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Abstract

The goal of this dissertation is to investigate the propagation of ultrashort high in-

tensity UV laser pulses of order of nanoseconds in atmosphere. It is believed that

they have a potential for stable and diffractionless propagation over the extended

distances. Consequently, it creates a new array of applications in areas of commu-

nication, sensing, energy transportation and others. The theoretical model derived

from Maxwell’s equations represents unidirectional envelope propagation and plasma

creation equations.

It was shown numerically through Newton’s iterations that the stationary model

permits the localized fundamental and vortex solutions. Discussion of the stability

of steady states involves different approaches and their limitations. Finally, model

equations are integrated numerically to study the dynamics of the beams in the
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stationary model as well as nanosecond pulses in the full (3+1)D model using parallel

computation.
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Chapter 1

Introduction

High intensity laser pulses have been studied extensively in nonlinear media such

as gases, liquids and solids. It was observed that they undergo highly nonlinear be-

havior during propagation. At high peak power, ultrashort pulses tend to self-focus,

which limits realization of the pulse characteristics experimentally due to the possi-

bility of the damage of the active laser medium. Development of the chirped pulse

amplification technique by Gerard Mourou and Donna Strickland in 1985 expanded

the range of pulse powers that the laser can produce [1, 2]. Using this technique

it was possible to generate ultrashort pulses with intensities up to the order of 1023

W/cm2 [3].

One of the attractive research directions in this field is atmospheric pulse propa-

gation. It was observed in a number of experiments that high intensity laser beams

tend to create their own self-guiding mechanism staying focused over the extended

distances [4, 5, 6, 7, 8]. This type of propagation creates several promising applica-

tions. The exploitation of this phenomenon requires thorough understanding of the

fundamental physical effects that come into play. One of them is diffraction, which

is a linear effect and an intrinsic property of laser beam propagation. Transverse
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Chapter 1. Introduction

distribution of the electric field of the beam is usually approximated by the Gaussian

function. The distance along the propagation direction, for which the beam width

increases by a factor of
√

2, is called the Rayleigh range. It is defined as πw2
0/λ,

where λ is the wavelength and w0 is the beam waist. Often the propagation distance

of high power pulses is compared to this quantity.

Another effect is Kerr lensing, which is responsible for self-focusing of the beam [9,

10]. This phenomenon represents the change of the refractive index of air due to the

exposure to the high intensity beam, i.e. n = n0 +n2I, where n2 is the nonlinear Kerr

index and I is the intensity of the beam. Depending on the initial power, propagation

of the beam may differ. At power Pcr = λ2/8πn0n2, diffraction is balanced with self-

focusing. A beam with power less than Pcr diffuses in the transverse direction. If the

initial power of the beam exceeds critical power Pcr, the self-focusing becomes the

dominant effect leading the beam to the ultimate collapse at a finite distance [11,

12, 13, 14, 15].

It is known that traveling pulses with high intensities ionize the medium. The

energy of a single photon is not enough to eject the electron from its orbit. Ionization

takes place due to absorption of multiple photons at the same time. The liberated

electrons form a plasma that defocuses the beam [16].

Extended self-guided propagation is a result of the balance between diffraction,

self-focusing and plasma defocusing. The process can be described in the following

manner. A pulse with an initial power more than critical starts to collapse due to

the Kerr effect. The collapse represents an event when beam intensity increases and

beam width decreases. At some point, intensity reaches the ionization threshold and

electron plasma is created near the focal point. Multiphoton ionization becomes the

dominant effect and arrests the collapse [17, 18]. Depending on the initial beam power

this process may be highly dynamic, representing focusing-defocusing cycles [19].

Eventual decrease of power because of nonlinear losses breaks up the balance and

2



Chapter 1. Introduction

the beam diffracts.

By convention, self-guided propagation of a laser beam over many Rayleigh ranges

was named filamentation or filament propagation. Some authors also use the terms

self-channeling, self-trapping or self-induced waveguide propagation. There is more

precise definition of the filament by Couairon [12] who defines it as a ”dynamic

structure with intense core, that is able to propagate over extended distances much

larger than the typical diffraction length while keeping a narrow beam size without

the help of any external guiding mechanism”. An even more restrictive definition

describes filament as ”a part of the propagation during which the pulse generates a

column of weakly ionized plasma in its wake” [12].

A beam with an intense central core is not a prerequisite for filamentation. The

possibility of filament propagation of high power localized optical vortices has been

studded in a few papers [20, 21]. Such beams have doughnut or ring-shaped spatial

distribution with zero intensity at the center and at infinity. Every vortex carries an

integer that corresponds to the phase change around the ring. In the literature this

number is called the topological charge of the vortex and represents the number of

windings. It was observed that although subject to the azimuthal modulational in-

stability, ring-like beams can constitute robust structures for many Rayleigh ranges.

Vortex filaments in particular are interesting for application since they have an in-

finite number of states and can carry pulses for which critical power is much bigger

than the critical power of the gaussian beam.

Apart from being able to transport high intensity pulses over extended distances,

filaments were found to be very robust structures. They can even regenerate them-

selves beyond the location of a small obstacle-droplet, making propagation of the fil-

aments stable under rainy or cloudy conditions [22, 23, 24, 25]. These properties can

potentially find applications in areas of light direction and ranging (LIDAR), remote

diagnostics and laser induced breakdown spectroscopy(LIBS) [26, 27, 28, 29, 30].
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Chapter 1. Introduction

Figure 1.1: Electrical discharge triggered by filamentation at atmospheric pressure
with focal positions (a) near mid-cell and (b) near the top electrode of the cell [32].

Ionization and creation of a plasma in the wake of high-intensity pulses has an-

other remarkable application such as triggering and guiding of the electrical dis-

charge [31, 32]. Figure 1.1 shows the experiment by Rambo et al. [32] of rectilinear

propagation of electric discharge between two electrodes, using filamentation as a

conducting channel. This effect is attractive for potential applications such as the

contactless current transmission, lightning protection and directed energy [11].

In terms of mathematical modeling, dynamics of the filamentation is usually

described by the unidirectional propagation equations. Providing the canonical de-

scription of slow varying pulse envelope propagation in weakly nonlinear media, the

Nonlinear Schrodinger Equation(NLSE) and its variations gained the most popu-

larity in the field. NLSE is considered to be the fundamental equation where only

two effects are incorporated, namely diffraction and self-focusing. By adding addi-

tional terms and coupling equations, it is possible to construct relevant models for
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Chapter 1. Introduction

many propagation regimes. The validity of such models may break down as the pulse

nears the collapse due to applicability restrictions to small amplitudes [33]. Although

equations based on NLSE typically are not integrable in dimensions more than one,

there are number of numerical methods that can be applied to find solutions. As

a rule, (2+1)D models don’t require heavy computational resources for integration

over a few meters. To catch the full dynamics of the pulse in (3+1)D case, parallel

computations can be used. Results from numerical simulations and experimental

data have been shown to be in sufficient agreement.

Currently several groups are working in the area of ultrashort high-intensity laser

pulses. Big contributions into the research came from the project called Teramo-

bile organized in 1999 by the group of five laboratories located in Berlin, Dresden

(Germany), Lyon, Palaiseau (France) and Geneva (Switzerland). They developed a

unique mobile laser system based on the chirped pulse amplification technique that

produces femtosecond pulses with peak power of a few terawatts [12].

Filamentation was observed in several experiments with femtosecond (fs) pulses

in both infrared (IR) and ultraviolet (UV) wavelengths. Comparing the two regimes,

it was detected that the IR filaments were obtained at much higher intensity but

at shorter pulse duration than the UV [34]. A few ps UV pulses were the longest

for which filamentation was found. The upper bound for the length of the pulse

that can produce filament is determined by the time necessary for electrons to gain

ionization energy of oxygen due to the inverse Bremsstrahlung. Plasma heating at

this time results in breakdown of air. For IR filaments with a 100 µm diameter it

happens around 1 ps. Since the rate of heating of electron plasma is proportional to

the wavelength and intensity, filaments can potentially be produced with longer UV

pulses.

High power UV pulses are especially interesting for long propagation. According

to [35], UV filament loses only about 30-40 µJ per meter. This is much less than
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Chapter 1. Introduction

the nonlinear losses of IR filaments. By increasing pulse duration, the UV filaments

created can be longer(possibly even of the order of kilometers) and contain more

energy.

