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Abstract

In this thesis we do a comparative study of diffusive models with non-diffusive mod-

els, looking at the effect movements in the form of diffusion, have on the spreading

of infective diseases. This study is undertaken within the context of the SI and SIR

models, two of the most fundamental models for the propagation of infectious dis-

eases. The diffusive SI and SIR models are supplemented with no flux boundary

conditions to insure meaningful comparison of the populations predictions. In ad-

dition, we use a one dimensional spatial domain for computational simplicity. The

comparison of the SI (and SIR) model with its diffusive counterpart is carried out for

a broad spectrum of diffusivities. We identify their ranges of diffusivities for which

the predictions of the diffusive and non-diffusive model are in agreement. Interest-

ingly, we discovered that in the subcritical case, the diffusive SIR model predicts an

epidemic outbreak whereas the standard SIR model does not.

vii



Contents

List of Figures x

1 Introduction 1

2 Mathematical Modeling of Infectious Disease 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 SI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 SIR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Diffusive SI Model 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Numerical Solution Procedure . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Diffusive SI Model with Arbitrary Diffusivities . . . . . . . . . . . . . 31

4 Diffusive SIR Model 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



Contents

4.2 Diffusive SIR Model with Equal and Non-Equal Diffusivities with s0 > c 52

4.3 Diffusive SIR Model with Equal and Non-Equal Diffusivities with s0 < c 66

5 Conclusion 80

References 83

ix



List of Figures

2.1 Plot of the SI epidemic system. It has a population size of N0 = 1

with S0 = 0.99 and I0 = 0.01. The curves indicate the change in

population levels for each class. As time increases, all the individuals

in the population will become infected . . . . . . . . . . . . . . . . . 11

2.2 Phase plane diagram for the reduced SIR system showing several

solution trajectories for c = 0.5. Notice all the orbits take a maximum

value of I at S = c = 0.5. Also notice that the equilibrium points

(S∗, 0) on the S-axis are stable if S∗ < c = 0.5 and unstable if S∗ >

c = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Plots of the solution of the SIR system exemplifying the role of the

critical parameter c (c = 0.5) in the outbreak of an epidemic. Top

figure: S0 = 0.99, I0 = 0.01, and R0 = 0 so that (S0 > c). There

is an epidemic outbreak with the maximum of infected individuals

at about t = 10. Bottom figure: S0 = 0.4, I0 = 0.6, and R0 =

0 so that (S0 < c). The number of infected individuals decreases

monotonically to zero and there is no epidemic outbreak. . . . . . . 18

x



List of Figures

3.1 Plot of the Normalized Gaussian centered at x = 1/2 given by

Eq.(3.1.31), taken between the interval [0.4,0.6] to show its high con-

centration. The function g(x) is concentrated almost entirely around

the center point. The total area of g(x) over the interval 0 ≤ x ≤ 1

is
∫ 1

0
g(x) dx = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Solution of the Diffusive SI model with ds = 0.1 and di = 1 (regime I:

strong I-diffusion). Both populations s(x, t), i(x, t) become spatially

homogeneous after a very short adjustment time. . . . . . . . . . . . 35

3.3 Comparison of the totals for the susceptible (S) and infected (I) indi-

viduals from the diffusive SI system with ds = 0.1 and di = 1 (strong

I-diffusion regime). Both solutions are in close agreement, with S(t),

I(t) from the diffusive model slightly lagging in time. . . . . . . . . 36

3.4 Solution of the Diffusive SI model with ds = di = 0.001 (regime II:

weak SI-diffusion). Both populations s(x, t) and i(x, t) show spatially

inhomogeneities up to the equilibration time. . . . . . . . . . . . . . 38

3.5 Comparison of the totals for the susceptible (S) and infected (I) indi-

viduals from the diffusive SI epidemic system when ds = di = 0.001

(weak SI-diffusion regime) with the solution of the SI model (S0 =

0.99, I0 = 0.01). The solution of the diffusive SI model lags consid-

erably in time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Solution of the Diffusive SI model with ds = 1 and di = 0.001 (regime

III: weak I-diffusion and strong S-diffusion). For the populations,

s(x, t) becomes spatially homogeneous after a very short time ad-

justment and i(x, t) shows spatial inhomogeneities. . . . . . . . . . . 41

xi



List of Figures

3.7 Comparison of the totals for the susceptible (S) and infected (I) in-

dividuals from the diffusive SI system when ds = 1 and di = 0.001

(weak I-diffusion and strong S-diffusion regime) with the solution of

the SI model (S0 = 0.99, I0 = 0.01). In this case the solution of the

diffusive SI model is slightly lagging in time. . . . . . . . . . . . . . 42

4.1 Plot of the Normalized Gaussians centered at x = 1/2 given by

Eqs.(4.3.31-32). The function g1(x) is centered around x = 1/2 and

concentrated around this point. The function g2(x) is concentrated

almost entirely around x = 1/2. . . . . . . . . . . . . . . . . . . . . 51

4.2 Solution of the Diffusive SIR model with ds = dr = 1 and di =

0.1 (regime I: strong SIR-diffusion). For the populations, s(x, t),

i(x, t) and r(x, t) become spatially homogeneous after a very short

adjustment time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Comparison of the totals for the susceptible (S), infected (I) and

recovered (R) individuals from the diffusive SIR system when ds =

dr = 1 and di = 0.1 (strong SIR-diffusion regime) with the solution

of the SIR model (S0 = 0.99, I0 = 0.01 and R0=0) with c = 0.5. In

this case no time lag in the solution of the diffusive SIR model. . . . 56

4.4 Solution of the Diffusive SIR model with ds = dr = 0.001 and di = 1

(regime II: strong I-diffusion and weak SR-diffusion). For the popula-

tions, s(x, t) and r(x, t) show spatial inhomogeneity until equilibrium

is reached, i(x, t) becomes spatially homogeneous after a very short

adjustment time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xii



List of Figures

4.5 Comparison of the totals for the susceptible (S), infected (I) and

recovered (R) individuals from the diffusive SIR epidemic system

when ds = dr = 0.001 and di = 1 (strong I-diffusion and weak SR-

diffusion regime) with the solution of the SIR model (S0 = 0.99,

I0 = 0.01 and R0 = 0). The solution of the diffusive SIR model

equilibrates at the same rate. . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Solution of the Diffusive SIR model with ds = dr = 1 and di =

0.001 (regime III: weak I-diffusion and strong SR-diffusion). For the

populations, s(x, t) and r(x, t) become spatially homogeneous after a

very short adjustment time and i(x, t) shows spatial inhomogeneity

until equilibrium is reached. . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Comparison of the totals for the susceptible (S), infected (I) and

recovered (R) individuals from the diffusive SIR epidemic system

when ds = dr = 1 and di = 0.001 (weak I-diffusion and strong SR-

diffusion regime) with the solution of the SIR model (S0 = 0.99,

I0 = 0.01 and R0 = 0). The solution of the diffusive SIR model

equilibrates at the same rate. . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Solution of the Diffusive SIR model with ds = dr = 0.01 and di =

0.001 (regime IV: weak SIR-diffusion). For the populations, s(x, t),

i(x, t) and r(x, t) show spatial inhomogeneities until the equilibrium

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Comparison of the totals for the susceptible (S), infected (I) and

recovered (R) individuals from the diffusive SIR epidemic system

when ds = dr = 0.01 and di = 0.001 (weak SIR-diffusion regime) with

the solution of the SIR model (S0 = 0.99, I0 = 0.01 and R0 = 0).

The solution of the diffusive SIR model equilibrates at a faster rate. 65

xiii



List of Figures

4.10 Solution of the Diffusive SIR model with ds = dr = 1 and di =

0.1 (regime I: strong SIR-diffusion). For the populations, s(x, t),

i(x, t) and r(x, t) become spatially homogeneous after a very short

adjustment time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.11 Comparison of the totals for the susceptible (S), infected (I) and

recovered (R) individuals from the diffusive SIR epidemic system

when ds = dr = 1 and di = 0.1 (strong SIR-diffusion regime) with

the solution of the SIR model (S0 = 0.4, I0 = 0.6 and R0 = 0). The

solution of the diffusive SIR model equilibrates at the same rate. . . 70

4.12 Solution of the Diffusive SIR model with ds = dr = 0.001 and di = 1

(regime II: strong I-diffusion and weak SR-diffusion). For the popula-

tions, s(x, t) and r(x, t) show spatial inhomogeneity until equilibrium

is reached, i(x, t) becomes spatially homogeneous after a very short

adjustment time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.13 Comparison of the totals for the susceptible (S), infected (I) and

recovered (R) individuals from the diffusive SIR epidemic system

when ds = dr = 0.001 and di = 1 (strong I-diffusion and weak

SR-diffusion regime) with the solution of the SIR model (S0 = 0.4,

I0 = 0.6 and R0 = 0). The solution of the diffusive SIR model

equilibrates at the same rate. . . . . . . . . . . . . . . . . . . . . . . 73

4.14 Solution of the Diffusive SIR model with ds = dr = 1 and di =

0.001 (regime III: weak I-diffusion and strong SR-diffusion). For the

populations, s(x, t) and r(x, t) become spatially homogeneous after a

very short adjustment time and i(x, t) shows spatial inhomogeneity

until equilibrium is reached. . . . . . . . . . . . . . . . . . . . . . . . 75

xiv



List of Figures

4.15 Comparison of the totals for the susceptible (S), infected (I) and

recovered (R) individuals from the diffusive SIR epidemic system

when ds = dr = 1 and di = 0.001 (weak I-diffusion and strong

SR-diffusion regime) with the solution of the SIR model (S0 = 0.4,

I0 = 0.6 and R0 = 0). The solution of the diffusive SIR model

equilibrates at the same rate. . . . . . . . . . . . . . . . . . . . . . . 76

4.16 Solution of the Diffusive SIR model with ds = dr = 0.001 and di =

0.01 (regime III: weak SIR-diffusion). For the populations, s(x, t),

i(x, t) and r(x, t) show spatial inhomogeneities until the equilibrium

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.17 Comparison of the totals for the susceptible (S), infected (I) and

recovered (R) individuals from the diffusive SIR epidemic system

when ds = dr = 0.001 and di = 0.01 (weak SIR-diffusion regime)

with the solution of the SIR model (S0 = 0.4, I0 = 0.6 and R0 = 0).

The solution of the diffusive SIR model equilibrates at a faster rate. 79

xv



Chapter 1

Introduction

In this thesis we undertake a mathematical study of two of the most fundamental

models for the development and the spread of infectious diseases and the outbreak

of epidemics. These models include the SI model and the SI model with diffusion

and the SIR model and the SIR model with diffusion. These models get their name

from the individuals that make up the population in which said epidemic is taking

place, that is, these individuals are broken down into three types of individuals:

Susceptible (S), Infected (I), and Recovered (R) with the last individual obviously

not appearing in the SI model. The defining difference between the models without

and with diffusion is the capability of individuals in the latter models to move in

space which we will limit to one space dimension and no flux boundary conditions

to insure proper comparison of the population predictions of the diffusive versus

the non-diffusive model. Because of the simplifying assumption always present in

the formulation of mathematical models, the epidemics that develop within these

models, do so in a controlled environment, with specific restrictions dictating their

behavior. In particular, we do not account for birth and death rates and other

natural occurrences. In spite of these simplifications, these models are basic for

understanding the propagation of epidemics in space and their growth in time.
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Chapter 1. Introduction

We begin in Chapter 2 with the SI model and the famous Kermack-McKendrick

model, also known as the SIR model. We do a thorough analysis of both models

beginning with the simpler SI model and then moving onto the more difficult SIR

model. In context with the SI model, the SIR model admits a critical parameter

(called c) so that only for non-dimensional initial data about c there is an epidemic

outbreak. We first detail how each model is derived and then look at a criterion for

the development of an epidemic in each model. When possible we provide detailed

analytical solution for these models and otherwise we produce accurate numerical

solutions to explain their qualitative behavior.

