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Abstract

Continuum Mechanics and Kinetic Theory are two mathematical theories with fun-

damentally different approaches to the same physical phenomenon. Continuum Me-

chanics together with Thermodynamics treat a substance (a gas or a fluid) as a

continuous medium and describes the evolution of its macro characteristics via ap-

plication of the Conservation Laws to small packets of the substance. Kinetic Theory

attempts to describe the evolution of the macro parameters by treating a substance

as a family of colliding objects. The number of objects must be large enough so a

statistical approach can be taken.
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In this work we introduce a numerical scheme to solve 1-D Bhatnagar–Gross–

Krook model equations and examine the formation of a stationary viscous shock.

Obtained results are compared to a stationary numerical solution of 1-D Navier-

Stokes equation with a similar set of shock forming conditions.

viii



Contents

List of Figures xiii

List of Tables xv

Glossary xvii

1 Motivation of Study: Thermodynamic Limits 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Equations of Continuum Mechanics and Thermodynamics . . . . . . 5

1.3 Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Thermodynamic Regimes . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 The Boltzmann Equation . . . . . . . . . . . . . . . . . . . . 12

1.3.3 The H-Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.4 Nondimensionalization of the Boltzmann Equation . . . . . . 20

1.3.5 The Bhatnagar–Gross–Krook Model . . . . . . . . . . . . . . 23

1.3.6 The Hilbert Procedure . . . . . . . . . . . . . . . . . . . . . . 24

ix



Contents

2 Non-dimensionalization of 1-D Euler and Navier-Stokes Systems 32

2.1 The Navier-Stokes System in Physical Variables . . . . . . . . . . . . 32

2.2 The Navier-Stocks System in Generic Variables . . . . . . . . . . . . 36

2.3 The 1-D Navier-Stokes and Euler systems in non-conservative quantities 42

3 The Equations for a Viscous, Heat-Conducting and Inviscid Sta-

tionary Shocks 45

3.1 The Rankine-Hugoniot Conditions . . . . . . . . . . . . . . . . . . . . 45

3.2 An Example of Shock Forming Boundary Conditions . . . . . . . . . 49

4 Numerical Solutions of 1-D Euler and Navier-Stokes Equations 51

4.1 The Numerical Problem Setup . . . . . . . . . . . . . . . . . . . . . 51

4.2 The Upwinding First Order Difference Operator . . . . . . . . . . . . 53

4.3 The Explicit Numerical Scheme for the 1-D Euler System . . . . . . . 56

4.4 The Implicit Numerical Scheme for the 1-D Navier-Stokes System . . 58

4.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Boundary Conditions for the 1-D Euler System . . . . . . . . 63

4.5.2 Boundary Conditions for the 1-D Navier-Stokes System . . . . 68

5 Numerical Solution of the 1-D Bhatnagar–Gross–Krook Model 71

5.1 The Continuous 1-D BGK Model . . . . . . . . . . . . . . . . . . . . 71

5.2 Numerical Solution of the 1-D BGK Model . . . . . . . . . . . . . . . 73

x



Contents

5.3 The Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 The Truncation Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 The Reassembling Error . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Numerical Simulations and Results 85

6.1 Numerical Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Analysis of Simulation Results . . . . . . . . . . . . . . . . . . . . . . 93

6.3.1 Shock Width . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.2 Regression Analysis of the Shock Width . . . . . . . . . . . . 110

6.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A Integration Procedures 121

A.1 Moments of the 1-D Maxwellian Distribution . . . . . . . . . . . . . . 121

A.2 Moments of the 3-D Maxwellian Distribution . . . . . . . . . . . . . . 123

A.2.1 Additional Moments of Maxwellian Distribution . . . . . . . . 125

B Continuum and Kinetic Theory 128

B.1 The Nondimensionalized 3-D Euler System . . . . . . . . . . . . . . . 128

B.2 Proof of Identities (1.56)-(1.58) in Section 1.3.2 . . . . . . . . . . . . 130

B.3 Some Details of the Proof of the H-Theorem . . . . . . . . . . . . . . 132

B.4 Calculation of Dt log f0 . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xi



Contents

B.5 Certain Orthogonality Relations for Tensors A and B . . . . . . . . . 136

B.6 A Transformation of the Compressible Euler System . . . . . . . . . . 138

C Technical Calculations for Numerical Solutions 142

C.1 Truncation Error Estimation Theorem . . . . . . . . . . . . . . . . . 142

C.2 Some Technical Result for Section 4.5.1 . . . . . . . . . . . . . . . . . 145

C.3 Computation of the Jacobian for the Implicit Scheme in Sections 4.4 . 146

References 148

xii



List of Figures

3.1 Inflowing and outflowing characteristics . . . . . . . . . . . . . . . . 49

4.1 Stationary Shock Solutions for 1-D Euler System . . . . . . . . . . . 64

4.2 Direction of propagation of a solution of equation (4.69) . . . . . . . 70

5.1 Inflowing and outflowing characteristics of the BGK model . . . . . 79

6.1 Initial conditions for the 1-D Navier-Stokes and the 1-D Bhatnagar–

Gross–Krook models. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Initial distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.14 Viscosity and shock profiles . . . . . . . . . . . . . . . . . . . . . . . 94

6.16 Shock width definition . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Numerical stationary solution NS0REr case . . . . . . . . . . . . . . 98

6.4 Numerical stationary solution NS1REr case . . . . . . . . . . . . . . 99

6.5 Numerical stationary solution NS2REr case . . . . . . . . . . . . . . 100

6.6 Numerical stationary solution NS3REr case . . . . . . . . . . . . . . 101

6.7 Numerical stationary solution NS4REr case . . . . . . . . . . . . . . 102

xiii



List of Figures

6.8 Numerical stationary solution BGK0Tt case . . . . . . . . . . . . . . 103

6.9 Numerical stationary solution BGK1Tt case . . . . . . . . . . . . . . 104

6.10 Numerical stationary solution BGK2Tt case . . . . . . . . . . . . . . 105

6.11 Numerical stationary solution BGK3Tt case . . . . . . . . . . . . . . 106

6.12 Numerical stationary solution BGK4Tt case . . . . . . . . . . . . . . 107

6.13 Stationary distributions fj(x) for BGK0Tt case . . . . . . . . . . . . 108

6.15 Side by side comparison of the macroscopic observables obtained by

Navier-Stokes and Bhatnagar–Gross–Krook simulations in the case

of BC3 set of boundary conditions . . . . . . . . . . . . . . . . . . . 109

6.17 Navier-Stokes shock width regression for BC0 and BC1 sets of bound-

ary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.18 Navier-Stokes shock width regression for BC2 and BC3 sets of bound-

ary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.19 Navier-Stokes shock width regression for BC4 set of boundary condi-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.20 BGK shock width regression for BC0 and BC1 sets of boundary con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.21 BGK shock width regression for BC2 and BC3 sets of boundary con-

ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.22 BGK shock width regression for BC4 set of boundary conditions . . 120

xiv



List of Tables

2.1 List of primary macroscopic observables used in the 1-D Navier-

Stokes system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 List of secondary macroscopic observables used in the 1-D Navier-

Stokes system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Examples of the exact values of shock forming boundary data . . . . 87

6.2 Examples of the approximate values of shock forming boundary data 87

6.3 Parameters used in the numerical scheme to solve the 1-D Navier-

Stokes system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Computation of truncation error estimate . . . . . . . . . . . . . . . 89

6.5 Parameters used in the numerical scheme to solve the 1-D Bhatnagar–

Gross–Krook equation . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6 References to the figures and corresponding pages for results of nu-

merical simulations of the Navier-Stokes and Bhatnagar–Gross–Krook

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Shock width measurements of numerical solutions . . . . . . . . . . 97

6.8 Proportionality coefficients of θ-associated shock width for BGK model111

xv



List of Tables

6.9 Navier-Stokes and BGK shock width regression results . . . . . . . . 114

A.1 Moments of Maxwellian Distribution. . . . . . . . . . . . . . . . . . 126

xvi



Glossary

log natural logarithm

N set of natural numbers

R set of real numbers

C(Rn) set of continuous functions defined on Rn, n can be 1, 2, . . ., etc.

Matn(R) space of real n-by-n matrices

S unit sphere {~x ∈ R3 : |~x| = 1}

⊕ direct sum of linear subspaces

⊗ dyadic product, outer product, ~u⊗ ~v = ~u · ~vT

⊗2 dyadic square, ~v⊗2 = ~v ⊗ ~v

: scalar product of matrices (see formula 1.117 on p.1.117)

∗ reverse-order notation for matrix-vector multiplication (p.29)

⊥ orthogonal subspaces, orthogonal compliment

∂t partial derivative with respect to t

Dt material derivative (see definition on p.25)

xvii



Glossary

Div divergence applied to a tensor field (formula 1.44, p.15)

tr trace of a square matrix

Ker null space of a linear operator

Im image space of a linear operator

l.s. linear span

BGK Bhatnagar–Gross–Krook

NS Navier-Stokes

xviii



Chapter 1

Motivation of Study:

Thermodynamic Limits

1.1 Introduction

There are two approaches to studying the dynamic theory of gases. One can consider

a set of macroscopic equations in terms of independent macroscopic variables such

as density ρ, velocity ~v and temperature θ. A classic example of such equations is

the set compressible Navier-Stokes equations or inviscid Euler equations. On the

other hand one can address the problem from the more fundamental point of view

involving microscopic one particle distribution function f = f(t, ~x,~v) known as the

microscopic state. Its evolution is described by the Boltzmann Equation. The first

approach is a combination of the Theory of Fluid Dynamics and Thermodynamics.

The later one is known as the Kinetic Theory. There have been a significant amount

of effort to demonstrate that these two fundamentally different approaches lead to

the same result as far as the macroscopic behavior of a gas concerned.

Development of Fluid Dynamics started with Euler by his introduction of inviscid

1



Chapter 1. Motivation of Study: Thermodynamic Limits

flow equations in 1755. Claude Louis Marie Henri Navier derived the famous Navier-

Stokes equations in 1822 when he first introduced viscous effects. The derivations of

equation of motions where further refined by Cauchy in 1828 and Poisson in 1829.

Finally in 1843 George Gabriel Stokes published a derivation of the equations that

is well understood and is known until today.

Development of the Kinetic Theory started as early as 1738 when Daniel Bernoulli

proposed the idea that a gas consists of a finite number of elastic particles with non-

zero radii colliding and bouncing at high speeds. Bernoulli suggested that the motion

of such a system is governed by the laws of elementary mechanics. The idea of discrete

matter was not completely new, because a few Greek Philosophers asserted that the

splitting of matter onto two equal parts can be repeated only until the smallest

possible quantity of matter is achieved. The fresh taste to the old idea was imparted

by the hypothesis that macro properties of gas such as pressure and temperature can

be attributed to the mechanical motion of the colliding spheres. Although Bernoulli

Theory can qualitatively explain elementary properties of gases such as temperature,

compressibility, etc., its rigorous quantitative verification was not possible until much

later – during the formation of Kinetic Theory in the beginning of 19th century.

Although the laws of mechanics are relatively simple, understanding the overall

behavior of the family may prove to be a very challenging task, especially when long

time behavior or thermodynamical limits are of interest. One should expect that

the resolution of simple mechanical laws will provide a complete description of the

dynamics of the system. Although true, this is an infeasible practical challenge. In-

deed, when one accounts for the number of the members in the ensemble it becomes

clear that this is not a feasible computational problem. Namely, the order of mag-

nitude of the ensemble whose members need to be tracked individually is related to

the Avogadro Number (6.022 × 1023). It becomes clear that at the present state of

2



Chapter 1. Motivation of Study: Thermodynamic Limits

computer and applied science1 there is no enough computational power available to

address a problem of such magnitude.

Position and velocity of each of the spheres (~xi, ~vi) is called a microscopic state.

Provided the number of all microscopic states is very large, an attempt to describe

the behavior of the gas through microscopic states of its molecules is doomed to

fail. Thus probabilistic methods of what is presently known as Statistical Mechanics

should be employed. This should prove a fruitful approach since a change in a

small number of micro-states of particles will not affect the macro-state of the gas.

Moreover, in reality, the only observable variables one can detect are macroscopic

parameters of the gas such as temperature, density, velocity, stresses and heat flow.

These observables should depend on some statistical averages of microscopic states.

The average quantities is all that matters in determining the macroscopic state. Thus

solving for microscopic states is not only a complex but also an unnecessary problem.

The original idea for statistical treatment of an ensemble belongs to Ludwig

Boltzmann who laid out the foundation of modern Statistical Mechanics. He in-

troduced [2] the distribution function f that statistically describes the behavior of

gases. After neglecting trinary and higher order collisions and assuming the Molecu-

lar Chaos Hypothesis (Stosszahlansatz) Boltzmann wrote down a partial differential

equation describing an evolution of f .

∂tf + ~v · ~∇f = B(f, f) (1.1)

This famous equation is known as The Boltzmann Equation or the Maxwell-Boltzmann

Equation. In the same paper of 1872 [2] he introduced an important consequence of

his equation known as The H-Theorem. The H-Theorem explains the irreversibility

of natural process in gases by showing that the molecular collisions tend to increase

chaos inside a gas. Appearance of this theorem resulted in a big turmoil in the scien-

1year 2009

3



Chapter 1. Motivation of Study: Thermodynamic Limits

tific community of that time. The result seemed to produce a number of paradoxes

and hence it was rejected by many mathematicians and physicists by the end of the

19th century.

However, shortly after Boltzmann’s death in 1906 the existence of atoms had

been established experimentally and detailed heuristic analysis of the Boltzmann

Equation by Paulus and Tatiana Ehrenfest reinstated [11] its credibility and the

Kinetic Theory regained much popularity among scientists.

The Boltzmann Equation has become a universal tool in investigating a behavior

of dilute gases (Kinetic Regime)2 where the continuum approach of Fluid Dynamics

is incapable of producing reliable simulations. Significant efforts were applied to ob-

tain its approximate and exact solutions. David Hilbert first obtained [10] a result

expressing a solution of the Boltzmann Equation as a series expansion3. S. Chap-

man [9] and D. Enskog [12] obtained a series solution valid for dense gases. Global

existence and uniqueness were proved by T. Carleman [5, 6, 7] in certain restricting

assumption which were removed in the following papers. H. Grad [15] developed a

systematic method of expaxnding a solution of the Boltzmann Equation in a series

of orthogonal polynomials.

Even in the most simple physical applications solving the Boltzmann equation

is rather a cumbersome task due to the complexity of its nonlinear right hand side

term B(f, f), which is known as the Collision Integral. A modification of the collision

integral was proposed by P. L. Bhatnagar, E. P. Gross, M. Krook in [1] and is known

as the BGK Model.

BBGK(f, f) = −1

τ
(f − fe) (1.2)

The modified collision term is designed to conserve mass, momentum and energy as

2see Section 1.3.1.
3see Section 1.3.6 for a review

4



Chapter 1. Motivation of Study: Thermodynamic Limits

well as to ensure that the microscopic one particle density function is close to the

equilibrium distribution fe provided by the H-Theorem. The corresponding BGK-

Boltzmann equation has been known to adequately model properties of gases both

in Fluid Regime as well as Knudsen Regime where applicability of the Navier-Stokes

equations are limited.

In this dissertation we consider the particular situation of one-dimensional viscous

flow in the Fluid Regime. The general comparison of the Kinetic Theory and Fluid

Dynamics is a major undertaking of Statistical Mechanics and cannot be addressed

within a scope of this work. However we consider one single aspect of the problem.

Due to its strong non-linearity, the Navier-Stokes system it has been known[19, 22]

to exhibit shock layer solutions under certain conditions. The author investigates

whether it is possible to obtain a comparable viscous shock layer profile by devel-

oping and applying similar conditions to the BGK-Boltzmann model. The BGK-

Boltzmann model is set up and numerically solved. The solution is then compared

to the solution of the corresponding compressible Navier-Stokes system.

1.2 Equations of Continuum Mechanics and Ther-

modynamics

Consider a system of partial equations that describes a viscous heat conducting flow

subject to external force ~f and external heart source Q [20]:

∂tρ+ div (ρ~u) = 0,

∂t(ρ~u) + Div(ρ~u⊗ ~u) = ρ~f + div σ,

∂t
(

1
2
ρ |~u|2 + ρe

)
+ div

[
ρ~u
(

1
2
|~u|2 + e

)]
+ div(~q) = ρ~f · ~u+ div(σ~u) + ρQ,

(1.3)

5



Chapter 1. Motivation of Study: Thermodynamic Limits

where ρ, ~u, e are local quantities characterizing the density, velocity, and internal

energy per unit mass; σ = −pI + τ is the stress tensor, τ is the shear stress and

p is the pressure. The capitalized divergence operator (Div) is the extension of the

regular divergence from vector fields to matrix fields. The definition of Div is given

by (1.44). For the purposes of this chapter we will assume that the flow is subject

to no external influences i.e.

~f = 0,

Q = 0
(1.4)

and, furthermore we will neglect viscous and heat conducting effects in the flow

τ = 0,

~q = 0.
(1.5)

After the assumptions (1.4,1.5) system (1.3) reduces to the system of Euler equations

describing 3-D inviscid compressible flow

∂tρ+ div (ρ~u) = 0,

∂t(ρ~u) + Div(ρ~u⊗ ~u) + ~∇p = 0,

∂t
(

1
2
ρ |~u|2 + ρe

)
+ div

[
ρ~u
(

1
2
|~u|2 + e

)
+ p~u

]
= 0.

(1.6)

We will assume the following equations of state

p =
R

M
ρθ,

e =
CV
M

θ,

(1.7)

where θ is the temperature, M , R, and CV are gas specific and universal constants

described in Table 2.2. Equations (1.6) are provided in physical variables therefore

6



Chapter 1. Motivation of Study: Thermodynamic Limits

we rewrite the system in terms of generic variables ρ̂, ~̂u, ê and θ̂ such that

~x = L~̂x, ~u = u0~̂u,

t = t0t̂, e = e0ê,

ρ = ρ0ρ̂, θ = θ0θ̂,

p = p0p̂.

(1.8)

We assume the following four normalization identities that regulate the characteristic

quantities

u0 = Lt−1
0 (1.9)

e0 = u2
0 (1.10)

Rθ0 = Mu2
0 (1.11)

p0 = ρ0u
2
0 (1.12)

After applying transformations (1.8) to system (1.6) and implementing state

equations (1.7), the resulting system will depend on variables ρ̂, ~̂u, and θ̂. For

simplicity of notations, hats (̂ ) above the variables will be dropped. The resulting

system is given by (1.13), where γ is a a gas specific constant4 (2.33). The details of

rescaling procedure are provided in Appendix B.1.

∂tρ+ div (ρ~u) = 0,

∂t(ρ~u) + Div(ρ~u⊗ ~u) + ~∇(ρθ) = 0,

∂t

(
1
2
ρ |~u|2 + 1

γ−1
ρθ
)

+ div
[
ρ~u
(

1
2
|~u|2 + γ

γ−1
θ
)]

= 0.

(1.13)

4In general γ depends on the temperature of the gas. We will assume that the medium
is calorically perfect, i.e. γ = const

7



Chapter 1. Motivation of Study: Thermodynamic Limits

Let us consider a few specific examples of the Euler system. For a gas whose

molecules have d degrees of freedom, it has been calculated [20]5 that γ can be given

by

γ =
d+ 2

d
. (1.14)

We will further consider a monoatomic gas whose molecules are modeled by hard

spheres (Section 1.3.1). In this case a molecule has d = 3 degrees of freedom and

hence γ =
5

3
. In this case the Euler system takes form

∂tρ+ div (ρ~u) = 0,

∂t(ρ~u) + Div(ρ~u⊗ ~u) + ~∇(ρθ) = 0,

∂t
(

1
2
ρ |~u|2 + 3

2
ρθ
)

+ div
[
ρ~u
(

1
2
|~u|2 + 5

2
θ
)]

= 0,

(1.15)

which coincides with (Section 1.3.6). Starting Chapter 2 our efforts will be concen-

trated on one-dimensional Euler and Navier-Stokes systems. In order to obtain a

1-D version of (1.13) we eliminate dependance on coordinates x2 and x3 i.e. it is

assumed that ∂x2 = ∂x3 = 0 and therefore the state variable can be treated as

ρ = ρ(t, x1),

~u = [ u1(x1, t) 0 0 ]T ,

θ = θ(x1, t)

(1.16)

To simplify notations x1 is denoted by x, and u1 is denoted by u. The system (1.13)

reduces to

∂tρ+ ∂x (ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + ρθ) = 0,

∂t

(
1
2
ρu2 + 1

γ−1
ρθ
)

+ ∂x

[
ρu
(

1
2
u2 + γ

γ−1
θ
)]

= 0.

(1.17)

5p.43, formula 3-20
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Chapter 1. Motivation of Study: Thermodynamic Limits

In the case of “one-dimensional gas”, a member-molecule possesses d = 1 degree

of freedom, and therefore according to (1.14) the adiabatic ratio for a monoatomic

hard sphere gas must be set

γ = 3, (1.18)

and the 1-D equations of inviscid flow become

∂tρ+ ∂x (ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + ρθ) = 0,

∂t
(

1
2
ρu2 + 1

2
ρθ
)

+ ∂x
[
ρu
(

1
2
u2 + 3

2
θ
)]

= 0.

(1.19)

We have discussed 1-D and 3-D cases of inviscid flow. The 3-D Euler system

(1.15) will obtained from a solution of the Boltzmann Equation (see Section 1.3.6).

The 1-D case was discussed to justify γ = 3 value. This case will be addressed as

the main subject of study of this dissertation starting Chapter 2.

1.3 Kinetic Theory

1.3.1 Thermodynamic Regimes

Consider a gas confined in a vessel with characteristic length L and volume V .

Assume that the vessel contains N molecules colliding with each other. We will

assume that a molecule a spherical hard object with radius r > 0. Let l be the

average distance between two collisions of a typical molecule. Quaintly l is called

the mean free path. We resort to an intuitive meaning of mean free path6. The

volume that is not available for molecular motion is called the excluded volume. The

6For the exact definition of mean free path see [25, 24]

9



Chapter 1. Motivation of Study: Thermodynamic Limits

excluded volume Ve can be calculated as the volume of all the molecules once they

are tightly packed. It is clear that

N · 4π

3
r3 < Ve < N · (2r)3 (1.20)

The mean free path l can be expressed (see [24]) in terms of the excluded volume

and the size of a molecule by

l ' 1
N

V−Ve · 4A
(1.21)

where A = πr2 is the cross section of a molecule. A gas is called rarified when the

mean free path is comparable to the characteristic length. The rarefication degree is

measured by dimensionless number called the Knudsen number Kn

Kn =
l

L
(1.22)

Gas dynamics identifies two regimes:

1. Fluid Regime. A fluid regime is characterized by the mean free path that is

negligible with respect to the characteristic length of the container. A fluid regime

is characterized in terms of of Knudsen number as

Kn� 1 (1.23)

In this case the gas is said to be in the state of local thermodynamic equilibrium

and its state can be adequately characterized by a few continuum variables such as

pressure p = p(t, ~x) ≥ 0, temperature θ = θ(t, ~x) > 0, and velocity ~u = ~u(t, ~x) ∈

R3. Evolution of the continuum variables is described by equations of continuum

mechanics and thermodynamics such as Navier-Stokes or Euler equations.