This dissertation is a theoretical examination of UV pulses of the duration of

the order of nanoseconds. An ongoing experiment at the University of New Mexico

has been conducted by professor Diels’ group. Nd:YAG laser oscillator-amplifier

system is utilized to generate pulses with quadrupled frequency. In order to obtain

long UV pulses with predetermined energy stimulated Brillouin scattering is used for

compression [36].

Figure 1.2: Experimental setup by Diels’ group

Due to the space limitations of the lab, measurements of propagation distance of

the filaments are bounded to the range of a few meters. The aerodynamic window, as
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Chapter 1. Introduction

it seen on Figure 1.2, is a special device that was developed to stabilize the starting

position of the filament. Although generation of filaments using nanosecond pulses

with a few Joule of energy is still under construction, filamentation within 4 meters

from the aerodynamic window was observed using 200 ps pulses with energy 500 mJ

at 266 nm.

After the general introduction of this dissertation, chapter 2 provides the de-

tails of the mathematical model. Starting from Maxwell’s equations it shows the

derivation of the equation governing the nonlinear unidirectional propagation of a

slowly varying wavepacket envelope of a UV laser pulse. Formulation of the plasma

generation induced by the 3-photon ionization completes the model and the resulted

coupled equations are presented with defined physical quantities.

Chapter 3 begins with examining the stationary propagation model where time

dependence is neglected along with all possible losses. The nonlinear eigenvalue

problem is obtained from the steady state equation and a brief discussion of uniformly

distributed plane wave solutions is given. The chapter continues with the detailed

description of the numerical method that is used to find families of localized standing

filament profiles that vanish at infinity. With slight modification, the same method

is used to obtain vortex steady state solutions for different values of the topological

charge. These solutions are the main results of the chapter.

Chapter 4 addresses issues of stability of the localized solutions. The analysis

starts with a semi-analytical approach. Propagation equations of the beam width are

introduced using three different methods. The resulting equations are analyzed and

the implication on propagation is discussed. Then, linear stability analysis is formu-

lated and explored. This analysis includes the introduction of spatial perturbations,

the setup of the spectral problem and the verification of Vakhitov-Kolokolov criterion.

The discussion continues with the azimuthal instability of vortex stationary solutions

via derivation of the growth rate formula. The chapter ends with the analysis of the
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Chapter 1. Introduction

spectral problem obtained from introducing spatiotemporal perturbations.

Chapter 5 describes numerical simulations of (2+1)D stationary and (3+1)D

non-stationary models. A discussion of the results is provided.

The description of the numerical method that is used in the propagation model

is given in Appendix A.
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Chapter 2

The physical model

2.1 Derivation of propagation equation.

Since light is a form of electromagnetic field, we start our modeling with the

classical theory based on Maxwell’s equations [37, 38]

Gauss’ law for electricity: ∇ · ~D = ρ (2.1)

Gauss’ law for magnetism: ∇ · ~B = 0 (2.2)

Faraday’s law: ∇× ~E = −∂
~B

∂t
(2.3)

Ampere-Maxwell law: ∇× ~H =
∂ ~D

∂t
+ ~J (2.4)

where ρ and ~J are the electric charge and current densities.

The flux densities ~D and ~B related to electric and magnetic fields ~E and ~H

through the complemented relations

9



Chapter 2. The physical model

~D = ε0
~E + ~P (2.5)

~B = µ0
~H + ~M (2.6)

where ~P and ~M are the induced electric and magnetic polarization, and ε0 and µ0

are the vacuum permittivity and vacuum permeability. For a nonmagnetic medium,

~M = ~0. Now, taking curl of equation (2.3), using identity (2.4),(2.5) and (2.6) we

obtain

∇×∇× ~E = − 1

c2

∂2 ~E

∂t2
− µ0

∂2 ~P

∂t2
− µ0

∂ ~J

∂t
(2.7)

where 1/c2 = ε0µ0. On the left hand side we use the vector identity

∇×∇× ~E = ∇(∇ · ~E)−∇2 ~E = −∇2 ~E (2.8)

where ∇ · ~E = 0, by divergence free assumptions [39]. After substituting (2.8) into

(2.7) we have

∇2 ~E − 1

c2

∂2 ~E

∂t2
= µ0

(
∂2 ~P

∂t2
+
∂ ~J

∂t

)
. (2.9)

Air can be considered to be a centro-symmetric medium with linear index n0, where

inversion symmetry is also present. Because of that, the polarization field can be

expanded in power series of ~E with cubic being lowest order nonlinearity. The first

term in the series corresponds to the linear polarization ~PL. Nonlinear polarization

10



Chapter 2. The physical model

which is the rest of the expansion can be treated as a small perturbation to the linear

since |~PNL| << |~PL| [40].

In general, the linear polarization is related to the field through the dielectric

susceptibility

~PL = ε0

∫ ∞
−∞

χ(1)(t− τ) ~E(x, y, z, τ)dτ (2.10)

while in the frequency domain, from the convolution theorem, is

~̂
PL = ε0χ

(1)(ω)
~̂
E(ω). (2.11)

The linear refractive index is defined by n2
0(ω) = 1 + χ(1)(ω) and the wavenumber

by dispersion relation k(ω) = ωn(ω)/c. For further consideration we expand k(ω) in

the Taylor series about the carrier frequency ω0

k(ω) = k(ω0) + k′(ω0)(ω − ω0) +
∞∑
n=2

1

n!
k(n)(ω0)(ω − ω0)n. (2.12)

It is assumed that the field represents a beam propagating in one direction, namely in

direction z. This is why in the slowly varying quasi-monochromatic approximation,

it is useful to separate the rapidly varying part of the electric field by writing it in

the form

~E(x, y, z, t) = ê(E(x, y, z, t)ei(k0z−w0t) + c.c.) (2.13)

where ê is the polarization unit vector, E is the slowly varying complex amplitude and
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Chapter 2. The physical model

k0 = k(ω0). The concept of slowly varying amplitude E means that |∂E/∂z| << k0|E|

and |∂E/∂t| << ω0|E|.

The amplitude E , in turn, can be represented as a Fourier integral

E(x, y, z, t) =

∫ ∞
−∞
Ê(x, y, z, ω)e−iωtdω (2.14)

so the linear part (LP ) of equation (2.9) can be written in the form

LP = ei(k0z−w0t)

[(
∂

∂z
+ ik0

)2

E +4⊥E +

∫ ∞
−∞

k2(ω0 + ω)Ê(ω)e−iωtdω

]
(2.15)

where 4⊥ stands for transverse laplacian. Using expansion (2.12) and keeping terms

up to second order, the following is obtained

LP = ei(k0z−w0t)

[
∂2E
∂z2

+ 2ik0
∂E
∂z

+4⊥E + 2ik0k
′
0

∂E
∂t
− (k′20 + k0k

′′

0 )
∂2E
∂t2

]
. (2.16)

It is also convenient to write the equation in a frame moving with the group velocity

of the pulse. This can be achieved by making a transformation t → t − k′0z and

z → z. As for second derivatives

∂2E
∂z2
− k′20

∂2E
∂t2

=

(
∂

∂z
− k′0

∂

∂t

)(
∂

∂z
+ k′0

∂

∂t

)
E << E . (2.17)

The equation (2.16) can be reduced to

LP = ei(k0z−w0t)

[
2ik0

∂E
∂z

+4⊥E − k0k
′′

0

∂2E
∂t2

]
. (2.18)
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Chapter 2. The physical model

The nonlinear part (NP) of equation (2.9) consists of the nonlinear polarization and

current density that is driven by the optical field. Since ~PNL acts as perturbation

of ~PL, higher order terms of nonlinear polarization are neglected except the domi-

nant χ(3), which corresponds to the optical Kerr effect. Now, if it is assumed that

the response of the medium is instantaneous, then the nonlinear polarization can be

simplified to

~PNL = ε0χ
(3)( ~E · ~E) ~E ' 2n0n2ε0I ~E. (2.19)

Here, n2 is the self-focusing index and I is the laser intensity, defined as I = n0

2η0
|E|2,

where η0 =
√
µ0/ε0 is the characteristic impedance of the vacuum.

In general, χ(3) includes the contribution of molecular vibrations and rotations.

Although Raman contribution is important for ultrashort pulses, this is not the case

for this work which assumes long UV pulses.

The model of plasma formation includes both multiphoton ionization and losses

due to response of produced charges to the optical field. While IR pulses are re-

quired to have 8-10 photons to liberate the electron from a molecule, simultaneous

absorption of 3-4 photons for UV pulses is enough. Ionization potential of oxygen

is lower compared to nitrogen. Hence, we can neglect ionization of nitrogen, due to

the small contribution. It follows that the number of electrons in the plasma is small

relative to the number of neutral molecules.

