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Abstract

The dissertation consists of three parts: Hermite methods, scattering from a lossless

sphere, and analysis of supercontinuum generation.

Hermite methods are a new class of arbitrary order algorithms to solve partial

differential equations (PDE). In the first chapter, we discuss the fundamentals of

Hermite methods in great detail. Hermite interpolation is discussed as well as the

different time evolution schemes including Hermite-Taylor and Hermite-Runge-Kutta

schemes. Further, an order adaptive Hermite method for initial value problems is

described. Analytical studies and numerical simulations in both 1D and 2D are

presented. To handle geometry, a hybrid Hermite discontinuous Galerkin methods

is introduced. A Discontinuous Galerkin method is used next to the boundaries to

handle the geometry and the boundary conditions, while a Hermite method is used

in the interior of the computation domain to enhance the performance. Numerical
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simulations of 1D wave propagation and the solutions to 2D Maxwell’s TM equations

are presented along with performance and accuracy data.

In the second chapter, we study the scattering problem concerning the scattering

poles from a lossless sphere for both acoustic and electromagnetic waves. We show

that in certain cases there exist only first order scattering poles, but in some other

cases, arbitrary order scattering poles can be found by imposing certain lossless

impedance boundary conditions on the spherical scatterer. A method to construct

arbitrary order scattering poles is discussed. The impedance loading function is

required to satisfy Foster’s theorem so that the scattering problem is lossless.

In the last chapter, we analyse the generation of supercontinua in photonic crystal

fibers. We depart from the commonly used approach where a Taylor series expansion

of the propagation constant is used to model the dispersive properties in a generalized

nonlinear Schrödinger equation (gNLSE). Instead, we develop a mathematical model

starting from numerically calculated group velocity dispersion (GVD) curves. Then,

we construct a certain function over a broad frequency window and integrate the

gNLSE in a way so that the spectral dependence of the propagation constant is

preserved. We found that the generation of broadband supercontinua in air-silica

microstructured fibers results from a delicate balance of dispersion and nonlinearity.

Numerical simulations show that if the nonlinear self-steepening is strong enough,

the model produces a shock that is not arrested by dispersion, whereas for weaker

nonlinearity the pulse propagates the full extent of the fiber with the generation of

a supercontinuum.
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Chapter 1

Hermite methods

1.1 Introduction

Hermite methods are a new class of arbitrary order polynomial based spectral meth-

ods to solve partial differential equations (PDE). They are different from other nodal

based algorithms, as Hermite methods carry and evolve not only the nodal values

but the derivatives as well. Hermite methods have a number of unique properties. It

converges at the rate 2m+1 when degree m polynomials are used in each direction.

For constant coefficient equations, the error in time converges at the rate of 2m+ 1

when Taylor time stepping is used. As long as the Courant-Friedrichs-Lewy (CFL)

condition holds, i.e. the domain of dependence is contained in a computational cell,

the algorithm is stable. The time evolution is completely local which yields a high

computation/communication ratio, which is ideal for parallel computing.

The first paper analyzing Hermite methods appeared in 2006 [30]. Since then

other experiments using the Hermite methods in different areas and the enhance-

ments of the basic methods have become available. The original Hermite method is

ideal for smooth waves, but can be applied to advection of discontinuous or piecewise-

1



Chapter 1. Hermite methods

discontinuous waves with favourable results as discussed in [10]. Experiments of sim-

ulation of compressible flows are shown in [33], where the built-in dissipation is found

to be beneficial. Runge-Kutta time stepping Hermite methods for aeroacoustics are

discussed in [11, 9], where large 3D parallel computation results are included. The

mesh refinement of Hermite methods is discussed in [11]. Analysis of the Hermite

methods for hyperbolic-parabolic systems can be found in [71].

In this work, we introduce two new enhancements of the Hermite methods: An or-

der adaptive Hermite method; and hybrid Hermite discontinuous Galerkin methods.

The idea of order adaptive Hermite methods is that when extra accuracy is needed

at some location, instead of adaptively refining the mesh, we increase the order. On

the computational domain the order adaptive Hermite methods uses polynomials of

various degrees. A uniform tolerance is chosen to control the overall accuracy.

Although Hermite methods have many great properties, it is not straightforward

to handle curved boundaries. Thus, to handle such boundaries, we develop a hybrid

Hermite discontinuous Galerkin method. The discontinuous Galerkin method is used

at the curved boundary, while Hermite methods are used in the interior so that the

overall performance of the solver will not be compromised. Theoretical results and

numerical simulations are presented in both cases.

1.2 Hermite-Taylor methods for periodic

problems

To begin with we describe the method for the simple transport equation

∂u

∂t
= a

∂u

∂x
, u(x, 0) = f(x), x ∈ [xmin, xmax], t > 0, (1.1)

where a is a real constant and f(x) is a 2π-periodic smooth function. We use stag-

gered space-time grids for the algorithm; precisely we define the primal and dual

2



Chapter 1. Hermite methods

grids as follows:

Gp = {xj | xj = xmin + jhx, j = 0, . . . , Nx} , (1.2)

Gd =

{

xj+ 1
2
| xj+ 1

2
= xmin + (j +

1

2
)hx, j = 0, . . . , Nx − 1

}

. (1.3)

Here Nx+1 is the number of grid points we use on the computation domain (interval),

with xmax − xmin = 2π, and hx = xmax−xmin

Nx
. The Hermite methods evolve not only

the function value at the nodes but also the derivatives of the function. Thus, at

t = 0, we need to compute the derivatives of the initial function f(x) up to m-th

order, that is

hix
i!

di

dxi
f(x), x ∈ Gp, i = 0, . . . , m. (1.4)

For complicated initial data, this can be done by deriving a PDE recursion of the

function or by numerically mapping the nodal data to the derivatives on the primal

grid, details will be provided in the next two sections.

I → I →

I → I →

I← I←

I← I←

T
↑

T
↑

T
↑

T
↑

T
↑

xj−1 xj− 1
2

xj xj+ 1
2

xj+1

tn

tn+ 1
2

tn+1

Figure 1.1: Schematic description of the numerical process for a full time step. Solid
circles represent the primal grids and open circles represent the dual grids. I is the
Hermite interpolation operator and T is the time evolution operator.

The algorithmic steps in the solution process can be viewed in Figure 1.1. The

method consist of two basic steps: a Hermite interpolation procedure, I, which

maps the derivative data (coefficients) at the adjacent points to the center; and an

3



Chapter 1. Hermite methods

evolution procedure, T , which uses the PDE to update the solution at the next half

time level. Generalizations of the method to more complex PDEs requires a more

involved evolution operator T , discussed in [30], while the Hermite interpolation

procedure is unchanged.

A detailed description in one dimesion now follows: (I) Starting at tn, on each cell

D
j = [xj , xj+1] we construct the Hermite interpolant of the function and derivative

data up to order m at the endpoints xj , xj+1. The interpolant can be expressed as

a 2m+ 1 degree polynomial centered around the grid point xj+ 1
2
(in Gd):

pj+ 1
2
(x, tn) =

2m+1
∑

l=0

c
[j+ 1

2
]

l0

(

x− xj+ 1
2

hx

)l

. (1.5)

The polynomial pj+ 1
2
(x, tn) interpolates the derivative data in the following sense

(Figure 1.2): Given

pj(x, tn) =

2m+1
∑

l=0

c
[j]
l0

(

x− xj
hx

)l

, (1.6)

pj+1(x, tn) =

2m+1
∑

l=0

c
[j+1]
l0

(

x− xj+1

hx

)l

, (1.7)

then pj+ 1
2
(x, tn) satisfies

hix
i!

di

dxi
pj+ 1

2
(xj, tn) = c

[j]
l0 ,

hix
i!

di

dxi
pj+ 1

2
(xj+1, tn) = c

[j+1]
l0 , i = 0, . . . , m. (1.8)

Here the coefficients c
[j]
l0 , c

[j+1]
l0 are scaled derivatives of pj, pj+1 at xj , xj+1. The

coefficients c
[j+ 1

2
]

l0 can be found by constructing a (2m+ 2)×(2m+ 2) Hermite inter-

polation matrix H such that

H
[

c
[j]
00, . . . , c

[j]
m0, c

[j+1]
00 , . . . , c

[j+1]
m0

]T

=
[

c
[j+ 1

2
]

00 , . . . , c
[j+ 1

2
]

2m+1,0

]T

. (1.9)

Note thatH only depends on the orderm and the location where pj+ 1
2
is centered. For

example, when m = 3 and interpolation is centered at the middle, the interpolation
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Chapter 1. Hermite methods

→ ←
xj xj+1xj+ 1

2

c
[j]
l0 c

[j+1]
l0c

[j+ 1
2
]

l0Coeff

m+ 1 m+ 12m+ 2DOF

Figure 1.2: Hermite interpolation scheme on a 1D cell, DOF is the degree of freedom.
Derivative data (Coefficients) are given at the solid circles to interpolate at the open
circle.

matrix is

H =







































0.5 0.1719 0.04688 0.00781 0.5 -0.1719 0.04688 -0.00781

-2.188 -0.5938 -0.125 -0.01563 2.188 -0.5938 0.125 -0.01563

0 -0.9375 -0.4375 -0.09375 0 0.9375 -0.4375 0.09375

8.75 4.375 1.25 0.1875 -8.75 4.375 -1.25 0.1875

0 1.25 1.25 0.375 0 -1.25 1.25 -0.375

-21 -10.5 -4 -0.75 21 -10.5 4 -0.75

0 -1 -1 -0.5 0 1 -1 0.5

20 10 4 1 -20 10 -4 1







































.

(1.10)

More details about the Hermite interpolation in 2D will be discussed in next section.

(II) To march from tn to tn+ 1
2
at each point on the dual grid xj+ 1

2
in Gd, we

compute a temporal Taylor series

pn
j+ 1

2
(x, t) =

2m+1
∑

l=0

q
∑

s=0

c
[j+ 1

2
]

ls

(

x− xj+ 1
2

hx

)l(
t− tn
∆t

)s

. (1.11)

where q = 2m+1− l for the constant coefficient case. For a general case q is chosen

to be a little larger than 2m + 1 if m is large. To compute the coefficients c
[j+ 1

2
]

ls ,

5



Chapter 1. Hermite methods

we insert equation (1.11) into (1.1), and derive a simple recursion for the coefficients

c
[j+ 1

2
]

ls , s = 0, . . . , 2m (recall we have computed c
[j+ 1

2
]

l0 , l = 0, . . . , 2m+ 1):

c
[j+ 1

2
]

l,s+1 = a
l + 1

s+ 1

∆t

hx
c
[j+ 1

2
]

l+1,s , l = 0, . . . , 2m− s, s = 0, . . . , q − 1. (1.12)

We note that we have included all nonzero terms in (1.11) as computed by (1.12).

(III) Since we have computed all the coefficients c
[j+ 1

2
]

ls in (1.11), we can now

evaluate (1.11) at tn+ 1
2
= tn +

∆t
2

to arrive at:

hi

i!

∂i

∂xi
u(xj+ 1

2
, tn+ 1

2
) ≈ hi

i!

di

dxi
pn
j+ 1

2
(xj+ 1

2
, tn) =

q
∑

s=0

c
[j+ 1

2
]

is

(

1

2

)s

, i = 0, . . . , m (1.13)

The Hermite-Taylor method is stable so long as the domain of dependence of the

solution at (xj+ 1
2
, tn+ 1

2
) is included in the cell, that is,

a
∆t

2
< min(xj+1 − xj+1/2, xj+1/2 − xj), (1.14)

which is just a∆t < hx in this case. In other words, the method is stable if within the

half time step ∆t/2, a wave travels at most from the middle point to the boundary

of the cell. Note that the time step restriction is independent of the order m.

(IV) The final step is to repeat the process on the dual grid Gd starting at tn+ 1
2
,

this yields a solution on the primal grid Gp at time tn+1. Periodicity is assumed on

Gd to obtain the desired data on Gp.

1.2.1 General description of the Hermite methods

We consider the numerical solution of hyperbolic (or hyperbolic problems possibly

with a small parabolic term) evolution equations

ut = F (u,Du, ǫD2u, x, t) (1.15)

in d + 1 dimensions. Here u(x, t) ∈ R
M and D, D2 denotes the arrays of first and

second order space derivatives. As the focus of this work is on adaptivity in space,

6



Chapter 1. Hermite methods

we assume u is L-periodic in x, that is u(x+ jLek, t) = u(x, t) for any integer j and

standard unit basis vector ek ∈ R
d, which we will write as x ∈ T

d(L).

A Hermite method in d space dimensions uses staggered computational cells con-

sisting of hypercubes. The standard, fixed-order method is constructed as follows.

The degrees-of-freedom are the coefficients of a degree md tensor-product polyno-

mial at each node. That is, at a node (x1,k1 , . . . , xd,kd) ≡ x[k] we approximate u by a

tensor-product polynomial

u ≈
m
∑

j1=0

· · ·
m
∑

jd=0

ck1k2...kdj1j2...jd
(t)

(

(x1 − x1,k1)
h1

)j1

. . .

(

(xd − xd,kd)
hd

)jd

, (1.16)

or, using the usual multiindex notation

h[j]

[j]!
D[j]u(x[k], t) ≈ c

[k]
[j](t), (1.17)

h[j] = hj11 . . . h
jd
d , [j]! = j1! . . . jd!, D

[j] = Dj1 . . .Djd. (1.18)

Here hi is the grid spacing in the ith coordinate, which we assume to be uniform.

The structure of the multidimensional algorithm is the same as in 1D. At a time

step, tn, we construct the degree (2m+1)d Hermite interpolant centered around the

midpoint from the 2d vertex polynomials. The interpolant is Q[k+1/2](tn).

We now consider the evolution problem (1.15) projected onto the degree (2m+1)d

tensor-product polynomial with initial data Q[k+1/2](tn):

dQ[k+1/2]

dt
= P2m+1F (Q

[k+1/2],DQ[k+1/2], ǫD2Q[k+1/2], x, t), (1.19)

where P is the projection onto Taylor polynomials

P2m+1w(x, t) =
2m+1
∑

j1=0

· · ·
2m+1
∑

jd=0

D[j]w(x[k+1/2], t)

[j]!

(

x− x[k+1/2]

h

)[j]

. (1.20)

Clearly, (1.19) represents a closed system of ordinary differential equations for

(2m+ 2)d polynomial coefficients. We approximately evolve it to time tn+1/2 using

7



Chapter 1. Hermite methods

possibly multiple substeps of some single-step method of Runge-Kutta type or, for

linear autonomous problems, temporal Taylor series. At the completion of a time

evolution we obtain vertex data on the dual grid by a another projection,

c
[k+1/2]
[j] (tn+1/2) =

h[j]

[j]!
D[j]Q[k+1/2](x[k+1/2], tn+1/2), jk = 0, . . . , m. (1.21)

The process is repeated on the dual grid to produce c
[k]
[j](tn+1).

Note that the evolution T can be accomplished with other ODE solvers. Experi-

ments with Hermite-Runge-Kutta methods for simulating compressible flows can be

found in [33]. Using (1.1) as an example, we write the coefficients as functions of

time t,

pn
j+ 1

2
(x, t) =

2m+1
∑

l=0

c
[j+ 1

2
]

l (t)

(

x− xj+ 1
2

hx

)l

. (1.22)

Applying (1.1) to (1.22), we derive a system of ODEs for the coefficients c
[j+ 1

2
]

l (t),

d

dt
cl(t) = (l + 1)cl+1(t), l = 0, . . . , 2m. (1.23)

Thus, any ODE solver can be used to solve the equation (1.23) to obtain the solution

(scaled derivatives c
[j+ 1

2
]

l (tn+ 1
2
)) at the next half time step.

Note that the evolution step is completely local to each cell. Thus no global

storage of stage values is needed, nor is any communication of information between

cells. If large steps can be taken, which is possible for hyperbolic problems, Hermite

methods are essentially optimal from the standpoint of storage and communications.

1.2.2 Stability and convergence

A complete analysis of Hermite methods for linear hyperbolic systems is presented

in [30]. The truncation error of the Hermite-Taylor method described above is

8
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O(∆t2m+1 +∆h2m+1
x ), i.e. the rate of convergence for a constant coefficient PDE

problem is 2m+ 1 in both space and time.

If the system is hyperbolic, the domain of dependence of the solution at (x[k+1/2],

tn+1/2) is contained in the region |x− x[k+1/2]| ≤ a
2
∆t where ∆t = tn+1 − tn is a full

time step and a is the maximum wave speed. Assuming a CFL restriction

a∆t ≤ min
i
hi, (1.24)

the solution of (1.19) evaluated at the dual grid node x[k+1/2] is in fact a high-order

approximation to the Taylor projection of the exact solution of the evolution equation

(1.15) with piecewise polynomial initial data whose restriction to cell [k + 1/2] is

Q[k+1/2]. If we denote the exact solution of (1.19) restricted to the cell [k + 1/2] by

w we have

c
[k+1/2]
[j] (tn+1/2)−

h[j]

[j]!
D[j]w(x[k+1/2], tn+1/2) = O(h2m+1∆t). (1.25)

Stability follows from the fact that the Hermite interpolation process decreases a

seminorm of the solution. The basic lemma, proved in [30] via a simple application

of integration by parts, reads as follows.

Lemma 1.2.1. Let f ,g be smooth periodic functions, If the degree (2m+1)d piece-

wise Hermite interpolant of the data Djf , 0 ≤ jk ≤ m on the nodes, x[k], Ig the

analogous interpolant of g, and define

(f, g)[m+1] =

(

d
∏

k=1

Dm+1
k f,

d
∏

k=1

Dm+1
k g

)

L2

. (1.26)

Then

(If, g − Ig)[m+1] = 0, (1.27)

‖f‖2[m+1] = ‖If‖2[m+1] + ‖f − If‖2[m+1]. (1.28)

9
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Directly, we conclude that the Hermite interpolation process decreases the semi-

norm ‖ · ‖[m+1]. This fundamental lemma, combined with standard estimates of

interpolation error, can be directly turned into a convergence proof. Precisely, for

the method described here, the proofs of Theorems 4.1 and 6.1 in [30] can be adapted

to prove that the approximate solution converges at order 2m+ 1
2
. This can be im-

proved to order 2m+ 1 for linear constant coefficient systems.

A point of emphasis is that, under the assumption that the local evolution prob-

lem (1.19) is solved with sufficient accuracy, the outer time step is limited only by the

wave speed and the cell size; it is independent of the polynomial degree. In addition,

the stability restrictions for the inner time step, that is the local time steps taken

within each cell, have a favorable dependence on m. For a standard spectral method,

the norm of the differentiation matrix must grow like m2, and thus the CFL con-

straint scales like m−2 [31]. Although it has been shown how to reduce these norms

to O(m) by using dual grid filters for discontinuous Galerkin spectral elements [72],

with Hermite methods no special actions are required; the differentiation matrix is

always O(m). The reason is that we only differentiate the cell polynomial of degree

m at the cell center. Bernstein’s inequality then gives

|dp
dx
| ≤ 2m

h
max
cell
|p|. (1.29)

We have not used this fact to formally prove the stated bounds, but we have observed

them in practice.