10



Chapter 1. Motivation of Study: Thermodynamic Limits

2. Kinetic Regime. In the case the gas is more rarefied i.e. there is not enough

collisions happening between molecules of for a local equilibrium to be achieved.

The gas is said to be in the Kinetic Regime. The average path traveled between

two consecutive collisions is comparable to the characteristic length of the vessel or

equivalently

Kn = O(1). (1.24)

In this case the state of the gas can be described by a single-particle phase space

density function

f = f(t, ~x,~v) ≥ 0. (1.25)

Function f provides a statistical distribution of the molecules by their velocities ~v and

locations ~x at any time t ≥ 0. Thus the total momentum of the gas can be calculated

by averaging over all velocities and coordinates with respect to the density f(t, ~x,~v)

~M(t) =

ˆ
R3

ˆ
R3

m~vf(t, ~x,~v)d~vd~x (1.26)

Similarly, the local macroscopic distribution of momentum is given by

~ρM(t, ~x) =

ˆ
R3

m~vf(t, ~x,~v)d~vd~x (1.27)

where m is the mass of one molecule. Momentum density defined by (1.27) is one of

the macroscopic observables that can be obtained as an image of mapping

φ 7→
ˆ

R3

φ(~v)f(t, ~x,~v)d~v (1.28)

applied to a scalar or vector field φ = φ(~v). Statistical approach is valid in the a

fluid regime as well. Thus we have two descriptions of the state of a gas. One that

11



Chapter 1. Motivation of Study: Thermodynamic Limits

involves a set of two scalar and one vector field and that is valid for fluid regimes.

The other description is statistical and it adequate for both fluid and kinetic regimes.

A natural and the most general question is to describe how these two approaches to

the same physical phenomenon relate to each other.

1.3.2 The Boltzmann Equation

In the absence of external forces, the evolution of one-particle density functions f is

described by the Boltzmann Equation

∂tf + ~v · ~∇~xf = B(f, f) (1.29)

The left hand side ∂tf + ~v · ~∇xf of the Boltzmann Equation is called the streaming

part and the right hand side B(f, f) is called the collision integral. The streaming

part can be expressed in terms of the material derivative defined as

Dtf = ∂tf + ~v · ~∇~x = ∂tf + div~x (~vf) (1.30)

Using (1.30) the Boltzmann Equation can be written in an alternative form

∂tf + div~x (~vf) = B(f, f) (1.31)

The derivation of the Boltzmann Equation is provided in [4, 13, 16]. Before giving

an expression of the collision integral we will briefly discuss the idea involved in its

derivation.

Let us consider two colliding molecules A and A∗ with the same masses m and

radii r. Let (~v′,~v′∗) and (~v,~v∗) be pre- and post-collision velocities of the molecules.

12



Chapter 1. Motivation of Study: Thermodynamic Limits

Due to the assumption that all molecules of the gas have the same mass, the laws of

conservation of momentum and energy read

~v + ~v∗ = ~v′ + ~v′∗

|~v|2 + |~v∗|2 = |~v′|2 + |~v′∗|
2

(1.32)

If we treat the pre-collision velocities ~v′ and ~v′∗ as functions of the post-collision ones

~v and ~v∗, equations (1.32) constitute a homogeneous system of five equations an six

unknowns whose all solutions are [18]

~v′ = ~v′(~v,~v∗, ~ω) = ~v − [(~v − ~v∗) · ~ω] ~ω

~v′∗ = ~v′∗(~v,~v∗, ~ω) = ~v∗ + [(~v − ~v∗) · ~ω] ~ω
(1.33)

where ~ω ∈ S2 is a free parameter.

For a hard sphere gas with elastic collisions7, collision integral B(f, f) takes

form [18]

B(f, f)(~v) = 2r2

ˆ
R3

ˆ
S2

[f(~v′)f(~v′∗)− f(~v)f(~v∗)] |(~v − ~v∗) · ~ω| d~ωd~v∗ (1.34)

Following the standard notation adopted in the Kinetic theory, we set

f∗ = f(t, ~x,~v∗),

f ′ = f(t, ~x,~v′),

f ′∗ = f(t, ~x,~v′∗),

(1.35)

where ~v′ and ~v′∗ are defined by (1.33). The notation for the collision integral (1.34)

reduces to

B(f, f)(~v) = 2r2

ˆ
R3

ˆ
S2

[f ′f ′∗ − ff∗] |(~v − ~v∗) · ~ω| d~ωd~v∗ (1.36)

7Momentum and energy are preserved
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Chapter 1. Motivation of Study: Thermodynamic Limits

The inner integral

ˆ
S2

is the surface integral over unit sphere defined by

ˆ
S2

f(~ω)d~ω =

‹
ω2

1+ω2
2+ω2

3=1

f(ω1, ω2, ω3)dS (1.37)

Proposition 1. Assume that f is a locally L1-integrable and faster than polynomially

decaying function on R3. Assume that φ ∈ C(R3) has at most polynomial growth on

infinity. Then the following formula is true:

ˆ
R3

B(f, f)φ(v)d~v =

=
2r2

4

ˆ
R3

ˆ
R3

ˆ
S3

[f ′f ′∗ − ff∗] (φ+ φ∗ − φ′ − φ′∗) |(~v − ~v∗) · ~ω| d~ωd~vd~v∗

(1.38)

For a proof of Proposition 1 see [18].

Definition 1. The continuous function φ : R3 −→ R is called a collision invariant

if ∀~v,~v∗ ∈ R3 and ∀~ω ∈ S2 the following is true

φ(~v) + φ(~v∗) = φ(~v′) + φ(~v′∗) (1.39)

where ~v and ~v′∗ are defined by (1.33).

Due to (1.33), examples of collision invariants include

φ0(~v) = 1

φk(~v) = vk, k = 1, 2, 3

φ4(~v) = 1
2
|~v|2

(1.40)

It follows from Definition 1, that any linear combination of φk, k = 0, 1, . . . , 4

is a collision invariant as well. The next proposition provides a description of all

collusion invariants. A proof of Proposition 2 is given in [8].

14
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Proposition 2. Any collision invariant must be of the form

φ(~v) = a+~b · ~v + c |~v|2 (1.41)

where a, c ∈ R and ~b ∈ R3

Corollary 1. For any collision invariant φ and for any rapidly decaying measurable

f the following is true

ˆ
R3

B(f, f)φ(~v)d~v = 0 (1.42)

Proof. The proof follows from Proposition 2 and Definition 1. Since φ is a collision

invariant we have

φ+ φ∗ − φ′ − φ′∗ = 0 (1.43)

and therefore the integral in the right hand side of (1.38) is zero. Thus the conclusion

follows.

Before we proceed with the next corollary we extend the definition of the diver-

gence to a matrix field. Let A : R3 −→ Mat3(R) be a matrix field, then

Div~xA =

 div~xA
T
1

div~xA
T
2

div~xA
T
3

 (1.44)

where Ak are rows of A. Definition of Div allows as to state the following corollary

in a compact form.

Corollary 2. Let f = f(t, ~x,~v) be a locally integrable and rapidly decaying in ~v

solution of the Boltzmann Equation (1.29). Then for k = 1, 2, 3

ˆ
R3

B(f, f)d~v =

ˆ
R3

B(f, f)vkd~v =

ˆ
R3

B(f, f)
1

2
|~v|2 d~v = 0 (1.45)
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Moreover the following local conservation laws hold:

∂t

ˆ
R3

f(t, ~x,~v)d~v + div~x

ˆ
R3

~vf(t, ~x,~v)d~v = 0 (1.46)

∂t

ˆ
R3

~vf(t, ~x,~v)d~v + div~x

ˆ
R3

~v ⊗ ~vf(t, ~x,~v)d~v = 0 (1.47)

∂t

ˆ
R3

1

2
|~v|2 f(t, ~x,~v)d~v + div~x

ˆ
R3

~v
1

2
|~v|2 f(t, ~x,~v)d~v = 0 (1.48)

Proof. Since φk, defined by (1.40), are collision invariants, according to Corollary 1

ˆ
R3

B(f, f)φk(~v)d~v = 0, ∀k = 0, 1, . . . , 4 (1.49)

and thus (1.45) is obtained.

In order to obtain (1.46)-(1.48) we multiply Boltzmann Equation in (1.31) by

each of the collision invariants φk defined by (1.40) and integrate over R3:

∂t

ˆ
R3

φkfd~v + div~x

ˆ
R3

~vφkfd~v =

ˆ
R3

B(f, f)φkd~v (1.50)

We notice that

ˆ
R3

B(f, f)φkd~v = 0 because of (1.45) and therefore (1.46) and (1.48)

follow. It becomes clear that (1.47) holds as well after div~x

ˆ
R3

~v ⊗ ~vfd~v is written

in the component form

[
Div~x

ˆ
R3

~v ⊗ ~vfd~v
]
k

= div~x

ˆ
R3

vk~vfd~v (1.51)

and this finalizes the proof.
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We define the following fields

ρ(t, ~x) =

ˆ
R
fd~v (1.52)

u(t, ~x) = ρ−1

ˆ
R
~vfd~v (1.53)

P (t, ~x) =

ˆ
R
(~v − ~u)⊗2fd~v (1.54)

C(t, ~x) =

ˆ
R
(~v − ~u) |~v − ~u|2 fd~v (1.55)

It can be shown (see Appendix B.2) that the moments of the distribution function

are

ˆ
R3

~v⊗2fd~v = ρ~u⊗2 + P (1.56)

ˆ
R3

|~v|2 fd~v = ρ |~u|2 + trP (1.57)

ˆ
R3

~v |~v|2 fd~v =
[
ρ |~u|2 + trP

]
~u+ 2P~u+ C (1.58)

and therefore equations (1.46)-(1.48) take form

∂tρ+ div (ρ~u) = 0

∂t(ρ~u) + Div(ρ~u⊗ ~u+ P ) = 0

∂t
1
2

(
ρ |~u|2 + trP

)
+ div 1

2

[(
ρ |~u|2 + trP

)
~u+ 2P~u+ C

]
= 0

(1.59)

One can observe that if we take

P = pI,

C = 0,
(1.60)
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with pressure p subject to the Ideal Gas Law (1.7)8, then system (1.59) will become

the 3-D Euler system with the adiabatic ratio γ =
5

3
that corresponds to a gas with

d = 3 degrees of freedom (see formula 1.14):

∂tρ+ div (ρ~u) = 0,

∂t(ρ~u) + Div(ρ~u⊗ ~u) + ~∇(ρθ) = 0,

∂t
(

1
2
ρ |~u|2 + 3

2
ρθ
)

+ div
[
ρ~u
(

1
2
|~u|2 + 5

2
θ
)]

= 0.

(1.61)

The resulting system is the same as provided by (1.15) in Section 1.2. Despite of

this remarkable coincidence, assumptions (1.60) are unsubstantiated and cannot be

accepted.

1.3.3 The H-Theorem

The most famous form of the Boltzmann’s H-Theorem allows to solve the following

integral equation

B(f, f) = 0 (1.62)

as well as it provides an expression for the entropy production rate. We will state only

a part of the H-Theorem to the extent that suffices to proceed with our consideration.

A complete version of the H-Theorem can be found in [18].

Theorem 1. Let f : R3 −→ R be a locally integrable function with at most polynomial

decay on infinity. Then the following statements are equivalent:

(a) B(f, f) = 0 a.e., (1.63)

8The Ideal Gas Law in nondimensionalized variables takes form p = ρθ. See Ap-
pendix B.1 formula (B.5)
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(b)

ˆ
R
B(f, f) log fd~v = 0, (1.64)

(c) the distribution f is a Maxwellian density f = f e(ρ,u,θ), i.e.

f = f e(ρ,u,θ)(~v) =
ρ√

(2πθ)3
exp

{
−|~v − ~u|

2

2θ

}
, (1.65)

for some ρ, θ > 0 and ~u ∈ R3.

Proof. Implication (a)=⇒(b) follows from the properties of the Lebesgue integral.

Assume that statement (b) holds. We apply Proposition 1 for φ = f and we get

0 =
´

R B(f, f) log fd~v =

=
2r2

4

ˆ
R3

ˆ
R3

ˆ
S3

[f ′f ′∗ − ff∗] log
ff∗
f ′f ′∗
|(~v − ~v∗) · ~ω| d~ωd~vd~v∗

(1.66)

Trivially

(b− a) log
a

b
≤ 0 ∀a, b > 0 (1.67)

therefore it follows from (1.66) that for a continuous f

f ′f ′∗ − ff∗ = 0 a.e.⇐⇒ log f ′ + log f ′∗ = log f + log f∗ a.e. (1.68)

If f is a continuous function then log f is a collision invariant (Definition 1) and

therefore, by Proposition 2,it must be of the form

log f = a+~b · ~v + c |~v|2 (1.69)
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Conclusion (1.69) still can be achieved without assuming continuity of f (see for

details in [18, 3, 23]). Since f is a decaying function, c must be negative. Statement

(c) follows after setting

ρ =

√
−π

3

c3
exp

{
a− |

~b|2

4c

}
,

~u = −
~b

2c
,

θ = − 1

2c
.

(1.70)

Implication (c)=⇒(a) can be verified directly. We refer to Appendix B.3 for the

details.

1.3.4 Nondimensionalization of the Boltzmann Equation

Consider the original Boltzmann Equation as given by (1.29) with the collision term

define by (1.34). We apply the following scaling transformations to obtain the nondi-

mensionalized Boltzmann Equation :

x = Lx̂, ~v = v0~̂v,

t = t0t̂, f = f0f̂ .
(1.71)

After substituting (1.71) into the collision term (1.34) we obtain

B(f, f) = B0

ˆ
R3

ˆ
S2

(f̂ ′f̂∗ − f̂ f̂∗)|(~̂v − ~̂v∗)~ω|d~ωd~v∗ = B0B̂(f̂ , f̂), (1.72)

where

B0 = 2r2f 2
0 v

4
0. (1.73)
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Equation (1.29) takes form

f0

t0
∂t̂f̂ +

v0f0

L
~̂v · ~∇x̂f̂ = B0B̂(f̂ , f̂). (1.74)

As usual, we will omit the hat-notation above the variables. All variables will be

assumed to be nondimensional. We note that the only difference between B̂ and B

is the scaling constant B0. Hence all previously described machinery for treating B

is available for B̂ without change. We also assume that the scaling parameters L,

t0, and v0 are related via
L

t0v0

= 1. After simplifying equation 1.74 we arrive to the

nondimensional Boltzmann Equation

∂tf + ~v · ~∇~xf = B0B(f, f), (1.75)

where

B0 = 2r2Lf0v
3
0 (1.76)

We recall that f is the number density i.e. ρ = ρ0ρ̂ =

ˆ
R3

f0f̂v
3
0d~v, where the

characteristic density must be ρ0 =
N
L3

; and N is the characteristic number of

molecules.9 From this we deduce that

f0 =
N
L3v3

0

(1.77)

After substituting (1.77) into (1.76) the expression for B0 becomes

B0 =
2r2

L2
N (1.78)

We recall, that according to (1.21) the mean free path can be calculated as

l =
∆V

4Nπr2
, (1.79)

9It can be the Avogadro Number for example.
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where ∆V = const is the difference between the characteristic volume V and the

excluded volume Ve. Here we recall that by the definition of the collision integral, r

is the radius of a molecule and therefore A = πr2 is the cross section of one molecule.

Using the expression for the mean free path (1.79) we obtain

l =
L2

2r2N
· ∆V

2π
· 1

L2
=

1

B0

∆V

2πL2.
(1.80)

The quotient of the mean free path and the characteristic length is refereed to by

the Knudsen number, and therefore (1.22) yields

B0 =
α

Kn
=:

1

E
. (1.81)

The scaled Boltzmann Equation takes form

∂tfE + ~v · ~∇fE =
1

E
B(fE , fE) (1.82)

From now on we assume that the gas is in the fluid regime (see Section 1.3.1). In

the fluid regime collision between molecules occur with a high frequency and therefore

according to (1.23) Knudsen number Kn must be close to zero. This enables us to

consider the behavior of solutions of the family of equations (1.82) when E −→ 0.

We will proceed formally without explaining modes of convergence and existence of

the limiting distribution.

Assume that the limit in certain sense when E goes to zero exists and

lim
E→0

fE = f. (1.83)

It follows from the existence of the limit (provided that passing to the limit in (1.82)

is justified), that

B(f, f) = 0. (1.84)
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According to the H-Theorem (Theorem 1) a solution of (1.84) exists and must be of

the form of the Maxwellian distribution (1.65). Thus we have arrived to the following

conclusion: for the fluid regimes the solution of the Boltzmann Equation is close to

a Maxwellian distribution for some ρ, θ > 0 and ~u ∈ R3:

f ' f e(ρ,~u,θ)(~v) =
ρ√

(2πθ)3
exp

{
−|~v − ~u|

2

2θ

}
(1.85)

1.3.5 The Bhatnagar–Gross–Krook Model

P. L. Bhatnagar, E. P. Gross, and M. Krook in 1954 proposed to modify the collision

term of (1.29) or (1.82) so that the collisions conserve particle number, momentum

and energy as well as the convergence of the type f −→ f e is preserved. The following

model was suggested [1]:

∂tf + ~v · ~∇~xf = −1

τ
(f − f e) , (1.86)

where fe is defined by (1.65) and (ρ, ~u, θ) are chosen so that

ˆ
R3

f e(~v)d~v =

ˆ
R3

f(~v)d~v

ˆ
R3

f e(~v)~vd~v =

ˆ
R3

f(~v)~vd~v

ˆ
R3

f e(~v)|~v|2d~v =

ˆ
R3

f(~v)|~v|2d~v

(1.87)

Let us introduce a notation 〈φ, f〉 =

ˆ
R3

f(~v)φ(~v)d~v. It is easy to verify that (see

Appendix A.2 for the details)

〈1, f e〉 = ρ

〈~v, f e〉 = ρ~u

〈|~v|2, f e〉 = ρ(θ + 3|~u|2)

(1.88)

23



Chapter 1. Motivation of Study: Thermodynamic Limits

Therefore

ρ = 〈1, f〉

~u =
〈~v, f〉
〈1, f〉

θ =
〈|~v|2, f〉
〈1, f〉

− 3
|〈~v, f〉|2

〈1, f〉2
.

(1.89)

Equations (1.89) together with (1.86) constitute the 3-D Bhatnagar–Gross–Krook

model. The parameter τ > 0 is called relaxation time it is usually function of ~v,

however for the numerical simulations (Section 5.1) we will assume that τ is a small

positive constant. The 1-D BGK model can be obtained similarly to (1.86,1.89)

∂f

∂t
+ v

∂f

∂x
= −1

τ
(f − f e). (1.90)

The Maxwellian distribution in this case needs to be adjusted to reflect the proper

dimensionality i.e. the Maxwellian must be taken to be

f e(ρ,u,θ)(v) =
ρ(t, x)√
2πθ(t, x)

exp

{
−(u(t, x)− v)2

2θ(t, x)

}
. (1.91)

Details conserving the 1-D BGK model are provided in Chapter 5, Section 5.1.

1.3.6 The Hilbert Procedure

Consider the Boltzmann Equation as given by (1.82). Although we do not attach

the subscript E to the distribution function f , we still bare in mind that a solution

of the Boltzmann Equation depends on E :

∂tf + ~v · ~∇f =
1

E
B(f, f), (1.92)
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where B is nondimensionalized collision operator defined in (1.72). The quadratic

operator f 7→ B(f, f) can be extended [8] to a bilinear map by

B(f, g) =
1

2

ˆ
R2

ˆ
S2

[f ′g′∗ + g′f ′∗ − fg∗ − gf∗] |~ω · (~v − ~v∗)|d~ωd~v∗, (1.93)

where f ′, f∗, f
′
∗, g

′, g∗, f
′
∗ are defined by (1.35) and the inner integral is given by

(1.37). It follows from the definition (1.93) that the bilinear map B is symmetric,

i.e.

B(f, g) = B(g, f). (1.94)

Let Dt denote the following differential operator

Dt = ∂t + ~v · ~∇~x (1.95)

The idea of the Hilbert procedure is to seek a solution of the Boltzmann Equation

in the form of a power series in E :

f =
∞∑
n=0

Enfn. (1.96)

Although each of {fn} may be dependent on E , we assume that fn = O(1) if E −→ 0.

After substituting (1.96) into (1.92) we get

∞∑
n=0

EnDtfn =
1

E

∞∑
m,n=0

Em+nB(fn, fm) (1.97)

Using the symmetry of B (1.94) and after matching corresponding powers of E we

get

0 = B(f0, f0),

Dtf0 = 2B(f0, f1),

Dtf1 = 2B(f0, f2) + B(f1, f1),

· · ·

(1.98)
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We will consider only the first two terms of (1.98). By the H-Theorem (Theorem 1)

the first equation B(f0, f0) = 0 implies that f0 must be a Maxwellian distribution of

the form (1.65). Thus for some (ρ, ~u, θ)

f0 = f e(ρ,u,θ)(~v) =
ρ√

(2πθ)3
exp

{
−|~v − ~u|

2

2θ

}
. (1.99)

Let Wf0 be a set of measurable L2(f0dµ)-integrable functions on R3 equipped

with a scalar product:

Wf0 =

{
f : R3 −→ R :

ˆ
R3

|f |2f0d~v < +∞
}

(1.100)

f, g ∈ Wf0 , 〈f, g〉 =

ˆ
R3

f(~v)g(~v)f0(~v)d~v (1.101)

The scalar product is well defined due to the Cauchy-Schwarz inequality

|fg| ≤ 1
2
(|f |2 + |g|2). The linear space Wf0 is also complete [18, 8] and thus Wf0 is

a Hilbert space. Linear operator Lf0 :Wf0 −→Wf0 is defined as follows

Lf0h = −2f−1
0 B(f0, f0h) (1.102)

Properties of operator Lf0 are described in detail in [18] and [8]. We will present

the properties that concern our further consideration.