Schwarz et al.[35] set up the time scale under which current research is defined.

While the upper limit was established by inverse Bremsstrahlung, the lower limit

was defined by the time of plasma creation. As a result, the range of pulses duration

to be considered is between a few to 200 nanoseconds. In this range we can neglect

13



Chapter 2. The physical model

a second ionizing mechanism which occurs due to plasma heating by the laser field.

The losses of plasma occur when free electrons attach to positive ions producing neu-

tral molecules of oxygen. Another loss term in the plasma evolution equation can

be included due to the attachment of electrons to neutral molecules. The equation

governing free electron generation takes the form

∂Ne

∂t
= σ(3)N0I

3 − βepN2
e − γNe (2.20)

where Ne is the density of the electron plasma, σ(3) the 3d order multiphoton ioniza-

tion coefficient, βep the recombination coefficient and γ the electron-oxygen attach-

ment coefficient.

To complete the model we need to examine current density ~J , which consists of

free electron density ~Je and additional ionization current ~JMPA, which stands for

multiphoton absorption, i.e.

~J = ~Je + ~JMPA. (2.21)

Following the photo-ionization theory, the electron plasma is considered as a fluid

and can be modeled through collective velocity ~ve

∂

∂t
~ve = − e

me

~E − ν~ve (2.22)

where me is the electron mass, e the elementary charge and ν the electron collision

frequency [41, 42].

Since motion of plasma electrons occurs in the optical field with much lower fre-

quency than ω0, we can separate fast and slow oscillations and eliminate the fast part

14



Chapter 2. The physical model

vLF ' −
eE

me(ν − iω0)
. (2.23)

Free electron current density ~Je = −eNe~ve can be also decomposed to fast and slow

oscillation terms, where the low frequency contribution is given by

∂

∂t
JeLF ' −i

ω0e
2NeE

me(ν − iω0)
≈
(

1− i ν
ω0

)
e2

me

NeE . (2.24)

The last approximation is due to the fact that ν << ω0. The current in (2.21),

which accounts for dissipation of power necessary for multiphoton ionization, can be

expressed through electric field [42]

∂

∂t
JMPALF = −iβ

(3)k0n
2
0

4µ0η2
0

|E|4E . (2.25)

If equations (2.9), (2.18),(2.19) and (2.20) are combined with equations (2.21),(2.24)

and (2.25) along with cancelation of ei(k0z−ω0t), we immediately get

2ik0
∂E
∂z

+∇2
⊥E + k2

0

n2

η0

|E|2E +−k2
0

e2

meω2
0ε0n

2
0

(1− i ν
ω0

)NeE + i
β(3)k0n

2
0

4η2
0

|E|4E = 0

and

∂Ne

∂t
= σ(3)N0

n3
0

8η3
0

|E|6 − βepN2
e − γNe. (2.26)
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Chapter 2. The physical model

Table 2.1: Typical physical parameters. [35]

Parameter Symbol Value Units
Linear index n0 1.000259
Self-focusing index n2 7.8× 10−23 m2/W
Wavelength λ 266× 10−9 m
Three-photon absorption cross section σ(3) 3.0× 10−41 m6s2/J3

Density of neutral oxygen N0 5.4× 1024 1/m3

Recombination coefficient βep 1.3× 10−14 m3/s
Attachment coefficient γ 1.5× 108 1/s
Electron collision frequency ν 1.67× 1010 1/s
MPI coefficient β(3) 3.9× 10−34 m3/W2

Vacuum permeability µ0 4π × 10−7 mkg/A2s2

Vacuum permittivity ε0 8.854× 10−12 A2s4/m3 kg
Electron charge e 1.602× 10−19 C
Electron mass me 9.109× 10−31 kg
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Chapter 3

Stationary solutions

3.1 The reduced model.

In the model derived in the previous chapter, UV filamentation is very sensitive

to the initial conditions. Since we are interested in answering the question about

the existence of pulses that maintain their shape over a long distance, this chapter

studies the stationary model. This means that all terms with time derivatives will

be dropped. Here, we consider the ideal case where all the loss terms are neglected

in the field envelope propagation equation, otherwise the beam would continuously

decrease due to the losses. The following equations are under consideration

2ik0
∂E
∂z

+∇2
⊥E + k2

0

n2

η0

|E|2E − k2
0

e2

meω2
0ε0n

2
0

NeE = 0 (3.1)

σ(3)N0
n3

0

8η3
0

|E|6 − βepN2
e − γNe = 0. (3.2)

Based on experimental observations, equation (3.1) will be considered with assump-
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Chapter 3. Stationary solutions

tion of cylindrical symmetry. The equilibrium electron density can be expressed

explicitly in equation (3.2)

NeS =

√
γ2

4β2
ep

+
σ(3)N0n3

0|E|6
8βepη3

0

− γ

2βep
. (3.3)

From the physical point of view, it is possible to neglect the last term in equation

(3.2). Schwarz and Diels [35] argued that the inverse of γ will not be of any effect

during a pulse duration of a few nanoseconds. Theoretically, it shifts the validity of

the model to the range from 200 picoseconds to a few nanoseconds. This assumption

simplifies the analysis of the equation because the nonlinearity becomes of power

order and makes it possible to use the full Hamiltonian structure machinery. We

investigate both scenarios along the way, although some approaches can be applicable

only to cubic-quartic nonlinearity.

After substituting (3.3) into equation (3.1), a single 2D field equation emerges.

To obtain nondimensional equations, the dimensionless quantities are defined in the

following way

E → ψE0, r → rr0, z → zz0

where E0, r0 and z0 denote dimensional constants with units of electric field, length

and length respectively. Using dimensionless variables, equation (3.1) becomes

i
2k0r

2
0

z0

∂ψ

∂z
+

1

r

∂ψ

∂r
+
∂2ψ

∂r2
+

1

r2

∂2ψ

∂2θ
+ k2

0E2
0r

2
0

n2

η0

|ψ|2ψ

−k2
0

e2r2
0

meω2
0ε0n

2
0

(√
γ2

4β2
ep

+
σ(3)N0n3

0E6
0 |ψ|6

8βepη3
0

− γ

2βep

)
ψ = 0. (3.4)

There are several options for defining the dimensional variables and coefficients. Usu-
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Chapter 3. Stationary solutions

ally the electric field is normalized with respect to self focusing index and higher order

nonlinearities, so these quantities are defined in the following way

r0 =

(
η0

k2
0E2

0n2

)1/2

, E0 =

(
meω

2
0ε0n2

e2

√
8n0βepη0

σ(3)N0

)
, z0 = 2k0r

2
0, µ =

γk2
0e

2r2
0

2βepmeω2
0ε0n

2
0

.

The equation (3.4) becomes

i
∂ψ

∂z
+

1

r

∂ψ

∂r
+
∂2ψ

∂r2
+

1

r2

∂2ψ

∂2θ
+ |ψ|2ψ − F (|ψ|2)ψ = 0 (3.5)

where F (|ψ|2) =
√
µ2 + |ψ|6 − µ, with µ = 4.6 or F (|ψ|2) = |ψ|3. From now on the

former function is defined as F1(|ψ|2) and the latter as F2(|ψ|2).

3.2 Nonlinear eigenvalue problem.

To construct a steady state solution, we look for a solution of the following

form ψ(r, θ, z) = ψ(r)eiΛz+imθ, where ψ(r) is real radially symmetric profile of am-

plitude, Λ > 0 is a propagation constant and m is an integer. Notice that Λ is

non-dimensional with the same scale as z. The substitution of the above ansatz into

the equation (3.5) yields a boundary value problem.

−Λψ +
1

r

∂ψ

∂r
+
∂2ψ

∂r2
− m2

r2
ψ + ψ3 − F (ψ2)ψ = 0 (3.6)

ψ′(0) = 0, ψ(∞) = 0.

Equation (3.6) can be treated as an eigenvalue problem with eigenvalue Λ and eigen-

function ψ. First we concentrate on the fundamental ground state solution which
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Chapter 3. Stationary solutions

does not carry any topological charge, i.e. m = 0 in (3.6). Then we will consider

stationary vortex solutions for different nonzero charges. The solutions ψ we look

for are localized in space, which later can be interpolated onto an xy-plane.

There are several methods that can be utilized to solve this boundary value

problem. One of them is the variational approach. This method uses trial function

in order to find the main characteristics of the beam, i.e. beam width and peak

amplitude. Although it provides relatively good explicit approximation, it has a

disadvantage of assuming that the solution has the shape of the predetermined trial

function.

