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Abstract

This work describes a Bayesian model for assessing the reliability of complex systems

using component tests, full system tests, and covariate information. Development of

the model focused on understanding the relationship between component reliability

and system reliability; and defining this relationship using mathematical expressions.

The method in this thesis uses pass/fail data coupled with different levels of prior

information about system reliability and covariate information to derive posterior dis-

tributions that model component and system reliability. This work provides insights

on how the number of components, amount of prior information used, inclusion of

covariates and spread of failures across components affects point estimates and den-

sities for system reliability. The methodology in this paper is tested using simulated

data weapons system test data.
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Chapter 1

Introduction

The United States military has maintained a nuclear weapons program since

the early 1940s. The U.S. built a large and diverse nuclear arsenal in an attempt

to compete with the USSR during an arms race. In the 1950s, between the two

countries, hundreds of nuclear tests were conducted. The pressure coming from

protests surrounding those tests combined with the fall out from the Cuban Missile

Crisis led to the signing of the Limited Test Ban Treaty in 1963, the first of three test

ban treaties, which limited atmospheric nuclear tests. In 1974 the Threshold Test

Ban Treaty, which limited the size of a nuclear explosion, was signed. Neither treaty

was ratified in the hopes of negotiating a Comprehensive Test Ban Treaty (CTBT),

a treaty banning all nuclear testing. The pursuit of a CTBT was blocked by the

argument that testing was necessary to maintain the reliability of existing weapons.

As the Cold War ended the pressure for a CTBT grew, and several nuclear states

enacted testing moratoriums. Finally, on Sept 24 1996 the UN General Assembly

opened the CTBT for signature.

The U.S. has signed, but not ratified, the CTBT; and continues to operate under

a testing moratorium but maintains the right to exit the CTBT if high levels of

confidence in the reliability of weapons requires testing. Under the CTBT computer
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models and non-nuclear experiments have taken the place of full nuclear testing.

Maintaining the nuclear stockpile without testing is known as Stockpile Stewardship.

Medalia (2010) has written a congressional report, Comprehensive Test Ban Treaty:

Background and Current Developments, which details the Stockpile Stewardship

Program. A science-based Stockpile Stewardship Program has been implemented in

the U.S. to maintain a high level of confidence in the safety and reliability of the

active stockpile. The ability of the Stockpile Stewardship Program to maintain the

confidence needed was a topic of concern in the 1999 Senate debate. Those against the

program argued stockpile stewardship offered no guarantee of maintaining weapon

reliability and that experiments and models could offer no clues to the problems

that may develop as the stockpile ages. Those in favor of the program argued that

the program had already certified the stockpile 3 times. Since then, the Stockpile

Stewardship Program has certified the stockpile 17 times using data obtained from

non-nuclear testing and computer models.

The Stockpile Stewardship Program uses advanced physics-based and statistical

models to use information gathered during non-nuclear tests to continually certify

that the nuclear stockpile has maintained acceptable levels of safety and reliability.

The physics-based models primarily use information from subcritical experiments

to simulate how the components, aged materials, chemical explosives, properties

of plutonium, radiation, and various environments affect the nuclear explosions of

todays aged stockpile. Statistical models developed in support of Stockpile Health

Assessment have had success in using limited field data to evaluate system reliability.

The U.S. surveillance program has been implemented as part of the Stockpile Stew-

ardship Program to collect data from each weapon system. Surveillance programs

require a set number of weapons be pulled annually to have non-nuclear tests per-

formed on individual components or destructive tests on the full system. Los Alamos

National Laboratory (LANL) has been a leader in statistical modeling through the

use of YADAS, a software program developed to address the statistical challenges
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presented by the limited data that can be collected by surveillance programs (Wilson

et al., 2007).

The goal of this thesis is to expand the work done by LANL researchers. The

model that will be developed in this thesis will be able to use the limited amounts

of data collected through the surveillance program to obtain posterior distributions

for system reliability. Comparisons of the system reliability densities will be made

based upon variations in the input data: number of components, aging information,

and inclusion of system test data. Bayesian statistics is a method that is growing

in popularity within the nuclear community. An advantage of Bayesian statistics

is the ability to incorporate prior information known about the system and evolve

as additional information becomes available. This characteristic makes Bayesian

statistics a natural fit for evaluating the reliability of systems where data may not

be easily obtainable.

The model developed in this thesis will be a hierarchical Bayesian model with

logistic regression. The hierarchical portion incorporates data from component and

system tests. The logistic regression portion allows covariate information to enter the

model. The model will be tested using simulated and real-world data. The simulated

data will demonstrate how system reliability is related to the input data changes.

The real-world data comes from an unknown weapons system and is presented as

seven data sets. Each data set represents the same component tests but with varying

definitions of what counted as a failure. The real data will demonstrate how system

reliability can change based upon changes in the number/spread of failures.

The reliability model developed in this thesis was used to find posterior distribu-

tions for system reliability (and component reliability) under different scenarios. The

simulated data highlighted the impact that increasing the complexity of a system can

have on the point estimates for system reliability. Since system reliability is calcu-

lated as a product of the independent 1 component reliabilities the more components

1The choice to use independence in reliability theory needs to be considered carefully;
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within a system the more important it is for each component to be highly reliable to

keep the estimate for system reliability at an acceptable level. The first two data sets

also made it apparent that the amount of data used in the simulated data analysis

was enough to overwhelm the prior distributions; as the amount of data increases

the results from different priors converge to the same conclusion.

The simulated data also allowed for system reliability to be calculated as a func-

tion of age; in both a one component and five component system. Incorporating

this covariate in both of the systems provided insight into how reliability estimates

degrade with an increase in uncertainty around that estimate as components/system

ages. Combining the covariate information with the 5 component system and system

tests into a full system increased the estimates for that component at every age from

96-90% up to 98-94%. System reliability increased with a decrease in uncertainty

when the covariate information was included with the 5 components. The full sys-

tem model proved that the more information, component tests, system tests, and

covariate information, the more fidelity that will be present in the final estimates.

The reliability models were also used to determine system reliability from a real

weapons system. Seven data sets were compiled from the weapons system tests and

compared. This real data did not include any system tests making the difference

between the system priors more pronounced. This highlights the impact that even a

small number of system tests has on the likelihood. These data sets also highlighted

how the uncertainty surrounding reliability estimates almost doubled as the priors

changed from highly informative to non-informative and the number of failures moved

towards zero. Besides introducing information into the model through the priors,

uncertainty decreased for each component’s reliability point estimate as the number

of tests for that component increased. The impact of increasing the number of

tests per component increases in importance if any failures have been detected in

that component. The last important conclusion made from the real test data is the

future work in this field would explore the impact of dependent sub-systems.
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spread of failures. Regardless of the number of failures, having the failures spread

across the system provides a 57.8-72.2% chance of providing higher system reliability

estimates over systems where all the failures occur on a single component.

The reliability models in this thesis have provided several different conclusions

regarding the relationship between input data and system reliability. A broad under-

standing of how different types of data affect system reliability has been developed

throughout this research. The conclusions made here may begin to allow decision

makers to allocate surveillance resources to collecting data that results in high levels

of fidelity surrounding estimates for system reliability. Expanding this model to in-

clude the cost associated with collecting each type of data will help inform decisions

regarding the best way to allocate surveillance funding. Is it better to spend funding

on collect a small number of system tests or use that funding to gather a larger

number of component tests? Incorporating the cost of each type of test along with

the knowledge already gained from this thesis can address questions such as this.

The reliability model in this thesis also uncovered how age affects reliability. Age

is just one covariate that can impact the reliability of a system. The model has

been written so that it can include an unlimited number of covariates. Knowing the

impact of different covariates may help prioritize the components that need to have

remedial measures performed to keep the reliability estimates from dropping. Future

covariates of interest may include production facilities, storage facilities, and current

refurbishment packages.