1. Lf0 is a self-adjoint operator i.e.

L∗f0 = Lf0 (1.103)

2. The null space of Lf0 consists of linear combinations of the collision invariants

φk defined by (1.40):

KerLf0 = l.s. {φk : k = 0, . . . , 4} . (1.104)
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3. The Hilbert space Wf0 can be represented as a sum of the image space of Lf0

and its orthogonal complement: Wf0 = ImLf0⊕(ImLf0)
⊥. Since (ImLf0)

⊥ =

KerL∗f0 and Lf0 = L∗f0 , we have that

Wf0 = ImLf0 ⊕KerLf0 (1.105)

and

ImLf0 ⊥ KerLf0 . (1.106)

Let

h =
f1

f0

, (1.107)

where f0 and f1 are the first two members of the expansion (1.96); moreover f0 is a

Maxwellian of the form (1.99). Then the second equation of (1.98) can be written as

Dtf0

f0

= 2f−1
0 B(f0, f0h) (1.108)

It is easy to verify that differentiation Dt complies with the Chain Rule and hence

Dt log f0 = Dtf0
f0

. The right hand side of (1.108) can be represented in terms of Lf0 .

Equation (1.108) takes form of an operator equation

Lf0h = −Dt log f0 (1.109)

Equation (1.109) has a solution if and only if Dt log f0 ∈ ImLf0 which is, according

to (1.105,1.106), equivalent to

Dt log f0 ⊥ KerLf0 (1.110)
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We assumed that the expansion (1.96) is valid, therefore equation (1.109) must

have a solution (1.107). Since a solution exists the orthogonality relation (1.110)

holds. The null space KerLf0 is spanned by five collision invariants φk. This means

that

〈Dt log f0, φk〉Wf0
= 0, k = 0, . . . , 4. (1.111)

It is demonstrated in Appendix B.4 that

Dt log f0 =
1

ρ

[
∂tρ+ ~u · ~∇ρ+ ρ div ~u

]
︸ ︷︷ ︸

E1

+

+
~v − ~u
θ
·
[
∂t~u+ ~u ∗ ~∇~u+ ~∇θ +

θ

ρ
~∇ρ
]

︸ ︷︷ ︸
~E2

+

+
1

2θ

[
|~v − ~u|2

θ
− 3

] [
∂tθ + ~u · ~∇θ +

2

3
θ div ~u

]
︸ ︷︷ ︸

E3

+

+ A

(
~v − ~u√

θ

)
: ~∇~u+ 2B

(
~v − ~u√

θ

)
· ~∇
√
θ,

(1.112)

where tensors A and B are defined by

A(~V ) = ~V ⊗ ~V − 1

3
|~V |2I, (1.113)

B(~V ) =
1

2

(
|~V |2 − 5

)
~V . (1.114)

Gradient ~∇ is extended to a vector field by

~∇~u =

 ~∇Tu1

~∇Tu2

~∇Tu3

 , (1.115)
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and operations ∗10 and : are defined by

~u ∗ ~∇~u =

 ~u · ~∇u1

~u · ~∇u2

~u · ~∇u3

 . (1.116)

and

P,Q ∈ Matm,n(R) =⇒ P : Q =
∑
j,k

PijQij ∈ R. (1.117)

Let

ψ1(~v) =
1

ρ
(1.118)

ψk2(~v) =
vk − uk

θ
(1.119)

ψ3(~v) =
1

2θ

[
|~v − ~u|2

θ
− 3

]
(1.120)

The functions ψj, j = 1, 2, 3 are linear combinations of the collision invariants

(1.40)

ψ1(~v) =
1

ρ
φ0(~v),

ψk
2(~v) =

1

θ
φk(~v)− uk

θ
φ0(~v),

ψ3(~v) =
1

θ2
φ4(~v)− 1

θ2

4∑
j=1

ujφj(~v) +

[
|~u|2

2θ2
− 3

2θ

]
φ0(~v);

(1.121)

10~b ∗A can be viewed as A~b
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and therefore, because of (1.104), φ1, φ
k
2, φ3 ∈ KerLf0 . Expression of Dt log f0 can

be rewritten in terms of φ1, ~φ2, φ3 and E1, ~E2, E3 defined by (1.112) as

Dt log f0 = E1ψ1(~v) + ~E2 · ~φ2(~v) + E3ψ3(~v) + A : ~∇~u+ 2B · ~∇
√
θ (1.122)

It is demonstrated in Appendix B.5 that

Aij

(
~v − ~u√

θ

)
⊥ KerLf0 , (1.123)

Bk

(
~v − ~u√

θ

)
⊥ KerLf0 ; (1.124)

and, therefore because of (1.110), E1 = Ek
2 = E3 = 0 must me met. These conditions

imply

∂tρ+ ~u · ~∇ρ+ ρ div ~u = 0,

∂t~u+ ~u ∗ ~∇~u+ ~∇θ + θ
ρ
~∇ρ = 0,

∂tθ + ~u · ~∇θ + 2
3
θ div ~u = 0.

(1.125)

System (1.125) is equivalent to the compressible Euler system (1.15) (the details

are provided in Appendix B.6):

∂tρ+ div (ρ~u) = 0,

∂t(ρ~u) + Div(ρ~u⊗ ~u) + ~∇(ρθ) = 0,

∂t
(

1
2
ρ |~u|2 + 3

2
ρθ
)

+ div
[
ρ~u
(

1
2
|~u|2 + 5

2
θ
)]

= 0.

(1.126)

The compressible Euler System (1.126) was obtained assuming the possibility of

asymptotic expansion (1.96) of a solution of the Boltzmann Equation (1.92). The

resulting system coincides with the Euler system obtained in Section 1.2 with adi-

abatic ratio γ =
5

3
. This value of γ is related to the number of degrees of freedom
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of the hard sphere gas (see formula 1.14). The equations of state used are given by

(1.7) whose nondimensionalized versions for γ =
5

3
are

p = ρθ,

e = 3
2
θ.

(1.127)

Details for the derivation of (1.127) are give in Appendix B.1 (see formulas B.5

and B.6).

31



Chapter 2

Non-dimensionalization of 1-D

Euler and Navier-Stokes Systems

2.1 The Navier-Stokes System in Physical Vari-

ables

Consider the one-dimensional Navier-Stokes system given as in [14]:

ρt + (ρu)x = 0 (2.1)

(ρu)t + (ρu2)x = σx (2.2)

(
1
2
ρu2 + ρe

)
t
+
(
ρu( 1

2
u2 + e)

)
x

+ qx = (σu)x (2.3)

The macroscopic variables that are used in the Navier-Stokes system (2.1)-(2.3) are
listed in Table 2.1.
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ρ kg ·m−3 density

u m · s−1 velocity

e m2 · s−2 internal energy per unit mass

q kg · s−3 heat flux

σ Pa1 stress tensor

Table 2.1: List of primary macroscopic observables used in the 1-D Navier-Stokes
system (2.1)-(2.3)

We chose to express the system (2.1)-(2.3) in terms of three major thermodynamic
variables: the density ρ, the velocity u, and the temperature θ. In order to accomplish
this we introduce some important physical quantities (see Table 2.2) and relationship
among them.

θ K temperature

p Pa pressure

τ Pa shear stress

λ Pa · s first viscosity coefficient

µ Pa · s second viscosity coefficient

µ̃ Pa · s dynamic viscosity

k kg ·m · s−3 ·K heat conductivity

R J ·K−1 The Universal Gas Constant

CV J ·K−1 volume specific heat capacity

CP J ·K−1 pressure specific heat capacity

M mol · kg−1 molar mass

Table 2.2: List of secondary macroscopic observables used in the 1-D Navier-Stokes
system (2.1)-(2.3)

1Pa = N ·m−2 = kg ·m−1 · s−2
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We assume Stokes’ relation

λ = −2

3
µ (2.4)

then the dynamic viscosity becomes

µ̃ = λ+ 2µ =
4

3
µ. (2.5)

The stress tensor σ can be obtained as follows

σ = −p+ τ (2.6)

τ = µ̃ux. (2.7)

Therefore

σ = −p+ µ̃ux. (2.8)

The heat flux q and temperature θ are related by Fourier’s Law

q = −kθx. (2.9)

It remains to express internal energy per unit mass e and pressure p in terms of the

chosen thermodynamic variables ρ, u, and θ. We adopt the following equations of

state

p =
R

M
ρθ (2.10)

e =
CV
M

θ (2.11)
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After substituting (2.10) into (2.8) and we obtain

σx = (−p+ τ)x =

(
− R
M
ρθ + µ̃ux

)
x

= µ̃uxx −
R

M
(ρθ)x, (2.12)

(σu)x = (τu− pu)x =

(
µ̃uux −

R

M
ρuθ

)
x

=
1

2
µ̃u2

xx −
R

M
(ρuθ)x. (2.13)

From (2.11) and (2.9) we obtain

1

2
u2 + e =

1

2
u2 +

CV
M

θ (2.14)

qx = −kθxx. (2.15)

After utilizing (2.12), (2.13), (2.14) and (2.15) and noticing that uux = 1
2
u2
xx equa-

tions (2.1)-(2.3) take form

ρt + (ρu)x = 0

(ρu)t + (ρu2)x = µ̃uxx − R
M

(ρθ)x(
1
2
ρu2 + CV

M
ρθ
)
t
+
(
ρu
(

1
2
u2 + CV

M
θ
))
x

+
(
R
M
ρuθ
)
x

= kθxx + 1
2
µ̃u2

xx

(2.16)

We simplify the system above by keeping all first order derivative on the left hand

side and all second order ones on the right hand side. We also recall that specific

heat capacities and the universal gas constant are related as

R = CP − CV (2.17)

Finally the 1-D Navier-Stokes system of three equations in three thermodynamic

variables takes form

ρt + (ρu)x = 0 (2.18)
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(ρu)t +

(
ρu2 +

R

M
ρθ

)
x

= µ̃uxx (2.19)

(
1

2
ρu2 +

CV
M

ρθ

)
t

+

(
ρu

(
1

2
u2 +

CP
M
θ

))
x

= kθxx +
1

2
µ̃u2

xx (2.20)

2.2 The Navier-Stocks System in Generic Vari-

ables

In this section we will remove units from the equations (2.18)-(2.19). We will start

with introducing some characteristics quantities and unitless parameters that the

nondimensionalized equations will depend upon. Let t0 and L be the characteristic

time and length then

t = t0t̂ (2.21)

x = Lx̂ (2.22)

where t̂ and x̂ are a generic time and coordinate. Similarly, nondimensional versions

of the density, the velocity, and the temperature are

ρ = ρ0ρ̂ (2.23)

u = u0û (2.24)

θ = θ0θ̂ (2.25)

We require that

L

t0
= u0 (2.26)
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The differential operators in dimensionless variables become

∂

∂t
=

1

t0

∂

∂t̂
(2.27)

∂

∂x
=

1

L

∂

∂x̂
(2.28)

∂2

∂x2
=

1

L2

∂2

∂x̂2
(2.29)

The nondimensionalized system will contain the four standard dimensionless pa-

rameters: Mach Number Ma, Prandtl number Pr, Reynolds Number Re, and the

Adiabatic Ratio γ.

Ma2 =
u2

0M

γRθ0

(2.30)

Pr =
µ̃CP
Mk

(2.31)

Re =
Lu0ρ0

µ̃
(2.32)

γ =
CP
CV

> 1 (2.33)

In order to simplify the notation we agree to drop the hats (ˆ) above the dimensionless

variables. We proceed with nondimensionalization applied to the each of the equation

of the system (2.18)-(2.20)

Equation (2.18): Since we adopted normalization (2.26) equation (2.18) in terms of generic vari-

ables has the same form as the original one in physical quantities:

ρt + (ρu)x = 0
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Equation (2.19): After substituting (2.23)-(2.29) into (2.19) we obtain

ρ0u0

t0
(ρu)t +

1

L

(
ρ0u

2
0ρu

2 +
ρ0Rθ0

M
ρθ

)
x

=
µ̃u0

L2
uxx (2.34)

According to (2.30)

ρ0θ0R

M
=

ρ0u
2
0

γMa2
(2.35)

therefore

(ρu)t +
ρ0u

2
0

L

t0
ρ0u0

(
ρu2 + γ−1Ma−2ρθ

)
x

=
µ̃u0

L2

L

ρ0u2
0

uxx (2.36)

Due to the normalization in (2.26) an by the definition of the Reynolds Number

(2.32) we obtain that
ρ0u2

0

L
t0
ρ0u0

= 1 and µ̃u0

L2
L

ρ0u2
0

= Re−1. Thus the nondimen-

sional version of equation (2.18) is

(ρu)t +
(
ρu2 + γ−1Ma−2ρθ

)
x

= Re−1uxx (2.37)

Equation (2.20): We will nondimensionalize equation (2.20) step by step due to its complexity.

The time derivative term is transformed as

1

2
ρu2 +

CV
M

ρθ 7→ 1

2
ρ0u

2
0ρu

2 +
CV
M

ρ0θ0ρθ =

ρ0u
2
0

(
1

2
ρu2 +

CV
γR

γRθ0

Mu2
0

ρθ

)
It follows from (2.17) and (2.33) that CV

γR
= γ−1(γ − 1)−1, and after applying

the definition of the Mach Number (2.30) we obtain

1

2
ρu2 +

CV
M

ρθ 7→ ρ0u
2
0

(
1

2
ρu2 + γ−1(γ − 1)−1Ma−2ρθ

)
(2.38)

The space derivative term is dimensionalized similarly:

ρu

(
1

2
u2 +

CP
M
θ

)
7→ ρ0u0ρu

(
1

2
u2

0u
2 +

CP θ0

M
θ

)
=

38



Chapter 2. Non-dimensionalization of 1-D Euler and Navier-Stokes Systems

ρuρ0u
3
0

(
1

2
u2 +

CP
γR

γRθ0

Mu2
0

θ

)
= ρuρ0u

3
0

(
1
2
u2 + (γ − 1)−1Ma−2θ

)
since by (2.17) and (2.33) CP

γR
= (γ − 1)−1 Therefore we obtain

ρu

(
1

2
u2 +

CP
M
θ

)
7→ ρ0u

3
0ρu

(
1
2
u2 + (γ − 1)−1Ma−2θ

)
(2.39)

The second order terms are translated as follows

kθxx 7→
kθ0

L2
θxx (2.40)

1

2
µ̃u2

xx 7→
1

2

µ̃u2
0

L2
u2
xx (2.41)

Incorporating transformations (2.38), (2.39), (2.40), and (2.41) into one equa-

tion we obtain

ρ0u
2
0

t0

(
1

2
ρu2 + γ−1(γ − 1)−1Ma−2ρθ

)
t

+

+
ρ0u

3
0

L

(
1

2
ρu3 + (γ − 1)−1Ma−2ρuθ

)
x

=
kθ0

L2
θxx +

1

2

µ̃u2
0

L2
u2
xx (2.42)

After simplifying, equation (2.41) reduces to(
1

2
ρu2 +

ρθ

γ(γ − 1)Ma2

)
t

+

(
1

2
ρu3 +

ρuθ

(γ − 1)Ma2

)
x

=

=
kθ0

L2

t0
ρu2

0

θxx +
1

2

µ̃u2
0

L2

t0
ρu2

0

u2
xx (2.43)

According to (2.32) the coefficient preceding uxx can be expressed in terms of

the Reynolds Number

µ̃u2
0t0

2L2ρu2
0

=
µ̃

2Lu0ρ0

=
1

2Re
(2.44)
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The constant in θxx requires some manipulations. Consider

1

(γ − 1)Ma2PrRe
=

1

γ − 1
·γRθ0

u2
0M
· Mk

µ̃CP
· µ̃

Lu0ρ0

=
kθ0

Lu3
0ρ0

=
kθ0t0
L2ρ0u2

0

(2.45)

Thus, one can see that the θxx coefficient is exactly the quantity on the left

hand side of the equation (2.45) Here we used the identity

γR

(γ − 1)CP
=
γ(CP − CV )

(γ − 1)CP
= 1

that follows from (2.17) and (2.33). Therefore equation the energy conservation

equation (2.20) takes form(
1

2
ρu2 +

ρθ

γ(γ − 1)Ma2

)
t

+

(
1

2
ρu3 +

ρuθ

(γ − 1)Ma2

)
x

=

=
1

(γ − 1)Ma2PrRe
θxx +

1

2Re
u2
xx (2.46)

As a result we obtain the 1-D Navier-Stokes system of PDE in nondimensionalized

variables
ρt + (ρu)x = 0

(ρu)t +
(
ρu2 + ρθ

γMa2

)
x

= 1
Reuxx(

1
2
ρu2 + ρθ

γ(γ−1)Ma2

)
t
+
(

1
2
ρu3 + ρuθ

(γ−1)Ma2

)
x

= θxx
(γ−1)Ma2PrRe + u2

xx

2Re

(2.47)

Without losing generality one can assume that γMa2 = 1 which, according to (2.30),

is equivalent to
Mu2

0

Rθ0

= 1. This can be achieved by further rescaling the temperature

θ by setting θ̃ =
θ

γMa2
. In this case system (2.47) takes the simpler form:


ρt + (ρu)x = 0

(ρu)t + (ρu2 + ρθ)x = 1

Reuxx(
1
2
ρu2 +

ρθ
γ − 1

)
t
+
(

1
2
ρu3 +

γρuθ
γ − 1

)
x

=
γ

(γ − 1)PrReθxx + 1
2Reu

2
xx

(2.48)
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or equivalently ρ

ρu
1
2
ρu2 + ρθ

γ−1


t

+

 ρu

ρu2 + ρθ
1
2
ρu3 + γρuθ

γ−1


x

=
1

Re

 0

u
γ

(γ−1)Prθ + 1
2
u2


xx

(2.49)

In order to obtain the Euler system one has to consider the inviscid case of the

corresponding Navier-Stokes system as well as the heat conductivity k must be set

to zero. Thus from (2.45) we get

γ

(γ − 1)PrRe
=

kθ0t0
L2ρu0

= 0 (2.50)

and using the definition of the Reynolds Number (2.32) it follows that zero viscosity

µ̃ = 0 implies

Re = +∞ (2.51)

After substituting (2.50) and (2.51) into (2.48) we arrive to 1-D Euler System de-

scribing an inviscid compressible flow: ρ

ρu
1
2
ρu2 + ρθ

γ−1


t

+

 ρu

ρu2 + ρθ
1
2
ρu3 + γρuθ

γ−1


x

= ~0 (2.52)

It has been shown in Sections 1.2 and 1.3.6 that in order to obtain the 3-D Euler

system from the 3-D Boltzmann Equation one has to choose γ according to formula

(1.13) on page 7. In order to be consistent with the 3-D case, the value for γ in the

1-D situation must be chosen according to the same formula. Thus we take γ = 3

that corresponds to d = 1 degree of freedom for a one-dimensional gas. In this case

the Navier-Stokes and Euler systems become: ρ

ρu
1
2
ρu2 + 1

2
ρθ


t

+

 ρu

ρu2 + ρθ
1
2
ρu3 + 3

2
ρuθ


x

=
1

Re

 0

u
3

2Prθ + 1
2
u2


xx

(2.53)
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 ρ

ρu
1
2
ρu2 + 1

2
ρθ


t

+

 ρu

ρu2 + ρθ
1
2
ρu3 + 3

2
ρuθ


x

= ~0 (2.54)

2.3 The 1-D Navier-Stokes and Euler systems in

non-conservative quantities

The quantities ρu and 1
2
ρu2 + ρθ

γ−1
represent the momentum and the total energy

of the substance (gas or fluid), therefore equations (2.48) and (2.54) are said to be

in conservative variables. In the following we present the same equations in non-

conservative variables ρ, u, and θ: ρ

ρu
1
2
ρu2 + ρθ

γ−1


t

=

 ρt
ρtu+ ρut

1
2
ρtu

2 + ρuut + ρtθ
γ−1

+ ρθt
γ−1



=

 1 0 0

u ρ 0
1
2
u2 + θ

γ−1
ρu ρ

γ−1


︸ ︷︷ ︸

C(ρ,u,θ)

 ρ

u

θ


t

= C(ρ,u,θ)

 ρ

u

θ


t

(2.55)

 ρu

ρu2 + ρθ
1
2
ρu3 + γρuθ

γ−1


x

=

 ρxu+ ρux
ρx(u

2 + θ) + ρ(2uux + θx)

ρx

(
1
2
u3 + γθu

γ−1

)
+ ρ

(
3
2
u2ux + γ

γ−1
θxu+ γ

γ−1
θux

)
 =

=

 u ρ 0

u2 + θ 2ρu ρ
1
2
u3 + γθu

γ−1
3
2
ρu2 + γρθ

γ−1
γρu
γ−1


︸ ︷︷ ︸

D(ρ,u,θ)

 ρ

u

θ


x

= D(ρ,u,θ)

 ρ

u

θ


x

(2.56)

After substituting (2.55) and (2.56) into (2.48) we obtain

C(~w) · ~wt +D(~w) · ~wx =
1

Re
F (~w)xx (2.57)
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where

~w = [ ρ u θ ]T ; (2.58)

and C(~w) and D(~w) are defined by (2.55) and (2.56) and

F (~w) =

 0

u
γθ

(γ−1)Pr + 1
2
u2

 (2.59)

Further simplification yields

~wt + C−1D · ~wx =
1

Re
C−1F (~w)xx (2.60)

where C−1 exist and can be computed analytically as well as C−1D:

Q := C−1 =

 1 0 0

−u
ρ

1
ρ

0
u2(γ−1)

2ρ
− θ

ρ
−u(γ−1)

ρ
γ−1
ρ

 (2.61)

A := C−1D =

 u ρ 0
θ
ρ

u 1

0 (γ − 1)θ u

 (2.62)

Substituting (2.61) and (2.62) into (2.60) we obtain

~wt + A(~w)~wx =
1

Re
Q(~w)F (~w)xx (2.63)

One can verify that the advection matrix A(~w) has three distinct real eigenvalues

λ1 = u+
√
γθ

λ2 = u−
√
γθ

λ3 = u

(2.64)
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thus it can be diagonalized using transformation T whose columns are eigenvectors

of A:

T−1AT = Λ =

 λ1 0 0

0 λ2 0

0 0 λ3

 , (2.65)

where T and T−1 are given by

T =

 1 1 −ρ
θ√

γθ
ρ
−
√
γθ
ρ

0
θ(γ−1)
ρ

θ(γ−1)
ρ

1

 (2.66)

T−1 =


1

2γ
ρ

2
√
γθ

ρ
2
√
γθ

1
2γ

− ρ
2
√
γθ

ρ
2
√
γθ

− θ(γ−1)
ργ

0 1
γ

 (2.67)

This property of the advection matrix A will be used later in designing a numerical

solver for (2.63).

