˜k, y˜k) for G−1H evaluated at (�˜0, �˜0y) (Benichou

and Gail, 1989). This follows from the continuity of G and H in an open space

containing (�˜0, �˜0y). These substitutions are necessary to evaluate the covariance

matrix.

4.2.2.1.1 Implementation Applying the implicit function theorem for the BMM

is straightforward. An approximate large sample distribution for �̂˜k is

�̂˜k ∼̇ Normal
(
�˜0, Ĝ−1ĤΩ̂k(Ĝ

−1Ĥ)⊤
)
. (4.22)
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where Ω̂k is an estimate of Cov[y˜k] = Ωk. In (4.22), we need expressions for Ω̂k, Ĝ
−1,

and Ĥ.

The covariance matrix Ω̂k reflects what is known and the assumptions about the

relationships between the sample means in y˜k. Most covariances will be zero since

the mixture and each source are measured independently.

The functions gi(�˜, �˜y) = 0 are defined using (4.19) and (4.20) and used in both

G and H, where G = Bx and H = [∂gi/∂�˜y]S×n. The rows of matrix H are given

from (4.18) as

Hi =

[
∂gi
∂�˜y

]
1×n

(4.23)

=

[

(1,1)︷︸︸︷
0 , . . .,

(i,1)︷︸︸︷
�01 , . . .,

(I,1)︷︸︸︷
0 ,

(1,1)︷︸︸︷
0 , . . .,

(i,1)︷︸︸︷
�01 , . . .,

(I,1)︷︸︸︷
0 ,

(1,1)︷︸︸︷
0 , . . .,

(i,1)︷ ︸︸ ︷
−�01 , . . .,

(I,1)︷︸︸︷
0 ,

(1,2)︷︸︸︷
0 , . . .,

(i,2)︷︸︸︷
�02 , . . .,

(I,2)︷︸︸︷
0 ,

(1,2)︷︸︸︷
0 , . . .,

(i,2)︷︸︸︷
�02 , . . .,

(I,2)︷︸︸︷
0 ,

(1,2)︷︸︸︷
0 , . . .,

(i,2)︷ ︸︸ ︷
−�02 , . . .,

(I,2)︷︸︸︷
0 ,

. . . ,
(1,S)︷︸︸︷
0 , . . .,

(i,S)︷︸︸︷
�0S , . . .,

(I,S)︷︸︸︷
0 ,

(1,S)︷︸︸︷
0 , . . .,

(i,S)︷︸︸︷
�0S , . . .,

(I,S)︷︸︸︷
0 ,

(1,S)︷︸︸︷
0 , . . .,

(i,S)︷ ︸︸ ︷
−�0S, . . .,

(I,S)︷︸︸︷
0 ,

(1)︷︸︸︷
0 , . . .,

(i)︷︸︸︷
−1 , . . .,

(I)︷︸︸︷
0 ]1×n ,

i = 1, . . . , I, and

HS =

[
∂gS
∂�˜y

]
1×n

= [0, . . . , 0]1×n . (4.24)
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Thus, H has matrix form

H =

⎡⎣ �˜⊤0 ⊗ II ⊗ [1 1 1] −1⊗ II

0˜⊤ 0˜⊤
⎤⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
�01 ⋅ ⋅ ⋅ 0 −1 ⋅ ⋅ ⋅ 0

. . . ⋅ ⋅ ⋅ 3 times for
. . .

0 ⋅ ⋅ ⋅ �01 each �0s ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ −1

0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.25)

To calculate the covariance V̂ = Ĝ−1ĤΩ̂k(Ĝ
−1Ĥ)⊤, substitute the natural estimates

of the population parameters.

Example 4.2.9. One-isotope, two-source example (I = 1, S = 2)

To estimate V we first construct G−1, H, and Ωk. Now G takes the value of Bx as

in (1.7), thus

G =

⎡⎣ �11 + (�11T − �11D)− �1 �12 + (�12T − �12D)− �1

1 1

⎤⎦
G−1 = ((�11 + �11T − �11D)− (�12 + �12T − �12D))−1

⎡⎣ 1 �1 − (�12 + �12T − �12D)

−1 (�11 + �11T − �11D)− �1

⎤⎦
and

H =

⎡⎣ �01 �01 �01 �02 �02 �02 −1

0 0 0 0 0 0 0

⎤⎦
giving

G−1H = ((�11 + �11T − �11D)− (�12 + �12T − �12D))−1

×

⎡⎣ �1 �1 �1 �2 �2 �2 −1

−�1 −�1 −�1 −�2 −�2 −�2 1

⎤⎦ .
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Also,

Ωk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Var[d̄11]

Var[d̄11T]

Var[d̄11D]

Var[d̄12]

Var[d̄12T]

Var[d̄12D]

Var[b̄1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
giving the 2-by-2 matrix

V = G−1HΩk(G
−1H)⊤

with diagonal elements

v11 = v22 = (�2
01Var[d̄11] + �2

01Var[d̄11T] + �2
01Var[d̄11D]

+�2
02Var[d̄12] + �2

02Var[d̄12T] + �2
02Var[d̄12D] + Var[b̄1])

×((�11 + �11T − �11D)− (�12 + �12T − �12D))−2

and off-diagonal elements

v12 = v21 = −v11.

Note that ∣G∣ ∕= 0 implies that (�11 + �11T− �11D) ∕= (�12 + �12T− �12D), meaning that

the mean discrimination-corrected source isotope ratios are different, which allows us

to differentiate between sources. However, when they are close, (�11 + �11T− �11D)
.
=

(�12 +�12T−�12D), then the difficulty of clearly differentiating between sources results

in a large variance for �̂˜. △

The implicit function theorem gives the same result as the Delta method in (4.12),

but in a matrix form that is easy to implement.
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4.2.2.2 Confidence Intervals

Approximate 100(1 − �)% confidence intervals for �s can be constructed in many

ways. One uses the normal distribution,

�̂s ± z�/2
√

V̂ar[�̂s], s = 1, . . . , S.

An alternative is the t interval using the Satterthwaite (1946) approximation for the

degrees of freedom.

Example 4.2.10. CI for mixture and source variation dunlin carbon

A normal 95% CI is

�̂1 ± z0.025

√
V̂ar[�̂s]

0.367 ± 1.960× 0.00213

0.367 ± 0.091 giving (0.277, 0.458).

△

In summary, the implicit function theorem gives variances that match the compli-

cated formulas of Phillips and Gregg (2001) for S = 2 and S = 3, but the variances

are easy to compute for any dimension (S) using matrix multiplication. If sample

sizes are not large enough for the asymptotic results to apply, then the large sample

analysis may become misleading and the bootstrap or Bayesian analysis discussed

later would be more appropriate.

4.2.3 Bootstrap inference

The bootstrap is a resampling method originally proposed by Efron (1979) for esti-

mating properties of an estimator by sampling from an approximating distribution,



Chapter 4. Frequentist methods, BMM 73

such as the empirical distribution of the observed data. The advantage of boot-

strapping over analytical methods is its great simplicity. Bootstrap methods can

be applied both when there is a completely specified probability model for the data

and when there is not. In the case where a set of observations can be assumed

to be from a random sample, a nonparametric bootstrap can be implemented by

constructing a number of resamples of the observed dataset (and of equal size to

the observed dataset), each of which is obtained by random sampling with replace-

ment from the original dataset. A parametric boostrap can be implemented through

a similar procedure where the resamples are drawn from parametrically estimated

distributions. The bootstrap is often used as an alternative to inference based on

parametric assumptions when those assumptions are in doubt, or where parametric

inference is impossible or requires very complicated formulas for the calculation of

standard errors (Davison and Hinkley, 1997; Efron and Tibshirani, 1993).

The large sample results in the previous sections are approximations relying on

limiting arguments that sample sizes increase without bound. The elements of A and

�˜ are estimated using independent samples with potentially different sample sizes.

An implementation of the bootstrap will forego the large sample assumptions and

use the empirical distributions of the data components or a probability model with

sensible resampling for inference. While the bootstrap is often used in small sample

situations, one can use it for large samples, as well.

Below we describe the parametric and nonparametric bootstrap in algorithmic

terms to make it straightforward to implement. The core idea is to resample from

either the estimated parametric distributions or the empirical distributions in accor-

dance with the way the data were collected. For example, multivariate points are

sampled as vectors, and this will be done by resampling with replacement. Theoret-

ical considerations are provided elsewhere (Efron and Tibshirani, 1993; Davison and

Hinkley, 1997).
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4.2.3.1 Parametric Bootstrap

Suppose we have a parametric model for the distribution of the data components.

This might be a multivariate normal distribution for the isotope ratio measurements

of each source, where isotopes within sources and within the mixture may be corre-

lated. Typically we can substitute the maximum likelihood estimates of the parame-

ters in the parametric model to calculate approximate distributions for the statistic of

interest, usually the sample mean, on which to base inferences about their estimands.

From these fitted models, we draw a bootstrap repetition of the data simulation with

replacement from the fitted models, then calculate the estimate of the parameter of

interest R times, �̂˜(r), r = 1, . . . , R. From the bootstrap repetitions of �̂˜(r) we can

calculate moments, bias, confidence intervals, and other quantities of interest. Our

primary interests will be standard error and confidence intervals.

Example 4.2.11. One-isotope, two-source example (I = 1, S = 2)

We illustrate the simplest example without discrimination, Δ˜ , though generalizations

are immediate. For the mixture and sources, R bootstrap repetitions of the data

simulation will be drawn from the fitted distributions, for example,

b
(r)
j1 ∼ Normal(b̄1, s

2
b), j = 1, . . . , J,

d
(r)
11k ∼ Normal(d̄11, s

2
1), k = 1, . . . , K1, and

d
(r)
12k ∼ Normal(d̄12, s

2
2), k = 1, . . . , K2.

For each r = 1, . . . , R, the mean isotope ratios are calculated

b̄
(r)
1 =

1

J

J∑
j=1

b
(r)
j1 , d̄

(r)
11 =

1

K1

K1∑
k=1

d
(r)
11k, and d̄

(r)
12 =

1

K2

K2∑
k=1

d
(r)
12k

and substituted into the defining equation⎡⎣ b̄
(r)
1

1

⎤⎦ =

⎡⎣ d̄
(r)
11 d̄

(r)
12

1 1

⎤⎦⎡⎣ �̂
(r)
1

1− �̂(r)
1

⎤⎦ , (4.26)



Chapter 4. Frequentist methods, BMM 75

and evaluated to give

�̂˜(r) = Â(r)−1
x b̄˜(r)

x .

The �̂˜(r), r = 1, . . . , R, give an estimate of the bootstrap distribution of �̂˜ which

can be used for inference on �˜. The distribution will be roughly centered at the

estimated value from the data, �̂˜. The standard error for �̂˜ is calculated as the

standard deviation of the bootstrap replicates. △

4.2.3.2 Nonparametric Bootstrap

Suppose we are unwilling to assume a parametric model, but that it is sensible

to assume that for each data component the observations are independent and in-

dentically distributed according to an unknown distribution function. We use the

empirical distribution (ED) function to estimate the unknown distribution function.

The ED puts equal probability on each observation. We draw a bootstrap repetition

of the data simulation with replacement from the ED, then calculate the estimate of

the parameter of interest, �̂˜(r), r = 1, . . . , R.

Example 4.2.12. One-isotope, two-source example (I = 1, S = 2)

For the mixture and sources, R bootstrap repetitions of the data simulation will be

drawn from the empirical distributions,

b
(r)
j1 ∼ ED(bj1; j = 1, . . . , J), j = 1, . . . , J,

d
(r)
11k ∼ ED(d11k; k = 1, . . . , K1), k = 1, . . . , K1, and

d
(r)
12k ∼ ED(d12k; k = 1, . . . , K2), k = 1, . . . , K2.

The remaining steps proceed as in the parametric bootstrap. △
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4.2.3.3 Bootstrap Confidence Intervals

An extensive menu of bootstrap confidence intervals is provided in Davison and Hink-

ley (1997, chap. 5). Here we use the simplest and most intuitive of all the intervals,

the basic bootstrap CI, taking the interval bounds as the bootstrap estimates of the

percentiles. For example, the central 100(1−�)% CI is estimated with the R sorted

bootstrap repetitions of the data simulation by selecting the bootstrap order statis-

tics in positions R�/2 and R(1− �/2), rounded to the extremes to be conservative.

Thus, for a 95% interval and for R = 10000, the 250th and 9751th sorted bootstrap

repetitions of the data simulation would designate the lower and upper confidence

bounds.

Example 4.2.13. Parametric bootstrap dunlin carbon

The sample size and mean and variance MLEs are provided in Tables 4.1, 4.2, and 4.3.

Plots of the data in Figures 4.2, 4.3, and 4.4 do not severely contradict the use of

normal distributions for the data components so the normal distribution will be used

for illustrative purposes.

R bootstrap repetitions of the data simulation are drawn from fitted distributions

for the mixture, sources, and diet and blood that determine discrimination,

b
(r)
j1 ∼ Normal(b̄1, s

2
b) = Normal(−16.81, 10.27), j = 1, . . . , J = 234,

d
(r)
11k ∼ Normal(d̄11, s

2
1) = Normal(−25.36, 1.724), k = 1, . . . , K1 = 16,

d
(r)
12k ∼ Normal(d̄12, s

2
2) = Normal(−13.98, 10.55), k = 1, . . . , K2 = 21,

d
(r)
1Tk ∼ Normal(d̄1T, s

2
1T) = Normal(−24.63, 0.145), k = 1, . . . , KT = 28, and

d
(r)
1Dk ∼ Normal(d̄1D, s

2
1D) = Normal(−23.28, 0.105), k = 1, . . . , KD = 4.
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For each r = 1, . . . , R, the mean isotope ratios are calculated

b̄
(r)
1 =

1

J

J∑
j=1

b
(r)
j1 , d̄

(r)
11 =

1

K1

K1∑
k=1

d
(r)
11k, d̄

(r)
12 =

1

K2

K2∑
k=1

d
(r)
12k

d̄
(r)
1T =

1

KT

KT∑
k=1

d
(r)
1Tk, and d̄

(r)
1D =

1

KD

KD∑
k=1

d
(r)
1Dk.

The discrimination is calculated, Δ̂
(r)
11 = d̄

(r)
1T − d̄

(r)
1D. We assume that the discrimina-

tion is the same for both sources, Δ˜ 1 = Δ˜ 2, thus we use Δ̂
(r)
12 ≡ Δ̂

(r)
11 . The means �̂

′(r)
1s

are substituted for d̄
(r)
1s in the defining relation (4.26) with

�̂
′(r)
11 = d̄

(r)
11 + d̄

(r)
1T − d̄

(r)
1D

�̂
′(r)
12 = d̄

(r)
12 + d̄

(r)
1T − d̄

(r)
1D.

Using R = 10000 bootstrap repetitions of the data simulation, we estimate Var[�̂1]

with the sample variance of the �̂
(r)
1 , 0.002227, giving a standard deviation of 0.0472.

The 95% basic bootstrap CI is (0.266, 0.452). This interval is similar to the one given

with the implicit function method. △

Example 4.2.14. Nonparametric bootstrap dunlin carbon

We will resample the observations plotted in Figures 4.2, 4.3, and 4.4. R bootstrap

repetitions of the data simulation are drawn from the empirical distributions for the

mixture, sources, and diet and blood that determine discrimination. The rest of the

procedure is as in the parametric bootstrap. Using R = 10000 bootstrap repetitions

of the data simulation, the estimate of Var[�̂1] is 0.002625, and SD[�̂1] is 0.0512, with

a 95% CI of (0.255, 0.455). This nonparametric bootstrap CI is slightly wider than

the parametric bootstrap CI, and the estimated sampling distribution for �̂1 a little

left-skewed. △

4.2.3.3.1 Dunlin discussion Numerical and graphical summaries of the dunlin

data of the five methods discussed in this chapter are in Table 4.5 and Figure 4.6. The
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implicit function theorem (delta method) normal approximation appears consistent

with the bootstrap methods, in spite of skewed data distributions and small sample

sizes. The parametric and nonparametric bootstraps perform similarly in this case,

though the nonparametric bootstrap suggests slight left-skewness in the sampling

distribution of �̂1, a result of skewness in the data distribution.
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Figure 4.6: Frequentist estimates for proportion contribution of terrestrial sources
to dunlin diet, �1, corresponding to Table 4.5. The first is the point mass estimated
without variability. The second and third distributions correspond to large sample
normal approximations for variation in the mixture only and in the mixture and
sources, respectively. The fourth and fifth distributions are for the parametric and
nonparametric bootstraps, respectively.
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Table 4.5: Frequentist implicit representation estimates for proportion contribution
of terrestrial sources to the dunlin diet with central 95% CI from methods in Sec-
tion 4.2: no variation, large sample variation in mixture only, large sample variation
in mixture and sources, parametric bootstrap variation in mixture and sources, and
nonparametric bootstrap variation in mixture and sources.

Method �̂1 Var[�̂1] SD[�̂1] 95% CI
No variation 0.367
Mixture var only 0.367 0.000339 0.0184 (0.331, 0.403)
Mixture and sources var 0.367 0.002132 0.0462 (0.277, 0.458)
Par Bootstrap 0.367 0.002227 0.0472 (0.266, 0.452)
NP Bootstrap 0.367 0.002625 0.0512 (0.255, 0.455)
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4.3 Bear three-source example

This section introduces the regression-based discrimination-corrected isotope ratio

and its incorporation in the model. Additionally, this three-source bear example

illustrates several things. There is often very little data on the sources, and those data

can have a great deal of variability. The uncertainty of the source estimates can make

the estimates of the diet proportion �˜ unreliable. The bootstrap is a practical reality-

check for the large sample estimation when sample sizes are small, though bootstrap

methods themselves are supported by large sample arguments, in particular that the

empirical distribution of the sample captures the important features of the population

distribution. While the results of this example are not remarkable, the detailed

illustration of the methods will be useful for the practitioner, especially those in

Section 4.3.1.3 using regression to estimate discrimination-corrected isotope ratios.

Vulla et al. (2009) discuss seasonal effects of a brown bear’s diet in Estonia

and central and northern Europe. Because berries, cereals, and insects (ants) have

previously been identified as being important diet sources in the autumn when bears

grow hair, we look at this three-source subset of the dataset appearing in their paper,

though expanded by Keith Hobson (personal communication). Using three sources

and two isotopes (carbon and nitrogen) we have a perfectly-constrained case resulting

in a unique solution.

4.3.1 Bear Data

4.3.1.1 Mixture isotope ratios

Summary isotope ratio values for the J = 42 bear hair measurements are

b̄˜ =

⎡⎣ −22.74

5.36

⎤⎦ and Sb˜ =

⎡⎣ 0.311 0.042

0.042 2.740

⎤⎦ ,
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and summarized in Table 4.6. Figure 4.7 illustrates that the correlation of the carbon

and nitrogen isotope ratios for hair is not statistically significantly different from zero

(r = 0.046, p-value = 0.775), and the data are slightly right-skewed for nitrogen.

Table 4.6: Bear hair summaries for carbon (i = 1) and nitrogen (i = 2).

Isotope ratios J b̄1 SD SE(b̄1) b̄2 SD SE(b̄2) r
Bear hair 42 −22.74 0.557 0.0860 5.357 1.655 0.2554 0.046
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Figure 4.7: Bear hair �13C and �15N observations with SE intervals of the mean and
bivariate normal 95% confidence and prediction ellipses with marginal distributions
with estimated normal distributions.
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4.3.1.2 Source isotope ratios

Sample isotope ratio values for source measurements are summarized in Table 4.7.

The only statistically significantly correlated isotope values are for insects (p-value <

0.0001). Figure 4.8 also shows that the carbon and nitrogen isotope ratios for most

sources have a great deal of variability and overlap, and the sample sizes are small.

Table 4.7: Source carbon (i = 1) and nitrogen (i = 2) isotope ratios.