The numerical approximation is another approach. Typically, boundary value

problems can be successfully solved by shooting or using finite difference methods.

The shooting method is known for its speed and adaptivity because it changes the

boundary value problem to the initial value problem (IVP). Unfortunately, it is not

as robust as the finite difference method because it can suffer from ill-conditioning of

the IVP. The choice was to employ the finite difference scheme along with Newton’s

iterations.

3.2.1 Plane wave solutions.

Before going into the discussion of radially dependent profiles, we consider the

simplest solutions of the given problem, which assume constant amplitude. These

solutions are called plane wave solutions

ψ = ψse
iΛz+imθ. (3.7)
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Chapter 3. Stationary solutions

Substituting (3.7) into equation (3.5), we derive an implicit form for the solution

−Λ− m2

r2
+ ψ2

s − F (ψ2
s) = 0.

Figure 3.1 shows example of solutions ψs(r = rm) of the above equation with mean

radius r1 = 4.5.

Figure 3.1: Plane wave solutions for m=1; (left)F (ψ2
s) = F1(ψ2

s), (right)F (ψ2
s) =

F2(ψ2
s)

3.2.2 Fundamental solutions.

If F (ψ2) = 0, equation (3.6) becomes

−Λψ +
1

r

∂ψ

∂r
+
∂2ψ

∂r2
+ ψ3 = 0. (3.8)
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This is a well-known nonlinear eigenvalue problem with ground state solution, often

called Townes soliton [43]. Townes profile assumes symmetric localized shape in ra-

dial dimension. In fact, equation (3.8) produces an infinite family of Townes solitons

of the form
√

Λψ(
√

Λr) with the same power and different beam widths. Each profile

is associated with corresponding eigenvalue Λ.

Having critical power, Townes is the unstable equilibrium of Nonlinear Schrodinger

Equation in 2D. It is a borderline between blowup type and spreading-to-zero solu-

tions. Initial beams that have more power than Townes will approach singularity at

a finite distance. Those with less power will spread in the transverse dimension. In

the present context, F (ψ2) = 0 corresponds to the case when no plasma is present in

the stationary model (3.6). The critical power for self-focusing of the equation (3.8) is

∫ ∞
0

ψ(r)2rdr = Pcr ∼= 1.862. (3.9)

The Hamiltonian of equation (3.8) vanishes at Townes soliton solution

H(ψ(r)) =

∫
|∇⊥ψ|2dr −

1

2

∫
|ψ|4dr = 0. (3.10)

These results were checked to confirm the validity of the numerical method described

below.

Construction of the stationary solutions of equation (3.6) starts with the second

order central difference discretization. Notice that at zero it is impossible to im-

plement discrete laplacian. Taking into account that bound states are smooth and

ψr(0) = 0, it is possible to eliminate singularity by observing that 1
r
ψr(r) ≈ ψrr(r)

for small r.
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Chapter 3. Stationary solutions

In the discrete form the equation at zero becomes

4 · ψ1 − ψ0

h2
+ ψ3

0 − F (ψ2
0) = Λψ0 (3.11)

where due to the fact that the solution is radially symmetric, relation ψ1 = ψ−1 was

used.

In order to implement boundary condition at infinity, Townes asymptotic behav-

ior is assumed, i.e. ψ(r) ≈ ARr
−1/2e−r, where AR ∼= 3.52, r � 1. If the numerical

window is wide enough, it was observed that the value of the solution is substantially

small for large r. In this case, simply assigning zero to ψ(r) on the right boundary

also produces the same result.

To solve system of nonlinear equations, Newton’s iterations along with the con-

tinuation method are used. The continuation result will be used later in the stability

chapter. The numerical algorithm of Newton’s method was implemented with the

following scheme

Step1. Let (Λ, ψ(0)) be the initial guess, j = 0

Step2. while ||R(ψ(j))|| > tolerance

Step3. ψ(j+1) = ψ(j) − J(ψ(j))−1R(ψ(j))

Step4. j = j + 1

Step5. end

where tolerance = 10−7, J is the Jacobian matrix of R and function R(ψ) =

Aψ + f(ψ2), where
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A =
1

h2



−4− Λ 4

1
2

−2− Λ 3
2

3
4

−2− Λ 5
4

2n−5
2n−4

−2− Λ 2n−3
2n−4

2n−3
2n−2

−2− Λ



and

f(ψ2) =


ψ3

0 − F (ψ2
0)ψ0

ψ3
1 − F (ψ2

1)ψ1

...

ψ3
n−1 − F (ψ2

n−1)ψn−1



where n is the number of points on the grid. Notice that only the nonlinear part will

be updated at each iteration in the numerical implementation.

To obtain J(ψ(j))−1R(ψ(j)), the Thomas algorithm is applied. This is a proce-

dure that solves tridiagonal systems of linear equations by LU decomposition. This

algorithm requires only O(n) operations and doesn’t utilize storage for full n × n

matrix. The function in Matlab was defined as TRIDAG(a, b, c, R(ψ(j))) [44]. Here,

a, b and c are vectors containing subdiagonal, diagonal and superdiagonal elements

of J(ψ(j)).

For convergence of the iterations, it is crucial to choose an initial guess (Λ, ψ(r))

close enough to the solution. Although Gaussian is a relatively good approximation

of the Townes soliton, the guess was Townes in the form of a data vector that
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corresponds to appropriate Λ. After finding the first solution for the given Λ, this

solution is used as an initial guess in Newton’s iterations for Λ + h, where h is

a small quantity. It was observed that this continuation has the following range

Λ ∈ [0.01, 0.36] for F1 nonlinearity and Λ ∈ [0.01, 0.103] for F2. Figure 3.2 shows

stationary solution corresponding to Λ = 0.205 of F1 nonlinearity. Notice that steady

states are well approximated by gaussian beams.

Figure 3.2: Comparison between numerically obtained steady state profile(solid) at
Λ = 0.205 and gaussian beam(dot-dashed) A2

0e
−2r2/ω2

0 with power 400MW.

3.2.3 Vortex solutions.

Optical vortex represents a field that exhibits radial symmetry in the form a

ring and zero intensity at the center. In the stationary model (3.6), steady state

vortex solutions correspond to the case when topological charge m is nonzero.

The numerical approach of finding the stationary vortices is the same as for the

fundamental solution. The only difference is the discretization of the equation at
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zero. In the case of the vortex equation we have an additional term in the laplacian

that blows up at zero. Knowing that ψ(0) = 0, observe 1
r2
ψ(r) ≈ ψrr(r)

2
when r is

small. Below is the difference equation corresponding to the zero boundary

(4 +m) · ψ1 − ψ0

h2
+ ψ3

0 − F (ψ2
0) = Λψ0. (3.12)

Figure 3.3: Distribution of stationary vortex solutions for m = 1, 2, 3, 4 at Λ = 0.165

As an initial guess the stationary profile obtained from equation (3.8) is used.

As an example, for F1(|ψ|2) nonlinearity, convergence is observed on the interval

Λ ∈ [0.06, 0.44] form = 1. By increasing the numerical window it is possible to obtain

solutions with larger m. Figure 3.3 shows distribution of stationary vortex solutions

for F1 nonlinearity with four different topological charges. Notice that for larger m

the radius and power increase, thus making it harder to realize experimentally.
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Figure 3.4: Comparison of numerical solution(solid) form=1 and approximation(dot-
dashed) A0re

−r2/ω2
0 , A0 = 0.33, ω0 = 4
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Stability analysis

Stability analysis of nonlinear waves is one of the most important issues in mod-

eling real physical experiments. Noise, turbulence, errors in measurements and other

small effects can contribute to deviations from the exact equilibrium. Usually direct

numerical computations are performed in order to compare theory with experiment,

but it is still not convincing without the analysis of stability properties against dif-

ferent perturbations.

The main goal of this chapter is to examine stability of the stationary ground-state

solutions found in the previous chapter. The analysis is divided into two parts. In the

first part of the chapter a semi-analytical approach is used. This approach doesn’t

exactly deal with the stationary solutions, but rather with gaussian approximations.

Some of the methods are limited to the stationary equation with cubic-quartic non-

linearity only. In the second part of the chapter, analysis is done directly to steady

states.
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Chapter 4. Stability analysis

4.1 Semi-analytical approach.

Several semi-analytical methods can be used to study the ultrashort pulses in

the air. Here, a variational [45, 46, 47] and parabolic approximation methods [35] are

employed. The idea behind these methods is to describe the propagation of the main

characteristics of the beam by using an appropriate trial function. It is assumed

however, that the shape of the pulse profile is preserved, which imposes a limitation

on the produced models.