44



Chapter 3

The Equations for a Viscous,

Heat-Conducting and Inviscid

Stationary Shocks

3.1 The Rankine-Hugoniot Conditions

Consider the 1-D Navier-Stokes system as derived in section 2.2


ρt + (ρu)x = 0

(ρu)t + (ρu2 + ρθ)x = 1

Reuxx(
1
2
ρu2 +

ρθ
γ − 1

)
t
+
(

1
2
ρu3 +

γρuθ
γ − 1

)
x

=
γ

(γ − 1)PrReθxx + 1
2Reu

2
xx

(3.1)

For the purpose of deriving the shock conditions we disregard all second order terms

and set the time derivatives to zeros.


(ρu)x = 0

(ρu2 + ρθ)x = 0(
1
2
ρu3 + γ

γ−1
ρuθ
)
x

= 0

(3.2)
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By assuming that the range of nondimensionalized space coordinate x is the

interval [0, 1], the left and the right boundaries are x = 0 and x = 1 correspondingly.

Let

~w(t, x) = [ρ(t, x) u(t, x) θ(t, x)]T

then ~wL = ~w(+∞, 0) = [ρL uL θL]T and ~wR = ~w(+∞, 1) = [ρR uR θR]T represent left

and right boundary values for of the stationary shock solution.

According to Rankine-Hugoniot conditions the following equations must be sat-

isfied:
ρLuL = ρRuR
ρLu

2
L + ρLθL = ρRu

2
R + ρRθR

1
2
ρLu

3
L + γ

γ−1
ρLuLθL = 1

2
ρRu

3
R + γ

γ−1
ρRuRθR

(3.3)

Equivalently
ρLuL = ρRuR
ρLu

2
L + ρLθL = ρRu

2
R + ρRθR

1
2
u2
L + γ

γ−1
θL = 1

2
u2
R + γ

γ−1
θR

(3.4)

This is an algebraic system of three equations and six variables. In order to success-

fully solve it one has the freedom of choosing and fixing three variables. Following [14]

we assume that the following values are provided

ρL > 0, 0 < uR < uL (3.5)

From the first equation we have ρR = ρL
uL
uR

and let k =
uR
uL

then we have

k =
uR
uL

=
ρL
ρR

(3.6)

where all five parameters are known. The last two equation of (3.4) can be rewritten

as {
ρLθL − ρRθR = ρRu

2
R − ρLu2

L

θL − θR = γ−1
2γ

(u2
R − u2

L)
(3.7)
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From (3.7) we find θL and θR by solving the linear system above:

 θL

θR

 =

 −1 ρR

−1 ρL




ρRu
2
R − ρLu2

L

ρR − ρL
γ − 1

2γ

u2
R − u2

L

ρR − ρL

 (3.8)

θL =
γ − 1

2γ

ρR(u2
R − u2

L)

ρR − ρL
− ρRu

2
R − ρLu2

L

ρR − ρL
= u2

L

k+1(γ + 1)− (γ − 1)

2γ

θR =
γ − 1

2γ

ρL(u2
R − u2

L)

ρR − ρL
− ρRu

2
R − ρLu2

L

ρR − ρL
= u2

R

k−1(γ + 1)− (γ − 1)

2γ

(3.9)

In order for the boundary values to yield a shock there must be two restrictions

imposed on the ratio k. Firstly, we require the temperature to be always positive

θL, θR > 0. Secondly, in order for the shock to occur one has to make sure that the

number of inflowing and outflowing characteristics of the system (3.1) are different.

The characteristics are given by1

λ0 = u
λ± = u±

√
γθ

(3.10)

λ0 and λ+ are always positive since we consider u > 0. The only sign change that

may occur for λ−. Thus in order to privies a set of shock favorable conditions one

requests four inflows into the domain [0, 1] and two outflows:

λ0
L > 0 (3.11)

λ+
L > 0 (3.12)

λ−L > 0 (3.13)

1see formula (2.64) on page 43.
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λ0
R > 0 (3.14)

λ+
R > 0 (3.15)

λ−R < 0 (3.16)

Inequalities (3.11), (3.12), (3.14), and (3.15) are automatically satisfied. (3.13) and

(3.16) will impose further constrain on the ratio k:

uL − uL
√

k(γ+1)−(γ−1)
2

> 0

uR − uR
√

γ+1−k(γ−1)
2k

< 0

(3.17)

Thus we get (γ > 1):

k(γ + 1)− (γ − 1) > 0 (3.18)

γ + 1− k(γ − 1) > 0 (3.19)

k(γ + 1)− (γ − 1)

2
< 1 (3.20)

γ + 1− k(γ − 1)

2k
> 1 (3.21)

Inequalities (3.18) and (3.19) are equivalent to

γ − 1

γ + 1
< k <

γ + 1

γ − 1
(3.22)

and (3.20) and (3.21) are satisfied if and only if k < 1 ∀γ > 1. The later one is

satisfied automatically since uR < uL according to (3.5).
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3.2 An Example of Shock Forming Boundary Con-

ditions

In this section we consider a few examples of sets of boundary conditions that yields

a stationary shock profile in the stationary solution of the Navier-Stokes and Euler

systems.

The following is an algorithm to obtain a stationary shock solution. For given

γ > 1 we choose values of ρL, uL, and uR so that (3.5) and (3.22) are met. Then ρR

is obtained from (3.6) and formulas (3.9) are used to obtain θL and θR

Consider an example when γ = 3. Choose ρL = 1.5, uL = 2, and uR = 1.5. In

this case k =
uR
uL

= 0.75. Condition (3.22) requires that 2
3
< k < 4

3
, thus k = 0.75 is

within the admissible range. ρR = 2 is obtained from (3.6). Formulas in (3.9) yield

θL = 2
3

and θR = 5
4
. The values summarized in (3.23) are one set among several sets

of boundary conditions used to simulate viscous and inviscid shocks (see Chapter 6).

ρL = 3
2

ρR = 2

uL = 2 uR = 3
2

θL = 2
3

θR = 5
4

(3.23)
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Figure 3.1: Inflowing and outflowing characteristics
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The eigenvalues on the left and right boundaries are calculated based on (3.23)

and (3.10). Sign counting reveals that there are four inflowing characteristics into

the domain and two outflowing characteristics from the domain (Figure 3.1). This

indicates that, indeed, the stationary solution must posses a shock layer profile as

prescribed by the Rankine-Hugoniot conditions (3.3).

λ0
L = +2.00 > 0 λ0

R = +1.50 > 0

λ+
L ≈ +3.41 > 0 λ+

R ≈ +3.44 > 0

λ−L ≈ +0.59 > 0 λ−R ≈ −0.44 < 0

(3.24)

Other examples of boundary data that are consistent with the Rankine-Hugoniot

equations are provided in Tables 6.1 and 6.2 on page 87.
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Chapter 4

Numerical Solutions of 1-D Euler

and Navier-Stokes Equations

4.1 The Numerical Problem Setup

In this section we develop numerical schemes to solve a system of partial differential

equations in the form:

~wt + A(~w)~wx =
1

Re
Q(~w)F (~w)xx (4.1)

where A and Q are 3-by-3 matrix valued functions and F is a vector field. All

functions are defined on Ω = [0,+∞) × [0, 1]. Additionally we require that A(~w)

be diagonalizable ∀~w ∈ Ω. For ~w defined by (2.58) and A, Q, and F defined by

(2.59)-(2.62) the system (4.1) becomes the Navier-Stokes System (Re > 0) or the

Euler System (Re = +∞).
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Let
{

(tk, xj) : k = 0, 1, 2, . . . ; j = 1, 2, . . . , N
}

be an infinite uniform mesh in Ω,

such that t0 = 0, x1 = 0, xN = 1, and

∆x = xj+1 − xj, ∆t = tk+1 − tk. (4.2)

Let ~wkt be an approximation of ~w(tk, xj). We introduce two difference schemes for

system (4.1):

~wk+1
j − ~wkj

∆t
+ Aj,k

∆̂~wkj
∆x

=
1

Re
Qj,k

∆2F k
j

∆x2
(4.3)

and

~wk+1
j − ~wkj

∆t
+ Aj,k

∆̂~wkj
∆x

=
1

Re
Qj,k

∆2F k+1
j

∆x2
, (4.4)

where Aj,k = A(wkj ), Qj,k = Q(wkj ), and

∆2F k
j =

F (~wkj−1)− 2F (~wkj ) + F (~wkj+1)

∆x2
=
F k
j−1 − 2F k

j + F k
j+1

∆x2
(4.5)

The first order upwinding difference operator ∆̂ will be introduced shortly.

Equations (4.3) can be readily solved for ~wk+1
j , therefore (4.3) is classified as a

finite volume explicit difference scheme. The main disadvantage for explicit schemes

is that in the case Re < +∞ the stability restrictions imposed on ∆t and ∆x are of

the type
∆t

∆x2
≤ O(1)

Equations (4.4) are not readily solvable for ~wk+1
j . Resolving (4.4) requires solving

a non-linear system of equations. Thus (4.4) represents an implicit finite difference

scheme which is known to poses better stability characteristics [17]:

∆t

∆x
≤ O(1)
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The only difference between (4.3) and (4.4) is the level of time at which second order

difference operator ∆2 is evaluated. Thus we will write these two schemes in the

same form

~wk+1
j − ~wkj

∆t
+ Aj,k

∆̂~wkj
∆x

=
1

Re
Qj,k

∆2Fj
∆x2

, (4.6)

The superscript k is intentionally omitted inside ∆2. We bare in mind that when-

ever k is used in reference to ∆2, the explicit version of (4.6) is implied. Similarly, if

∆2 is evaluated at the time level k+ 1, then we consider the implicit version of (4.6),

namely (4.4).

The difference scheme described by (4.6) is not complete since it is invalid for j =

1 and j = N . Thus the provided equations need to be supplemented by additional

equations that describe the behavior of ~w on the boundary x = 0 and x = 1. The

treatment of the boundary will greatly vary with respect to the type of the system

considered Re < +∞ (the Navier-Stokes case) or Re = +∞ (the Euler case). This

discussion is laid out in Section 4.5 on page 63.

4.2 The Upwinding First Order Difference Oper-

ator ∆̂

The discussion in this section is valid for both explicit and implicit methods. In order

to insure stability of (4.6) we use the upwinding approach based on the characteristics

method. According to the problem set up, matrix function A is required to have three

distinct eigenvalues λi(t, x), i = 1, 2, 3. This will ensure that A is diagonalizable. Let

T be the diagonalizable transformation of A then

AT = ΛT, (4.7)
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where

Λ =

 λ1 0 0

0 λ2 0

0 0 λ3

 (4.8)

The dependence of (t, x) in all quantities is implied. Let ~vkj be the characteristic

variables defined by

~vkj = Tj,k ~w
k
j and ~vkj±1 = Tj,k ~w

k
j±1 (4.9)

Then according to the upwinding method [21, 26] for i = 1, 2, 3 we have:

∆~vkj,i =

{
~vkj,i − ~vkj−1,i, λij,k > 0

~vkj+1,i − ~vkj,i, λij,k ≤ 0
(4.10)

Let

αkj,i = signλkj,i (4.11)

then we notice that the definition (4.10) can be written as

∆~vkj,i =
1

2
(αkj,i + 1)(~vkj,i − ~vkj−1,i)−

1

2
(αkj,i − 1)(~vkj+1,i − ~vkj,i)

After simplifying the expression above we arrive to a more convenient equivalent

definition of the upwinding difference

∆~vkj,i = −1

2
(αkj,i + 1)~vkj−1,i −

1

2
(αkj,i − 1)~vkj+1,i + αkj,i~v

k
j,i,

which in the vector form can be written as

∆~vkj = −1

2
(αkj + I)~vkj−1 −

1

2
(αkj − I)~vkj+1 + αkj~v

k
j , (4.12)
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where I is the 3-by-3 identity matrix and αkj = diag(αkj,1, α
k
j,2, α

k
j,3). By substituting

(4.9) into (4.12) ∆~vkj can be expressed in terms of generic variables ~wji :

∆~vkj = −1

2
(αkj + I)T−1

j,k ~w
k
j−1 −

1

2
(αkj − I)T−1

j,k ~w
k
j+1 + αkjT

−1
j,k ~w

k
j . (4.13)

According to the upwinding principle [21, 26] ∆̂~wkj must be defined as

∆̂~wkj = Tj,k∆~v
k
j . (4.14)

The final expression is obtained by substituting (4.13) into (4.14):

∆̂~wkj = −1

2
Tj,k(α

k
j + I)T−1

j,k ~w
k
j−1 −

1

2
Tj,k(α

k
j − I)T−1

j,k ~w
k
j+1 + Tj,kα

k
jT
−1
j,k ~w

k
j .

Further simplification yields

∆̂~wkj = −1

2
Tj,kα

k
jT
−1
j,k (~wkj+1 − 2~wkj + ~wkj−1) +

1

2
(~wkj+1 − ~wkj−1)

or

∆̂~wkj = −1

2
Tj,kα

k
jT
−1
j,k ∆2 ~wkj +

1

2

◦
∆ ~wkj

where ∆2 is the second order difference defined similarly to (4.5) and

◦
∆ ~wkj = ~wkj+1 − ~wkj−1.

Furthermore

Aj,k∆̂~wkj = −1

2
Aj,kTj,kα

k
jT
−1
j,k ∆2 ~wkj +

1

2
Aj,k

◦
∆ ~wkj (4.15)

Let

|Λi,j| = Λi,jα
k
j =

 |λ1| 0 0

0 |λ2| 0

0 0 |λ3|

 (4.16)
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then according to (4.7)

Aj,kTj,kα
k
jT
−1
j,k = Tj,kΛj,kα

k
jT
−1
j,k = Tj,k|Λj,k|T−1

j,k (4.17)

To simplify formula (4.17) we adopt the following “natural” notation

|Aj,k| = Tj,k|Λj,k|T−1
j,k (4.18)

By substituting this expression into (4.17) and then into (4.15) we obtain the

final form of the first order upwinding operator

Aj,k
∆̂~wkj
∆x

= −1

2
Tj,k|Λj,k|T−1

j,k

∆2 ~wkj
∆x

+
1

2
Akj

◦
∆ ~wkj
∆x

(4.19)

or equivalently

Aj,k∆̂~wkj = −1

2
Tj,k|Λj,k|T−1

j,k ∆2 ~wkj +
1

2
Akj
◦
∆ ~wkj (4.20)

4.3 The Explicit Numerical Scheme for the 1-D

Euler System

For the explicit version of the numerical scheme (4.6) we evaluate the second order

difference operator ∆2 at time level tk:

~wk+1
j − ~wkj

∆t
+ Aj,k

∆̂~wkj
∆x

=
1

Re
Qj,k

∆2F k
j

∆x2
. (4.21)

which can be transformed into

~wk+1
j = ~wkj − σ1Aj,k∆̂~wkj + σ2∆2F k

j , (4.22)
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where

σ1 =
∆t

2∆x
(4.23)

σ2 =
∆t

Re∆x2
(4.24)

and Aj,k∆̂ is defined by (4.19) or (4.20)

For the Euler case we set Re = +∞ and therefore σ2 = 0. In the case of the

Euler System we obtain a numerical scheme that involves first difference operators.

Due to the hyperbolic type of the problem the stability of such scheme is related to

the Courant-Friedrichs-Lewy necessary stability condition

∆t

∆x
<

ν

|λ|max

, (4.25)

where ν is the CFL constant independent of (∆x,∆t) and is determined experimen-

tally. For the hyperbolic case (Re = +∞) the stability condition (4.25) is not hard

to satisfy since the rate of growth of ∆x is the same as for ∆t.

In the case of the Navier-Stokes equations the system becomes parabolic. In this

case the key stability condition takes form

∆t

∆x2
= O(1) (4.26)

For small values of ∆x (4.26) is computationally more challenging to satisfy and

we must resort to an implicit numerical approach whose stability will be determined

by a CFL–type condition.
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4.4 The Implicit Numerical Scheme for the 1-D

Navier-Stokes System

An explicit numerical scheme can be obtained from (4.6) by taking the second order

difference operator ∆2 at time tk+1:

~wk+1
j − ~wkj

∆t
+ Aj,k

∆̂~wkj
∆x

=
1

Re
Qj,k

∆2 ~F k+1
j

∆x2
(4.27)

Let us assume that the values of ~w at time tk have been calculated and known.

The transition to the next time step tk+1 is accomplished by solving equation (4.27)

with respect to ~wk+1. We keep all the unknowns on the left hand side and the rest

of the terms is moved to the right hand side:

~wk+1
j − σ2Qj,k∆

2 ~F k+1
j = ~wkj − σ1Aj,k∆̂~wkj (4.28)

where σ1 and σ2 are defined by (4.23) and (4.24). In addition we define vectors

~ukj as

~ukj = ~wkj − σ1Aj,k∆̂~wkj . (4.29)

To avoid an overload of notation the following conventions are adopted. We drop

the subscript k from equation (4.29). Vector ~uj refers to ~ukj and is treated as a known

parameter. Vector ~wj is an unknown variable and it refers to ~wk+1
j . Similarly Qj

should be regarded as Qj,k as well as Fj should refer to F k+1
j .

In the light of the aforementioned simplifications we obtain

~wj − σ2Qj(~Fj−1 − 2~Fj + ~Fj+1) = ~uj, (4.30)
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where ~Fj = ~F (~wj).

From this point on we will address the 1-D Navier-Stokes system written in the

form of equation (2.63) page 43 whose discretization scheme is given by (4.21) and

reduced to (4.30). For such system of PDEs Q and F are known functions given by

(2.61) and (2.59) on page 43.

Here, as in Section 4.1, we assume that the coordinate space [0, 1] is split by N

equidistant points that create a mesh with the step ∆x. Therefore system (4.30) is

a set of 3N equations and 3N variables (~uj, ~wj ∈ R3)

Let ~U, ~W ∈ R3N be vectors based on ~wj and ~vj, and whose definitions are provided

below

~W = [ w1
1 w1

2 w1
3 . . . wN1 wN2 wN3

]T (4.31)

~U = [ u1
1 u1

2 u1
3 . . . uN1 uN2 uN3

]T (4.32)

Variable wij refers to the ith component of vector ~w approximated at the jth node

of the space mesh xj. A similar agreement is in affect for ~u or any other R3N vector

under consideration.

Let F : R3N −→ R3N be a function whose definition is based on function F and

defined by

F(~z1, ~z2, . . . , ~zN) =

[
~F (~z1) ~F (~z2) . . . ~F (~zN)

]T
(4.33)

Here we treat (~z1, ~z2, . . . , ~zN) as a long vector Z from R3N for purposes of reducing

complexity of notation. Thus F(Z) is the same as F(~z1, ~z2, . . . , ~zN).

59



Chapter 4. Numerical Solutions of 1-D Euler and Navier-Stokes Equations

Before we write down a vector form of system (4.30) we assume that a set of

adequate boundary conditions is provided by (4.72) and (4.73) on page 70

~u1 = ~w1 = ~wk+1
1

~uN = ~wN = ~wk+1
N

(4.34)

A method to obtain proper boundary conditions is discussed in Section 4.5.2.

After incorporating the boundary data into vector U a set of vector equations (4.30)

maybe written as

W − σ2QJF(W ) = U (4.35)

Block sparse diagonal matrix Q and sparse block tri-diagonal matrix J are de-

fined as

Q =



O

Q2

Q3

. . .

QN−1

O


(4.36)

J =



O O O

I −2I I

O I −2I I
. . .

I −2I I

O O O


(4.37)

where I and O are the identity and zero 3 × 3 matrices correspondingly. We recall

that according to (4.33)

F(W ) =

[
~F (~w1) ~F (~w2) . . . ~F (~wN)

]T
(4.38)
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Let GU be a nonlinear mapping of R3N into itself defined as

GU : W 7→ W − σ2QJF(W )− U (4.39)

Finding a solution of (4.35) is equivalent to finding a solution of

GU(W ) = 0 (4.40)

In order to solve (4.40) we use the Newtonian Iteration Method:

Wm+1 = Wm − [G′(Wm)]−1GU(Wm) (4.41)

The initial iteration W0 was taken as a solution of (4.40) in the previous time step.

Jacobian G′ does not depend on the right hand side vector U for obvious reasons,

therefore the subscript U was omitted. Due to the special structure of mapping F

the computation of the Jacobian can be simplified.

Let us recall that for the Navier-Stokes system function F : R3 −→ R3 (2.59) is

given by

F (~w) =

 0

w2

κw3 + 1
2
w2

2

 , (4.42)

where

κ =
γ

(γ − 1)Pr
. (4.43)

Function ~F can be represented as the sum of a linear and non-linear terms

FL(~w) =

 0

w2

κw3

 =

 0 0 0

0 1 0

0 0 κ


︸ ︷︷ ︸

Ω

~w = Ω~w (4.44)
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FNL(~w) = 1
2
w2

2

 0

0

1

 (4.45)

~F (~w) = Ω~w + ~FNL(~w) (4.46)

Because of the definition (4.33) will inherit the same structure as ~F

F(W ) = ΩW + FNL(W ) (4.47)

where ω is a sparse 3N × 3N block-diagonal matrix:

Ω = diag(Ω,Ω, . . . ,Ω︸ ︷︷ ︸
N

) (4.48)

Expression for mapping GU (4.39) can be simplified using (4.47) and (4.48)

GU = (I −QI)W − σ2QJFNL(W )− U (4.49)

Here product σ2JΩ was substituted by I which is a constant tri-diagonal matrix

that needs to be calculated only once:

I = JΩ =



O O O

σ2Ω −2σ2Ω σ2Ω

O σ2Ω −2σ2Ω σ2Ω
.. .

σ2Ω −2σ2Ω σ2Ω

O O O


(4.50)

The jacobian of GU , given in the form of equation (4.49), can be written as

G′(W ) = I −QI −QJF ′NL(W ) (4.51)
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Although the non-linear part of F is a simple quadratic function, writing it is

rather a cumbersome task. Therefore we provide its exact expression JFNL and the

jacobian of JF ′NL(W ) in Appendix C.3 on page 146 formulae (C.22) and (C.26). It

is worth mentioning that due to the fact that function ~F , and therefore F as well, is

quadratic, the Newtonian Iteration is supposed to converge no later than the second

iteration, which was confirmed by numerical simulations.

4.5 Boundary Conditions

The structure of the boundary conditions for the systems (4.1) may vary greatly

depending on the structure of the righthand side of (4.1). For Re = +∞, (4.1)

represents a hyperbolic system of PDEs (provided certain requirements on the eigen-

values of matrix A are met). For Re =< +∞ system (4.1) may become of the

parabolic type or mixed parabolic-hyperbolic type. The different classes of systems

of PDEs require different approaches to designing boundary conditions. Thus we will

only consider two specific cases: The 1-D Euler System and The 1-D Navier-Stokes

System of equations. Moreover we will consider only the case of shock forming con-

ditions described in Section 3.1 This type of boundary conditions is required for the

numerical algorithms discussed in Sections 4.4 and 4.3.