In Chapter 3 we look at the SI model with diffusion. First we construct the

diffusive SI model by adding Fickian (Fourier) diffusion to both the infected and

susceptible populations. After discussing a few basic properties of the solutions we

proceed to a detailed numerical study of the solutions over a wide range of diffusivities

for the infected and susceptible populations. These numerical solutions permit a

quantitative comparison of the predictions of the SI versus the diffusive SI model

and to assess when their predictions are close or disparate.

In Chapter 4 we carry out a similar analysis for the diffusive SIR model. Unlike

the former SI model with diffusion, we have additional effects from the recovered

individuals. Once more we study the numerical solutions for a broad range of diffu-

sivities for the susceptible, infected and recovered populations and under subcritical

and supercritical initial conditions. Because of the potentially enormous number of

numerical experiments involved, we make the simplifying, yet reasonable assumption

that diffusivities of the susceptible and the recovered are the same. Again, the predic-

tions of the SIR and the diffusive SIR model are close or not. Also, very interestingly

from the qualitative and quantitative sides is the discovery that for the subcritical

case, the diffusive SIR model predicts an epidemic outbreak but the standard SIR

model does not.

2



Chapter 1. Introduction

Finally, in Chapter 5 we end with a summary and the most significant conclusions

in this thesis.
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Chapter 2

Mathematical Modeling of

Infectious Disease

2.1 Introduction

Throughout history the spreading of infectious diseases has had devastating effects

on humans as well as animal populations. In some cases the rapid spread of infec-

tious diseases result in epidemics or even pandemics, and they are responsible for

the deaths of millions of people over vast areas of the earth. Examples of such in-

fectious diseases include the European Plague or Black Death, small pox, influenza,

HIV/AIDS, avian flu, and the swine flu. Possibly the earliest and most catastrophic

epidemic ever recorded was the Black Death of the 14th century which resulted in

the estimated deaths of one third of a population of Europe, at the time about eighty

five million people. To put this into perspective, it caused more deaths than those in

World War I and II combined. The plague was transmitted by the fleas of black rats

to humans and then to other humans. The plague flourished because it developed in

an environment that had extremely poor and unsanitary living conditions and also
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Chapter 2. Mathematical Modeling of Infectious Disease

because most individuals believed that the epidemic was attributed to evil spirits

or a vengeful God, and therefore many thought that prayer alone would save them.

Consequently, their lack of a fundamental understanding as to how infectious diseases

are transmitted led to the massive number of deaths seen. Of course this was not the

only deadly epidemic observed. One would be remiss not to also mention the whole

host of infectious diseases, influenza and smallpox just to name a few, unleashed on

unsuspecting native inhabitants during the conquest of the so called ”New World”,

who were not previously exposed to these diseases, which resulted in the deaths of

millions of native americans. These diseases where spread by human contact, most

notably by coughing and sneezing near one another, or through physical contact,

i.e. a handshake from a person who had previously sneezed into their hands thereby

transferring the infection. It goes without saying that smallpox and influenza are

not limited to this particular region, it is also linked to millions of deaths around

the world at differing points in time. Moving onto a more recent infectious disease,

HIV/AIDS, has also led to millions of deaths throughout the world, with the largest

concentration of deaths being in Africa. Now, HIV/AIDS, is different in that the

human contact previously mentioned does not apply to how this disease is spread. It

is a sexually transmitted disease which means that the dynamics of its transmission

is different. Fortunately, advancements in medicine, technology, and in an overall

awareness of disease transmission, has meant that we have drastically cut down on

the number of potential deaths caused by infections. This is made evident by the

avian flu and swine flu pandemic, which at the time of this paper being written were

the most conspicuous diseases. Our current knowledge of the transmission, preven-

tion and treatment of infectious diseases has aided in stopping these diseases from

turning into full blown epidemics and as we know, leading to loss of human life on a

large scale. Epidemiological studies have produced several models and explanations

as to how epidemics occur and spread, with the objective of the studies being to

prevent or limit the impact of epidemics. As far back as 1760, the mathematician

5



Chapter 2. Mathematical Modeling of Infectious Disease

Daniel Bernoulli introduced one of the first mathematical models, which looked at

the spread of small pox [4]. After a long hiatus of more than 150 years, Kermack and

McKendrick did ground-breaking work in the mathematical analysis of the spread of

infectious diseases. In a series of papers [14] they introduced the so called SIR model

to study the plague epidemic that swept over Bombay in 1905-1906. An impor-

tant contribution in their work was the introduction of critical conditions to trigger

the epidemic. Work on the mathematical modeling of epidemics has continued ever

since and the 1980’s witnessed an explosion of activity in this area due partly to our

increased understanding of dynamical systems and Partial Differential Equations, to-

gether with advances in numerical computing and simulations. Examples of research

in the mathematical modeling of epidemics include the work of Heathcote and Yorke

[8] on the transmission of gonorrhea, Noble [23] and Raggett [24] on the spread of

the plague, Anderson et. al. [3] on the transmission dynamics of HIV and Anderson

et. al [1], Kállen et. al. [12], MacDonald [18], and Murray et. al. [21] on the spread

and control of rabies. The work in this field has expanded to a great extent and

comprehensive accounts have appeared in the influential works of Murray [19] [20],

the textbook of Edelstein-Keshet [5] and the monographs of Fife [6], Hoppensteadt

[10], [11], and MacDonald [18]

In this chapter we will look at the two most basic models for the transmission

of infectious diseases, namely the SI and SIR models. We study these models in

order to gain insight into the mechanisms that bring about the spread of infectious

diseases. These models have been helpful to describe how certain infectious diseases,

those mentioned beforehand, such as the Plague, HIV, AIDS, influenza and small

pox, spread as time progresses. The SIR model was introduced by Kermack and

McKendrick [14] in their seminal study on the transmission of the plague in the

Bombay epidemic of 1905-1906. Both the SIR model and the SI model are examples

of what is known as compartment models [5], [6], [19]. Specifically, the population

of individuals is separated into three class: the susceptible (S) who can contract

6



Chapter 2. Mathematical Modeling of Infectious Disease

the disease, the infected (I) who have contracted the disease and can spread it, and

the recovered or removed (R) who are either immune to the disease or isolated until

recovered. The main difference between the SIR and the SI model is that the latter

does not include the class of recovered individuals. In the remaining two sections of

this chapter we will describe the main features of the SI and the SIR models.

2.2 SI Model

Let us begin by describing how the SI model is constructed. We start with the

following assumption: The total population of individuals is divided into two classes,

the infected individuals (I) and the non-infected, but susceptible individuals (S).

At time t their respective amounts are S(t) and I(t). Now with S(t) and I(t)

representing the susceptible and infected classes respectively within the population,

and the total population which we will call N(t), is given as N(t) = S(t) + I(t), we

assume the following:

1. The basic mechanism of infections involves the interaction (by proximity) of the

infected (I) and the susceptible (S), where we assume an interaction reaction akin

to a chemical reaction of the type

S + I
a−→ I

and with a growth rate of I governed by the law of mass action, so that the increase of

the infective class is at a rate proportional to the number of infected and susceptible,

i.e. given by aSI where a > 0 is a constant parameter.

2. No other birth or death mechanism is assumed in the model (e.g. Malthusian or

logistic growth for S)

Using both of the assumptions stated above, we get the SI model for the propa-

7



Chapter 2. Mathematical Modeling of Infectious Disease

gation of an infectious disease

dS

dt
= −aSI

(2.2.1)

dI

dt
= aSI

with initial conditions

S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0. (2.2.2)

The fixed population is built into the model, so that when adding up the equations

in the system we obtain,

dN

dt
=

dS

dt
+

dI

dt
= −aSI + aSI = 0 (2.2.3)

so that

N(t) ≡ N(0) = N0 = S0 + I0 (2.2.4)

where N0 is a constant that represents the total population size. This is known as a

conserved quantity.

Now, this system of equations can be simplified, through non-dimensionalization

whereby we chose appropriate scales for the variable I, S, and t. Specifically, we

introduce the non-dimensional variables

Ĩ =
I

N0

, S̃ =
S

N0

, t̃ = a(N0)t (2.2.5)

where N0 = S0 + I0, and for the total population of this system, which we will label

as Ñ0, we have

Ñ0 =
S0

N0

+
I0

N0

= S̃0 + Ĩ0 = 1. (2.2.6)

8
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Now if we plug in these equations into Eq.(2.2.1) we have

a(N0)
2 dS̃

dt̃
= −a(N0)

2S̃Ĩ

(2.2.7)

a(N0)
2 dĨ

dt̃
= a(N0)

2S̃Ĩ.

Dividing each equation in the above system by a(N0)
2, and for simplicity dropping

the new tilde notation, we arrive at the non-dimensionalized SI model which is

dS

dt
= −SI

(2.2.8)

dI

dt
= SI

with initial conditions

S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0. (2.2.9)

and the total population being

N(t) ≡ N0 = S0 + I0 = 1. (2.2.10)

Notice that non-dimensionalizing the SI model, led to a change in how large we can

make the total population, in that the number of susceptible and infected individuals

is bounded by N0 in Eq.(2.2.8) so that it cannot exceed one.

Next we can use Eq.(2.2.4) and Eq.(2.2.8) to reduce the system of equations

Eq.(2.2.6), into a single equation for I. From Eqs.(2.2.4), (2.2.8) it follows that

S + I = N = N0 = 1 so that S = 1− I and the ODE for I in Eq.(2.2.6) reduces to

dI

dt
= (1− I)I, I(0) = I0 ≥ 0. (2.2.11)

9



Chapter 2. Mathematical Modeling of Infectious Disease

This ODE for I has two equilibrium points I = 0 and I = 1. A straightforward

linearized analysis shows that I = 0 is an unstable equilibrium and I = 1 is a stable

equilibrium. Moreover, this ordinary differential equation is the famous logistic equa-

tion of Verhulst [25]. Its solution is well-known and can be obtained by separation

of variables from which we get the following

I(t) =
I0

(1− I0) e−t + I0

(2.2.12)

and therefore

S(t) = 1− I(t) =
(1− I0)e

−t

(1− I0)e−t + I0

. (2.2.13)

With this formula it is clear to see that as t goes to infinity

lim
t→∞

I(t) = lim
t→∞

I0

(1− I0)e−t + I0

=
I0

I0

= 1 (2.2.14)

and

lim
t→∞

S(t) = lim
t→∞

(1− I0)e
−t

(1− I0)e−t + I0

= 0. (2.2.15)

This means that for the non-dimensionalized SI model, all individuals will become

infected as time goes to infinity.

If we revert back to the dimensional variable then the formulas for I(t) and S(t)

become

I(t) =
I0N0

a(N0 − I0) e−aN0t + I0

(2.2.16)

S(t) =
aN0(I0N0)e

−aN0t

a(N0 − I0) e−aN0t + I0

. (2.2.17)

In this case the limiting behavior of I(t) and S(t) as t goes to infinity becomes

lim
t→∞

I(t) = lim
I0N0

(N0 − I0)e−aN0t + I0

=
I0N0

I0

= N0 (2.2.18)

10
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and

lim
t→∞

S(t) = lim
t→∞

aN0(I0N0)e
−aN0t

a(N0 − I0) e−aN0t + I0

= 0. (2.2.19)

Thus the simple SI model predicts that eventually everyone will become infected,

no matter how small the initial value of the infected class is. This is shown graphically

in Fig 2.1 where we have N0 = 1 individuals for the total population, and an initial

susceptible and infected class that is, S0 = 0.99, I0 = 0.01
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Figure 2.1: Plot of the SI epidemic system. It has a population size of N0 = 1 with
S0 = 0.99 and I0 = 0.01. The curves indicate the change in population levels for each
class. As time increases, all the individuals in the population will become infected
.
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2.3 SIR Model

Next we look at the slightly more complicated SIR model. The main difference

between the SI model and the SIR model is the treatment of the infected class which

no longer stay infected but recover. Once again some assumptions must be made.

With S(t), I(t), and R(t) representing the number of individuals in the susceptible

(S), infected (I) and recovered (R) classes respectively, and with the total population

N(t) given as N(t) = S(t) + I(t) + R(t), we assume that:

1. The rate of growth of the recovered class is given by the reaction mechanism

S + I
a−→ I

b−→ R

and the reaction rates in each reaction given by the law of mass action. From the first

reaction it follows that the increase of the infected class is at a rate proportional to the

number of infected and susceptible, hence aSI where a > 0 is a constant parameter,

and is known as the infection rate. The susceptible are lost at the same rate. From

the second reaction it follows that the rate at which the infected class becomes part

of the recovered class is proportional to the number of infected individuals, bI where

b > 0 is a constant, and is known as the removal rate.