Naturally, these results cannot strictly hold for parabolic equations, as the domain

of dependence is the entire spatial domain. However, numerical experiments with

the heat equation, the convection-diffusion equation, and the Navier-Stokes equations

suggest [22]

∆t ∝ min

(

hi
cmax

,
h2i
ǫm

)

. (1.30)

Only in a shock or shear layer, where hi

m
= O(ǫ), is the additional restriction im-
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portant. Again, the m-dependence is significantly better than for standard spectral

element methods; see, e.g., [42] for a discussion of discontinuous Galerkin discretiza-

tions.

1.2.3 Computational cost of the Hermite methods

The computational costs of the Hermite methods are dominated by two operations,

the construction of the interpolant and the evaluation of the right-hand side of (1.19).

Using the tensor product structure, the interpolation may be carried out dimension-

by-dimension. For example, if d = 2, the data consists of (m + 1)2 values at each

vertex. We first interpolate along the two edges parallel to the x1-axis, solving 2m+2

independent one-dimensional Hermite interpolation problems associated with each

power of x2 (see Figure 1.3). As the cost of the one-dimensional interpolation is that

of a matrix-vector multiplication, O(m2), this step requires O(m3) flops in 2D. The

next step then (see Figure 1.3) involves an additional 2m+ 2 one-dimensional inter-

polation problems in the y-direction, costing an additional O(m3) flops. Extending

this argument to d-dimensions we conclude

→ ←

→ ←

↑

↓

xi xi+1xi+ 1
2

yj

yj+1

yj+ 1
2

Figure 1.3: Hermite interpolation scheme on a 2D cell. Derivative data (Coefficients)
are given at the solid circles to interpolate at the open circle.
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Cinterpolation = O(md+1) flops. (1.31)

In another word, the interpolation cost is O(m) per degree of freedom (DOF). The

cost of evaluating the right-hand side of (1.19) depends on the structure of F . For

a linear, constant-coefficient system the cost is linear in the number of coefficients,

O(md), or O(1) flop per DOF. For a system with product nonlinearities, the cost

scales with the cost of multiplying degree (2m + 1)d tensor product polynomials.

The direct algorithm for accomplishing this exploiting the tensor-product structure

costs O(md+1) flops. However, for large m FFTs can be used to reduce the cost to

O(md lnm) per DOF.

For general nonlinearities we use a recursive algorithm inspired by automatic

differentiation techniques [32]. We illustrate by computing

P = P2m+1e
Q, (1.32)

where Q is a degree (2m+ 1)d tensor product polynomial. The starting point is the

differential equation

DjP = P2m+1 ((DjQ)P ) . (1.33)

Taking, for example, j = d, (1.33) implies a recursion for the coefficients. Specializing

to the node xk,jk = 0 and writing P and Q as

P =

2m+1
∑

jd=0

pjd(x1, . . . , xd−1)

(

xd
hd

)jd

, Q =

2m+1
∑

jd=0

qjd(x1, . . . , xd−1)

(

xd
hd

)jd

(1.34)

we have

jd · pjd =
jd
∑

j′=1

j′ · qj′ · pjd−j′, jd = 1, . . . , 2m+ 1. (1.35)

Directly, given p0 this allows the computation of all the polynomials pjd in O(m2)

multiplications of tensor-product polynomials in dimension d − 1. To compute p0

12
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we would apply the analogous recursions in one lower dimension. To begin with we

compute the coefficients pj10...0 by

j1 · pj10...0 =
j1
∑

j′=1

j′ · qj′0...0 · pj1−j′0...0, p0...0 = eq0...0 . (1.36)

The cost of the direct implementation of this method is dominated by (1.35) and is

O(md+2). If the multiplications are replaced by FFTs this becomes O(md+1 lnm).

Noting that the recursion in (1.35) has a convolutional form, the algorithm of Hairer,

Lubich and Schlichte [26] can be adapted to reduce this to O(md ln3m), though

again the advantage of the fast algorithm is only likely to be felt for m rather large.

Griewank [32] has shown that all of the standard transcendental functions can be

evaluated in this way. We also note that an alternative pseudospectral approach to

evaluating F is possible, but we have not yet tried it.

Letting s be the total number of evaluations of F required to advance (1.19)

to the next time level we have a total cost per degree-of-freedom depending on the

structure of F and the algorithm employed given by

Ctotal =



















O(s) +O(m), linear constant coeff

O(sm)↔ O(s lnm) +O(m), product nonlinearity

O(sm2)↔ O(sm lnm)↔ O(s ln3m) +O(m), general nonlinearity

(1.37)

As an example, the degree-of-freedom for problem (1.1) is O(m), the cost of inter-

polation is O(m) per degree of freedom and cost of evaluating the right hand side is

O(m) per degree of freedom (i.e. s = m in (1.37)).
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1.3 P-adaptive Hermite methods for initial value

problems

For problems exhibiting localized pulses or sharp fronts, adaptivity in space and time

is needed. The vast majority of work on adaptive schemes, however, has focused on

local mesh refinement and local time-stepping, so-called h-adaptivity. A notable ex-

ception to this is the development of hp-adaptive solvers for elliptic boundary value

problems by Demkowicz et al [41]. The goal of this work is to exploit the unique fea-

tures of Hermite discretizations of initial-value problems to develop straightforward

and, we believe, efficient purely P -adaptive (order) methods.

We begin with deriving new results on the convergence of the Hermite interpolants

in the limit of infinite degree for bandlimited functions. We then develop and test

a relatively simple strategy for locally adapting the degree of the interpolants and

the time-stepping algorithm. As we can treat the polynomial evolution problem

independently in each cell, there is very little overhead required by the proposed

technique. Indeed, the basic formulation would allow us to use degrees and time-

stepping procedures in each cell limited only by the data available to construct the cell

interpolant. The procedure we use constrains the degree of the data used in each cell

to guarantee that the interpolation process decreases a certain seminorm. Numerical

experiements with the transport equation and Burgers equation are presented to

demonstrate the potential of our approach.

1.3.1 P -convergence

The focus of the analysis in [30] is on the h-convergence of the Hermite schemes.

Given that our intention here is to improve accuracy by increasing the degree rather

than decreasing the cell size, it is of interest to study the convergence of the Hermite
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interpolation process in this limit. To this end we take d = 1 and assume without

loss of generality that h = 2. The Peano kernel formula for the interpolation error is

f(x)− (If)(x) =
∫ 1

−1

D2m+2f(t)Km(t, x)dt, (1.38)

where we assume f ∈ C∞([−1, 1]). An interesting characterization of Km follows

from the recognition that e = f − If satisfies the boundary value problem

D2m+2e = D2m+2f, Dje(−1) = Dje(1) = 0, j = 0, . . . , m. (1.39)

Thus Km is simply the Dirichlet Green’s function for D2m+2. As shown in [20] an

upper bound for the error is given by

‖e‖L∞([−1,1]) ≤
1

(2m+ 2)!
‖D2m+2f‖L∞([−1,1]). (1.40)

Specializing to f = eiωx, we can use the Hermite error formula (e.g. [25]):

eiωx − (Ieiω·)(x) = (x2 − 1)m+1

2πi

∫

C

eiωz

(z2 − 1)m+1(z − x)dz, (1.41)

where C is a contour surrounding the real interval [−1, 1]. Following, for example,

Weideman and Trefethen [73], we consider contours defined by



z2 − 1


 = c > 1. (1.42)

By direct computation we find that if z = reiθ these contours are parametrized by

r =

√

cos 2θ +
√

c2 − sin2 2θ. (1.43)

In particular the maximum value of the imaginary part is
√
c− 1. We thus derive

the bound for ω large

|eiωx − (Ieiω·)(x)| ≤ 1

2π
√
c− 1

e|ω|
√
c−1−(m+1) ln c. (1.44)

As |ω|/π is the number of wavelengths and 2m+2 is the number of degrees of freedom

we write

|ω| = 2π

α
(m+ 1), (1.45)
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where α is the number of degrees-of-freedom per wavelength. Convergence asm→∞
is guaranteed if

min
c>1

(

2π

α

√
c− 1− ln c

)

< 0. (1.46)

The minimum occurs when

π

α
√
c− 1

=
1

c
→ π

α
=

√
c− 1

c
, (1.47)

and thus we require

2
c− 1

c
− ln c < 0→ c > c0 = 4.9216 . . . . (1.48)

On this interval the formula relating α and c at the minimum, (1.47), implies that

α increases with c. Thus our sufficient condition for convergence is

α >
c0√
c0 − 1

π ≈ 2.4853π ≈ 7.8077 . . . . (1.49)

This condition is apparently sharp. In Figure 1.4 we display the maximum inter-

polation errors for the functions e4πi(m+1)x/α on [0, 1] for α = 6−11 and 0 ≤ m ≤ 18,

that is for all odd degree interpolants from 1 through 37. We have divergence for

α = 6 and α = 7 and convergence for α = 8 − 11. For larger values of m our

implementation suffers from poor conditioning. In practice we have limited m to a

maximum value of 11 in all of our implementations, that is a maximum degree of 23.

(In the experiments here we take mmax = 8.)

We conclude that Hermite interpolation requires almost two and one half times as

many degrees-of-freedom per wavelength as corresponding methods based on Cheby-

shev interpolation, which require π points-per-wavelength, and in fact more than the

2 points-per-wavelength required when using equispaced nodes [73]. This is not sur-

prising as we have removed sampling points from the center of the interval. However,

we believe that the possibility for reduced the number of timesteps and communi-

cations enabled by the Hermite approach compensate for this defect. Preliminary

numerical computation of the dispersion relation in 1D indicates that many fewer

DOFs/wavelength are needed if the time step is not too small.
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Figure 1.4: Convergence of Hermite interpolation with increasing degree. Here PPW
stands for degrees-of-freedom per wavelength, as in all cases we are interpolating on
a single cell.

1.3.2 Adaptive implementation in 1 + 1 dimensions

Instead of using a uniform order m throughout the grids, we can vary the order mk

cell by cell. This requires a slightly different Hermite interpolation scheme, but the

time step remains the same, because of the fact that large time steps can be taken

in each computational cell, independent of the method order m and independent of

data in neighboring cells, once the Hermite interpolant of the vertex data has been

computed.

We now set d = 1 and consider the implementation of an order adaptive strategy.
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Functionally, we simply admit the possibility that at the current time level tn the

coefficient data at the node xk extends to some previously-determined degree mk. At

xk+1/2 we then could compute the Hermite interpolant of the degree mk polynomial

at xk and the degreemk+1 polynomial at xk+1 which would have degreemk+mk+1+1.

However, we instead set

m̄k+1/2 = min{mk, mk+1}, (1.50)

and construct the degree 2m̄k+1/2+1 Hermite interpolant of the function values and

derivatives through order m̄k+1/2 at each node. Directly this means that we use all of

the available data from the node where the polynomial is of lower degree and ignore

the highest degree coefficients at the other. The motivation for this choice is Lemma

1.2.1, which can be applied cell-by-cell. It implies that the local cell interpolant

satisfies
∫ xk+1

xk

(

Dm̄k+1/2+1Q[k+1/2](x)
)2
dx ≤

∫ xk+1

xk

(

Dm̄k+1/2+1f(x)
)2
dx, (1.51)

for any function f whose derivatives through order m̄k+1/2 agree with the nodal data.

We now evolve this polynomial as in the nonadaptive case using (1.19).

To adaptively choose the degree we consider the truncation step (1.21). The full

polynomial has degree 2m̄k+1/2 + 1, roughly double what is being carried on the

nodes. We simply truncate at whatever order is suggested by the tolerance, τ . That

is, find the smallest mk+1/2 such that

max
j>mk+1/2

hj

j!



DjQ[k+1/2](x[k+1/2], tn+1/2)


 < τ. (1.52)

We also place a limit on the global maximum order mmax. We impose the same

strategy when marching from tn+1/2 to tn+1.

Remark 1. It is possible to perform an asymmetric Hermite interpolation on each

cell (i.e. mk 6= mk+1). However, we have found that this may cause instability of the

P-adaptive scheme.
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Application to the transport equation

As a first test of the method we solve the transport equation,

ut = ux, u(x, 0) = e−x2

, x ∈ [−10, 10], t > 0, (1.53)

with periodic boundary conditions for two periods, until final time T = 40. We take

h = 0.25 and ∆t = 0.9h. The derivatives of the initial data are computed utilizing

the following recursion

hi

i!

di

dxi
e−ax2

= g(i)(x)e−ax2

, i = 0, . . . , m, (1.54)

g(i) = −2ah(xg(i−1) + hg(i−2))/i , g(1) = −2ahx , g(0) = 1. (1.55)

The time-stepping is performed via Taylor series and is carried out to match the

local spatial order. That is, as in [30], we use an order 2m̄k+1/2 + 1 temporal Taylor

series. Note that this time-stepping procedure is completely local to each cell, so

there is no issue in choosing different temporal orders in different cells. The Taylor

method could easily be replaced by multiple substeps of some other Runge-Kutta

formula as in [34]. Again, as the local evolution problems are independent, the size

of the substeps can be chosen independently in each cell. We set the maximum value

of m to be 8 and the minimum to be 1 so that the local method order varies between

3 (m = 1) and 17. At t = 0, mk is chosen based on the interpolation of the initial

condition.

Varying the tolerance, τ , between 10−3 and 10−9 we obtain the results summarized

in Table 1.1. See also Figure 1.5 for a plot of the solution and mk when τ = 10−4.

We see that the actual error in each case is more than an order of magnitude less than

the tolerance, indicating that a less stringent cutoff criterion could be used. For the

coarsest tolerance the average density of degrees-of-freedom is almost 2.7 times less

than the maximum. Exponential convergence is observed as a decrease in the error

of a factor of 10 requires roughly a fixed increase in the number of degrees-of-freedom

over the range of tolerances considered.
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τ Maximum Error mmax mave

10−3 1.221× 10−5 4 1.556
10−4 5.767× 10−7 5 1.914
10−5 1.132× 10−7 6 2.333
10−6 2.588× 10−8 7 2.778
10−7 7.394× 10−9 8 3.420
10−8 4.373× 10−10 8 3.803
10−9 3.022× 10−11 8 4.049

Table 1.1: Errors and orders for various tolerances: transport equation in 1 + 1
dimensions.
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Figure 1.5: Solution and degree for the transport equation in 1 + 1 dimensions.

Application to Burgers equation

As a second example we solve Burgers equation

ut + uux = ǫuxx, u(x, 0) = sin x, x ∈ [0, 2π], 0 ≤ t ≤ 2, (1.56)
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The recursion to compute the coefficients similar to (1.12) with the higher order

terms truncated becomes

s+ 1

∆t
cl,s+1 = c̃l,s+

(l + 2)(l + 1)

h2
cl+2,s , l = 0, . . . , 2m−1, s = 0, . . . , 2m+3, (1.57)

∑

l=0

∑

s=0

c̃ls(X)
l(T)s = −

(

2m+1
∑

l=0

q
∑

s=0

cls(X)
l(T)s

)(

2m
∑

l=0

q
∑

s=0

l + 1

h
cl+1,s(X)

l(T)s

)

,

(1.58)

X =
x− xj+1/2

hx
, T =

t− tn
∆t

. (1.59)

The cost to evaluate the product nonlinearity is O(m2) per degree-of-freedom (i.e.

s = m in (1.37)).

We choose a uniform grid with h = π/80, set the maximum value of m to be

8 (maximum order 17) and solve for ǫ = 10−2, 10−4 with τ = 10−3, 10−6. As the

time step restriction is now proportional to h2/(mǫ) we chose ∆t = h/50, though for

ǫ = 10−4 we could take larger steps. If we define an effective cell Reynolds number

based on the finest degree-of-freedom density allowed

Rc = umax
h

ǫ · (mmax + 1)
, (1.60)

we compute a value of .44 when ǫ = 10−2 and 44 when ǫ = 10−4. Thus the latter case

is certainly underresolved and we do not expect to achieve the error tolerances. How-

ever we will achieve reasonable accuracy and our solutions will not display spurious

oscillations. This demonstrates the robustness of the P -adaptive Hermite methods.

Although, based on the results from Section 1.2 we may expect that adaptive imple-

mentations of standard spectral element methods could require a little less resolution

in the shock layer, the advantage of the proposed scheme is that there is essentially

no overhead.

Approximate error data is generated by comparing the solutions to those com-

puted with a Fourier pseudospectral method in space [24] evolved in time with Mat-

lab’s ode45 routine. Absolute and relative error tolerances for ode45 were set at 10−9.
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With ǫ = 10−2 we used 1280 points for the pseudospectral method and 40960 with

ǫ = 10−4. To verify the accuracy of the pseudospectral computations we repeated

them with twice as many grid points and the tolerances for the ode solver reduced

to 10−11. These indicate that the pseudospectral solutions have errors below 10−9 at

the times indicated except for t = 2 and ǫ = 10−4, when a maximum norm difference

of 10−4 was recorded. As this is orders-of-magnitude smaller than the Hermite error

in that case we deem the error data to be reliable.

Details of the results are presented in Table 1.2 for both the approximate shock

formation time, t = 1.0016, (note that the shock formation time for the inviscid

equations is t = 1) and the final time, t = 2. Decreasing the tolerance by a factor of

10−3 increases the number of degrees of freedom by less than a factor of 3. The error

tolerances were approximately achieved in the case of ǫ = 10−2. For ǫ = 10−4 larger

errors persist due to the limits placed on Rc. However, with the adaptive strategy we

do avoid oscillations at the shock, as is readily apparent in the graphs. (See Figure

1.8 and Figure 1.9.) We also plot the solution and method order at t = 1 and t = 2

for ǫ = 10−2 and ǫ = 10−4 computed with τ = 10−3.

ǫ t τ ‖uadapt − uPS‖∞ mmax mave

10−2 1 10−3 8.32× 10−5 7 1.32
10−2 2 10−3 1.80× 10−3 8 1.23
10−2 1 10−6 2.99× 10−10 8 3.19
10−2 2 10−6 6.09× 10−6 8 2.45
10−4 1 10−3 9.0× 10−3 8 1.43
10−4 2 10−3 3.0× 10−2 8 1.38
10−4 1 10−6 9.2× 10−3 8 3.22
10−4 2 10−6 3.2× 10−2 8 2.62

Table 1.2: Comparison of Fourier pseudospectral and adaptive order Hermite solu-
tions for various tolerances and viscosities: Burgers equation in 1 + 1 dimensions.

22



Chapter 1. Hermite methods

0 1 2 3 4 5 6
0

2

4

6

8
mu=0.01 ; tol=0.001

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

Figure 1.6: Solution and degree at t = 1 for Burgers equation, mu=ǫ.
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Figure 1.7: Solution and degree at t = 2 for Burgers equation, mu=ǫ.
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Figure 1.8: Solution and degree at t = 1 for Burgers equation, mu=ǫ.
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Figure 1.9: Solution and degree at t = 2 for Burgers equation, mu=ǫ.
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Figure 1.10: Hermite interpolation scheme on a 2D cell. Derivative data (coefficients)
are given at the solid circles to interpolate at the open circle.