The focus of this thesis was to develop a reliability model that can model data

collected through surveillance programs to provide distributions surround system

reliability estimates. The analysis in this thesis has practical applications and can

assist decision makers in determining how much and what type of data will provide

the best insights into a stockpiles reliability. Knowing this information can help the

U.S. government refine resource allocation to gather the most efficient types of data

through the Stockpile Stewardship Programs surveillance programs.
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Chapter 2

Literature Review

2.1 Historical Methods Evaluating Stockpile Re-

liability

Evaluating a stockpile using statistical methodology is not a new concept. Two

important papers laid the foundation for stockpile evaluation. Derman and Solomon

(1958) and Hillier (1962) both used the exponential distribution to model stockpile

evaluation. The exponential model is used by both papers to determine the best

surveillance plan out of a finite selection of plans. These papers determined the

optimal time between inspections that resulted in the proportion of defectives in a

stockpile being less than a predetermined acceptable level.

Derman and Solomon (1958) introduced three different methods for stockpile

evaluation. These three methods where applied when (i) the stockpile was in a

steady-state, (ii) the deterioration function, p(t), was modeled as a step-function,

and (iii) p(t) was modeled with an exponential function. The method that models

p(t) as an exponential function spurred future research and will be briefly discussed.

The goal of Derman and Solomon (1958) was to develop a model that could
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be used to select the best surveillance plan out of a finite selection of plans. Only

surveillance plans that maintained an acceptable proportion of defectives, π∗, were

considered. Then among all possible surveillance plans, select those that maintained

πτ < π∗ for all τ ; where τ represents a specific plan. Derman and Solomon (1958)

defined the decay function of the stockpile to be, p(t) = 1−θe−αt. The time between

inspections that minimized πτ could be determined by the exponential decay function.

Similar to the previous paper, Hillier (1962) also modeled p(t) as an exponential

distribution. Optimizing the time between corrective actions would compensate for

the deteriorating quality of a lot held in storage. Hillier (1962) expanded on Derman

and Solomon (1958) by including the cost of each appropriate corrective action versus

the cost of an imperfect lot when an emergency occurs. Hillier (1962) minimized the

costs of a surveillance plan while minimizing the number of defective units. The

objective of Hillier (1962) was to find the value of t, where t was the time between

corrective actions that minimized total expected cost over the entire length of the

program.

At the time of their publication, these two papers introduced new concepts about

evaluating stockpile surveillance. Derman and Solomon (1958) and Hillier (1962)

aimed to define the time between corrective actions that minimized the proportion

of defectives in the stockpile. Hillier (1962) added the idea of minimizing the cost

of a surveillance program. These are important papers since the idea of reviewing

stockpile surveillance through analytical methods was introduced by them. These

methods have recently been outgrown by the rapid advancements in Bayesian statis-

tics and computer simulations.
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2.2 Current Methods for Evaluating Stockpile Re-

liability

Previous literature reviews focused on early research attempts to evaluate stock-

piles. Section 2.1 mentioned how these early research methods have been overcome

by advances in Bayesian statistics and computer simulations. This section discusses

Bayesian models and the Markov chain Monte Carlo (MCMC) simulations used to

analyze them. Bayesian methods are able to formally incorporate supplementary in-

formation about the parameters of interest into an analysis (Martz, 1982). Because

of this, Bayesian methods provide a natural approach to analyzing reliability data

and will be the method used throughout this paper

2.2.1 Bayesian Model Building

Bayesian inference sets out to estimate unknown model parameters, Θ. To com-

plete a Bayesian model two key distributions are needed. The first key distribution is

the likelihood. The likelihood, f(y|Θ), is the probability distribution that captures

information provided by the observed data conditional on all parameters, where y

denotes the collection of all observed data points, y1, y2 . . . , yn. The second key

distribution is the prior distribution. The prior distribution, π(Θ), captures prior

knowledge about Θ. Prior distributions are a joint distribution covering all unknown

model parameters. 1 These distributions introduce various levels of prior information

into the model and can be conjugate to the likelihood or not, informative, subjective

or objective, or improper. Depending on the goal of the research and the resources

available, different types of priors may be preferential. Yang and Berger (1996) pro-

vide a detailed list of various types of priors and the most common (useful) times to

employ each type.

1Prior distributions can simply be the product of multiple independent distributions.
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Bayes theorem is used to combine the likelihood and prior distributions; resulting

in a third distribution referred to as the posterior distribution, π(Θ|y). The posterior

distribution is used to make inferences on the unknown parameter given the observed

data.

π(Θ|y) =
f(y|Θ)π(Θ)∫
f(y|Θ)π(Θ)dΘ

(2.1)

∝ f(y|Θ)π(Θ). (2.2)

Equation 2.1 can be difficult to solve analytically. The denominator can be chal-

lenging to solve and may not even be possible to solve as the model increases in

complexity. The denominator of Equation 2.1 integrates out the parameters of inter-

est so it becomes a constant in regard to Θ and can be dropped, resulting in Equation

2.2.

If the posterior distribution is in the same class of distributions as the prior it is

a conjugate prior and can be written in the form of a known distribution (Gelman,

2006). A prior that is not conjugate may result in an unnormalized posterior probabil-

ity density function. Unnormalized functions require alternative methods to analyze

these functions before using them for inference about Θ. One approach is to employ

Bayesian specific algorithms to solve. To use the algorithms, it’s easiest to begin by

deriving the complete conditionals of each unknown parameter.

Complete conditionals are the distributions of one parameter given all other pa-

rameters and data are in the model. Complete conditionals, [θ], are derived from the

joint posterior distribution by keeping only terms involving θ, the single parameter

of interest.

[θi] =
π(θi,Θ|y)

π(Θ|y)
(2.3)

∝ π(θi|Θ,y). (2.4)

The complete conditionals of the unknown parameters, [θi], are distributions
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where only one parameter is considered random. The denominator of Equation

2.3 does not depend on θi; therefore proportionality can be used resulting in Equa-

tion 2.4. Complete conditionals can take the form of a standard probability density

function or result in an unnormalized distribution. The class of MCMC simulations

known as Gibbs sampling can be used to generate draws from each complete condi-

tional. If the complete conditionals take the form of a known PDF, then closed-form

Gibbs sampling can be used. If the complete conditional is an unnormalized density

function, the class of MCMC simulations known as Metropolis-Hastings (M-H) can

be used to simulate draws from each complete conditional (Gilks, Richardson, &

Spiegelhalter, 1996).

2.2.2 Simulation Methods

Various user-friendly packages exist for implementing MCMC algorithms. One

of the most widespread is WinBugs. Christensen, Johnson, Branscum, and Hanson

(2011) describe WinBugs as a menu-driven program that draws samples from the

posterior using Markov chain concepts. The user must only define the model struc-

ture. WinBugs eliminates the need to derive the complete conditionals and code the

algorithm yourself. Another MCMC package comes from Los Alamos National Lab-

oratory (LANL) researchers. This LANL developed package, referred to as YADAS,

was built to address the statistical challenges specific to analyzing weapons data

(Wilson et al., 2007). Neither of these packages will be used for the computations in

this thesis; however, papers written about their development provide useful descrip-

tions of the MCMC family of simulations. Graves (2007), one of the co-developers

of YADAS, provides a useful overview to MCMC algorithms.

An MCMC algorithm’s purpose is to draw samples from the joint posterior dis-

tribution of unknown parameters, Θ. Two MCMC based algorithms are common

in Bayesian analysis. Gibbs sampling is used to sample from complete conditionals
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which take the form of known distributions, this method is not used in this thesis

and will not be further explained. The Metropolis-Hastings (M-H) algorithm is used

to generate a Markov chain that converges to a stationary distribution that is the

joint posterior (Christensen et al., 2011).

Graves (2007) provides the following high-level, step-by-step description of the

M-H algorithm.

1. The researcher must define three items. The first is a proposal distribution

that will be used to select candidate values in Step 2. The second, is the number of

iterations simulated, t = 1...T . The third are the initial values for Θ, denoted Θ0.