Simple evolution equations for the beam width and power are the results of

applying these methods. Although analysis based just on this equations may be

superficial, approximate evaluation of the beam propagation can be obtained.

4.1.1 Gaussian Trial Function.

This method will be applied to equation (3.5) with cubic-quartic nonlinearity.

The Lagrangian L corresponding to this problem is defined in the following way

L =
i

2

(
ψ∗
∂ψ

∂z
− ψ∂ψ

∗

∂z

)
−
∣∣∣∣∂ψ∂r

∣∣∣∣2 +
1

2
|ψ|4 − 2

5
|ψ|5. (4.1)

A suitable trial function corresponding to gaussian beam is given by

ψ(r, z) = A(z)e
−
(

r2

ω2(z)
+iC(z)r2+iφ(z)

)
(4.2)

where parameters are amplitude A, beam width ω, wave curvature C and phase φ.

Substitution (4.2) into (4.1) produces
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L = A2(r2C ′ + φ′)e−2r2/ω2 − 4A2r2

(
1

ω4
+ C2

)
e−2r2/ω2

+
1

2
A4e−4r2/ω2

−2

5
A5e−5r2/ω2

. (4.3)

After averaging over r, the reduced Lagrangian is given

< L >=

∫ ∞
0

Lrdr = α1A
2φ′ + α2A

2

(
C ′ − 4

ω4
− 4C2

)
+ α3A

4 − α4A
5 (4.4)

where α1(ω) = 2−2ω2, α2(ω) = 2−3ω4, α3(ω) = 2−4ω2 and α4(ω) = 5−2ω2.

To obtain Euler-Lagrange equations, the reduced Lagrangian is varied with re-

spect to the parameters A2, ω, φ and C.

Variation with respect to A2:

φ′ +
ω2

2

(
C ′ − 4

w4
− 4C2

)
+

1

2
A2 − 2

5
A3 = 0. (4.5)

Variation with respect to ω:

φ′ + ω2

(
C ′ − 4

ω4
− 4C2

)
+

1

4
A2 − 4

25
A3 = 0. (4.6)

Variation with respect to φ:

∂

∂z

(
ω2A2

)
= 0. (4.7)

Variation with respect to C:

8ω4A2C +
∂

∂z

(
ω4A2

)
= 0. (4.8)
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Equation (4.7) gives the initial conditions on the beam waist and amplitude of the

gaussian function

A(z)ω(z) = const = A(0)ω(0). (4.9)

After using simple algebra, the final equation for the beam waist is obtained

d2ω

dz2
=

16− 2A2
0ω

2
0

ω3
+

48ω3
0A

3
0

25

1

ω4
. (4.10)

Figure 4.1: Propagation of the width of 380MW gaussian beam.

Equation (4.10) is solved numerically using Matlab ODE45 solver. Figure 4.1

shows oscillatory behavior of the gaussian beam with power 380MW. The initial

conditions are taken from the gaussian approximation of the fundamental stationary

solution of equation (3.5) with F2(|ψ|2) nonlinearity that corresponds to Λ = 0.063.
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Parabolic approximation method.

Despite similarity, the parabolic approximation method differs from the varia-

tional approach since a gaussian profile is substituted directly into the propagation

equation. Evolution equations are obtained after expansion of the gaussian into the

Taylor series near zero radius, making the main emphasis of this approach on the

center of the beam. Taking ansatz

ψ(r, z) = A0
ω0

ω(z)
e
−
(

r2

ω2(z)
+i r2

2R(z)
+iφ(z)

)
(4.11)

into equation (3.5) with F1(|ψ|2) nonlinearity and using parabolic approximation

e
−αr2
ω2 = 1− α r

2

ω2
(4.12)

two equations are obtained after keeping only leading order terms and equating real

and imaginary parts

2r2 w
′(z)

w(z)3
− w′(z)

w(z)
− 2

R(z)
+

4r2

w(z)2R(z)
= 0 (4.13)

−1

2

r2R′(z)

R(z)2
+ φ′(z)− 4

w(z)2
+

4r2

w(z)4
− r2

R(z)2
+

A2

w(z)2
− 2A2r2

w(z)4
−√

µ2w(z)6 + A6

w(z)3
+

3A6r2√
µ2w(z)6 + A6w(z)5

+ µ = 0. (4.14)

The beam waist evolution equation follows after combining the terms with r2 and

simple algebraic manipulations
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d2w

dz2
=

16− 8A2
0ω

2
0

w3(z)
+

12A6
0ω

6
0

w4
√
µ2ω6 + A6

0ω
6
0

. (4.15)

However, equation (4.15) is only approximately correct. If µ → ∞, equation

(3.5) becomes Nonlinear Schrodinger Equation and the second term on the right-

hand side of equation (4.15) is zero. Simple diagnostics shows that the critical power

for collapse event between NLSE and (4.15) differs by a factor 4. This can also

be observed comparing equations (4.10) and (4.15). To evade this inconsistency,

initial conditions are taken with A0/2 instead of A0. As shown in the figure 4.1 and

figure 4.2, the results are similar. Observed oscillations may be attributed to the

competition between self-focusing and plasma defocusing.

Figure 4.2: Evolution of the gaussian beam, with A0 = 1, ω0 = 1/
√

0.12.
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4.1.2 Ring Trial Function.

The variational approach is also applicable for the derivation of vortex beam

waist evolution equations. The Lagrangian L corresponding to the equation with

cubic-quartic nonlinearity includes azimuthal variable

L =
i

2
(ψ∗

∂ψ

∂z
− ψ∂ψ

∗

∂z
)−

∣∣∣∣∂ψ∂r
∣∣∣∣2 − 1

r2

∣∣∣∣∂ψ∂θ
∣∣∣∣2 +

1

2
|ψ|4 − 2

5
|ψ|5. (4.16)

A suitable trial function corresponding to the vortex beam problem has the following

form

ψ(r, z) = A(z)rme
−
(

r2

a2(z)
+iC(z)r2+imθ+iφ(z)

)
. (4.17)

After averaging, the reduced Lagrangian can be expressed for any charge m

< L >= α1A
2φ′ + α2A

2(C ′ − 4C2)− α3A
2 − α4A

2 + α5A
4 − α6A

5 (4.18)

where αi = αi(a) is listed below

α1 =

∫ ∞
0

e−
2r2

a2 r2m+1dr

α2 =

∫ ∞
0

e−
2r2

a2 r2m+3dr

α3 =

∫ ∞
0

e−
2r2

a2 r2m+1

(
m

r
− 2r

a

)2

dr

α4 = m2

∫ ∞
0

e−
2r2

a2 r2m−1dr
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α5 =
1

2

∫ ∞
0

e−
4r2

a2 r4m+1dr

α6 =
2

5

∫ ∞
0

e−
5r2

a2 r5m+1dr.

After taking variations and using the Euler-Lagrange equations, evolution equations

are obtained for any m, for example

for m = 1:

d2a

dz2
=

64− A2
0a

2
0

4a3
+

18

625

A3
0a

3
0µ
√

5π

a4
(4.19)

for m = 2:

d2a

dz2
=

128− A2
0a

2
0

8a3
+

768

15625

A3
0a

3
0µ

a4
. (4.20)

Figure 4.3: Beam width propagation of vortex A0re
−r2/a2

0 .

Initial conditions A0 = 1.66, a0 = 7.9 correspond to the fit of the stationary

solution obtained at Λ = 0.12. The dynamics of the vortex beam waist parameter
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on the figure 4.3 shows periodic oscillations over hundreds of meters and increasing

oscillations after 600 meters, followed be infinite increase at around 1000. The cause

of this may be azimuthal instability.

4.2 Stability of stationary solutions.

Several methods of stability analysis that were developed in the nonlinear waves

theory can be applied to stationary localized solutions obtained in Chapter 3. Discus-

sions of different techniques are given by these authors [48, 49, 50, 51, 52, 53, 54, 55].

For equations of the Hamiltonian type, the variational method is usually the

standard approach. In this formulation, ground state solutions are stationary points

of the Hamiltonian H at fixed functional N =
∫
|ψ|2, which usually defines a beam

power. Stability follows if it can be shown that the bound state produces a mini-

mum of H. The absence of minimizers does not imply the instability of the states.