1.3.3 Extensions to two space dimensions

The interpolation technique used above has a natural extension to any number of

space dimensions. The process of the Hermite interpolation in 2D can be done

dimension by dimension as shown in Figure 1.10. Denote mx, my as the order in x

and y for the Hermite interpolation respectively. At the four vertices (solid circle)

we have (mx+1)× (my+1) degrees of freedom. First we interpolate along the x-axis

to form a (2mx + 1) × (my + 1) polynomial at the middle points (circle with dot)

Then we interpolate the y-direction from the middle point (circle with dot) to the

cell center point (open circle) to form a (2mx+1)× (2my+1) polynomial. We define

m̄x,[i+ 1
2
,j+ 1

2
] = min

(

mx,[i,j], mx,[i,j+1], mx,[i+1,j], mx,[i+1,j+1]

)

, (1.61)

m̄y,[i+ 1
2
,j+ 1

2
] = min

(

my,[i,j], my,[i,j+1], my,[i+1,j], my,[i+1,j+1]

)

, (1.62)

and compute the tensor-product Hermite interpolant, Q[i+ 1
2
,j+ 1

2
] of the vertex data

using mixed derivatives up through order m̄x,[i+ 1
2
,j+ 1

2
] in x and up through order

m̄y,[i+ 1
2
,j+ 1

2
] in y. This will result in a cell polynomial of degree 2m̄x,[i+ 1

2
,j+ 1

2
] + 1 in

x and 2m̄y,[i+ 1
2
,j+ 1

2
] + 1 in y. The interpolation is a stabilizing step in that Lemma
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1.2.1 applied in both variables implies the analogue of (1.51):

∫ xi+1

xi

∫ yj+1

yj

(

D
m̄

x,[i+1
2 ,j+1

2 ]
+1

x D
m̄

y,[i+1
2 ,j+1

2 ]
+1

y Q[i+ 1
2
,j+ 1

2
](x, y)

)2

dx dy ≤
∫ xi+1

xi

∫ yj+1

yj

(

Dm̄
[i+1

2 ,j+1
2 ]

x +1
x D

m̄
y,[i+1

2 ,j+1
2 ]
+1

y f(x, y)

)2

dx dy, (1.63)

for any function f whose mixed derivatives through order m̄x,[i+ 1
2
,j+ 1

2
] in x and order

m̄y,[i+ 1
2
,j+ 1

2
] in y agree with the nodal data. We note that as in the 1D case the

restriction (1.61), (1.62) greatly enhances the stability of the order adaptive scheme.

Having computed the cell interpolant, we evolve the data using (1.19). To trun-

cate we seek to satisfy the analogue of (1.52) with the smallest values of mx,[i+ 1
2
,j+ 1

2
],

my,[i+ 1
2
,j+ 1

2
]

max
j1>m

x,[i+1
2 ,j+1

2 ]

hj11
j1!

hj22
j2!






Dj1

x D
j2
y Q

[i+ 1
2
,j+ 1

2
](xi+ 1

2
, yj+ 1

2
, tn+ 1

2
)





< τ, (1.64)

max
j2>m

y,[i+1
2 ,j+1

2 ]

hj11
j1!

hj22
j2!






Dj1

x D
j2
y Q

[i+ 1
2
,j+ 1

2
](xi+ 1

2
, yj+ 1

2
, tn+ 1

2
)





< τ. (1.65)

Application to the transport equation in two space dimensions

As a first demonstration of the method in 2 + 1 dimensions we have solved the

transport equation

ut + cos θ · ux + sin θ · uy = 0, (x, y) ∈ [−25, 25]× [−25, 25], (1.66)

with θ = π
3
, periodic boundary conditions, and initial data consisting of a Gaussian

u(x, y, 0) = e−(x2+y2). (1.67)

The recursion similar to (1.12) now becomes

cl1,l2,s+1 = − cos θ
l1 + 1

s + 1

∆T

hx
cl1+1,l2,s − sin θ

l2 + 1

s + 1

∆T

hy
cl1,l2+1,s. (1.68)
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Figure 1.11: Solution to (1.66) at T = 0 (top) and T = 100 (bottom). On the left
is the plot of the solution u, on the right is the adaptive order in x−direction on
each grid. mmax = 10, mmin = 1, tolerance τ = 10−15, and CFL number equals 0.6.
Maximum error at T = 100 is 5.56× 10−11. Blue is for m = 1, brown is for m = 10.

We solved up to t = 100 using the adaptive method described above with a maximum

value of mmax = 8 (17th order) and tolerances of 10−3,10−5, 10−7, and 10−9. The

mesh width was h = 5
8
, ∆t ≈ .8h.

The solution to (1.66) along with the plot of the adaptive order on each grid

is displayed in Figure 1.11. The region where higher order is needed to maintain
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the accuracy doesn’t change much after 100 periods of propagation at T = 100. The

results are summarized in Table 1.3. Generally, the L2 error is at or below the desired

tolerance, though the maximum error is quite a bit larger. That said, the method is

seen to be very efficient. Even with a tolerance of 10−9, which produced a maximum

error of approximately 10−6, the total number of degrees-of-freedom, as indicated

by mave, exceeds those of the first order method on the same grid by a mere 28%.

Timing results of various mmax and tolerance τ are listed in Table 1.4, where τ = 0

means using a uniform order mmax everywhere in the domain. The total cost of the

P-adaptive scheme will be a weight average on all grids for various m as in (1.37). As

we can see from the Table 1.4, if we double the mesh, the time cost is approximately

8 times longer for mmax = 2, and roughly the same accuracy can be obtained when

mmax = 3, τ = 10−10 with only 1
7
time cost. Since it is a relatively coarse grid,

for τ = 10−10, we need at least mmax = 5 to reach the maximum accuracy for such

tolerance. We can also see the maximum error is decreasing at a slightly slower speed

than the tolerance when mmax = 8, and computational cost increases just a little

while a lot more accuracy have been achieved.

τ L2 Error Maximum Error mmax mave

10−3 3.10× 10−4 1.51× 10−1 8 0.06
10−5 3.24× 10−6 1.80× 10−3 8 0.14
10−7 6.07× 10−8 1.52× 10−5 8 0.20
10−9 1.42× 10−9 1.04× 10−6 8 0.28

Table 1.3: Errors and orders at t = 100 for various tolerances: transport equation in
2 + 1 dimensions.

28



Chapter 1. Hermite methods

mmax N τ Maximum Error L2 Error CPU-Time

2 81 1E-010 1.10E-002 1.00E-005 10
2 161 1E-010 4.10E-004 3.60E-007 77
2 81 0 1.10E-002 1.00E-005 16
3 81 1E-010 3.30E-004 2.38E-007 11
3 81 0 2.58E-004 2.22E-007 26
4 81 1E-010 4.38E-006 4.19E-009 12
4 81 0 4.38E-006 4.01E-009 41
5 81 1E-010 2.49E-007 2.52E-010 14
5 81 1E-012 6.33E-008 7.15E-011 14
5 81 0 5.60E-008 6.02E-011 63
6 81 1E-010 2.49E-007 1.91E-010 16
6 81 1E-012 1.07E-008 1.12E-011 17
6 81 0 7.33E-010 7.82E-013 92
7 81 1E-012 1.07E-008 1.03E-011 20
7 81 0 7.64E-012 8.16E-015 130
8 81 1E-011 3.54E-008 5.25E-011 24
8 81 1E-013 1.60E-009 2.28E-012 25
8 81 1E-015 1.58E-010 1.35E-013 26
8 81 1E-017 9.48E-012 6.46E-015 27
8 81 1E-019 7.53E-013 7.70E-016 30
8 81 0 1.87E-013 3.31E-016 179

Table 1.4: Errors and time cost at t = 20 for various tolerances τ , number of grid
points along each dimension N and maximum adaptive order mmax: transport equa-
tion in 2 + 1 dimensions.

1.4 Hybrid Hermite - discontinuous Galerkin

method

1.4.1 Introduction

In this section, we will introduce an arbitrary order hybrid Hermite - discontinuous

Galerkin (HDG) method. The discontinuous Galerkin (DG) method is used next
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to the boundary due to its high flexibility when handling curved geometry and the

Hermite method is used in the interior of the region to improve the performance.

High order schemes for curved boundaries can be constructed for example by using

overlapping structured grids as done by Henshaw [36] or by using unstructured grids

as in the nodal discontinuous Galerkin (DG) method by Hesthaven and Warburton

[38]. Unfortunately the efficiency of high order nodal DG methods is limited by the

necessity to take very small time steps to maintain stability. The operation count

per degree of freedom is also quite high.

Traditional finite element methods (FEM) are useful for handling geometry but

they too suffer from high operation count and memory consumption. An efficient

alternative to traditional FEM was suggested by Rylander and Bondeson in [70]

where they showed how to hybridize FDTD with FEM. The principle idea is to use

the more expensive FEM close to the boundaries and the inexpensive FDTD in the

interior of the computational domain.

The hybrid Hermite - discontinuous Galerkin method we suggest here uses a

description of the geometry similar to that of Rylander and Bondeson but is very

different in the discretization strategy of the governing equations. In the interior,

on a structured space-time-staggered Cartesian grid, we will use Hermite methods of

very high order. Next to the boundary we use the nodal-DG method by Hesthaven

and Warburton [38]. The combination of these methods yields high order accurate

and geometrically flexible methods.

Hermite methods have exceptional resolving power and excellent explicit time

stepping properties. However, enforcing boundary conditions in a Hermite method,

in particular in complex geometries, is less straightforward.

Discontinuous Galerkin methods, on the other hand, deal with complicated ge-

ometries in a natural way and also have good resolving power. However, they suffer
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from severe time-step restrictions due to the evaluation of derivatives throughout the

element.

The features of Hermite and DG methods suggest their hybridization, combin-

ing the geometrical flexibility of DG with the excellent time stepping properties of

the Hermite methods resulting in a class of geometrically flexible and efficient high

resolution methods. The hybridization strategy is the same as that of Rylander and

Bondeson. It can be summarized as follows: Use DG next to the boundaries to han-

dle the geometry and the more efficient Hermite method in the interior. Of course

the time stepping restrictions for the DG scheme will not change, but as the number

of DG elements will scale on K for a 2D geometry with O(K2) elements while the

number of Hermite elements will scale on K2 the complexity of the method will, to

leading order, be the same as for the Hermite method.

1.4.2 Description of the methods in one dimension

This section describes the discretization of the geometry and the two methods and

their hybridzation in one dimension.

Discretization of the geometry

The equations at hand will be discretized on a hybrid grid composed of a regular

Cartesian grid in the interior and a conforming triangulation or a conforming mesh

of quadrilaterals (2D) or hexahedra (3D) outside the Cartesian grid, see Figure 1.12.

The Cartesian grid is composed of a primal and a dual grid, denoted Gp and Gd and

consisting of the points:

Gp = {xi} = xHer
min + i hx, i = 0, . . . , Nx, (1.69)
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Figure 1.12: Hybrid grid in one dimension. Here the DG-grid GDG = {D0,D1},
consists of one element on each side of the interior Cartesian grid. The LGL nodes
on the elements are denoted by small filled circles. The Cartesian grid is denoted by
larger circles, the empty being the primal nodes and the filled being the dual nodes.
The communication of Hermite data to the DG solver consists of constructing DG
fluxes at x0 and x3. The communication of DG data to the Hermite solver consists
of evaluating derivatives centered at x−1/2 and x3+1/2 using the DG solution at the
LGL nodes.

and

Gd = {xi} = xHer
min + i hx, i =

1

2
, . . . , Nx −

1

2
, (1.70)

where

hx =
xHer
max − xHer

min

Nx
.

The outside DG-grid GDG consists of two sets of elements, one on each side of

the interior Cartesian grid. The Kth element in GDG is denoted D
K and is dis-

cretized with NK
x Legendre-Gauss-Lobatto (LGL) points, {xKi }. In one dimension

the LGL points (on the standard element x ∈ [−1, 1]) are the zeros of the polyno-

mial f(x) = (1− x2)P̃ ′
NK

x +1(x) where P̃NK
x +1(x), is the classic Legendre polynomials

scaled by dividing by
√

1/(2(NK
x + 1)− 1), see further p. 47 in Appendix A [37].

We now describe the two methods starting with the Hermite method. We note

that the spatial discretization based on Hermite interpolation can be paired with any

time stepping algorithm. Here we will either use a Taylor series method (as in the
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original Hermite-Taylor algorithm, [30]) or an explicit Runge-Kutta time-stepping

method, see [33].

Hermite-Taylor method

We use the same Hermite-Taylor method as discussed before to solve the PDE on

the Hermite domain Gp and Gd, except that, instead of using the periodicity to

update the half time solution on Gd, information from the Discontinuous Galerkin

(DG) element is used to update the Hermite cells along the boundary of the Hermite

domain, which will be detailed in the numerical experiment sections.

Hermite-Runge-Kutta method

The truncation error of the Hermite-Taylor method is O(∆t2m+1 +∆h2m+1
x ) and will

be the method of choice for linear constant coefficient problems. For problems that

have varying coefficients or are nonlinear, the recursion (1.12) becomes prohibitively

costly for high time derivatives and large m. Therefore it is better to evolve the

approximation of the solution with a one-step method. For such methods it is suf-

ficient to compute the first time derivative, or equivalently, the right hand side of

the evolution equations. For a Hermite method evolving (1.11) in time this trans-

lates into the need to compute c
[j+ 1

2
]

ls for s = 1, which is the least expensive term of

(1.12). Another advantage of using a onestep method is that is straightforward to

incorporate an adaptive ODE solver from, for example, the RK-suite library [21].

Remark 2. Note that when a onestep ODE solver is used, the order of accuracy

independent CFL condition (1.14) holds in the following sense. The time evolution

of (1.11) can be performed independently on each cell using many sub-time-steps

and communication need only be performed as required by domain of dependence

considerations, see also [33].
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Figure 1.13: Schematic picture of the hybrid Hermite-DG method.

Nodal discontinuous Galerkin method

The Discontinuous Galerkin method used here is that of Hesthaven and Warburton.

We outline it here and refer to [37] for more details.

In element K, x ∈ [xKl , x
K
r ] = D

K the solution is approximated by a N = NDG−1
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Figure 1.14: The boundary data for the DG-method along x1 and for the first
timestep is obtained by extrapolating u and ut to x1 at all Runge-Kutta substeps in
t ∈ [tn, tn+1/2] and constructing a fourth order accurate interpolant of u.
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degree polynomial

x ∈ [xKl , x
K
r ] = D

K : u(x, t) ≈ uh(x, t) =

NDG
∑

i=1

uKh (x
K
i , t)l

K
i (x). (1.71)

Here xi are the Legendre-Gauss-Lobatto (LGL) grid points in D
K . The approxima-

tion is obtained by requesting the residual

Rh(x, t) =
∂uh
∂t

+
∂(−uh)
∂x

, (1.72)

to be orthogonal to all test functions lKi (x) on element K. That is

∫

DK

Rh(x, t)l
K
i (x)d x = 0, i = 1, . . . , NDG, (1.73)

on element K. Now, integrating by parts two times yields the semi discrete approx-

imation

d

dt
uK
h + (MK)−1SK(−uK

h ) = (MK)−1
[

lK(x)((−uKh )− (−uKh )∗)
]xK

r

xK
l

. (1.74)

Here (−uKh )∗ is the numerical flux, uK
h = [uK1 , . . . , u

K
NDG

]T are the degrees of freedom

(nodal values of the function) on element K and

MK
ij =

∫

DK

lKi l
K
j dx, SK

ij =

∫

DK

lKi
dlKj
dx

dx. (1.75)

The differentiation matrix DK = (MK)−1SK can be explicitly constructed from the

Vandermonde transformation matrix, V, between the nodal,

uh(r, t) =

NDG
∑

i=1

uh(ri, t)li(r),

and modal,

uh(x, t) =

NDG
∑

n=1

ûnP̃n−1(r),

representations on the reference element r ∈ [−1, 1]. Precisely, DK = 2
hKVrV−1, with

hK being the length of element K.
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At the heart of the DG method is the choice of the numerical flux. To this end

we will use an upwind flux, which in this example corresponds to

(−u)∗ = {{−u}}+ JuK

2
.

Here {{−u}} = u++u−

2
is the average of the values of the discrete solution (“−” is

the interior node) at a grid interface and JuK = n̂−u− + n̂+u+ is the jump in u at an

interface.

Equation (1.74) can be discretized in time by any ODE method, we choose to use

the classic fourth order accurate Runge-Kutta method.

Hybrid Hermite discontinuous Galerkin method

We are now ready to describe the coupling of the Hermite and discontinuous Galerkin

method. To make matters concrete we describe the method with an example. Con-

sider the one dimensional system

ut − ux = 0,

vt + vx = 0,
(1.76)

for t ≥ 0, xHer
min ≤ x ≤ xHer

max, with initial data

u(x, 0) = U0(x), v(x, 0) = V0(x),

and boundary conditions

u(xmin, t) = v(xmin, t), u(xmax, t) = v(xmax, t).

Let the primal and dual grids be as in (1.69) - (1.70) with grid spacing

hx = (xHer
max − xHer

min)/Nx and let

x ∈ (x0, x1) = D
0, x ∈ (xNx−1, xNx) = D

Nx−1, (1.77)
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be elements, with N0
x = NNx−1

x LGL nodes, at the boundaries of the computational

domain.

The computation is initiated at some time level t = tn by assigning the

(Nx − 1)× (m+ 1) coefficients

cpl0[xi], i = 1, . . . , Nx − 1, l = 0, . . . , m, (1.78)

in the interior nodes on the primal Hermite grid and the 2 × NDG nodal values

u0(xi, t), u
Nx−1(xi, t) on the DG elements.

Evolution of Hermite data The first step of the evolution of the solution is to

construct the Hermite interpolant (1.5) centered at the interior points of the dual

grid, i.e. xi, i = 3/2, . . . , Nx − 3/2. At this stage a recursion relation similar to (1.12)

can be used to evaluate the time derivative(s) of the solution needed for Runge-Kutta

or Taylor series time stepping. If a Runge-Kutta method is used the interpolant on

each cell is advanced independently for one half time step by taking Nsub,H sub-steps

of size δHt = (∆t/2)/Nsub,H. Here we fix Nsub,H at the beginning of the computation

but we note that it is straightforward to allow for δHt to change adaptively on cells

or in between time levels. If a Taylor series method is used, the solution is advanced

by a single time step of size ∆t/2.

Boundary data for the DG method The next step in the hybrid algorithm is to

construct the required boundary data for the DG-method. As the DG-method will

be time stepped with a fourth order accurate Runge-Kutta method the boundary

data should be constructed with, at least, the same accuracy. Thus, if the Hermite

elements are time-stepped with RK4 we construct the DG boundary data by extrap-

olating cl0[xi], cl1[xi], i = 3/2, Nx − 3/2 at times t = tn + jδHt, j = 0, 1, . . ., yielding

approximations to u and ut, at the gridpoints x1 and xNx−1. The approximations to
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u and ut are then used to construct interpolants along the DG faces:

uρ(xq, t) =

3
∑

l=0

γlρ

(

t− (tn + ρδH)

δH

)l

, ρ = 1, . . . , Nsub,H, q = 1, Nx − 1. (1.79)

Here

ts = tn + (ρ− 1)δH ≤ t ≤ tn + ρδH = te, (1.80)

and for q = 1, Nx − 1

γ0ρ = u(xq, ts),

γ1ρ = ut(xq, ts),

γ2ρ = −3u(xq, ts) + 3u(xq, te)− 2ut(xq, ts)− ut(xq, te),

γ2ρ = 2u(xq, ts)− 2u(xq, te) + ut(xq, ts) + ut(xq, te).