2. Propose a new value for Θ′ by sampling from the proposal density T (.|Θt−1);

where Θt−1 is a vector of the previous iteration’s values of Θ

3. Accept the new value with probability

min

{
1,

π(Θ′)

π(Θt−1)

T (Θt−1|Θ)

T (Θ|Θt−1)

}
If the new value is accepted, set Θt = Θ′, otherwise set Θt = Θt−1.

4. Return to step two and repeat T times.

Under achievable conditions, this algorithm will yield a Markov chain with a

stationary distribution that converges to the desired posterior distribution, π(Θ|y).

So the samples will eventually represent the joint posterior.

Together Hamada, Wilson, and Reese (2008) and Chib and Greenberg (1995)

provide a more detailed description of the process defined by Graves (2007). Step

1 introduced the use of a proposal density for generating candidate values. These

candidate values can be a vector of values representing Θ or one value representing the

candidate value for θi. The M-H algorithms run in this thesis will update parameters

one at a time and therefore the candidate values drawn will be univariate vectors

represented by θti . A common proposal density is the Gaussian distribution with
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mean = θt−1 and variance = σ2
c . The Gaussian proposal densities are centered

at the previous iteration’s value. The variance of a Gaussian proposal density is a

constant value that dictates the size of the sample space from which candidate values

are drawn. The candidate value is a randomly selected value from the proposal

density which is plugged into the unnormalized posterior distribution. The ratio of

the complete conditional given the candidate value over the complete conditional

given the previous iterations values is found. If this ratio is greater than 1, then the

candidate value is rejected; otherwise the candidate value is accepted. The simulation

repeats T times, selecting a new candidate value and storing each iterations value.

The stored values represent draws taken from the marginal posterior density for each

unknown parameter.

Step 1 also mentions selecting a starting value. This initial value, Θ0, can be

any value within the domain of Θ. Frequentist approaches, such as the maximum

likelihood estimate, can be used to approximate the starting value for each param-

eter. The choice of Θ0 may affect the number of iterations before the distribution

converges. A poor choice for the starting point can increase the time it takes for the

algorithm to converge. To accomodate this, Bayesians include an additional number

of iterations called burn-in. This burn-in period is the time it takes for the algorithm

to converge. Values obtained during burn-in iterations are discarded prior to making

inference on the parameters.

The final note on MCMC simulations is the efficiency of the algorithm. This

efficiency, determined by σ2
c , is known as the acceptance rate. The acceptance rate is

the percentage the algorithm accepts θt over θt−1, where t− 1 is the accepted value

for the previous iteration. If the spread is too large then the acceptance rate will

be small. A large σ2
c means candidate values may be far from Θ[t−1] and have a low

probability of being accepted. If the spread is too small, then the acceptance rate

will be large. A small σ2
c means the algorithm will take too long to move across the

support of the density and lower probability regions will be undersampled. Both of
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these result in high autocorrelation among sampled values. Roberts, Gelman, and

Gilks (1997) found the optimal rate of acceptance starts at 45% for one parameter

models and moves closer to 23% as the number of parameters increases. In practice,

acceptance rates ranging from 15-40% are common.

2.2.3 Bayesian Diagnostics

An important practice is to test how adequate the model works before beginning

any analysis. Many diagnostic tests exist; but two will be used within this paper.

The first diagnostics check to see that the MCMC chain has converged to a stationary

distribution. The second set of diagnostics test model fit for the observed data and

fitted model.

Cowles and Carlin (1996) compared numerous types of MCMC convergence di-

agnostics that have been developed. Convergence diagnostic tools are applied to the

draws generated by the algorithm. Convergence diagnostics allow the researcher to

see, either graphically or quantitatively, if the chain has converged. Cowles and Car-

lin (1996) discussed the bias of each diagnostic. These biases are beyond the scope

of this thesis; but because of this possible bias no single diagnostic provides enough

information to conclude convergene. To convince oneself that an MCMC chain has

converged a combination of diagnostics should be used.

The most common convergence diagnostic is a traceplot. Traceplots are graphical

representations of the marginal posterior distribution values produced by the algo-

rithm over the iterations. These traceplots allow the researcher to detect unusual

activity among the accepted candidate values. Evidence against convergence exists

if strange shifts or long periods where no new values are accepted are detected. Re-

medial measures to fix this include increasing the burn-in period or transforming the

parameters. A desirable traceplot closely resembles a scatterplot of whitenoise.
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The next two convergence diagnostics are quantitative diagnostics that are com-

puted and interpreted. Gelman and Rubin (1992) developed a convergence diagnostic

that compares m different parallel chains; each with a different Θ0. The weighted

average of two statistics, W and B, are used to find the ratio of the current variance

estimate to the within sequence variance.

√
R̂ =

√(
n− 1

n
+
m+ 1

mn

B

W

)
df

df − 2

W =
m∑
i=1

s2i
m

B =
n

m− 1

m∑
i=1

(x̄i. − x̄..)

W is the average of the within-chain variances, s2i , each based on n values of x.

B is a measure of the variance between m sequence means, x̄i. based on n values

of x. The result of this weighted average,
√
R̂, is called the “shrink factor”. The

approaches 1 when the pooled within chain variance dominates the between chain

variance. A shrink factor of 1 is interpreted to mean that the chains have escaped

the influence of different starting points and traversed the entire target distribution

(Cowles & Carlin, 1996).

The final convergence diagnostic in this paper is the Geweke distribution. Geweke

et al. (1991) developed a convergence diagnostic that compares the mean of the

beginning of a chain with the mean of the end of a chain. The Geweke diagnostic

states that if the chain has converged than no significant differences should exist.

Geweke uses a t-test to compare the mean of the first p% of the simulations to

the mean of the last p%. If the t-test produces a significant p-value than the null

hypothesis is rejected and it can be concluded that a difference exists between the

two means and a larger burn-in period should be explored.

Combining these three diagnostics: traceplots, Gelman and Rubin, and Geweke;

can provide evidence that the MCMC has produced a stationary distribution. Once
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a stationary distribution has been obtained analysis can be done on the draws. Con-

vergence diagnostics are only the first piece of the puzzle. Just because a distribution

has become stationary does not mean that the model used to obtain that distribution

fits the data. To evaluate the fit of the model, many Bayesian diagnostics have been

developed. The Bayesian versions of the χ2 goodness-of-fit test are popular.

Johnson (2004) discusses a Bayesian form of goodness-of-fit tests. The χ2 goodness-

of-fit diagnostic begins by randomly selecting a single value of the parameter vector

from the posterior distribution, θ̄. Let 0 < a0 < . . . < ak = 1 be quantiles from a

Uniform(0, 1), and pj = aj − aj−1. Also, define mj as the number of observations

from the data, yi, for which aj−1 < F (yi|θ̄) < aj. The χ2 statistic is built using these

values

RB(θ̄) =
K∑
k=1

mk[θ̄ − npk]2

npk
. (2.5)

Using F (yi|θ̄), the number of observations that fall into each bin are counted

resulting in m, a vector of bin counts. The value of the test statistic is computed

using m. If the test statistic is less than χ2
K−1,1−α then evidence exists to conclude

the model fits the data.

2.3 Applied Reliability Research

This final section reviews articles that combine the framework of Bayesian analy-

sis presented Section 2.2 with reliability research. Most of the papers follow a similar

format: identify the problem; find the likelihood and priors; use algorithms to draw

from the joint posterior, and conclude with inference on the marginal posterior dis-

tribution for each unknown parameter. Each paper adds useful information on how

to apply Bayesian models to reliability research. The differences of each paper will

be covered in-depth while the commonalities will be covered at a high level.
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Hamada (2005) introduced a simple example of combining Bayesian methods with

reliability analysis. Hamada (2005) used degradation data from a laser to assess the

reliability function of a system. Degradation data is defined as the time it takes for

a piece of equipment to degrade past an acceptable level.