Carbon Nitrogen
Sources Ks d̄1s SD SE(d̄1s) d̄2s SD SE(d̄2s) r
Berries 4 −31.93 2.073 1.0363 −3.65 4.188 2.0938 −0.738
Cereals 2 −28.30 0.283 0.2000 3.45 1.202 0.8500 N/A
Insects 9 −24.75 1.478 0.4927 2.95 0.945 0.3149 0.985
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Figure 4.8: Source �13C and �15N observations with SE intervals of the mean and
bivariate normal 95% confidence ellipses with marginal distributions with estimated
normal distributions.
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4.3.1.3 Discrimination-corrected isotope ratios using regression

If a diet experiment is conducted for a range of sources then it is possible to model

the discrimination-corrected isotope ratios for all sources together using a regression.

This experiment is conducted independently from the data used for the diet analysis.

Let d˜kD be the isotope ratio of the diet and d˜′kT be the isotope ratio of the animal

tissue for diet/tissue pair k = 1, . . . , Kireg. For simplicity assume that the relationship

between diet and tissue for isotope i is linear. Then a simple linear regression,

d′ikT = 0i + 1idikD + "ik,

can be used to estimate the discrimination or directly predict the discrimination-

corrected isotope ratio value for a given source/tissue pair. Given the estimated

regression coefficients, ̂˜i = [̂0i, ̂1i]
⊤, i = 1, . . . , I, the discrimination-corrected

isotope ratios, �′is = �is + Δis, can be predicted for each source in the analysis using

�̂′is = ̂0i + ̂1id̄is.

This relationship defines the predicted discrimination,

Δ̂is ≡ �̂′is − d̄is = ̂0i + (̂1i − 1)d̄is.

While this method has been used previously to estimate the discrimination (Felicetti

et al., 2003), the variation associated with this estimate has not previously been

incoporated into the analysis.

Using the implicit-function theorem from Section 4.2.2.1, we can estimate the

variance for �̂˜ incorporating the isotope ratio variance and regression variance. Using

the three-source, two-isotope example, we detail the estimation procedure. In the

implicit-function theorem we set the regression-based model matrix from (1.5) equal

to zero as 0˜ = Bx�˜ − [0, 0, 1]⊤,
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⎡⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
01 + 11�11 − �1 01 + 11�12 − �1 01 + 11�13 − �1

02 + 12�21 − �2 02 + 12�22 − �2 02 + 12�23 − �2

1 1 1

⎤⎥⎥⎥⎦ (4.27)

×

⎡⎢⎢⎢⎣
�1

�2

�3

⎤⎥⎥⎥⎦−
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦ .

The functions gi(�˜, �˜y) come from the rows of (4.27),

g1(�˜, �˜y) = (01 + 11�11 − �1)�1 + (01 + 11�12 − �1)�2 + (01 + 11�13 − �1)�3

g2(�˜, �˜y) = (02 + 12�21 − �2)�1 + (02 + 12�22 − �2)�2 + (02 + 12�23 − �2)�3

g3(�˜, �˜y) = 0.

Let

�˜y = [�11, �21, �12, �22, �13, �23, �1, �2, 01, 11, 02, 12],

which defines G = Bx and

H =

⎡⎢⎢⎢⎣
11�1 0 11�2 0 11�3 0 −1 0

0 12�1 0 12�2 0 12�3 0 −1

0 0 0 0 0 0 0 0

1 �11�1 + �12�2 + �13�3 0 0

0 0 1 �21�1 + �22�2 + �23�3

0 0 0 0

⎤⎥⎥⎥⎦ .
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The covariance for y˜k = [d̄11, d̄21, d̄12, d̄22, d̄13, d̄23, b̄1, b̄2, ̂01, ̂11, ̂02, ̂12] is

Ωk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cov[d̄˜1]

Cov[d̄˜2]

Cov[d̄˜3
]

Cov[b̄˜]
Cov[̂˜1]

Cov[̂˜2]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, the estimated covariance for �̂˜ is

V = G−1HΩk(G
−1H)⊤,

which is estimated by substituting the natural estimates in the matrices above. This

is easily extended to any problem size.

4.3.1.4 Bear Discrimination

Felicetti et al. (2003) performed a feeding trial in six (three male and three female

siblings) 16- to 21-month-old grizzley bears housed at the Washington State Univer-

sity Bear Research, Education, and Conservation Facility in Pullman, Washington.

Each bear was fed each of 5 diets (whitebark pine nuts, other plant matter, army

cutworm moths, ungulates, cutthroat trout) for 21 days and blood-plasma samples

were collected at the end of each trial. Plasma isotope ratios equilibrate (i.e., be-

come asymptotic) with the diet within 10–14 days and have the same isotope ratios

as hair (Hilderbrand et al., 1996; Hildebrand et al., 1999). Diet samples were col-

lected daily and pooled and homogenized at the end of the trial for isotopic analyses.

We used datathief (Tummers, 2006) to extract the paired diet/plasma isotope ratio

values of carbon and nitrogen from the regression plots in Felicetti et al. (2003),

but we do not know which measurements belong to which bears so we assume the
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measurements are independent. The plots in Figure 4.9 show the data used to fit

the regressions for carbon and nitrogen from the bear feeding trial experiment. The

relationship between the points used in the carbon and nitrogen regressions is un-

known, thus a separate estimation is done for carbon and nitrogen. Because the

source isotope ratios and bear plasma isotope ratios show a relationship, the es-

timated discrimination-corrected isotope ratios can be estimated by the regression

line. Table 4.8 summarizes the regression relationships, and the regression coefficient

covariance matrices for carbon and nitrogen are

Ĉov[̂˜1] =

⎡⎣ 3.8184 0.1679

0.1679 0.0075

⎤⎦ and Ĉov[̂˜2] =

⎡⎣ 0.0619 −0.0063

−0.0063 0.0010

⎤⎦ .
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Figure 4.9: Diet experiment results for the relationship between diet source and bear
blood plasma isotope ratios (Felicetti et al., 2003) with confidence and prediction
intervals, where the difference gives the estimated discrimination. Solid points are
single-species diets, and open circles are mixed diets.
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Table 4.8: Regression summaries for the relationship between diet and blood plasma
in Figure 4.9.

�13C Estimate Std. Error t value Pr(> ∣t∣)
(Intercept) −10.96675 1.95407 −5.612 0.000224
Diet d13C 0.41617 0.08658 4.807 0.000716
Residual standard error: 0.8436 on 10 degrees of freedom
Multiple R-squared: 0.6979

�15N Estimate Std. Error t value Pr(> ∣t∣)
(Intercept) 5.21145 0.24872 20.95 2.83e−08
Diet d15N 0.88966 0.03119 28.53 2.47e−09
Residual standard error: 0.4647 on 8 degrees of freedom
Multiple R-squared: 0.9903
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4.3.1.5 Mixture and discrimination-corrected source ensemble

For this example we consider the proportional contributions to the bear’s diet re-

flected through the bear hair of the three sources of berries, cereals, and insects.

In Table 4.9 are the estimated discrimination-corrected source isotope ratios, �̂′is =

̂0i + ̂1id̄is. The discrimination-corrected isotope ratios in Figure 4.10 show that

the bear falls inside the convex hull of the three considered sources, thus a unique

solution exists.

Table 4.9: European bear example, estimated mixture and regression-based
discrimination-corrected source isotope ratios for carbon (i = 1) and nitrogen (i = 2).

Estimates b̄1 b̄2

Bear hair −22.74 5.357

Estimates �̂′1s �̂′2s
Berries −24.25 1.964
Cereals −22.74 8.281
Insects −21.27 7.839

4.3.2 Analysis

We consider the proportional contributions of berries (s = 1), cereals (s = 2), and

insects (s = 3) in the bear’s diet.

Example 4.3.1. No variation bear

Assume the estimated values for �˜ and A are the true values. We can solve for �˜ by

plugging in the values

Ax =

⎡⎢⎢⎢⎣
−24.25 −22.74 −21.27

1.96 8.28 7.84

1 1 1

⎤⎥⎥⎥⎦
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Figure 4.10: European bear example, discrimination-corrected isotope ratios for the
three sources. The bear hair is contained in the convex hull of berries, cereals, and
insects.
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and

�˜x =

⎡⎢⎢⎢⎣
−22.74

5.36

1

⎤⎥⎥⎥⎦ giving �˜ = A−1
x �˜x =

⎡⎢⎢⎢⎣
0.432

0.124

0.444

⎤⎥⎥⎥⎦

as the true proportional contributions of berries, cereals, and insects bear diet. △

In subsequent examples the estimate of �˜ is identical to the estimate above and

the variability of the estimate will depend on the assumption of what is known.

Example 4.3.2. Mixture variation bear

Here we assume that the only source of variation is in the mixture and we assume

the sources are fixed as in Section 4.2.1. The estimated mixture covariance matrix is

Σb˜x
J

=
1

42

⎡⎢⎢⎢⎣
0.311 0.042 0

0.042 2.740 0

0 0 0

⎤⎥⎥⎥⎦
giving

Σ̂�̂˜ =

⎡⎢⎢⎢⎣
0.00145 −0.00261 0.00116

−0.00261 0.00801 −0.00540

0.00116 −0.00540 0.00424

⎤⎥⎥⎥⎦ .
Table 4.10 and Figure 4.11 show the estimated proportions with estimated variances

and standard deviations. △

Example 4.3.3. Mixture variation parametric bootstrap bear

This example uses the bootstrap similar as in Section 4.2.3.1, but with variation only

in the mixture. This bootstrap result is similar to the large sample result, and is

given in Table 4.10 and Figure 4.11. △
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Example 4.3.4. Mixture and source variation bear

Here we assume uncertainty in both the mixture and the sources. Using the implicit-

function method in Section 4.3.1.3 the covariance for �̂˜ is

V̂ =

⎡⎢⎢⎢⎣
0.01683 −0.03280 0.01597

−0.03280 0.23311 −0.20032

0.01597 −0.20032 0.18435

⎤⎥⎥⎥⎦ . (4.28)

Table 4.10 and Figure 4.11 show the estimated proportions with estimated variances

and standard deviations. △

While there are several ways to implement the regression bootstrap (Ch. 6 Davi-

son and Hinkley, 1997), it is clear in this example due to the great variability in the

sources that inference about the diet will not be better informed by implementing it

here.

4.3.2.0.1 Bear discussion A summary of the bear data is in Table 4.10 and

Figure 4.11. The sample sizes are very small for the sources so this is a case where the

large sample approximation is unlikely to perform well. When using variation in both

the mixture and the sources the estimated standard deviations for �̂˜, especially for

sources 2 and 3 (cereals or insects), are both greater than 0.4, making the estimates

noninformative for �˜. This example highlights, however, the use of regression in

estimating the discrimination-corrected isotope ratios and accounting for variation

using the implicit function theorem.

4.4 Discussion

In this chapter we showed that the implicit function theorem is an easy way to im-

plement the delta method for frequentist large sample inference for the estimated
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Table 4.10: Frequentist implicit representation estimates for proportion contribution
of sources to the bear diet, [�̂1, �̂2, �̂3]⊤ = [0.432, 0.124, 0.444]⊤, with central 95% CI,
which would be truncated to [0, 1] in practice. The three cases illustrate large sample
variation in mixture only, parametric bootstrap with variation in mixture only, and
large sample variation in mixture and sources.

Method s Var[�̂s] SD[�̂s] 95% CI
Mixture var only 1 0.00145 0.038 0.357, 0.507

2 0.00801 0.090 −0.052, 0.299
3 0.00424 0.065 0.317, 0.572

Mixture var only Par BS 1 0.00144 0.038 0.358, 0.506
2 0.00782 0.088 −0.050, 0.300
3 0.00414 0.064 0.318, 0.571

Mixture and sources var 1 0.01683 0.130 0.178, 0.686
2 0.23311 0.483 −0.822, 1.070
3 0.18435 0.429 −0.397, 1.286
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Figure 4.11: Frequentist estimates for proportion contribution of berries, cereals,
and insects to the bear diet. The four cases illustrate the point estimate with no
variation, large sample variation in mixture only, parametric bootstrap with variation
in mixture only, and large sample variation in mixture and sources.
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diet proportion parameter vector. Whether or not distributional assumptions are

made, the bootstrap can be used for frequentist resampling inference. The nonpara-

metric bootstrap does not require a complete parametric model specification, which

is important both as a check of the adequacy of the assumptions in the large sample

methods and as an alternative method of inference.

An important criticism of the large sample and bootstrap frequentist methods

is that our frequentist estimates of �˜ are not inherently constrained to [0, 1]. For

example, in the bear example with variation only in the mixture, a small area of

the estimated sampling distribution of �2 is less than zero, and a substantial area

is less than zero with variation also in the sources. Therefore, estimates near the

boundary may have a potentially substantial amount of sampling distribution outside

the support of the parameter. The sampling distribution for �̂˜ can be truncated to

the interval [0, 1], for example, with

�̂˜new = 0× 1(�̂˜<0) + �̂˜ × 1(0≤�̂˜≤1) + 1× 1(�̂˜>1),

but this post-hoc correction is not contextually satisfying. Likelihood methods (in-

cluding Bayesian) restrict the parameter support and may eliminate this difficulty.
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Chapter 5

Bayesian methods, BMM

This chapter illustrates how a Bayesian approach based on first principles can be

applied to jointly model the mean mixture population diet, subject-specific mix-

ture diets, source and discrimination compositions, measurement error, and other

parameters of interest. Here we provide statistical justification for the methods in

Chapter 3 previously only heuristically justified, e.g., IsoSource.

Adopting the Bayesian paradigm has several advantages (Gelman et al., 1995,

Ch. 9). First, Bayesian methods incorporate all reasonable sources of uncertainty

in inferential summaries by incorporating multiple levels of randomness to combine

information from different sources. Therefore, for the best inference, the statistician

must have access to all available information, rather than data summaries, and work

closely with experts to incorporate nonmeasurement data (via elicitation of priors).

Second, it is natural for practitioners to interpret interval estimates as Bayesian inter-

vals, that is, as probability statements about the likely values of unknown quantities

conditional on the evidience in the data. These probability statements require full

probability models, including prior probability specifications for unknown quantities.

Third, Bayesian inferences in their attempt to represent complicated real-world rela-

tionships are conditional on probability models that invariably contain approxima-
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tions. If the Bayesian inferences differ greatly over a range of scientifically reasonable

assumptions that are not disputable by the data, then the corresponding range of

conclusions must be considered possible.

There are problems in the previous applications of Bayesian methods to mass-

balance mixing models. Moore and Semmens (2008) have many notational issues in

the description of their MixSIR model, making it a challenge to understand their

model precisely, but here is a summary. (0) The name comes from using the diet

mixing model with the Hilborn SIR sampling method (Rubin, 1988). (1) For the diet

prior they assume independent beta distributions for the individual source propor-

tions, �s∣��˜s, ��˜s ∼ Beta(��˜s, ��˜s), s = 1, . . . , S, but they do not overtly incorporate

the constraint 1 =
∑S

s=1 �s in their prior. (2) They ignore the uncertainty from

estimating A. (3) They fail to detail priors on other parameters and they use sam-

ple statistics in place of population parameters for the distribution of the observed

mixture isotope ratios. Jackson et al. (2009) have criticized the beta priors Moore

and Semmens (2008) specify on �˜, and found in a simulation study that the MixSIR

model failed to identify true dietary proportions more than 50% of the time. The

authors of the criticism have written their own software as the R package Stable

Isotope Analysis in R (SIAR) (Parnell and Jackson, 2008), and while addressing the

issue with the prior on �˜, (and modifying the sampling from using Hilborn SIR to

the Metropolis-Hastings algorithm (Chib and Greenberg, 1995)) they still seemingly

ignore issues (2) and (3).

In a frequentist analysis of the perfectly-constrained case (S = I + 1) the delta

method has been applied to the mean structure in (2.2) (Chapters 4 and 6). In this

case the mean mixture population diet �˜ is being modeled indirectly based on the

isotope ratio means of the mixture in �˜ and the sources in A. We believe that a direct

approach is more appealing, whereby each mixture’s isotope ratio �˜j is conditional

on the mixture’s diet �˜j and the common sources A, as introduced in Section 2.1.

In the underconstrained case (S > I + 1) exact feasible-solutions of the mean
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diet �˜ have been provided with the probabilistic algorithm introduced in Chapter 3.

Because no variation is considered, the defining structure for the mean is the only

model component, and therefore this strategy can be seen as an approximate Bayes

procedure of our implicit representation model below without variation and a uniform

prior distribution on �˜. Alternatively, Lubetkin and Simenstad (2004) introduce two

models, SOURCE and STEP, which use a linear programming technique to give

results similar to IsoSource (Phillips and Gregg, 2003), but instead of describing the

volume of the solution polytope, just the outer bounds of the possible diet proportions

are given.

Two models for the diet components are presented. The implicit representation

is consistent with what has been done thus far, modeling the distribution of mixture

isotope ratio observations centered at the mean isotope ratio value conditional on

the average diet (recall Section 2.2.1). The explicit representation is new, modeling

the mixture isotope ratio means conditional on the distribution of diets centered

at the average diet (recall Section 2.2.2). We show that the explicit representation

model supplemented with measurement error information provides subject-specific

diets and typically more precise estimates of the mean diet, if the model is consistent

with the data. The insight was to approach the problem from a random effects

perspective, rather than only estimating fixed effects.

The following sections focus on the two models when sufficient data and/or prior

information is available to inform all the model components. First, we model the A

matrix of source information including discrimination, develop the Bayesian implicit

representation model, and show how the model of the A matrix can be simplified in

various ways. Next, we develop the Bayesian explicit representation model and the

incorporation of measurement error. Then we illustrate the robustness of inference of

the implicit representation and explicit representation when certain model violations

are present. In the last section we illustrate both models using the mink example, a

case when data are limited.
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5.1 Modeling source data components

Here we provide a model for each of the source data components, the mixtures and

diets are modeled later either in the implicit representation or the explicit represen-

tation models. We assume that sources are mutually independent. The distributions

selected below are for convenience and are subject to refinement for any particular

application. In the Bayesian paradigm the distributional assumptions for the data

are necessary to inform the parameters in the defining equation �˜j = A�˜j. Most

distributional assumptions can be implemented in WinBUGS, a flexible software for

the Bayesian analysis of complex statistical models using Markov chain Monte Carlo

(MCMC) methods (Lunn et al., 2000).

5.1.1 Isotope ratio measurements

For each independent source, s = 1, . . . , S, we observe isotope ratio measurements,

d˜sk, k = 1, . . . , Ks, and let d∗s = [d˜s1, . . . , d˜sKs ]. Let isotope ratio measurements from

each source have a multivariate normal distribution

d˜sk∣�˜s,Σ�˜s ind∼ Normal(�˜s,Σ�˜s), k = 1, . . . , Kd˜s , (5.1)

where �˜s is a mean (column) vector of length I and Σ�˜s is an I × I positive definite

covariance matrix. The likelihood based on data from the sth source is

Ks∏
k=1

p(d˜sk∣�˜s,Σ�˜s) ∝ ∣Σ�˜s∣−Ks/2 exp

{
−1

2

Ks∑
k=1

(d˜sk − �˜s)⊤Σ−1
�˜s (d˜sk − �˜s)

}
. (5.2)

For convenience, conjugate prior distributions are defined for the mean and variance,

�˜s∣�˜0s,Σ�˜s , �0�˜s ∼ Normal(�˜0s,Σ�˜s/�0�˜s) (5.3)

Σ�˜s∣Σ0�˜s , �0�˜s ∼ Inv-Wishart(Σ0�˜s , �0�˜s), (5.4)
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where �˜0s is the prior mean and �0�˜s is the number of prior measurements on the

Σ�˜s scale, and Σ0�˜s is the prior covariance with degrees of freedom �0�˜s (the inverse-

Wishart is described in Section 5.1.1.1 below). This corresponds to a joint prior

density

p(�˜s,Σ�˜s ∣�˜0s, �0�˜s ,Σ0�˜s , �0�˜s) (5.5)

∝ ∣Σ�˜s∣−((�0�˜s+I)/2+1)

× exp

{
−1

2
tr
(

Σ0�˜sΣ−1
�˜s
)
−
�0�˜s

2
(�˜s − �˜0s)

⊤Σ−1
�˜s (�˜s − �˜0s)

}
.