4.5.1 Boundary Conditions for the 1-D Euler System

By substituting Re = +∞ into (2.63) we obtain 1-D Euler System that describes an

inviscid flow:

~wt + A(~w)~wx = 0, (4.52)

where A(~w) is given by (2.62) and ~w = [ρ, u, θ]T

63



Chapter 4. Numerical Solutions of 1-D Euler and Navier-Stokes Equations

According to the discussion in Section 3.1 the stationary solution of (4.52) must

have a stationary shock profile (see Figure 4.5.1) with values on the boundary that

satisfy (3.11)-(3.16).

 

 

1=x  0=x  

Lρ  

Rρ  

(a) Density ρ  

 

1=x  0=x  

Lu  

Ru  

(b) Velocity u

 

 

1=x  0=x  

Lθ  

Rθ  

(c) Temperature θ

Figure 4.1: Stationary shock profiles

Since the characteristics λ1, λ2, λ3 on the left boundary are positive, the left

boundary behavior is characterized as inflows into the domain [0, 1]. Therefore the

left boundary admits three rigid constrains on ρ, u, and θ. Thus the boundary

condition for x = 0 takes form

ρ(t, 0) = ρL
u(t, 0) = uL
θ(t, 0) = θL

(4.53)

64



Chapter 4. Numerical Solutions of 1-D Euler and Navier-Stokes Equations

The equivalent discrete boundary condition on the left is given by

~wk1 =

 ρL
uL
θL

 (4.54)

According to (3.14)-(3.16) the right boundary characteristics are chosen so that

λ1 > 0, λ2 > 0, and λ3 < 0. Thus two characteristics are outflowing and one

characteristic provides an inflow into the domain. Such boundary situation admits

only one rigid constrain on ρ, u, and θ. It can be formulated as

φ1w1(t, 1) + φ2w2(t, 1) + φ3w2(t, 1) = φ0 (4.55)

or equivalently

~φT ~w = φ0, (4.56)

where ~φ =

[
φ1
φ2
φ3

]
∈ R3 and φ0 ∈ R are constants.

A numerical implementation of (4.56) is not as straightforward as in the case

of the left boundary. Our goal here is to develop an algorithms that will allow us

to compute values ~wk+1
N without boundary layer effects. Since we are interested in

the time level tk+1 we assume that values of ~wk have already been calculated and

available for any x = xj. Moreover values of the local linearization transformations

Tj,k and eigenvalues Λj,k are available as well. Thus the characteristic variables ~vkj

can be calculated in a straightforward manner:

~vkj = T−1
j,k ~w

k
j , j = 1 . . . N (4.57)
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The first two components of ~vk+1
j can be advected using the diagonalized numer-

ical procedure:

vk+1
1,N − vk1,N

∆t
+ λ1

N,k

vk1,N − vk1,N−1

∆x
= 0

vk+1
2,N − vk2,N

∆t
+ λ2

N,k

vk2,N − vk2,N−1

∆x
= 0

(4.58)

No such equation can be obtained for the third component vk+1
3,N since λ3 < 0 on

the right boundary. One would have to use the backwards difference
vk3,N+1 − vk3,N

∆x
which is not available since x = xn+1 is outside the domain. Thus the values for vk+1

3,N

must be obtained using the information about the values of the generic variables

~wk+1
N on the right boundary - equations (4.55)-(4.56). At this moment we accept

that the values of vk+1
1,N and vk+1

2,N are calculated from (4.58) and we denote them as

v̂1 and v̂2:

v̂1 = vk1,N −
∆t

∆x

(
vk1,N − vk1,N−1

)
v̂2 = vk2,N −

∆t

∆x

(
vk2,N − vk2,N−1

) (4.59)

In what follows we design a method to calculate vk+1
3,N . First we relate ~wk+1

N and

~vk+1
N through the local diagonalization transformation T . However T is not available

at time level tk+1 therefore we approximate TN,k+1 by TN,k:

~wk+1
N = TN,k~v

k+1
N (4.60)

Discretized version of equation (4.56) takes form

~φT ~wk+1
N = φ0 (4.61)
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Let us treat variables ~wk+1
N and ~vk+1

N as unknowns. Then we obtain a linear

system with six equations and six variables:

~wk+1
j = TN,k~v

k+1
j

~φT ~wk+1
N = φ0

~vk+1
1,N = v̂1

~vk+1
2,N = v̂2

(4.62)

If we organize the unknown variables wk+1
1,N , wk+1

2,N , wk+1
3,N , vk+1

1,N , vk+1
2,N , and vk+1

3,N as

a six-by-one vector we obtain the following linear system in the matrix form:

I −TN,k

φ1 φ2 φ3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


︸ ︷︷ ︸

M



wk+1
1,N

wk+1
2,N

wk+1
3,N

vk+1
1,N

vk+1
2,N

vk+1
3,N


=



0

0

0

φ0

v̂1

v̂2


, (4.63)

where v̂1 and v̂2 are provided by (4.59).

It can be shown (see Appendix C.2 p.145) that detM = −(φ3 + φ1ρθ
−1) Thus

by manipulating constants φ1 and φ2 one can always ensure that 0 6= detM = O(1)

and therefore the system (4.63) is non-singular and well posed.

The following is a summary of a set of adequate boundary conditions required

for a numerical solution of the Euler System in the continuous and discretized data.

Continuous case: ~w(t, 0) = [ρL, uL, θL]T

~φT ~w(t, 1) = φ0

(4.64)
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Discretized case: ~wk+1
1 = [ρL, uL, θL]T

~wk+1
N = PM−1[0, 0, 0, φ0, v̂1, v̂2]T ,

(4.65)

where P =

[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]
and M is defined by (4.63).

Quantities ~φ and φ0 must satisfy

~φT [ρR, uR, θR] = φ0,

where [ρL, uL, θL] and [ρR, uR, θR] are values consistent with the Rankine-Hugoniot

system (3.4).

4.5.2 Boundary Conditions for the 1-D Navier-Stokes Sys-

tem

The 1-D Navier-Stokes system of partial differential equations fits the general frame-

work of equation (4.1) with A, F , and Q given by (2.62), (2.59), and (2.61) on p.43

correspondingly and whose component form is provided by (3.1) on p.45:

ρt + (ρu)x = 0 (4.66)

(ρu)t +
(
ρu2 + ρθ

)
x

=
1

Re
uxx (4.67)

(
1

2
ρu2 +

ρθ

γ − 1

)
t

+

(
1

2
ρu3 +

γρuθ

γ − 1

)
x

=
γ

(γ − 1)PrRe
θxx +

1

2Re
u2
xx (4.68)

For Re < +∞ this is a mixed type system. Indeed equations (4.68) and (4.67)

are of the parabolic type and equation (4.66) is hyperbolic. There must be a set
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of two boundary conditions for each side of the boundary for each of the parabolic

equation.

Due to the hyperbolic type of equation (4.66) we must examine its characteristic

to determine a proper behavior on the boundary. To accomplish this we rewrite

equation (4.66) in a different form where we assume that function u is known and,

in the greatest generality, it depends on ρ, x, and t:

ρt + uρx = −ρux (4.69)

For the moment let us disregard the lower order term −ρux in the equation above:

ρt + uρx = 0 (4.70)

Equation (4.70) is a homogeneous hyperbolic equation whose solution is a wave,

the direction of propagation of which depends solely upon the sign of the function

u in the advection term uρx. According to the initial assumption on the boundary

conditions described in Section 3.1 page 45 inequality (3.5) u must be a positive

quantity. In this case one and the only characteristic of (4.70) is positive. The

original equation (4.69) exhibits an equivalent behavior as far as the direction of

propagation of their wave-like solutions is concerned. Thus (4.69) has an inflow on

the left boundary and an outflow on the right boundary. This situation requires a

boundary condition for x = 0 and the value of ρ at x = 1 must be advected from the

interior of the domain (see Figure 4.2).

Discretization of equation (4.69) around the right boundary takes form

ρk+1
N − ρkN

∆t
+ ukN

ρkN − ρkN−1

∆x
= −ρkN

ukN − ukN−1

∆x
(4.71)

The following is a summary of a set of adequate boundary conditions required for

a numerical solution of the Navier-Stokes System in the continuous and discretized
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 x  

t  

Figure 4.2: Direction of propagation of a solution of equation (4.69)

data.

Continuous case:


~w(t, 0) = [ρL, uL, θL]T

w2(t, 1) = uR
w3(t, 1) = θR

(4.72)

Discretized case: ~wk+1
1 = [ρL, uL, θL]T

~wk+1
N = [ρ̂R, uR, θR]T

(4.73)

where ρ̂R = ρk+1
N , which is obtained from solving (4.71):

ρk+1
N = ρkN − σ1

[
ukN(ρkN − ρkN−1) + ρkN(ukN − ukN−1)

]
(4.74)

where σ1 defined by (4.23) on page 57.
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Chapter 5

Numerical Solution of the 1-D

Bhatnagar–Gross–Krook Model

5.1 The Continuous 1-D BGK Model

Consider the 1-D Bhatnagar–Gross–Krook equation discussed in Section 1.3.5:

∂f

∂t
+ v

∂f

∂x
= −1

τ
(f − f e), (5.1)

where f = f(t, x, v), f e is a 1-D local Maxwellian parametrized by functions

ρ, u, θ : [0,+∞]× [0, 1] −→ R, and τ is a small parameter called a relaxation time

(0 < τ � 1). The expression for a 1-D local Maxwellian is given by (5.2).

f e(ρ,u,θ)(v) =
ρ(t, x)√
2πθ(t, x)

exp

{
−(u(t, x)− v)2

2θ(t, x)

}
(5.2)

We require that the one particle distribution function f possess the same moments as

the equilibrium distribution f e does. This requirement is a part of the BGK model
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and it is written as

ˆ

R

f(v)

[
1
v
v2

]
dv =

ˆ

R

f e(v)

[
1
v
v2

]
dv (5.3)

The moments of the Maxwellian distribution can be calculated analytically. Cor-

responding computations are provided in Appendix A.1 on page 121. It follows from

the definition (A.1) that

ˆ

R

f e(v)

[
1
v
v2

]
dv =

ρ√
2πθ

[
I0
I1
I2

]
=

[
ρ
ρu
ρ(u2 + θ)

]
(5.4)

To obtain (5.4) we used (A.6), (A.8), and (A.10). From (5.4) we obtain a set of con-

ditions that provide closure of model (5.1)-(5.2). To simplify notations we introduce

the averaging operator.

Let P be the space of continuous functions with at most polynomial growth on

infinity1:

P =

{
φ ∈ C(R)

∣∣∣∣∃n ∈ N : lim sup
v→∞

φ(v)

|v|n
< +∞

}
(5.5)

For φ ∈ P we define its average with respect to distribution function f (or simply

f -average) as

〈φ〉f =

ˆ

R

f(v)φ(v)dv (5.6)

1This is a technical assumption required to establish convergence of improper integral
(5.6). We also assume that, similarly to fe, distribution function f decays exponentially
in v.
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Formula (5.6) defines a linear functional on P . From now on whenever the subscript

is not specified it is assumed to be f i.e. 〈·〉 = 〈·〉f . After substituting (5.4) into

(5.3) moments of distribution function f can be expressed as

〈1〉=ρ

〈v〉=ρu

〈v2〉=ρ(u2 + θ)

(5.7)

Furthermore parameters ρ, u, and θ can be expressed in terms of the f -averages of

1, v, and v2 by solving (5.7):

ρ=〈1〉

u=
〈v〉
〈1〉

θ=
〈v2〉
〈1〉
− 〈v〉

2

〈1〉2

(5.8)

Equations (5.1), (5.2) together with (5.7) provide closed Bhatnagar–Gross–Krook

model.

5.2 Numerical Solution of the 1-D BGK Model

We proceed in a similar manner as for the implicit and explicit approaches discussed

in Sections 4.4 and 4.3.

Let {xi : i = 1 . . . N} ⊂ [0, 1] be a mesh with N equispaced nodes and step ∆x

such that x1 = 0 and xN = 1. Let {tk : k = 0, 1, . . .} be the time discretization nodes

such that ∆t = tk+1 − tk, ∀k ≥ 0. In addition to the space and time discretization
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we have to introduce the velocity space2 discretization as well. According to the

Bhatnagar–Gross–Krook model, the moments are calculated as improper integrals

over R (5.3),(5.7). For the numerical purposes we substitute the integration over all

real number by the numerical integration over finite symmetrical interval [−V, V ].

Such approximation will result in truncation error ET and reassembling error ER

that we require to be of the order of magnitude that does not exceed the order of

magnitude of error resulted from a numerical scheme itself:

max {ET, ER} ≤ E (5.9)

In the best case scenario the truncation and reassembling errors should be of

the order of the discretization noise, typically ED = 10−16. However it may be

computationally too expensive to implement. The discussion of the truncation and

reassembling errors and the methods to choose the values for V and the number of

nodes 2M + 1 are given in Sections 5.4 and 5.5. For now we will assume that these

parameters have been chosen.

Let {vj : j = −M, . . . ,M} ⊂ [−V, V ] be a uniform mesh of 2M + 1 nodes with

step ∆v = vj+1 − vj, such that v−M = −V and vM = +V . We assume that V and

M have been chosen appropriately to satisfy (5.9).

We arrange the nodes of the phase space mesh in vector ~v ∈ R2M+1:

~v = [ v−M , v−M+1, . . . , vM ]T (5.10)

The discretization of (5.1) takes form

fk+1
i,j − fki,j

∆t

+ vj
∆̂fki,j
∆x

= −1

τ
(fki,j − f

e,k
i,j ) (5.11)

2The velocity space is often referred as the phase space [18].
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Let

I+ = {j : vj ≥ 0}

I− = {j : vj < 0}
(5.12)

then the upwinding first order operator ∆̂ is defined by

∆̂fki,j =

 fki,j − fki−1,j, i ∈ I+

fki,j+1 − fki,j, i ∈ I−
(5.13)

Discretized equilibrium f e,ki,j is calculated using the Maxwellian distribution (5.2):

fk,ei,j = f e(ρkj ,ukj ,θkj )(vi) =
ρkj√
2πθkj

exp

{
−

(ukj − vi)2

2θkj

}
(5.14)

The macro observables ρkj , u
k
j , and θkj are recovered by the numerical integration

based on (5.7) and (5.8):

∆v
M∑

i=−M
fki,j = ρkj

∆v
M∑

i=−M
vif

k
i,j= ρkju

k
j

∆v
M∑

i=−M
v2
i f

k
i,j= ρkj (θ

k
j + (ukj )

2)

(5.15)

where ∆v is the mesh step in the phase space. Similarly to (5.6) we define a dis-

cretized counterpart of the f−averages

〈〈·〉〉~f : R2M+1 −→ R (5.16)

〈〈~φ〉〉~f = ∆v
M∑

i=−M

fiφi, ~f , ~φ ∈ R2M+1 (5.17)
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As before, whenever the subscript is not specified it is assumed to be ~fk or ~fk

depending on the context. In terms of notations above (5.17) takes form

〈〈~1〉〉fkj = ρkj

〈〈~v〉〉fkj = ρkju
k
j

〈〈~v2〉〉fkj = ρkj (θ
k
j + (ukj )

2)

(5.18)

which can be solved for discretized macro-observables ρkj , u
k
j , and θkj

ρkj = 〈〈~1〉〉fkj

ukj =
〈〈~v〉〉fkj
〈〈~1〉〉fkj

θkj =
〈〈~v2〉〉fkj
〈〈~1〉〉fkj

−
〈〈~v〉〉2

fkj

〈〈~1〉〉2
fkj

(5.19)

For ~v ∈ R2M+1 defined in (5.10) we used the following definitions

~v = [ v2
−M , v

2
−M+1, . . . , v

2
M ]T (5.20)

and

~1 = [1, 1, . . . , 1]T ∈ R2M+1 (5.21)

Equation (5.11) is a finite volume explicit scheme that has a straightforward

solution

fk+1
i,j = fki,j − σ1vj∆̂f

k
i,j − σ3(fki,j − f

e,k
i,j ) (5.22)

where σ1 is the same as in (4.23) and

σ3 =
∆t

τ
(5.23)
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Let

~fkj =
[
fk−M,j, f

k
−M+1,j, . . . , f

k
M,j

]T
(5.24)

then formulae (5.11) and (5.22) can be written in the vector form

~fk+1
j − ~fkj

∆x
+ V

∆̂~fkj
∆x

= −1

τ
(~fkj − ~f e,kj ) (5.25)

or equivalently

~fk+1
j = ~fkj − σ1V∆̂~fkj − σ3(~fkj − ~f e,kj ) (5.26)

where V is a diagonal matrix

V =


v−M

v−M+1

. . .

vM

 (5.27)

and ~f e,kj is the vector whose components are ~f e,ki,j .

5.3 The Boundary Conditions

The boundary data for (5.1) must agree with the boundary data used to simulate the

1-D Navier-Stokes and Euler equations. Therefore we present boundary conditions

for (5.1) in terms of ρ, u, and θ

~w(t, 0) = [ ρL, uL, θL ]T

~w(t, 1) = [ ρR, uR, θR ]T
(5.28)
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where

~w = [ ρ, u, θ ]T (5.29)

and ρL, uL, θL, ρR, uR, and θR are the values satisfying the Rankine-Hugoniot condi-

tions (3.3) in Section 3.1 (p.45) which we impose on the model. In order to transfer

the boundary conditions given in terms of macroscopic variables (5.28) into an ade-

quate description in terms of microscopic variables we assume that the distribution

function is close to the Maxwellian Distribution (5.2). Therefore the distributions

on the left and right boundaries can be obtained as

f(t, 0, v) = fL(t, v) = f e(ρL,uL,θL)(v)

f(t, 1, v) = fR(t, v) = f e(ρR,uR,θR)(v)
(5.30)

where f e is the Maxwellian Equilibrium given by (5.2). The discretized boundary

conditions have the following form

fki,1 = f e(ρL,uL,θL)(vi)

fki,N = f e(ρR,uR,θR)(vi)
(5.31)

The numerical scheme (5.25) is a discretization of equation (5.1), which is a non-

linear hyperbolic partial differential equation. Therefore in order to understand the

behavior on the boundary one must analyze the characteristics of (5.1). Our task is

simplified since the advection term of (5.11) is already in the diagonal form (5.27).

The diagonal of matrix V contains 2M+1 diagonal elements with exactly M positive,

exactly M negative and one zero element. Thus there are M positive and M negative

characteristics traveling opposite directions with different speeds (see figure 5.3)

Assume that the data for time level tk has been calculated i.e. ~fkj , ~f e,kj , ρkj , u
k
j ,

and θkj are known. There are M inflowing characteristics for vj > 0 and M outflowing
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 x  

0, <iiv  

0, >iiv  

0, <iiv  

0, >iiv  

Figure 5.1: Inflowing and outflowing characteristics of the BGK model

ones for vj < 0. Thus half of the components of ~vk+1
1 is obtained from (5.30) and the

other half must be advected from the interior of the domain using (5.26):

fki,1 =

 fki,1 − σ1vj(f
k
1,j − fk2,j)− σ3(fk1,j − f

e,k
1,j ), j > 0

f e(ρL,uL,θL)(vi), j ≤ 0
(5.32)

A similar formula used for the right boundary:

fki,N =

 f e(ρR,uR,θR)(vi), j > 0

fki,N − σ1vj(f
k
N,j − fkN−1,j)− σ3(fkN,j − f

e,k
N,j), j ≤ 0

(5.33)

The components of each of the boundary distribution vectors are calculated differ-

ently depending upon the sign of the corresponding speed vj. It is not important

which part of the formulas (5.32) and (5.33) includes case j = 0 since v0 = 0 and it

can be treated as upwinding or downwinding with the same result. In the case j = 0

the advection term vanishes and the solution merely propagates based on the right

hand side of (5.25).
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5.4 The Truncation Error

For numerical computations of the integrals in (5.7) the domain of integration must

be truncated. This will result in the truncation error defined by

EnT [f, V ] =

∣∣∣∣∣∣
ˆ

R

vnf(v)dv −
+Vˆ

−V

vnf(v)dv

∣∣∣∣∣∣ (5.34)

Let E be the error due to discretization of (5.1) by (5.11). It is essential to ensure

that the truncation error is negligible with respect to the structural error of the

numerical scheme (5.11):

EnT [f, V ]� E (5.35)

The inequality above will provide the range for admissible values of V . Since a priori

information about distribution f is not available, the best way we can address this

problem is to approximate EnT [f, V ] by EnT [f e, V ] assuming that distribution f is close

enough to a Maxwellian equilibrium f e given by (5.2):

EnT [f e, V ]� E (5.36)

After substituting (5.2) into (5.34) we obtain

∣∣∣∣∣∣∣
ˆ

B(V )

vn
ρ√
2πθ

exp

{
−(u− v)2

2θ

}
dv

∣∣∣∣∣∣∣ < E (5.37)

where

B(V ) = R\[−V, V ] (5.38)
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Let

Ẽ =
E
√

2πθ

ρ
(5.39)

then (5.37) will take form

∣∣∣∣∣∣∣
ˆ

B(V )

vn exp

{
−(u− v)2

2θ

}
dv

∣∣∣∣∣∣∣ < Ẽ (5.40)

To find acceptable values of V satisfying (5.40) we consider the following theorem.

Theorem 2. Let ρ > 0, u > 0, θ > 0 be positive constants. Then for n = 0, 1, 2, . . .

and for V satisfying

V ≥ max
{

1, 2u, u+
√

2θ
}

(5.41)

the following estimate holds:

∣∣∣∣∣∣∣
ˆ

B(V )

vn exp

{
−(v − u)2

2θ

}
dv

∣∣∣∣∣∣∣ ≤ αn exp

{
−V − u

2
√

2θ

}
(5.42)

where

αn = 2
5(n+1)

2 θ
n+1

2 nne−n (5.43)

and 00 should be treated as 1.