Hamada (2005) used Bayesian methods to analyze the time for a laser to degrade

past a certain level of performance. The chosen likelihood and priors were:

yij|θi, σ2 ∼ Normal(
1

θi
tij, σ

2);

θi|λ, β ∼Weibull(λ, β)

λ, β, and σ2 are also viewed as random parameters with non-informative priors. This

type of model where the hyperparameters are random is known as a hierarchical

model. Hamada (2005) used an MCMC with a burn-in period of 500 and post

burn-in period of 10000 iterations. Draws were made for each of the four random

parameters; θi, σ
2, λ, β. These draws make up marginal posterior distributions

for each of the parameters. The draws for λ and β are used to find the posterior

predictive distribution for reliability; where reliability has been defined:

R(t) = exp

[
−
(
λ

Dβ

)
tβ
]
.

The next papers build on this model by increasing the complexity of the modeled

system. A complex system is one that is made up of multiple components. Johnson,

Graves, Hamada, and Reese (2003) and Anderson-Cook et al. (2007) both use hierar-

chical models to determine system reliability. The difference is the type of data used

in the likelihood; Johnson et al. (2003) used failure time data and Anderson-Cook

et al. (2007) used binary pass/fail data. Both papers collected data from component

and system tests.

A difficult aspect of modeling system reliability, θs, is integrating multiple sources

of information. Possible sources of information include component, subsystem, sys-

tem data, and expert opinion. Anderson-Cook et al. (2007) discusses the importance
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of building a model that can incorporate these various data sources. The cost of

system tests can be significantly higher than the cost of a component test. The cost

differential of these two tests can mean a higher volume of data from component tests

is available. Building a model that can include component tests may substantially

enhance the final results.

To incorporate component and system test data the system structure must be

understood. System structure defines the way components are interrelated, a detailed

explanation is given in Section 3.1.1. Understanding the way a system operates as a

function of its components allows the likelihood for system reliability, θs, to be written

in terms of component reliability, θi. Including system data in this way minimizes the

possible underestimation of θs that can occur as the number of components increases.

Johnson et al. (2003) also brings to light the challenge of incorporating expert

opinion. Expert opinion on the reliability of each component is incorporated into

their model as a pseudo-observation. These assessments are treated as observations

from the likelihood. This approach is convenient from a practical standpoint. Experts

may be more comfortable giving a value for a component’s expected reliability as

opposed to naming values for abstract parameters.

The models presented by Johnson et al. (2003) and Anderson-Cook et al. (2007)

are analyzed using MCMC algorithms. Even though no draws were made for θs, the

marginal posterior distribution for system reliability can still be computed. Since

the system structure relates components to the system; the defined structure can use

the marginal posterior densities for each θi and compute θs.

The last three papers discussed, Hamada et al. (2008), Johnson et al. (2003), and

Anderson-Cook et al. (2007) gave demonstrations of how to apply the techniques from

Section 2.2 to problems about system reliability. The final paper discussed in this

section takes the leap between determining the marginal posterior distributions of

parameters of interest to using that information to answer a more abstract problem.
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Vanderwiel, Wilson, Graves, and Reese (2009) has developed a Bayesian model with

the intent to answer broad policy questions about surveillance programs. Vanderwiel

et al. (2009) is similar in purpose to the papers from Section 2.1.

Vanderwiel et al. (2009) looks at the relationship between stockpile reliability

and surveillance programs. The model developed, RADAR, provides a probabilistic

description of the uncertainties that accumulate if surveillance programs are stopped.

RADAR is a Bayesian model that uses a Markov process to model the evolution of

πt, the reliability of a stockpile in year t. RADAR models the reliability to be 1 until

a randomly onset time of degradation. This paper concludes that prior information,

regardless of the hyperparameter values, is typically overwhelmed by successful sys-

tem tests; as long as new test data is collected at least every 10 years. RADAR shows

that the mean reliability estimate will remain relatively constant over time, but the

uncertainty will immediately and progressively increase if surveillance is halted.

This section has covered a range of Bayesian models. Hamada et al. (2008)

opened the section with a hierarchical model that used data collected from system

tests to determine θs. Then Johnson et al. (2003) and Anderson-Cook et al. (2007)

added complexity to the first model by using data collected from both component

and system tests to determine θs. This section was concluded by the discussion from

Vanderwiel et al. (2009) about applying a Bayesian model to an abstract problem.
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Chapter 3

Reliability Models

A Bayesian model will be derived in this chapter that produces posterior densities

for component and system reliability. A couple of simpler models will first be derived

that when combined will produce a full-system reliability model that will be a flexible

model that can take various types of input data. This chapter starts with a base

model that uses component and system test data, similar to Johnson et al. (2003) and

Anderson-Cook et al. (2007). A second model will be developed that uses component

tests with covariate information. These two models will be combined to result in the

full system reliability model.

3.1 Likelihood Distributions, f (y|Θ)

Hamada (2005) described two important pieces for building a Bayesian model.

The first piece that needs to be identified is the likelihood. The likelihood is a function

that describes the data given the parameters are known. The data of interest in this

paper is the pass/fail results of individual component and system tests. Pass/fail

data is best represented by the Binomial distribution, Appendix A.2 provides more

information about the Binomial distribution.
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The full expression of the likelihood, f(y|Θ), is the product of nc Binomials.

f(y|Θ) ∝
nc∏
i=1

(
θ
∑ni
j yij

i (1− θi)ni−
∑ni
j yij

)
. (3.1)

where =


∑ni
j=1 yij = Sum of successes, (yij = 1), for each component

nc = # of components in the system

ni = # of tests for component i

In Equation 3.1, y represents data that has been collected and Θ represents the

parameters, θi; where θi represents the reliability for each component.

Anderson-Cook et al. (2007) discussed the importance of building a model capable

of using all available data. The likelihood in Equation 3.1 models the data from

component tests but not from system tests. The system test data of interest also

comes in the form of the pass/fail results and can be modeled with another Binomial

distribution.

As both Johnson et al. (2003) and Anderson-Cook et al. (2007) mention under-

standing the structure of the system is necessary to properly model the system data

and write down the likelihood.

3.1.1 System Structure

To use system data with component data the system structure must be defined.

Section 2.3 briefly introduced the importance of understanding system structure.

This section gives a formal definition of system structure. System structure is a

way to define a complex system by looking at how the subsystems (or components)

are interrelated. Hamada et al. (2008) provides definitions of many different system

structures. There is one system structure that is of interest for this paper. The

system of interest in this paper follows a structure called a series system.

A system defined as a series system will function only if all components function.

In other words the system reliability, θs = 1 if θ1 = θ2 = . . . = θnc = 1. If any θi has
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a known reliability less than 1, then

θs =
nc∏
i=1

θi. (3.2)

By Equation 3.2, the reliability of a series system is the product of the reliability of

its components. This definition of system reliability is used to define the parameters

of the system likelihood.

3.1.2 System Likelihood

A likelihood distribution that models system data as a function of component

reliability can be written using Equation 3.2. From Equation 3.2 it is known that

system reliability is the product of the component reliabilities. If the system test

data, nt, follows a Binomial distribution; then the likelihood can be written:

f(nt|θs) ∝

(
nc∏
i=1

θi

)ns (
1−

nc∏
i=1

θi

)nt−ns

; (3.3)

where =

{
nt = # of system tests

ns = # of successful system tests
.

Combining Equations 3.1 and 3.3 results in the likelihood expression which cap-

tures all available pass/fail data.

f(y, nt|Θ) ∝
nc∏
i=1

(
θ
∑ni
j yij

i (1− θi)ni−
∑ni
j yij

)
×

(
nc∏
i=1

θi

)ns (
1−

nc∏
i=1

θi

)nt−ns

. (3.4)

Defining Equation 3.4 as the likelihood for the data is the first step in building

a Bayesian reliability model. The next piece of the base reliability model will be

defining prior distributions for each unknown parameter.
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3.2 Prior Distributions, π(Θ)

The likelihood distribution for component and system data was written in the

previous section, stated in Equation 3.4. The next step to building a Bayesian

reliability model is defining prior distributions for all unknown parameters. Prior

information for θi and θs can be incorporated into the model through the proper

development of π(θi).