This analysis is sometimes called nonlinear because it doesn’t use the linearization

technique. This method is applied to the stationary problem with cubic-quartic

nonlinearity.

Another approach tackles the question of linear stability with respect to small

perturbations. In this case, stability of the stationary solution is assumed local in

contrast to absolute extremum of the Hamiltonian. This technique uses the lin-

earization of the equations on the background of ground state solution to study the

spectrum of differential operators.

Since dimensionality of the stationary solution is less than the dimensionality

of the initial problem, linear stability is divided into two parts. In the first part,

stability is examined with respect to small perturbations of the same dimensionality.

In the second part of analysis, stability of the stationary continuous wave is checked
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against spatiotemporal perturbations.

4.2.1 Nonlinear stability.

Analysis starts with defining the Hamiltonian for cubic-quartic nonlinearity

H =

∫
|4⊥ψ|2 −

1

2
|ψ|4 +

2

5
|ψ|5dxdy.

Following [33], assume that ψs(x, y) is the solution of

−Λψ +∇2
⊥ψ + |ψ|2ψ − |ψ|3ψ = 0.

Now, let’s apply a transformation that preserves the power N

ψ̃(x̃, ỹ) =
1

a
ψ
(x
a
,
y

a

)
.

After substitution, the Hamiltonian has the following form

H(a) =
1

a2

∫
|4⊥ψ|2dxdy −

1

2

1

a2

∫
|ψ|4dxdy +

2

5

1

a3

∫
|ψ|5dxdy.

Since the ground state is a solution of the following variational problem δ{H+λ2N} =

0 and N is preserved with varying a, it follows

∂H

∂a
= − 2

a3
M1 +

1

a3
M2 −

6

5

1

a4
M3 = 0

under the constraint a = 1. Here, M1 =
∫
|4⊥ψ|2dxdy, M2 =

∫
|ψ|4dxdy, M3 =
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∫
|ψ|5dxdy and one can observe that all these quantities are positive, hence

M2 = 2M1 +
6

5
M3.

Stability can be determined from the sign of the second derivative of the Hamiltonian

∂2H

∂a2
= 6M1 − 3M2 +

24

5
M3 =

6

5
M3 > 0.

This means that the ground state ψs is a minimum of H(a) and it is stable.

4.2.2 Spatial perturbations.

In the previous section, stability was addressed by means of the variational ap-

proach. However this method is not suitable for the equation (3.5) with F1(|ψ|2)

nonlinearity. In this case stability is investigated with respect to small spatial per-

turbations.

Consider the stationary localized solution obtained in chapter 3, ψ(x, y, z) =

ψs(x, y)eiΛz. Let’s perturb it and expand, keeping only the first order correction

ψ(x, y, z) ≈ (ψs(x, y) + u(x, y, z) + iv(x, y, z))eiΛz (4.21)

where u(x, y, z), v(x, y, z) are real functions. After substitution to the equation (3.4),

u, v satisfy the system

∂z

 u

v

 = N

 u

v


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where

N =

 0 L0

−L1 0


and

L0 = −4⊥ + Λ− ψ2
s − µ+

√
µ2 + ψ6

s

L1 = −4⊥ + Λ− 3ψ2
s − µ+

√
µ2 + ψ6

s +
6ψ6

s√
µ2 + ψ6

s

are self-adjoint operators. If perturbations u, v are defined as feiκz and geiκz, the

system can be reduced to a single equation of the form

κ2f = L0L1f (4.22)

The goal of this analysis is to determine the sign of κ2. If it can be shown that κ2 > 0

for all bounded states, then (neutral) stability implies, otherwise the equilibrium

solution is unstable.

Let’s define operator G0 = −4⊥ + Λ− ψ2
s . Then one can check that

G0 = − 1

ψs
5 ·
(
ψ2
s 5 (

1

ψs
·)
)

hence

∫
fL0fdxdy =

∫ ∣∣∣∣5( f

ψs

)∣∣∣∣2 ψ2
sdxdy +

∫
(−µ+

√
µ2 + ψ6

s)f
2dxdy ≥ 0

which means that the operator L0 is nonnegative, and it follows that for a solution
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f , the minimum value of κ2 is given by

κ2
m = min

< f |L1|f >
< f |L−1

0 |f >

where < f |L|f >=
∫
fLfrdr. The sign of κ2

m is then determined by the numerator

µmin =< fL1f >. This in turn comes down to the spectral problem for L1, i.e.

L1f = σf + ρψs (4.23)

where σ and ρ are chosen to satisfy < f |f >= 1 and < f |ψs >= 0. Notice that if

equation (4.34) is multiplied by f from the left then the sign of µmin will be negative

depending on whether there is a solution of the spectral problem with σ < 0.

Functions f and ψs can be expanded in terms of orthogonal eigenfunctions ψn of

the operator L1 (L1ψn = λnψn). These series are substituted in equation (4.34) to

obtain

f = ρ
∑ < ψs|ψn >

λn − σ
. (4.24)

Equation (4.35) and the orthogonality constraint produces the following relation

S(σ) = ρ
∑ < ψs|ψn >< ψn|ψs >

λn − σ
. (4.25)

The sum does not contain zero eigenvalue and it has been proven [49] that operator L1

has only one negative eigenvalue. Hence when σ changes from negative to positive

eigenvalue, the function S(σ) changes from −∞ to +∞ passing zero. Therefore

the sign of σmin is determined by the sign of S(0). Since S(σ) is a monotonically
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increasing function then S(0) < 0 means that S(σ) = 0 at some σ > 0 and vice

versa.

It follows from equations (4.35) and (4.36) that S(0) =< ψs|L−1
1 |ψs >. In order

to find S(0), the expression L0ψs = 0 is differentiated with respect to Λ. The result-

ing equation is written in the following form

L1
∂ψs
∂Λ

= −ψs.

Taking the inverse of L1 and multiplying both sides from the left by ψs the following

equation is obtained

S(0) = −1

2

∂P

∂Λ

where P =
∫
ψ2
sdxdy.

Figure 4.4: Power of the steady state solution vs eigenvalues Λ.
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The Vakhitov-Kolokolov criterion [48] states that the equilibrium solution is sta-

ble whenever dP/dΛ > 0 and unstable otherwise. As shown in figure 4.4, the power

is an increasing function of Λ, meaning that stability criterion is satisfied at least for

the range of the given values of Λ. If perturbations are only radial, the Vakhitov-

Kolokolov criterion can also be applied to the stationary vortex solutions. Figure

4.5 shows that localized vortices with different indices m are stable against such per-

turbations. This analysis however is not enough as ring-shaped solutions may suffer

from modulational instability in the azimuthal direction. The next section is devoted

to such problems.

Figure 4.5: Power of the steady state vortex solutions for m=1,2,3 vs eigenvalues Λ.

4.2.3 Azimuthal perturbations.

Azimuthal instability of optical vortices has been studied numerically in different

nonlinear media. It tends to split up the vortex into the set of fundamental solutions,

causing the symmetry to break. This was later shown experimentally [56].
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The purpose of this section is to formulate and study the spectral problem that

emerges in the presence of the azimuthal perturbations. To begin, let’s perturb the

amplitude of the stationary solution ψ(r) by a function of the integer azimuthal

index L. Perturbations will be applied along the radius rm, which is defined as

r2
m =

∫
r2|ψm|2dr/Pm, where Pm is the power of the vortex

ψ(z, θ) =
(
ψs + a+e

−i(Lθ+λz) + a−e
i(Lθ+λ̄z)

)
eiΛz+imθ. (4.26)

Here, ψs is assumed to be a constant intensity defined as ψs = ψs(r = rm) for some

fixed m. It can be seen from the setup that solution is unstable if λ has a nonzero

imaginary part and is stable otherwise. To find the instability growth rate, ansatz

(4.26) is plugged into the propagation equation (3.5). Two coupled equations are

obtained after linearization with respect to the perturbations

i(Λ− λ)a+ = −i(m− L)2

r2
m

a+ + iBa+ + iCā− (4.27)

i(Λ + λ̄)a− = −i(m+ L)2

r2
m

a− + iBa− + iCā+ (4.28)

where for F1(|ψ|2) :

B = 2ψ2
s − (−µ+

√
µ2 + ψ6

s)− 3
2

ψ6
s√

µ2+ψ6
s

, C = ψ2
s − 3

2
ψ6
s√

µ2+ψ6
s

and for F2(|ψ|2) :

B = 2ψ2
s − 5

2
ψ3
s , C = ψ2

s − 3
2
ψ3
s .