2. No other birth or death mechanism is assumed in the model (e.g. Malthusian or

logistic growth for S)

Using all the assumptions stated above, we get the SIR model, which is

dS

dt
= −aSI

dI

dt
= aSI − bI (2.3.1)

dR

dt
= bI

12
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with initial conditions

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, and R(0) = R0 = 0. (2.3.2)

This is known as the classic Kermack-McKendrick model [14]. The fixed population

is built into the model, and when adding the equations we get,

dN

dt
=

dS

dt
+

dI

dt
+

dR

dt
= −aSI + aSI − bI + bI = 0 (2.3.3)

so that

N(t) ≡ N(0) = N0 = S0 + I0 + R0 (2.3.4)

where N0 is the total size of population. It follows that S, I, R, are bounded by N0

from above and N is conserved.

Next we simplify Eq.(2.3.1) through non-dimensionalization of the system. To

do so we introduce the following non-dimensional variables

Ĩ =
I

N0

, S̃ =
S

N0

, R̃ =
R

N0

, t̃ = a(N0)t (2.3.5)

where N0 = S0 + I0 + R0. If we define Ñ(t) = S̃(t) + Ĩ(t) + R̃(t) then it follows from

Eq.(2.3.4) that

Ñ(t) =
N(t)

N0

≡ 1. (2.3.6)

Next we introduce the non-dimensional variables from Eq.(2.3.5) into Eq.(2.3.1)

a(N0)
2dS̃

dt̃
= −a(N0)

2S̃Ĩ

a(N0)
2dĨ

dt̃
= −a(N0)

2S̃Ĩ − bN0Ĩ (2.3.7)

a(N0)
2dR̃

dt̃
= −bN0Ĩ .

13
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Next we let c = (b/aN0), drop the tildes for notational simplicity, and then we arrive

at the non-dimensionalized SIR model which is

dS

dt
= −SI

dI

dt
= SI − cI (2.3.8)

dR

dt
= cI

with initial conditions

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, and R(0) = R0 = 0 (2.3.9)

and the total non-dimensional population being one

N(t) ≡ N0 = S0 + I0 + R0 = 1. (2.3.10)

It is interesting to note that if c = 0 we get back the SI model. Since c = (b/aN0)

then c is small when b is small compared to aN0. Under these conditions we could

expect the SIR model to be well approximated by the SI model, at least for S À c.

The SIR system in Eq.(2.3.8) is weakly coupled in the sense that the differential

equations for S, I do not involve R; knowledge of S and I suffice to determine R. For

this reason a complete understanding of the SIR model can be gained by studying

the reduced SIR system

dS

dt
= −SI

(2.3.11)

dI

dt
= (S − c)I

14



Chapter 2. Mathematical Modeling of Infectious Disease

with initial conditions

S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0. (2.3.12)

The reduced SIR system has a continuum of non-isolated equilibrium solutions given

by

S(t) ≡ S0 and I(t) ≡ 0 (2.3.13)

This set of equilibrium solutions describe the positive S-axis in the SI-plane. It is

also clear that a special solution of the reduced SIR system is given by

S(t) ≡ 0 and I(t) = I0e
−ct (2.3.14)

which describes a segment of the positive I-axis in the SI-plane. Since the positive

S-axis and the positive I-axis are composed of solutions of the reduced SIR system,

it follows that the first quadrant is an invariant region in the SI plane, that is, if

S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0 than S(t) ≥ 0 and I(t) ≥ 0 for all t ≥ 0.

In addition, if (F,G) = (−SI, (S− c)I) denotes the right hand side of Eq.(2.3.8),

then on the line S = c the vector field (F, G) assumes the value

(F,G) = (−cI, 0) (2.3.15)

which points into the strip 0 ≤ S ≤ c, 0 ≤ I < ∞. This is enough to guarantee that

the strip 0 ≤ S ≤ c, 0 ≤ I < ∞ is also an invariant region: if S(0) = S0 ≤ c and

I(0) = I0 ≥ 0 then 0 ≤ S(t) ≤ c and 0 ≤ I(t) < ∞ for 0 ≤ t < ∞.

Using this information we can describe qualitatively what is an epidemic in the

context of the SIR model. We can say that there is an epidemic outbreak if there

is a T∗ > 0 so that I(t) > I0 for 0 ≤ t ≤ T∗. Clearly if 0 ≤ I0 < ∞ and 0 ≤ S0 ≤ c,

then 0 ≤ I(t) < ∞ and 0 ≤ S(t) ≤ c for all 0 ≤ t < ∞, but on virtue of the fact that

dI

dt
= (S − c)I ≤ 0 (2.3.16)

15
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it follows that 0 ≤ I(t) ≤ I0 for all 0 ≤ t < ∞. In other words, if S0 ≤ c then there

is no epidemic outbreak in the SIR model. On the other hand if 0 < I0 < ∞ and

c < S0 < ∞ then we have

dI

dt

∣∣∣∣
t=0

= (S − c)I

∣∣∣∣
t=0

= (S0 − c)I0 > 0 (2.3.17)

and at least for a small time interval 0 ≤ t ≤ T∗ we have

I(t) > I(0) = I0. (2.3.18)

In other words, if c < S0 < ∞ then there is an epidemic outbreak in the SIR model.

By eliminating t in the reduced SIR system in Eq.(2.3.16) it follows that the

orbits are described by the curves

dI

dS
=

c− S

S
(2.3.19)

with solution

I = c ln s− s + d (2.3.20)

with d as an arbitrary constant. It follow from Eq.(2.3.19) that

dI

dS
= 0 iff S = c

dI

dS
> 0 iff 0 < S < c (2.3.21)

dI

dS
< 0 iff c < S < ∞.

Therefore the orbit described by Eq.(2.3.20) crosses the S-axis at two equilibrium

points (S1, 0), (S2, 0) with 0 < S1 < c < S2, I(S) is increasing on S1 ≤ S ≤ c,

has a maximum at S = c, and it is decreasing on c ≤ S ≤ S2, compare with Fig
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2.2. Moreover, since S ′(t) = −SI < 0 then S(t) decreases in time and the orbits

described by Eq.(2.3.20) are traversed from right to left, starting at (S2, 0) and ending

at (S1, 0). From here it follows that all the equilibrium points (S1, 0) with 0 ≤ S1 < c

are stable and all of the equilibrium points (S2, 0) with c < S2 < ∞ are unstable.

This is clearly illustrated in the phase plane portrait of the reduced SIR system

depicted in Fig 2.2.

Finally, Fig 2.3 depicts two representative solutions of the SIR model for the value

c = 0.5. The top figure displays a typical solution with S(0) = S0 > c, in which

case there is an epidemic outbreak as clearly displayed by the initial increase of the

infected population I(t). On the other hand, the bottom figure displays a typical

solution with S(0) = S0 < c. In this case the infected population I(t) decreases

monotonically to zero and there is no epidemic outbreak of the SIR system.

S ’ = − S I    
I ’ = S I − c I

c = .5
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Figure 2.2: Phase plane diagram for the reduced SIR system showing several solution
trajectories for c = 0.5. Notice all the orbits take a maximum value of I at S =
c = 0.5. Also notice that the equilibrium points (S∗, 0) on the S-axis are stable if
S∗ < c = 0.5 and unstable if S∗ > c = 0.5
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Figure 2.3: Plots of the solution of the SIR system exemplifying the role of the
critical parameter c (c = 0.5) in the outbreak of an epidemic. Top figure: S0 = 0.99,
I0 = 0.01, and R0 = 0 so that (S0 > c). There is an epidemic outbreak with
the maximum of infected individuals at about t = 10. Bottom figure: S0 = 0.4,
I0 = 0.6, and R0 = 0 so that (S0 < c). The number of infected individuals decreases
monotonically to zero and there is no epidemic outbreak.
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Chapter 3

Diffusive SI Model

3.1 Introduction

It is a fact that the spread of infectious diseases is effected by the spatial displacement

of populations so that a practical model of the spread of infectious diseases should

incorporate the effects. These spatial displacements can occur either naturally, being

that species have a proneness for movement or due to the disease itself, with indi-

viduals wanting to move away from infected areas and hopefully avoid the infection.

Now we must consider how we want to model the spread of the population. The use

of diffusion is the simplest mechanism used to model the spread of the population.

It follows that the system of ordinary differential equations coupled with this diffu-

sion leads naturally to a system of partial differential equations and to the so-called

reaction diffusion equations for the study of the spatial spread of infectious diseases.

Examples of the case of reaction-diffusion equations to model spatial spreading of

infectious diseases can be seen in many epidemiological and ecological contexts. For

example, the study of the spread of rabies within a population of foxes as given by

Anderson et al [1], Källén et al [12], Murray et al [19], in which the following diffusive
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SI model, which was introduced by Källén [12], is used

st = −is (3.1.1)

it = ixx + is− λi

where s denotes the density of the susceptible foxes and i the density of the infected

foxes. With this model the infected foxes disperse while the susceptible foxes do not

disperse. We also include in this model for the infected individuals built in mortality

rate, that is, a decrease to the infected fox population. Murray [21] expanded on the

model given by Eq.(3.1.1) by introducing simple logistic growth which represents the

foxes reproduction in which we get the following model

st = −is + bs(1− s) (3.1.2)

it = ixx + is− λi.

The diffusive SI model can also be applied to the European Plague or Black

Death of the 14th century and was done so by Murray [20],[21]. With the Black

Death it was common place for individuals to move or disperse from an area where

the infectious disease was flourishing to a location not previously exposed to the

disease, with the goal being to avoid the infection and this would ultimately lead to

limiting the effect of the epidemic so that it would be contained or confined to that

particular area. However, with the European plague there was an incubation period

meaning that symptoms did not show up for some amount of time and unfortunately

this meant that infected as well as susceptible individuals relocated which obviously

attributed to the infectious disease being introduced into new areas or populations

not previously subjected to the disease and therefore helped in creating massive

epidemic with millions of individuals dying. Now, modeling this includes adding

the susceptible diffusion previously mentioned and having equal diffusivities for the
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susceptible and infected individuals in Eq.(3.1.1), and from this we have the following

diffusive SI model given by Murray [21]

st = sxx − is (3.1.3)

it = ixx + is− λi.

Here, we want to focus attention on the diffusive SI model

st = Ds sxx − asi (3.1.4)

it = Di ixx + asi,

which is a special case of the general reaction diffusion system

st = Ds sxx + f(s, i) (3.1.5)

it = Di ixx + g(s, i).

For example, Eq.(3.1.1) with λ = 0 compares to Eq.(3.1.4) with a = 1, Ds = 0 and

Di = 1, Eq.(3.1.2) with λ = 0 and b = 0 also compares to Eq.(3.1.4) with a = 1,

Ds = 0 and Di = 1 and finally Eq.(3.1.3) with λ = 0 relates to Eq.(3.1.4) with a = 1,

Ds = 1 and Di = 1.

With this diffusive model we have combined the ordinary differential equations

that made up the SI system seen in Chapter 2 with the simple diffusion and this gave

us the system of partial differential equations in Eq.(3.1.4). Now, a problem that is

associated with these type of diffusive SI models is the existence of traveling waves

in an infinite domain, i.e. solutions to the diffusive models of the form

s(x, t) = s(x− ct) (3.1.6)

i(x, t) = i(x− ct)
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where c is the speed of propagation of the wave. Extensive studies have been done

on traveling waves including the propagation of the plague with context to the SI

model with diffusion, Noble [23], and the spread of rabies among foxes, MacDonald

[18].

If we have Ds = Di = D and also s + i ≡ N0 in Eq.(3.1.4) then the associated

traveling waves are given as the simpler Fisher equation

it = D ixx + a(N0 − i)i (3.1.7)

which has been studied in great detail in the pioneer works of Fisher [6] and Kol-

mogoroff et al. [17]. These studies revealed the existence of traveling waves for any

speed c that is bigger than some minimal speed c∗ such that

c ≥ c∗ = 2
√

DaN0. (3.1.8)

In more recent work Murray [21] investigated the spread of the European plague

within the context of a traveling wave for the reaction-diffusion system in Eq.(3.1.3).