(1.81)

When the Hermite elements are time stepped with Taylor series the approximate

solution (1.11) can be directly evaluated at the boundary of the DG-elements.

Evolution of DG data When the approximate solution has been constructed at

x1 and xNx−1 it can be used to evolve the DG data to time tn +
∆t
2

using a Runge-

Kutta method with time steps δDG = ∆t/Nsub,DG.

Boundary data for the Hermite method When the DG solution has been

advanced to time tn +∆t/2 we must find the solution and its derivatives at xi, i =

1/2, Nx − 1/2 so that a new Hermite interpolant can be constructed and evolved at

the primal grid points xi, i = 1, Nx. Here we take the straightforward approach and

use the algorithm suggested by Fornberg [28] to compute the required derivatives

using the solution at the LGL points in the DG elements.

With the m derivatives known at the first and last dual grid points (and all the

interior) interpolating Hermite polynomials on the form (1.11) can again be advanced
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with a Taylor series or Runge-Kutta method. advanced with Nsub,H substeps of

Runge-Kutta. The only difference from the first half-step is that the DG boundary

data can be constructed without extrapolation, see Figures 1.13 and 1.14.

1.4.3 Experiments in one dimension

This section presents some experiments illustrating the properties of the method in

one dimension.

To assess the accuracy and stability we solve (1.76) with xHer
min = −1 and xHer

max = 1

and with initial data

U0(x) = V0(x) = sinω0πx. (1.82)

The solution is advanced to time t = 40 and the error

E = max
(

‖U0(·)− u(·, 40)‖∞, ‖V0(·)− v(·, 40)‖∞,

‖U0(·)− u0(·, 40)‖∞, ‖V0(·)− v0(·, 40)‖∞,

‖U0(·)− uNx−1(·, 40)‖∞, ‖V0(·)− vNx−1(·, 40)‖∞
)

,

(1.83)

is measured.

Performance comparison with a summation by parts discretization and a

Pade method

To study the performance of the Hermite-DG hybrid scheme we solve (1.76), with

ω0 = 5 to time t = 16 for matched order Hermite-DG and Taylor time stepping. We

keep the CFL number fixed (close to the limit of stability) and decrease the element

sizes and plot the time (start to end) it takes to complete the computation against

the error at t = 16. The number of Runge-Kutta time-steps used in the DG-element

are chosen close to the stability limit.
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Figure 1.15: Maximum error with CPU-time for m = 1, . . . , 7, using Hermite Runge-
Kutta, that is 3− 15th order in space and 4th order in time. SBP is summation by
parts with 8th in the interior, 4th order exterior. Pade is 4th order.

The same problem is then solved with Runge-Kutta time stepping and with

two different spatial discretizations, the classic fourth order accurate compact Pade

scheme [23] with fourth order closures at the boundary and the diagonal 4-8 sum-

mation by parts operators as given in appendix C.4 in [43].

The results are displayed in Figure 1.15. The maximum error is plotted against

the time it takes (start to end) to complete the computation. We observe that

for errors smaller than 0.1% the Hermite-DG methods of order greater than 3 are

more efficient than the finite difference methods. Obviously the the efficiency of the

methods will depend on the computer (in this case a MacBook 2GHz Intel Core 2
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Duo), yet the overall trend should be the same. For this hardware it appears that

the 9th order method is most efficient over a wide range of error levels.

1.4.4 Description of the hybrid method in two dimensions

This section describes in detail how we couple the Hermite and nodal discontinuous

Galerkin methods in 2D for general geometries. We will illustrate the algorithm

by applying it to Maxwell’s equations. We use Hermite-Taylor here because for a

constant coefficient system, it is more efficient to use Taylor series to solve the ODE

in time instead of Hermite-Runge-Kutta. In addition, a universal time step ∆tTaylorH

can be used on the Hermite domain. As in 1D, the discontinuous Galerkin method is

used to solve the equations along the boundary and the Hermite method is used in

the interior. The time step size comparison between Hermite-RK and Hermite-Taylor

can be seen in Figure 1.16 .

6

6

6

∆tDG ∆tRK
H ∆tTaylorH /2

tn

tn+ 1
2

- - -

- - -

Figure 1.16: Time step size for discontinuous Galerkin tDG, for Hermite-Runge-Kutta
tRK
H where Nsub,H = 4, for Hermite Taylor ∆tTaylorH , in a half time step.
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Consider the two-dimensional Maxwell’s equations in transverse magnetic form

(TM) and nondimensionalized in vacuum so that the magnetic permeability µ = 1,

and the electric permittivity ǫ = 1. That is:

∂Hx

∂t
= −∂E

z

∂y
, (1.84)

∂Hy

∂t
=

∂Ez

∂x
, (1.85)

∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
. (1.86)

We assume a perfect electric conductor (PEC) so that the boundary condition is that

the tangential component of the electric field, Ez, vanishes on the boundary.

Figure 1.17: A typical hybrid grid used in two dimensions. From the outside is the
discontinuous Galerkin grid (GDG) composed of all black triangles, the coupling grid
(GC), consisting of triangles with one red side and the Hermite grid (GH) consisting
of the squares in the middle.

We describe the algorithm for a simply connected geometry but note that it

is trivially extended to domains with holes. For a simply connected geometry the

domain can be discretized by three grids denoted: the discontinuous Galerkin grid,

GDG, the Hermite grid, GH, and the coupling grid, GC, see Figure 1.17. The grid GH
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consist of a staircased rectilinear grid filling as much as possible of the interior. The

coupling grid consist of one layer of rectangular elements immediately outside GH

that have been split into triangles. The DG grid consists of a triangulation that fills

the domain between GC and the boundary, see Figure 1.17. In short, we use Hermite

solver on GH, DG solver on GDG, both of the Hermite solver and the DG solver on

GC.

We use the Hermite solution on GH to calculate the numerical flux for the DG

solution on GC, and use the DG solution on GC to update the Hermite solution on

the dual grid of GC.

We now describe the individual stages in the algorithm in detail starting with

the evolution of the Hermite solution on GH for half a Hermite time step, ∆tH/2.

Hermite Taylor algorithm on a square domain

The dual Gd and primal Gp grid now consists of

(xi, yj) = (xHer
min + ihx, y

Her
min + jhy),

with i, j = 1
2
, 3

2
, . . . and i, j = 1, 2, . . . and Gd is slightly bigger than Gp. As before,

at the start of a time-step t = tn, the approximate solution at four adjacent vertices

on the primal grid are used to form a local power series (through the 2D Hermite

interpolation process) centered at one of the points on the dual grid

pi+1/2,j+1/2(x, y, tn) =
2m+1
∑

l1=0

2m+1
∑

l2=0

cl1,l2,0(
x− xi+1/2

hx
)l1(

y − yj+1/2

hy
)l2 . (1.87)

To advance (1.87) in time it is expanded in a Taylor series

pi+1/2,j+1/2(x, y, t) =
2m+1
∑

l1=0

2m+1
∑

l2=0

2m+1
∑

s=0

cl1,l2,s(
x− xi+1/2

hx
)l1(

y − yj+1/2

hy
)l2(

t− tn
∆t

)s,
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whose coefficients for s > 0 are determined by repeated differentiation of the PDE.

For example, considering the equation (1.86)

∂Ez

∂t
=
∂Hy

∂x
− ∂Hx

∂y
,

we may insert the Taylor series into and obtain the recursive relation of the coefficient

cE
z

l1,l2,s
as

cE
z

l1,l2,s =
∆t

hx

l1 + 1

s
cH

y

l1+1,l2,s−1 −
∆t

hy

l2 + 1

s
cH

x

l1,l2+1,s−1,

where

l1, l2 = 0, . . . , 2m+ 1− s, s = 1, . . . , 2m+ 1.

As in the one dimensional case, evolution in time is performed by evaluating the

Taylor series at tn+1/2 = tn +∆tH/2. We can relate the mixed derivatives at the half

time level to the coefficients

hl1x h
l2
y

l1!l2!

∂l1+l2u(xi+1/2, yj+1/2, tn+1/2)

∂xl1∂yl2
=

2m+1
∑

s=0

cl1,l2,s

(

∆tH
2

)s

, l1, l2 = 0, . . .m.

Discontinuous Galerkin solver with curved elements

The next step is to call the DG solver to evolve the solution on GDG and GC until

the DG time level reaches tDG = tn +∆tH/2. Again, the DG method we use is the

nodal-DG method by Hesthaven and Warburton [38]. On the Kth element DK , the

solution is approximated by an N = NDG − 1 degree polynomial

u(r) ≃ uKh (r) =

Np
∑

i=1

uK(ri, t)l
K
i (r),

where ri are the two-dimensional LGL grid points in D
K , Np = N(N + 1)/2 is the

number of nodal points in each element and lKi (r) is the multidimensional Lagrange

polynomial based on the grid points ri. For the curved elements along the boundary,
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the straight sides of the element, as well as the node locations, are changed to fit

the exact physical boundary. For details of the implementation of the nodal DG

methods on curvilinear we refer to [38, 37].

The local semi-discrete scheme is

∂Hx
h

dt
= −DyE

z
h +

1

2
(JM)−1

∫

∂DK

(n̂y[E
z
h] + α(n̂xJHhK− [Hx

h ]))l(x)dx,

∂Hyx
h

dt
= DxE

z
h +

1

2
(JM)−1

∫

∂DK

(−n̂x[E
z
h] + α(n̂yJHhK− [Hx

h ]))l(x)dx,

∂Ez
h

dt
= DxH

y
h −DyH

x
h +

1

2
(JM)−1

∫

∂DK

(n̂y[H
x
h ]− n̂x[H

y
h ]− α[Ez

h])l(x)dx,

where H = (Hx, Hy), M is the mass matrix, J is the Jacobian and Dx, Dy are the

derivative matrices. The normal vector is n̂ = (n̂x, n̂y), JuK = n̂− · u− + n̂+ · u+

represent the jump along the normal n̂, and [q] = q− − q+ = n̂ · JqK.

We set α = 1 for the numerical flux, which corresponds to the classic upwind

flux scheme. On the straight-sided triangles the differentiation and lift operators are

direct generalizations of the 1D operators. On the curvilinear elements differenti-

ation is performed by cubature and the lift integrals are implemented using Gauss

quadrature. the time stepping on all DG elements is done by the classic Runge-Kutta

method. Finally, a mirror principle is used to enforce the boundary condition on Ez

as follows

[Ez] = n̂ · JEzK = 2(Ez)−.

Communication between the discontinuous Galerkin and the Hermite

solver

In order to compute the numerical flux at the shared edges between GC and GH,
double nodal data values are recorded on that edge of the elements in GC. This

allows for the evolution of the DG solution on GC. The ”exterior” of the double
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nodal values are populated by evaluating the local Hermite-Taylor polynomial on

the Hermite elements adjacent to the GC at the required nodal locations along the

shared edges. As the DG solver has to take significantly smaller time steps, this is

done at multiple time levels tDG = tn + i∆tDG/2 < tn +∆tH/2.

Remark 3. We note that the using the function values from GH to construct the nu-

merical fluxes on elements in GC is similar to enforcing a time dependent boundary

condition, which causes a reduction of the order of convergence when Runge-Kutta

methods are used, see [1]. To correct for this we use corrected intermediate bound-

ary conditions as suggested in [1]. These conditions involve the time derivatives

of the solution which is easily computed as we know the space-time Hermite-Taylor

polynomial.

When the DG-solution has been evolved a full half step we must communicate

the derivative data needed by the Hermite solver. To achieve this we construct

a mapping that is used to communicate between two solvers on elements in GC.
Consider a 2D polynomial of order m centered at a rectangle with four vertices

(xi, yi) around (xc, yc)

p(x, y) =

m
∑

i=0

m
∑

j=0

ci,j

(

x− xc
hx

)i(
y − yc
hy

)j

.

Here hx, hy are the length of the sides to the rectangle and cij are scaled derivatives

of p(x, y) at (xc, yc)

cij =
hix
i!

hjy
j!
p(x, y)|(xc,yc).

Evaluating p(x, y) at a nodal point (xp, yp) is equivalent to the scalar-product,

p(xp, yp) =MpC
T ,
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where Mp, C are row vectors

Mp =

[

(

x− xc
hx

)0(
y − yc
hy

)j

,

(

x− xc
hx

)1(
y − yc
hy

)j

, . . . ,

(

x− xc
hx

)m(
y − yc
hy

)j

, . . .

]

(1.88)

C = [c0,0, c1,0, . . . , cm,0, . . . , c0,j, c1,j, . . . , cm,j . . . ] , j = 0, . . .m. (1.89)

For a set of Np nodal points this can be formulated as an Np ×Np mapping matrix

MP = [M1
p , . . . ,M

Np
p ]T multiplying CT so that the equation

MP × CT = [p(x1p, y
1
p), p(x

1
p, y

1
p), . . . , p(x

Np
p , yNp

p )]T , (1.90)

can be used to map the nodal data to the scaled derivatives. Once the Hermite data

is known the solution process can be repeated in the same way on the dual grid.

This concludes a full time step.

As discussed in Section 1.4.4, the derivative data in the communication elements

is obtained from MP which in turn is constructed by evaluating Mp at different

nodal points. As there is a double set of nodes at the interface between the two

triangles inside each communication element (see Figure 1.18) we can choose to use

the points from either of the elements or the average. We have found that the choice

of points has little or no effect and to this end we use the values from the upper

triangle. The nodes we use to communicate between DG elements and the Hermite

cell can be viewed in Figure 1.18, where the mapping is between all the nodal values

from two triangular elements and the x−, y− derivatives around the center of the

square. The mapping is shown in Table 1.5; we map the nodal value to the derivatives

and back into nodal values, the error is then calculated from the nodal value.
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Figure 1.18: Node (LGL) location of two adjacent triangular elements in GC for
m = 3, NDG=7.

m h Error ratio
1 0.1 7.67(E-02)
1 0.08 3.07(E-02) 4.1
1 0.05 6.27(E-03) 3.4
2 0.1 2.93(E-03)
2 0.08 7.98(E-04) 5.8
2 0.05 5.88(E-05) 5.5
3 0.1 2.99(E-05)
3 0.08 5.35(E-06) 7.7
3 0.05 1.29(E-07) 7.9
4 0.1 4.08(E-07)
4 0.08 4.51(E-08) 9.9
4 0.05 4.04(E-10) 10.0

Table 1.5: Maximum mapping error between Hermite derivative data and DG nodal
data, where h is the length of the square element, ratio is the rate of convergence, m
is the degree of the Hermite-Taylor polynomial, and the degree of polynomial used
in DG is N = 2m.

1.4.5 Numerical experiments for Maxwell’s equations in two

dimensions

Hermite discontinuous Galerkin method on a square

We begin our two dimensional experiment without a curved boundary. We solve

TM Maxwell’s equation (1.84)-(1.86) on the square domain [−1, 1] × [−1, 1], with
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the initial condition:

Ez = sin(2πx) sin(2πy) , Hx = Hy = 0. (1.91)

The boundary condition (PEC) is now Hx = 0 at the left and right boundary (i.e.

at x = −1, x = 1), and Hy = 0 at the top and bottom boundary (i.e. at y = −1,
y = 1). The exact solution to this problem is

Ez = sin(2πx) sin(2πy) cos(
√
8πt), (1.92)

Hx = − 1√
2
sin(2πx) cos(2πy) sin(

√
8πt), (1.93)

Hy =
1√
2
cos(2πx) sin(2πy) sin(

√
8πt). (1.94)
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Figure 1.19: Grids for the HDG (left), DG only (right) methods solving TM Maxwell
equation on a square [−1, 1]× [−1, 1] domain, with h = 0.125.

We first solve the equations using only the DG method on grids as shown to the

right in Figure 1.19 and with different h. Then we solve the same equations using

the hybrid method using a grid as shown to the left in Figure 1.19. The results

are displayed in Table 1.6. The maximum error is of the same order between HDG
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and DG. For DG methods, the computation cost is approximately 8 times larger,

when the mesh size h is cut by half. While for the HDG methods, the computation

cost only becomes approximately 4 times larger. As a matter of fact, the HDG

methods will be one dimensional faster than the DG, because the Hermite methods

are so efficient in the interior and the majority of the computation cost is along

the boundaries and from the communication between the Hermite cells and the DG

elements. For NDG = 6, 8 the error in time becomes dominant so that we can not

see the actual rate of convergence which suggests a smaller time step is required to

keep the error in space and time of the same magnitude.

Hermite discontinuous Galerkin method on a disc

Our experiment with curved boundary in two dimensions is the evolution of a reso-

nant mode of the unit disc. Precisely the mode we consider here is

Ez = J6(α6r) cos(6θ) cos(α6t), (1.95)

Hx =
sin(α6t)

α6

(

6J6(α6r) cos(θ)

r
sin(6θ)− α6 sin(θ) cos(6θ)

(J5(α6r)− J7(α6r))

2

)

,

(1.96)

Hy =
sin(α6t)

α6

(

6J6(α6r) sin(θ)

r
sin(6θ)− α6 cos(θ) cos(6θ)

(J5(α6r)− J7(α6r))

2

)

,

(1.97)

which is a solution to the TMMaxwell’s equation in a unit radius, cylindrical, metallic

cavity. Here Jl(z) is the lth Bessel function of the first kind and

α6 = 13.589290170541217. This mode has six periods in the azimuthal direction and

one ”period” in the r direction. The solution at t = 1 of the Ez field is shown in

Figure 1.20.
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h m NDG Error Rate
0.25 2 1.86(E-01)
0.125 2 1.26(E-02) 3.9
0.0625 2 1.73(E-03) 2.9
0.25 4 3.80(E-03)
0.125 4 1.54(E-04) 4.6
0.0625 4 5.02(E-06) 4.9
0.25 6 6.43(E-05)
0.125 6 6.60(E-07) 6.6
0.0625 6 2.86(E-08) 4.5
0.25 8 1.81(E-06)
0.125 8 7.32(E-08) 4.6
0.0625 8 4.43(E-09) 4

0.25 1 2 4.13(E-01)
0.125 1 2 9.06(E-02) 2.2
0.0625 1 2 1.45(E-02) 2.6
0.25 2 4 1.62(E-02)
0.125 2 4 5.71(E-04) 4.8
0.0625 2 4 1.62(E-05) 5.1
0.25 3 6 2.53(E-04)
0.125 3 6 1.45(E-06) 7.4
0.0625 3 6 1.92(E-08) 6.2
0.25 4 8 1.04(E-05)
0.125 4 8 7.14(E-08) 7.2
0.0625 4 8 1.19(E-08) 2.6

Table 1.6: Results of the HDG (bottom), and DG (top) methods solving TMMaxwell
equation on a square [−1, 1]×[−1, 1] domain, at T = 5. m is the order of polynomials
used in the Hermite cells, NDG is the order of the polynomials used in the DG
elements. Theoretical rate of convergence of the Hermite methods is 2m+ 1, and of
the DG method is NDG +1. Rate is the actual rate of convergence on three different
grids.