Multiplying the prior density by the normal likelihood gives the “posterior” density

for (�˜s,Σ�˜s) of the same form as the prior with parameters

�Ks�˜s = �0�˜s +Ks

�Kss = �0s +Ks

�˜Kss =
�0�˜s
�Ks�˜s �˜0s +

Ks

�Ks�˜s d̄˜s
ΣKs�˜s = Σ0�˜s + (Ks − 1)Sd˜s +

�0�˜sKs

�Ks�˜s (d̄˜s − �˜0s)(d̄˜s − �˜0s)
⊤,

giving

p(�˜s,Σ�˜s ∣d∗s, �˜0s, �0�˜s ,Σ0�˜s , �0�˜s) (5.6)

∝ ∣Σ�˜s∣−((�Kss+I)/2+1)

× exp

{
−1

2
tr
(

ΣKs�˜sΣ−1
�˜s
)
−
�Ks�˜s

2
(�˜s − �˜Kss)⊤Σ−1

�˜s (�˜s − �˜Kss)
}
.

Note, “posterior” here is in quotes because this is an intermediate result and not the

posterior of the full diet model. Alternatively, this important result in (5.6), used

later in Section 5.2.2 for the two-step model, can be written hierarchically,

�˜s∣d∗s, �˜0s,Σ�˜s , �0�˜s ∼ Normal(�˜Kss,Σ�˜s/�Ks�˜s) (5.7)

Σ�˜s∣d∗s,Σ0�˜s , �0�˜s ∼ Inv-Wishart(ΣKs�˜s , �Ks�˜s). (5.8)
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The marginal “posterior” distribution of �˜s is multivariate t,

�˜s∣d∗s, �˜0s, �0�˜s ,Σ0�˜s , �0s

∼ t�Kss−I+1

(
�˜Kss,ΣKs�˜s/(�Ks�˜s(�Kss − I + 1))

)
.

The distribution in (5.7) and (5.8) are for one source’s isotope ratio mean and covari-

ance independent of other sources. In the context of the complete model (later as

(5.28)), the posterior for the source parameters (�˜s,Σ�˜s) may be different conditional

on all the data. Note that it can be a sign of a potential problem if the posterior for

one or more of the �˜s is very different from the distribution above in (5.7) and (5.8).

Recall the discussion in Section 1.2.2 that a solution to the mixing model equation

(1.1) exists if and only if the mixture value lies inside all pairwise isotope ratio convex

hulls. If the mixture mean is outside the convex hull of the discrimination-corrected

source means, then the source means may attempt to relocate to accommodate the

mixture mean and this will be reflected by the posterior for the source parameters,

(�˜s,Σ�˜s), being different from as in (5.7) and (5.8). This issue is discussed more

completely in Section 5.3.4.3.

Jeffreys prior For completeness, the noninformative multivariate Jeffreys prior

density,

p(�˜s,Σ�˜s) ∝ ∣Σ�˜s∣−(I+1)/2, (5.9)

is the limit of the conjugate prior density (5.5) as �0�˜s → 0, �0�˜s → −1, and ∣Σ0�˜s∣ →
0. The corresponding “posterior” can be written,

�˜s∣d∗s,Σ�˜s ∼ Normal(d̄˜s,Σ�˜s/Ks) (5.10)

Σ�˜s∣d∗s ∼ Inv-Wishart
(

(Ks − 1)Sd˜s , Ks − 1
)
. (5.11)
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This Jeffreys prior is useful when no prior information is available. In the “posterior”

in (5.10) and (5.11) the Inv-Wishart distribution is always proper (integral is finite)

and the mean is always finite, though a degenerate form occurs (random matrix no

longer positive definite) when Ks < I. Additionally, Jeffreys prior can not be used

directly in WinBUGS as in (5.9), since prior distributions must be proper, but can

be implemented using the two-step method (Section 5.2.2) as in (5.10) and (5.11).

5.1.1.1 Wishart distribution

The Wishart distribution and especially the inverse-Wishart distribution are the

source of some confusion because they occasionally appear with alternative parame-

terizations. The definition we use for the Wishart is

p(Σ−1
�˜s ∣Σ−1

0�˜s , �0�˜s) ∝ ∣Σ0�˜s∣�0�˜s/2∣Σ−1
�˜s ∣(�0�˜s−I−1)/2

exp

{
−1

2
tr(Σ0�˜sΣ−1

�˜s )

}
(5.12)

with E[Σ−1
�˜s ] = �0�˜sΣ−1

0�˜s and where value of the (i, j)th element of Σ−1
�˜s is �0�˜s(� 2

0ij +

�0ii�0jj), where �0ij is the (i, j)th element of Σ−1
0�˜s , �0�˜sΣ−1

0�˜s is the inverse of the prior

population covariance, and �0�˜s can be thought of as the prior sample size. The

Wishart distribution can be used to model a covariance matrix or a precision matrix

(the inverse of a covariance matrix) (pp. 161–2, 175–6, 180 in Kotz et al., 2004; Dickey

et al., 1985). The Wishart is the conjugate prior distribution for the precision matrix

(Σ−1) in a multivariate normal distribution. Also, the sample covariance matrix (S)

for iid multivariate normal data has a Wishart distribution. Specifically, the scatter

matrix, S′ =
∑K

k=1(d˜k − �˜)(d˜k − �˜)⊤, has S′∣Σ, K ∼ Wishart(Σ, K), where Σ is the

population covariance and K is the sample size informing S′. In both cases, the

parameter matrix and the random matrix are on the same scale, that is, they are

either both precision matrices or covariance matrices (Appendix A, Gelman et al.,

1995). The Wishart distribution is proper (integral is finite) when �0�˜s ≥ I, and the

mean is finite when �0�˜s ≥ I + 1, s = 1, . . . , S.
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The inverse-Wishart is the conjugate prior distribution for the multivariate nor-

mal covariance matrix. If Σ−1 ∼ Wishart(Σ−1
0 , �0), then Σ ∼ Inv-Wishart(Σ0, �0).

The definition of the Inv-Wishart, implied by the definition of the Wishart above, is

p(Σ�˜s∣Σ0�˜s , �0�˜s) ∝ ∣Σ0�˜s∣�0�˜s/2∣Σ�˜s∣−(�0�˜s+I+1)/2
exp

{
−1

2
tr(Σ0�˜sΣ−1

�˜s )

}
(5.13)

with E[Σ�˜s ] = (�0�˜s − I − 1)−1Σ0�˜s and

Var[�ij] =
(�0�˜s − I − 1)�2

0ij + (�0�˜s − I + 1)�0ii�0jj

(�0�˜s − I)(�0�˜s − I − 1)2(�0�˜s − I − 3)
,

where �2
ij is the (i, j)th element of Σ�˜s and �2

0ij is the (i, j)th element of Σ0�˜s .
Notice that the expected value for the Wishart (Inv-Wishart) distribution is a

scale of the prior precision (covariance) matrix. Therefore, it may be desirable to

pre-scale the prior precision (covariance) matrix so that the expected value is what

is desired. This is not an issue in the univariate specification below. Also, note that

the variance is a function of both the prior precision (covariance) matrix and degrees

of freedom.

5.1.1.2 Univariate specification

The Wishart is a multivariate generalization of the scaled-�2 distribution, a gamma

distribution. That is,

scaled-�2(��s∣�2
0�s , �0�s) ≡ Gamma(��s∣�0�s/2, �0�s�

2
0�s/2),

where ��s ≡ (�2
�s

)−1 is the precision, with density function

p(��s ∣�2
0�s , �0�s) ∝ (�2

0�s)
�0�s/2(��s)

�0�s/2−1 exp
{
−�0�s�

2
0�s��s/2

}
(5.14)
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with E[��s ] = (�2
0�s

)−1 and Var[��s ] = (�0�s(�
2
0�s

)2/2)−1. Similarly, the

Scaled-inv-�2(�2
�s∣�

2
0�s , �0�s) ≡ Inv-Gamma(�2

�s∣�0�s/2, �0�s�
2
0�s/2)

with density function

p(�2
�s∣�

2
0�s , �0�s) ∝ (�2

0�s)
�0�s/2(�2

�s)
−(�0�s/2+1) exp

{
−�0�s�

2
0�s/(2�

2
�s)
}

(5.15)

with E[�2
�s

] = (�0�s/(�0�s−2))�2
0�s

and Var[�2
�s

] = {2�2
0�s
/[(�0�s−2)2(�0�s−4)]}(�2

0�s
)2.

For the univariate case (I = 1), let isotope ratio measurements from each source

have

dsk∣�s, �2
�s

ind∼ Normal(�s, �
2
�s), k = 1, . . . , Kd˜s . (5.16)

For convenience, conjugate prior distributions for the mean and variance are

�s∣�0s, �
2
�s , �0�s ∼ Normal(�0s, �

2
�s/�0�s) (5.17)

�2
�s∣�

2
0�s , �0�s ∼ Scaled-inv-�2(�2

0�s , �0�s). (5.18)

The “posterior” can be written hierarchically,

�s∣d∗s, �0s, �
2
�s , �0�s ∼ Normal(�Kss, �

2
�s/�Ks�s) (5.19)

�2
�s∣d

∗
s, �

2
0�s , �0�s ∼ Scaled-inv-�2(�2

Ks�s , �Ks�s), (5.20)

where

�Ks�s = �0�s +Ks

�Kss = �0s +Ks

�Kss =
�0�s

�Ks�s
�0s +

Ks

�Ks�s
d̄s

�2
Ks�s =

�0s

�Kss
�2

0�s +
Ks − 1

�Kss
s2
ds +

�0�sKs

�Kss�Ks�s
(d̄s − �0s)

2.
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Univariate Jeffreys prior The univariate analog to (5.9), (5.10), and (5.11) are

p(�s, �
2
�s) ∝ (�2

�s)
−1 (5.21)

�s∣d∗s, �2
�s ∼ Normal(d̄s, �

2
�s/Ks) (5.22)

�2
�s∣d

∗
s ∼ Scaled-inv-�2(s2

ds , Ks − 1). (5.23)

5.1.2 Discrimination

There are multiple ways to estimate discrimination, as seen in the dunlin and bear ex-

amples in Chapter 4, and we can implement the same two methods in the Bayesian

model. We illustrate the single-source diet experiment method of estimating dis-

crimination. The regression-based method for estimating discrimination for a set of

sources simultaneously, introduced in Section 4.3.1.3, can be easily developed under

the Bayesian paradigm.

5.1.2.1 Single-source diet experiment

Discrimination is often estimated as the difference between a controlled diet and

tissues of the mixture at isotopic equilibrium, as in Section 4.1.3. In this case, for each

source s = 1, . . . , S, the mean isotope ratio is estimated from the single diet source

and for a tissue from the mixture, then the difference of these provides inference for

the discrimination. Controlled diets representative of the sources, s = 1, . . . , S, are

used to calculate the discrimination for all sources in the model.

For source s we observe isotope ratio measurements for the diet source and for

the mixture tissue, d˜Dsk, k = 1, . . . , KDs, and d˜Tsk, k = 1, . . . , KTs, and let d∗Ds =

[d˜Ds1, . . . , d˜DsKDs
] and d∗Ts = [d˜Ts1, . . . , d˜TsKTs

]. We use the same model for the diet

source and tissue isotope ratios as we used earlier in Section 5.1.1, therefore the

“posterior” distribution derived there for the source isotope ratios apply here for the
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diet and tissue isotope ratios as well. For diets,

d˜Dsk∣�˜Ds,Σ�˜Ds ind∼ Normal(�˜Ds,Σ�˜Ds), k = 1, . . . , KDs

�˜Ds∣�˜0Ds,Σ�˜Ds , �0Ds ∼ Normal(�˜0Ds,Σ�˜Ds/�0Ds)

Σ�˜Ds ∣Σ0�˜Ds , �0�˜Ds ∼ Inv-Wishart(Σ0�˜Ds , �0�˜Ds).
For corresponding tissues,

d˜Tsk∣�˜Ts,Σ�˜Ts ind∼ Normal(�˜Ts,Σ�˜Ts), k = 1, . . . , KTs

�˜Ts∣�˜0Ts,Σ�˜Ts , �0Ts ∼ Normal(�˜0Ts,Σ�˜Ts/�0Ts)

Σ�˜Ts∣Σ0�˜Ts , �0�˜Ts ∼ Inv-Wishart(Σ0�˜Ts , �0�˜Ts).
Discrimination is defined as Δ˜ s = �˜Ts − �˜Ds. The prior on Δ˜ s is directly induced by

the priors on �˜Ts and �˜Ds.

5.2 Implicit representation, population mean diet

As in the BMM in (1.1), we model the population mean isotope ratio of the mixture,

�˜, as a function of the mean isotope ratios of the sources consumed, �˜s, s = 1, . . . , S,

corrected for the isotope ratio discrimination applying to each source, Δ˜ s, weighted

by the population mean dry-weight biomass proportion of each source consumed, �s,

�˜ = A�˜ =
S∑
s=1

�˜′s�s (5.24)

where, for example, in the case of the single-source diet experiment, the discrimination-

corrected source isotope ratio is �˜′s = �˜s + (�˜Ts − �˜Ds). This view of modeling the

mean isotope ratio of the mixture conditional on the source isotope ratios and the

diet proportion vector suggests the following hierarchical model. Assume we have
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one isotope ratio observation per individual mixture, b˜j, and let these measurements

have

b˜j∣�˜,Σb˜, �∗ ind∼ Normal(�˜,Σb˜), j = 1, . . . , J (5.25)

Σb˜∣Σ0b˜, �0b˜ ∼ Inv-Wishart(Σ0b˜, �0b˜), (5.26)

where Σ0b˜ and �0b˜ specify the prior covariance matrix of the isotope ratio values

of the mixtures and an effective prior sample size, and where �∗S = [�˜1, . . . , �˜S],

�∗D = [�˜D1, . . . , �˜DS], and �∗T = [�˜T1, . . . , �˜TS], with �∗ = [�∗S, �
∗
D, �

∗
T]. The observed

mixture values are centered at the population mean isotope ratio, �˜, which depends

on the average diet through (5.24). While individual mixtures have their own diets,

this specification implicitly models their differences in diet by the variation in their

isotope ratio.

The model above has three variance components. From (2.1), the subject-specific

mean is �˜j = �˜ +  ˜j with  ˜j ∼ Normal(0˜,Σ�˜), where Σ�˜ is the between-individual

covariance. Furthermore, the mixture observations are

b˜j = �˜j + �˜j + "˜j
with

�˜j ∼ Normal(0˜,Σ�˜) and "˜j ∼ Normal(0˜,Σ")

where Σ�˜ is the within-individual covariance and Σ" is the measurement error covari-

ance (discussed further in Section 5.3.1). Having assumed to have only one observa-

tion per mixture and to simplify the modeling, we set �˜j ≡ 0˜, j = 1, . . . , J , implying

that Σ�˜ ≡ 0, thus confounding within-individual variability with measurement error

variability. Alternatively, Σ�˜ can be estimated directly by taking multiple measure-

ments on each mixture, or possibly indirectly in other ways. Note that Σb˜ = Σ�˜+Σ"
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and in the implicit representation model no attempt is made to separately estimate

these variance components. As an aside, we note that in the overconstrained case

(S < I + 1) that b˜j can have a density because of the between-individual variability.

In the absence of between-individual variability the issue of a density for �˜ would be

more critical as the conditional distribution in (5.25) would be degenerate.

The mean diet proportion vector, �˜, for the mixture population is the primary

parameter of interest. It is up for question what the best distribution is for the diet

vector. A natural first approximation for modeling the mean population diet is the

Dirichlet distribution, which assigns probability on the simplex given the specification

of location and precision. Thus, we assume

�˜∣�˜0, �0�, S ∼ Dirichlet(�0�S�˜0), (5.27)

where �0� specifies the precision of the prior distribution about the prior mean, �˜0.

The prior density for �˜ is more concentratrated about �˜0 when �0� > 1 and more

disperse when �0� < 1. A flat “noninformative” prior has �˜0 = S−11˜ and �0� = 1,

that is, Dirichlet parameter equal to 1˜, where the a priori density function is equal

for all �˜ on the simplex.

It will be convenient to have notation to group the data and parameters. For

data, let b∗ = [b˜1, . . . , b˜J ] for mixtures, and let the sources and discrimination be

consolidated into d∗ = [d∗1, . . . ,d
∗
S], d∗D = [d∗D1, . . . ,d

∗
DS], d∗T = [d∗T1, . . . ,d

∗
TS], and

D∗ = [d∗,d∗D,d
∗
T]. Also, let Σ∗S = [Σ�˜1 , . . . ,Σ�˜S ], Σ∗D = [Σ�˜D1

, . . . ,Σ�˜DS ], Σ∗T =

[Σ�˜T1
, . . . ,Σ�˜TS ], and Σ∗ = [Σ∗S,Σ

∗
D,Σ

∗
T]. Finally, recall that A = [�˜′1, . . . , �˜′S] =

�∗S + �∗T− �∗D, and �˜ = A�˜. The last two parameters, �˜ and Σb˜, will be kept separate.
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The joint posterior is

p(�˜,Σb˜, �∗,Σ∗∣b∗,D∗) ∝
[

J∏
j=1

f(b˜j∣�˜,Σb˜)
]
p(Σb˜)p(�˜) (5.28)

×
S∏
s=1

{[
Ks∏
k=1

f(d˜sk∣�˜s,Σ�˜s)
]
p(�˜s∣Σ�˜s)p(Σ�˜s)

}

×
S∏
s=1

{[
KDs∏
k=1

f(d˜Dsk∣�˜Ds,Σd˜Ds)
]
p(�˜Ds∣Σd˜Ds)p(Σd˜Ds)

}

×
S∏
s=1

{[
KTs∏
k=1

f(d˜Tsk∣�˜Ts,Σd˜Ts)
]
p(�˜Ts∣Σd˜Ts)p(Σd˜Ts)

}
= p(b∗∣�∗,Σb˜, �˜)p(Σb˜)p(�˜)× p(D∗∣�∗,Σ∗)p(�∗,Σ∗).

Note that the first line on the right hand side of (5.28) is p(b∗∣�∗,Σb˜, �˜)p(Σb˜)p(�˜)

and the next three, collectively, are p(D∗∣�∗,Σ∗)p(�∗,Σ∗). Also, note that the hyper-

parameters are in these distributions but are omitted from the equation display. The

posterior density of �˜ may be a challenge to derive analytically, but all posteriors can

be estimated computationally using the Bayesian paradigm, for example via Gibbs

sampling with WinBUGS or OpenBUGS (Casella and George, 1992; Gelfand and

Smith, 1990; Lunn et al., 2000).

When the prior on �˜ is uniform, the posterior for �˜ attains its maximum over

the solution polytope (detailed in Chapter 3). Otherwise, the maximum within the

solution polytope is determined by the prior on �˜.

5.2.1 IsoSource (or SISUS) as the no-variation limit of the

implicit representation

IsoSource (or SISUS), discussed in Chapter 3, can be seen as an approximation to

the Bayesian implicit representation model where the variability goes to zero. The

following constructed example with three sources and one isotope illustrates this.
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Let the mixture have population mean � = 3 and sources s = 1, 2, 3 have population

means �∗S = [0, 5, 10]. For IsoSource (no variation) the four means are the only data

inputs, and solutions of �˜ are sought for

⎡⎣ 3

1

⎤⎦ =

⎡⎣ 0 5 10

1 1 1

⎤⎦
⎡⎢⎢⎢⎣
�1

�2

�3

⎤⎥⎥⎥⎦ ,

where the simplex condition is included in the second row. Without variation,

IsoSource approximates the solution polytope for �˜ defined by the line segment with

endpoints (0.7, 0.0, 0.3) and (0.4, 0.6, 0.0). We consider five scenarios with population

variances assumed common to the sources and mixture, �2
0 = {4, 1, 0.1, 0.01, 0.0001},

to show variability of all model components going to zero. More generally, many

similar constructions where all variances approach zero will suffice. The defining

relation using (1.1) is

� = �∗S�˜ =
[
�1 �2 �3

]⎡⎢⎢⎢⎣
�1

�2

�3

⎤⎥⎥⎥⎦ .

The distributions for the sources are defined as priors in the model,

�1∣�01, �
2
0 ∼ Normal( 0, �2

0)

�2∣�02, �
2
0 ∼ Normal( 5, �2

0)

�3∣�03, �
2
0 ∼ Normal(10, �2

0),

and no data informs �s, s = 1, . . . , 3. The mixture distribution is

b1∣�∗S, �˜, �2
0 ∼ Normal(�, �2

0),
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and a single observation of b1 = 3 was used. The flat diet distribution is

�˜∣�˜0, �0�, S ∼ Dirichlet([1, 1, 1]⊤).