In this work, Murray showed that traveling waves exist for any speed c larger then

the minimal speed c∗ given by

c ≥ c∗ = 2
√

1− λ with λ < 1. (3.1.9)

It was also shown by Murray [21] that for λ > 1 that there is no traveling wave and

so for there to be propagation of an epidemic, λ < 1, yielding a threshold criterion.

In the same work, Murray was able to estimate the speed propagation, V , of the

Black Plague to be approximately

V ≈ 140 miles/year. (3.1.10)

Traveling waves for reaction diffusion equations have been extensively studied and

excellent expositions can found in Fife [6], Hoppensteadt [10], [11], and Murray [19],

[20].
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In the present chapter we will concentrate instead on the diffusive SI model on a

bounded domain, rather than a infinite domain

st = Ds sxx − asi (3.1.11)

it = Di ixx + asi

with 0 ≤ x ≤ L and 0 < t < ∞. Here s = s(x, t) and i = i(x, t) represent the density

of the susceptible and infected class per unit length respectively, also Ds and Di are

the the diffusion coefficients for the susceptible and infected class in that order so

that each class can diffuse with either equal or non-equal diffusivities, and a denotes

the virulence strength of the disease.

This system is supplemented with Neumann (no flux) boundary conditions at both

end points x = 0, L

sx(0, t) = 0 and sx(L, t) = 0 (3.1.12)

ix(0, t) = 0 and ix(L, t) = 0

and with initial conditions

s(x, 0) = s0(x) ≥ 0 and i(x, 0) = i0(x) ≥ 0. (3.1.13)

Associated with the densities s(x, t) and i(x, t) are the total number of susceptible

S(t), the total number of infected I(t) and the total number of individuals that make

up the population N(t), defined by

S(t) =

∫ L

0

s(x, t) dx

I(t) =

∫ L

0

i(x, t) dx (3.1.14)

N(t) = S(t) + I(t).
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From Eq.(3.1.11) we can prove that N(t) is a conserved quantity, i.e. N(t) ≡ N(0) =

N0 = S0 + I0. In fact, if we differentiate N(t) in Eq.(3.1.13) with respect to t, we get

dN

dt
=

dS

dt
+

dI

dt

=

∫ L

0

st dx +

∫ L

0

it dx

=

∫ L

0

(Ds sxx − asi) dx +

∫ L

0

(Di ixx + asi) dx

= Ds sx

∣∣∣∣
L

0

+ Di ix

∣∣∣∣
L

0

−
∫ L

0

asi dx +

∫ L

0

asi dx

= 0,

where we utilized the Neumann boundary conditions, Eq.(3.1.11), to evaluate the

boundary contributions at the end points x = 0, L. Since N(t) does not change in

time we conclude that N(t) is conserved for all times,

N(t) ≡ N(0) = N0 = S0 + I0, (3.1.15)

where N0 is the total initial population. In particular, it follows that S and I are

bounded above by N0.

It is interesting to observe that if the initial data is homogenous in space, s(x, 0) =

s0, i(x, 0) = i0, then the diffusive SI model admits a spatially homogeneous solution

s(x, t) = s(t) and i(x, t) = i(t). Moreover, in this case the integrated values of s(t)

and i(t) in Eq.(3.1.5) become

S(t) = Ls(t) (3.1.16)

I(t) = Li(t) (3.1.17)
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and they satisfy the SI ODE system studied in Chapter 2, namely

dS

dt
= −αSI, S(0) = Ls0

(3.1.18)

dI

dt
= αSI, I(0) = Li0

with α = a/L.

Next we simplify Eq.(3.2.1) by non-dimensionalization of the system. To do so

we introduce the non-dimensional variables

s̃ =
sL

N0

, ĩ =
iL

N0

, t̃ =
aN0 t

L
, x̃ =

x

L
(3.1.19)

where N0 = S0 + I0. If we define

S̃(t) =
S(t)

N0

, Ĩ(t) =
I(t)

N0

, Ñ(t) =
N(t)

N0

(3.1.20)

where S(t), I(t), and N(t) are given in Eq.(3.2.5), then it follows from Eq.(3.2.6)

that

Ñ(t) =
N(t)

N0

≡ 1. (3.1.21)

Next we introduce the non-dimensional variables for Eq.(3.2.7) into Eq.(3.2.1)

a

(
N0

L

)2
∂s̃

∂t̃
= Ds

N0

L3

∂2s̃

∂x̃2
− a

(
N0

L

)2

s̃̃i

(3.1.22)

a

(
N0

L

)2
∂ĩ

∂t̃
= Di

N0

L3

∂2ĩ

∂x̃2
+ a

(
N0

L

)2

s̃̃i.

Now we drop the tildes for notational simplicity, and then we arrive at the non-

dimensionalized SI model

st = ds sxx − si (3.1.23)

it = di ixx + si
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where ds = (Ds/aN0L) and di = (Di/aN0L) are the non-dimensional diffusivities

and with initial data given by with initial conditions

s(x, 0) = s0(x) ≥ 0 and i(x, 0) = i0(x) ≥ 0 (3.1.24)

with 0 ≤ x ≤ 1 and with Neumann boundary conditions

sx(x, t)|x=0,1 = 0 (3.1.25)

ix(x, t)|x=0,1 = 0.

Again we remark that in accordance with Eq.(3.1.15), N(t) is constant, and the total

population has been normalized to the value one

N(t) = N0 = S0 + I0 =

∫ 1

0

s(x, 0) dx +

∫ 1

0

i(x, 0) dx ≡ 1. (3.1.26)

In the next section we are going to study the diffusive SI system, Eqs.(3.2.10-12)

for the cases of equal (ds = di) and different (ds 6= di) diffusivities. For this study

it seems natural to chose spatially homogeneous initial data s0 for the susceptible

s(x, t),

s(x, 0) = s0, 0 ≤ x ≤ 1 (3.1.27)

and a normalized gaussian centered at x = 1/2 for the infected i(x, t) (to represent

a focus of infection)

i(x, 0) = i0
e−σ(x−1/2)2

∫ 1

0

e−σ(x−1/2)2 dx

= i0 g(x) with σ = 10, 000. (3.1.28)

In all the calculations below we will use the values i0 = 0.01 (1% infected population)

and s0 = 0.99 (99% susceptible population) for the initial values. Notice that for

this large value of σ the Gaussian is highly concentrated about x = 1/2, with the

area A over the interval 0 ≤ x ≤ 1,

A =

∫ 1

0

e−σ(x−1/2)2 dx =

∫ 1

0

e−10,000(x−1/2)2 dx ∼= 0.0174565 (3.1.29)
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accounting for almost all of the total area of the Gaussian

∫ ∞

−∞
e−σ(x−1/2)2 dx =

√
π

σ
=

√
π

10, 000
∼= 0.0177245 (3.1.30)

so that the difference is negligible

∫ ∞

−∞
e−10,000(x−1/2)2 dx−

∫ 1

0

e−10,000(x−1/2)2 dx = 0.00027.

A plot of the normalized Gaussian

g(x) =
e−σ(x−1/2)2

∫ 1

0

e−σ(x−1/2)2 dx

(3.1.31)

for σ = 10, 000 is given in Fig.(3.1). Notice that the Gaussian is highly peaked, in

effect an approximation of the Dirac delta function, so that the infected population

is almost exclusively concentrated at x = 1/2 initially.

0.4 0.5 0.6
0

10

20

30

40

50

60
Centralized Gaussian

x

g(
x)

Figure 3.1: Plot of the Normalized Gaussian centered at x = 1/2 given by Eq.(3.1.31),
taken between the interval [0.4,0.6] to show its high concentration. The function g(x)
is concentrated almost entirely around the center point. The total area of g(x) over

the interval 0 ≤ x ≤ 1 is
∫ 1

0
g(x) dx = 1
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3.2 Numerical Solution Procedure

In the next two sections we will study the diffusive SI system, Eq.(3.1.10-12) with spe-

cial initial data given by Eqns.(3.1.27, 3.1.28), and particular attention will be given

to consider the situations with equal and different diffusivities. The diffusive SI sys-

tem is solved numerically with the PDE package pdepe, which solves parabolic/elliptic

partial differential equations in MATLAB. The package implements an adaptive fi-

nite element method and is well suited for the solution of reaction-diffusion equations.

Next we describe briefly how we used the PDE package pdepe to solve numerically

the diffusive SI system (and the diffusive SIR system in the next chapter).

The MATLAB package pdepe solves parabolic and elliptic partial differential

equations in one space dimension x and time t, of the form

c(x, t, ux)
∂u

∂t
= x−m ∂

∂x
(xmf(x, t, u, ux)) + g(x, t, u, ux) (3.2.1)

where u(x, t) is a vector function with n components (with n = 2 for the SI model

whereas n = 3 for the SIR model). The vector function f(x, t, u, ux) represents

a generalization of Fourier’s law for the heat flux and can incorporate heat fluxes

K(u)ux, and spatio-temporal inhomogeneities through variations in (x, t). The vector

function g(x, t, u, ux) can incorporate reaction, advection, and inhomogeneities where

a ≤ x ≤ b and t0 < t < tf . The integer m can be equal to 0, 1, 2, which translates to

slab, cylindrical or spherical symmetry, respectively. For the interval a ≤ x ≤ b and

initial time t = t0, the solution must satisfy u(x, t0) = u0(x). At the boundary x = a

or x = b, for t0 < t < tf , the solution components satisfy a boundary condition of

the form

p(x, t, u) + q(x, t)f(x, t, ux) = 0. (3.2.2)

These are rather general boundary conditions that include both Dirichlet bound-

ary conditions (p(x, t, u) = u, q(x, t) = 0) and Neumann boundary conditions
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(p(x, t, u) = 0, q(x, t) = 1, f(x, t, u) = D ux). For the diffusive SI system given

to us in Eq.(3.1.13), we have two equations so we need to write the diffusive SI

system in the following form and in a way that pdepe can understand

 1 0

0 1


× ∂

∂t


 s

i


 =

∂

∂x




∂s
∂x

∂i
∂x


 +


 −si

si


 , (3.2.3)

and so for Eq.(3.2.1) we assign the following values for m, c, f , and g in the diffusive

SI system

m = 0 (3.2.4)

c(x, t, u, ux) =


 1

1




f(x, t, u, ux) =


 sx

ix




g(x, t, u, ux) =


 −si

si


 .

The boundary conditions for the diffusive SI system which are the Neumann bound-

ary conditions given by Eq.(3.1.12) with L = 1 are set up in pdepe in the following

fashion

p(0, t, u) =


 0

0




q(0, t) =


 1

1




p(1, t, u) =


 0

0




q(1, t) =


 1

1


 .
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Now, part of pdepe’s argument list is the vector xmesh which is a set of points in

the interval a ≤ x ≤ b such that xmesh(1) = a and xmesh(end) = b and where

xmesh(i) < xmesh(i + 1). This specifies the values for x at which the numerical

solution is computed. For our system, we have a = 0 and b = 1 and with the

interval 0 ≤ x ≤ 1 consisting of one hundred points in space. The vector tspan

defines the points in time within the interval t0 < t < tf where the solution is to be

presented, with tspan(1) = t0, tspan(end) = tf , and tspan(i) < tspan(i + 1). For

us, t0 = 0 and tf may vary but with one hundred time steps for all values between

0 < t < tf . We create individual functions in MATLAB for the initial conditions,

boundary conditions, and the equations that make up the diffusive SI system. We

then create an all encompassing function that calls all of these separate functions

and uses pdepe, at which point we are provided with solutions to the equations which

we will call sol. Now, the output argument sol is a 3-D array such that sol(j, k, i)

is the approximation to the ith component of u at the point t = tspan(j) and

x = xmesh(k). Putting all this together we obtain numerical solutions to describe

the behavior of the infected and susceptible individuals over the space x and time t.