On the DG elements it is straightforward to use the above formulas for the ini-

tialization, for the Hermite method we use the mapping MP to assign the initial

derivative data.
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Figure 1.20: The solution at t = 1 of the Ez field.
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Figure 1.21: Three different HDG grids used in the numerical experiment with hx =
hy = 0.1, 0.08, 0.05, where hx = hy is the length of the sides of the square elements.
The length of the sides of the triangular elements are roughly the same sides as those
of the squares.

The computations are carried out on three grids with grid spacing

hx = hy = 0.1, 0.08, and 0.05 as shown in Figure 1.21.
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Grid generation The process of HDG grid generation is shown in Figure 1.22.

First we determine the grids of the Hermite method GH, in this case, a [−0.5, 0.5]×
[−0.5, 0.5] square domain. Then we create the coupling grids GC along the outside

boundary of the Hermite grids GH. Finally, we use DISTMESH [69] by Persson and

Strang, to generate the triangular DG elements between the coupling grids GC and

the physical boundary, with the fixed nodes being exact the nodes in the exterior

boundary of the coupling grids GC. We have modified DISTMESH so that there are

no nodes located between the nodes of the coupling grid GC. A more efficient HDG

grid, can be constructed by stair casing the Hermite grid so that more Hermite cells

are included can be generated in a similar way see Figure 1.23, the thickness of the

DG grids GDG can be adjusted to make the grids more efficient.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.22: The process of HDG grid generation.

As discussed in Section 1.4.4, the derivative data in the communication elements

is obtained from MP which in turn is constructed by evaluating Mp at different

nodal points. As there is a double set of nodes at the interface between the two

triangles inside each communication element (see Figure 1.18) we can choose to use

the points from either of the elements or the average. We have found that the choice

of points has little or no effect and to this end we use the values from the upper

triangle.
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Figure 1.23: The process of HDG grid generation.

In Table we display the maximum error and convergence rates for different m at

the final time T = 5. The time step in the DG elements has been chosen to match

the order of accuracy of the Taylor time stepping used in the Hermite elements.

m h K CFL ∆tDG Error rate
1 0.1 447 0.8 1.08(E-02) 3.57(E-02)
1 0.08 666 0.8 9.03(E-03) 2.26(E-02) 2.1
1 0.05 1525 0.8 5.71(E-03) 6.09(E-03) 2.8
2 0.1 447 0.8 5.11(E-03) 3.20(E-04)
2 0.08 666 0.8 4.29(E-03) 4.61(E-05) 8.7
2 0.05 1525 0.8 2.71(E-03) 3.92(E-06) 5.2
3 0.1 447 0.7 2.88(E-03) 6.80(E-06)
3 0.08 666 0.7 2.42(E-03) 1.66(E-06) 6.3
3 0.05 1525 0.7 1.53(E-03) 7.21(E-08) 6.7
4 0.1 447 0.7 1.83(E-03) 1.37(E-08)
4 0.08 666 0.7 8.56(E-04) 1.42(E-09) 10.1
4 0.05 1525 0.7 4.09(E-04) 1.68(E-11) 9.4

Table 1.7: Maximum error at final time T = 5 of approximate solution of Maxwell’s
equations in a unit disc by the hybrid method. Here h is the length of the sides on
the square elements, K is the number of triangular element in GDG and GC, rate is
the rate of convergence, m refers to the number of derivatives. The time step in the
DG elements, ∆tDG, is chosen to match the error in the rest of the method.
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m errorl2 error∞
2 11.52 % 13.96 %
3 0.59 % 0.80 %

Table 1.8: Relative error of the solution Ez as illustrated in Figure 1.24.

Resonant modes in a complex geometry

As a final example we solve Maxwell’s equation, (1.84) - (1.86), in a complex geometry

consisting of a polygonal perfect electric conductor. The geometry is shown in Figure

1.25. To find the resonant modes we evolve the initial data

Ez(x, y, 0) = e−200((x−0.3)2+(y−0.1)2), Hx(x, y, 0) = 0, Hy(x, y, 0) = 0,

until time 100 and record Ez in the point (x, y) = (−0.1, 0.7) throughout the com-

putation. The time trace from the recorder is plotted in Figure 1.24 and a plot of

Ez at t = 100 can be found in Figure 1.25.

As can be seen the solution has many ”periods” over the interval [0, 100] which

will make it difficult to obtain an accurate solution. To estimate the error in the

solution we use m = 4, N = 2m, ∆tHer = 0.04 to compute a reference solution. Using

the reference solution we repeat the computation with m = 2 and 3 and compute

the l∞ and l2-norm (in time) errors. The errors, given in Table 1.8, are quite big

for m = 2 but probably small enough for engineering purposes for m = 3 and,

presumably, even smaller for m = 4 (used in the computations below).

To find resonant frequencies we take the Fourier transform, in time, of the time

trace. From the peaks in the spectrum, displayed in Figure 1.24, it is easy to identify

the resonant frequencies. The shape of any of the resonant modes can be obtained

by forcing the solution with a signal with the corresponding resonant frequency. To

demonstrate this we pick the first resonant frequency, ω0 ≈ 0.359, and add a forcing
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Figure 1.24: Top: The solution at the point (x, y) = (−0.1, 0.7) for time 0 to 100
using m = 4, N = 2m and ∆tHer = 0.04. Left: The solution Ez at t = 100 in the
whole region. Right: Linear growth of the solution forced at a resonant frequency.

term to the equation for the electric field

∂Ez

∂t
=
∂Hy

∂x
− ∂Hx

∂y
+ 25 sin(ω0t)e

−200((x−0.3)2+(y−0.1)2). (1.98)

Recording the solution in the same point the expected linear growth is clearly ob-

served, see Figure 1.24. The Ez-field, obtained with this forcing, at time t = 14.76

is displayed in Figure 1.25.
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Figure 1.25: Top: The grid used in the numerical experiment for a complex geometry
with h ≈ 0.05. Left: The solution Ez at t = 100 in the whole region obtained with
no forcing but initial data. Right: Ez at time t = 14.76 obtained with the resonant
forcing term (1.98).
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Scattering from a lossless sphere

2.1 Introduction

In this chapter, we study a fundamental issue in scattering theory concerning the

scattering poles of a lossless sphere. The motivation comes from the Singularity

Expansion Method (SEM), where in practice we only deal with first order poles

most of the time. However, a theoretically interesting question is whether there exist

second or higher order scattering poles in both the acoustic and electromagnetic

cases.

Here, Mie theory is used to solve the acoustic and electromagnetic scattering

problems for spheres with lossless boundary conditions and an incident plane wave.

For certain lossless impedance boundary conditions we construct second order poles

in the acoustic and electromagnetic cases. A general procedure to directly construct

lossless impedance boundary conditions producing high order poles is discussed.

The Singularity Expansion Method (SEM) [13, 16] was introduced in 1971 as a

way to represent the solution of electromagnetic interaction or scattering problems

in terms of singularities in the complex-frequency (s of two-sided-Laplace-transform)
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plane. Particularly for the pole terms associated with a scatterer (natural frequen-

cies), their factored form separates the dependencies on various parameters of the

incident field, observer location, and scatterer characteristics, with an equally sim-

ple form in both the frequency (poles) and time (damped sinusoids) domain. An

example of the SEM form of the surface current density solution [19, 15] is

~̃Js(~rs, s) = E0

∑

α

f̃(sα)ηα(~11,~1p)~jsα(~rs)[s− sα]−1e−(s−sα)t0

+ singularities of f̃(s) + possible entire function, (2.1)

where only first-order poles have been included.

The incident field in the scattering problems considered here is taken as a plane

wave with electric field

~̃E(inc)(~r, s) = E0f̃(s)~1pe
−γ~11·~r, ~E(inc)(~r, s) = E0f(t−

~11 · ~r
c

)~1p. (2.2)

Here γ = s/c, s is the complex frequency (Laplace-transform variable), c is the speed

of light, ~11 is the direction of incidence, ~1p is the direction of polarization, f(t) is

the wave form, ∼ stands for two-sided Laplace transform, ~rs is the coordinate of the

surface of scatterer, sα is natural frequency, γα = sα/c, and ~jsα is natural mode. The

coupling coefficient ηα is defined as

ηα(~11,~1p) =

~1p ·
〈

e−γα~11·~rs,~jsα(~rs
′)
〉

〈

~jsα(~rs);
∂
∂s

←→
Zt (~rs, ~rs ′; s)|s=sα;~jsα(~rs

′)
〉 , (2.3)

where the kernel
←→
Zt (~rs, ~rs

′; s) is symmetric and involves the free-space dyadic Green’s

function, the symbol 〈 ; ; 〉 denotes symmetric product integration over the common

coordinates.

Although we typically only encounter first order scattering poles, an interesting

question concerning the SEM is the existence of higher order scattering poles. Previ-

ously, Baum showed that 2nd order poles can be constructed for a transmission line
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problem [18]. As the transmission line problem is finite-dimensional, the scattering

matrix can be used directly to find the poles (i.e. the eigenvalues). Here we focus on

the infinite dimensional case and consider, as an example, a classical model problem,

the scattering of a plane wave from a sphere.

Our main result is that higher order poles can be constructed for certain

impedance boundary conditions for the acoustic scattering problem, while for hard

and soft spheres, we find that there only exist first order scattering poles. For

electromagnetic scattering problems, we find that there only exist simple poles for

a perfectly conducting spherical scatterer. For a surface impedance loaded sphere,

certain impedance boundary condition can be constructed in a way that is equivalent

to the acoustic scattering case, thus arbitrary order scattering poles can be generated.

For a sheet impedance loaded sphere, we only find a second order scattering pole for

a non-physical case, which leads to the conjecture that there only exist first order

scattering poles in this case. Foster’s theorem is applied to the impedance boundary

condition to ensure that the scatterer is lossless.

2.2 Scattering from a lossless acoustic sphere

Consider an incident plane sound wave propagating in some direction being scattered

off a sphere; see Figure 2.1. An explicit formula for the scattered solution can be

written in terms of spherical harmonics. By imposing different boundary condition

on the scatterer, we are able to construct first, second and higher order poles. Foster’s

theorem is applied to the impedance boundary condition to ensure that the system

is lossless.
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Figure 2.1: Scattering from a lossless sphere

2.2.1 Formulation of the acoustic scattering

The equation of linear acoustics are

∂ρ

∂t
+ ρ0∇ · v = 0, (2.4)

ρ0
∂v

∂t
+∇p = 0, (2.5)

p = c2ρ, c2 =
(∂p

∂ρ

)

0
, (2.6)

where p is the acoustic pressure, ρ is the density, v is the fluid velocity, and c is

the speed of sound. Consider a scattering problem for the above equation with an

incident plane wave and some different but lossless boundary conditions on a sphere.

In this case the SEM is just to use spherical harmonics to solve the equation so that

the scattering poles can be located.

We first derive the wave equation from the above equations, so that later on

we can treat the problem mathematically, disregarding the physical meaning of the
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variables. Inserting p = c2ρ into (2.4) gives

∂p

∂t
+ c2ρ0c

2∇ · v = 0, (2.7)

ρ0
∂v

∂t
+∇p = 0. (2.8)

Taking the time derivative of the equation (2.7) and eliminating ∂v
∂t

we find

∂2p

∂t2
+ ρ0∇ · (−

1

ρ0
∇p) = 0,

⇒ ∂2p

∂t2
− c2∇2p = 0. (2.9)

Similarly for v we have

∂2v

∂t2
+

1

ρ0
∇(−ρ0c2∇ · v) = 0 (2.10)

⇒ ∂2v

∂t2
− c2∇(∇ · v) = 0. (2.11)

Assuming v is irrotational (i.e. ∇×v = 0), then ∇(∇·v) = ∇2v, we obtain the wave

equation

∂2v

∂t2
− c2∇2v = 0. (2.12)

Let u be either p or v and perform a Laplace transformation of the wave equation

(2.12) to derive

(∇2 − γ2)û = 0, where γ =
s

c
. (2.13)

Let the scatterer be a sphere with radius 1 and assume that the impedance boundary

condition has the following form

∂û

∂n
+ α(s)û = 0, at r = 1, (2.14)

where n is the outward normal. Let the plane wave be

û(inc) = e−γ(0,0,1)·(x,y,z) = e−γz, (2.15)

then the scattered solution û(sc) can be solved explicitly from (2.13),(2.14),(2.15).

We study the behaviour of the scattering problem as a function of the boundary

conditions in the following sections.
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2.2.2 Hard and soft spherical scatterer

First, let us relate the mathematical impedance function α(γ) to the actual acoustic

impedance Za(s), where the units of acoustic impedance are Pa · s/m or kg/(m2 · s).
By definition

Za(s) =
p̂(r, s)

v̂(r, s) · nin

= ρ0v̂(s), (2.16)

where p̂, v̂ are the Laplace transforms of p, v and nin is the inward normal. First

perform a Laplace transformation of the equation (2.5), to derive sv̂ + 1
ρ0
∇p̂ = 0.

Then take the inner product with the outward normal direction n, to obtain

sv̂ · n +
1

ρ0

∂p̂

∂n
= 0

⇒ ∂p̂

∂n
= −ρ0sv̂ · n. (2.17)

The acoustic impedance can be written as

Z(s) =
p̂

v̂ · nin
=

p̂
∂p̂
∂n

ρ0s. (2.18)

Now inserting (2.17) to (2.14), assuming the impedance boundary condition is on

pressure (i.e. u = p here), we can relate the mathematical impedance condition to

the acoustic impedance boundary condition in the following way

p̂

v̂ · nin
= − ρ0s

α(s)
= Z(s). (2.19)

The infinite specific-acoustic-impedance limit of |Z| (i.e. |Z| → ∞) corresponds to a

hard( rigid) surface, and the limit when Z goes to zero (i.e. |Z| → 0) corresponds to

a soft (pressure-release) surface. Thus, for a hard sphere scatterer the mathematical

impedance boundary condition become ∂û
∂n

= 0 and for the soft sphere scatterer

û = 0. To find an expression for the scattered field, expand the incident and scattered
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solution in terms of Legendre polynomials [44],

û(inc) = e−γz = e−γr cos θ =

∞
∑

n=0

(2n+ 1)(−1)nin(γr)Pn(cos θ), (2.20)

û(sc) =

∞
∑

n=0

m=n
∑

m=−n

anm(γ)kn(γr)Y
m
n (θ, ϕ) (2.21)

=
∞
∑

n=0

an(γ)kn(γr)Pn(cos θ), (2.22)

where kn(s) is the modified Bessel’s function, an(γ) is the coefficient to be determined.

Matching the impedance boundary condition to a hard or soft sphere respectively at

r = 1, we can use the expression for the total field to find û = û(inc) + û(sc)

∂û
(sc)
hard

∂n
= −∂û

(inc)
hard

∂n
, (2.23)

û
(sc)
soft = −û

(inc)
soft . (2.24)

Here the outward normal n is just r. The scattered solutions are

û
(sc)
hard =

∞
∑

n=0

(−1)n+1(2n+ 1)[γi′n(γ)]

γk′n(γ)
kn(γr)Pn(cos θ), (2.25)

û
(sc)
soft =

∞
∑

n=0

(−1)n+1(2n+ 1)[γin(γ)]

kn(γ)
kn(γr)Pn(cos θ). (2.26)

Since the modified spherical Bessel function kn and its derivative only have simple

zeros [16], for both the hard and soft sphere scatterer, the scattered solution û(sc)

only has simple poles.

2.2.3 Lossless impedance loading of a sphere

To ensure that the spherical scatterer is lossless, we consider the total energy defined

in the usual way

ED =

∫ ∫ ∫

D

1

2
(u2t + |∇u|2)dV,

64



Chapter 2. Scattering from a lossless sphere

where D is the region of the scatterer. Differentiate the energy in time

dED

dt
=

∫ ∫ ∫

D

(ututt +∇uT · ∇ut)dV (2.27)

=

∫ ∫ ∫

D

ut(utt −∇2u)dV +

∫

∂D

utuνdS (2.28)

=

∫ ∫

∂D

utuνdS. (2.29)

Then, according to Parseval’s Theorem [39] the net energy flux is

∫ ∫

∂D

sû(s) · ∂û(y, s)
∂r

dS, (2.30)

and in our case D is a sphere. Applying the impedance boundary condition, the net

energy flux term becomes

−
∫ ∫

∂D

sα(s)|û(y, s)|2dS. (2.31)

For a lossless scatterer, the total energy change should be zero, which implies

∫ i∞

−i∞

∫ ∫

∂D

sû(s) · ∂û(y, s)
∂r

dS = 0. (2.32)

This suggests that (2.30) should be odd, α(s) should be even and Z(s) be odd.

Mathematically, this condition is sufficient to guarantee that energy is conserved.

However, in order to extend our results later on to the electromagnetic scattering

case, we need to put more constraints on Z(s) or equivalently on α(s), namely, Z(s)

should satisfy Foster’s theorem to ensure that the scatterer is lossless.

Foster’s theorem

A positive real function F (s) is an analytic function of the complex variable s, which

has the following properties:
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1. F (s) is regular(analytic) for σ > 0,

2. F (σ) is real,

3. σ ≥ 0 implies ℜ[F (s)] > 0.

A reactance function is a positive real function that maps the imaginary axis into the

imaginary axis. Foster’s theorem can be formulated in the following way, as shown

in [12].

Theorem 2.2.1. A positive real rational function of s is a reactance function if and

only if all of its poles and zeros are simple, lie on the jω-axis, and alternate with

each other. In other words

ψ(s) = K
s(s2 + ω2

1)(s
2 + ω2

3) · · · (s2 + ω2
2n−1)

(s2 + ω2
0)(s

2 + ω2
2) · · · (s2 + ω2

2n)
, (2.33)

is a reactance function, where K > 0, 0 ≤ ω0 < ω1 < · · · < ω2n−1 < ω2n <∞.

Second order poles

Inserting (2.20), (2.22) to the boundary condition (2.14), where û = û(inc)+ û(sc), the

general expansion of the scattered solution for the impedance boundary condition

can been written as

û(sc) =
∞
∑

n=0

(−1)n+1(2n+ 1)[α(s)in(s) + si′n(s)]

α(s)kn(s) + sk′n(s)
kn(sr)Pn(cos θ). (2.34)

For simplicity, assume c = 1 here, so γ = s. The far field pattern solution, following

from kn(sr) ∼ e−rs/s [44]

û(sc)∞ =
e−sr

r

∞
∑

n=0

(−1)n+1(2n+ 1)[α(s)in(s) + si′n(s)]

s(α(s)kn(s) + sk′n(s))
Pn(cos θ). (2.35)

In order to construct a second order pole we need both the denominator and the

derivative of the denominator in the formula for the scattered solution to be zero at
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some specific s = sp. That is, the denominator equals zero,

sα(s)kn(s) + s2
d

ds
kn (s) = 0, (2.36)

and the derivative of the denominator equals zero,

α (s) kn (s)+ s

(

d

ds
α (s)

)

kn (s)+ sα (s)
d

ds
kn (s)+2s

d

ds
kn (s)+ s

2 d
2

ds2
kn (s) = 0.