The joint posterior using (5.28) is

p(�˜, �1, �2, �3∣b1 = 3, �2
0) ∝ (�2

0)−1/2 exp

⎧⎨⎩− 1

2�2
0

(
3−

3∑
s=1

�s�s

)2
⎫⎬⎭

× (�2
0)−3/2 exp

{
− 1

2�2
0

3∑
s=1

(�s − �0s)
2

}
.

The posterior attains its maximum where, simultaneously, �˜ satisfies 3 =
∑3

s=1 �s�s,

and �s = �0s, s = 1, 2, 3, and decays exponentially from this maximum scaled by

the variance, �2
0. As �2

0 decreases, �s becomes more concentrated about �0s, s =

1, 2, 3, and the marginal posterior of �˜ becomes more concentrated on the “solution

polytope” that satisfies 3 =
∑3

s=1 �0s�s. The simulation below qualitatively confirms

this heuristic argument.

WinBUGS was given the model above and allowed a 1000 iterate burn-in after

which every 10th iterate was retained for 2500 posterior draws for analysis. The

plot in Figure 5.1 shows the mixture and source distributions under the five variance

scenarios. The plot in Figure 5.2 shows that the implicit representation model pos-

terior has the mode at the solution polytope and as the variation goes to zero the

posterior concentrates about the mode. The plot in Figure 5.3 shows the results as

IsoSource reports them, as marginal histograms. When variation is included, there

is substantial probability outside the no-variation solution histograms. The large

variation in the first two of these five scenarios is not unlike what is observed in

some natural systems, and some have even more distributional overlap than in Fig-

ure 5.1. Therefore, IsoSource reports results with optimistic certainty since it does

not include variability.
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Figure 5.1: Implicit representation IsoSource limiting argument, mixture and source
distributions for five variances �2

0 = {4, 1, 0.1, 0.01, 0.0001}. The triangle indicates
the prior mean for the mixture and the crosses the prior means for the three sources.
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Figure 5.2: Implicit representation IsoSource limiting argument, bivariate distribu-
tions of pairs of (�1, �2, �3) with the mixture and source distributions as in Fig-
ure 5.1. Each row corresponds, from top to bottom, to the five scenarios for
�2

0 = {4, 1, 0.1, 0.01, 0.0001}. The red line indicates the no-variation solution ap-
proximated by IsoSource.
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Figure 5.3: Implicit representation IsoSource limiting argument, distributions of
(�1, �2, �3) with the mixture and source distributions as in Figure 5.1. Each row cor-
responds, from top to bottom, to the five scenarios for �2

0 = {4, 1, 0.1, 0.01, 0.0001}.
The red box indicates the no-variation solution approximated by IsoSource.
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5.2.2 Two-step estimation

There are times when it is useful to adopt a two-step approach to parameter estima-

tion, such as to simplify the model to improve convergence or decrease computation

time, or when data summaries are the only information available, or to help assess

whether the data are consistent with the model. To make this concrete, suppose

inference on the isotope ratio means, �˜s, s = 1, . . . , S, were of interest. Estimation

can be done in one step using joint posterior (5.28) using (5.1), (5.3), and (5.4), or

in two steps by (1) first obtaining the “posterior” for �˜s using (5.7) and (5.8) as step

one, (2) then using that as a prior in (5.28) to jointly estimate all model parameters

in step two. In particular, note that in (5.28)

p(D∗∣�∗,Σ∗)p(�∗,Σ∗) = p(�∗,Σ∗∣D∗)p(D∗)

= p(�∗∣Σ∗,D∗)p(Σ∗∣D∗)p(D∗),

so that (5.28) is equivalent to

p(�˜,Σb˜, �∗,Σ∗∣b∗,D∗) ∝ p(b∗∣�∗,Σb˜, �˜)p(Σb˜)p(�˜)p(�∗,Σ∗∣D∗)p(D∗)

∝ p(b∗∣�∗,Σb˜, �˜)p(Σb˜)p(�˜) (5.29)

×p(�∗∣Σ∗,D∗)p(Σ∗∣D∗).

In two-step estimation we first compute p(�∗,Σ∗∣D∗) and then use it as the “prior”

for (�∗,Σ∗) in conjuction with the joint prior of (Σb˜, �˜) in (5.29) to compute the

posterior for all parameters. The posterior implied by (5.29) is identical to that

given in (5.28). This argument holds regardless of the specified distributions, only

requiring the independence structure of the model. For all parameters in �∗, note

that the conditional distributions for �˜s, �˜Ds, and �˜Ts given �∗ and Σ∗ depend on

D∗ only through d∗s, d∗Ds, and d∗Ts, respectively, for s = 1, . . . , S. For our specific

distributional assumptions, this reduction is precisely what is given by (5.7) and (5.8)

in the normal hierarchical model independently for each source, s = 1, . . . , S, for �∗S,
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�∗D, and �∗T in �∗. The same result will hold for the explicit representation given in

Section 5.3 since the manipulation only deals with �∗.

5.2.3 Three-step estimation

An intermediate step can be added to the two-step estimation to combine the three

distributions for the source and diet experiment means, �˜s, �˜Ds, and �˜Ts, into a single

distribution for �˜′s, s = 1, . . . , S. Alternatively, just the diet experiment distributions

can be combined for a distribution for discrimination. One benefit of combining the

source parameters is to improve convergence of the MCMC chains. In some situations

the sum converges, �˜′s = �˜s+(�˜Ts−�˜Ds), but the individual components (�˜s, �˜Ds, �˜Ts)

may synchronously vacillate between multiple modes (later, see Figure 5.11 for an

example of this behavior). Below we show that for the parameters of most interest,

inference is the same.

Starting from the two-step estimation posterior (5.29), recognise that p(b∗∣�∗,Σb˜, �˜)

depends on �∗ only through �′∗ = [�˜′1, . . . , �˜′S] = �∗S + (�∗T − �∗D). Thus, through repa-

rameterization (5.29) is transformed into

p(�˜,Σb˜, �′∗, �∗T, �∗D,Σ∗∣b∗,D∗) ∝ p(b∗∣�′∗,Σb˜, �˜)p(Σb˜)p(�˜)

× p(�′∗, �∗T, �
∗
D∣Σ∗,D∗)p(Σ∗∣D∗),

and by integrating out �∗T and �∗D we have

p(�˜,Σb˜, �′∗,Σ∗∣b∗,D∗) ∝
∫
�∗T

∫
�∗D

p(�˜,Σb˜, �′∗, �∗T, �∗D,Σ∗∣b∗,D∗) d�∗D d�∗T

∝ p(b∗∣�′∗,Σb˜, �˜)p(Σb˜)p(�˜) (5.30)

× p(�′∗∣Σ∗,D∗)p(Σ∗∣D∗).

Use of (5.30) simplifies the two-step model in (5.29) at the loss of separate estimates

for �∗S, �∗T, and �∗D. The key point is that inference for �˜ and Σb˜ depends on �∗
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only through �′∗, thus with respect to these primary parameters, the two-step and

three-step estimation methods are equivalent.

To summarize, the three-step estimation (1) first obtains the “posterior” for

(�∗S, �
∗
D, �

∗
T∣D∗,Σ∗) using (5.7) and (5.8) as step one, (2) then reparameterizes the

model in terms of �′∗ as discussed above to give p(�′∗∣Σ∗,D∗) as step two, and (3)

finally uses the reparameterized source components as a prior in (5.30) as step three.

In some cases the loss of the ability to estimate �∗S, �∗D, and �∗T as individual com-

ponents in the three-step estimation may be offset by numerical stability in the

MCMC. In other cases the two-step estimation, which we showed was equivalent to

the one-step estimation, may be preferred.

5.2.4 Dunlin implicit representation example, two sources

and one isotope

We reanalyze the dunlin data with one isotope and two sources introduced in Sec-

tion 4.1.5. Since this is the first and simplest example, we use this opportunity to

illustrate the full model specification in detail. We specify weakly informative source

priors and compare the results using a noninformative and an informative prior on

the �˜ vector to see the influence of the prior.

5.2.4.1 Source and mixture priors

The defining equation relates the population mean isotope ratio of the dunlin to the

terrestrial and marine source isotope ratios, the isotope ratio discriminations, and

the mean diet proportion of each source,

� = (�1 + (�T − �D))�1 + (�2 + (�T − �D))�2.
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Following the discussion at the beginning of Section 4.1.5, we can be somewhat

informative regarding the mean source proportions for the terrestrial C3 ecosystem

(about −26h) and estuarine mudflats that experienced mixed marine and freshwater

inputs (about −13h). This information can further help us specify the mixture

distribution. If we believe with probability 0.95 that the mixture mean is within this

13h range, then �b = 13/4 = 3.25 gives a rough estimate of the standard deviation.

Thus, we set �2
0b = 3.252 = 10.5625 with a noninformative �0b = 0.1 (the prior

specification is worth � observations) which results in a gamma distribution for the

precision �b with E[�b ] = (�2
0b)
−1 = 0.0947 and Var[�b ] = (�0b(�

2
0b)

2/2)−1 = 1.893.

The sampling distribution for the dunlin isotope ratio is

bj∣�˜, �2
b , �1, �2, �T1, �D1

ind∼ Normal(�, �2
b ), j = 1, . . . , J = 234

(�2
b )
−1 = �b ∣�2

0b , �0b ∼ Gamma(0.05, 0.528). (5.31)

For the terrestrial source, C3 plants are between −33h and −23h with a mean

of about �01 = −26h. Using the larger difference between the mean and the end-

points (7h) and assuming that the true mean is within two standard deviations with

probability 0.95, let �0�1 = 3.5, �0�1 = 0.1, and �0�1 = 1. The sampling and prior

distributions for the terrestrial source are

d1k∣�1, �
2
d1

ind∼ Normal(�1, �
2
d1

), k = 1, . . . , K1 = 16

�1∣�01, �
2
�1
, �0�1 ∼ Normal(−26, �2

d1
/1)

(�2
d1

)−1 = �d1∣�2
0�1
, �0�1 ∼ Gamma(0.05, 0.6125).

For the marine source, C4 plants are between −16h and −9h with a mean of about

�02 = −13h. Using the larger difference between the mean and the endpoints (4h)

and assuming that the true mean is within two standard deviations with probability

0.95, let �0�2 = 2, �0�2 = 0.1, and �0�2 = 1. The sampling and prior distributions for



Chapter 5. Bayesian methods, BMM 118

the marine source are

d2k∣�2, �
2
d2

ind∼ Normal(�2, �
2
d2

), k = 1, . . . , K2 = 21

�2∣�02, �
2
�2
, �0�2 ∼ Normal(−13, �2

d2
/1)

(�2
d2

)−1 = �d2∣�2
0�2
, �0�2 ∼ Gamma(0.05, 0.2).

Discrimination is estimated from a single-source diet experiment, where we take

the sampling and prior distributions for the C3 plant control diet the same as the

terrestrial source above,

dDk∣�D, �
2
dD

ind∼ Normal(�D, �
2
dD

), k = 1, . . . , KD = 28

�D∣�0D, �
2
�D
, �0�D ∼ Normal(−26, �2

dD
/1)

(�2
dD

)−1 = �dD∣�2
0�D
, �0�D ∼ Gamma(0.05, 0.6125).

The resulting animal tissue (blood) is expected to differ by about 2h (Herrera M

et al., 2006), thus we shift the mean by the expected difference and specify the same

uncertainty as in the diet,

dTk∣�T, �
2
dT

ind∼ Normal(�T, �
2
dT

), k = 1, . . . , KT = 4

�T∣�0T, �
2
�T
, �0�T ∼ Normal(−24, �2

dT
/1)

(�2
dT

)−1 = �dT∣�2
0�T
, �0�T ∼ Gamma(0.05, 0.6125).

5.2.4.2 Two-step estimation for dunlin example

For two-step estimation as in Section 5.2.2, the data and priors are combined and

their updated values are for terrestrial �16,1 = −25.40007, �16,�1 = 17, �16,�1 =

1.306338, and �16,1 = 16.1, for marine �21,2 = −13.93551, �21,�2 = 22, �21,�2 =

3.171903, and �21,2 = 21.1, for diet �28,D = −24.67483, �28,�D = 29, �28,�D =

0.4973354, and �28,D = 28.1, and for tissue �4,T = −23.422, �4,�T = 5, �4,�T =

0.6907896, and �4,T = 4.1.
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5.2.4.3 Three-step estimation for dunlin example

Building on the two-step estimation for the dunlin example above, the three-step

estimation in Section 5.2.3 uses the estimated group means for �˜′1 and �˜′2 as−24.14725

and −12.68268. The remaining parameters (�16,�1 , �16,�1 , �16,1, �21,�2 , �21,�2 , �21,2,

�28,�D , �28,�D , �28,D, �4,�T , �4,�T , and �4,T) are the same as in Section 5.2.4.2.

5.2.4.4 Noninformative terrestrial diet prior

The noninformative prior for the mean diet vector has �˜0 = (0.5, 0.5)⊤ and �0� = 1,

�˜∣�˜0, �0�, S ∼ Dirichlet(2(0.5, 0.5)⊤).

The prior on the terrestrial diet, �1 = 1− �2, is uniform over [0, 1] in this noninfor-

mative case, �1 ∼ Beta(1, 1).

5.2.4.5 Informative terrestrial diet prior

We also specify an informative prior on the diet vector. Keith Hobson recalled a guess

before the data collection regarding the terrestrial diet being about 0.80 probability

between 0.05 and 0.25. A prior for �˜ reflecting this belief can be constructed by defin-

ing �˜0 = (0.14, 0.86)⊤ and �0� = 9 to give a prior distribution �1 ∼ Beta(2.52, 15.48),

with 0.10 probability on either side of the interval, this prior shown in Figure 5.4 has

the equivalent information of 18 observations,

�˜∣�˜0, �0�, S ∼ Dirichlet(18(0.14, 0.86)⊤).
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Figure 5.4: Dunlin Bayes implicit representation example, informative terrestrial diet
prior.

5.2.4.6 Jeffreys prior

The two-step estimation method from Section 5.2.2 is necessary when using Jeffreys

prior in WinBUGS because Jefferys prior is not proper. However, conditional on

Ks > I, KDs > I, and KTs > I, s = 1, . . . , S, the distribution from the first step in

(5.7) and (5.8) will be proper and estimation using the Jeffreys prior may proceed

in the second step. Though the results are not shown, the use of Jeffreys prior

gives similar results as using the specified priors above because the small degrees of

freedom makes the influence of the priors very weak on the posteriors.

5.2.4.7 Results

For both analyses, using the noninformative and informative diet prior, we ran 5

chains for 110000 iterations prethinned every 10. Based on the convergence in tra-

ceplots we use iterates 10001–110000 further thinning every 10 to reduce the sample

size to 50000. We checked that the Monte Carlo error for each parameter of interest

was less than about 5% of the sample standard deviation (p. 55, Spiegelhalter et al.,

2003). Results were effectively the same whether one-step, two-step, or three-step

estimation was used. Figure 5.5 shows the MCMC chains have converged and are

mixing well for a selection of parameters using the noninformative diet prior.
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For the model using the noninformative diet prior, Table 5.1 provides posterior

summaries for all the parameters and Figure 5.6 shows the posterior distributions

with highest posterior density (HPD) interval. Note that the posterior summaries

include an equal-tailed interval which is slightly different from the HPD. First, note

that the posterior estimates for the isotope ratio parameters are similar to what was

given by the method of moment estimates in Section 4.1.5 with a little additional vari-

ance due to the noninformative priors. The additional variance is reflected in �˜ being

a little more variable than the frequentist methods in Chapter 4, SD(�1) = 0.0462

for Delta method versus the posterior SD(�1) = 0.0604 for Bayes implicit representa-

tion. Much of this additional variance may be reduced with more informative priors

on the parameters and this information may be available. Also, this difference may

be due to the delta method underestimating the variability.

For model comparison we use the Deviance Information Criterion (DIC), a Bayesian

method for model comparison, where the model with the smallest DIC is estimated

to be the model that would best predict a replicate dataset which has the same struc-

ture as that currently observed (Spiegelhalter et al., 2002). Additionally, the pD is

the effective number of parameters in the model, and for non-hierarchical models

with little prior information pD should be approximately the true number of pa-

rameters (our model is hierarchical). The true number of parameters in the implicit

representation model is 11. The implicit representation with a noninformative diet

prior has a DIC of 1422.42 with a pD of 9.75685, underestimating the number of

parameters.

Table 5.2 provides selected summaries using the informative diet prior. The

implicit representation with informative priors has a DIC of 1423.24 with a pD of

9.19569, similar as with the noninformative prior.

Table 5.3 and Figure 5.7 compare the Bayes implicit representation results with

noninformative and informative prior on �˜. The noninformative prior gives similar

results to the frequentist method, but with larger variance. The informative prior
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draws the distribution slightly towards the prior value and inflates the variance even

more. The posterior distribution for �1 has larger variance with the informative

prior than the noninformative prior, possibly reflecting that the informative prior

was concentrated in a different location than what the data suggested.
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Table 5.1: Dunlin Bayes implicit representation posterior estimates with noninfor-
mative diet prior.

Parameter mean sd MC error val2.5pc median val97.5pc
�1 0.356 0.0604 0.000272 0.23 0.358 0.468
�2 0.644 0.0604 0.000272 0.532 0.642 0.77
� −16.8 0.211 0.000902 −17.2 −16.8 −16.4
�2
� 10.4 0.964 0.00442 8.64 10.3 12.4

�1 −25.4 0.338 0.00147 −26.1 −25.4 −24.7
�2
d1

1.95 0.789 0.00354 0.95 1.78 3.95
�2 −14.0 0.71 0.00304 −15.4 −14.0 −12.6
�2
d2

11.1 3.77 0.0174 5.93 10.4 20.5
�T −23.4 0.428 0.00205 −24.3 −23.4 −22.6
�2
dT

0.933 2.45 0.011 0.174 0.568 3.84
�D −24.7 0.0961 0.000404 −24.9 −24.7 −24.5
�2
dD

0.266 0.0766 0.00033 0.156 0.254 0.451

�′1 −24.1 0.553 0.0025 −25.2 −24.1 −23.1
�′2 −12.7 0.838 0.0038 −14.4 −12.7 −11.1

Table 5.2: Dunlin Bayes implicit representation posterior estimates with informative
diet prior. The other parameters are effectively the same as the noninformative case
in Table 5.1.

Parameter mean sd MC error val2.5pc median val97.5pc
�1 0.294 0.065 0.000298 0.149 0.299 0.407

Table 5.3: Dunlin Bayes implicit representation (Irep) posterior estimates for pro-
portion contribution of terrestrial sources to dunlin diet. Freqentist result is from
Table 4.5, and for Bayesian analyses, �̂1 and and Var[�̂1] are the posterior mean and
variance.

Method �̂1 Var[�̂1] SD[�̂1] 95% Int
Freq mixture and source 0.367 0.00213 0.0462 (0.277, 0.458)
Irep noninformative 0.356 0.00365 0.0604 (0.230, 0.468)
Irep informative 0.294 0.00422 0.0650 (0.149, 0.407)
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Figure 5.6: Dunlin Bayes implicit representation results for noninformative diet prior,
posteriors for MCMC chain 1 of 5 with 95% HPD interval.
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5.3 Explicit representation, subject-specific diets

In Section 5.2, the implicit representation modeled the observed mixture isotope

ratio value centered at the mean isotope ratio conditional on the mean population

diet. Here, the two primary contributions in the explicit representation are modeling

subject-specific diets and modeling isotope ratio measurement error. This model is

based on first principles and is the model we favor for analysis when the data conform

to the more strict assumptions of this model. The explicit representation models each

observed mixture isotope ratio value centered at the subject-specific mean isotope

ratio subject to measurement error (Jardine and Cunjak, 2005). Because differences

in diet lead to differences in the isotope ratios of individuals within a population

(Angerbjörn et al., 1994; Matthews and Mazumder, 2004; Urton and Hobson, 2005;

Araújo et al., 2007; Layman et al., 2007), the subject-specific mean isotope ratio is

conditional on the subject-specific diet. These subject-specific diets, in turn, follow

a distribution centered at the population mean diet with between-individual diet

variation estimated with a precision parameter.