The above equations can be rewritten in the matrix form
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i

 Λ− λ 0

0 −Λ− λ

 a+

ā−

 = i

 − (L−m)2

r2m
+B C

−C (L+m)2

r2m
−B

 a+

ā−.


The determinant is equated to zero to obtain

λ = −2Lm

r2
m

±

√(
(L2 +m2)

r2
m

+ Λ−B
)2

− C2. (4.29)

To look for the growth rate, we need to look at the imaginary part of Λ

Im (λ) = Im

√(
(L2 +m2)

r2
m

+ Λ−B
)2

− C2. (4.30)

Figure 4.6: Growth rate of the stationary vortices as a function of the azimuthal
index L for different values of m=1,2,3

Figure 4.6 shows the instability growth rate for different charges m. Although

the index L is represented as a real parameter, it must be an integer in order to pre-

serve azimuthal periodicity. The maximum growth rate for m = 1 is approximately
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attained at L = 3 and for m = 2 is at L = 5. Instability is bounded by larger number

L and the maximum growth rate is approximately at the same level for any m.

4.2.4 Spatiotemporal perturbations.

In order to investigate the time-perturbed solution, the plasma equation needs

to be nondimensionalized. It is done with the following transformation

Ne → Ne0Ne, t→ t0t.

The nondimensional equations are given

iψz +∇2
⊥ψ + |ψ|2ψ −Ne(ψ)ψ = 0 (4.31)

∂Ne

∂t
= |ψ|6 −N2

e − νNe (4.32)

where the additional normalization constants are defined in the following way

Ne0 =

√
σN0n3

0

8η3βep
E3

0 , t0 =
1

βepNe0

, ν = γt0

Lets introduce the perturbation fields

ψ(z, r, t) = (ψs(r) + u(z, r, t) + iv(z, r, t))eiΛz+imθ (4.33)

Ne(z, r, t) = Nes(r) + δNe(z, r, t) (4.34)
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where u, v, δNe ∝ exp(−iΩt+ iκz).

The main principle of this approach is to study the spectrum of the wave modes

along t-direction that are slightly different from the neutrally stable one (when Ω = 0

and κ = 0). This method was developed by Kuznetsov et al [51].

By putting the perturbed modes (4.43),(4.44) into equation (4.42) and using sim-

ple algebra, the result is

δNe =
6ψ5

su

2Nes + ν − iΩ
(4.35)

Substituting (4.43),(4.44) into (4.41), along with (4.45) and linearizing against the

background of a stationary solution, the coupled equations for perturbation fields

are obtained. They can be reduced to two independent equations

L0(L1 + δL)u = κ2u (4.36)

(L1 + δL)L0v = κ2v (4.37)

where L0 and L1 are operators from the section 4.3.2, and

δL =
6ψ6

s√
µ2 + ψ6

s − iΩ
− 6ψ6

s√
µ2 + ψ6

s

. (4.38)

In the case Ω = 0, it is clear that δL = 0 and equation (4.46-4.47) can be ex-

amined through Vakhitov-Kolokolov criterion. If Ω 6= 0, the spectrum of the given
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spectral problem can be defined using perturbation expansion with neutrally stable

modes as the first approximation. By multiplying (4.48) from the left by rψs and

assuming v0 = rψs, it follows

κ2 =< ψsψsr|δL|ψsψsr > . (4.39)

The applicability criterion of this formula is the condition κ << Λ. Although insta-

bility is present for any Ω 6= 0, it follows directly from the setup of the equations

(4.46-4.47) that κ2 > 0 if Ω → ∞. Hence the growth rate decreases as Ω → ∞

and the maximum growth rate is determined by the equation (4.50). While it is

challenging to find an exact maximum, it is shown in figure 4.7 that the growth rate

is limited.
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(a)

(b)

Figure 4.7: Growth rate vs Ω (a) fundamental solution at Λ=0.205, (b) m=1 vortex
solution at Λ=0.165

48



Chapter 5

Numerical simulations

This chapter provides numerical results using non-dimensional propagation mod-

els. In the first section the (2 + 1)D stationary model is integrated numerically. In

this case it is assumed that the pulse is long enough to be considered as a continu-

ous wave. In the second section, the beam is confined in time in order to produce

a finite pulse. Therefore the time dimension is included and the dynamics of the

non-stationary profiles are investigated in the more realistic (3 + 1)D problem. Last

section presents propagation of the pulse perturbed by random noise in the model

with included nonlinear losses. In all scenarios, propagation of the pulse is provided

by the Fourier split-step method which is detailed in Appendix A. The propagation

code was written in C and used the MPI library. The simulations were made on

a linux cluster (NANO) from the Center for Advanced Research Computing at the

University of New Mexico, which computational power expands up to 144 CPUs.

The results of the simulations were plotted using Matlab graphing utilities.
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5.1 (2+1)D simulations.

To confirm theoretical results obtained in the previous chapter direct numerical

simulations are performed using stationary model

i
∂ψ

∂z
+∇2

⊥ψ + |ψ|2ψ − F (|ψ|2)ψ = 0 (5.1)

where ψ = ψ(x, y, z). The split-step method uses linear and nonlinear operators

which are defined

L(ψ) = ∇2
⊥ψ, N(ψ) = |ψ|2 − F (|ψ|2) (5.2)

In the first numerical simulation, the initial condition is chosen to be the gaussian

of the following form

ψ(x, y, 0) = A0e
−(x2+y2)/ω2

0 (5.3)

where the values of amplitude A0 and beam width w0 were found in chapter 3 to

fit the stationary solution at Λ = 0.205. Figure (5.1) shows the distribution of the

electric field for different propagation distances along 100 meters for model with

F1(|ψ|2) nonlinearity. Observed small oscillations conform to the prediction by the

semi-analytical approach. Due to the excess of power and inability to match the

exact steady state solution, the gaussian profile is responsible for a small outflow of

radiation during propagation.
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(a) z=0 m (b) z=10.75 m

(c) z=32.27 m (d) z=53.78 m

(e) z=75.3 m (f) z=96.8 m

Figure 5.1: Propagation of gaussian beam A0e
−(x2+y2)/ω2

0 with A0 = 1, ω0 = 1/
√

0.12.
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The second simulation presents propagation of the ring-shaped beams with the

following initial shape

ψ(x, y, 0) = Am(r/w0)me−r
2/2r̄2m+imθ. (5.4)

The azimuthal angle of this input is perturbed at the peak amplitude by azimuthal

index L that corresponds to the growth rate maximum. Figures (5.2) − (5.5) show

the results of the simulations. During propagation, the ring-shaped beam loses power

via small outgoing radiation waves and fits the steady state keeping its shape over

several meters. The azimuthal instability starts to make impact around 10 meters

and eventually breaks up the ring into a number of moving fundamental solutions

that move away from each other. This number corresponds to azimuthal index L

which is in excellent agreement with predictions from chapter 4.
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(a) z=0 m

(b) z=10.76 m

(c) z=21.5 m

Figure 5.2: Vortex propagation m=1, L = 3
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(a) z=32.26 m

(b) z=43.03 m

(c) z=53.78 m

Figure 5.3: Vortex propagation m = 1, L = 3
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(a) z=0 m

(b) z=9.84 m

(c) z=19.68 m

Figure 5.4: Vortex propagation m = 2, L = 5
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(a) z=39.37 m

(b) z=59.05 m

(c) z=78.74 m

Figure 5.5: Vortex propagation m = 2, L = 5
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5.2 (3+1)D simulations.

The equations of the (3+1)D model are given

iψz +∇2
⊥ψ + |ψ|2ψ −Ne(ψ)ψ = 0 (5.5)

∂Ne

∂t
= |ψ|6 −N2

e − νNe (5.6)

where ψ = ψ(x, y, z, t) and Ne = Ne(x, y, z, t).

Integration starts with the assumption that no plasma is present at the posi-

tion z = 0. After evaluation of the electric field at the next propagation step,

plasma density is numerically computed from the equation (5.6) using the fourth-

order RungeKutta method

Nen+1 = Nen +
1

6
(K1 + 2K2 + 2K3 +K4)

tn+1 = tn + ∆t,

K1 = ∆tf(tn, Nen),

K2 = ∆tf

(
tn +

1

2
∆t, Nen +

1

2
K1

)
,

K3 = ∆tf

(
tn +

1

2
∆t, Nen +

1

2
K2

)
,

K4 = ∆tf(tn + ∆t, Nen +K3),

where f(tn, Nen) = |ψ(zm, tn)|6 −N2
en − νNen , zm = m∆z.