Proof of Theorem 2 is provided in Appendix C.1 on page 142.
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It follows from Theorem 2 that in order to satisfy (5.40) it suffices to choose V

large enough so that (5.41) is satisfied together with

αne
− V−u

2
√

2θ < Ẽ (5.44)

or equivalently

V ≥ u+ log
αnρ√
2πθ

+ log
1

E
(5.45)

Finally by including the condition of Theorem 2 we obtain a bound on V

V ≥ V ∗n (E) = max

{
1, 2u, u+

√
2θ, u+ log

ρ√
2πθ

+ logαn + log
1

E

}
(5.46)

5.5 The Reassembling Error

The numerical approach to solve the 1-D BGK model (5.1) discussed in Section 5.1

requires numerical integration to recover the macroscopic observables from distribu-

tion function f . The reassembling error is introduced by the numerical integration

we use in (5.15,5.18). Similarly to the truncation error, one has to make sure that

the numerical integration does not introduce an error exceeding the structural error

E of the numerical scheme (5.25):

ER ≤ E (5.47)

In order to control the reassembling error we test the following protocol. Assume

that the discretized macroscopic variables are

ρj = ρ(xj)
uj = u(xj)
θj = θ(xj)

(5.48)
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and the equilibrium distribution is calculated using (5.14):

fi,j = f e(ρj ,uj ,θj)(vi) (5.49)

Based on distribution (5.49) one can reassemble the macro-variables ρ, u, and θ

using (5.19). Since a numerical integration procedure has been used, one should not

expect to obtain exactly the same values as we started with in (5.48). Therefore we

will refer to the recovered macro-variables as ρ̂, û, and θ̂:

ρ̂j = 〈〈~1〉〉fj

ûj =
〈〈~v〉〉fj
〈〈~1〉〉fj

θ̂j =
〈〈~v2〉〉fj
〈〈~1〉〉fj

−
〈〈~v〉〉2fj
〈〈~1〉〉2fj

(5.50)

Although the values (ρ, u, θ) are not exactly the same as (ρ̂, û, θ̂), it is reasonable

to require them to be sufficiently close. Otherwise it is unknown how much of an

error has been introduced into a solution by the numerical integration technique.

Thus we define the following quantities

EMR [ρ] = max
1≤j≤N

|ρj − ρ̂j|

EMR [u] = max
1≤j≤N

|uj − ûj|

EMR [θ] = max
1≤j≤N

|θj − θ̂j|
(5.51)

where M is the number related to the step size of the phase space mesh of [−V, V ].

There are 2M + 1 nodes in the mesh, therefore M and δv are related by

∆v =
V

M

By adjusting M we can make sure that

EMR [ρ, u, θ] = max
{
EMR [ρ], EMR [u], EMR [θ]

}
≤ E (5.52)
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where E is the structural error of the numerical scheme (5.25).

Since M must be chosen before the numerical procedure is executed, the macro-

scopic data is not available except for the initial conditions. Therefore we make a

choice of M based upon the initial data only:

M ≥M∗ = inf
{
EMR [ρ0, u0, θ0] ≤ E

}
(5.53)
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Chapter 6

Numerical Simulations and Results

6.1 Numerical Problem Setup

In order to compare how the kinetic theory agrees with the continuum mechanics

we compare numerical stationary solutions of one-dimensional continuum model and

the simplest one-dimensional approximation of the Boltzmann equation. For the

continuum model we chose to solve the 1-D Navier-Stokes system given by (2.1)-

(2.3):

ρt + (ρu)x = 0

(ρu)t + (ρu2)x = σx

( 1
2
ρu2 + ρe)t + (ρu( 1

2
u2 + e))x + qx = (σu)x

(6.1)

We chose the simplest possible equations of state given by (2.10) and (2.11). After

the nondimensionalization process and expressing all variable in terms of three non-

conservative variables ρ, u, and θ and three unitless parameters γ, Re, and Pr we

arrive to the system of partial differential equations (2.48). For numerical purposes
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we set

Pr = 1 (6.2)

As discussed in Section 1.2) the adiabatic ratio γ has to be 3 to agree with a corre-

sponding kinetic model:

γ = 3.0 (6.3)

The final system of equations to be solved numerically is given by

 ρ

ρu
1
2
ρu2 + 1

2
ρθ


t

+

 ρu

ρu2 + ρθ
1
2
ρu3 + 3

2
γρuθ


x

=
1

Re

 0

u
3
2
θ + 1

2
u2


xx

(6.4)

The numerical scheme for solving (6.4) is given by (4.27) and its detailed dis-

cussion is included in Section (4.4). Equation (6.4) is solved on [0,1]. The number

of space steps N = 1000 therefore ∆x = 10−3. Time discretization step will vary

depending on the value of the Reynolds number

∆t =
5

Re
∆x (6.5)

We choose a set of boundary conditions that are consistent with the Rankine-

Hugoniot equations (3.3) on page 46. Implementation of the boundary conditions

for 1-D Navier-Stokes system is discussed in Sections 4.5.2. The values are provided

in Tables 6.1 and 6.2. There are 5 sets of trials for each of the boundary conditions

referred by NS0, NS1, NS2, NS3, and NS4.
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Set # ρL uL θL ρR uR θR

BC0
3
2

2 2
3

2 3
2

5
4

BC1
9
2

7
6

7
18

63
13

13
12

65
144

BC2
7
3

4
3

8
27

28
9

1 5
9

BC3
8
3

3
2

1
4

4 1 2
3

BC4 6 5
3

5
27

10 1 7
9

Table 6.1: Examples of the exact values of shock forming boundary data

Set # ρL uL θL ρR uR θR
BC0 1.500 2.000 0.667 2.000 1.500 1.250
BC1 4.500 1.667 0.389 4.846 1.083 0.451
BC2 2.333 1.333 0.296 3.111 1.000 0.555
BC3 2.667 1.500 0.250 4.000 1.000 0.667
BC4 6.000 1.667 0.185 10.000 1.000 0.778

Table 6.2: Examples of the approximate values of shock forming boundary data

System (6.4) depends on Reynolds Number Re, which corresponds to viscosity

µ̃ provided by (2.32). For each of the sets of boundary conditions we will consider

five trials for different values of Re = 32, 64, 128, 256, 512 denoted by RE32, RE64,

RE128, RE256, and RE512 correspondingly. Thus there will be total of 25 experiments:

five values of the Reynolds Number for each of the 5 sets of boundary conditions.

Abbreviation NSnREr will refer to a numerical solution of 1-D Navier-Stokes system

with nth set of boundary conditions given in Table 6.1 and Reynolds NumberRe = r.

Summary of all parameters used in solving the Navier-Stokes system is provided

in Table 6.3.
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Trial Re N ∆x ∆t
NSnRE32 32 1000 10−3 1.563−4

NSnRE64 64 - - 7.812−5

NSnRE128 128 - - 3.906−5

NSnRE256 256 - - 1.953−5

NSnRE512 512 - - 9.766−6

Table 6.3: Parameters used in the numerical scheme to solve the 1-D Navier-Stokes
system

For the kinetic model we choose the 1-D Bhatnagar–Gross–Krook equation (5.1):

∂f

∂t
+ v

∂f

∂x
= −1

τ
(f − f e) (6.6)

Equation (6.6) depends on relaxation time τ . We will vary the relaxation time and

investigate its affect on the stationary solution of (6.6). Numerical solution of (6.6)

is discussed in Section 5.2. Similarly to the Navier-Stokes trials there will be 5 nu-

merical experiments for solving the 1-D Bhatnagar–Gross–Krook model refereed by

BGKnTt where n corresponds the nth set boundary condition from Table 6.1 and

τ = t ∈ {32−1, 64−1, 128−1, 256−1, 512−1}. In addition to space and time discretiza-

tion the BGK model requires the phase space discretization (5.10) with 2M + 1

nodes:

vj = −V + (j +M)∆v, j = −M,−M + 1, . . . ,M (6.7)

To find suitable values of ∆v and M we use the Truncation Error (Section 5.4) and

reassembling Error (Section 5.5) estimates.

According to (5.46) we have

V ≥ V ∗n (E) = max

{
1, 2u, u+

√
2θ, u+ log

ρ√
2πθ

+ logαn + log
1

E

}
(6.8)
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where E is an admissible error and αn is defined by (5.43):

αn = 2
5(n+1)

2 θ
n+1

2 nne−n (6.9)

For the 1-D BGK model, the highest moment used is of order 2 (5.4). Therefore we

will only need to take into account αn for n = 0, 1, 2. According to (5.43) αn = αn(θ)

is an increasing function of θ. In order to use estimate (5.46) it is enough to consider

αn(θ∗) where θ∗ is the largest value used for numerical simulations. Tables 6.1 and

6.2 provide the exact and approximate values of macroscopic observables that are

used as boundary condition for the numerical simulations. Due to a specific structure

of the viscous shock profile (see Fig. 6.3(a) on page 98 for instance) it is reasonable

to expect that

ρ∗ ≤ ρ ≤ ρ∗

u∗ ≤ u ≤ u∗

θ∗ ≤ θ ≤ θ∗

(6.10)

where ρ∗, ρ
∗, u∗, u

∗, θ∗, and θ∗ can be obtained from Tables 6.1 and 6.2:

ρ∗ = 3
2
, ρ∗ = 10

u∗ = 1, u∗ = 2

θ∗ = 5
27
, θ∗ = 5

4

(6.11)

n αn logαn

0 6.3246× 100 1.8444

1 1.4715× 101 2.6889

2 1.3695× 102 4.9196

Table 6.4: Determining α∗n
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To find a suitable value of V we apply formula (6.8) in the form

V ≥ V ∗(E) = max

{
1, 2u∗, u∗ +

√
2θ∗, u∗ + log

ρ∗√
2πθ∗

+ logα∗ + log
1

E

}
(6.12)

where (see Table 6.4)

α∗ = max
n=0,1,2

αn(θ∗) = 4.9196 (6.13)

Since ∆x = 10−3 and the numerical scheme used to solve the BGK model is of

the first order it is enough to take E = 10−4. After substituting (6.13) and (6.11)

into (6.12) we arrive to an estimate on V :

V ≥ V ∗(10−4) = 16.54 (6.14)

Since there is no available estimate for the reassembling error defined by (5.52) we

can establish the number of subintervals on [−V, V ] experimentally only. Numerical

computations on the initial data indicate that value

M = 50 (6.15)

will satisfy (5.52) for E � 10−3. Parameters used in the numerical scheme to

calculate a stationary solution of the 1-D BGK model are summarized in Table

(6.5).

Trial τ N ∆x ∆t V ∆v
BGKnT32 32−1 1000 10−3 5−5 20 0.4
BGKnT64 64−1 - - - - -
BGKnT128 128−1 - - - - -
BGKnT256 256−1 - - - - -
BGKnT512 512−1 - - - - -

Table 6.5: Parameters used in the numerical scheme to solve the 1-D Bhatnagar–
Gross–Krook equation
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(a) Initial density
ρ0 = ρ0(x)
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(b) Initial momentum
u0 = u0(x)
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(c) Initial temperature
θ0 = θ0(x)

Figure 6.1: Initial conditions for the 1-D Navier-Stokes and the 1-D BGK models

The initial conditions for both Navier-Stokes and BGK equations are constructed

as follows. For ρL, ρR, uL, uR, θL, and θR values we build linear functions spanning

these values (see Figure 6.1)

ρ0(x) = ρRx+ ρL(1− x)

u0(x) = uRx+ uL(1− x)

θ0(x) = θRx+ θL(1− x)

(6.16)

Whereas the initial conditions (6.16) are ready to be implemented in the numerical

scheme for the Navier-Stokes system, the BGK model requires converting (6.16) into

microscopic variable domain using the Maxwellian equilibrium (5.2):

f j0 (x) =
ρ0(x)√
2πθ0(x)

exp

{
−(u0(x)− vj)2

2θ0(x)

}
(6.17)

where ρ0, u0, and θ0 are defined by (6.16). The resulting initial conditions for the

BGK equations are given in Figure 6.2.

6.2 Simulation Results

Stationary solutions of the 1-D Navier-Stokes system with different boundary condi-

tions are presented on Figures 6.3, 6.4, 6.5, 6.6, and 6.7. Each of the figures contains
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Figure 6.2: Initial distributions f j0 = f j0 (x) based on ρ0, u0, and θ0

three graphs corresponding to stationary density ρ, stationary velocity u, and sta-

tionary temperature θ given for different values of the Reynolds Number Re. We

start with the initial value of Reynolds number Re0 = 32 and vary it to confirm

the stationary solution response. The Reynolds Number for each set of boundary

conditions is changed according to

Rer = 2r−1Re0, r = 1, . . . , 5 (6.18)

Numerical simulations of the 1-D BGK model produce stationary distributions f ,

which correspond to microscopic observable of the system. In order to obtain the

macroscopic variables we use the reconstruction procedure given by (5.19) (see dis-

cussion in Section 5.2). The reconstructed stationary density, velocity and solutions

are provided on Figures 6.8, 6.9, 6.10, 6.11, and 6.12. Similarly to the Navier-Stokes

simulations, the BGK figures contain graphs of the density, velocity, and temperature

for different values of parameter τ (relaxation time, see formula (5.1) for example).
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The Relaxation time is varied according to

τt = 2t−1τ0, t = 1, . . . , 5 (6.19)

where τ0 = 1
512

. For the demonstration purposes we provide stationary distributions

for the case of boundary conditions BC0 only (for references see Tables 6.1 and 6.2).

These results are listed on Figures 6.13 and they correspond to the reconstructed

macroscopic stationary variables given on Figure 6.8.

Table 6.6 references to the graphical results of the Navier-Stokes and BGK sim-

ulations.

BoundaryConditions NS BGK
BC0 Fig. 6.3 p.98 Fig. 6.8 p.103
BC1 Fig. 6.4 p.99 Fig. 6.9 p.104
BC2 Fig. 6.5 p.100 Fig. 6.10 p.105
BC3 Fig. 6.6 p.101 Fig. 6.11 p.106
BC4 Fig. 6.7 p.102 Fig. 6.12 p.107

Table 6.6: References to the figures and corresponding pages for results of numerical
simulations of the Navier-Stokes and Bhatnagar–Gross–Krook models. The first
column contains sets of boundary conditions that can found in Tables 6.1 and 6.2

6.3 Analysis of Simulation Results

As one can see that the Kinetic model 1 has successfully demonstrated shock forming

capabilities. It would be beneficial to understand how exactly the stationary solu-

tion of the Navier-Stokes systems relates to the corresponding solution of the BGK

model. However at this time we will provide only indirect comparison in the sense

of identifying common trends in behavior of shock profiles with respect to changing

parameters.

1on the example of the 1-D BGK equation
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Figure 6.14: Two shock profiles correspond to two values of viscosity ν1 and ν2,
ν1 < ν2

It is known [19] that for the Burgers’ equation2 the steepness of the shock profile is

directly related to the viscosity of the system. A less steep shock profile corresponds

to a less viscous case (Fig.6.14). Moreover if we introduce a measure of steepness

of a shock profile, such as the shock width, this dependence must be linear for the

Navier-Stokes shock profiles [19]. Let us visually compare solutions of the Navier-

Stokes model and Bhatnagar–Gross–Krook model in the case of boundary condition

set BC3. Stationary solutions for the both models are presented on Figure (6.15).

One can see that both results exhibit similar behaviors3.

In the discussion below we take the following steps:

1. We introduce the Shock Width Measure and apply it to the solutions obtained

from the Navier-Stokes and BGK simulations.

2. We confirm that Navier-Stokes stationary solutions the shock width is a linear

function of Reynolds Number Re, which, according to (2.32), controls the

2 ∂u
∂t −

∂
∂x(u2) = ν ∂

2u
∂x2

3at least visually
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viscosity of the system

3. We examine how the relaxation time depends upon the shock width for the

stationary solutions of the BGK model

6.3.1 Shock Width

To measure the steepness of a viscous shock profile we introduce the shock width

measure ω. Consider a viscous shock profile f given on Figure 6.16. Let f− and f+

represent the terminal states of the shock

f− = f(0)

f+ = f(1)
(6.20)

and let ∆f be the total terminal span of the shock

∆f =
∣∣f+ − f−

∣∣ (6.21)

 

+x  

fdΔ
 

−x  

+f
 

−f  

fΔ  

ω  

Figure 6.16: Shock width definition
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For simplicity we assume that f− < f+. In the case when f− > f+ the compu-

tations are very similar. To measure the width of the shock we must measure the

largest coordinate x+ where the shock profile deviates from its right terminal value

and smallest coordinate x− at which the shock profile deviates form its left terminal

states. Let d be the shock tolerance or the deviation level with respect to the total

terminal span of the shock ∆f (see Figure 6.16) then we have

x+ = sup
0≤x≤1

{∣∣f(x)− f+
∣∣ ≥ d∆f

}
x− = inf

0≤x≤1

{∣∣f(x)− f−
∣∣ ≥ d∆f

} (6.22)

Since the shock profile is not defined as a continuous function but rather as a set of

nodes, definitions (6.22) translate into discrete form as

x+ = sup
1≤i≤N

{∣∣fi − f+
∣∣ ≥ d∆f

}
x− = inf

1≤i≤N

{∣∣fi − f−∣∣ ≥ d∆f
} (6.23)

We define the shock width as

ω = x+ − x− (6.24)

Shock width measurements with shock tolerance d = 10−2 for solutions of the

1-D Navier-Stokes and BGK equations are provided in Table 6.7.
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Shock width values for the 1-D Navier-Stokes system

BC0 BC1 BC2 BC3 BC4

Re = Re0

ρ 3.65×10−1 4.18×10−1 3.52×10−1 2.17×10−1 7.41×10−2

u 3.66×10−1 4.18×10−1 3.53×10−1 2.18×10−1 7.51×10−2

θ 4.46×10−1 5.79×10−1 4.47×10−1 2.83×10−1 1.02×10−1

Re = 2Re0

ρ 1.84×10−1 2.26×10−1 1.78×10−1 1.10×10−1 3.90×10−2

u 1.85×10−1 2.26×10−1 1.78×10−1 1.11×10−1 4.05×10−2

θ 2.34×10−1 3.20×10−1 2.26×10−1 1.44×10−1 5.44×10−2

Re = 4Re0

ρ 9.41×10−2 1.14×10−1 9.11×10−2 5.66×10−2 2.00×10−2

u 9.41×10−2 1.14×10−1 9.11×10−2 5.71×10−2 2.10×10−2

θ 1.19×10−1 1.62×10−1 1.15×10−1 7.41×10−2 2.80×10−2

Re = 8Re0

ρ 4.90×10−2 5.81×10−2 4.70×10−2 3.00×10−2 1.10×10−2

u 4.90×10−2 5.81×10−2 4.72×10−2 3.10×10−2 1.20×10−2

θ 6.21×10−2 8.31×10−2 6.01×10−2 4.00×10−2 1.60×10−2

Re = 16Re0

ρ 2.60×10−2 3.00×10−2 2.50×10−2 1.70×10−2 7.01×10−3

u 2.70×10−2 3.00×10−2 2.60×10−2 1.80×10−2 7.01×10−3

θ 3.30×10−2 4.30×10−2 3.20×10−2 2.24×10−2 1.00×10−2

Shock width values for the 1-D BGK equation

BC0 BC1 BC2 BC3 BC4

τ = τ0

ρ 4.71×10−1 5.11×10−1 3.24×10−1 3.09×10−1 3.16×10−1

u 4.66×10−1 5.09×10−1 3.23×10−1 3.08×10−1 3.14×10−1

θ 5.09×10−1 6.79×10−1 3.57×10−1 3.32×10−1 3.45×10−1

τ = 2τ0

ρ 2.45×10−1 3.01×10−1 1.66×10−1 1.58×10−1 1.61×10−1

u 2.46×10−1 3.01×10−1 1.66×10−1 1.59×10−1 1.61×10−1

θ 2.73×10−1 4.19×10−1 1.85×10−1 1.71×10−1 1.78×10−1

τ = 4τ0

ρ 1.26×10−1 1.58×10−1 8.51×10−2 8.11×10−2 8.31×10−2

u 1.27×10−1 1.58×10−1 8.61×10−2 8.21×10−2 8.31×10−2

θ 1.41×10−1 2.21×10−1 9.61×10−2 8.81×10−2 9.11×10−2

τ = 8τ0

ρ 6.51×10−2 8.41×10−2 4.50×10−2 4.30×10−2 4.40×10−2

u 6.61×10−2 8.51×10−2 4.60×10−2 4.30×10−2 4.30×10−2

θ 7.41×10−2 1.18×10−1 5.11×10−2 4.70×10−2 4.90×10−2

τ = 16τ0

ρ 3.50×10−2 4.70×10−2 2.60×10−2 2.40×10−2 2.40×10−2

u 3.60×10−2 4.80×10−2 2.60×10−2 2.40×10−2 2.40×10−2

θ 4.10×10−2 6.71×10−2 2.90×10−2 2.60×10−2 2.70×10−2

Table 6.7: Shock width measurements of viscous shock profiles computed for the
1-D Navier-Stokes and BGK models for different sets of boundary conditions and
different values of parameters Re and τ . Shock tolerance has been chosen to be
d = 10−2 (see Figure 6.16 for details)
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(a) Density ρ NS0REr
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(b) Velocity u NS0REr
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(c) Temperature θ NS0REr

Figure 6.3: Numerical stationary solution NS0REr case
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(a) Density ρ NS1REr
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(b) Velocity u NS1REr
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(c) Temperature θ NS1REr

Figure 6.4: Numerical stationary solution NS1REr case
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(a) Density ρ NS2REr
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(b) Velocity u NS2REr
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(c) Temperature θ NS2REr

Figure 6.5: Numerical stationary solution NS2REr case

100



Chapter 6. Numerical Simulations and Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

 

 
� ���

� ���

� ���

� � �

� ���

(a) Density ρ NS3REr
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(b) Velocity u NS3REr
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(c) Temperature θ NS3REr

Figure 6.6: Numerical stationary solution NS3REr case
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(a) Density ρ NS4REr
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(b) Velocity u NS4REr
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(c) Temperature θ NS4REr

Figure 6.7: Numerical stationary solution NS4REr case
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(a) Density ρ BGK0Tt
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(b) Velocity u BGK0Tt
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(c) Temperature θ BGK0Tt

Figure 6.8: Numerical stationary solution BGK0Tt case
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(a) Density ρ BGK1Tt
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(b) Velocity u BGK1Tt
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(c) Temperature θ BGK1Tt

Figure 6.9: Numerical stationary solution BGK1Tt case
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(a) Density ρ BGK2Tt
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(b) Velocity u BGK2Tt
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(c) Temperature θ BGK2Tt

Figure 6.10: Numerical stationary solution BGK2Tt case
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(a) Density ρ BGK3Tt
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(b) Velocity u BGK3Tt
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(c) Temperature θ BGK3Tt

Figure 6.11: Numerical stationary solution BGK3Tt case
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(a) Density ρ BGK4Tt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 

 � ���

� � �

� � �

� � �

� � �

(b) Velocity u BGK4Tt
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(c) Temperature θ BGK4Tt

Figure 6.12: Numerical stationary solution BGK4Tt case
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(a) τ = τ0
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(e) τ = 16τ0

Figure 6.13: Stationary distributions fj(x) for BGK0Tt case
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(b) Density ρBGK
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(c) Velocity uNS
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(d) Velocity uBGK
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(e) Temperature θNS
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(f) Temperature θBGK

Figure 6.15: Side by side comparison of the macroscopic observables obtained by
Navier-Stokes and Bhatnagar–Gross–Krook simulations in the case of BC3 set of
boundary conditions
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6.3.2 Regression Analysis of the Shock Width

In this section we will perform a linear regression analysis to understand how the

shock width depends on a parameter of a model considered. For the Navier-Stokes

system, based on the analysis of the Burgers’ equation[19], one should expect that

the shock width is a linear function of the viscosity, which is inversely proportional to

the Reynolds Number. Numerical simulations performed on the Navier-Stokes model

will test this. A side-by-side comparison of numerical solutions of Navier-Stokes and

Bhatnagar–Gross–Krook models provided on Figure 6.15 suggests that both models

feature the same trend as far as dependence on corresponding model parameters4 are

concerned. Thus we will test the linear hypothesis for the BGK model as well.