We will show that the explicit representation is sensitive to certain model as-

sumptions, while the implicit representation is more robust to violations and may

not indicate that problems exist. An important condition in this method is that the

individual mixture diets, �˜j, j = 1, . . . , J , are probability vectors, which is equivalent

to all individual mixture isotope ratios, �˜j, j = 1, . . . , J , being in the convex hull of

the discrimination-corrected source values, �˜′s, s = 1, . . . , S. If there are mixture out-

liers, then the model may compensate by adjusting the �˜′s values to satisfy the convex

hull condition, which is not desirable. We explore this as part of the dunlin example

in Section 5.3.4. In the case of highly variable mixture measurements outside the

convex hull of the source means, the implicit representation may be the desirable

analysis because it only requires that the mixture mean be inside the convex hull,

but the practitioner should consider explanations for the mixtures being beyond the
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scope of the source means.

We model the subject-specific mean isotope ratio vector for mixture j, �˜j, as

�˜j = A�˜j, (5.32)

assuming that A is common for all mixtures. Let the isotope ratio observation from

mixture j, b˜j, depend on its subject-specific mean isotope ratio, �˜j, with

b˜j∣�˜j,Σ", �
∗ ind∼ Normal(�˜j,Σ"), j = 1, . . . , J (5.33)

Σ"∣Σ0", �0" ∼ Inv-Wishart(Σ0", �0"), (5.34)

where Σ0" and �0" specify the prior covariance matrix of the isotope ratio measure-

ment error (or alternatively, a within-individual variation, or both) and an effective

prior sample size. This specification assumes that measurements for mixtures have

a common measurement error covariance matrix, Σ". Measurement error is an im-

portant parameter in this model which has not been previously estimated separate

from other parameters.

As an aside, we note that in the overconstrained case (S < I + 1) that b˜j can

have a density because of the measurement error (and within-individual) variability.

In the absence of measurement error variability the issue of a density for �˜j would

be more critical as the conditional distribution in (5.33) would be degenerate.

5.3.1 Measurement error

Often there is one measurement per individual, which does not allow for an estimate

of Σ". However, as introduced in Section 4.1, measurements using a continuous-

flow isotope ratio mass spectrometer (IRMS) use known laboratory standards to

calibrate the measurements. For the dunlin example, every five unknowns were
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separated by both high and low laboratory standards, one on each end of the isotope

ratio range of the measurements (Evans Ogden et al., 2005). Variation is observed

in these known standards during the gas analysis and this information can be used

to partially inform Σ0" and �0". Other sources of measurement error relating to

sample collection, storage, and handling, and other conditions not applying to the

standards, could be estimated with multiple measurements on individual mixtures.

Thus, in every analysis, standards not only calibrate the isotope ratio measurements

but are also an important component to assess the measurement error.

There are different ways of using standards to calibrate the measurements and

each requires an appropriate method for modeling measurement error. A few ways

include (1) using a linear regression fit to the standards over a single measurement

run (possibly 10 to 100 measurements), (2) running pairs of identical standards at

intervals and doing a “connect-the-means” linear interpolation between each pair,

and (3) using splines to smoothly account for slow nonlinear measurement drift over

the run. We restrict our attention to (1) because our example data come from

labs that use this method, but others may be considered in future work. A linear

regression is used by fitting the isotope ratio of the standards to the run sequence

number to account for possible measurement drift over the run. The regression line

is assigned the known isotope ratio value of the standards as the reference and the

unknowns are assigned isotope ratio values relative to this line. Let the residual for

the standard, z˜rk, be the difference of the kth observed standard to the regression

line for run r. By construction the residuals have expected value 0˜ and an assumed

common variance that may be instrument specific, but might be assumed to be the

same over runs for a given instrument. The measurement error is typically much

smaller than the between-individual variation.

Let the residuals of laboratory standards, z˜k, have

z˜k∣Σ"
ind∼ Normal(0˜,Σ"), k = 1, . . . , K",
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as in linear regression method (1) above. Let the error covariance have the prior

in (5.34). Let z∗ = [z˜1, . . . , z˜Kz ]. This specification results in the posterior for the

measurement covariance as in (5.8)

Σ"∣z∗,Σ0", �0" ∼ Inv-Wishart(ΣKz", �Kz"), (5.35)

where �Kz" = �0" + Kz and ΣKz�˜" = Σ0�˜" + (Kz − 1)Sd˜z , where (Kz − 1)Sd˜z =∑Kz
k=1 z˜kz˜⊤k . This gives an easy way to combine the measurement error of the current

experiment with the (possibly instrument-specific) prior error assessment to inform

the current analysis. Also, it gives the practitioner a choice of simply using (5.35) as

the measurement error prior, or both the prior and likelihood in the modeling.

5.3.1.1 Univariate measurement error

Similar to as in Section 5.1.1.2, for the univariate case (I = 1) let residuals of

laboratory standards, zk, have

zk∣�2
"

ind∼ Normal(0˜, �2
"), k = 1, . . . , Kz. (5.36)

The conjugate prior distribution for the variance is

�2
" ∣�2

0", �0" ∼ Scaled-inv-�2(�2
0", �0"). (5.37)

The posterior can be written,

�2
" ∣z∗, �2

0", �0" ∼ Scaled-inv-�2(�2
Kz , �Kz), (5.38)

where

�Kz" = �0" +Kz

�2
Kz" =

�0"

�Kz"
�2

0" +
Kz − 1

�Kz"
s2
z,

where s2
z = K−1

z

∑Kz
k=1 z

2
k.
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5.3.2 Subject-specific diets

To model the mean population diet we adopt a hierarchical Dirichlet model, though

other models may also work well, such as a hierarchical logit-Normal. Let the subject-

specific diets, �˜j, follow a Dirichlet distribution

�˜j∣�˜, �b, S ind∼ Dirichlet(�bS�˜), j = 1, . . . , J (5.39)

�b∣�01b, �02b ∼ Uniform(�01b, �02b), (5.40)

with �b representing the between-subject diet precision about the population mean

diet, �˜. Larger values of �b specify that the diets of the individuals are more similar.

Hyperparameters (�01b, �02b) specify the range of �b, and may need to be adjusted

if the MCMC chain appears restricted by one of the boundaries. Let the popu-

lation mean diet be as in (5.27) from the implicit representation, �˜∣�˜0, �0�, S ∼

Dirichlet(�0�S�˜0).

The use of a shared parameter vector, �˜, introduces a sharing of information

between the population and subject-specific distributions. This is appropriate in

cases where the underlying distribution for each mixture is believed to be similar,

but where some degree of variation is believed to exist. Observations made for

one mixture can affect the posterior distribution of �˜, and therefore alter future

predictions for observations for other mixtures, which makes sense in a biological

system where animals are feeding in a common spatial-temporal domain.

5.3.3 Comparing implicit representation and explicit repre-

sentation models

To study when the implicit representation or explicit representation model should be

preferred we present the results of a small simulation study. In particular, we wish

to understand the effects on the ability to estimate the diet proportion relative to
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the true mean diet, measurement error magnitude, and whether information is avail-

able on the measurement error. We simulated data under the explicit representation

model similar to the dunlin example varying the true diet, �1 = {0.1, 0.25, 0.5}, the

measurement error variation �2
" = {2, 0.1}, and whether the prior for the measure-

ment error, �2
" , was informative or noninformative. We did all cases three times to

see whether the results were consistent, and because they were we report the first of

the three simulations.

Summarizing the results that follow, when the explicit representation model is the

true model then the implicit representation model provides sensible answers about

the average population diet, is an easier model to fit with fewer parameters, and the

MCMC chains always mix well. The explicit representation model provides more

detailed answers for the subject-specific diets and the average population diet at a

cost of careful specification of the measurement error. Also, when the measurement

error is large, then between-subject diet precision �b is uninformed by the data

and the MCMC chains mix poorly. Fortunately, there is always information on

measurement error from the standards included as part of the calibration in the

mass spectrometer, and this measurement error is typically very small. Therefore, the

precision of the diet estimates can be improved by using the explicit representation.

5.3.3.1 Data simulation and modeling

For the simulation, values of the true mean population diet were taken as �1 =

{0.1, 0.25, 0.5} and measurement errors were taken as �2
" = {2, 0.1}. Let the between-

subject diet precision be �b = 8. Following the explicit representation model, for the

mixture we simulate J = 100 subject-specific diets following the distribution

�j1∣�1, �b, S ∼ Beta(16�1, 16(1− �1)).
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The top two rows in Figure 5.8 show the distribution of �j1 and 100 sampled �j1. For

the two sources, we use “true” values given from the dunlin data as in Section 5.2.4.3.

The mean defining equation for the mixture isotope ratio gives

�j1 = −24.14725�j1 +−12.68268�j2 = −11.46456�j1 − 12.68268.

We add a lot or a little measurement error to the mixture isotope ratio measurements

given measurement errors �2
" = {2, 0.1} via

bjk∣�′11, �
′
12, �j1, �

2
" ∼ Normal(�j1, �

2
").

The bottom two rows in Figure 5.8 show the 100 sampled b˜jk with a little or a

lot of measurement error. With a little measurement error, the isotope ratio mea-

surements mirror the diets, but with a lot of error the isotope ratio distribution is

much more disperse compared to the underlying diet distribution. We considered

taking 1 or 5 measurements from each mixture, but taking multiple measurements

did not substantially affect the results, so we use 1 measurement as is typically done

in practice.

For modeling, we use a three-step prior on the sources from Section 5.2.4.3,

�′1∣�2
d1
, �16,�1 , �

2
dD
, �28,�D , �

2
dT
, �4,�T

∼ Normal(−24.14725, �2
16,�1

/17 + �2
28,�D

/29 + �2
4,�T

/5)

�′2∣�2
d2
, �21,�2 , �

2
dD
, �28,�D , �

2
dT
, �4,�T

∼ Normal(−12.68268, �2
21,�2

/22 + �2
28,�D

/29 + �2
4,�T

/5)

�2
d1
∣�2

16,�1
, �16,1 ∼ Scaled-inv-�2(1.3063382, 16.1)

�2
d2
∣�2

21,�2
, �21,2 ∼ Scaled-inv-�2(3.1719032, 21.1)

�2
dD
∣�2

28,�D
, �28,D ∼ Scaled-inv-�2(0.49733542, 28.1)

�2
dT
∣�2

4,�T
, �4,T ∼ Scaled-inv-�2(0.69078962, 4.1).
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We put flat priors are put on both �1 and �b

�1∣�01, �0�, S ∼ Beta(1, 1), and

�b ∼ Uniform(0.2, 20).

For measurement error, we consider either an informative prior on �2
"

�2
" ∣�2

0", �0" ∼

⎧⎨⎩ Scaled-inv-�2(2, 25) if the known variance is 2

Scaled-inv-�2(0.1, 25) if the known variance is 0.1

or a less informative prior

�2
" ∣�2

0", �0" ∼ Scaled-inv-�2(0.5, 1).

For modeling using the implicit representation model for comparison, the prior on

the precision around �1 is defined as in the dunlin example as

(�2
b )
−1 = �b ∣�2

0b , �0b ∼ Gamma(0.05, 0.528). (5.41)

Using WinBUGS we simulate 110,000 posterior samples prethinned by 10, excluding

the first 10,000 as burn-in and keeping every 10th thereafter for 10,000 posterior

samples.

Table 5.4 summarizes four comparisons between the implicit representation (irep)

and explicit representation (erep) models. We are primarily interested in how the

models compare in the inference of the population mean �1. We’ll see how the

precision parameters in the models are influenced by the amount of measurement

error in the data and whether we know a priori what that measurement error is, and

how this influences our inference of �1. The two models have different parameters,

but there is an interpretive relationship between the parameters in the two models.

For example, �2
b has similar information as �2

" and �b taken together. The true

number of parameters is 2 in the irep model and 103 in the erep model.
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In all four cases, both the irep and erep estimate �1 accurately, all within 1

posterior standard deviation of the true value. When the measurement error is large

(�2
" = 2), the erep model does not perform well, even when we have prior information

on �2
" . In the cases labeled “11i” and “31i” in the table (true �1 is 0.1 and 0.5,

respectively), the erep and irep are effectively the same in the sense that in the erep

the large �b indicates the subject-specific diets are concentrated at the mean diet �˜
and the posterior isotope ratio measurement error variance �2

" in the erep is similar

to the posterior variation between isotope ratios �2
b in the irep. The prior for �b

was modified to Uniform(0.2, 2000) because the posterior was clearly restricted by

the upper bound, but even at 2000 it was restricted. The between-diet precision �b

reflected the prior, being uniform with mean nearly 1000 (true �b is 8), which makes

the diets concentrate very tightly around �1, so the mixture isotope ratio variation is

not attributed to differences in individual diets but almost entirely to measurement

error about a common mean, �1. Thus, the posterior mean for measurement error

parameter �2
" of the erep is close to the posterior mean for the mixture isotope ratio

variation �2
b of the irep.

When the measurement error is small (�2
" = 0.1), in the cases labeled “12n” and

“22i” in the table (true �1 is 0.1 and 0.25, respectively), the erep performs much

better than the irep. The erep estimates the between-diet precision �b well. When

there is a noninformative prior on �2
" (“12n”), the posterior mean of the measurement

error variance is close to the true error variance �2
" , much better than when the error

was large. And the measurement error is correctly estimated very precisely with an

informative prior (“22i”).
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Table 5.4: Four illustrative examples comparing the implicit representation and ex-
plicit representation models for two measurement error scenarios. Values are poste-
rior mean (sd).

�1 = 0.1, �2
" = 2, info (11i) �1 = 0.5, �2

" = 2, info (31i)
param irep erep irep erep
�1 0.090 (0.052) 0.090 (0.048) 0.480 (0.049) 0.479 (0.047)
�2
b 2.015 (0.294) 3.321 (0.476)
�2
" 1.986 (0.260) 2.982 (0.428)
�b 991.1 (574.2) 939.1 (600.1)

�1 = 0.1, �2
" = 0.1, noninfo (12n) �1 = 0.25, �2

" = 0.1, info (22i)
param irep erep irep erep
�1 0.096 (0.053) 0.122 (0.036) 0.223 (0.059) 0.269 (0.036)
�2
b 1.052 (0.153) 1.505 (0.217)
�2
" 0.230 (0.157) 0.115 (0.037)
�b 9.425 (3.218) 10.45 (2.584)
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Figure 5.8: Comparing the implicit representation and explicit representation. For
�1 = {0.1, 0.25, 0.5}, (row 1) the distributions for �j1, (row 2) J = 100 samples of
�j1, and (row 3) samples of bjk with a little measurement error (�2

" = 0.1) and (row
4) a lot (�2

" = 2).
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5.3.4 Dunlin explicit representation example, two sources

and one isotope

We continue the analysis of the dunlin data from Section 5.2.4 using the explicit

representation, using the three-step estimation for the source parameters.

5.3.4.1 Measurement error prior

To assess measurement error, we use the 59 low standards (reference-1) and 35 high

standards (reference-2) from 8 runs, fit a linear regression to each reference in each

run, and calculate the residuals associated with each regression assuming the error

is common among all runs. The sample variation for the standards is s2
z = 0.2972

on Kz = 94 measurements. Using a prior of �2
0" = 1 with a weight of �0" = 1 prior

measurements, we calculate the parameters for (5.35),

�2
" ∣z1, . . . , z94, �

2
0", �0" ∼ Scaled-inv-�2(0.3132, 95). (5.42)

The data suggest there is very little measurement error.

5.3.4.2 Results using three-step estimation

We ran 5 chains for 110000 iterations prethinned every 10. Based on the convergence

in traceplots we use iterates 10001–110000 further thinning every 10 to reduce the

sample size to 50000. We checked that the Monte Carlo error for each parameter of

interest was less than about 5% of the sample standard deviation (p. 55, Spiegelhalter

et al., 2003). Figure 5.9 shows that the MCMC chains are mixing reasonably well

for a selection of parameters.

Table 5.5 provides posterior summaries for most of the parameters in the model

(excluding only the remaining �j1 and �j1) and Figure 5.10 shows selected posterior
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distributions with highest posterior density (HPD) interval. First, note that the

posterior estimates for the source discrimination-corrected isotope ratio parameters

are different from the implicit representation estimates in Table 5.1. In particular,

the explicit representation posterior means for �′1 and �′2 are −30.5 and −12.4 com-

pared to −24.1 and −12.7 for the implicit representation. In practice, if the source

estimates are much different than what is given by the method of moment estimates

in Section 4.1.5, then this should be investigated. The lower source endpoint has

been shifted lower, and the upper has been moved higher. This is the key interesting

feature in this example so we consider this phenomenon in detail in the following

section. Because the source endpoints have shifted, this affects the estimate of the

mean diet parameter, �1, which is 0.249 instead of 0.356. In the trace plots in Fig-

ure 5.9, the dynamic relationship between �′1 and the diet and between-diet precision

parameters, �1 and �b, can be seen when �′1 dips three times between iterations 4000

and 7000 and the diet parameters respond.

5.3.4.3 Mixtures outside sources

In the explicit representation, when the isotope ratios of individual mixtures are

outside the range of the source means, then the estimation of at least one param-

eter may be compromised. An individual mixture’s diet, �˜j, is constrained to be a

probability vector, and with two sources, as in the dunlin example, this is natural

when �′11 ≤ �j1 ≤ �′12. Looking at carbon in Figure 4.5, there are several dunlin

isotope ratio observations less than the lower terrestrial source mean and several just

greater than the upper marine source mean. In Table 5.5 we have already seen that

the explicit representation posterior means for �′1 and �′2 were far from the method

of moment estimates. Thus, while the distributions for �′1 and �′2 were centered at

−24.1 and −12.7, these extreme mixtures outside this range forced these endpoints

out so that all �˜j were between 0 and 1.
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Table 5.5: Dunlin Bayes three-step explicit representation posterior estimates with
noninformative prior.

Parameter mean sd MC error val2.5pc median val97.5pc
�1 0.249 0.0255 0.000713 0.193 0.251 0.294
�2 0.751 0.0255 0.000713 0.706 0.749 0.807
�11 0.37 0.0366 0.00104 0.288 0.374 0.434
�21 0.308 0.0319 0.000855 0.238 0.31 0.365
�31 0.597 0.0552 0.00169 0.468 0.604 0.684
�41 0.333 0.0337 0.000925 0.259 0.336 0.392
�51 0.375 0.0369 0.00105 0.292 0.378 0.438
�b 2.55 0.548 0.0148 1.76 2.46 3.9
�11 −19 0.317 0.0015 −19.7 −19 −18.4
�21 −17.9 0.316 0.0014 −18.5 −17.9 −17.3
�31 −23.1 0.315 0.00145 −23.7 −23.1 −22.5
�41 −18.4 0.316 0.00146 −19 −18.4 −17.7
�51 −19.1 0.314 0.00138 −19.7 −19.1 −18.5
�2
" 0.1 0.0147 0.00007 0.0753 0.0985 0.133
�′1 −30.5 1.84 0.0621 −35.3 −30.1 −28.3
�′2 −12.4 0.186 0.00168 −12.7 −12.4 −11.9
�2
d1

1.96 0.8 0.00367 0.951 1.79 3.99
�2
d2

11.1 3.74 0.017 5.95 10.4 20.3
�2
dT

53.5 71.6 1.33 8.56 34.3 213
�2
dD

0.266 0.0769 0.000349 0.157 0.253 0.453

Another indication that something may be amiss is MCMC nonconvergence when

we use the two-step estimation method instead of the three-step. In Section 5.2.3

we showed that the two- and three-step estimation methods are equivalent with

regards to the discrimination-corrected source isotope ratio means, �′s, s = 1, . . . , S.