(2.37)

Note that we don’t need to solve the above system of ODEs, because equations only

need to hold at one specific point s = sp for some pre-chosen impedance boundary

condition α(s). Using Bessel’s equation, we can replace the second derivative term

with the lower order terms

s2
d2

ds2
kn (s) = −2 s

d

ds
kn (s) +

(

s2 + n (n+ 1)
)

kn (s) . (2.38)

Solving (2.36) and (2.37) by eliminating d
ds
kn (s) we derive

kn (s) (s

(

d

ds
α (s)

)

+ a(s)− α (s)2 + s2 + n2 + n) = 0. (2.39)

For kn(s) 6= 0 we have

sα′ + s2 + α + n(n + 1)− α2 = 0. (2.40)

When n = 1, k1(s) = π
2
s+1
s2
e−s, [44]. Solving (2.36) and (2.40) for α(s) and α′(s)

respectively, we obtain

α(s) =
s2 + 2 s+ 2

s+ 1
, α′(s) =

s (s+ 2)

s2 + 2 s+ 1
. (2.41)

Note that differentiation of α(s) is not allowed here, since (2.41) holds just at one

particular value s = sp. The solution we derived above simply means that, if we

want to construct a 2nd order pole at sp, the impedance function α(s) should satisfy

the following conditions:
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1. α(s) should be an even function,

2. The value of α(s) at sp equals sp2+2 sp+2
sp+1

,

3. The value of α′(s) at sp equals sp(sp+2)
sp2+2 sp+1

.

For example, if we choose sp = −2, then α(sp) = −2, α′(sp) = 0. Assume α(s) has

the following form

α(s) =
c1 + c2s

2

1 + c3s2
. (2.42)

Then we may solve
(

c1 + c2s
2

1 + c3s2

)

|s=−2 = −2,
d

ds

(

c1 + c2s
2

1 + c3s2

)

|s=−2 = 0, (2.43)

to obtain α(s) ≡ −2. Also when n = 1 the denominator of the scattered solution

û(sc) is

−2sk1(s) + s2k′1(s) =
π

2

(s+ 2)2

s
e−s. (2.44)

Thus, a 2nd order pole at s = −2 is obtained. Note that Foster’s theorem is satisfied

and the pole location must be in the left half plane (negative if it is real).

Third order poles

The procedure is similar to generating the 2nd order pole except that we need an

extra second derivative of the denominator to equal zero at some s = sp. That is,

we organize

sα (s) kn (s) + s2
d

ds
kn (s) = 0, (2.45)

α (s) kn (s) + s

(

d

ds
α (s)

)

kn (s) + sα (s)
d

ds
kn (s)

+ 2s
d

ds
kn (s) + s2

d2

ds2
kn (s) = 0, (2.46)
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2

(

d

ds
α (s)

)

kn (s) + 2α (s)
d

ds
kn (s) + s

(

d2

ds2
α (s)

)

kn (s)

+ 2s

(

d

ds
α (s)

)

d

ds
kn (s) + sα (s)

d2

ds2
kn (s) + 2

d

ds
kn (s)

+ 4s
d2

ds2
kn (s) + s2

d3

ds3
kn (s) = 0. (2.47)

Using the following equations derived from Bessel’s equation to replace the higher

derivative terms with lower order terms,

s2
d3

ds3
kn (s) =− 4 s

d2

ds2
kn (s)− 2

d

ds
kn (s) + 2 skn (s)

+
(

s2 + n (n+ 1)
) d

ds
kn (s) , (2.48)

s2
d2

ds2
kn (s) = −2 s

d

ds
kn (s) +

(

s2 + n (n+ 1)
)

kn (s) , (2.49)

d

ds
kn (s) = −

α (s) kn (s)

s
, (2.50)

equations (2.46), (2.47) can be reduced to

kn (s)

(

α (s) + s
d

ds
α (s)− (α (s))2 + s2 + n2 + n

)

= 0, (2.51)

kn (s)

(

2
d

ds
α (s) + s

d2

ds2
α (s)− 2

(

d

ds
α (s)

)

α (s) + 2 s

)

= 0. (2.52)

Solving (2.45), (2.51), (2.52) for α, α′, α′′ respectively, we find

α(s) = −s
d
ds
kn (s)

kn (s)
|s=sp, (2.53)

α′(s) =
1

s (kn (s))
2 [s

(

d

ds
kn (s)

)

kn (s) + s2
(

d

ds
kn (s)

)2

− s2 (kn (s))2

− n2 (kn (s))
2 − n (kn (s))2]|s=sp, (2.54)

69



Chapter 2. Scattering from a lossless sphere

α′′(s) =
2

s2 (kn (s))
3{−s

(

d

ds
kn (s)

)

(kn (s))
2 − 2kn (s) s

2

(

d

ds
kn (s)

)2

+ n2 (kn (s))
3 + n (kn (s))

3 − s3
(

d

ds
kn (s)

)3

+ s3
(

d

ds
kn (s)

)

(kn (s))
2

+ s

(

d

ds
kn (s)

)

n2 (kn (s))
2 + s

(

d

ds
kn (s)

)

n (kn (s))
2}|s=sp. (2.55)

When n = 2, k2(s) =
1
2

π e−s(s2+3 s+3)
s3

, we have

α(sp) =
s3p + 4s2p + 9sp + 9

s2p + 3sp + 3
, (2.56)

α′(sp) =
sp(s

3
p + 6s2p + 12sp + 6)

(s2p + 3sp + 3)2
, (2.57)

α′′(sp) =
6(3 + s3p + 6s2p + 9sp)

(s2p + 3sp + 3)3
. (2.58)

Thus, the impedance function should be constructed to meet the following require-

ments:

1. α(s) should be an even function,

2. The value of α(s) at sp equals
s3p+4s2p+9sp+9

s2p+3sp+3
,

3. The value of α′(s) at sp equals
sp(s3p+6s2p+12sp+6)

(s2p+3sp+3)2
,

4. The value of α′′(s) at sp equals
6(3+s3p+6s2p+9sp)

(s2p+3sp+3)3
.

If we choose sp = −4, then α(−4) = −27
7
, α′(−4) = 40

49
, and α′′(−4) = − 6

343
. Assume

α(s) has following form

α(s) =
c1 + c2s

2

1 + c3s2
. (2.59)

Then, after some calculation, we obtain

α(s) =
−47

27
− 11

54
s2

1 + 1
54
s2

=
−11(s2 + 94

11
)

s2 + 54
. (2.60)
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The denominator of the scattered solution û(sc) when n = 2 is

π

2

e−s (s2 + 3 s+ 12) (s+ 4)3

s2 (54 + s2)
. (2.61)

Therefore, a 3rd order pole has been constructed at s = −4.

Arbitrary order poles

We can generate high order poles by repeating the above procedure. This can be

viewed a the Taylor series around the pole location sp < 0. To begin with, we

introduce some properties of the modified Bessel function [35];

−sk
′
l(s)

kl(s)
= s + 1 + Ŝl(s), (2.62)

where, for l 6= 0,

Ŝl(z) =
Pl(z)

Ql(z)
, (2.63)

Pl(z) =
l−1
∑

k=0

(2l − k)!
k!(l − k − 1)!

(2z)k, (2.64)

Ql(z) =

l
∑

k=0

(2l − k)!
k!(l − k)!(2z)

k. (2.65)

We also have the following continued fraction representation for Ŝl

Ŝl(z) =
l(l + 1)

2

1

z + 1 + l(l+1)−1·2
4(z+2+

l(l+1)−2·3
4(z+3+... )

)

. (2.66)

Thus, it is possible for us to rewrite

kl(s) =
k
(1)
l (s)

k
(2)
l (s)

e−s

s
, (2.67)

where, k
(1)
l (s), k

(2)
l (s) are polynomials in s. Suppose the impedance function α(s)

has the following form

α(s) = −c0
(s2 + a0)(s

2 + a2) · · · (s2 + ak)

(s2 + a1)(s2 + a3) · · · (s2 + a2n−1)
= −c0

α1(s)

α2(s)
, (2.68)
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where,

c0 > 0, 0 ≤ a0 < a1 < a2 < · · · < a2n−2 < a2n−1 < a2n <∞, (2.69)

and α1(s), α2(s) are polynomials. For example, for a 2nd order pole we assume 2

free parameters, thus α(s) can been chosen

α(s) = −c0(s2 + a0). (2.70)

For a 3rd order pole we need 3 free parameters, thus α(s) can been chosen

α(s) = −c0
(s2 + a0)

(s2 + a1)
. (2.71)

For a 4th order pole we need 4 free parameters, thus α(s) can been chosen

α(s) = −c0
(s2 + a0)(s

2 + a2)

(s2 + a1)
, (2.72)

and so on. The denominator of the scattered solution û(sc) can now be written as

−k
(1)
n (s)

k
(2)
n (s)

e−s

s

(

c0
α1(s)

α2(s)
+ s+ 1 + Ŝn(s)

)

. (2.73)

If we want to construct a j−th order pole at sp, we need to choose the correct

power of α1(s), α2(s), set n = j−1, and rewrite the numerator of (2.73) using Taylor

expansion around sp,

k(1)n (s)
(

c0α1(s)Q̂n(s) + α2(s)P̂n(s)
)

=

j−1
∑

i=0

βi(s− sp)i +O((s− sp)j). (2.74)

Here s + 1 + Ŝn(s) = s + 1 + Pn(s)
Qn(s)

= P̂n(s)

Q̂n(s)
. We choose c0, a0, a1, . . . aj−2 so that

βi = 0 for i = 0, . . . j − 1. Note that we want c0 and aj to satisfy our assumptions

(2.69). Following the process we discussed above, the denominator of the scattered

solution û(sc) will generate a j−th order zero. Thus, a lossless impedance function

α(s) which will produce a j−th order pole at sp is constructed.
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Let’s go over the process to generate a 3rd pole again using the Taylor method

at s = sp, so j = 3, n = 2,

α(s) = −c(s
2 + a)

(s2 + b)
, (2.75)

k2(s) =
e−s

s

(s2 + 3s+ 3)

s2
, (2.76)

s+ 1 + Ŝn(s) =
P̂n(s)

Q̂n(s)
=
s3 + 4 s2 + 9 s+ 9

s2 + 3 s+ 3
. (2.77)

According to (2.74), the zeros are determined by

(s2 + 3s+ 3)
(

c(s2 + a)(s2 + 3 s+ 3) + (s2 + b)(s3 + 4 s2 + 9 s+ 9)
)

. (2.78)

Expanding (2.78) around s = sp, we obtain the coefficients

β0 = sp
7 + 18 csp

3 + 7 bsp
4 + bsp

5 + csp
6 + 6 casp

3 + 9 csp
2 + 24 sp

5 + 7 sp
6

+ 15 casp
2 + casp

4 + 48 sp
4 + 6 csp

5 + 54 sp
3 + 24 bsp

3 + 15 csp
4

+ 54 bsp + 18 casp + 27 sp
2 + 27 b+ 48 bsp

2 + 9 ca, (2.79)

β1 = 54 csp
2 + 7 sp

6 + 30 casp + 4 casp
3 + 6 csp

5 + 162 sp
2 + 18 casp

2

+ 120 sp
4 + 30 csp

4 + 18 ca+ 72 bsp
2 + 28 bsp

3 + 18 csp + 42 sp
5 + 54 sp

+ 96 bsp + 192 sp
3 + 5 bsp

4 + 54 b + 60 csp
3, (2.80)

β2 = 72 bsp + 6 casp
2 + 162 sp + 54 csp + 15 csp

4 + 18 casp + 21 sp
5

+ 105 sp
4 + 27 + 15 ca+ 60 csp

3 + 48 b+ 240 sp
3 + 9 c+ 10 bsp

3

+ 288 sp
2 + 90 csp

2 + 42 bsp
2. (2.81)

Solving β0 = β1 = β2 = 0 for a, b, c in terms of sp we find

a =
sp

6 + 12 sp
5 + 81 sp

4 + 315 sp
3 + 648 sp

2 + 648 sp + 216

3 sp4 + 28 sp3 + 99 sp2 + 153 sp + 96
, (2.82)
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b = 3
sp

5 + 9 sp
4 + 35 sp

3 + 72 sp
2 + 72 sp + 24

sp3 + 9 sp2 + 27 sp + 24
, (2.83)

c = −3 sp
4 + 28 sp

3 + 99 sp
2 + 153 sp + 96

sp3 + 9 sp2 + 27 sp + 24
. (2.84)

If we choose sp = −4, then a = 94
11
, b = 54, c = 11. Clearly c > 0, and 0 ≤ a < b <∞

α(s) =
−11(s2 + 94

11
)

s2 + 54
. (2.85)

This is identical to what we derived earlier. Note that sometimes the assumptions of

Foster’s theorem may hold only in a limited interval. In fact, if we choose sp = −3,
then a, b, c will not satisfy our assumptions. In Figure 2.2 plot a, b, c in terms

of sp, and see that in order to satisfy all the assumptions, sp can only be chosen

approximately sp < −3.2. At sp = −3, a will be negative. For a more general case,

we may use a similar graph to determine the range of sp. For example, in this case,

the range of sp will be the interval where the graph of b is above a and all of the

graphs a, b, c are above the x-axis.

2.3 Scattering from a lossless electromagnetic

sphere

We consider the electromagnetic scattering problem resulting from a plane wave scat-

tered off a perfectly conducting sphere, a lossless surface impedance loaded sphere,

and a sheet impedance loaded sphere respectively, as illustrated in Figure 2.3. An

E wave has been chosen as an incident electromagnetic plane wave propagating in

the ~11 direction. The scattered solution as well as the surface current density can be

written explicitly using vector spherical harmonics (vector wave functions). In the

case of a perfectly conducting surface, there exist only first order scattering poles.

In the case of a lossless surface impedance loading sphere, we can derive arbitrary

order scattering poles like in the acoustic scattering case. In the case of a lossless
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Figure 2.2: plots of a,b,c, region of where the assumption can hold.

sheet impedance loading sphere, we only find second order scattering poles for a

non-physical mode, n = 0. This leads us to the conjecture that there only exist first

order poles for this case. As above Foster’s theorem is imposed on the impedance

function Ẑs(s) to guarantee that it is a realizable physical boundary condition.

2.3.1 Formulation of the electromagnetic scattering problem

In this section we formulate the electromagnetic scattering problem in terms of spher-

ical harmonics and derive an expression of the scattered field using the following
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setting of the coordinate system.

Define a set of orthogonal (right-handed) unit vectors [16]

Figure 2.3: Spherical coordinate system with EM incident wave.
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Figure 2.4: Spherical coordinate system with polarization.

~11 = sin(θ1) cos(φ1)~1x + sin(θ1) sin(φ1)~1y + cos(θ1)~1z, (2.86)

~12 = − cos(θ1) cos(φ1)~1x − cos(θ1) sin(φ1)~1y + sin(θ1)~1z, (2.87)

~13 = sin(φ1)~1x − cos(φ1)~1y. (2.88)
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As shown in Figure 2.4, ~11 is the direction of propagation and ~12 and ~13 are mutually

orthogonal unit vectors, each orthogonal to ~11 to indicate the polarization of the

electromagnetic fields in the incident plane wave. For convenience ~12 is chosen in

a plane parallel to ~11 and the z axis (E or TM polarization if the electric field is

parallel to ~12) while ~13 is parallel to the x, y plane (H or TE polarization if the

electric field is parallel to ~13). In free space, electromagnetic plane waves have both

electric and magnetic fields orthogonal to ~11. Thus only ~12 and ~13 are considered.

This removes the ~L functions (details are shown later) in the expansion (plane waves

have zero-divergence fields).

We can use the relations between Cartesian and spherical coordinates

x = r sin(θ) cos(φ), (2.89)

y = r sin(θ) sin(φ), (2.90)

z = r cos(θ), (2.91)

~1x = sin(θ) cos(φ)~1r + cos(θ) cos(φ)~1θ − sin(φ)~1φ, (2.92)

~1y = sin(θ) sin(φ)~1r + cos(θ) sin(φ)~1θ + cos(φ)~1φ, (2.93)

~1z = cos(θ)~1r − sin(θ)~1θ, (2.94)

to express the incident-wave unit vectors in terms of (θ1, φ1) and (θ, φ) as

~11 = [cos(θ1) cos(θ) + sin(θ1) sin(θ) cos(φ− φ1)]~1r

+ [− cos(θ1) sin(θ) + sin(θ1) cos(θ) cos(φ− φ1)]~1θ

+ [− sin(θ1) sin(φ− φ1)]~1φ, (2.95)

~12 = [sin(θ1) cos(θ)− cos(θ1) sin(θ) cos(φ− φ1)]~1r

− [sin(θ1) sin(θ) + cos(θ1) cos(θ) cos(φ− φ1)]~1θ

+ [cos(θ1) sin(φ− φ1)]~1φ, (2.96)
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~13 = − sin(θ) sin(φ− φ1)~1r

− cos(θ) cos(φ− φ1)~1θ

− cos(φ− φ1)]~1φ. (2.97)

Having the direction of incidence and two polarizations expressed in spherical coor-

dinates we can go on to express the response to some delta plane wave functions. For

an incident delta function plane wave we need spherical harmonics and vector wave

functions to express the expansion in spherical coordinates. In spherical coordinates

we have the common differential operators as

∇F = ~1r
∂

∂r
F +~1θ

1

r

∂

∂θ
F +~1φ

1

r sin(θ)

∂

∂φ
F, (2.98)

∇ · ~F =
1

r2
∂

∂r
(r2Fr) +

1

r sin(θ)

∂

∂θ
(sin(θ)Fθ) +

1

r sin(θ)

∂

∂φ
Fφ, (2.99)

∇× ~F = ~1r[
1

r sin(θ)

∂

∂θ
(sin(θ)Fφ)−

1

r sin(θ)

∂

∂φ
Fθ] +~1θ[

1

r sin(θ)

∂

∂θ
(sin(θ)Fr)

−1
r

∂

∂r
(rFφ)] +~1φ[

1

r

∂

∂r
(rFθ)−

1

r

∂

∂θ
Fr], (2.100)

∇sF = ~1θ
∂

∂θ
F +~1φ

1

sin(θ)

∂

∂φ
F, (2.101)

∇s · ~F =
1

sin(θ)

∂

∂θ
(sin(θ)Fθ) +

1

sin(θ)

∂

∂φ
Fφ, (2.102)

∇s × ~F = ~1r[
1

sin(θ)

∂

∂θ
(sin(θ)Fφ)−

1

sin(θ)

∂

∂φ
Fθ] (2.103)

+~1θ[
1

sin(θ)

∂

∂φ
Fr]−~1φ

∂

∂θ
Fr. (2.104)

Spherical Harmonics

The scalar spherical harmonics can be written as [16, 29]

Yn,m,eo(θ, φ) = P (m)
n (cos(θ))







cos(mφ)

sin(mφ)







, (2.105)
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where P
(m)
n (x) is the Legendre functions defined as

Pm
n (x) = (−1)m(1−x2)m/2 d

m

dxm
Pn(x), Pn(x) = P 0

n(x) =
1

2nn!

dn

dxn
(x2−1)n. (2.106)

The vector spherical harmonics are defined as follows

~Pn,m,p(θ, φ) = Yn,m,p(θ, φ)~1r, (2.107)

~Qn,m,p(θ, φ) = ∇sYn,m,p(θ, φ) = ~1r × ~Rn,m,p, (2.108)

~Rn,m,p(θ, φ) = ∇s × ~Pn,m,p(θ, φ) = −~1r × ~Qn,m,p. (2.109)

They are also mutually orthogonal in an integral sense on the unit sphere. The

spherical scalar wave functions are defined as

Ξ(l)
n,m,p(γ~r) = f (l)

n (γr)P (m)
n (θ, φ). (2.110)

Here f
(1)
n (γr) = in(γr) , f

(2)
n (γr) = kn(γr) are modified Bessel functions, which

satisfy the Wronskian relation

W{sin(s), skn(s)} = sin(s)[skn(s)]
′ − [sin(s)]

′skn(s) = −1. (2.111)

Let γ = [sµ(σ+sǫ)]1/2 with µ, σ, ǫ being permeability, conductivity, and permittivity,

respectively (in this work, we only deal with the case σ = 0). s is the variable of the

two-sided Laplace transformation(denote by ∼) [16, 14]. The scalar wave function

Ξ
(l)
n,m,p(γ~r) satisfies the scalar wave equation which we can write in operator form as

[16]

[∇2 − γ2]Ξ(l)
n,m,p(γ~r) = 0. (2.112)

From the solution of the scalar wave equation one constructs solutions of the vector

wave equation of three kinds.