The relationship between θs and θi causes the component prior, π(θi), to be af-

fected by prior information about the system. The simplest case involves using a

Uniform distribution as the system prior; π(θs) ∼ Uniform(0, 1). Now the relation-

ship between a Uniform system prior and the component priors must be explored.

The first step is to select a prior distribution that reflects knowledge about the

reliability of the components, θi. Using Anderson-Cook et al. (2007) as guidance, a

Beta prior is the most common choice for modeling a parameter whose mass falls

within 0 and 1; such as a reliability parameter. Appendix A.1 provides further detail

on the Beta distribution. For this example π(θi) ∼ Beta (a, b). For all the models

developed in this paper the hyperparameters of both the component and system

priors are known. The values, a and b, are found using the information from the

system prior, in this case a Uniform(0, 1).

To obtain values for the component hyperparameters the expected value and

variance of θs are used. Using the mean and variance equations for a Uniform(0,

1) the E[θs] = .5 and the V ar(θs) = 1
12

. Starting with i = 1; the E[θ1] = .5 and

the Var(θ1) = 1
12

. To find a and b values that result in those mean and variances,

the mean and variance equations of a Beta distribution are set equal to .5 and 1
12

respectively. Solving the system of equations results in a = 1 and b = 1. The

Uniform(0, 1) is a special case of a Beta distribution with parameters, a = 1, b = 1,

so these results are easily confirmed. In summary, for a one component system to

have a Uniform system reliability the component prior will be a Beta(1, 1).
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This one component example provides the framework for developing the model

of a more complex system. For this thesis, a complex system involves a system with

nc > 1 components. We begin with θs following a Uniform prior; π(θs) ∼Uniform(0,

1). The prior for each θi will follow independent Beta priors; π(θi) ∼ Beta(a, b),

where a1 = a2 = . . . anc and b1 = b2 = . . . = bnc for all nc components 1.

Using equation 3.2, π(θs) will be the product of the nc Beta distributions. Goodman

(1962) derived an expression for relating variance to the product of nc independent

variables. Using Goodman (1962), the product of nc Beta distributions will be set

equal to the known variance, 1
12

resulting in Equations 3.5 and 3.6 as expression for

a and b. Knowing the value of nc will allow specific values of a and b to be found for

component priors based upon the number of components within the system.

a =
γ

(2 + γ)

[(
1

12
(

1
(1+γ)2nc

) + 1

)1/nc

− 1

] , (3.5)

b = aγ, (3.6)

where γ =

(
1− .51/nc

)
.51/nc

.

Simulations are used to verify that the product of nc Beta(a, b) distributions

approximate a Uniform(0, 1). 100,000 values were randomly selected from Beta(a, b)

distributions and their product was plotted as histograms. The values for a and

b are obtained using Equations 3.5 and 3.6 setting nc = 1, 7, and 42. The Beta

distributions resulting from these three components are in Table 3.1.

Figure 3.1 shows the three resulting histograms with an overlay of the Uniform(0,

1). It can be concluded that the (a, b) values from Equations 3.5 and 3.6 result in

a Uniform(0, 1) system reliability since the histograms closely mirror the Uniform

1This model places both the assumption of independence on π(θi) but also the assump-
tion that each component follows the same prior distribution
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Table 3.1: Given that a system has a uniform system reliability, the hyperparameters
for the component prior will vary based on nc. This table shows different hyperpa-
rameter values based upon different values of nc.

nc π(θi) ∼ Beta(a, b)
1 Beta(1, 1)
7 Beta(1.18, .12)
42 Beta(1.20, .020)

density.

Figure 3.1: A simulation was executed to verify that independent component reliabil-
ities could have Beta priors and their product would approximate a Uniform system
reliability. The three systems represented here are 1, 7, and 42 component systems.
The green line represents the density of a Uniform(0, 1). The histograms represent
draws taken from the product of nc Beta(a, b) distributions using the values from
Table 3.1. The histograms all closely approximate the Uniform density which con-
firms that the hyperparameters selected for each π(θi) approximate a Uniform system
reliability using the series system definition.
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If additional information about θs is available, such as E and variance, it should

be used in the model. Incorporating this prior knowledge about parameters into

the model is one of the main advantages of Bayesian analysis. Changing π(θs) ∼

Unif(0, 1) to π(θs) ∼ Beta(α, β) allows prior information about the system to be

incorporated into the model. The prior information available in this study is knowl-

edge regarding the expected value of θs, R
∗, with a known variance, V R∗. Knowing

the mean and variance of θs allows α and β, to be solved for by setting the mean

and variance equations of the Beta distribution equal to R∗ and V R∗.

R∗ =
α

α + β
therefore,

β =
α(1−R∗)

R∗
. (3.7)

V R∗ =
αβ

(α + β)2(α + β + 1)

=
αβ

(α2 + 2αβ + β2)(α + β + 1)
Plugging in β =

α(1−R∗)

R∗

=
α2 1−R∗

R∗

(α2 + 2α2 1−R∗

R∗ + α2(1−R
∗

R∗ )2)(α + α 1−R∗

R∗ + 1)

=
1−R∗

R∗

(1 + 2(1−R∗)
R∗ + 1−R∗

R∗
2
)(α(1 + 1−R∗

R∗ ) + 1)

...

α =
1−R∗

R∗

V R∗(1 + 2(1−R∗)
R∗ + (1−R

∗

R∗ )2)(1 + 1−R∗

R∗ )
− 1

1 + 1−R∗

R∗

. (3.8)

The known values of R∗ and V R∗ can be plugged into Equations 3.7 and 3.8

to find the parameters of π(θs). Once the parameter values for π(θs) are known,

component hyperparameters, a and b, can be solved for. Again, Goodman (1962) is

used to understand the relationship between the variance of π(θs) and the product

of nc independent π(θi).

a =
γ

(2 + γ)

[(
1

1
V R∗

(
1

(1+γ)2nc

) + 1

)1/nc

− 1

] , (3.9)
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b = aγ, (3.10)

where γ =

(
1−R∗1/nc

)
R∗1/nc

.

Equations 3.9 and 3.10 can be used to solve for the hyperparameters of the com-

ponent priors. Simulations were executed to confirm that the product of the nc

Beta(a, b) distributions would result in a Beta(α, β). A total of 12 simulations were

executed, three numbers of components, nc = 1, 7, and 42, with four different values

of R∗ and V R∗. Data used for the simulations are shown in Table 3.2.

Table 3.2: Four different sets of mean and variance values for system reliability are
given in this table. Equations 3.7 and 3.8 were used to find the parameters of π(θs)
given the mean and variance values. Equations 3.9 and 3.10 were used to solve for
hyperparameter values of π(θi) given the value of the system variance.

R* VR* π(θs) ∼ Beta(α, β) π(θi) ∼ Beta(a, b)

K = 1 K =7 K =42
.8 .01 (12, 3) (7.11, 1.78) (7.18, .23) (7.19, .04)
.5 .05 (2, 2) (1.66, 1.66) (1.87, .20) (1.90, .03)
.2 .10 (.12, 48) (.27, 1.07) (.58, .15) (1.12, .09)
.6 .08 (1.12, .75) (1.08, .72) (.58, .15) (1.21, .09)

Each histogram in Figure 3.2 represents 100,000 draws taken from the product

of nc Beta(a, b) distributions. The lines in Figure 3.2 represent the known densities

of the different Beta(α, β) distributions. The histograms closely mirror the known

distributions so it can be concluded that Equations 3.9 and 3.10 find parameter

values for component prior distributions when π(θs) ∼ Beta(α, β). Having defined

various types of priors that could be useful in reliability research, the next step is to

understand how both the likelihoods and priors will be used to determine posterior

distributions.
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Figure 3.2: Simulations were executed to verify that the product of independent
Beta(a, b) distributions could represent draws from a different Beta(α, β) distribu-
tion. The values used for each simulation are shown in Table 3.2. The solid lines
represent the known density of Beta(α, β). The histograms represent draws taken
from the product of the nc independent Beta(a, b) distributions.
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3.3 Posterior Distributions, π(Θ|y)

From Section 2.2 the posterior distribution is the distribution from which in-

ference can be made about all unknown parameters. The posterior distribution is

proportional to the product of the likelihood, f(y|Θ), and priors, π(θ). The like-

lihood describes data from both component and system tests resulting in Equation

3.4 from Section 3.1. Two different priors were described in Section 3.2. The first

was a non-informative prior on θs and nc independent Beta(a, b) priors for θi. The

second was a Beta(α, β) prior on θs and nc independent Beta(a, b) priors for θi. As

Section 3.2 describes, the hyperparameter values for each of the Beta(a, b) priors is

dependent on the mean and variance of θs and the number of components in the

system.