This two-step estimation method illustrates the point made in Section 5.2.3 that

in some situations the sum converges, �˜′s = �˜s + (�˜Ts − �˜Ds), but the individual

components (�˜s, �˜Ds, �˜Ts) may synchronously vacillate between multiple modes. In

Figures 5.11 and 5.12 we see that the source and diet isotope ratio means appear to

have two “basins of attraction” within the MCMC chains for two-step estimation,

even though their sum is stable. The individual distributions for �1, �2, �T, and
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�D each attempt to keep the posterior draws near their prior values, however the

extreme mixtures and the probability constraint of their associated diets, �˜j, force

the endpoints, �′s, outward. This tug-of-war of the individual posteriors affects the

individual chains. The three-step estimation method suggests that this may not be

an MCMC convergence issue, but possibly an issue of model misspecification that

those extreme mixtures can not be composed of the mean sources since they are

beyond the endpoints. This behavior may also possibly be the result of weakly

informed parameters or indicate other issues.

5.3.4.3.1 Trimmed mixtures to stay within the source endpoints To

study parameter estimation when individual mixtures are beyond the scope of the

source means we compare the fit of the implicit representation and explicit represen-

tation models using (1) the full mixture dataset (J = 234) in the previous sections

with (2) a trimmed dataset (J = 209) including only those mixtures within a small

margin of the source mean endpoints, −23.5 ≤ bj1 ≤ −13. This will show that it is

the extreme mixtures that are most affecting the parameter estimation of the sources

and diets in the explicit representation model.

Table 5.6 shows the results of three paired Bayesian model fits of the source

parameters. For comparison, the method of moments estimates of the discrimination-

corrected isotope ratio means (SD), d̂′1s, from Table 4.4 are −24.01 (0.373) and

−12.63 (0.731) for terrestrial and marine. The first section of Table 5.6 gives the

corresponding frequentist estimates of the source and discrimination values. The

implicit representation model (irep) estimates the source means well for both the

full data and trimmed data. The explicit representation model (erep) works well in

the trimmed data case, but for the full data the terrestrial source endpoint shifts by

−6h. This endpoint shift serves to accommodate the mixture isotope ratios beyond

the source means. If we also assume that the measurement error is not as small as
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we estimate it to be from the standards (erep big ME), by using

�2
" ∣�2

0", �0" ∼ Scaled-inv-�2(42, 1),

then for the full data we see only a 1h shift to the left for the left endpoint and

also about a 1.5h shift to the left for the right endpoint. The additional spread

is accommodated for by the measurement error, �2
" , now larger by over an order

of magnitude, as well as the between precision of the mixture diets, �b, decreasing.

For the trimmed dataset, the measurement error stays smaller since a large error is

not required to “reach” over the source endpoints to capture those extreme mixture

isotope ratios. Therefore, the implicit representation is sensitive only to where the

mean mixture isotope ratio is and not to where individual mixtures are, while the

explicit representation is sensitive to individual mixture isotope ratios and will erro-

neously adjust parameter estimates in order to satisfy the model constraints. Thus,

more care in the analysis is necessary when using the explicit representation model.

There are a number of reasons why mixture isotope ratios might fall outside the

range of the source means, including that all necessary sources were not considered,

the sample sources do not reflect the sources consumed by the sampled mixtures,

source discriminations are in error, or many other possibilities. One reason high-

lighted by the last model in Table 5.6 is model misspecification, in particular, that

individual mixtures have source preferences that can vary from the mean source iso-

tope ratio. Consider the following replacement for (5.32) in the context of the dunlin

example,

�j1 = �′j11�j1 + �′j12(1− �j1), (5.43)

where �′j11 = �j1s + (�T − �D), and there are now subject-specific source isotope

ratios consisting of the mean source isotope ratio and a subject-specific offset, �j1s =
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Table 5.6: Dunlin Bayes illustration of a source endpoint shift under the explicit
representation model when subject-specific mixture isotope ratios are outside the
range of the discrimination-corrected isotope ratio means of the sources.

Full data Trimmed data
Model Param mean sd mean sd
Freq d̄11 −25.36 1.313 same

d̄12 −13.98 3.248
d̄1T −23.28 0.323
d̄1D −24.63 0.380

d̂′11 −24.01

d̂′12 −12.63
�1 0.367 0.046 0.367 0.045

irep �′1 −24.1 0.553 −24.1 0.554
�′2 −12.7 0.838 −12.7 0.841
�2
� 10.4 0.964 6.96 0.690
�1 0.356 0.060 0.355 0.054

erep �′1 −30.5 1.84 −24.2 0.406
�′2 −12.4 0.186 −13.2 0.150
�2
" 0.10 0.015 0.098 0.014
�b 2.55 0.548 1.481 0.225
�1 0.249 0.026 0.332 0.023

Erep big ME �′1 −25.0 0.934 −24.0 0.515
�′2 −14.1 0.420 −13.8 0.350
�2
" 2.54 0.666 1.15 0.359
�b 0.936 0.284 1.39 0.330
�1 0.245 0.034 0.294 0.031

�1s + �j1s. We can rewrite this as (5.32) plus an additional term,

�j1 = {�′11�j1 + �′12(1− �j1)}+ {�j11�j1 + �j12(1− �j1)}, (5.44)

where the additional term will become absorbed in the error associated with b˜jk in

(5.33). Such a model can explain the large estimate of �2
" in the last model (erep big

ME) in Table 5.6. Model comparison is a possible avenue for future research.

Having the condition that all the subject-specific mixture isotope ratio measure-
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ments fall, in the language of Chapter 3, within the convex hull of the discrimination-

corrected isotope ratio means of the sources is a considerably strict condition for the

explicit representation to give accurate estimates of all model parameters. However,

when individual mixtures fall outside the range of the source means, the practitioner

should consider carefully whether the sampled sources and mixtures accurately reflect

the system under investigation.

5.4 Underconstrained example, mink

We revisit the underconstrained mink example from Ben-David et al. (1997) to il-

lustrate the implicit representation and explicit representation models when there

are many sources and few isotopes. We reproduce the data in Table 5.7, where the

mink summaries were calculated from 5 observations provided by Merav Ben-David

(personal communication) after removing an outlier. We have no covariance esti-

mates and no real prior information on any of the source isotope ratios so we use a

univariate model for each isotope and Jeffreys priors to model the source parame-

ters. From the convex hull plot in Figure 5.13 there is no clear covariance among the

mixture observations so we treat the two isotopes independently. Thus, this example

realistically illustrates how a researcher might use summarized source data from the

literature to perform a diet analysis on a small sample of mixtures. Note that differ-

ences exist between the data in Table 5.7 and in Phillips (2001, Table 3) and Phillips

and Gregg (2003, Figure 4), where there are errors in the nitrogen discrimination for

the invertebrates and the carbon isotope ratio value for ducks, and the mink values

are different since they are obtained from a plot (Ben-David et al., 1997, Figure 2).

For the sources we assume a univariate Jeffreys prior for isotopes independently

as in (5.22) and (5.23). For example, for tidal fish carbon, we use the two-step
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Table 5.7: Mink example, five observations of mink blood as a mixture of S = 7
sources, tidal fish, blue mussels, crabs, shrimps, rodents, amphipods, and ducks
using I = 2 isotopes of carbon (i = 1) and nitrogen (i = 2) (Ben-David et al., 1997).

Observations Sample Isotope Ratios
Coastal mink j carbon bj1 nitrogen bj2

(b1) 1 −15.23 14.44
(b2) 2 −14.37 14.18
(b3) 3 −14.61 14.10
(b4) 4 −15.76 12.50
(b5) 5 −15.60 13.82

outlier (b6x) 6 −19 .99 10 .23

Summaries Sample Isotope Ratios Discrim
Mixture J b̄1 (SE) b̄2 (SE)

Mink 5 −15.11 (0.27) 13.81 (0.34)

Sources Ks d̄1s (SE) d̄2s (SE) Δ1s Δ2s

Tidal fish (s = 1) 15 −15.23 (0.22) 12.68 (0.09) 1 2
Blue mussels (s = 2) 11 −19.51 (0.26) 7.74 (0.15) 1 3
Crabs (s = 3) 20 −16.28 (0.22) 9.20 (0.16) 1 3
Shrimps (s = 4) 6 −17.90 (0.39) 9.96 (0.21) 1 3
Rodents (s = 5) 18 −26.61 (0.50) 7.07 (0.28) 2 3
Amphipods (s = 6) 25 −19.69 (0.18) 12.00 (0.19) 1 3
Ducks (s = 7) 6 −23.38 (1.06) 11.92 (0.98) 2 3
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“updated” priors

�11∣d∗11, �
2
�11
∼ Normal(−15.23, �2

�11
/15)

�2
�11
∣d∗11 ∼ Scaled-inv-�2(15(0.22)2, 14),

and for tidal fish nitrogen, we have

�21∣d∗21, �
2
�21
∼ Normal(12.68, �2

�21
/15)

�2
�21
∣d∗21 ∼ Scaled-inv-�2(15(0.09)2, 14).

Note that it is possible to treat the covariance of carbon and nitrogen as missing

values that are estimated in the Bayesian model, but we are not doing that. For

simplicity, the discrimination values, Δ˜ s, are assumed fixed and known, s = 1, . . . , S.

The mean diet proportion vector prior is uniform, with �0� = 1 and �˜0 = 1˜/7,

�˜∣�˜0, �0�, S ∼ Dirichlet(1˜).

5.4.1 Implicit representation

Because we have only five mink observations and there is not a strong indication

of carbon and nitrogen correlation in Figure 5.13 we assume a simpler model for b˜j
where the covariance is zero and the variance prior is noninformative. The sampling

distribution for the mink carbon and nitrogen isotope ratios are

bji∣�˜, �2
bi
, �∗S

ind∼ Normal(�i, �
2
bi

), j = 1, . . . , 5

�2
bi
∣�2

0bi
, �0bi ∼ Scaled-inv-�2(1, 0.01).
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5.4.2 Results

We ran 5 chains for 110000 iterations prethinned every 10. Based on the convergence

in traceplots we use iterates 10001–110000 further thinning every 10 to reduce the

sample size to 50000. We checked that the Monte Carlo error for each parameter of

interest was less than about 5% of the sample standard deviation (p. 55, Spiegelhalter

et al., 2003). Figure 5.14 shows the MCMC chains have converged and are mixing

well for a selection of parameters.

Table 5.8 provides posterior summaries for all the parameters and Figure 5.15

shows selected posterior distributions with highest posterior density (HPD) interval,

and Figure 5.16 shows the same for �˜. Note that the posterior summaries include

an equal-tailed interval which is slightly different from the HPD. First, note that

the posterior estimates for the mixture and sources isotope ratio parameters are

similar to the method of moment estimates in Table 5.7. The posterior means for

�˜ are different from what is given in the no variation case in Table 3.2, and the

posterior standard deviations are uniformly larger than in the no variation case.

The scatterplot and marginal histograms in Figure 5.17 show more variability in the

posterior distribution of �˜ than in the no variation case in Figure 3.4.

The diet estimates indicate that fish and crab contribute roughly 70% to an

average mink’s diet, which is not surprising since the mean isotope ratio for the mink

is near the boundary of the convex hull with fish and crab as vertices. Furthermore,

fish is estimated at just over half the diet.
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5.4.3 Explicit representation

Let the isotope ratio observation from mixture j, b˜j, depend on its subject-specific

mean isotope ratio, �˜j, with

bji∣�˜j, �2
"i
, �∗S

ind∼ Normal(�ji, �
2
"i

), j = 1, . . . , 5.

We assume measurement error for carbon and nitrogen are independent and we base

our prior for measurement error variance on what we observed for the dunlin example

in (5.42),

�2
"i
∣�2

0"i
, �0"i ∼ Scaled-inv-�2(0.32, 25).

Let the subject-specific diets, �˜j, follow a Dirichlet distribution with a uniform dis-

tribution on the between-mixture precision parameter,

�˜j∣�˜, �b, S ind∼ Dirichlet(�bS�˜), j = 1, . . . , J

�b∣�01b, �02b ∼ Uniform(0, 40).

5.4.4 Results

We ran 5 chains for 17000 iterations prethinned every 10. Based on the convergence

in traceplots we use iterates 2001–17000 without further thinning for a sample size

of 75000. We checked that the Monte Carlo error for each parameter of interest

was less than about 5% of the sample standard deviation (p. 55, Spiegelhalter et al.,

2003). Figure 5.18 shows the MCMC chains have converged and are mixing well for

a selection of parameters.

Table 5.9 provides posterior summaries for the mixture-related parameters and

Figure 5.19 shows selected posterior distributions with HPD interval, and Figure 5.20
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shows the same for �˜. Not shown are the posterior estimates for the source isotope ra-

tio parameters, but they are similar to the method of moment estimates in Table 5.7.

The posterior means for �˜ are more concentrated than in the implicit representation

Table 5.8. The scatterplot and marginal histograms of �˜ in Figure 5.21 show this con-

centration about a single mode, which was not as clear in the implicit representation

Figure 5.17.

To compare the posterior summaries for �˜ between the implicit representation

and explicit representation, Figure 5.22 plots the mean and central 95% interval for

the population mean �˜, as well as the mixture-specific �˜j from the explicit represen-

tation model. The explicit representation intervals for �˜ are uniformly less variable

than the implicit representation. Many of the intervals for the elements of �˜j are also

less variable than the implicit representation estimate for elements of �˜. This exam-

ple illustrates that when the measurement error variance is small and the individual

mixtures have isotope ratios within the scope of the sources, then the explicit repre-

sentation model can provide more efficient estimation of the diet than the implicit

representation model.

Finally, Figure 5.23 plots the posterior densities for the population mean �˜ from

the implicit representation and explicit representation models, as well as the mixture-

specific �˜j from the explicit representation model. The explicit representation den-

sities for �˜ are uniformly less variable than the implicit representation.

In Chapter 3 we showed an improved algorithm to provide solutions to the un-

derconstrained case without accounting for uncertainty. This example illustrates

how our Bayesian models can provide diet estimates while also accounting for un-

certainty. Also, the explicit representation model provided more efficient estimates

than the implicit representation.
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Table 5.8: Mink Bayes implicit representation posterior estimates.

Parameter mean sd MC error val2.5pc median val97.5pc
�1 0.534 0.156 0.000858 0.145 0.558 0.773
�2 0.0591 0.0514 0.000237 0.00176 0.0453 0.19
�3 0.161 0.12 0.000561 0.00669 0.138 0.447
�4 0.104 0.0956 0.000464 0.00294 0.076 0.354
�5 0.0277 0.0267 0.000125 0.000778 0.02 0.0978
�6 0.0664 0.0679 0.000337 0.00177 0.0462 0.254
�7 0.0483 0.0591 0.000412 0.00112 0.0307 0.21
�1 −15.7 0.598 0.00284 −17.4 −15.6 −15
�2 13.8 0.301 0.00132 13.1 13.8 14.3
�2
�1

1.68 4.54 0.0203 0.156 0.688 9.38
�2
�2

0.937 2.07 0.00917 0.202 0.622 3.48

�11 −15.1 0.237 0.000976 −15.6 −15.1 −14.6
�21 12.7 0.0969 0.000443 12.5 12.7 12.9
�12 −19.5 0.292 0.00133 −20.1 −19.5 −18.9
�22 7.74 0.17 0.000803 7.4 7.74 8.08
�13 −16.3 0.233 0.00107 −16.7 −16.3 −15.8
�23 9.21 0.17 0.000775 8.87 9.2 9.54
�14 −17.8 0.547 0.0025 −18.8 −17.8 −16.7
�24 9.96 0.267 0.00119 9.43 9.96 10.5
�15 −26.6 0.531 0.00247 −27.6 −26.6 −25.5
�25 7.07 0.298 0.00134 6.48 7.07 7.66
�16 −19.7 0.189 0.000835 −20.1 −19.7 −19.3
�26 12 0.197 0.000913 11.6 12 12.4
�17 −23 1.78 0.0125 −25.7 −23.2 −19
�27 11.9 1.25 0.00581 9.44 11.9 14.4
�2
�11

0.856 0.388 0.00174 0.391 0.77 1.84
�2
�21

0.141 0.0638 0.000285 0.0651 0.127 0.303
�2
�12

0.929 0.537 0.00243 0.362 0.796 2.29
�2
�22

0.31 0.178 0.000811 0.121 0.266 0.758
�2
�13

1.08 0.393 0.00175 0.559 1 2.05
�2
�23

0.571 0.208 0.000941 0.298 0.53 1.09
�2
�14

1.59 2.37 0.0131 0.358 1.06 5.89
�2
�24

0.442 0.592 0.00264 0.102 0.304 1.6
�2
�15

5.1 2 0.00872 2.52 4.68 10.1
�2
�25

1.59 0.62 0.00289 0.797 1.46 3.14
�2
�16

0.883 0.28 0.00122 0.493 0.833 1.57
�2
�26

0.985 0.313 0.00141 0.546 0.928 1.75
�2
�17

13.5 31.8 0.223 2.64 8 54.8
�2
�27

9.54 11.2 0.0515 2.24 6.59 34.5
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Figure 5.15: Mink Bayes implicit representation results, posteriors for MCMC chain
1 of 5 with 95% HPD interval.
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Figure 5.16: Mink Bayes implicit representation results, posteriors for �1, . . . , �7 for
MCMC chain 1 of 5 with 95% HPD interval.
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Figure 5.17: Mink Bayes implicit representation example, �˜ histograms along diag-
onal, scatterplot of paired source contributions on the upper diagonal, and corre-
sponding two-dimensional density histograms on the lower diagonal.
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Table 5.9: Mink Bayes explicit representation posterior estimates for mixture pa-
rameters. Source parameters are similar as in implicit representation.

Parameter mean sd MC error val2.5pc median val97.5pc
�1 0.572 0.107 0.00264 0.332 0.583 0.751
�2 0.076 0.0471 0.00113 0.0112 0.0674 0.187
�3 0.146 0.0845 0.00208 0.018 0.135 0.334
�4 0.0852 0.0638 0.00159 0.0101 0.0684 0.25
�5 0.0322 0.0252 0.000677 0.00448 0.0252 0.0987
�6 0.0478 0.0347 0.000857 0.00651 0.0392 0.136
�7 0.0409 0.0361 0.00106 0.00525 0.0317 0.129
�11 0.686 0.104 0.00191 0.469 0.692 0.865
�12 0.0425 0.0443 0.000783 0.0000139 0.0282 0.155
�21 0.756 0.104 0.00213 0.538 0.764 0.928
�22 0.0341 0.0366 0.000686 0.00000176 0.0218 0.129
�31 0.723 0.105 0.00201 0.502 0.73 0.902
�32 0.0407 0.0423 0.000759 0.00000167 0.0272 0.148
�41 0.406 0.146 0.00327 0.0925 0.419 0.663
�42 0.16 0.122 0.00235 0.0000394 0.147 0.415
�51 0.586 0.115 0.00207 0.34 0.595 0.787
�52 0.0719 0.0684 0.00118 0.0000109 0.0535 0.237
�b 2.86 3.02 0.0979 0.42 1.89 11.8
�11 −15.2 0.277 0.00167 −15.7 −15.2 −14.6
�12 14.1 0.24 0.00337 13.6 14.1 14.6
�21 −14.7 0.248 0.00318 −15.2 −14.7 −14.3
�22 14.1 0.219 0.00295 13.7 14.2 14.5
�31 −14.8 0.251 0.00266 −15.4 −14.8 −14.4
�32 14.1 0.223 0.0026 13.6 14.1 14.5
�41 −15.8 0.292 0.00291 −16.4 −15.8 −15.3
�42 13.1 0.342 0.0067 12.4 13.1 13.8
�51 −15.5 0.282 0.00193 −16.1 −15.5 −15
�52 13.8 0.243 0.00205 13.3 13.8 14.3
�2
"1

0.101 0.0311 0.000169 0.0566 0.0952 0.177
�2
"2

0.108 0.0353 0.000377 0.0591 0.102 0.194
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Figure 5.19: Mink Bayes explicit representation results, posteriors for MCMC chain
1 of 5 with 95% HPD interval.
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Figure 5.20: Mink Bayes explicit representation results, posteriors for �1, . . . , �7 for
MCMC chain 1 of 5 with 95% HPD interval.