Let p1, p2, . . . , pr be values of a parameter (Re or τ), and ω1, ω2, . . . , ωr be the

corresponding values of the shock width. We accept the following hypothesis

ω(p) = Cp−m (6.25)

Its linearized version reads

logω(p) = logC −m log p (6.26)

Equations (6.25) and (6.27) must be satisfied by the empirical data: logω1 = logC −m log p1

· · ·
logωr = logC −m log pr

(6.27)

Solving (6.27) will provide the best fitted values of C and m. System (6.27) is

overdetermined and therefore we use the Least Square Method to solve it:[
logC

m

]
= (ATA)−1AT

[
logω1
· · ·

logωr

]
(6.28)

4Reynolds number Re for NS and relaxation time τ for BGK
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where

A =

[
1 − log p1
· · ·
1 − log pr

]
(6.29)

BC set θ-shock width
BC0 ωθ ∼ 0.00169τ−1

BC1 ωθ ∼ 0.00352τ−1

BC2 ωθ ∼ 0.00119τ−1

BC3 ωθ ∼ 0.00103τ−1

BC4 ωθ ∼ 0.00107τ−1

Table 6.8: Proportionality coefficients of θ-associated shock width for different sets
of boundary conditions (BGK model)

6.3.3 Conclusions

We apply the regression analysis described by (6.25)-(6.29) to the shock width mea-

surements for the stationary solutions of the Navier-Stokes and BGK equations for

each of the sets of boundary conditions BC0, BC1, . . . , BC4. The shock width mea-

surements are provided in Table 6.7. The results of the fitting process are presented

in Table 6.9 as well as in Figures 6.17– 6.22.

One can see from Figures 6.17–6.19 that for the 1-D Navier-Stokes system the

shock width is proportional to the inverse of the Reynolds number which is essentially

the viscosity. This behavior is similar to the one observed in the properties of the

shock width for shock solutions of the Burgers’ equation which maybe viewed as a

prototype of the 1-D Navier-Stokes system [19].

From the simulation results discussed in this chapter we can draw the following

conclusions.
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1. We have chosen five sets of shock forming boundary conditions (Tables 6.1 and

6.2) that satisfy Rankine-Hugoniot equations (Chapter 3). The 1-D Navier-Stokes

system of equations was nondimensionalized (Chapter 2) and solved (Chapter 4). We

observed viscous shock profiles associated with the stationary solutions of the 1-D

NS system (Section 6.2, Figures 6.3-6.7). The same sets of boundary conditions were

used to solve the 1-D Bhatnagar–Gross–Krook model (Chapter 5). Similarly to the

Navier-Stokes case, the simulation results exhibit viscous shock features in stationary

solutions of the 1-D BGK model (Figures 6.8-6.12). This enables us to conclude that

kinetic models are capable of producing shock features as the continuum models.

Moreover a direct visual comparison of viscous shock profiles (Figure 6.15) suggests

that the relaxation time parameter (τ) has the same influence on the stationary

solution of the BGK model as Reynolds number does on the stationary solution of

the NS system.

2. A numerical measure such as the shock width was introduced (Section 6.3.1)

and applied (Section 6.3.2) to both the 1-D Navier-Stokes (Figures 6.17–6.19) and

1-D BGK (Figures 6.20–6.22) simulations. In both cases essentially a linear trend

was observed. Therefore it has been established that the relaxation time parameter

(τ) in the BGK model plays the same role as the Reynolds number (Re) in the

Navier-Stokes system. Namely, since the Reynolds number is the inverse viscosity,

the relaxation time must have the same meaning in the kinetic model.

3. Conducted analysis indicates that the shock width and hence viscosity are in-

versely proportional to the Reynolds number in the case of the Navier-Stokes system

and the relaxation time τ in the case of the Bhatnagar–Gross–Krook model:

ω ∼ ARe−1, (6.30)

ω ∼ Bτ−1. (6.31)
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One should expect that there are universal constants A and B such that the identities

(6.30) and (6.31) would hold regardless of the boundary conditions. However the

numerical simulations demonstrated that constants A and B depend on the boundary

conditions (Table 6.9). Indeed, one can see from Table 6.8 that the proportionality

constant varies significantly depending on the boundary conditions. The nature of

this phenomenon must be further investigated in future work.
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Figure 6.17: Navier-Stokes shock width regression for BC0 and BC1 sets of boundary
conditions. Horizontal axis is reciprocal of Reynolds number Re−1
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Figure 6.18: Navier-Stokes shock width regression for BC2 and BC3 sets of boundary
conditions. Horizontal axis is reciprocal of Reynolds number Re−1
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Figure 6.19: Navier-Stokes shock width regression for BC4 sets of boundary condi-
tions. Horizontal axis is reciprocal of Reynolds number Re−1
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Figure 6.20: BGK shock width regression for BC0 and BC1 sets of boundary condi-
tions. Horizontal axis is reciprocal of relaxation time τ−1
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Figure 6.21: BGK shock width regression for BC2 and BC3 sets of boundary condi-
tions. Horizontal axis is reciprocal of relaxation time τ−1
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Figure 6.22: BGK shock width regression for BC4 sets of boundary conditions. Hor-
izontal axis is reciprocal of relaxation time τ−1
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Appendix A

Integration Procedures

A.1 Moments of the 1-D Maxwellian Distribution

Consider the nth moment of the Gaussian 1-D distribution

In(u, θ) =

ˆ

R

vn exp

{
−(u− v)2

2θ

}
dv (A.1)

Integration by parts yields

In =
1

n+ 1
exp

{
−(u− v)2

2θ

}∣∣∣∣v=+∞

v=−∞︸ ︷︷ ︸
0

−

− 1

n+ 1

ˆ

R

vn+1 d

dv
exp

{
−(u− v)2

2θ

}
dv =

= − 1

θ(n+ 1)

ˆ

R

vn+1(u− v) exp

{
−(u− v)2

2θ

}
dv = − 1

θ(n+ 1)
[uIn+1 − In+2]

Thus we get

In+2 = θ(n+ 1)In + uIn+1 (A.2)

121



Appendix A. Integration Procedures

The recursive equation (A.2) requires two initial conditions I0 and I1 which must

be addressed separately. Using a trivial substitution

ξ = (u− v)θ−
1
2 (A.3)

we get

I0 =
√
θ

ˆ

R

e−ξ
2

dξ (A.4)

or equivalently

θ−1I2
0 =

¨

R2

e−ξ
2
1−ξ22dξ1dξ2 =

2πˆ

0

dφ

ˆ

R

re−r
2

dr = 2π (A.5)

To obtain (A.5) from (A.4) we used iterative integration and polar coordinates.

After solving (A.5) for I0 > 0 we obtained

I0 =
√

2πθ (A.6)

Similarly for I1:

uI0 − I1 =

ˆ

R

exp

{
−(u− v)2

2θ

}
(u− v)dv =

√
θ

ˆ

R

e−ξ
2

ξdξ = 0 (A.7)

Here we used substitution (A.3). Therefore we obtain

I1 = u
√

2πθ (A.8)
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Formulae (A.2), (A.6), and (A.8) imply the general rule for calculating the nth

moment:

In =

ˆ

R

vn exp

{
−(u− v)2

2θ

}
dv =


√

2πθ, n = 0

u
√

2πθ, n = 1

θ(n− 1)In−2 + uIn−1, n ≥ 2

(A.9)

The expression for I2 follows from (A.9):

I2 =

ˆ

R

v2 exp

{
−(u− v)2

2θ

}
dvθI0 + uI1 =

√
2πθ(θ + u2) (A.10)

A special case when u = 0 will be used in Section A.2.1. In this case formula

(A.9) reduces to

In = θ(n− 1)In−2 (A.11)

Clearly for odd values of n In = 0. For even n the recursive equation (A.11) results

in

I2k = θk(2k − 1)!!
√

2πθ, (A.12)

where n!! is the product of all numbers between 1 and n that have the same parity

as n.

A.2 Moments of the 3-D Maxwellian Distribution

In this section we compute first three moments m0, ~m1, and m2 of Maxwellian

distribution defined by (1.65) corresponding to the collision invariants (1.40).
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1. m0 =
ρ

(2πθ)
3
2

˚
R3

exp

{
−|~v − ~u|

2

2θ

}
d~v (A.13)

After translation by ~u we get m0 =
ρ

(2πθ)
3
2

˚
R3

exp

{
−|~v|

2

2θ

}
d~v

m0(2πθ)
3
2ρ−1 =

ˆ π

0

ˆ 2π

0

ˆ +∞

0

e−
r2

2θ r2 sinφdrdψdφ (A.14)

Spherical coordinates (r, ψ, φ) were used in (A.14). Furthermore

m0(2πθ)
3
2ρ−1 = 4π

ˆ +∞

0

r2e−
r2

2θ dr = 2πI2(0, θ) (A.15)

where In(u, θ) is defined by (A.1) in Appendix A.1. Formula A.10 for u = 0

produces m0(2πθ)
3
2ρ−1 = 2πθ

√
2πθ and therefore the zeroth moment of the

Maxwellian is

m0 =
ρ

(2πθ)
3
2

˚
R3

exp

{
−|~v − ~u|

2

2θ

}
d~v = ρ (A.16)

2. ~m1 =
ρ

(2πθ)
3
2

˚
R3

exp

{
−|~v − ~u|

2

2θ

}
~vd~v (A.17)

After adding and subtracting ~u from ~v and after translation by ~u we get

~m1 =
ρ

(2πθ)
3
2

˚
R3

exp

{
−|~v|

2

2θ

}
~vd~v+

+
ρ~u

(2πθ)
3
2

˚
R3

exp

{
−|~v − ~u|

2

2θ

}
d~v =

=
ρ

(2πθ)
3
2

˚
R3

exp

{
−|~v|

2

2θ

}
~vd~v +m0~u

(A.18)

The remaining triple integral is 0 since ~v 7→ exp

{
−|~v|

2

2θ

}
~v is odd and the

integration is performed over whole space R3. Therefore we get

~m1 =
ρ

(2πθ)
3
2

˚
R3

exp

{
−|~v − ~u|

2

2θ

}
~vd~v = ρ~u (A.19)
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3. In order to calculate

m2 =
ρ

(2πθ)
3
2

˚
R3

exp

{
−|~v − ~u|

2

2θ

}
|~v|2d~v (A.20)

we use |~v|2 = |~v − ~u|2 + |~u|2 + 2(~v − ~u) · ~u. Therefore

m2 =
ρ

(2πθ)
3
2

˚
R3

exp

{
−|~v|

2

2θ

}
|~v|2d~v + |~u|2m0 + 2~u ·~0 (A.21)

(m2 − ρ|~u|2)(2πθ)
3
2ρ−1 =

˚
R3

exp

{
−|~v|

2

2θ

}
|~v|2d~v =

=

ˆ π

0

ˆ 2π

0

ˆ +∞

0

e−
r2

2θ r4 sinφdrdψdφ = 2πI4(0, θ),

(A.22)

where I4(u, θ) is defined by (A.1) and it can be computed by (A.9) and (A.10).

Namely I4 = 3I2 = 3θ2
√

2πθ and thus we get

(m2 − ρ|~u|2)(2πθ)
3
2ρ−1 = 3θ(2πθ)

3
2 (A.23)

Finally

m2 =
ρ

(2πθ)
3
2

˚
R3

exp

{
−|~v − ~u|

2

2θ

}
|~v|2d~v = ρ(|~u|2 + 3θ) (A.24)

A.2.1 Additional Moments of Maxwellian Distribution

In this section we compute additional moment required to establish orthogonality

relationships (1.123,1.124) in Section (1.3.6). The definitions of the moments and

their values are provided in Table A.1 below.
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Notation Definition Value

Gk(θ) = α

˚
R3

e−
|~ξ|2
2θ |~ξ|kd~ξ =


1, k = 0

3θ, k = 2
15θ2, k = 4

Gj,k(θ) = α

˚
R3

e−
|~ξ|2
2θ ξjξkd~ξ = θδjk = 1

3
δj,kG2(θ)

Gi,j,k(θ) = α

˚
R3

e−
|~ξ|2
2θ ξiξjξkd~ξ = 0

Gkj (θ) = α

˚
R3

e−
|~ξ|k
2θ |~ξ|kξjd~ξ = 0

G2
j,k(θ) = α

˚
R3

e−
|~ξ|2
2θ |~ξ|2ξjξkd~ξ = 5θ2δjk = 5

θ
Gj,k(θ)

Table A.1: Moments of Maxwellian Distribution. Constant α =
1√

(2πθ)3

Values for G0(θ) and G2(θ) have already been calculated in this section. To obtain

G0(θ) = 1 we set ~u = 0 in (A.16) and it follows from (A.24) that G2(θ) = 3θ. In

order to calculate G4(θ) we use spherical coordinates (r, ψ, φ):

G4(θ) = α

ˆ π

0

ˆ 2π

0

ˆ +∞

0

e−
r2

2θ r6 sinφdrdψdφ = 4πα

ˆ +∞

0

e−
r2

2θ r6dr. (A.25)

Since1

ˆ +∞

0

e−
r2

2θ r5dr = 4
√

2θ
7
2

ˆ +∞

0

e−zz
5
2dz = 4

√
2θ

7
2 Γ

(
7

2

)
= 15

√
π

2
θ

7
2 (A.26)

the value for G4(θ) = 5θGj,j(θ) = 15θ2 and the result follows.

In order to calculate Gj,k we observe that for j 6= k the integral is zero since the

1Γ(z) =
ˆ +∞

0
e−ssz−1dz, Γ

(
7
2

)
=

15
√
π

8
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integrand is odd. In the case when j = k we have

Gk,k(θ) = α

˚
R3

e−
|~ξ|2
2θ ξ2

kd
~ξ =

α

3

˚
R3

e−
|~ξ|2
2θ |~ξ|2d~ξ =

1

3
G2(θ). (A.27)

Regardless of values of (i, j, k) functions ~ξ 7→ e−
|~ξ|2
2θ ξiξjξk and ~ξ 7→ ~ξ 7→ e−

|~ξ|2
2θ |~ξ|kξi

are odd and hence the resulting integrals Gi,j,k(θ) = Gkj (θ) = 0 due to integration

over R3.

Lastly, in order to calculate G2
j,k we use the same approach as the one used for Gj,k.

In the case when j = k the integral is zero. Due to symmetry, for j = k, we have

G2
k,k(θ) =

1

3
G4(θ). (A.28)

127



Appendix B

Continuum and Kinetic Theory

B.1 The Nondimensionalized 3-D Euler System

Consider the 3-D Euler system of partial differential equations as given by (1.7)

equipped with equations of state (1.7):

∂tρ+ div (ρ~u) = 0,

∂t(ρ~u) + Div(ρ~u⊗ ~u) + ~∇p = 0,

∂t
(

1
2
ρ |~u|2 + ρe

)
+ div

[
ρ~u
(

1
2
|~u|2 + e

)
+ p~u

]
= 0.

(B.1)

First we nondimensionalize equations of state (1.7). According to (2.17) on

page 35

R

CV
=
CP − CV
CV

= γ − 1. (B.2)

p0p̂ =
Rθ0

Mu2
0

ρ0u
2
0ρ̂θ̂ (B.3)

e0ê =
CV θ0

M
θ̂ =

CV
R

Rθ0

M
θ̂ (B.4)
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Equations (1.10), (1.11) and (1.12) imply

p̂ = ρ̂θ̂ (B.5)

ê = (γ − 1)−1θ̂ (B.6)

Equations (B.5) and (B.6) represent nondimensionalized equations of state.

From the equations of state (1.7) we have
p

e
=

R

CV
ρ and therefore

p = (γ − 1)−1ρe (B.7)

After substituting (B.7) into (B.1), the Euler system takes form

∂tρ+ div (ρ~u) = 0,

∂t(ρ~u) + Div(ρ~u⊗ ~u) + (γ − 1)~∇ [ρe] = 0,

∂t
(

1
2
ρ |~u|2 + ρe

)
+ div

[
ρ~u
(

1
2
|~u|2 + γe

)]
= 0.

(B.8)

Rescaling of system (B.8) is achieved by using (1.10) and substituting (1.8) into

(B.8). The differential operators are transformed according to

∂t = t−1
0 ∂t̂

div~x = L−1 divx̂
~∇~x = L−1~∇x̂

(B.9)

After removing the hat notations above the rescaled variables the resulting system

takes form

ρ0

t0
∂tρ+

ρ0u0

L
div (ρ~u) = 0,

ρ0u0

t0
∂t(ρ~u) + Div(ρ~u⊗ ~u) +

(γ − 1)ρ0u
2
0

L
~∇ [ρe] = 0,

ρ0u
2
0

t0
∂t
(

1
2
ρ |~u|2 + ρe

)
+
ρ0u

3
0

L
div
[
ρ~u
(

1
2
|~u|2 + γe

)]
= 0.

(B.10)
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In order to obtain the final nondimensionalized Euler system (B.11) we use (B.6):

∂tρ+ div (ρ~u) = 0,

∂t(ρ~u) + Div(ρ~u⊗ ~u) + ~∇ [ρθ] = 0,

∂t

(
1
2
ρ |~u|2 + 1

γ−1
ρθ
)

+ div
[
ρ~u
(

1
2
|~u|2 + γ

γ−1
θ
)]

= 0.

(B.11)

B.2 Proof of Identities (1.56)-(1.58) in

Section 1.3.2

In this section we prove that identities (1.56)-(1.58) on page 17 hold. Before we get

to the proof we adopt some convenient notations as well as establish some useful

tensor identities.

Let 〈φ〉 denote
´

R φ(~v)f(~v)d~v, where ~v 7→ φ(~v) can be a function or a vector

or matrix field, depending upon context. In the light of the introduced notations,

identities (1.52)-(1.55) can be rewritten as

ρ = 〈1〉 (B.12)

ρ~u = 〈~v〉 (B.13)

P = 〈(~v − ~u)⊗2〉 (B.14)

C = 〈(~v − ~u)|~v − ~u|2〉 (B.15)

Consider

〈(~v − ~u)2⊗〉 = 〈~v⊗2〉+ 〈~u⊗2〉 − 〈~u⊗ ~v〉 − 〈~u⊗ ~v〉 = 〈~v⊗2〉+ 〈~u⊗2〉 − ~u⊗ 〈~v〉 − 〈~v〉 ⊗ ~u

Since ρ~u⊗ ~u = ~u⊗ ρ~u and

〈~u⊗2〉 = ~u⊗2〈1〉 = ρ~u⊗2 (B.16)
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we have

P = 〈(~v − ~u)2⊗〉 = 〈~v⊗2〉 − ρ~u⊗2, (B.17)

which implies (1.56)

In order to establish (1.57) we observe that tr〈A〉 = 〈trA〉 as well as

tr〈~V ⊗2〉 = 〈tr ~V ⊗2〉 = 〈|~V |2〉. (B.18)

Therefore after using (B.14) as a definition of P we have ρ|~u|2 + trP = ρ|~u|2 +

tr〈(~v − ~u)⊗2〉 = ρ|~u|2 + 〈|~v − ~u|2〉 = ρ|~u|2 + 〈|~v|2〉 + 〈|~u|2〉 − 2~u · 〈~v〉 and thusly

implementing (B.16) and (B.13) we have ρ|~u|2 + trP = 〈|~v|2〉 which is no more

than (1.57).

In order to prove (1.58) we consider the following property

~V ⊗2 ~W = (~V ~V T) ~W = ~V (~V T ~W ) = ~V (~V · ~W ), (B.19)

which for ~V = ~W implies

~V ⊗2~V = ~V |~V |2 (B.20)

By utilizing (1.57),(B.17), and (B.20) the right hand side of (1.58) transforms into

[
ρ|~u|2 + trP

]
~u+ 2P~u+ C = −2ρ|~u|2~u+ 〈|~v|2〉~u+ 2〈~v(~v · ~u)〉+ C (B.21)

The definition of C (B.15) implies that

C = 2ρ|~u|2~u+ 〈|~v|2〉~v − 2〈~v(~v · ~u)〉 − 〈|~v|2〉~u (B.22)

Substituting (B.22) into (B.21) yields desired result (1.58).
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B.3 Some Details of the Proof of the H-Theorem

Here we provide detailed computations required for establishing implication (c)=⇒(a)

in the H-Theorem.

Since f = f e, where f e is defined by (1.65), we have

f = f(~v) = αe−σ|~u−~v|
2

,

f∗ = f(~v∗) = αe−σ|~u−~v∗|
2

,
(B.23)

where α =
ρ√
2πθ

and σ =
1

2θ
. Let

δ = δ(~v, ~v∗, ~ω) = (~v − ~v∗) · ~ω (B.24)

for ω ∈ S2. Then we have

ff∗ = α2e−σ[(~u−~v)2−(~u−~v∗)2] (B.25)

Let ~p, ~q ∈ R3 and let p = |~p| and q = |~q|, then we have

f(~p+ ~q) = αe−σ|~u−~p−~q|
2

= αe−σ[(~u−~p)
2−2~q·(~u−~p)+q2] = αe−σ[~u−~p]2e2σ~q·(~u−~p)−σq2

Therefore

f(~p+ ~q) = f(~p)e−σ[q
2−2~q·(~u−~p)] (B.26)

We use (1.33), (B.26) and the fact that |δ~ω| = |δ| to obtain

f ′ = f(~v − δ~ω) = f e−σ[δ
2+2δ~ω·(~u−~v)]

f ′∗ = f(~v∗ + δ~ω) = f∗e
−σ[δ2−2δ~ω·(~u−~v∗)]
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The expression inside the collision integral (1.36) becomes

f ′f ′∗ − ff∗ = ff∗

[
e−σ(2δ2+2δ~ω·(~v∗−~v)) − 1

]
. (B.27)

We observe that 2δ2 + 2δ~ω · (~v∗ − ~v) = 0 due to (B.24) and therefore

f ′f ′∗ − ff∗ = 0 =⇒ B(f e, f e) = 0. This finalizes the proof.

B.4 Calculation of Dt log f0

This section we provide verification of (1.112) for A and B defined by (1.113) and

(1.114) and f0 defined by (1.65).