In order to assess the role of diffusion in the propagation of the epidemic we

need to compare the solution of the diffusive SI model versus the solution of the SI

system. For this purpose we need to compute the total populations of susceptible

and infected individuals, S(t), I(t), given by Eq.(3.1.14) with L = 1.

S(t) =

∫ 1

0

s(x, t) dx

(3.2.5)

I(t) =

∫ 1

0

i(x, t) dx

and compare them with the corresponding values S(t), I(t) obtained for the SI system

in Chapter 2. The calculation of the integrals in Eq.(3.2.5) is done in MATLAB using

the built in function trapz, which yields a numerical approximation of the integrals
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through the use of the trapezoidal rule. By applying trapz at the predetermined

times given by tspan we obtain the time evolution of the population totals S(t) and

I(t) of the diffusive SI model that are needed for comparison with the SI system.

3.3 Diffusive SI Model with Arbitrary Diffusivi-

ties

In this section we concern ourselves with the actions of the susceptible and infected

individuals that exist within the diffusive SI system with arbitrary diffusivities and

ultimately, we want to compare and contrast this PDE system with the ODE SI

system of Chapter 2 by assessing the effects arising from the introduction of diffusion.

The diffusivities are given as ds for the susceptibles and di for the infectives. For all

numerical experiments we have s0 = 0.99 (99% susceptible population) and i0 = 0.01

(1% infected population). We consider the diffusion coefficients with values di, ds =

0, 10−3, 10−2, 10−1, 100, 101 spanning five orders of magnitude in parameter space,

and including the ranges of strong and weak diffusivities for both the susceptible and

infected populations. Here we identified three regions in parameter space, regimes

for short, so that all the solutions in the given regime display similar behavior which

we will discuss shortly.

To study the effect that diffusion has on the evolution and spread of the infectious

disease we will compare the total populations S(t) and I(t) of susceptible and infected

individuals in the diffusive SI model with the corresponding values predicted by the

SI equations. At this point an observation on the mathematical meaning of this

comparison is in order. If we integrate in space the diffusive SI system, Eq.(3.3.1) and
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apply the Neumann boundary conditions, we obtain the integro-differential equations

dS

dt
= −si S(0) = s0

(3.3.1)

dI

dt
= si I(0) = i0

where si =
∫ 1

0
s(x, t) i(x, t) dx, with s(x, t), i(x, t) the solution of the diffusive SI

model. On the other hand, the SI-model is given by the ODE system

dS

dt
= −SI S(0) = S0

(3.3.2)

dI

dt
= SI I(0) = I0.

It is clear that the two systems would be equivalent if and only if si = SI, that is,

∫ 1

0

s(x, t) i(x, t) dx =

(∫ 1

0

s(x, t) dx

)(∫ 1

0

i(x, t) dx

)
. (3.3.3)

However, in general the integral of a product of functions is never equal to the

product of the integrals, i.e. Eq.(3.3.4) is never satisfied. Mathematically speaking,

the comparison of the diffusive SI model versus the SI model boils down to studying

the effects of replacing the integral of a product by the product of the integrals.

The combination of diffusivity parameter values previously mentioned are col-

lected in Table 3.1. The values on the main diagonal correspond to the cases of

equal diffusivities, ds = di. The farther we move from the main diagonal in the

table, the more disparate ds and di are, with the top right corner corresponding to

strong diffusion of the susceptibles and weak diffusion of infectives (di ¿ ds) and

the bottom left corner corresponding to weak diffusion of susceptibles and strong

diffusion of infectives (di À ds).
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In Table 3.1 we identified three regions (regimes) in parameter space charac-

terized by the distinctive behavior of their solutions. Regime I is characterized by

strong I-diffusion. Regime II corresponds to weak SI-diffusion. Finally, Regime III

corresponds to weak I-diffusion and strong S-diffusion. The distinctive features of

the solutions in these regimes will be considered below. We also remark that the

asymmetry displayed in the table is not too surprising if we recall that the ini-

tially infective population is highly concentrated, where the susceptible population

is uniformly distributed in space, therefore it is natural to expect the infectious

propagation dynamics to be more sensitive to changes in the infective diffusivity di.

It is important to note that the solutions in these regions display common char-

acteristics in their time evolutions. The boundaries of these regions are somewhat

blurry in that a case near the boundary could be classified as belonging to another

region and could be open to interpretation. Next we proceed to discuss the main

features of the three diffusion regimes identified earlier.

Table 3.1: Diffusivity values for the susceptible and infected individuals that are
categorized into one of three general numerical solutions depending on the various
pairings of these values.

di

∖ds
0 0.001 0.01 0.1 1 10

0 II II II III III III

0.001 II II II III III III

0.01 I I I I I I

0.1 I I I I I I

1 I I I I I I

10 I I I I I I
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Regime I (strong I-diffusion regime)

This regime corresponds to values of ds ≥ 0 and di ≥ 10−2 in the numerical

experiments and it is characterized by the rapid homogenization of spatial varia-

tions in the populations. In particular, the highly concentrated initial population

of infectives spreads out quickly and uniformly over the entire spatial domain. This

is clearly demonstrated in Fig 3.2, which is a representative case that displays the

susceptible and infected population for the case where the diffusivities are ds = 10−1

and di = 1. After a very short time interval, both s(x, t) and i(x, t) become spatially

homogeneous, with s(x, t) decaying to its minimum value s = 0, and i(x, t) growing

to its maximum value i = 1, at about t = 10. Once the populations have become

spatially homogeneous their evolution in time should follow the SI model. This is

clearly demonstrated in Fig 3.3 where the total populations S(t) and I(t) of the dif-

fusive SI model are compared with their counterparts for the SI-model. The results

show remarkably good agreement between the values of S(t) and I(t) predicted by

both models, with a slight time delay present in the diffusive SI model. In general,

this good agreement between the diffusive SI model and the SI-model is consistent,

meaning the totals for the populations are insensitive to increases in ds and di for

this regime. The results of the numerical experiments also indicate that the SI-model

should be strictly valid in the limit when d → ∞ or in mathematical jargon, when

d = ∞ we can replace the integral of a product by the product of the integrals.

Therefore we can replace the diffusive SI model with the simpler SI-model when the

diffusivities belong to this regime.
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Figure 3.2: Solution of the Diffusive SI model with ds = 0.1 and di = 1 (regime I:
strong I-diffusion). Both populations s(x, t), i(x, t) become spatially homogeneous
after a very short adjustment time.
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Figure 3.3: Comparison of the totals for the susceptible (S) and infected (I) indi-
viduals from the diffusive SI system with ds = 0.1 and di = 1 (strong I-diffusion
regime). Both solutions are in close agreement, with S(t), I(t) from the diffusive
model slightly lagging in time.
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Regime II (weak SI-diffusion regime)

This regime corresponds to values of ds ≤ 10−2 and di ≤ 10−3 in the numerical

experiments and is characterized by the slow homogenization of the populations. Fig

3.4 shows the time evolution of the susceptible and infected individuals for ds = 10−3

and di = 10−3. The small value of the diffusion coefficient results in the slow spread

of the highly concentrated population of infected individuals, and this also results in

the emergence of inhomogeneities in the population of susceptibles. Although both

s(x, t) and i(x, t) are spatially inhomogeneous, these inhomogeneities subside with

time and the final fate of the populations is as follows: s(x, t) decreases to s ≡ 0

and i(x, t) increases to i ≡ 1 at about t = 15. The populations display monotonic

behavior in their time evolutions for fixed x as time t increases, as expected from

the SI-model. A comparison of the total populations S(t) and I(t) for ds = 10−3

and di = 10−3 with the corresponding solutions of the SI system is given in Fig 3.5.

In both models, S(t) and I(t) show the same trends, with S(t) decreasing to S = 0

and I(t) increasing to I = 1 as t → ∞. However, the small diffusivity results in a

substantial time delay for equilibration in the values of S(t) and I(t) coming from

the diffusive SI model, with t ≈ 15 for ds = 10−3 and di = 10−3 as opposed to

t ≈ 10 for ds = 10−1 and di = 1 seen for regime I. In this regime for the totals, the

poor agreement or discrepancies between the diffusive SI model and the SI-model

remain throughout, with the largest discrepancies occurring for di = 0 (no infective

diffusion). Clearly in this case, replacing the diffusive SI model by the SI equations

(i.e. replacing the integral of a product by the product of the integrals) is no longer

permissible.
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Figure 3.4: Solution of the Diffusive SI model with ds = di = 0.001 (regime II: weak
SI-diffusion). Both populations s(x, t) and i(x, t) show spatial inhomogeneities up to
the equilibration time.
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Figure 3.5: Comparison of the totals for the susceptible (S) and infected (I) individ-
uals from the diffusive SI epidemic system when ds = di = 0.001 (weak SI-diffusion
regime) with the solution of the SI model (S0 = 0.99, I0 = 0.01). The solution of the
diffusive SI model lags considerably in time.
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Regime III (weak I-diffusion and strong S-diffusion regime)

This regime corresponds to values ds ≥ 10−1 and di ≤ 10−3 in the numerical

experiments and is characterized by the rapid return to a homogeneous state for

the susceptibles and a slow homogenization for the infectives. Furthermore, when

di > 0 we see non-monotonic behavior for the infectives. For a fixed di > 0, as ds

increases, the susceptibles are redistributed and homogenized faster, but this results

in a maintenance of a high rate (S) of production of the infectives. This produces a

higher peak of infectives near the focus of infection (x = 1/2) at the early stage of the

process, which slowly subsides. This is shown in Fig 3.5 for diffusivities ds = 1 and

di = 10−3. As time increases both s(x, t) and i(x, t) become spatially homogeneous,

with the familiar behavior for the populations occurring, namely s(x, t) going to

s = 0 and i(x, t) going to i = 1, at time t = 10. In general, as di increases, the

behavior of the system starts to resemble regime I. For the totals S(t) and I(t), we

have good agreement between the diffusive SI model and the SI-model for ds = 1

and di = 10−3 as displayed in Fig 3.6 where we see S(t) decaying to S = 0 and I(t)

growing to I = 1 at time t = 10. The good agreement between the two models for

the totals holds true for all diffusivities in this regime. Therefore, we can say the

totals are insensitive to increases in ds and di. Consequently, we can replace the

PDE system with the ODE system for the diffusivities that lie in this regime.
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Figure 3.6: Solution of the Diffusive SI model with ds = 1 and di = 0.001 (regime
III: weak I-diffusion and strong S-diffusion). For the populations, s(x, t) becomes
spatially homogeneous after a very short time adjustment and i(x, t) shows spatial
inhomogeneities.

41



Chapter 3. Diffusive SI Model

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4
SI Model

time

S
us

ce
pt

ib
le

, I
nf

ec
te

d

 

 

Susceptible
Infected
Total Population

Figure 3.7: Comparison of the totals for the susceptible (S) and infected (I) individ-
uals from the diffusive SI system when ds = 1 and di = 0.001 (weak I-diffusion and
strong S-diffusion regime) with the solution of the SI model (S0 = 0.99, I0 = 0.01).
In this case the solution of the diffusive SI model is slightly lagging in time.
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Diffusive SIR Model

4.1 Introduction

Diffusive models can be extended to include recovered individuals who have the

capacity for spatial displacements similar to that of the infected and susceptible

individuals in the form of simple diffusion as seen in the previous section leading to

what is known as a diffusive SIR model. Diffusive models that include three types

of individuals have been studied to a great extent [19],[20],[21],[22]. For example,

Murray [21] studied the spread of rabies among foxes with three classes. He proposed

the model

st = as− bs− (a− b)ns

K
− βrs

it = −bi− (a− b)ni

K
+ βrs− σi (4.1.1)

rt = Dr rxx − br − (a− b)nr

K
+ σi− αr

where only the recovered individuals exhibit movement due to diffusion. Murray
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found that the model supports traveling waves with propagation velocity V given by

V = (DrβK)1/2v. (4.1.2)

Murray also used the parameter values for rabies among foxes given by Anderson [1]

to estimate the value propagation velocity V to be

V = 51 km/yr. (4.1.3)

In subsequent work Murray and Seward [22] proposed a three-class reaction-diffusion

system to describe the spreading of rabies among foxes,

st = Ds sxx + (a− b)
(
1− n

K

)
s− βrs

it = Di ixx + βrs− σi−
[
b + (a− b)

n

K

]
i (4.1.4)

rt = Dr rxx + σi− αr −
[
b + (a− b)

n

K

]
r

where all classes diffuse. Specifically, they were concerned with stopping the spread

of rabies among foxes by reducing the number of susceptible foxes below the critical

carrying capacity so that the epidemic traveling wave would no longer be sustained.