To create a nanosecond pulse the following initial conditions are used

ψ(x, y, 0, t) = ψ(x, y, 0)e−t
2/t2p (5.7)
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where ψ(x, y, 0) is the 2D initial condition from previous section.

The results of the simulations are shown on Figures (5.6) − (5.9). Dynamics of

the nanosecond pulse differ from the small oscillations around equilibrium of the

stationary model predicted by the theory. Propagation develops into the collapse

event, as a pulse of a finite temporal duration is not exact steady state. Exact

distance at which regularization of the collapse is attained is unknown due to the

inability to capture further increase of the amplitude with the current uniform grid.

5.3 Numerical tests and convergence.

To check the validity of the results, several tests were employed. First, it was

observed that the power and the energy of the pulse stay conserved during propaga-

tion within 0.01% of accuracy. In (2+1)D model, the tests were done at the distances

where the radiation outflow is negligible. The loss of power further is attributed to

the absorbtion of the radiation waves on the boundaries, by removing corresponding

frequencies in the Fourier domain.

To verify the error convergence, simulations were done for different values of h and

∆t. Number of points in the computational grids were chosen among 128, 256, 512

in each direction. When h was divided by two, ∆z was divided by four, in order to

eliminate the growth of the numerical instability.

Another test checks the convergence of the plasma density to the steady state

solution in the equation (5.6) for various values of ∆t. Finally, initial condition

(5.3) was used in the (3+1)D model in order to check the stability of the stationary

solution under the current numerical scheme. It was observed that the growth of the

numerical errors eventually destroys stability for large values of z.
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(a) Pulse at z=0 m

(b) Pulse at z=3.5 m

Figure 5.6: Propagation of 10 nanosecond pulse
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(a) Pulse at z=7.5 m

(b) Pulse at z=10 m

Figure 5.7: Propagation of 10 nanosecond pulse
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(a) z=0 m

(b) z=9 m

Figure 5.8: Propagation of 10 nanosecond m=1 vortex pulse
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(a) z=16.5 m

(b) z=22 m

Figure 5.9: Propagation of 10 nanosecond m=1 vortex pulse.

62



Chapter 5. Numerical simulations

5.4 (3+1)D model with nonlinear losses.

In the final simulation, the equation (5.5) is considered with the nonlinear losses

iψz +∇2
⊥ψ + |ψ|2ψ − (1− iε1)Ne(ψ)ψ + iε2|ψ|4ψ = 0 (5.8)

∂Ne

∂t
= |ψ|6 −N2

e − νNe (5.9)

where ε1 = 2.36× 10−6 and ε2 = 5.32× 10−5.

To check the spatiotemporal instability result, the initial conditions are taken to

be the same as from the previous section which are then perturbed by a 1% random

noise in temporal direction.

Figures (5.10)− (5.13) show the propagation of the pulse profile and the fluence

of the pulse which corresponds to the energy per unit area. Fluence is computed

numerically in the following way:

F (x, y, z) =

∫ ∞
−∞
|ψ(x, y, z, t)|2dt (5.10)

This simulation confirms the theoretical prediction that the pulse of the order

of nanoseconds suffers from the modulational instability. Temporal perturbations

become significant after several meters. Collapse event accelerates the noise growth.

It was observed that beams with less intensity have longer unaffected propagation,

since the collapse event develops longer.
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(a) z=0 m (b) z=0 m

(c) z=1.25 m (d) z=1.25 m

(e) z=2 m (f) z=2 m

(g) z=2.5 m (h) z=2.5 m

Figure 5.10: Propagation of 10 nanosecond pulse(left column) and fluence(right col-
umn)
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(a) z=3 m (b) z=3 m

(c) z=3.5 m (d) z=3.5 m

(e) z=4 m (f) z=4 m

(g) z=4.5 m (h) z=4.5 m

Figure 5.11: Propagation of 10 nanosecond pulse(left column) and fluence(right col-
umn)
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(a) z=0 m (b) z=0 m

(c) z=5.47 m (d) z=5.47 m

(e) z=7.3 m (f) z=7.3 m

(g) z=9.1 m (h) z=9.1 m

Figure 5.12: Propagation of 10 nanosecond m=1 vortex pulse(left column) and flu-
ence(right column).
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(a) z=10.94 m (b) z=10.94 m

(c) z=12.76 m (d) z=12.76 m

(e) z=14.58 m (f) z=14.58 m

(g) z=16.4 m (h) z=16.4 m

Figure 5.13: Propagation of 10 nanosecond m=1 vortex pulse(left column) and flu-
ence(right column).
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Conclusion

This dissertation studies the theoretical possibility of the propagation of high in-

tensity UV filaments and vortices in air. The governing system of equations were

derived and non-dimentionalized. It was shown by Newton’s iteration method that

the steady state model produces localized radially symmetric solutions for certain

range of eigenvalues Λ. It was observed that fundamental stationary solutions can

be well approximated by elementary functions, for example in the case of m = 0 they

can be approximated by gaussian.

The stability of obtained stationary solutions is divided into two parts. First we

use semi-analytical approach to study the dynamics of the beam width. The results

show stable although oscillatory behavior of the stationary solutions. Then, the linear

stability of the radial profiles is investigated. In this case, it was proven by Vakhitov-

Kolokolov criterion that the fundamental as well as vortex steady state solutions

are stable against spatial perturbations. It was shown that vortex solutions suffer

from instability against azimuthal perturbations. In the last part of the chapter 4,

spatiotemporal perturbations were applied to full time dependent problem. Analysis

of the spectral problem shows that the equilibria of the given model are inherently
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unstable against temporal perturbations.

Theoretical predictions are consistent with the numerical simulations only if the

model assumes long enough pulse to be considered as a continuous wave. Based on

the above analysis, the given model predicts that it’s possible for UV filaments and

vortices to propagate over several meters, even tens of meters before the modulational

instability becomes significant to affect the propagation.
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Appendix A

Numerical integration scheme

For simulations along the propagation direction a split-step spectral method is

used. To describe this method it is convenient to consider the field equation in the

following form

∂ψ

∂z
= iL(ψ)ψ + iN(ψ)ψ (A.1)

where L(ψ) is a linear part of the equation, and N(ψ) is nonlinear. The field ad-

vances from one propagation step to another according to the following expression

ψ(·, z + ∆z) ≈ exp(i∆z(L+N(ψ)))ψ(·, z). (A.2)

There exists several different splitting procedures of the right-hand side of (A.2).

The approach is chosen to be of the second order of accuracy which was introduced

by Strang [57].

exp(i∆z(L+N(ψ))) ≈ exp(i∆zL/2) exp(i∆zN(ψ)) exp(i∆zL/2). (A.3)
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In the obtained expression the linear operator is calculated in the Fourier domain,

while the operator N(ψ) is computed in the xy-space.

Although the given model assumes no boundaries in the transverse directions

it is unrealistic computationally. Therefore finite boundaries of the same size are

imposed in both directions. Define l to be a length of the computational domain.

Then the interval [−l/2, l/2] is divided into m equal parts with the spacing h = l/m,

making grid discretization uniform. In the formula (A.3) the nonlinear operator

does not contain any derivatives meaning that the computation is direct on the

grid points and no further approximation is needed. The transverse Laplacian in

frequency domain is found by utilizing Fast Fourier Transform. The discretization

of the spectral grid is also uniform with grid spacing given by 2π/(mh).

The scheme of the split-step spectral method is given below

Step1. Let ψ0 be the input field.

Step2. Find the Fourier transform ψ̂0.

start of the loop

Step3. ψ̂∗(ω1j, ω2k) = exp(−i∆z(ω2
1j + ω2

2k)/2)ψ̂n(ω1j, ω2k)

Step4. ψ∗∗(xj, yk) = exp(i∆zN(ψ∗))ψ∗(xj, yk)

Step5. ψ̂n+1(ω1j, ω2k) = exp(−i∆z(ω2
1j + ω2

2k)/2)ψ̂∗∗(ω1j, ω2k)

end

Step6. Find the inverse Fourier transform ψnfinal

where xj = jh, j = −m/2, ...,m/2 − 1, yk = kh, k = −m/2, ...,m/2 − 1,

w1j = 2jπ/(mh), j = −m/2, ...,m/2− 1, w2k = 2kπ/(mh), k = −m/2, ...,m/2− 1.

To achieve the required accuracy, the split-step method requires the following
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condition to be satisfied [58]

∆z ≤ 2h2

π2
. (A.4)
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