3.3.1 Base Reliability Model

To find the joint posterior distributions for θ, the likelihoods and priors are

plugged into Equation 2.2. Equation 3.11 is the posterior distribution for Θ. The

parameters in Equation 3.11, ap and bp, are constants that are determined by the

system prior chosen; either a Uniform(0, 1) or an arbitrary Beta (a, b).

π(Θ|y) ∝
nc∏
i=1

(
θ
∑ni
j yij

i (1− θi)ni−
∑ni
j yij

)
×

(
nc∏
i=1

θi

)ns (
1−

nc∏
i=1

θi

)nt−ns

×
nc∏
i=1

Γ(ap + bp)

Γ(ap)Γ(bp)
θ
ap−1
i (1− θi)bp−1

∝
nc∏
i=1

(
θ
∑ni
j yij+ap−1

i (1− θi)ni−
∑ni
j yij+bp−1

)

×

(
nc∏
i=1

θi

)ns (
1−

nc∏
i=1

θi

)nt−ns

. (3.11)
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This posterior equation incorporates all of the information that is known or has

been collected at both the component and system level. The likelihood incorporates

data that have been collected from component and system tests. The priors bring

in expert opinion on component/system reliability. The posterior distribution will

change by different values of ap and bp depending on the system prior. These two

terms can be interpreted to be additional successful, ap, and additional failed, bp,

component tests. As the number of actual test data increases the information added

by each prior will be overwhelmed by the data and the results from different priors

will converge.

The posterior in this section has been written to accommodate component and

system test data. Other types of data might be available and the more information

capable of being used, the better. Expanding the base model to incorporate other

sources of data is desired. But, before the base model is expanded a Bayesian model

that only includes this additional information, known as covariates, will be built.

3.3.2 Covariate Reliability Model

The base model from Section 3.3.1 is useful for analyzing pass/fail data for com-

ponent and system tests. Any information beyond the final test result does not get

used in the base model. This additional information, known as covariates (or ex-

planatory variables), can enhance the fidelity of the model. This section works on

understanding how these covariates fit into a Bayesian model.

Each component i may have different types of covariate information available.

Therefore each component will have have unique m × j matrix where m represents

the number of covariates for that component and j represents the number of tests.

This matrix of covariate information is denoted Xi., where Xij is the jth row of Xi..

Hamada et al. (2008) suggests using regression models to relate the covariates,
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Xi, to θi. Regression models allow for the relationship between the likelihood and

covariates to be expressed. The logistic regression model is most commonly used

to model binary data. The response variable, yij, is the pass/fail result for each

component i at the covariate levels of test j. The logistical regression model relates

θij, the reliability of component i at the covariate levels of test j, to the covariates

through the logit link function

logit(θij) = log

[
θij

1− θij

]
= Xij

Tβi. (3.12)

where =

 i = 1, ·, nc
j = 1, ·, ni
Xi = ni ×mimatrix

.

The Xij
Tβi is the linear expression of relating the covariate matrix of Xi. to the

regression parameters, βi. Inverting Equation 3.12 results in an expression for θij

θij =
1

1 + exp[−Xij
Tβ]

. (3.13)

Using the information presented in Section 2.2 a Bayesian model can be built to

incorporate covariates. As before, the first step is identifying the likelihood. The

data, yij, comes from a Bernoulli distribution. A Bernoulli describes the data since

there is only one test for each combination of covariates. The expression for θij from

Equation 3.13 will be used as the parameter value of the Bernoulli distribution.

f(yij|θij, Xij) ∼ Bernoulli(θij)

=
nc∏
i=1

ni∏
j=1

(θij)
yij(1− θij)1−yij

=
nc∏
i=1

ni∏
j=1

(
1

1 + exp[−Xij
′βi]

)yij
×
(

1− 1

1 + exp[−Xij
′βi]

)1−yij
. (3.14)
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Equation 3.14 changes the parameter of interest from θij to βi. Rather than

defining the prior for θij a prior for βi must be defined. A common prior for βi, is the

multivariate Normal distribution. The multivariate Normal distribution spans the

real number line so the resulting values of βi can be either positive or negative. This

is a desired characteristic of a prior for βi since these parameters represent slopes

in a regression model. Zellner’s prior is a common way to define the relationship

between these parameters.

π(βi) ∼MVNp(µ, σ
2(X ′iXi)

−1)

∝ exp[−1

2
(βi − µi)

′(σ2(X ′iXi)
−1)(βi − µi)];

where the hyperparameters, µi and σ2 are known and (X ′iXi)
−1 represents the inverse

of the design matrix for component i.

The full expression of the posterior distribution, given in Equation 3.15, of this

covariate model is proportional to the product of the likelihood and prior.

π(βi|Xij, yij, σ
2,µi) ∝

nc∏
i

ni∏
j

[(
1

1 + exp[−Xij
′βi]

)yij
×
(

1− 1

1 + exp[−Xij
′βi]

)1−yij
]

× exp

[
−1

2
(βi − µi)

′(σ2(X ′iXi)
−1)(βi − µi)

]
. (3.15)

Using this posterior distribution inference can be done using different values for ni

and mi across components. This model is flexible enough to accommodate different

m and j values per component by allowing the vector βi to differ in length among

components. An advantage of this model is the ability to see how system reliability

is affected as covariate information changes. Unfortunately this model does not

include any information obtained from the system tests; and if component test data
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is available that does not have covariate information then it cannot be included.

The prior information about θs derived in Section 3.2 is also not carried over to this

model. The goal of this thesis is to build a Bayesian model that is flexible enough to

accommodate multiple sources of data. Combining the base model with the covariate

model provides that flexible model.

3.3.3 Full System Reliability Model

In this section the posterior distribution for the full system reliability model will

be developed. So far, two models have been developed. The base model which takes

data from component and system level tests and computes posterior densities for

component and system reliabilities. The covariate reliability model uses covariate

information available from component tests and computes component and system

reliabilities as a function of the covariates. Each of these models has the ability

to incorporate data from a specific source and find posterior distribution for both

component and system reliabilities. What if the data available is a hybrid of these

data sources? Some component tests may have covariate information while others

may not; and we still want to be able to incorporate any information available about

the system, using either prior knowledge of system tests. Rather than excluding

information by limiting the analysis to using either the base or covariate model, a

third model that combines elements of both the first two models will be derived. This

third model will be flexible enough to accommodate data from the various covered

sources. The posterior distribution of the full system reliability model will begin with

the likelihoods and priors from the base and covariate models and slightly modify

them.