They looked at two methods to reduce the number of susceptible foxes: killing and

vaccination. Murray and Seward [22] payed particular attention to the various sizes

of regions needed to stop the epidemic traveling wave otherwise known as a break,

that is, the area with which you apply the methods to lowering the susceptible

foxes, must be large enough to effectively stop the spread of disease (rabies in this

case). They conducted many numerical experiments using several diffusivities for

Eq.(4.1.14). The diffusion coefficient for the rabid foxes, Dr, was fixed and given the

value Dr = 200 km2 year−1. They also set the diffusivities for the susceptible and

infected foxes to be equal, Ds = Di, using several values that range from low to high.

They concluded that the killing of all classes of foxes is the most effective approach

to creating a break, with large breaks needed for high diffusivities.
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The previous examples are special cases of the general reaction diffusion system

of the form

st = Ds sxx + f(s, i, r)

it = Di ixx + g(s, i, r) (4.1.5)

rt = Dr rxx + h(s, i, r).

In this chapter we will consider the diffusive SIR model on a bounded domain

st = Ds sxx − asi

it = Di ixx + asi− bi (4.1.6)

rt = Dr rxx + bi

with 0 ≤ x ≤ L and 0 < t < ∞. Here s(x, t), i(x, t), and r(x, t) represent the

density of the susceptible, infected, and recovered class per unit length respectively,

Ds, Di, Dr are the the diffusion coefficients for the for the susceptible, infected, and

recovered class, and a is a measure of the virulence strength of the disease and b is

the removal rate.

The diffusive SIR system is supplemented with Neumann boundary conditions at

both ends,

sx(0, t) = 0 and sx(L, t) = 0 (4.1.7)

ix(0, t) = 0 and ix(L, t) = 0 (4.1.8)

rx(0, t) = 0 and rx(L, t) = 0 (4.1.9)

and with initial conditions

s(x, 0) = s0(x) ≥ 0, i(x, 0) = i0(x) ≥ 0 and r(x, 0) = r0(x) ≥ 0. (4.1.10)
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Associated with the densities s(x, t), i(x, t), and r(x, t) are the total number of

susceptible S(t), the total number of infected I(t), the total number of recovered

R(t) and the total number of individuals that make up the population N(t), defined

by

S(t) =

∫ L

0

s(x, t) dx

I(t) =

∫ L

0

i(x, t) dx (4.1.11)

R(t) =

∫ L

0

r(x, t) dx

N(t) = S(t) + I(t) + R(t).

From this we can prove that N(t) is a conserved quantity for the diffusive SIR

system with Neumann boundary conditions,

dN

dt
=

dS

dt
+

dI

dt
+

dR

dt

=

∫ L

0

st dx +

∫ L

0

it dx +

∫ L

0

rt dx

=

∫ L

0

(Ds sxx − asi) dx +

∫ L

0

(Di ixx + asi− bi) dx +

∫ L

0

(Dr rxx + bi) dx

= Ds sx

∣∣∣∣
L

0

+ Di ix

∣∣∣∣
L

0

+ Dr rx

∣∣∣∣
L

0

−
∫ L

0

asi dx +

∫ L

0

asi− bi dx +

∫ L

0

bi dx

= 0,
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because of the zero flux boundary conditions, and we conclude that

N(t) ≡ N(0) = N0 (4.1.12)

for all times, where N0 = S0 + I0 + R0 is the total initial population. In particular,

it follows that S, I and R are bounded by N0 from above and N is conserved.

If the initial data is spatially homogeneous, s(x, 0) = s0, i(x, 0) = i0, then the

diffusive SIR model admits a spatially homogeneous solution s(x, t) = s(t), i(x, t) =

i(t), and r(x, t) = r(t). Moreover, in this case the integrated values of s(t), i(t), and

r(t) in Eq.(4.1.1) become

S(t) = Ls(t) (4.1.13)

I(t) = Li(t) (4.1.14)

R(t) = Lr(t) (4.1.15)

and they solve the SIR ODE system studied in Chapter 2, namely

dS

dt
= −αSI, S(0) = Ls0

dI

dt
= αSI − bI, I(0) = Li0 (4.1.16)

dR

dt
= bI, R(0) = Lr0

with α = (a/L). Now, the threshold criterion given in Chapter 2 for the development

of an epidemic in the SIR model is given by

S0 >
b

α
=

bL

a

and recalling that from Eq.(4.1.12) that S0 = s0L we arrive at

s0 >
b

a
. (4.1.17)
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Evidently this corresponds to the criticality criterion S0 > c = (b/aN0) obtained in

Chapter 2 and quantifies the outbreak of epidemic depending on whether aS0, the

product of the virulence strength and the initial population density of susceptibles,

is larger or smaller than b, the rate of recovery of the infected.

Next we simplify Eq.(4.1.1) by non-dimensionalization of the system. To do so

we introduce the non-dimensional variables

s̃ =
sL

N0

, ĩ =
iL

N0

, r̃ =
rL

N0

, t̃ =
aN0 t

L
, x̃ =

x

L
(4.1.18)

where N0 = S0 + I0 + R0. If we define

S̃(t) =
S(t)

N0

, Ĩ(t) =
I(t)

N0

, R̃(t) =
R(t)

N0

, Ñ(t) =
N(t)

N0

(4.1.19)

where S(t), I(t), R(t), and N(t) are given in Eq.(4.1.6), then it follows from Eq.(4.1.13)

that

Ñ(t) =
N(t)

N0

≡ 1. (4.1.20)

Next we introduce the non-dimensional variables for Eq.(4.2.7) into Eq.(4.2.1)

a

(
N0

L

)2
∂s̃

∂t̃
= Ds

N0

L3

∂2s̃

∂x̃2
− a

(
N0

L

)2

s̃̃i

(4.1.21)

a

(
N0

L

)2
∂ĩ

∂t̃
= Di

N0

L3

∂2ĩ

∂x̃2
+ a

(
N0

L

)2

s̃̃i− b

(
N0

L

)
ĩ

(4.1.22)

a

(
N0

L

)2
∂r̃

∂t̃
= Dr

N0

L3

∂2r̃

∂x̃2
+ b

(
N0

L

)
ĩ

If we drop the tildes for notational simplicity and let c = (bL/aN0) then we arrive

at the non-dimensionalized diffusive SIR model

st = ds sxx − si

it = di ixx + si− ci (4.1.23)

rt = dr rxx + ci

48



Chapter 4. Diffusive SIR Model

where ds = (Ds/aN0L), di = (Di/aN0L), and dr = (Dr/aN0L) are the non-

dimensional diffusivities. The initial data given by

s(x, 0) = s0(x) ≥ 0, i(x, 0) = i0(x) ≥ 0 and r(x, 0) = r0(x) ≥ 0 (4.1.24)

with 0 ≤ x ≤ 1. Finally we impose Neumann boundary conditions at the endpoints

x = 0, 1

sx(x, t)|x=0,1 = 0

ix(x, t)|x=0,1 = 0 (4.1.25)

rx(x, t)|x=0,1 = 0.

With the above choices of scales the total population becomes normalized to the

value one

N(t) =

∫ 1

0

s(x, t) dx +

∫ 1

0

i(x, t) dx +

∫ 1

0

r(x, t) dx ≡ N0 ≡ 1. (4.1.26)

In the next two sections we are going to study the diffusive SIR system, Eqs.(4.1.23-

25), paying special attention to the effects that the spatial diffusivities ds, di, dr and

the criticality condition, Eq.(4.1.17), have on the propagation of the infectious dis-

ease. In section 4.2 we will study the diffusive SIR model with supercritical (epidemic

outbreak) initial conditions, s0 > c, and in section 4.3 we will turn the attention to

subcritical (no epidemic outbreak) initial conditions, s0 < c. In these studies we

always assume that susceptible and recovered exhibit the same type of mobility, that

is, the diffusivities ds and dr are equal, ds = dr. On the other hand, these are reasons

to believe that infection can affect mobility of the individuals, so we will consider

both cases where di = ds = dr and di 6= ds = dr.

Regarding the initial conditions, we assume that s(x, 0) and i(x, 0) are described

by Gaussian distributions centered at x = 1/2; s(x, 0) is given by a broad Gaussian
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(σ1 = 100)

s(x, 0) = s0
e−σ1(x−1/2)2

∫ 1

0

e−σ1(x−1/2)2 dx

= s0 g1(x) with σ1 = 100 (4.1.27)

and i(x, 0) is given by a centralized Gaussian (σ2 = 10, 000)

i(x, 0) = i0
e−σ2(x−1/2)2

∫ 1

0

e−σ2(x−1/2)2 dx

= i0 g2(x) with σ2 = 10, 000. (4.1.28)

Finally, we assume zero initial population r(x, 0) for the recovered class,

r(x, 0) = r0 = 0. (4.1.29)

From Eq.(4.1.27) (and hence for Eq.(4.1.28)) it follows that the contribution from

the tail of the Gaussian is very small, in fact,

∫ ∞

−∞
e−σ1(x−1/2)2 dx−

∫ 1

0

e−σ1(x−1/2)2 dx ∼= 0.00001, (4.1.30)

so that the initial distributions can be viewed as Gaussians over all space. A plot of

these normalized Gaussian functions g1(x), g2(x), centered at x = 1/2,

g1(x) =
e−σ1(x−1/2)2

∫ 1

0

e−σ1(x−1/2)2 dx

(4.1.31)

g2(x) =
e−σ2(x−1/2)2

∫ 1

0

e−σ2(x−1/2)2 dx

(4.1.32)

for σ1 = 100 and σ2 = 10, 000 is given in Fig 4.1. Clearly the infected class is highly

concentrated around the centralized area x = 1/2, whereas the susceptible class has

a substantially larger geographical spreading.
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Figure 4.1: Plot of the Normalized Gaussians centered at x = 1/2 given by
Eqs.(4.3.31-32). The function g1(x) is centered around x = 1/2 and concentrated
around this point. The function g2(x) is concentrated almost entirely around x = 1/2.

Finally, since the total initial population is given by

∫ 1

0

s(x, 0) dx =

∫ 1

0

s0 g1(x) dx = s0,

then the criticality condition for the epidemic is given by s0 > c.

In the next two sections we look at the diffusive SIR system for both equal and

unequal diffusivities, where we divide these sections according to the supercritical

and subcritical cases s0 > c and s0 < c seen for epidemic growth or hindrance in

the SIR model. For comparison between the diffusive SIR model and the SIR model

of Chapter 2, we choose the same values for the initial populations, s0, i0, r0 and

the same value for c for the present model. The totals for these initial populations

correspond to S0, I0 and R0 and are the same as their counterparts in the SIR

model. We will employ the same numerical procedure developed in the previous

chapter to determine the characteristics and qualitative behavior of the populations.

In addition, we will compare the the diffusive SIR model with the SIR model by

explicitly looking at the total values S(t), I(t) and R(t) for both models.
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4.2 Diffusive SIR Model with Equal and Non-

Equal Diffusivities with s0 > c

In this section we study the diffusive SIR model for both equal and unequal diffusiv-

ities, i.e. ds = dr = di and ds = dr 6= di, respectively, and with the supercritical case

s0 > c. For comparison with the SIR model of Chapter 2, we select the same values

for the initial populations. For all experiments we have s0 = 0.99 (99% susceptible

population), i0 = 0.01 (1% infected population), r0 = 0 (no recovered) and c = 0.5,

so that s0 > c. We performed a series of numerical experiments covering a wide

range of the diffusion coefficients. Specifically, we considered diffusion coefficients

with values di, ds = dr = 0, 10−3, 10−2, 10−1, 100, 101 spanning five orders of magni-

tude in parameter space, and including the ranges of strong and weak diffusivities for

the susceptible, infected and recovered populations. There values of the diffusivities

are collected in Table 4.1.