L̂(l)
n,m,p(γ~r) =

1
γ
∇Ξ(l)

n,m,p(γ~r), (2.113)

M̂ (l)
n,m,p(γ~r) = ∇× [~rΞ

(l)
n,m,p(γ~r)], (2.114)

N̂ (l)
n,m,p(γ~r) =

1
γ
∇× M̂ (l)

n,m,p(γ~r). (2.115)
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Note that all three kinds of vector wave functions satisfy the vector wave equation,

which on the Laplace transform side can be summarized as

[∇2 − γ2]



















L̂
(l)
n,m,p

M̂
(l)
n,m,p

N̂
(l)
n,m,p



















= 0. (2.116)

We can also write a curl curl wave equation for the second and third kind vector

wave functions

[∇×∇× γ2]







M̂
(l)
n,m,p

N̂
(l)
n,m,p







= 0. (2.117)

The three vector wave functions are related through

M̂ (l)
n,m,p(γ~r) = −γ~r × L̂(l)

n,m,p(γ~r), (2.118)

M̂ (l)
n,m,p(γ~r) = − 1

γ
∇× N̂ (l)

n,m,p(γ~r), (2.119)

N̂ (l)
n,m,p(γ~r) =

1
γ
∇× M̂ (l)

n,m,p(γ~r). (2.120)

It is also useful to write them as

L̂(l)
n,m,p(γ~r) = [f (l)

n (γr)]′ ~Pn,m,p(θ, φ) + [f (l)
n (γr)] ~Qn,m,p(θ, φ)/γr, (2.121)

M̂ (l)
n,m,p(γ~r) = [f (l)

n (γr)]~Rn,m,p(θ, φ), (2.122)

N̂ (l)
n,m,p(γ~r) = {n(n+ 1)[f (l)

n (γr)]~Pn,m,p(θ, φ) + [γrf (l)
n (γr)]′ ~Qn,m,p(θ, φ)}/γr.

(2.123)

Plane wave in spherical coordinates

The delta function plane waves (transformed) can be written as [2]

~12e
−γ~11·~r =

∞
∑

n=1

n
∑

m=0

∑

p=e,o

[a(1)n,m,pM̂
(1)
n,m,p(γ~r) + b(1)n,m,pN̂

(1)
n,m,p(γ~r)], (2.124)

~13e
−γ~11·~r =

∞
∑

n=1

n
∑

m=0

∑

p=e,o

[b(1)n,m,pM̂
(1)
n,m,p(γ~r)− a(1)n,m,pN̂

(1)
n,m,p(γ~r)], (2.125)

81



Chapter 2. Scattering from a lossless sphere

where

a(1)n,m,p = [2− 10,m](−1)n+1 2n+ 1

n(n + 1)

(n−m)!

(n+m)!

·mP
(m)
n (cos(θ1))

sin(θ1)







− sin(mφ1)

cos(mφ1)







, (2.126)

b(1)n,m,p = [2− 10,m](−1)n
2n+ 1

n(n + 1)

(n−m)!

(n+m)!

dP
(m)
n (cos(θ1))

dθ1







cos(mφ1)

sin(mφ1)







.

(2.127)

Note that we have

1

γ
∇× [~12e

−γ~11·~r] = ~13e
−γ~11·~r, (2.128)

1

γ
∇× [~13e

−γ~11·~r] = −~12e−γ~11·~r, (2.129)

which is associated with the curl relations between the M̂
(l)
n,m,p and N̂

(l)
n,m,p functions.

Furthermore any divergence free electric field expansion ( ~E) can be converted to a

magnetic field expansion ( ~H) by dividing by the wave impedance Z of the medium

and changing M̂
(l)
n,m,p to −N̂ (l)

n,m,p and N̂
(l)
n,m,p to M̂

(l)
n,m,p. To go from ~H to ~E multiply

by Z and change M̂
(l)
n,m,p to N̂

(l)
n,m,p and N̂

(l)
n,m,p to −M̂ (l)

n,m,p.

Solution for the scattered field

Now define the incident plane wave as an E wave (TM wave) [17]

~̃Einc(~r, s) = E0
~12e

−γ~11·~r, (2.130)

~̃Hinc(~r, s) =
E0

Z0

~13e
−γ~11·~r. (2.131)
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and expand the fields for r < a as

~̃Ein(~r, s) = E0

∞
∑

n=1

n
∑

m=0

∑

p=e,o

[a(2)n,m,pM̂
(1)
n,m,p(γ~r) + b(2)n,m,pN̂

(1)
n,m,p(γ~r)], (2.132)

~̃Hin(~r, s) =
E0

Z0

∞
∑

n=1

n
∑

m=0

∑

p=e,o

[b(2)n,m,pM̂
(1)
n,m,p(γ~r)− a(2)n,m,pN̂

(1)
n,m,p(γ~r)]. (2.133)

The solution of the scattered fields for r > a can be written as

~̃Esc(~r, s) = E0

∞
∑

n=1

n
∑

m=0

∑

p=e,o

[a(3)n,m,pM̂
(2)
n,m,p(γ~r) + b(3)n,m,pN̂

(2)
n,m,p(γ~r)], (2.134)

~̃Hsc(~r, s) =
E0

Z0

∞
∑

n=1

n
∑

m=0

∑

p=e,o

[b(3)n,m,pM̂
(2)
n,m,p(γ~r)− a(3)n,m,pN̂

(2)
n,m,p(γ~r)]. (2.135)

2.3.2 Perfectly conducting sphere

For the scatterer being a perfectly conducting sphere, we show that there only exist

first order scattering poles. Here the tangential electric field is constrained to be zero

on r = a, that is ~1r × [ ~̃Einc(~r, s) + ~̃Esc(~r, s)] = 0, or

~1r × [a(1)n,m,pM̂
(1)
n,m,p(γa~1r) + a(3)n,m,pM̂

(2)
n,m,p(γa~1r)] = ~0, (2.136)

~1r × [b(1)n,m,pN̂
(1)
n,m,p(γa~1r) + b(3)n,m,pN̂

(2)
n,m,p(γa~1r)] = ~0. (2.137)

This yields equations for the coefficients

a(3)n,m,p = −
in(γa)

kn(γa)
a(1)n,m,p, b(3)n,m,p = −

[γain(γa)]
′

[γakn(γa)]′
b(1)n,m,p. (2.138)

For the poles to be simple we need to show that all the zeros of kn(s) and skn(s) are

simple. Since kn(s) satisfies the spherical Bessel equation we have

s2
d2

ds2
kn(s) + 2s

d

ds
kn(s)− [s2 + n(n+ 1)]kn(s) = 0. (2.139)

Now, suppose there exists higher order zeros, say a 2nd order zero at sα 6= 0. Since

both kn(s) and k′n(s) have to be zero at sα, so does k′′n(s), thus, the zero must be
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at least a third order zero which is a contradiction. Repeating the process, all the

derivatives at sα will be zero. Therefore the function must be identically zero and

there exists only simple poles for a
(3)
n,m,p. The argument for b

(3)
n,m,p is similar as [skn(s)]

satisfies the Riccati-Bessel equation,

s2

s2 + n(n + 1)

d2

ds2
[sf (l)

n (s)]− sf (l)
n (s) = 0. (2.140)

More details of the perfectly conducting sphere including surface current and charge

densities can be found in [16].

2.3.3 Surface-impedance-loaded sphere

With the scatterer being a lossless surface impedance loaded sphere, we show that

arbitrary order scattering poles can be generated. Assume we choose the following

surface impedance boundary condition

~̃Etan =
←→
Z (s) · ~̃Js,

←→
Z (s) =





0 ± Z̃s(s)+2/a
s

± Z̃s(s)+2/a
s

0



 , (2.141)

where ~̃Etan = ~1r × ~̃E, ~̃Js = ~1r × ~̃Htan, Z̃s(s) is the scalar impedance function, a is

the radius of the sphere, the ± sign is determined by the choice of the coordinate

system. Using the standard spherical coordinate system the above surface impedance

boundary condition becomes

Ẽθ = −
Z̃s(s) + 2/a

s
H̃φ, Ẽφ = +

Z̃s(s) + 2/a

s
H̃θ. (2.142)

Next, ∇ · ~̃E = 0 can be expressed in the spherical coordinate system as
(

∂

∂r
+

2

a

)

Ẽr = −
1

a sin θ

∂

∂θ
(Ẽθ sin θ)−

1

a sin θ

∂Ẽφ

∂φ
. (2.143)

The ~1r component of the equation s ~̃E = ∇× ~̃H can be expressed as

sẼr =
1

a sin θ

(

∂

∂θ
(H̃φ sin θ)−

∂H̃θ

∂φ

)

. (2.144)
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Inserting the boundary conditions (2.142) into the equations (2.143), we derive

(

∂

∂r
+

2

a

)

Ẽr =
Z + 2/a

s

(

1

a sin θ

∂

∂θ
(H̃φ sin θ)

)

− Z + 2/a

s

(

1

a sin θ

∂H̃θ

∂φ

)

.

(2.145)

Finally, applying (2.144) to the equation (2.145) to find the equivalent surface

impedance loaded boundary condition.

∂

∂r
Ẽr = Z̃s(s)Ẽr. (2.146)

Thus Ẽr satisfies the same impedance condition that appears in the acoustic scatter-

ing problem n·∇u = ∂u
∂n

= α(s)u. To see that all the results in the acoustic scattering

case hold here, we expand the solution for the scattered field using (2.132), (2.133),

(2.134), (2.135). From (2.107), (2.108), (2.109), (2.122) and (2.123), the ~1r compo-

nent of the electric field
(

~E
)

r
=
(

~Ein + ~Esc

)

r
can be expanded

(

~Ein

)

r
= E0

∞
∑

n=1

n
∑

m=0

∑

p=e,o

b(2)n,m,pn(n + 1)in(γr)Yn,m,p(θ, φ), (2.147)

(

~Esc

)

r
= E0

∞
∑

n=1

n
∑

m=0

∑

p=e,o

b(3)n,m,pn(n + 1)kn(γr)Yn,m,p(θ, φ). (2.148)

Applying the surface impedance boundary condition (2.146), we find

b(3)n,m,p =
γi′n(γr) + Z̃s(s)in(γr)

γk′n(γr) + Z̃s(s)kn(γr)
b(2)n,m,p, (2.149)

where γ = s/c. Therefore, one can construct scattering poles of arbitrary order for

the surface impedance loaded sphere.

2.3.4 Sheet-impedance-loaded sphere

In this case, we try to find higher order scattering poles by using the same technique

we discussed above with the scatterer being a lossless sheet impedance loaded sphere.
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However, we only find 2nd order scattering poles for a non-physical mode which

leads to the conjecture that there only exist first order scattering poles. Let a sheet

impedance be Z̃s(s) independent of θ, φ (a scalar) located on a spherical surface give

by r = a. The sheet impedance boundary condition relates tangential electric field

and surface current density as

←→
1t · ~̃E(a, θ, φ, s) = Z̃s(s)J̃s(θ, φ, s), (2.150)

←→
1t =

←→
1 −~1r~1r = transverse dyad,

The surface current density is in turn related to the magnetic field via

~1r × [ ~̃H(a+, θ, φ, s)− ~̃H(a−, θ, φ, s)] = J̃s(θ, φ, s). (2.151)

The sheet impedance function Z̃s(s) also has to satisfy Foster’s theorem to guarantee

a lossless boundary condition. Matching the boundary condition at r = a, with the

sheet impedance boundary condition together with the continuity of the tangential

electric field gives

←→
1t · [ ~̃Einc(a+, θ, φ, s) + ~̃Esc(a+, θ, φ, s)] =

←→
1t · ~̃Ein(a−, θ, φ, s) (2.152)

= Z̃s(s)J̃s(θ, φ, s) (2.153)

= Z̃s(s)× [ ~̃Hinc(a+, θ, φ, s) + ~̃Hsc(a+, θ, φ, s)− ~̃Hin(a−, θ, φ, s)]. (2.154)

Substituting the series (2.124), (2.132), (2.134), (2.125), (2.133), (2.135) for the field

and applying the boundary condition (2.152), (2.154), we derive a system of equations

involving a
(2)
n,m,p, b

(2)
n,m,p, a

(3)
n,m,p, b

(3)
n,m,p,

b(1)n,m,p

[γain(γa)]
′

γa
+ b(3)n,m,p

[γakn(γa)]
′

γa
= b(2)n,m,p

[γain(γa)]
′

γa
, (2.155)

b(2)n,m,p

[γain(γa)]
′

γa
=
Z̃s(s)

Z0

(

b(1)n,m,pin(γa) + b(3)n,m,pkn(γa)− b(2)n,m,pin(γa)
)

, (2.156)

a(1)n,m,pin(γa) + a(3)n,m,pkn(γa) = a(2)n,m,pin(γa), (2.157)
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a(2)n,m,pin(γa) =
Z̃s(s)

Z0

(

a(1)n,m,p

[γain(γa)]
′

γa
+ a(3)n,m,p

[γakn(γa)]
′

γa
− a(2)n,m,p

[γain(γa)]
′

γa

)

.

(2.158)

Eliminating a
(3)
n,m,p, b

(3)
n,m,p, applying the Wronskian relation, and solving for a

(2)
n,m,p and

b
(2)
n,m,p we get

a(2)n,m,p =
a
(1)
n,m,p

1 + Z0

Z̃s(s)
(γa)2in(γa)kn(γa)

, (2.159)

b(2)n,m,p =
b
(1)
n,m,p

1− Z0

Z̃s(s)
[γain(γa)]′[γakn(γa)]′

. (2.160)

So the surface current density is given by

J̃s(θ, φ, s) =
E0

Z̃s(s)

∞
∑

n=1

n
∑

m=0

∑

p=e,o

[a(2)n,m,pin(γa)
~Rn,m,p(θ, φ)

+ b(2)n,m,p

[γain(γa)]
′

γa
~Qn,m,p(θ, φ)]. (2.161)

The coefficients relevant to the existence of a second order pole are

c1 =
in(γa)

Z̃s(s)
a(2)n,m,p, (2.162)

c2 =
[γain(γa)]

′

Z̃s(s)γa
b(2)n,m,p. (2.163)

For simplicity, we assume γa = s.

Consider the sheet impedance function

Z̃s(s) =
(1
2
e2 + e + 1

2
)s

s2 + 1
2
e+ 1

4

. (2.164)

Clearly Z̃s(s) satisfies Foster’s theorem with K > 0 and ω0 > 0. The expansion of

in(s) and kn(s) are

kn(s) =
e−s

s

n
∑

j=0

(n + j)! 2−js−j

j! (n− j)! , (2.165)

in(s) =
1

2
[(−1)n+1kn(s)− kn(−s)]. (2.166)
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For n = 0, the denominator of c2 is

De(s) =
(

4 e−2 s + 4
)

s2 +
(

4 e2 + 8 e+ 4
)

s+ 1 + 2 e1−2 s + 2 e+ e−2 s

=
(

16 e+ 4 + 4 e2
)

(

s+
1

2

)2

+

(

−56
3
e− 8

3
e2
)(

s+
1

2

)3

+O

(

s+
1

2

)4

. (2.167)

Thus we find a second order pole at s = −1
2
in the non-physical case n = 0.

In general, to construct a sheet impedance function Z̃s(s) =
Ks

(s2+ω)
such that c2

has a second order pole in the left half plane of s with K > 0 and ω > 0, one needs

to set the denominator of c2 to zero and the derivatives of the denominator to zero.

The denominator of c2 has the following form

De(s) = Ks+

(

−s2in (s)− s3
d

ds
in (s)− ω in (s)− ω s

d

ds
in (s)

)

kn (s) (2.168)

+

(

−s3in (s)− s4
d

ds
in (s)− sω in (s)− s2ω

d

ds
in (s)

)

d

ds
kn (s) .

Solving De(s) = 0 and d
ds
De(s) = 0 for K, and ω in terms of s, the solution sα must

satisfy sα < 0, K(sα) > 0 and ω(sα) > 0. That is, for n = 0 we solve

2Ks+ s2e−2 s + s2 + ω e−2 s + ω = 0, (2.169)

2K + 2 se−2 s − 2 s2e−2 s + 2 s− 2ω e−2 s = 0, (2.170)

and find

K =− s (e−4 s + 2 e−2 s + 1)

2 se−2 s + e−2 s + 1
, (2.171)

ω =− s2 (−e−2 s + 2 se−2 s − 1)

2 se−2 s + e−2 s + 1
. (2.172)

We can see from Figure 2.5 that approximately when −0.64 < s < 0 both K and ω

are positive, thus the assumptions are satisfied. However, for n = 1, applying the
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same techniques as above K and ω become

K = [s3(10 s3e−2 s−3 s2−5+5 e−2 s+13 s2e−2 s+10 se−2 s+5 s4e−2 s+2 s5e−2 s

− s4)]−1
(

−s2 + e−2 s − 1− s4 + s4e−2 s + 3 s2e−2 s + 2 s3e−2 s + 2 se−2 s
)2
,

(2.173)

w = −[s2(7 s2e−2 s−3+2 s5e−2 s+3 e−2 s+3 s4e−2 s+6 se−2 s+6 s3e−2 s+s4−s2)]−1

(10 s3e−2 s−3 s2−5+5 e−2 s+13 s2e−2 s+10 se−2 s+5 s4e−2 s+2 s5e−2 s−s4).
(2.174)

From Figure 2.6, it can be seen that K and ω can not simultaneously be positive in

the left half plane. Similar results hold for c1. More plots are shown below for both

c1 and c2 with n = 0, 1, ..., 5. Note that it does not help to add extra terms to the

expansion of the impedance function Z̃s(s), because according to Foster’s theorem,

additional conditions will be needed to be imposed on the impedance function. To

date we have only been able to construct second order scattering poles in the non-

physical case n = 0 for coefficient c2, while meeting all the assumptions from the

Foster’s theorem. Thus, we conjecture that only first order poles exist in the sheet-

impedance case.
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Figure 2.5: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c2 and n = 0.
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Figure 2.6: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c2 and n = 1.
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Figure 2.7: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c2 and n = 2.
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Figure 2.8: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c2 and n = 3.
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Figure 2.9: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c2 and n = 4.
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Figure 2.10: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c2 and n = 5.
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Figure 2.11: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c1 and n = 0.
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Figure 2.12: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c1 and n = 1.
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Figure 2.13: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c1 and n = 2.
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Figure 2.14: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c1 and n = 3.
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Figure 2.15: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c1 and n = 4.
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Figure 2.16: Possible region of K and ω on the left half plane of s to construct 2nd
order scattering pole associated with coefficient c1 and n = 5.
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Chapter 3

Analysis of supercontinumm

generation

3.1 Introduction

Since the experimental demonstration of optical soliton propagation in single mode

fibers some 20 plus years ago, the investigation of pulse dynamics in nonlinear

optical fibers has evolved due to the introduction of novel structures with com-

plex properties, such as photonic crystal and holey fibers [52]. In essence these

are examples of engineered dielectric structures aimed at tailoring dispersive char-

acteristics and enhancing nonlinear behavior. A direct outcome in terms of the

pulse dynamics that has brought much attention from several experimental groups

[54, 49, 57, 53, 64, 68, 59, 67, 55, 48] is the ability to generate broadband supercon-

tinuum spectra. Scientifically this is a departure from soliton dynamics that requires

careful analytical and numerical modeling in parallel with the experiments. From

the applications point of view, it has opened possibilities never seen before in areas

such as frequency metrology [65] and medical diagnostics [51, 60, 58].
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Supercontinuum generation (SCG) is a process where broad continuous spectra

is generated for high power pulses input propagating through a nonlinear media,

as first observed in 1970 by Alfano and Shapiro [7, 8]. The term supercontinuum

usually refers to extreme pulse broadening. SCG can arise from various physical

processes such as self- and cross-phase modulation, and amplitude modulation [6].