The first source of data is component tests without covariate information. As in

the base model; the data is modeled using a Binomial likelihood and the prior on θi

is a Beta distribution with hyperparameters, ap, bp, determined by π(θs). The slight
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change in Equation 3.16 comes from the index for the number of components in the

system. For the full system model, the number of components without covariate

information will be denoted n0.

f(yij|θi) ∼ Binomial(ni, θi)

=

n0∏
i

(θi)
∑
j yij(1− θi)ni−

∑
j yij . (3.16)

π(θi) ∼ Beta(ap, bp)

∝
n0∏
i=1

(θi)
ap−1(1− θi)bp−1. (3.17)

The second source of data is component tests with covariate information. As in

the covariate model; the data is modeled using a Bernoulli likelihood and the prior

on βi is a multivariate Normal distribution. The slight change to the likelihood in

the full system reliability model is the index of i goes from 1 to np; where np is the

number of components with covariate information. The total number of components

in this final model is n0 + np = nc.

f(yij|θij, Xij) ∼ Bernoulli(θij)

=

np∏
i=1

ni∏
j=1

[(
1

1 + exp[−Xij
′βi]

)yij
×
(

1− 1

1 + exp[−Xij
′βi]

)1−yij
]
. (3.18)

π(βi) = MVN(µ, σ2(X ′iXi)
−1)

∝ exp[−1

2
βi − µi)

′(σ2(X ′iXi)
−1)(βi − µi)]. (3.19)

The final source of information in the final model is the expression representing

the likelihood of system tests. This model uses a series system so the likelihood

for system tests can be represented by a binomial with parameter p = θs =
∏nc

i θi;

similar to the base model. The p statement gets complicated since information for
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each θi may not come from the same source. These sources need to be combined to

properly represent p in the system likelihood. In Equation 3.20 the covariate matrix

is denoted Xil rather than Xij. The l represents an arbitrary number of tests for

each component at equally spaced values across each covariate where l is the same

values for all i. Algebraically, this slight modification is necessary when it comes

to the computations for the system likelihood. As in the base model; there are two

priors of interest for θs. Both the Uniform and Beta distributions will be considered

to represent π(θs). The information from the different system priors is captured

in Equation 3.16 as the hyperparameters ap, and bp. and therefore determine the

hyperparameters of π(θi).

f

(
y|
∏
i

θi

)
∼ Binomial

(
nt,

nc∏
i

θi

)

= Binomial

(
nt,

n0∏
i

θi

np∏
i

ni∏
j

1

1 + exp[−Xil
′βi]

)

=

(
n0∏
i

θi

np∏
i

ni∏
j

1

1 + exp[−Xil
′βi]

)ns

×

(
1−

n0∏
i

θi

np∏
i

ni∏
j

1

1 + exp[−Xil
′βi]

)nt−ns

. (3.20)

(3.21)

The joint posterior of the unknown parameters, θi and βi, for the full system

reliability model is proportional to the product of Equations 3.16, 3.17, 3.18, 3.19,

and 3.20. Equation 3.22 shows the full expression for the posterior of the full system

model.
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π(θ,β|y, Xij) ∝ f(yij|θij)f(yij|Xij,βi)f

(
y|

nc∏
i=1

θi

)
π(θi)π(βi)

∝
n0∏
i

[
(θi)

∑
j yij+ap−1(1− θi)nj−

∑
j yij+bp−1

]
×

np∏
i=1

ni∏
j=1

[(
1

1 + exp[−Xij
′βi]

)yij
×
(

1− 1

1 + exp[−Xij
′βi]

)1−yij
]

×

(
n0∏
i

θi

np∏
i

ni∏
j

1

1 + exp[−Xil
′βi]

)ns

×

(
1−

n0∏
i

θi

np∏
i

ns∏
j

1

1 + exp[−Xil
′βi]

)nt−ns

× exp[−1

2
(βi − µi)

′(σ2(X ′iXi)
−1)(βi − µi)]. (3.22)

Up to this point, several models have been developed to handle various types of

data. But, no discussion has occurred on how to apply these models and compute

values from the stated posterior distributions. The next section bridges the gap

between the theoretical models and real-world application.

3.4 Computation

This section discusses how MCMC simulation techniques can be applied to the

posterior models from Section 3.3. Section 2.2 introduced both Gibbs sampling and

the Metropolis-Hastings algorithm as MCMC simulation techniques that generate

draws from the marginal posterior distributions of each unknown parameter. To use

Bayesian algorithms; the complete conditionals for all unknown parameters must be

known. The complete conditional for each unknown parameter is proportional to the
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posterior distribution in terms of the unknown parameter. Any factors that do not

involve the parameter of interest in the posterior may be dropped.

The base model has nc unknown parameters; luckily, the complete conditionals

for each θi are equal so only one statement needs to be derived. The base model

posterior distribution is shown in Equations 3.11. Dropping any factors from this

equation that do not involve θi result in [θi].

[θi] ∝
(
θ
∑ni
j yij+ap−1

i (1− θi)ni−
∑ni
j yij+bp−1

)
×

(
nc∏
i=1

θi

)ns (
1−

nc∏
i=1

θi

)nt−ns

. (3.23)

Equation 3.23 can not be expressed in closed form. Since [θi] does not resemble

any known distributions the M-H algorithm will be used to generate draws from the

marginal posterior distribution of each θi. The complete conditionals for the remain-

ing two models are derived in the same way and result in unnormalized distributions

that must be analyzed using M-H algorithms. Equation 3.24 shows the complete

conditional for the covariate model in terms of βi.

[βi] ∝
1

1 + exp[−Xij
′βi]
× exp

[
−1

2
(βi − µ)′(σ2(X ′iXi)

−1)(βi − µ)

]
. (3.24)

Equations 3.25 and 3.26 show the complete conditionals for the full system reli-

ability model in terms of θi and βi.

[θi] ∝
[
(θi)

∑
j yij+ap−1(1− θi)nj−

∑
j yij+bp−1

]
×

(
nc∏
i

θi

)ns

×

(
1−

n0∏
i

θi

np∏
i

ni∏
j

1

1 + exp[−Xil
′βi]

)nt−ns

(3.25)
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[β] ∝
ncc∏
i=1

ni∏
j=1

[(
1

1 + exp[−Xij
′βi]

)yij
×
(

1− 1

1 + exp[−Xij
′βi]

)1−yij
]

× exp[−1

2
(βi − µi)

′(σ2(X ′iXi)
−1)(βi − µi)]

×

(
np∏
i

ni∏
j

1

1 + exp[−Xil
′βi]

)ns

×

(
1−

n0∏
i

θi

np∏
i

ni∏
j

1

1 + exp[−Xil
′βi]

)nt−ns

. (3.26)

These complete conditionals will be used to analyze various data sets in Chapter

4. Regardless of the data being used, the settings for the M-H algorithms will be

similar (if not identical) for each analysis. Section 2.2 gave a four step process of how

M-H algorithms work. Step one of this four step process describes the information

to be determined prior to running an MCMC algorithm.

The first decision is the number of iterations that each simulation will be run for.

Using information gained from convergence diagnositcs, it was found that all algo-

rithms converged after a burn-in of 10,000 iterations. Another 100,000 post burn-in

iterations were run from which the marginal posterior densities will be derived. To

get to this point where the algorithms all converged required the use of a transfor-

mation.

The data sets being analyzed in this paper all contain data for highly reliable

components. There are several components within the data sets that contain zero

failures. The M-H algorithm for these highly reliable components was showing a

tendency to get“stuck” at values incredibly close to 1 for a large number of iterations.

The acceptance rates were falling within the desired ranges; but inspection of the

trace plots and Geweke diagnostics did not support convergence. A sample trace plot

of what was being seen is in Figure 3.3. There were also instances when re-running

the algorithm would result in a drastically different acceptance rate; sometimes going

from 30% down to .05%. Circumstances such as these led to the conclusion that the
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algorithms were not converging to a stationary distribution.

To get the chains involving these zero failure data sets to converge a transfor-

mation on θi is suggested. The logit transformation in Equation 3.27 allows the

algorithm to reach stationarity in a reasonable amount of time. Solving Equation

3.27 for θi allows θi to be expressed as a function of µi; as written in Equation 3.28.

Writing the logit model in terms of µi allows for an easy substitution in the complete

conditionals. The M-H algorithm will simulate values for µi; once all T iterations

have been executed the µi’s will be transformed back in θi’s using Equation 3.28.2

µi = log

(
θi

1− θi

)
. (3.27)

θi =
exp[µi]

1 + exp[µi]
. (3.28)

The diagnostics for models run using this transformation support concluding

convergence and stationarity. Any data sets which contain zero failure components

will be run using this transformation on θi.