In Table 4.1 we identified four regimes in parameter space for which the solutions

of the diffusive SIR equations display similar qualitative behavior. This behavior is

dictated in great measure by the relative strength of the diffusion in the infected pop-

ulation (I-diffusion) over the susceptible and recovered populations (SR-diffusion).

Regime I corresponds to strong SIR-diffusion. Regime II corresponds to strong I-

diffusion and weak SR-diffusion. Regime III corresponds to weak I-diffusion and

strong SR-diffusion. Finally, Regime IV corresponds to weak SIR-diffusion.
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Table 4.1: Diffusivity values for the susceptible, infected and recovered individuals
that are categorized into four unique solutions depending on the various pairings of
these values.

di

∖ds=dr
0 0.001 0.01 0.1 1 10

0 IV IV IV III III III

0.001 IV IV IV III III III

0.01 IV IV IV I I I

0.1 IV IV IV I I I

1 II II II I I I

10 II II II I I I
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Regime I (strong SIR-diffusion regime)

This regime corresponds to values of ds = dr ≥ 10−1 and di ≥ 1 in the numerical

experiments. It is characterized by the rapid homogenization of the susceptible,

infected and recovered individuals. Due to strong diffusivities, after a short time

interval, the initially inhomogeneous susceptible and infected spread out quickly,

leading to solutions that are constant in space (spatially inhomogeneous) for all

populations. This is demonstrated in Fig 4.2, which displays the susceptible, infected

and recovered for ds = dr = 1 and di = 10−1. For the populations, s(x, t), i(x, t)

and r(x, t) become spatially homogeneous, with s(x, t) decreasing to s ≈ 0.2, i(x, t)

increasing to a maximum value i ≈ 0.15 and then decreasing to a minimum value

i = 0 and r(x, t) increasing to r ≈ 0.8. Now, a comparison between the SIR model

and the diffusive SIR model yields good agreement between the models with the

solutions of the total populations S(t), I(t) and R(t) tending towards equilibrium in

the same fashion. This is shown in Fig 4.3, with the unconnected lines representing

the diffusive SIR model and the connected lines representing the SIR model, S(t) goes

to S = 0.2 (20% susceptible population), I(t) initially grows to I = 0.15 then decays

to I = 0 (no infected), and R(t) increases to R ≈ 0.8 (80% recovered population). We

also see essentially no difference between the time in which equilibration is reached

for the diffusive SIR model and the SIR-model, which does so at t = 25. In this

regime the diffusivities are high enough to permit the replacement of the diffusive

SIR model by the simpler SIR model.
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Figure 4.2: Solution of the Diffusive SIR model with ds = dr = 1 and di = 0.1
(regime I: strong SIR-diffusion). For the populations, s(x, t), i(x, t) and r(x, t) be-
come spatially homogeneous after a very short adjustment time.
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Figure 4.3: Comparison of the totals for the susceptible (S), infected (I) and recovered
(R) individuals from the diffusive SIR system when ds = dr = 1 and di = 0.1 (strong
SIR-diffusion regime) with the solution of the SIR model (S0 = 0.99, I0 = 0.01 and
R0=0) with c = 0.5. In this case no time lag in the solution of the diffusive SIR
model.
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Regime II: (strong I-diffusion and weak SR-diffusion regime)

This regime corresponds to values ds = dr ≤ 10−2 and di ≥ 1 in the numerical

experiments. A representative solution is given in Fig 4.4 which shows the time

evolutions for the susceptible, infected and recovered individuals for ds = dr = 10−3

and di = 1. We see slow homogenization of the susceptibles and recovered and

rapid homogenization for the infectives. The final fate for all individuals is identical

to that of the strong SIR-diffusion regime, namely the homogeneous progression is

as follows: s(x, t) decaying to a minimum value s ≈ 0.2, i(x, t) initially increasing

to a maximum value and then decreasing to a minimum value i = 0, and r(x, t)

growing to maximum value r ≈ 0.8. Therefore we can assume that the value for the

totals S(t), I(t) and R(t) are exactly like the totals for the previous regime. This is

accurate as we see in Fig 4.5 for the diffusion coefficient values ds = dr = 10−3 and

di = 1 . Once again we have S(t) going to S = 0.2 (20% susceptible population),

I(t) initially growing to I = 0.15 then decaying to I = 0 (no infected), and R(t)

increasing to R ≈ 0.8 (80% recovered population) at time t = 25. We have good

agreement between the diffusive SIR model and the SIR model. Consequently we

can replace the more complicated diffusive SIR system with the simpler SIR system.
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Figure 4.4: Solution of the Diffusive SIR model with ds = dr = 0.001 and di = 1
(regime II: strong I-diffusion and weak SR-diffusion). For the populations, s(x, t)
and r(x, t) show spatial inhomogeneity until equilibrium is reached, i(x, t) becomes
spatially homogeneous after a very short adjustment time.
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Figure 4.5: Comparison of the totals for the susceptible (S), infected (I) and recovered
(R) individuals from the diffusive SIR epidemic system when ds = dr = 0.001 and
di = 1 (strong I-diffusion and weak SR-diffusion regime) with the solution of the SIR
model (S0 = 0.99, I0 = 0.01 and R0 = 0). The solution of the diffusive SIR model
equilibrates at the same rate.

59



Chapter 4. Diffusive SIR Model

Regime III: (weak I-diffusion and strong SR-diffusion regime)

This regime corresponds to values ds = dr ≥ 10−1 and di ≤ 10−3 in the numerical

experiments. It is characterized by rapid homogenization of both the susceptible and

recovered individuals and the slow homogenization of the infected individuals. Addi-

tionally, we have non-monotonic behavior for the infectives. The presence of strong

diffusivity leads to the initially in-homogeneous susceptible population dispersing

quickly and therefore causing the rapid homogenization of both the susceptible and

recovered individuals and the reaction mechanism causes the non-monotonic behav-

ior for the infected population which decreases with time. In Fig 4.6 this is clearly

demonstrated, with the susceptible, infected, and recovered populations displayed

for ds = dr = 1 and di = 10−3. Eventually, the in-homogeneities for the infectives

subside, due to their transition into the recovered population. So we have s(x, t),

i(x, t) and r(x, t) becoming spatially homogeneous, with s(x, t) decaying to s ≈ 0.2,

i(x, t) growing to maximum value then decaying to i = 0 and r(x, t) growing to

r ≈ 0.8 at time t = 25. As we have seen, for these final values of the individuals

we should expect good agreement between the total populations, S(t), I(t) and R(t)

for the diffusive SIR model and their counterparts for the SIR model. In Fig 4.7 we

see that this is indeed the case, with essentially no difference for when equilibrium is

reached. In spite of the spatial inhomogeneities, we can safely replace the diffusive

SIR model by the simpler SIR model.
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Figure 4.6: Solution of the Diffusive SIR model with ds = dr = 1 and di = 0.001
(regime III: weak I-diffusion and strong SR-diffusion). For the populations, s(x, t)
and r(x, t) become spatially homogeneous after a very short adjustment time and
i(x, t) shows spatial inhomogeneity until equilibrium is reached.
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Figure 4.7: Comparison of the totals for the susceptible (S), infected (I) and recovered
(R) individuals from the diffusive SIR epidemic system when ds = dr = 1 and
di = 0.001 (weak I-diffusion and strong SR-diffusion regime) with the solution of the
SIR model (S0 = 0.99, I0 = 0.01 and R0 = 0). The solution of the diffusive SIR
model equilibrates at the same rate.
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Regime IV: (weak SIR-diffusion regime)

This regime corresponds to values ds = dr ≤ 10−2 and di ≤ 10−1 in the numer-

ical experiments. It is characterized by the slow homogenization of the susceptible,

infected and recovered populations. We also have non-monotonic behavior for the

infectives and persistence of spatial structures for the recovered. A representative

solution is given in Fig 4.8 which shows the time evolutions for the susceptible, in-

fected and recovered individuals for ds = dr = 10−3 and dr = 10−2. The final fate

for all individuals is of a homogeneous progression with s(x, t) decaying to s ≈ 0.05,

i(x, t) initially increasing to a maximum value and then decreasing to a minimum

value i = 0, and r(x, t) growing to r ≈ 0.95. When compared to the previous regimes

we see differences in the asymptotic states of the populations. We have more of the

population becoming infected and therefore have less susceptible and more recov-

ered. This difference will obviously be reflected in the totals for the populations,

where we expect to have disagreements between the SIR model and the diffusive SIR

model. This is indeed the case, as shown in Fig 4.9, with S(t) going to S = 0.05 (5%

susceptible population), I(t) going to I = 0 (no infected) and R(t) going to R = 0.95

(95% recovered population) as t → ∞. For these values we also have equilibration

being reached faster in the diffusive SIR model, with t = 15 for ds = dr = 10−3 and

dr = 10−2 as contrasted with t = 25 for the SIR model. Clearly we have marked

disagreements in the predictions from both models, with more infectives, less sus-

ceptibles and much more recovered for the diffusive SIR model.
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Figure 4.8: Solution of the Diffusive SIR model with ds = dr = 0.01 and di = 0.001
(regime IV: weak SIR-diffusion). For the populations, s(x, t), i(x, t) and r(x, t) show
spatial inhomogeneities until the equilibrium time.
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Figure 4.9: Comparison of the totals for the susceptible (S), infected (I) and recovered
(R) individuals from the diffusive SIR epidemic system when ds = dr = 0.01 and
di = 0.001 (weak SIR-diffusion regime) with the solution of the SIR model (S0 = 0.99,
I0 = 0.01 and R0 = 0). The solution of the diffusive SIR model equilibrates at a
faster rate.
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4.3 Diffusive SIR Model with Equal and Non-

Equal Diffusivities with s0 < c

In this section we study the diffusive SIR model for both equal and unequal diffu-

sivities, i.e. ds = dr = di and ds = dr 6= di, respectively, and under the subcritical

initial condition, s0 < c. To contrast with the SIR model of Chapter 2, we use the

same values for the initial populations. For all experiments we have s0 = 0.4 (40%

susceptible population), i0 = 0.6 (60% infected population), r0 = 0 (no recovered)

and c = 0.5, so that s0 < c. We carried out many numerical experiments spanning

a large range of diffusion coefficients. In particular, we considered diffusion coeffi-

cients with values di, ds = dr = 0, 10−3, 10−2, 10−1, 100, 101 spanning five orders of

magnitude in parameter space, and encompassing strong and weak diffusivities for

the susceptible, infected and recovered populations. There values of the diffusivities

are gathered in Table 4.2.