Let

D =
1

ρ

[
∂tρ+ ~u · ~∇ρ+ ρ div ~u

]
︸ ︷︷ ︸

E1

+

+
~v − ~u
θ
·
[
∂t~u+ ~u ∗ ~∇~u+ ~∇θ +

θ

ρ
~∇ρ
]

︸ ︷︷ ︸
~E2

+

+
1

2θ

[
|~v − ~u|2

θ
− 3

] [
∂tθ + ~u · ~∇θ +

2

3
θ div ~u

]
︸ ︷︷ ︸

E3

+

+ A

(
~v − ~u√

θ

)
: ~∇~u︸ ︷︷ ︸

A

+ 2B

(
~v − ~u√

θ

)
· ~∇
√
θ︸ ︷︷ ︸

B

(B.28)

In the notation introduced above D take a more consist form D:

D =
1

ρ
E1 +

~v − ~u
θ
· ~E2 +

1

2θ

[
|~v − ~u|2

θ
− 3

]
E3 +A+ B (B.29)

First we calculate log f0:

log f0 = log ρ− 3

2
log θ − |~v − ~u|

2

2θ
− log

√
(2π)3, (B.30)
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Dt logf0 =
(
∂t + ~v · ~∇

)[
log ρ− 3

2
log θ − |~v − ~u|

2

2θ

]
=

=
1

ρ
∂tρ+

1

ρ
~v · ~∇ρ− 3

2θ
∂tθ −

3

2θ
~v · ~∇θ +

|~v − ~u|2

2θ2
∂tθ+

+
|~v − ~u|2

2θ2
~v · ~∇θ +

1

θ
(~v − ~u) · ∂t~u+

1

θ

3∑
j,k=1

vk(vj − uj)
∂uj
∂xk

(B.31)

One has to establish that D = Dt log f0. First we rearrange terms of Dt log f0 as

shown below:

Dt logf0 =

=

[
1

ρ
∂tρ+

1

ρ
~v · ~∇ρ

]
︸ ︷︷ ︸

D1

+

[
1

θ
(~v − ~u) · ∂t~u−

3

2θ
~v · ~∇θ

]
︸ ︷︷ ︸

D2

+

+

[
|~v − ~u|2

2θ2
∂tθ −

3

2θ
∂tθ

]
︸ ︷︷ ︸

D3

+

+
|~v − ~u|2

2θ2
~v · ~∇θ +

1

θ

3∑
j,k=1

vk(vj − uj)
∂uj
∂xk

(B.32)

Equivalently

Dt logf0 = D1 +D2 +D3 +
|~v − ~u|2

2θ2
~v · ~∇θ +

1

θ

3∑
j,k=1

vk(vj − uj)
∂uj
∂xk

(B.33)

We establish by observation that

1

ρ
E1 =

[
1

ρ
∂tρ+

1

ρ
~v · ~∇ρ

]
+ div ~u+

~u− ~v
ρ
· ~∇ρ (B.34)

~v − ~u
θ
· ~E2 =

[
~v − ~u
θ
· ∂t~u−

3~v

2θ
· ~∇θ

]
+

5~v

2θ
· ~∇θ − ~u

θ
· ~∇θ+

+
~v − ~u
ρ
· ~∇ρ+

~v − ~u
θ
· (~u ∗ ~∇~u)

(B.35)
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1

2θ

[
|~v − ~u|2

θ
− 3

]
E3 =

[
|~v − ~u|2

2θ2
− 3

2θ

]
∂tθ − div ~u+

+
|~v − ~u|2

2θ2
~u · ~∇θ − 3~u

2θ
· ~∇θ +

|~v − ~u|2

3θ
div ~u

(B.36)

The terms in the brackets in (B.34), (B.35), and (B.36) are exactly D1, D2, and D3

defined by (B.32). Therefore, after cancelation of div ~u and
~u− ~v
ρ
· ~∇ρ, expression

(B.28) is reduced to

D = D1 +D2 +D3 +
5(~v − ~u)

2θ
· ~∇θ +

~v − ~u
θ
· (~u ∗ ~∇~u)+

+
|~v − ~u|2

2θ2
~u · ~∇θ +

|~v − ~u|2

3θ
div ~u+A+ B

(B.37)

After comparing (B.33) to (B.37) it becomes evident that in order to establish that

D = Dt log f0 it remains to verify that the identity below holds:

|~v − ~u|2

2θ2
~v · ~∇θ +

1

θ

3∑
j,k=1

vk(vj − uj)
∂uj
∂xk

=
5(~v − ~u)

2θ
· ~∇θ+

+
~v − ~u
θ
· (~u ∗ ~∇~u) +

|~v − ~u|2

2θ2
~u · ~∇θ +

|~v − ~u|2

3θ
div ~u+A+ B

(B.38)

The next three terms need to be clarified:

~v − ~u
θ
· (~u ∗ ~∇~u) =

∑
j

vj − uj
θ

(~u · ~∇uj) =
∑
j

vj − uj
θ

∑
k

uk
∂uj
∂xk

=

=
1

θ

∑
j,k

(vj − uj)uk
∂uj
∂xk

(B.39)

A =
1

θ

∑
j,k

[
(vj − uj)(vk − uk)−

1

3
|~v − ~u|2δjk

]
∂uj
∂xk

=

=
1

θ

∑
j,k

(vj − uj)(vk − uk)
∂uj
∂xk
− |~v − ~u|

2

3θ

∑
j

∂uj
∂xj

=

=
1

θ

∑
j,k

(vj − uj)(vk − uk)
∂uj
∂xk
− |~v − ~u|

2

3θ
div ~u

(B.40)
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B =

[
|~v − ~u|2

θ
− 5

]
~v − ~u√

θ
· 1

2
√
θ
~∇θ =

=
1

2θ

[
|~v − ~u|2

θ
− 5

]
(~v − ~u) · ~∇θ =

=
|~v − ~u|2

2θ2
(~v − ~u) · ~∇θ − 5

2θ
(~v − ~u) · ~∇θ

(B.41)

After substituting (B.39), (B.40), and (B.41) into the right hand side of (B.38)

the expression Dt log f0 = D becomes verified.

RHS1 =

(
5(~v − ~u)

2θ
· ~∇θ

)
+

[
1

θ

∑
j,k

(vj − uj)uk
∂uj
∂xk

]
+

{
|~v − ~u|2

2θ2
~u · ~∇θ

}
+

+
|~v − ~u|2

3θ
div ~u+

[
1

θ

∑
j,k

(vj − uj)(vk − uk)
∂uj
∂xk

]
−|~v − ~u|

2

3θ
div ~u+

+

{
|~v − ~u|2

2θ2
(~v − ~u) · ~∇θ

}
−
(

5

2θ
(~v − ~u) · ~∇θ

)
=

=

{
|~v − ~u|2

2θ2
~v · ~∇θ

}
+

(
1

θ

3∑
j,k=1

vk(vj − uj)
∂uj
∂xk

)
= LHS1

(B.42)

B.5 Certain Orthogonality Relations for Tensors

A and B

In this sections we verify that orthogonality relations for (1.123) and (1.124) hold.

Sine KerLf0 is a finite dimensional subspace of Wf0 we have to verify that

〈aij, φk〉 = 0, (B.43)

〈bi, φk〉 = 0, (B.44)

where φk are the collision invariants defined by (1.40) and the scalar product in Wf0

is defined by (1.101)

1RHS=right hand side, LHS=left hand side
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We recall that ai,j = Ai,j

(
~v − ~u√

θ

)
and bi = Bi

(
~v − ~u√

θ

)
for A and B defined in

(1.113) and (1.114):

Ai,j(~V ) = ViVj −
1

3
|~V |2δi,j (B.45)

Bi(~V ) =
1

2
(|~V |2 − 5)Vi (B.46)

Let α = 1√
(2πθ)3

, let φ′ be a collision invariant of a general form

φ′(~v) = c′0 + ~c′2 · ~v + c′4|~v|2 (B.47)

and let φ be a translation of φ′

φ(~v) = φ′(~v + ~u) = c0(~u) + ~c2(~u) · ~v + c4(~u)|~v|2. (B.48)

It suffices to demonstrate that 〈aij, φ〉 = 0 and 〈bi, φ〉 = 0 for φ defined by (B.46).

〈aij, φ〉 =
α

θ

ˆ
R3

e−
|~v−~u|2

2θ

[
(vi − ui)(vj − uj)−

1

3
|~u− ~v|2δij

]
φ′(~v)d~v. (B.49)

We use change of variables ~ξ = ~u− ~v and translation property of collision invariants

(B.48)

〈aij, φ〉 =
α

θ

ˆ
R3

e−
|~ξ|2
2θ

[
ξiξj −

1

3
|~ξ|2δij

]
φ(~ξ)d~ξ. (B.50)

Utilizing the notations of the moments from Table A.1 on page 126, the expression

above can be rewritten as

θ〈aij, φ〉 = c0(~u)
[
Gi,j(θ)− δij

3
G2(θ)

]
+

3∑
k=1

ck2(~u)
[
Gi,j,k(θ)− δij

3
G2
k(θ)

]
+

+ c3(~u)
[
G2
i,j(θ)−

δij
3
G4(θ)

] (B.51)
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According to Table A.1 we have

Gi,j(θ)−
δij
3
G2(θ) = Gi,j,k(θ) =

δij
3
G2
k(θ) = G2

i,j(θ)−
δij
3
G4(θ) = 0 (B.52)

and hence the orthogonality (B.43) has been proven. We proceed in a similar way

to prove (B.44).

〈bi, φ〉 =
α

2
√
θ

ˆ
R3

e−
|~ξ|2
2θ

[
|~ξ|2

θ
− 5

]
ξiφ(~ξ)d~ξ =

=
c0(~u)

2
√
θ

[
G2
i (θ)

θ
− 5G0

i (θ)

]
+

+
1

2
√
θ

3∑
k=1

ck2(~u)

[G2
i,k(θ)

θ
− 5Gi,k(θ)

]
+
c3(~u)

2
√
θ

[
G4
i (θ)

θ
− 5G2

i (θ)

] (B.53)

By looking up the corresponding values of moments G(θ) in Table A.1 we establish

that

G2
i (θ)

θ
= 5G0

i (θ) =
G2
i,k(θ)

θ
− 5Gi,k(θ) =

G4
i (θ)

θ
= 5G2

i (θ) = 0 (B.54)

and therefore (B.44) is verified.

B.6 A Transformation of the Compressible Euler

System

In this section we will demonstrate that the following two systems are equivalent.

∂tρ+ ~u · ~∇ρ+ ρ div ~u = 0,

∂t~u+ ~u ∗ ~∇~u+ ~∇θ + θ
ρ
~∇ρ = 0,

∂tθ + ~u · ~∇θ + 2
3
θ div ~u = 0;

(B.55)
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∂tρ+ div (ρ~u) = 0,

∂t(ρ~u) + Div(ρ~u⊗ ~u) + ~∇(ρθ) = 0,

∂t
(

1
2
ρ |~u|2 + 3

2
ρθ
)

+ div
[
ρ~u
(

1
2
|~u|2 + 5

2
θ
)]

= 0.

(B.56)

First we provide several differential identities that will be useful and further

considerations. It is assumed that all mapping in this section are smooth and have

sufficient number of partial derivatives. It is trivial to establish that for scalar fields

ρ, θ : R3 −→ R and for a vector field ~u : R3 −→ R3 the following differentiation rules

hold:

div(ρ~u) = ~∇ρ · ~u+ ρ div ~u (B.57)

~∇(ρθ) = θ~∇ρ+ ρ~∇θ. (B.58)

The gradient ~∇ is extended to vector fields by (1.115) on page 30. Operations Div

and ∗ were defined by (1.44) on page 15 and (1.116) on page 29 correspondingly. We

observe that

 div(ρu1~u)

div(ρu2~u)

div(ρu3~u)

 =

 ρ~u · ~∇u1 + u1 div(ρ~u)

ρ~u · ~∇u2 + u2 div(ρ~u)

ρ~u · ~∇u3 + u3 div(ρ~u)

 , (B.59)

therefore

Div(ρ~u⊗ ~u) = ρ~u ∗ ~∇~u+ ~u div(ρ~u). (B.60)

Property (B.57) immediately implies that the first equations of (B.55) and (B.56)

are equivalent.

The second equation of (B.56) takes form

ρ∂t~u+ ~u∂tρ+ ρ~u ∗ ~∇~u+ ~u div(ρ~u) + ~∇(ρθ) = 0 (B.61)
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Since ~u(∂tρ + div ρ~u) = 0 because of the continuity equation and since ~∇(ρθ) =

θ~∇ρ+ ρ~∇θ, equation (B.61) becomes

ρ∂t~u+ ρ~u ∗ ~∇~u+ θ~∇ρ+ ρ~∇θ = 0, (B.62)

which is equivalent to the second equation of (B.55). Thus the equivalence of the

first two equations of (B.55) and (B.56) has been established.

To establish equivalence of the third equations we assume that

∂t

(
1

2
ρ |~u|2 +

3

2
ρθ

)
+ div

[
ρ~u

(
1

2
|~u|2 +

5

2
θ

)]
= 0 (B.63)

is true. We observe that ~u · ∂t~u =
1

2
∂|~u|2 and

ρ~u · (~u ∗ ~∇~u) = ρ
3∑
j=1

uj(~u · ~∇uj) = ρ
3∑
j=1

~u · (uj ~∇uj) =

= ρ~u ·
3∑
j=1

uj ~∇uj = ρ~u ·
3∑
j=1

~∇
u2
j

2
=

1

2
ρ~u · ~∇|~u|2

(B.64)

We multiply the second equation of (B.55) by ρ~u and use (B.64):

1

2
ρ∂t|~u|2 +

1

2
ρ~u · ~∇|~u|2 + ρ~u · ~∇θ + θ~u · ~∇ρ = 0, (B.65)

equivalently, since 1
2
∂t(ρ|~u|2) = 1

2
ρ∂t|~u|2 + 1

2
|~u|2∂tρ, we have that

1

2
∂t(ρ|~u|2) +

[
−1

2
|~u|2∂tρ+

1

2
ρ~u · ~∇|~u|2

]
+ ρ~u · ~∇θ + θ~u · ~∇ρ = 0. (B.66)

Since the continuity equation holds −1
2
|~u|2∂tρ = 1

2
|~u|2 div(ρ~u) and therefore after

applying (B.57) the term in brackets reduces to

−1

2
|~u|2∂tρ+

1

2
ρ~u · ~∇|~u|2 =

1

2
|~u|2 div(ρ~u) +

1

2
ρ~u · ~∇|~u|2 =

1

2
div
(
ρ|~u|2~u

)
.(B.67)
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After noticing that ρ~u · ~∇θ + θ~u · ~∇ρ = ~u · ~∇(ρθ), equation (B.66) transforms to

1

2
∂t(ρ|~u|2) +

1

2
div
(
ρ|~u|2~u

)
+ ~u · ~∇(ρθ) = 0. (B.68)

Now we subtract (B.68) from the equation we assumed was correct (B.63):

3

2
∂t(ρθ) +

5

2
div(ρθ~u)− ~u · ~∇(ρθ) = 0 (B.69)

The following chain of transformations finalizes the proof.

3

2
∂t(ρθ) +

3

2
div(ρθ~u) + div(ρθ~u)− ~u · ~∇(ρθ)︸ ︷︷ ︸

ρθ div ~u

= 0 (B.70)

∂t(ρθ) + div(ρθ~u) +
2

3
ρθ div ~u = 0. (B.71)

Applying the continuity equation:

(ρ∂tθ + θ∂tρ) + (θ div(ρ~u)︸ ︷︷ ︸
0

+ρ~u · ~∇θ) +
2

3
ρθ div ~u = 0. (B.72)

Dividing by ρ:

∂tθ + ~u · ~∇θ +
2

3
θ div ~u = 0, (B.73)

which is the third equation in system (B.55).

Thus it has been proven that (B.55) is equivalent to (B.56).
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Technical Calculations for

Numerical Solutions

C.1 Truncation Error Estimation Theorem

Theorem 2 Let ρ, u, θ > 0 be positive constants and B(V ) = (−∞,−V )∪ (V,+∞).

Then for n = 0, 1, 2, . . . and for V satisfying

V ≥ max
{

1, 2u, u+
√

2θ
}

(C.1)

the following inequality holds :

∣∣∣∣∣∣∣
ˆ

B(V )

vn exp

{
−(v − u)2

2θ

}
dv

∣∣∣∣∣∣∣ ≤ αn exp

{
−V − u

2
√

2θ

}
(C.2)

where

αn = 2
5(n+1)

2 θ
n+1

2 nne−n (C.3)
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and 00 should be treated as 1.

Proof. Assume (C.1) holds and let

Jn(u, θ, V ) =

ˆ

B(V )

vne−
(v−u)2

2θ dv (C.4)

then

|Jn(u, θ, V )| ≤
+∞ˆ

V

vne−
(v−u)2

2θ dv +

−Vˆ

−∞

|v|ne−
(v−u)2

2θ dv (C.5)

After substitution v 7→ −v in the second integral in (C.5) we obtain

+∞ˆ

V

vn
[
e−

(v−u)2

2θ + e−
(u+v)2

2θ

]
dv = 2

+∞ˆ

V

vne−
u2+v2

2θ cosh
uv

θ
dv (C.6)

Since cosh x ≤ ex for x ≥ 0 we have

|Jn(u, θ, V )| ≤ 2

+∞ˆ

V

vne−
(v−u)2

2θ dv (C.7)

Assume that n ≥ 1 and let ξ =
v − u√

2θ
then

+∞ˆ

V

vne
− (v−u)2√

2θ dv =
√

2θ

+∞ˆ
V−u√

2θ

(ξ
√

2θ + u)ne−ξ
2

dξ (C.8)

Since we assumed that (C.1) is true we have

V ≥ 2u⇐⇒ u√
2θ
≤ V − u√

2θ
≤ ξ =⇒ u ≤ ξ

√
2θ =⇒ ξ

√
2θ + u ≤ 2ξ

√
2θ (C.9)
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furthermore by (C.1)

1 ≤ V ≤ ξ
√

2θ + u ≤ 2ξ
√

2θ (C.10)

and thus

(ξ
√

2θ + u)n ≤ (2ξ
√

2θ)n (C.11)

|Jn(u, θ, V )| ≤
(

2
√

2θ
)n+1

+∞ˆ
V−u√

2θ

ξne−ξ
2

dξ (C.12)

According to the assumption (C.1)

ξ ≥ V − u√
2θ
≥ 1 =⇒ e−ξ

2 ≤ e−ξ (C.13)

and therefore

|Jn(u, θ, V )| ≤ 2n+1(2θ)
n+1

2

+∞ˆ
V−u√

2θ

ξne−ξdξ (C.14)

Consider function

ψn(ξ) = ξne−
1
2
ξ, ξ ≥ 0 (C.15)

Its derivative is given by

ψ′n(ξ) = ξn−1e−
1
2
ξ

(
n− 1

2
ξ

)
(C.16)

Function ψn attains its absolute maximum

ψ∗n = (2n)ne−n (C.17)
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at ξ∗n = 2n and therefore

ψn(ξ) ≤ ψ∗n ∀ξ ≥ 0 (C.18)

It follows from (C.18) that

ξn ≤ (2n)ne−ne
1
2
ξ ∀ξ ≥ 0 (C.19)

Applying (C.19) to (C.15) we obtain

|Jn(u, θ, V )| ≤ 2
5n+1

2 θ
n+1

2

(n
e

)n +∞ˆ
V−u√

2θ

e−
1
2
ξdξ = 2

5n+3
2 θ

n+1
2

(n
e

)n
e
− V−u

2
√

2θ (C.20)

After defining1 αn = 2
5(n+1)

2 θ
n+1

2 nne−n the result follows for n ≥ 1.

Consider case n = 0. All calculations prior to and including (C.8) are valid and

therefore we have

|J0(u, θ, V )| ≤ 2
√

2θ

+∞ˆ
V−u√

2θ

e−ξ
2

dξ ≤ 2
√

2θ

+∞ˆ
V−u√

2θ

e−
1
2
ξdξ = 4

√
2θe

− V−u
2
√

2θ (C.21)

We notice that according to (C.3) α0 = 4
√

2θ and this finalizes the proof.

C.2 Computation of the Determinant of M

Let M be as in (4.63). Then after substituting the expression for transformation T

(2.66) we obtain

1αn was taken twice the coefficient in (C.20) to insure that case n = 0 conforms to the
formula (C.3) provided 00 is treated as 1.
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detM = det


1 0 0 ∗ ∗ ρθ−1

0 1 0 ∗ ∗ 0
0 0 1 ∗ ∗ 1
φ1 φ2 φ3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 = det


1 0 0 ∗ ∗ ρθ−1

0 1 0 ∗ ∗ 0
0 0 1 ∗ ∗ 1
φ1 φ2 φ3 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



= − det


1 0 0 ∗ ρθ−1

0 1 0 ∗ 0
0 0 1 ∗ 1
φ1 φ2 φ3 0 0
0 0 0 1 0

 = + det

 1 0 0 ρθ−1

0 1 0 0
0 0 1 1
φ1 φ2 φ3 0

 = −(φ3+φ1ρθ
−1)

C.3 Expressions for JFNL(W ) and JF ′NL(W )

The expression for ~FNL is provided in (4.45)

Based on (4.38) FNL has the form of

FNL(~w1, ~w2, . . . , ~wN) =
1

2



0
0
w2

2,1

0
0
w2

2,2

0
0
w2

2,3

· · ·
0
0

w2
2,N−1

0
0

w2
2,N



(C.22)

Let

∂i,j =
∂

∂wi,j
, (C.23)
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i = 1, 2, 3 and j = 1, . . . , N . Then define a differential operator D:

D = (∂1,1, ∂1,2, ∂1,3, ∂2,1, ∂2,2, ∂2,3, . . . , ∂N,1, ∂N,2, ∂N,3)

The jacobian of (C.22) can be calculated as

F ′NL =
1

2



D0
D0
Dw2

2,1

D0
D0
Dw2

2,2

D0
D0
Dw2

2,3

· · ·
D0
D0
Dw2

2,N−1

D0
D0
Dw2

2,N



=



0 0 0
0 0 0
0 w2,1 0

0 0 0
0 0 0
0 w2,2 0

. . .
0 0 0
0 0 0
0 w2,N 0


(C.24)

Let

B =

[
0 0 0
0 0 0
0 1 0

]
(C.25)

and O be the 3 × 3 zero matrix. Then after multiplying J given by (4.37) the

expression for the jacobian follows.

JF ′NL =

O O O O O O O
w2,1B −2w2,2B w2,3B O O O O

O w2,2B −2w2,3B w2,4B O O O
O O w2,3B −2w2,4B w2,5B O O

. . .
O O O O w2,N−2 −2w2,N−1 w2,N

O O O O O O O


(C.26)
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