Chapter 5. Bayesian methods, BMM 164

Fish

0.0 0.6 0.0 0.6 0.0 0.6

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

Mussels

Crabs

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

Shrimps

Rodents

0.
0

0.
4

0.
8

0.
0

0.
4

0.
8

Amphipods

0.0 0.6 0.0 0.6 0.0 0.6 0.0 0.6

0.
0

0.
4

0.
8

Ducks

Figure 5.21: Mink Bayes explicit representation example, �˜ histograms along diag-
onal, scatterplot of paired source contributions on the upper diagonal, and corre-
sponding two-dimensional density histograms on the lower diagonal.
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Figure 5.23: Mink Bayes implicit representation (dashed) versus explicit repre-
sentation (solid) results, posteriors densities for �1, . . . , �7 (black) and �j1, . . . , �j7,
j = 1, . . . , 5 (colors).
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Chapter 6

Extensions, future work, and

conclusion

6.1 Extensions

6.1.1 Modeling an over-constrained population mean pro-

portion

In ecology, carbon and nitrogen are often measured together. Also, two-source mixing

model applications are very common, such as estimating diet proportions of C3 and

C4 photosynthetic plants. In this situation (S = 2, I = 2) the diet proportions can

be estimated using carbon or nitrogen. Practitioners often use their judgement to

choose one of the isotopes over the other, but estimation can potentially be more

precise by combining the solutions.
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6.1.1.1 Frequentist implicit representation, weighted least squares

When we are in the over-constrained situation of having at least as many isotopes

as sources, I + 1 > S, there are u = I!/((S − 1)!(I − S + 1)!) combinations of

isotopes to calculate univariate estimates Ts1, . . . , Tsu of the proportion for source s,

�s. These solutions are correlated because the isotope ratios are measured jointly

for each sample. Some of these estimates are better in mean squared error than

others. Each estimate using the implicit-function theorem from Section 4.2.2.1 has

an asymptotically normal distribution and these correlated estimates are optimally

combined using weighted least squares to provide a single best estimate. Let T˜ =

(Ts1, . . . , Tsu)
⊤ have covariance matrix ΣT , for which there is a consistent estimate

ST . The weighted least squares estimate of �s is

�̃s =
1˜⊤S−1

T T˜
1˜⊤S−1

T 1˜ , (6.1)

with estimated variance Var[�̃s] = (1˜⊤S−1
T 1˜)−1.

Example 6.1.1. Dunlin carbon and nitrogen

We use the dunlin example with two-sources and two-isotopes to illustrate how to

incorporate individual estimates into a combined estimate. For this example, a

modification in notation uses the additional first subscript on �˜i and �is to indicate

the isotope used for estimation, rather than a subject-specific diet as previously

defined. Let �˜1 = [�11, �12]⊤ and �˜2 = [�21, �22]⊤ be the proportion vectors for

carbon and nitrogen, respectively, with the understanding that �˜ = �˜1 = �˜2. Using

carbon alone the estimate of �˜1 is

�̂˜1 =

⎡⎣ �̂11

�̂12

⎤⎦ =

⎡⎣ 0.3673

0.6327

⎤⎦ and V̂1 = 0.002246

⎡⎣ 1 −1

−1 1

⎤⎦ ,



Chapter 6. Extensions, future work, and conclusion 169

and using nitrogen alone the estimate of �˜2 is

�̂˜2 =

⎡⎣ �̂21

�̂22

⎤⎦ =

⎡⎣ 0.3596

0.6404

⎤⎦ and V̂2 = 0.004220

⎡⎣ 1 −1

−1 1

⎤⎦ .
Notice that the estimates and associated covariances are different for the carbon and

nitrogen isotopes, with nitrogen being more variable. Let the parameter of interest

be the proportion for the terrestrial diet, �1. Above, we have the estimates of �1

using carbon and nitrogen as T˜ = (T1, T2)⊤ = (�̂11, �̂21)⊤, and we need to derive the

covariance matrix, ΣT . Using the implicit-function theorem from Section 4.2.2.1, we

can estimate the variance for the two estimates �̂˜1 and �̂˜2 simultaneously, as well as

the covariance between the estimates. Let

�˜y = [�11, �21, �12, �22, �1T, �2T, �1D, �2D, �1, �2],

and

y˜k = [d̄11, d̄21, d̄12, d̄22, d̄1T, d̄2T, d̄1D, d̄2D, b̄1, b̄2].

Let GCN be block diagonal, diag[GC ,GN ], giving the required equation for (4.19)

⎡⎢⎢⎢⎢⎢⎣
0

0

0

0

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎣ GC 0

0 GN

⎤⎦
⎡⎢⎢⎢⎢⎢⎣
�11

�12

�21

�22

⎤⎥⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎢⎣

0

1

0

1

⎤⎥⎥⎥⎥⎥⎦ , where

GC =

⎡⎣ �11 + (�1T − �1D)− �1 �12 + (�1T − �1D)− �1

1 1

⎤⎦ and

GN =

⎡⎣ �21 + (�2T − �2D)− �2 �22 + (�2T − �2D)− �2

1 1

⎤⎦ .
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Then (4.23) is

H =

⎡⎢⎢⎢⎢⎢⎣
�11 0 �12 0 1 0 −1 0 −1 0

0 0 0 0 0 0 0 0 0 0

0 �21 0 �22 0 1 0 −1 0 −1

0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ .

The covariance for y˜k is

Ω̂k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cov[d̄˜1]

Cov[d̄˜2]

Cov[d̄˜T]

Cov[d̄˜D]

Cov[b̄˜]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally, the covariance for (4.22) is

Cov[(�̂11, �̂12, �̂21, �̂22)⊤] = V̂ = Ĝ−1
CNĤΩ̂k(Ĝ

−1
CNĤ)⊤,

which is estimated by substituting the natural estimates in the matrices above.

Now we apply weighted least squares to combine the correlated carbon and ni-

trogen estimates for an improved estimate for �1. We use the Kronecker product to

represent the covariance matrix,

Ĉov[(�̂11, �̂12, �̂21, �̂22)⊤] = V̂ =

⎡⎣ 0.002246 0.000217

0.000217 0.004220

⎤⎦⊗
⎡⎣ 1 −1

−1 1

⎤⎦ .
We can now form the covariance for the estimates for �1 by extracting the four

elements corresponding to the rows and columns associated with �̂11 and �̂21 in V̂,

in this case this is the intersection of the first and third rows and columns,

Ĉov[(�̂11, �̂21)⊤] = ST =

⎡⎣ 0.002246 0.000217

0.000217 0.004220

⎤⎦ .
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By (6.1), we have the estimate

�̃1 =
[1, 1]S−1

T [0.3673, 0.3596]⊤

[1, 1]S−1
T [1, 1]⊤

= 0.3647

with estimated variance

Var[�̃1] = ([1, 1]S−1
T [1, 1]⊤)−1 = 0.001564.

The estimate �̃1 is a weighted average of the individual carbon and nitrogen esti-

mates and has a smaller estimated variance than either of the individual estimates.

Table 6.1 compares the three estimates. This can be applied in an analogous way to

larger problems.

Table 6.1: Dunlin frequentist combined estimate has a smaller variance than the
individual carbon and nitrogen estimates.

Isotope Estimate Var SD
Carbon �̂11 0.3673 0.002246 0.04739
Nitrogen �̂21 0.3596 0.004220 0.06496
Combined �̃1 0.3647 0.001564 0.03954

△

6.1.1.2 Bayesian implicit representation overconstrained situatione

We estimate the population mean diet using the dunlin carbon and nitrogen data

introduced in Section 4.1.5 with noninformative priors on all parameters and model-

ing carbon and nitrogen isotope ratio means for sources and the mixture as bivariate

normal. Using the Bayesian paradigm the model and method is the same regardless

of the relationship of S and I. Thus, treatment of the overconstrained situation

(I+ 1 > S) is no different than the perfectly (I+ 1 = S) or underconstained (I ≤ S)
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cases. Furthermore, this works in the explicit representation model because of mea-

surement error as discussed in Section 2.2.1.

Example 6.1.2. Dunlin carbon and nitrogen

The plot in Figure 6.1 and Table 6.2 shows the posterior distribution and summaries

of �1 using carbon alone, nitrogen alone, and carbon and nitrogen together. Note

that the posterior summary using carbon alone is different from in Chapter 5 since

different priors were used. As in the frequentist case in example 6.1.1, inference of �1

is more precise using carbon than using nitrogen, and using both together provides

even greater precision. △

Table 6.2: Dunlin Bayes implicit representation comparison showing that combined
estimate has a smaller variance than individual carbon and nitrogen estimates.

Parameter mean sd MC error val2.5pc median val97.5pc
Carbon �1 0.361 0.054 0.0005 0.248 0.364 0.461
Nitrogen �1 0.351 0.076 0.0009 0.191 0.355 0.489
Combined �1 0.362 0.042 0.0004 0.275 0.363 0.442

6.1.2 Frequentist explicit representation

Because multiple measurements are rarely taken on mixtures, subject-specific mod-

eling in the frequentist paradigm is not a valuable contribution at this time. But we

can outline the steps to take. We can apply results from multivariate linear models

for the data likelihood components of the mixing model. We can use general re-

sults for the multivariate linear model from Christensen (2001, sec. 1.1), applying

these results for our four data components: mixtures, sources, discriminations, and

assimilation efficiencies. For mixtures we can consider a mixed model with subject-

specific random effects, for sources a fixed effects model, for discriminations pairs

of fixed effects models or a regression model. For each model optimal parameter
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Figure 6.1: Dunlin Bayes implicit representation posterior distribution for �1 for
carbon alone, nitrogen alone, and using both isotopes together.
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estimates are given by specifying a model in terms of the general multivariate linear

model and applying the results to the vectorized univariate model. The individual

mixture mean isotope ratio random effects are predicted with best linear unbiased

predictors (BLUPs) (Robinson, 1991), and the mean diet vector and individual mix-

ture diet vectors are estimated using the delta method. However, a nonparametric

bootstrap should not be used with BLUPs because the variation will be consistently

underestimated (Morris, 2002).

6.1.3 Extended mixing model

The extended mixing model introduced in Section 1.2.1.2 has two additional compo-

nents for concentration and assimilation efficiency. In practice we would have samples

on each of these and based upon their mean values, the implicit function theorem

is modified to provide estimates of the mixture proportions and corresponding large

sample distribution. Similarly, in the Bayesian approach one would simply append

to the model the sampling distribution and the corresponding priors for each of the

two additional components.

6.2 Future work

With this dissertation as a foundation, there are many more exciting statistical

methods to develop for stable isotope sourcing.

6.2.1 Estimating diet-shift timing

The models in previous chapters are all cross-sectional in nature in that they con-

cern a single point in time assuming the mixture is consuming from a set of sources
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simultaneously. When animals undergo rapid dietary shifts due to migration, meta-

morphosis, seasonal food availability, or other reasons, the isotope ratio composition

of their tissues begins changing to reflect their diet. After a shift in diet, animal tis-

sues isotopically equilibriate with their new diet from both growth of new tissue and

metabolic turnover of existing tissue (Fry and Arnold, 1982). Different tissues vary

in their turnover rates with blood plasma and liver having high rates, muscle having

a medium rate, and bone having a low rate (Tieszen et al., 1983). Additionally,

during growth the increases in the mass of tissues has an additional dilution effect

which results in faster equilibration to the new diet than would occur by metabolic

turnover alone. Assuming a dietary step change has recently occurred, and given

tissue measurements before and after the shift, the goal is to use the isotope ratio

difference between tissues with different turnover rates to estimate the time of the

diet shift.

Many studies support a modeling assumption that after a diet shift tissue iso-

tope ratio composition changes follow an exponential model with a constant half-life

period (Ayliffe et al., 2004; Bosley et al., 2002; Hobson and Clark, 1992; MacAvoy

et al., 2001; Tieszen et al., 1983). Both growth and metabolic turnover contribute

to the change in isotope ratio composition (Fry and Arnold, 1982; Hesslein et al.,

1993). Hesslein et al. (1993) chose an exponential model for the isotope ratio change

following a diet shift in their study of broad whitefish,

�iut = �′iunew + (�′iuold − �′iunew) exp{−(gu +mu)t}, (6.2)

where �iut is the true isotope ratio in the mixture for isotope i in tissue type u at time

t since the diet shift, �′iuold and �′iunew are the discrimination-corrected isotope ratios

from the old and new diets, and gu and mu are the instantaneous rate constants for

growth and metabolic turnover. Phillips and Eldridge (2006) introduce a method for

estimating the time when the diet shift occurred, t, but variability in the estimation

is not considered.
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Given the work in Chapter 5 of this dissertation, a Bayesian approach to estimate

the diet-shift time parameter is straightforward. Consider the model

�ut =

⎧⎨⎩ �˜′unew + (�˜′uold − �˜′unew) exp{−(u + �u)(t− t0)} , t > t0, u = 1, . . . , U

�˜′uold , t ≤ t0
.(6.3)

Let t be time and let t0 be the time of the diet shift, where t0 is the primary parameter

of interest. Assume the mixture’s tissues, u = 1, . . . , U , are in equilibrium with the

“old” diet, �˜′uold. Assume we know what the source of the new diet is, �˜′unew. Let

there be data to estimate �˜′uold and �˜′unew as in Section 5.1. Let there be a growth

model to estimate u and a metabolism model to estimate �u. Assume we have

mixture data b˜jut, j = 1, . . . , J , u = 1, . . . , U , before and after the time of the diet

shift, t0. For tissue type u, let �u2 = exp{−(u + �u)(t − t0)}, then it is immediate

how to estimate t0 as we have estimated �u2, previously.

6.2.2 Differentiating between a diet shift or a mixed diet

Given a development of the diet shift model in Section 6.2.1 using (6.3), we can

develop a test for whether a mixture has been consuming sources concurrently or in

sequence. The ability to distinguish between the two diet scenaries will, in part, be a

function of differences in tissue turnover rates, tissue-specific isotope discrimination

differences, and isotope ratio differences in diet scenarios. For tissue type u, let

�u2 = exp{−(u + �u)(t− t0)}. The idea is to test whether the estimated diets, �u2,

estimated from two tissues are different. If the diets differ then that suggests a diet

shift, while if they are the same that suggests a constant diet. This is equivalent to

testing whether t0 differs between tissues.
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6.2.3 Diet as a function of covariates

Researchers are interested in relating diet to covariates such as year, region, rainfall,

altitude, species, body size, and more. The diet model we have developed here can

be included in a larger model where these hypotheses can be tested.

6.2.4 Spatial models for migration

A migratory model will have components of both spatial and temporal models. Hob-

son and Wassenaar (2008) provide a detailed account of the use of stable isotope

ratios for tracking animal migration. The plot in Figure 6.2 shows some information

entering into the problem (from Hobson and Wassenaar (Figs. 2.2 and 2.3 2008)).

On the left is an “isoscape” of �2H of summer rainfall indicating a gradient from

the equator to the poles. The water is incorporated into the tissues of plants and

animals. On the right are �2H values along the vane material for a feather grown at

one location and a feather grown during a southward migration.

6.2.5 Modeling the diet vector with logit-Normal

The specification of the Dirichlet distribution for the population mean diet and

subject-specific diets as in (5.27) and (5.39) is a convenient choice. The Dirich-

let S-dimensional parameter vector at once defines the means and covariances of the

elements of the random vector, �˜ in (5.27). A practitioner may prefer to define a

more flexible covariance among at most S − 1 elements of �˜. For example, rather

than the always negative correlations from the Dirichlet distribution, one may wish

to specify positive correlations between food sources that are typically consumed

together. In this case it will be desirable to have a more flexible covariance structure

for the diet proportion vector. One alternative is to use the logit-Normal distribution

on an S− 1-dimensional subset of �˜ with the constraint that �˜ is probability vector.
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Figure 6.2: (Left) The average hydrogen isotopic (�2H) composition of rain-
fall across the globe in the summertime. Map available from Gabe Bowen at
www.waterisotopes.org. (Right) Illustration of measured intrasample hydrogen
(�2H) isotopic heterogeneity in migrating birds. Illustrated is a comparison of a
flight feather from lesser scaup (Aythya affinis), left, that grew the entire feather at
one location, and a bald eagle (Haliaetus leucocephalus), right, that grew the feather
along its southward migration. Subsamples for hydrogen isotope analyses were taken
from vane material (350 mg) up and down the left and right side of a single feather,
and from the top and bottom portions of the rachis (R). Note that illustrated differ-
ences in feather length are not to scale and are in centimeters from the tip to base.
Both plots from Hobson and Wassenaar (2008, Figs. 2.2 and 2.3) and �2H numbers
are in permil (VSMOW).
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It is critical that the covariance matrix maintains an exchangable structure so that

the results do not depend on the choice of the reference source. Below is an example

using the explicit representation model.

Let the subject-specific diet vectors �˜j be defined in terms of �˜j, where

�js =
exp{�js}

1 +
∑S

s=2 exp{�js}
, �j1 ≡ 0

with inverse

�js = log

(
�js

1−
∑S

s=2 �js

)
,

s = 1, . . . , S and j = 1, . . . , J . In the explicit representation model, replace (5.39)

by

⎡⎢⎢⎢⎣
�j2
...

�jS

⎤⎥⎥⎥⎦ ∼ Normal

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
�2

...

�S

⎤⎥⎥⎥⎦ ,Σ�b

⎞⎟⎟⎟⎠ (6.4)

Σ�b∣Σ0�b , �0�b ∼ Inv-Wishart(Σ0�b , �0�b). (6.5)

The mean diet �˜ is specified in terms of the mean [�2, . . . , �S]⊤ from (6.4),

�s =
exp{�s}

1 +
∑S

s=2 exp{�s}
, �1 ≡ 0

s = 1, . . . , S. Let �˜0 be the prior mean for �˜, which induces a prior on �˜, where

�0s = log

(
�0s

1−
∑S

s=2 �0s

)
,
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s = 1, . . . , S. Finally, (5.27) is replaced by

⎡⎢⎢⎢⎣
�2

...

�S

⎤⎥⎥⎥⎦ ∼ Normal

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
�02

...

�0S

⎤⎥⎥⎥⎦ ,Σ��˜
⎞⎟⎟⎟⎠ (6.6)

Σ��˜∣Σ0��˜, �0��˜ ∼ Inv-Wishart(Σ0��˜, �0��˜). (6.7)

The additional modeling flexibiliy requires additional parameters, Σ0�b and Σ0��˜, to

be specified in this model such that the sources are exchangable.

Note that in this model specification it is not generally the case the E[�˜j] = �˜.

Instead, the hierarchy is defined in terms of �˜j, j = 1, . . . , J , and �˜ such that

E[�˜j] = �˜, that is, E[logit(�˜j)] = logit(�˜).

6.2.6 Measurement error estimation

There are different ways of using standards to calibrate the measurements and each

requires an appropriate method for modeling measurement error. A few ways include

(1) using a linear regression fit to the standards over a single measurement run, (2)

running pairs of identical standards and doing a “connect-the-means” interpolation

between each pair, and (3) using splines to smoothly account for nonlinear measure-

ment drift over the run. It would be valuable to have the estimation procedures

detailed for each method in use, as well as a suggested method for calibration that

maximizes the information relative to the number of standards run.

Additionally, we may wish to know whether the measurements over the range

isotope ratio values is heteroscedastic. That is, does the error variation depend on

the isotope ratio of the material, or the material itself, etceteras? If this is the case,

then additional standards may be desired over others for certain isotope ratio ranges.
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6.2.7 Subject-specific source model comparison

The explicit representation model performs poorly when there are mixture isotope

ratios outside the solution polytope of the mean discrimination-corrected isotope

ratios of the sources. Also, interpretation of the implicit representation model may

be questionable when this is the case. A model with subject-specific sources can

be conceived as in (5.43) and (5.44) and we can assess which of the two models is

preferred.

6.2.8 Animal energy requirements

There are ranges of �˜ that are feasible to satisfy the energy or health requirements of

the mixture (Mart́ınez del Rio and Wolf, 2005, p. 155). For example, essential amino

acids are required to be consumed as part of the diet for the synthesis of proteins

in the mixture, thus a diet that excludes sources of these essential amino acids may

not be feasible (at least it is not sustainable). In the frequentist paradigm, this can

be done by restricting the range of inference for �˜. In the Bayesian paradigm, this

can be done by restricting the range of the prior on �˜.