In Table 4.2 we recognized four regimes in parameter space for which the solutions

of the diffusive SIR equations show much of the same behavior. This behavior is

created in large part by the relative strength of the diffusion in the infected population

(I-diffusion) over the susceptible and recovered populations (SR-diffusion). Regime

I corresponds to strong SIR-diffusion. Regime II corresponds to strong I-diffusion

and weak SR-diffusion. Regime III corresponds to weak I-diffusion and strong SR-

diffusion. Finally, Regime IV corresponds to weak SIR-diffusion.
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Table 4.2: Diffusivity values for the susceptible, infected, and recovered individuals
that are categorized into one of four solutions depending on the various pairings of
these values.

di

∖ds=dr
0 0.001 0.01 0.1 1 10

0 IV IV IV III III III

0.001 IV IV IV III III III

0.01 IV IV IV I I I

0.1 IV IV IV I I I

1 II II II I I I

10 II II II I I I
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Regime I: (strong SIR-diffusion regime)

This regime corresponds to values ds = dr ≥ 10−1 and di ≥ 10−2 in the numerical

experiments. It is characterized by the rapid homogenization of all populations. In

Fig 4.10 this is clearly demonstrated for ds = dr = 10−1 and di = 1. This time

evolution has a steady state that is reached in the following manner: s(x, t) falls to

s ≈ 0.04, i(x, t) falls immediately to i = 0 and r(x, t) raises to r ≈ 0.96, at about

t = 15. Once the populations transition to a spatially inhomogeneous progression,

their time evolution should follow the SIR model. This is indeed the case as seen in

Fig 4.11, where the total populations S(t), I(t) and R(t) of the diffusive SIR model

have good agreement with the total populations of the SIR model. Although there

is good agreement between the models, there is a very small yet definite, epidemic

outbreak. If we recall from Chapter 2, an epidemic outbreak occurs when the value

for I(t) > I(0) for some t. This appears to be the case, but the behavior of the totals

for the diffusive SIR model are essentially identical to the SIR-model as the values

of the populations equilibrate as follows: S(t) goes to S = 0.04 (4% susceptible

population), I(t) goes to I = 0 (no infected) and R(t) goes to R = 0.96 (96%

recovered population. Despite the qualitative difference represented by this almost

insignificant epidemic outbreak, for strong diffusivities we can replace the integral

of the products with the product of the integrals. However, for another regime in

parameter space, the strength of the epidemic outbreak will be very significant.
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Figure 4.10: Solution of the Diffusive SIR model with ds = dr = 1 and di = 0.1
(regime I: strong SIR-diffusion). For the populations, s(x, t), i(x, t) and r(x, t) be-
come spatially homogeneous after a very short adjustment time.
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Figure 4.11: Comparison of the totals for the susceptible (S), infected (I) and recov-
ered (R) individuals from the diffusive SIR epidemic system when ds = dr = 1 and
di = 0.1 (strong SIR-diffusion regime) with the solution of the SIR model (S0 = 0.4,
I0 = 0.6 and R0 = 0). The solution of the diffusive SIR model equilibrates at the
same rate.
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Regime II: (strong I-diffusion and weak SR-diffusion regime)

This regime corresponds to values ds = dr ≤ 10−2 and di ≥ 10−1 in the numerical

experiments. It is characterized by the rapid homogenization of the infectives and

the slow homogenization of the susceptibles and recovered. This is made clear in Fig

4.12 with ds = dr = 10−3 and di = 1. Homogeneous final fate for all populations with

s(x, t) going to s ≈ 0.04, i(x, t) appears to increase slightly to a maximum value then

decreasing to i = 0 and r(x, t) increases to r ≈ 0.96 at time t = 15. This epidemic

development is similar to the development seen in the previous regime and therefore

we should expect a small increase to infected population implying the presence of

a small epidemic outbreak. In Fig 4.13, we see that indeed this is the case for the

comparison of the total populations S(t), I(t) and R(t) for the diffusive SIR model

and their counterparts for the SIR model. We see a slight increase to the initial

infected population and as before, the time evolution of total populations for the

diffusive SIR models mirrors that of the SIR model for diffusivities ds = dr = 10−3

and di = 1. Obviously we have good agreement between the two models, with

equilibration time occurring at time t = 15. Again in this case we can replace the

diffusive SIR model by the simpler SIR model.
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Figure 4.12: Solution of the Diffusive SIR model with ds = dr = 0.001 and di = 1
(regime II: strong I-diffusion and weak SR-diffusion). For the populations, s(x, t)
and r(x, t) show spatial inhomogeneity until equilibrium is reached, i(x, t) becomes
spatially homogeneous after a very short adjustment time.
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Figure 4.13: Comparison of the totals for the susceptible (S), infected (I) and recov-
ered (R) individuals from the diffusive SIR epidemic system when ds = dr = 0.001
and di = 1 (strong I-diffusion and weak SR-diffusion regime) with the solution of the
SIR model (S0 = 0.4, I0 = 0.6 and R0 = 0). The solution of the diffusive SIR model
equilibrates at the same rate.
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Regime III: (weak I-diffusion and strong SR-diffusion regime)

This regime corresponds to values ds = dr ≥ 10−1 and di ≤ 10−3 in the numerical

experiments. It is characterized by the rapid homogenization of the susceptible and

recovered individuals and the slow homogenization of the infectives. This is made

clear in Fig 4.14 with ds = dr = 1 and di = 10−3. Eventually all populations become

constant in space with s(x, t) going to s ≈ 0.04, i(x, t) appears to increase by a

small amount to a maximum value then decreasing to i = 0 and r(x, t) increases to

r ≈ 0.96. This apparent small increase to the infected population implies a mild

epidemic outbreak. If this is the case then we should once again have for the total

population of the infectives I(t) a T∗ > 0 so that I(t) > I0 for 0 ≤ t ≤ T∗ and thus an

epidemic outbreak. In Fig 4.15, we see this is correct for the comparison of the total

populations S(t), I(t) and R(t) for the diffusive SIR model and their counterparts

for the SIR model. We have the diffusive SIR model predicting epidemic outbreak

and no epidemic outbreak predicted for the SIR-model. Once more we have good

agreement between the two models. In general, this agreement deteriorates as ds, dr

decreases and the magnitude of the epidemic gets more pronounced.
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Figure 4.14: Solution of the Diffusive SIR model with ds = dr = 1 and di = 0.001
(regime III: weak I-diffusion and strong SR-diffusion). For the populations, s(x, t)
and r(x, t) become spatially homogeneous after a very short adjustment time and
i(x, t) shows spatial inhomogeneity until equilibrium is reached.
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Figure 4.15: Comparison of the totals for the susceptible (S), infected (I) and recov-
ered (R) individuals from the diffusive SIR epidemic system when ds = dr = 1 and
di = 0.001 (weak I-diffusion and strong SR-diffusion regime) with the solution of the
SIR model (S0 = 0.4, I0 = 0.6 and R0 = 0). The solution of the diffusive SIR model
equilibrates at the same rate.
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Regime IV: (weak SIR-diffusion regime)

This regime corresponds to values ds = dr ≤ 10−2 and di ≤ 10−1 in the numerical

experiments. It is characterized by the slow homogenization of all species. Also, there

is a persistence of spatial structure for the recovered population. This is obvious in

Fig 4.14 with ds = dr = 10−3 and di = 10−2. Eventually we have a homogeneous

steady state for all populations with s(x, t) going to s ≈ 0.01, i(x, t) appears to

increase by a small amount to a maximum value then decreasing to i = 0 and r(x, t)

increases to r ≈ 0.99 at time t = 15. The increase to the infected population yields

a pronounced epidemic outbreak in this regime. In Fig 4.15, we see that this is true

for the comparison of the total populations S(t), I(t) and R(t) for the diffusive SIR

model and their counterparts for the SIR model. For the total values, S(t) goes to

S = 0.01 (1% susceptible population), I(t) goes to I = 0 (no infected) and R(t)

goes to R = 0.99 (99% recovered population) at time t = 4 for ds = dr = 10−3 and

di = 10−2. Obviously we do not have good agreement between the two models. The

diffusive SIR model predicts epidemic outbreak of significant magnitude. In general,

discrepancies between the diffusive SIR model and the SIR-model as ds, di and di

approach zero. Discrepancy becomes less as ds, dr increase with di fixed. Oddly

enough, the highest epidemic outbreak does not occur when ds, dr = 0, di = 0 but

rather when ds, dr = 10−3, di = 10−2. Clearly replacing the diffusive SIR with the

SIR-model is no longer acceptable in this regime.
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Figure 4.16: Solution of the Diffusive SIR model with ds = dr = 0.001 and di = 0.01
(regime III: weak SIR-diffusion). For the populations, s(x, t), i(x, t) and r(x, t) show
spatial inhomogeneities until the equilibrium time.
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Figure 4.17: Comparison of the totals for the susceptible (S), infected (I) and recov-
ered (R) individuals from the diffusive SIR epidemic system when ds = dr = 0.001
and di = 0.01 (weak SIR-diffusion regime) with the solution of the SIR model
(S0 = 0.4, I0 = 0.6 and R0 = 0). The solution of the diffusive SIR model equi-
librates at a faster rate.
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Chapter 5

Conclusion

In this thesis we carried out a systematic study and comparison of four basic models

utilized in the theory of epidemics. These models are the SI and SIR models and

the diffusive SI and SIR models. If we recall, the latter models include spatial

displacements, in the form of simple diffusion for the individuals that occupy a

specified area, which is the main distinction between the non-diffusive and diffusive

models. Now, our goal with this paper was to chronicle each models characteristics

and qualitative behavior and then compare them with their counterpart model, that

is, the SI model with the diffusive SI model and the SIR model with the diffusive SIR

model, where we dictated that the diffusion essentially be the difference. We did this

in order to establish whether the diffusion or movements of the individuals would

affect how the potential epidemics developed. This included the possibility of slower

or faster times for a steady state to reached, and the existence or non-existence of an

epidemic within one model and not the other, where we could conclude that indeed

the spatial displacements did have an impact or we could have no obvious divergence

between the models and in this case we could say that the added diffusion had no

impact.

80



Chapter 5. Conclusion

In Chapter 2 we looked at the SI and SIR models, first giving the background

information and setting up these models, then giving detailed accounts of how epi-

demics did or did not develop and the nature by which they did within them. For

the SI model, epidemic development is brought about simply by the existence of

infected individuals, not a specified amount, but merely greater than zero. For the

SIR model, epidemic development is predicated on a critical parameter c such that

if the total number of susceptibles is above or below this parameter, than we either

have epidemic growth or hindrance respectively. These conditions for epidemic de-

velopment are important, not only to this model but also to the diffusive models

previously mentioned, seeing as we apply them to these models.

In Chapter 3 we looked at the diffusive SI model for equal and non-equal diffusiv-

ities. We once again detailed the behavior of the individuals by means of numerical

solutions. We categorized the unique solutions and then detailed their characteris-

tics. We then compared the SI model with the diffusive SI model by looking at the

total populations for both models. We superimposed the plots of the total values

of each individual for both models on top of one another which allowed for an easy

comparison. For certain diffusivity values we saw marked changes, notably, steady

states being reached at later times for the diffusive SI model and for other diffusivities

we saw no changes. For strong infective diffusivity, we had good agreement between

the diffusive SI model and the SI model, regardless of the susceptible diffusivity. For

weak susceptible and infected diffusivity we had poor agreement between the two

models.

In Chapter 4 we looked at the diffusive SIR model for equal and non-equal diffu-

sivities and for the supercritical and subcritical cases s0 > c and s0 < c respectively.

We categorized the unique solutions in various regimes according to the strength

of the diffusivities and detailed their features both qualitatively and quantitatively.

Next we compared predictions for the totals of the different populations for both
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the SIR model and the diffusive SIR model. This brought about the following sce-

narios for the models: epidemic outbreak for both for the supercritical case. We

also saw that for the subcritical case, the SIR model predicts no epidemic outbreak

whereas the diffusive SIR model always predicts an outbreak, even though it may

be quite small unless the diffusivities are weak. Granted, this scenario occurs with

the Neumann boundary conditions, but this may not be the case, with Dirichlet

boundary conditions, which allow for the declining of the individuals, that is, the

total population does not remain constant and eventually would go to zero as time

increased.

For the supercritical case we conclude that regardless of di, if ds = dr is strong

then good agreement between the diffusive SIR model and the SIR model is present.

If ds = dr is weak, poor agreement between the models, in spite of the fact that

the initial distribution of S and R are broadly spread in relation to I. For the

subcritical case we conclude that for weak diffusivities, ds, di and dr, we have a

significant epidemic outbreak for the diffusive SIR model, in contrast with the SIR-

model which displays no epidemic outbreak in the subcritical case. Needless to say,

the agreement in the predictions of the two models in their subcritical regime with

weak diffusivites is rather poor.

Finally we say, that in certain instances, the SI and SIR models and the diffusive

SI and SIR models, with all things equal apart from the diffusion, diverge quite

significantly. Therefore we can say that the introduction of individuals movements

or diffusion can have a significant impact on epidemic development.

82



References

[1] Anderson, R.M., Jackson, H.C., May, R.M, Smoth, A.M., ”Population dynamics
of fox rabies in Europe”, Nature 289, 765-771, 1981

[2] Anderson, R.M., May, R.M., Infectious Diseases of Humans. Dynamics and Con-
trol, Oxford University Press, Oxford, 1991

[3] Anderson, R.M., Medley, G.F., May, R.M., Johnson, A.M, ”A Preliminary study
of the transmission dynamics of the human immunodeficiency virus (HIV), the
causitive agent of AIDS. IMA J. Maths. Appl. in Medicure and Biology 3, 229-
263, 1986

[4] Bernoulli, D., ”Essai d́une nouvelle analyse de la mortalité causeé par la petite
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