Due to the complex interplay of linear and nonlinear phenomena in SCG dynamics,

the theoretical formulation of the SCG mechanism imposes considerable challenges,

in particular if this process happens in bulk media [61]. The major recent theory

that explains the SCG for relatively low intensities in confined waveguides rests on

the evolution and fission of higher-order solitons near the zero-dispersion wavelength

in [55, 46, 56]. If the input wavelength is close to the zero-dispersion wavelength,

then the influence of third-order dispersion is strong, thus a higher-order soliton

with number N splits into its constituent solitons with the emission of blueshifted

nonsolitonic radiation [62]. Since each soliton and its corresponding radiation has a

different central frequency, the width of the generated total spectrum increases with

increasing soliton number.

Recent experimental observations of supercontina in soft glass, however, suggest

an interesting physical mechanism of SCG that cannot be fully explained by the

previously known theories. In these experiments, SCG occurs in a dramatic fashion

in the very early states of propagation, in particular at a length scale where soli-

tons start forming. Such a phenomenon can only be explained if, initially, nonlinear

effects other than soliton fission dominate the physics. Indeed, the underpinning

mechanisms that generate supercontinua as reported in most theoretical and experi-

mental studies are shock generation and its dispersive regularization in combination

with multisoliton fission. The shock generation is a well known classical phenomenon

in fluids and gas dynamics [63]. It also appears in ultra-short pulse propagation in

fibers [3, 47, 50]. For ultrashort pulses, the refractive index depends on the pulse

intensity, thus the center of the pulse envelope travels with a different speed than
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that of the trailing and leading edges of the pulse; this leads to an asymmetric shape

of the pulse, which invokes shock formation. However, in optical propagation, disper-

sion plays an important role, preventing a sharp discontinuity. On the other hand,

multisoliton generation resulting from small dispersion effects is a consequence of

the integrability of the nonlinear Schrödinger equation (NLSE) [66]. Its eventual

fission is the result of perturbations to the NLSE such as third order dispersion.

Altogether, a universal feature of nonlinear dispersive wave phenomena is that the

long term dynamics results from the delicate balance between linear and nonlinear

effects.

In this work, we recognize the aformentioned outcomes for a more realistic model

describing the pulse dynamics in photonic crystal fibers. The extended model ac-

counts for all competing effects including self-steepening, which we believe is as

important as the effect from the fully detailed linear dispersion. In order to under-

stand and exploit these phenomena, it is essential to obtain and analyze better these

mathematical models. This in addition could explain for each instance in a real

experiment what triggered SC generation. To begin with, the accurate broadband

modeling of the dispersion relation is required to make sure one does not obtain

spurious results, and to do so here we depart from the commonly used approach

where a Taylor series expansion of the propagation constant β models the disper-

sive properties in a generalized nonlinear Schrödinger equation (gNLSE). Instead,

we develop a mathematical model starting from calculated group velocity dispersion

(GVD) curves. Then, we construct the function β(ω) over a broad frequency win-

dow and integrate the gNLSE preserving the spectral dependence of the propagation

constant. The generation of broadband supercontinua in air-silica microstructured

fibers results from a delicate balance of dispersion and nonlinearity. As an illustra-

tion, we present our numerical results based on the calculated GVD for an LP01

mode in an air-silica microstructured fiber studied by Dudley et al. [57]. Then we

carry out a careful numerical analysis. We find that if the nonlinear self-steepening
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term is strong enough, the model as it stands produces a shock that is not arrested

by dispersion, whereas for weaker nonlinearity the pulse propagates the full extent

of the fiber with the generation of a supercontinuum.

3.2 Formulation of the model

To better illustrate this delicate balance we begin by studying a simpler model. The

propagation of an electric field wave packet through an optical fiber can be described

by gNLSE [3],

i∂zA+ F−1[(β(ω)− β(ω0))Â] + γ

(

1 +
i

ω0

∂t

)

(A|A|2) = 0. (3.1)

Here, the variables z, T, ω represent propagation distance, time and optical frequency,

respectively. The envelope of the wave packet is A, and c, λ, ω0, β(ω) represent the

velocity of light in vacuum, wavelength, central frequency and wave number, respec-

tively. F−1 denotes the inverse Fourier transform, and Â is the Fourier transform

of the pulse envelope. Finally the self-steepening term models the instantaneous

nonlinear response function of the medium, which is a good approximation given the

temporal lengths of the pulses. The inclusion of a Raman (non-instantaneous) term

we believe will only introduce a shift in the peak location in the spectrum (see Figure

3.4 and compare with Figure. 5b in [57]).

The effects of fiber dispersion are accounted for by the propagation constant

β(ω) which we calculate based on the dispersion profile presented in [57], without

performing a Taylor series expansion around the carrier frequency. Using two high-

precision numerical integrations of an accurate rational interpolant of the GVD curve,

we obtain the GVD function D(s). Then, the group velocity νg(ω) is derived from

D(s) through the relation,

1

νg(ω)
− 1

νg(ω0)
=

∫ λ

λ0

D(s)ds. (3.2)

99



Chapter 3. Analysis of supercontinumm generation

By setting F (λ) =
∫ λ

λ0
D(s)ds, we obtain

νg(ω) =
νg(ω0)

1 + νg(ω0)F (λ)
. (3.3)

Since ∂β
∂ω

= 1
νg
, it follows that

∂β

∂ω
=

1

νg(ω0)
+ F (λ) ∼ 1

c
+ F (λ). (3.4)

By integrating Eq. (3.4) with respect to ω and using the relation λ = 2πc
ω
, we obtain

β(ω)− β(ω0) =
ω − ω0

νg(ω0)
− 2πc

∫ λ

λ0

F (λ)

λ2
dλ. (3.5)

We employ a frame of reference moving with the pulse at the group velocity νg by

making the transformation t = T − z/νg. In the end, we obtain

i∂zA− 2πcF−1

(

∫ 2πc
ω

λ0

F (λ)

λ2
dλÂ(ω, z)

)

+ γ

(

1 +
i

ω0

∂t

)

(A|A|2) = 0. (3.6)

The resulting equation preserves the complete structure of fiber dispersion which

is indeed utilized in experiments. In addition, the equation is valid not only for

broad pulses, but also short pulses since the derivation is carried out without the

assumption of a pulse centered around a specific carrier frequency (without Taylor

series expansion of the propagation constant around a carrier frequency). In the

remainder of this section, we present analytical and numerical results obtained from

the gNLS (3.6).

3.2.1 Optical shock formation

In order to first pay attention to the nonlinear effects governing the mechanism of

shock formation [3, 47], we consider the dispersionless case by setting F (λ) = 0 in

Eq. (3.6). In the absence of dispersion, we first split Eq. (3.6) into an intensity-phase
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system by adding and subtracting

A∗∂A

∂z
= −γA

∗

ω0

∂

∂t
(|A|2A) + iγ|A|4, (3.7)

A
∂A∗

∂z
= −γA

ω0

∂

∂t
(|A|2A∗)− iγ|A|4, (3.8)

where A∗ is the complex conjugate of A.

By defining I = |A|2, the addition of Eqs. (3.7), (3.8) gives

∂I

∂z
= − γ

ω0

[

2|A|2∂|A|
2

∂t
+ |A|2

(

A∗∂A

∂t
+ A

∂A∗

∂t

)]

= −3γ
ω0
I
∂I

∂t
. (3.9)

The general solution of Eq. (3.9) is

I(z, t) = f

(

t− 3γ

ω0

Iz

)

, (3.10)

where f(t) is determined by the initial pulse shape, namely, f(t) = I(0, t). The

solution form Eq. (3.10) implies that asymmetric distortion of the pulse will occur

eventually.

From Eq. (3.10), we also find

∂I

∂t
=

f ′

1 + 3γ
ω0
f ′z

. (3.11)

The resulting equation shows that after a distance zs = −ω0

3γ
1
f ′
, a singularity in

the pulse intensity will be generated, namely, the formation of an optical shock.

This shock does play an important role in the spectral broadening once dispersion

regularizes it. In other words, the effects of fiber dispersion cannot be ignored. More-

over, the effect of GVD becomes more important as the pulse steepening becomes

significant. This phenomenon prevents further steepening of pulse shape, i.e.,an ap-

propriate strength of linear dispersion results in a mechanism that may prevent (or

regularize) the shock.
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3.2.2 Numerical solutions of the generalized nonlinear

Schrödinger equation

We perform our numerical simulations of pulse dynamics based on equation (3.6).

In particular, we consider the propagation of 100fs pulses at ω0 =780nm in a 1-m

length air-silica microstructured fiber with γ = 0.1W−1m−1. We assume that the

input pulse has a form of A2
0/ cosh

2 t
t0
. As a reference, we find from the previous

analysis that the shock length for this input pulse is zs = 22.1cm which is much

shorter than the actual fiber length, thus in this case shock regularization is a likely

scenario for SC generation.

400 450 500 550 600 650 700 750 800 850 900
−1000

−800

−600

−400

−200

0

200
GVD D(s)

wavelength(nm)

Figure 3.1: Group Velocity Dispersion (GVD) function D(s).

The GVD profile we used here is from Figure 2 in [57]. We used rational inter-

polation to approximate the GVD function D(s) (3.2) for the LP01 mode which is

shown in Figure 3.1. The integration spectrally covers the 400 − 900nm range and,

as stated above, it does not require a Taylor expansion of β. Instead we calculate

β shown in Figure 3.5 via two high-precision numerical integrations of the GVD.
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The region has been scaled to cover the 400− 900nm range for D(s) so that no ex-

trapolation is used. We use spectral (Fourier) method with n = 213 to calculate the

temporal derivatives and the numerical evolution is then completed using a standard

adaptive ODE solver.
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Figure 3.2: Propagation constant β(ω) (1/fs).

The results displayed below (Figures 3.3, 3.4) are in clear qualitative agreement

with those in [57]. We should point out two important distinctions between Fig-

ure 5 in [57] and Figure 3.3 here: we do not capture the peak in the spectrum at

wavelengths close to 1200nm in 5a,b of [57] and the corresponding pulse (labeled C)

shown in Figure 3.3c. This is because in our approach we computed the dispersion

profile based on the calculated GVD curve shown in Figure 2 of [57]. This calcula-

tion did not extend to wavelengths beyond 900nm and we did not extrapolate such

curves. This explains the sharp decay in the spectrum of Figure 3.3 here. Calcu-

lations based on a Taylor expansion of β which is commonly used, can in principle

be extended to any desired spectral range. On the other hand, our result better

reproduces the observed supercontinuum spectrum (Figure 5a of [57]) in the short
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(less than 600nm) wavelength portion and is as good as the Taylor expansion in the

intermediate regime.

Finally, Figure 3.3 (right) shows five distinguishable pulses at the output. In Fig-

ure 3.4, we spectrally isolate each pulse and find their peaks centered approximately

at: 867nm (peak 1), 913nm (peak 2), 848nm (peak 3), 840nm (peak 4) 858nm (peak

5). As we state below, the spectral separation should be accentuated by the presence

of the Raman shift which we did not include in the model. What is most important

here is we corroborate spectral broadening and that splitting of pulses occurs, with

the spectral shift accounting for differences in soliton velocities.
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34
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Figure 3.3: Spectral (left) and temporal (right) picture of the output after 1m prop-
agation. All relevant parameters are taken from [57]. 100fs pulses at ω0=780nm,
γ=0.1W−1m−1.
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Figure 3.4: Spectral characteristics of the five distinguishable temporal pulses from
Figure 3.3.

3.2.3 Numerical balance between the dispersion and nonlin-

earity

In trying to understand the critical balance between linear and nonlinear effects, we

now depart from the concrete example to further illustrate this interplay in a series

of simulations of the equation shown below, which is no different than equation (3.6),

except that we placed two adjustable constants c2(c3) in front of the self-steepening

(linear) term to account for their respective strengths.

i∂zA− c32πcF−1

(

∫ 2πc
ω

λ0

F (λ)

λ2
dλÂ(ω, z)

)

+ γ

(

1 + c2
i

ω0
∂t

)

(A|A|2) = 0. (3.12)
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By proper re-scaling of the propagation variable z and the pulse peak amplitude,

one can eliminate the parameter c3 but for clarity we analyze our simulations in the

2-parameter space while using the same initial condition. Observe that from (3.11),

an increase of c2 effectively means the shock length is reduced. In practice, this

shock length reduction can be induced by having shorter input pulses. By allowing

ourselves to modulate dispersion and nonlinearity through these two parameters, we

hope to highlight how delicate this balance is.

We begin with the extreme case, (i) γ = 1, c2 = 1, c3 = 0, only self-steepening

occurs in Figure 3.5; (ii) γ = 0, c2 = 0, c3 = 1, only dispersion occurs in Figure

3.6; (iii) γ = 1, c2 = 0, c3 = 1, no self-steepening term has been included, soliton

fission driven broadening is observed in Figure 3.7 (for simplicity the temporal soliton

solution is plotted in a periodic sense); (iv) γ = 0.001, c2 = 2000, c3 = 1, in Figure

3.9 one can see how numerically the third-order like dispersion regularize the shock

formation.

Figure 3.8 which presents a separation between two distinct outcomes was ob-

tained by careful simulations in the (c2, c3) parameter space. For the region above

the curve (Figure 3.8) the shock is not arrested, a numerical simulation can be seen

in Figure 3.10 where the solution blows up; below the curve (Figure 3.8) dispersion

regularizes the shock, a numerical simulation can be seen in Figure 3.11. From Fig-

ure 3.12, we can see how the shock has been regularized by the dispersion terms.

The solution blows up for the top plot; broadening(no blow up) is observed for the

middle plot(note that c2 and c3 are just on the curve 3.8); solitons are created at

an earlier stage for the bottom plot than the middle one. It is important to point

out the results shown strongly depend on the dispersion profile. Nonetheless it is

intriguing to see from Figure 3.8 that a universal critical value ( c2
c3
)C ≈ 2.1 emerges.

While one could argue that by modifying c3 one departs from a particular photonic

structure, what matters is that for every value c3 (that is moving vertically in Figure
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Figure 3.5: Spectral (left) and temporal (right) picture of the output after 0.15m
propagation, with γ = 1, c2 = 1, c3 = 0. Other parameters remains the same as in
the Figure 3.3. Dashed line stands for the original pulse.

3.8), this transition always occurs. At this time, we do not have an explanation for

it. Furthermore, this property should be tested for different dispersion profiles.

To summarize, by performing a series of careful numerical simulations where we

look at the relative strengths of the dispersion (measured by a parameter c3 that

multiplies F (λ) in Eq. (3.1)) and of the self-steepening term (measured by a param-

eter c2) we clearly demonstrate two dynamical regions: one where the singularity due

to the shock is not suppressed by dispersion (the region above the curve). In this

regime the spectral broadening does not saturate and the numerical solution blows

up, clearly suggesting that additional physical mechanisms must be considered. In

the second region(the region below the curve) propagation leading to supercontin-

uum generation. Although we did not show the curve beyond c3 = 0.8, it should be
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Figure 3.6: Spectral (left) and temporal (right) picture of the output after 0.3m
propagation, with γ = 0, c2 = 0, c3 = 1. Other parameters remains the same as in
the Figure 3.3.

clear that the point c2 = c3 = 1 corresponding to the experimental parameters in

[57], is as expected below the curve.

3.3 Conclusions

Supercontinuum generation is a fascinating and important phenomenon observed in

certain nonlinear wave systems. In this work, we discussed a simple model where

we tuned dispersion and nonlinearity so that we could showcase different outcomes.

In particular, we showed shock driven SC generation as well as soliton-fission driven

SC. Next we moved to a model closely related to an existing photonic crystal fiber

and showed both SC generation as well as critical shock formation. It is important
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Figure 3.7: Spectral (left) and temporal (right) picture of the output after 0.3m
propagation, with γ = 1, c2 = 0, c3 = 1. Other parameters remains the same as in
the Figure 3.3.

to emphasize that by properly integrating the dispersive terms for a given photonic

microstructured fiber, we capture supercontinuum generation as observed in experi-

ments, likely to greater accuracy than the more common expansion to a finite order

of the linear dispersion relation. Our numerical simulations illustrate that for some

input conditions, shocks rather than soliton fission appear to be dominant and be-

come the major source of spectral broadening. It is true that soliton fission as seen

in many works could be the leading mechanism towards SC generation. Which effect

is more dominant and what signatures (if any) of the spectral picture can explain the

hierarchy of effects coming into the dynamics remains unclear. Overall, an accurate

mathematical model is essential to explain the experimental outcomes. In particular

we have a numerical approach at our disposal to study any photonic fiber structure
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Figure 3.8: c2 vs c3 curve that separates regions where the numerical simulation
blows up (region above the curve) from the region where supercontinuum is numer-
ically observed (region below the curve).

for which GVD profiles have been or can be computed.
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Figure 3.9: Spectral (left) and temporal (right) picture of the output after 0.14m
(top) 1m (bottom) propagation, with γ = 0.001, c2 = 2000, c3 = 1. Other parameters
remains the same as in the Figure 3.3.
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Figure 3.10: Spectral (left) and temporal (right) picture of the output after 8.9cm
propagation, with γ = 1, c2 = 2.2, c3 = 0.2. Other parameters remains the same as
in the Figure 3.3.
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Figure 3.11: Spectral (left) and temporal (right) picture of the output after 1m
propagation, with γ = 1, c2 = 1.4, c3 = 0.2. Other parameters remains the same as
in the Figure 3.3.
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Figure 3.12: Spectral (left) and temporal (right) picture of the output after 7.9cm,
0.1m, 0.1m propagation respectively from top to bottom, with γ = 1, c2 = 1.9853,
c3 = 0.15, c3 = 0.25, c3 = 1.0. Other parameters remains the same as in the Figure
3.3.
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