6.2.9 Dietary routing model

Dietary proteins and lipids may be preferentially “routed” to synthesis of body pro-

teins or lipids, respectively (Krueger and Sullivan, 1984; Ambrose and Norr, 1993;

Tieszen and Fagre, 1993). In such a situation, C isotopes in body proteins would

be disproportionately labeled by dietary proteins, leading to an over-estimate of the

fraction of protein-rich foods in the consumer’s diet. Similarly, dietary lipids may

be routed to synthesis of body fat (Stott et al., 1997). A model accounting for the

preferential routing of specific source material to specific tissues is a simple extension

accounting for this complexity.
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6.2.10 Proportions of sources consumed mixing model

The proportions of sources consumed mixing model (PSCMM) is the same model

as the EMM except that there is no simplex constraint in the defining equation,

but instead the estimated vector is restricted to the unit cube. Given the biomass

in the environment of each source before consumption, the PSCMM estimates the

proportion of each source population consumed by the mixture population. Schuur

et al. (2003) use this model to estimate proportions of fuel sources consumed dur-

ing a boreal forest fire with isotope measurements of �13C and �14C in the carbon

dioxide released from the fire. There is a limited biomass to be consumed by the fire

consisting of needles, fine branches, cones, surface moss, etc., and it may be possible

to completely consume some or all of these sources.

Let �˜s be the vector of elemental biomasses of source s in the population and

let �s be the proportion of source s consumed (which takes the place of �s in the

BMM), 0 ≤ �s ≤ 1, s = 1, . . . , S. The defining equation replacing (1.1) is

�i =

∑S
s=1(�is + Δis)�is�s∑S

s=1 �is�s
, (6.8)

i = 1, . . . , I and s = 1, . . . , S. The model has the same linear structure as (1.1)

where

0 =
S∑
s=1

{(�is + Δis)− �i}�is�s, i = 1, . . . , I. (6.9)

This model is different from (1.1) in that it excludes the simplex constraint in the

last row. The consumable biomass �˜s can be expressed as the product of the biomass

per individual and the number of consumable individuals.

Some sources may have a tendency to be consumed faster than others. In the

boreal fire example, most of the needles might burn before the moss begins to burn,

and a severe fire could burn all the needles. An expert can put inequality constraints
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(specified as prior information) on how much of each source will burn relative to other

sources and relative to the severity of the fire. For example, the bole (tree trunk)

bark proportion combusted is greater than the bole wood proportion combusted. One

future challenge is to define priors over the unit cube that capture the propensity of

some sources to be consumed at faster rates than others.

6.2.11 Trace element and isotope geochemistry

Many of the methods in this dissertation may naturally use trace elements in place

of stable isotopes. For example, a two-source mixing model can be applied using

barium as a proxy for salinity since the concentration of barium is high in fresh-

water (runoff from the continents) and low in the ocean. In addition to the use

of stable isotopes, reconstructing past environments of organisms relies on ambient

chemicals, primarily the elements strontium (Sr), calcium (Ca), barium (Ba), and

to a lesser extent manganese (Mn), being incorporated from the environment into

discrete layers of calcified material such as a shell of an organism. Environmental

histories can be interpreted as either a change in elemental concentration, or where

ambient chemicals correlate to environmental variables. An application is the recon-

struction of the salinity experienced by fish (Elsdon and Gillanders, 2006). Ba/Ca

in planktonic foraminiferal calcite (Ba/Caforam) provides an innovative tool to assess

past variability in regional riverine runoff (Hall and Chan, 2004). Seawater Ba (Basw)

concentrations at oceanic sites influenced by riverine runoff have a notably high in-

verse correlation to salinity, with high Ba and low salinity at sites closest to the river

mouth because dissolved Ba is high in riverine water and Ba desorbs from suspended

sediments in estuaries (Edmond et al., 1978; Coffey et al., 1997). Laboratory ex-

periments on living planktonic foraminifera demonstrate that Ba incorporation in

foraminiferal calcite varies linearly with changes in Basw concentration, independent

of temperature changes within about 7 ∘C (Lea and Spero, 1994). Therefore, the

variation of Ba/Caforam is controlled by the Basw concentration, and the temporal
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variation of Ba/Caforam provides valuable insights into changes in riverine freshwater

input. Applications to the movement of barium in estuaries (Coffey et al., 1997;

Shaw et al., 1998; Hanor and Chan, 1977) and the use of the Ba/Ca ratio in cal-

cifying organisms to reconstruct salinity has a variety of applications (Elsdon and

Gillanders, 2006; Weldeab et al., 2007; Hall and Chan, 2004). Trace elements can

be coupled with stable isotope proxies that also can act as salinity proxies in certain

cases. For example, in estuaries, the �13C value of dissolved inorganic carbon varies

from near-zero down to −8 to −13 in freshwater because it is respired CO2 from soil

organic matter, which carries the same �13C value as the organic matter (with no

fractionation).
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6.3 Conclusions

In this dissertation we have considered the statistical issues associated with estimat-

ing the proportional contributions of sources to a mixture using stable isotopes, with

particular attention to the issues in animal ecology. We have addressed the situa-

tion in three ways. First, by ignoring the issues of estimation, we applied a better

algorithm implemented in our SISUS R package to provide representative samples

of the solution polytope. Next, when the diet solution is perfectly-constrained, we

developed general methods of frequentist estimation using the delta method and the

bootstrap. Finally, for problems of any size, we develop two Bayesian models to

account for uncertainty in estimating all model parameters. The implicit represen-

tation model estimates the population mean diet through the mean mixture isotope

ratio, and SISUS can be viewed as this model where the variance of all model param-

eters goes to zero. The explicit representation model estimates the population mean

diet through a distribution for subject-specific mixture diets centered at a popula-

tion mean diet, and when measurement error is small and individual mixtures are

within the scope of the sources, more efficient estimation is possible using this model.

A number of examples have been used to illustrate the methods and compare the

models. Model simplification and numerical stability has been addressed with the

use of the three-step estimation approach. Other theoretical and practical details

have been addressed throughout and a range of additional related research areas

have been outlined.
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Appendix A

Appendix to Chapter 1

A.1 Nature of the data

A detailed description of the nature of each data component will help inform model-

ing. This section can stand apart from the rest of the dissertation, used for reference

as necessary. We start with nuclide definitions (modified from Lide (2008)), provide

terminology for the model expressions we use, discuss relevant properties of common

elements used in stable isotope sourcing, and mention how the data are collected.

A.1.1 Nuclide definitions

nuclide: a nuclear species which is characterized by the number of protons and

neutrons that every atomic nucleus of this species contains. It can be used to

distinguish isotopes among nuclei, as well as other properties, represented with

A
ZE, for example for standard carbon, 12

6C. The subscript Z is often dropped

because the elemental symbol uniquely defines the atomic number.

atomic mass: the mass of a neutral atom of a nuclide
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atomic mass unit (AMU): a measure of atomic masses, where 1 AMU = 1/12

the mass of 12C. 1 AMU = 931.4812 MeV, 1.660565× 10−27 kg.

atomic number (Z): integer that expresses the number of protons in a nucleus.

Each element has a unique Z.

decay constant (�): decay rate of a radioactive isotope. ∂N
dt

= −�N , N = N0e
−�t.

electron: subatomic particle having negative charge, with a mass of 1/1837 that of

a hydrogen nucleus. rest mass: 0.9109534 × 10−30 kg. All atoms consist of a

nucleus and one or more electrons.

half-life: time required for one half of the atoms in a sample of radioactive isotope

to decay. t1/2 = ln(2)/�.

isobar: same atomic mass but different atomic number (constant A, different Z).

isomer: one of two or more nuclides having the same mass number (A) and atomic

number (Z) but existing for measureable times in different quantum states with

different energies and radioactive half-lives.

isotone: family of isotopes having the same number of neutrons (N).

isotope: one of several nuclides having the same number of protons (Z) in their

nuclei, but with different numbers of neutrons (N).

mass number (A): the sum of protons and neutrons in a nucleus, A=N+Z.

neutron: subatomic particle with zero charge and a rest mass of 1.67482 × 10−27

kg. It is unstable with respect to beta decay with a half-life of 12 minutes. The

number of neutrons in a nucleus is represented by N.

proton: a subatomic particle with a positive charge and a rest mass of 1.67252 ×

10−27 kg. The number of protons in an atom defines the element.
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radioactive decay: decay of an isotope to a different isotope with a more stable

energy configuration.

A.1.2 Isotope Ratio Mass Spectroscopy

The isotope ratio mass spectrometer (IRMS) allows the precise measurement of mix-

tures of stable isotopes (Paul et al., 2007). This technique has two different ap-

plications in the earth and environmental sciences. The analysis of stable isotopes

is normally concerned with measuring isotope ratio variations arising from mass-

dependent isotopic fractionation in natural systems.

Most instruments used for precise determination of isotope ratios are of the mag-

netic sector type. This type of analyzer is superior to the quadrupole type in this

field of research for two reasons. Firstly, it can easily be set up for multiple-collector

analysis, and secondly, it gives high-quality “peak shapes”. Both of these consider-

ations are important for isotope ratio analysis at very high precision and accuracy

(Dickin, 2005).

The sector-type instrument designed by Alfred Nier was such an advance in mass

spectrometer design that this type of instrument is often called the “Nier type”. In

the most general terms the instrument operates by ionizing the sample of interest,

accelerating it over a potential in the kilo-volt range, and separating the resulting

stream of ions according to their mass to charge ratio (m/z), see Figure A.1. The

current of each ion beam is then measured using a “Faraday” detector or multiplier

detector.

Many radiogenic isotope measurements are made by ionization of a solid source,

whereas stable isotope measurements of light elements (e.g. H, C, O) are usually

made in an instrument with a gas source. In the latter case, dual gas inlets enable

reliable repetition of measurements by supplying continuous streams of the refer-
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ence and sample gases, which are sequentially switched by a changeover valve. The

IRMS’s collector also features an array of Faraday cups (conductive, metal vessels

which neutralise ions that hit them whilst themselves becoming charged), or “mul-

ticollector”, which allows the simultaneous detection of multiple isotopes (Bouthitt

and Garnett, 2006). Samples must be introduced as pure gases, achieved through

combustion, gas chromatographic feeds (Meier-Augenstein, 1999), or chemical trap-

ping. By comparing the detected isotopic ratios to a measured standard, an accurate

determination of the isotopic make up of the sample is obtained, see Table A.2 be-

low. For example, carbon isotope ratios are measured relative to the international

standard for CO2.

Figure A.1: Schematic of an isotope ratio mass spectrometer measuring CO2 at the
United States Geological Survey.
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A.1.3 Terminology

The isotope ratio, aR. The relative abundance of two isotopes a and b of element

E can be expressed as an isotopic ratio, aR,

aR =
aE
bE
, e.g., for carbon 13R =

13C
12C

.

aE and bE is the number (or proportion) of the rare and common isotopes in a

sample, respectively. By convention, the more abundant isotope is placed in the

denominator. This notation is not particularly helpful in itself, however, as changes

in aR could result from changes in either aE or bE. Typically two isotopes comprise

nearly all the abundance of an element, and thus the ratio R can be thought of similar

to an odds. It is however the basis for several expressions that are very useful.

Fractional abundance, aF .

aF =
aE

aE + bE
, e.g., for carbon 13F =

13C
13C + 12C

.

This expression is particularly useful in artificially enriched systems where the ratio

of aE to bE is increased by the intentional addition of a pure source of one of the

two isotopes (usually the heavy isotope). The pure source is referred to as a spike,

the process of adding the source as “spiking” a sample. Spikes allow us to monitor

the movement of isotopes from one reservoir to another in response to one of more

chemical reactions.

Relationship between aR and aF . Note that

aF =
aR

1 + aR
, or alternatively, aR =

aF

1− aF
.
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The delta notation, �aE. Studies examining stable isotopes at or near natural

abundance levels are usually reported as delta, �. Lowercase delta values are not

absolute isotope abundances but differences between sample readings and one or

another of the widely used natural abundance standards which are considered delta

= zero, �aEstandard ≡ 0. The isotopic ratio aR exhibits variance in the range of the

third to fifth decimal place. Numbers this small are better presented in terms of

per mil, or parts per thousand (h). This variance can be expressed relative to the

isotopic ratio of a standard aRstandard, which should be taken to be a constant. This

difference relationship known as the delta notation (�aE),

�aE =

(
aRsample − aRstandard

aRstandard

)
× 1000, or alternatively, �aE =

(
aRsample

aRstandard

− 1

)
× 1000.

This formulation of �aE scales the relative abundance values near zero and in mag-

nitude of 10s. It is clear that �aE is on a nonlinear scale since the value is a function

of the ratio of the abundance of one isotope to another. The plot in Figure A.2a

shows that within the range of natural abundance for H, C, and N, the delta ratio

is indistinguishable from linear. Figure A.2b shows what �2H looks like when the

range goes from 0 to 0.1, 0.5, and 0.99 to illustrate that �2H is globally nonlinear.

Note that a relative abundance of 0.1 for 2H is 1000 times larger than its natural

abunance. Because the heavy isotope is relatively rare in comparison to the light

isotope the isotope ratio is locally approximately linear, but nonlinear thoughout the

range of possible heavy to light proportions.

Change of isotopic reference scale. To go from scale 1 to scale 2, for example

for oxygen that has two reference scales, [this may not be correct — check]

�aEsample2 =

{(
�aEsample1

1000
+ 1

)(
�aEstandard2

1000
+ 1

)
− 1

}
× 1000.

This relationship can be used to convert an isotope ratio value from one reference

scale to another reference scale.
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Measures of fractionation (discrimination) �, 1000 ln(�), ", and Δ. We

are interested in measuring the isotopic offset between substances A and B. Such

offsets arise from the expression of an isotope effect due to equilibrium or kinetic

fractionation during a physical process or chemical reaction. The size of this isotope

ratio fractionation can be expressed in several ways.

Fractionation factor �.

�AB = K1/n =
aRA

aRB

,

where K is the equilibrium constant for the associated reaction (such as going from

vapor to liquid phase) and S is the number of atoms exchanged. It is assumed that

A and B are in isotopic equilibrium. For simplicity, isotope exchange equations are

usually written such that S = 1 so that � = K. It is worth noting that most values

of � are close to 1, with variability in the third through fifth decimal place. We can

see that this is the case if we express a in terms of the delta notation

�AB =
1 + �aEA

1000

1 + �aEB
1000

=
1000 + �aEA
1000 + �aEB

.

Because � is close to unity, it is convenient to express fractionation in ways that

accentuate the differences between �aEA and �aEB. This can be done in one of three

ways which yield approximately the same value for the per mil fractionation.

Natural log notation, 1000 ln(�). One would think that this notation would

have its own symbol, but it does not. We can approximate the fractionation in per

mil from the fractionation factor � by taking the natural log of � and multiplying it

by 1000. This is written simply as 1000 ln(�). Mathematically, this works because

we can think of � as being composed of 1 + ", a small deviation. Now if we take

the natural log of 1 + ", the result can be expanded as a Maclaurin series in which
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the first term, ", is the largest and thus serves as a reasonable approximation of the

natural log of �. If we retain more terms, we would obtain a more accurate result,

but by convention, only the first term is retained,

1000 ln(�) = 1000 ln(1 + ")
.
= ".

Multiplying by 1000 yields the result in per mil. But since we are interested in "

anyway, there is an easier way to express the per mil fractionation.

The epsilon notation, ". The isotope enrichment is

" = (�AB − 1)× 1000 =

(
aRA

aRB

− 1

)
× 1000.

The epsilon notation has the advantage over the 1000 ln(�) notation in that it is an

exact expression of the per mil fractionation. Note, in this body of this dissertation

" denotes measurement error rather than fractionation. There is a final way of

determining the per mil fractionation. This last method is the least accurate, but

most commonly applied because of its simplicity.

The capital delta notation, Δ. The isotope separation (or discrimination) is

ΔAB = �aEA − �aEB.

This method is least accurate because the errors in the two isotope ratio measure-

ments do not cancel as is the case for random errors when calculating a ratio. In most

cases, however, it is sufficiently accurate. Note that ΔAB will depend on the reference

material, for example, for oxygen since slope is different than 1 in the relationship

�18OVSMOW = 1.030870× �18OVPBD + 30.86, where 1.030870 = RVPBD/RVSMOW.
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Concentration. The instrument software uses the following approach to cal-

culate elemental concentration (Craig Cook SIRFER lab, Univeristy of Utah de-

partment of Biology, personal communication): 1) the user defines a known weight

percentage reference material, 2) the user accurately weighs the reference material

and analyzes it along with the unknowns, 3) the software integrates the peak area of

the reference material for a given isotope, 4) the software calculates a kfactor relating

peak area, weight, and elemental composition (weight percentage) of the reference

material, 5) the software applies the kfactor to all unknowns. What the software is

not capable of doing is checking for instrument linearity by allowing one to run a

series of weighed reference materials to correct for any non-linearity.

the software simply divides by the weight so you can divide by the weight offline.

When we do that, we always input a weight of 1 into the software so the software

never has to divide by zero.

Assimilation Efficiency. The “true” assimilation efficiency used in the models

is the fraction of ingested element absorbed, where eis is the biomass of element

i from source s assimilated divided by the biomass of source s ingested. This is

different from the apparent assimilation efficiency (aae), which includes endogenous

fecal losses, where aaeis is one minus the sum of the biomass of element i from source

s not assimilated and the endogenous fecal losses of source s divided by the biomass

of source s ingested (Karasov, 1990).

Notational Caveats. Different fields use these terms and equations in different

ways. Because these ideas primarily came out of geology and oceanography, I have

given their terms above. However, since biology has used stable isotopes, they have

confused some of the notation. For example, �AB =
aRA
aRB

is called the “isotope effect”

where A is the source and B is the product and equilibrium is not assumed. Also,

sometimes “isotope discrimination” is ΔAB = (�AB − 1) × 1000, which earlier was
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the equation for ". So, it is important to define the equation for the notation being

used and not to make assumptions.

A.1.4 Common Stable Isotopes

Table A.1 shows the relative abundance of common stable isotopes used for biological

sourcing, note that an element may have multiple heavy isotopes. Table A.2 shows

the (somewhat arbitrary) standards used as the constant in the denominator for

�E. Table A.3 illustrates what the �E values are for the natural abundance of the

common isotopes.

Table A.1: Commonly used stable isotopes for biological sourcing applications with
natural abundance.

symbol Z(p) N(n) mass fraction range R
1H 1 0 1.0078 .999885 .999816— .999974
2H 1 1 2.0141 .000115 .000026— .000184 .0001150132

12C 6 6 12 by def .9893 .98853— .99037
13C 6 7 13.003 .0107 .00963— .01147 .01081573
14N 7 7 14.003 .99636 .99579— .99654
15N 7 8 15.000 .00364 .00346— .00421 .003653298
16O 8 8 15.995 .99757 .99738— .99776
17O 8 9 16.999 .00038 .00037— .00040 .0003809256
18O 8 10 17.999 .00205 .00188— .00222 .002054994
32S 16 16 31.972 .9499 .94454— .95281
33S 16 17 32.971 .0075 .00730— .00793 .007895568
34S 16 18 33.968 .0425 .03976— .04734 .04474155
36S 16 20 35.967 .0001 .00013— .00019 .0001052742
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Table A.2: Primary stable isotope standards. Standards are Vienna Standard Mean
Ocean Water (VSMOW), Vienna Pee Dee Belemnite (VPDB), Atmosphere air (Air),
and Canyon Diablo Troilite (Meteor Crater, AZ) (CDT).

Standard isotopes R
VSMOW 2H/1H 0.00015576
VSMOW 18O/16O 0.00200520
VPDB 13C/12C 0.0112372
VPDB 18O/16O 0.0020671
Air 2He/4He 0.00000138
Air 15N/14N 0.0036765
CDT 34S/32S 0.04500451

Table A.3: Natural abundance �E for common isotopes.

Standard isotopes �E natural range sig dig
V-SMOW 2H/1H −262h 600h 1
V-PDB 13C/12C −37.5h 100h 0.1
Air 15N/14N −6.3h 30h 0.1
V-SMOW 18O/16O 24.8h 100h 0.1
V-PDB 18O/16O −5.9h 100h 0.1
CDT 34S/32S −5.8h 100h 0.1
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Figure A.2: (a, top) �aE is linear in the range of natural abundance for H, C, and
N. The range of natural abundance was taken from Table A.1 and �aE was calcu-
lated using the standards given in Table A.2. (b, bottom) However, �aE is globally
nonlinear, using H for this example. Note the change of scale in the horizontal axis.