The next decision to make involves the proposal distributions. Each unknown

parameter will have its own proposal distribution. Candidate values for all θi’s will

be drawn from a Normal(θ
[t−1]
i , σ2

c )·I(0 ≤ θi ≤ 1). Candidate values for all βi’s will

be drawn from a Normal(β
[t−1]
i , σ2

c ). Both of the proposal densities have Gaussian

properties where the mean is the previous iterations value for the parameter of inter-

est and variance determined by σ2
c ; where σ2

c is a user-defined value that determines

the efficiency of the algorithm. The σ2
c values vary for each dataset and will be re-

ported with each dataset in Appendix B Any other constants or hyperparameters

will be determined by previously mentioned methods. The M-H settings used for the

analysis in this paper are summarized in Table 3.3

2This transformation has the advantage of not allowing any simulated θi values being
either 0 or 1.
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Figure 3.3: An example of trace plot for θi simulations that obtained a desired
acceptance rate but has clearly not converged. This trace plot does have the desired
characteristic of resembling white noise.

A model that has the flexibility to handle data from multiple sources has been

developed within this chapter. The full system reliability model in Section 3.3.3

can take pass/fail data from component and system tests, varying levels of covariate

information from additional components, and expert opinion about system reliability.

The final section of this chapter derived the complete conditionals for all unknown

parameters. These complete conditionals bridge the gap between the theoretical

models and applied analysis. Finally, this chapter concluds with a brief discussion of

the MCMC settings which will be applied to all M-H algorithms in Chapter 4. The

analysis will cover several different data sets from simulated data to actual test data
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Table 3.3: MCMC settings which are constant throughout the analysis section of this
paper. The number of iterations and the proposal distributions for selecting candidate
values will remain the same regardless of the data set being analyzed.

Setting Value
Burn-In Iteration 10000

Simulation Iterations 100000

βi Proposal Distribution Norm(β
[t−1]
i , σ2

c )

µi Proposal Distribution Norm(µ
[t−1]
i , σ2

c )
θi Proposal Distribution Norm(θi

[t−1], σ2
c ) · I(0 ≤ θi ≤ 1)

from an unknown weapon system.
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Chapter 4

Results

This chapter presents analysis and results for simulated and weapons system data

using the models defined in Chapter 3. Simulating data allows the model to be tested

on a range of data that may not be available from real world tests. Four different

sets of simulated data will be considered: an nc = 5 system, an nc = 42 system, an

nc = 1 component with covariates, and an nc = 5 system where one component has

covariate information and four do not. The weapon system test data contains seven

different sets of data. Each data set uses the same test results but varies what is

defined to be a “failure”. The weapon system test data will allow the model to be

applied to a real world problem.

The different data sets will be analyzed using three different system priors. A

highly informative Beta prior for a highly reliable system, a less informative Beta

prior for a highly reliable system, and a Uniform prior. The values of the component

prior hyperparameters, ap and bp, will vary for each prior and data set. The π(θs)

and π(θi) resulting from these three priors are in Table 4.1.

After running each model, diagnostics were checked to verify that the algorithm

converged and that the model fits the data. Convergence diagnostics used in this

paper include those listed in Section 3.4. Convergence was concluded for all the mod-
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els in this thesis using the information obtained from these diagnostics. Acceptance

rates fell between the desired 15-40%; the trace plots represented white noise; the

majority of Geweke diagnostics showed no significant difference between the mean of

the first 10% of the chain compared to the mean of the last 50% of the chain; and

all Gelman and Rubin diagnostics over three chains resulted in a point estimate of

1 with an upper CI level also equal to 1. The specific diagnostics for each model are

listed in Appendix B.

Model fit was checked through the Bayesian χ2 lack-of-fit test. The largest χ2

statistics obtained from all 11 data sets, came from the third weapons system data set,

was 5.08. This value is less than the χ2
6,.95 of 12.59. Since 5.08 was the maximum χ2

statistic from all models, there is little evidence to suggest that the models derived in

Chapter 3 do not provide an adequate fit to any of the data sets. The final diagnostic

used checked the P (z∗ < zobs); where z∗ is the χ2 statistic of simulated test data and

zobs is the χ2 statistic of observed data. The χ2 statistics were calculated using

nc∑
i=1

(yi − θ[t]i )2

θi
;

where yi is the total number of successful test for component i (either simulated

or observed) and θi is the tth reliability estimate for component i. This statistic is

calculated over all t and the difference in the proportion of statistics for the simulated

data minus the observed data is reported. If the model provides simulated values

close to the observed values then histograms plotting the z∗−zobs should be centered

around zero. The sixth weapons system data set resulted in the largest probability of

seeing a simulated value greater than an observed value; where the probability was

equal to 44.38%. The difference between the two χ2 statistics for each θ
[t]
i are plotted

as a histogram in Figure 4.1. This histogram depicts a fairly normal distribution

centered around zero; so once again there is little evidence to support a lack-of-fit.

The diagnostics used in this thesis provide evidence in support of both algorithm

convergence and model fit. No cause for concern was uncovered through the diag-
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Figure 4.1: The difference between the χ2 statistics that resulted from simulated data
and the χ2 statistics that resulted from observed data are plotted as a histogram. If
the model fits the data appropriately, there should be minimal differences between
the two statistics and the histogram should resemble a normal distribution centered
around zero. This histogram shows that the χ2 statistics for the sixth weapons
system data set are not different enough to conclude a lack-of-fit.

nostic analysis. The positive results of the diagnostic analysis allow for analysis of

each of the eleven data sets to commence.
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Table 4.1: The system priors, π(θs), used in this chapter are shown in the first two lines of this table. The resulting
component priors, π(θi), make up the remainder of this table. The hyperparameter values for each π(θi) replace the ap
and bp in the complete conditionals. π(θs) will take on three forms based upon the level of information known about
the system. π(θi) will take on several different forms depending on π(θs) as well as the number of components in the
system.

R∗ = .99, V R∗ = .0025 R∗ = .98, V R∗ = .01 Non-Informative
π(θs) ∼ Beta(2.9304, .0296) π(θs) ∼ Beta(.9408, .0192) π(θs) ∼ Uniform(0, 1)

Simulated Data
nc = 5 π(θi) ∼ Beta(2.254, .0052) π(θi) ∼ Beta(1.108, .0051) π(θi) ∼ Beta(1.1685, 1.73)
nc = 42 π(θi) ∼ Beta(2.004, .0005) π(θi) ∼ Beta(.9902, .0005) π(θi) ∼ Beta(1.2005, .0199)

Weapon System Test Data
Datasets 1-2, nc = 1 π(θi) ∼ Beta(3.807, .076) π(θi) ∼ Beta(1.813, .0725) π(θi) ∼ Beta(1, 1)
Datasets 3-7, nc = 7 π(θi) ∼ Beta(2.169, .0034) π(θi) ∼ Beta(1.068, .0034) π(θi) ∼ Beta(1.179, .1227)
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4.1 Simulated Data

4.1.1 5 Component System – No Covariates

The data for this system was simulated using randomly generated values for ni,

and a random binomial with a high probability of success to determine the test re-

sults, yij, for each component. The test data is from component and system levels

with no covariate information; complete data is shown in Table 4.2. The high reliabil-

ity of the components and system caused convergence issues so the µi transformation

described in Section 3.4 was used to ensure the algorithm converged to a stationary

distribution. The algorithm was run using the MCMC settings from Table 3.3 and

the σc values in Table B.2.

Table 4.2: Simulated data for the 5 component system. This table shows the total
number of tests for each component, the number of successes and failures, as well as
the reliability of each component calculated using the expression Successes

Total Tests
.

Total Tests Successes Failures Reliability
1 11 11 0 1
2 47 46 1 0.98
3 34 34 0 1
4 17 16 1 0.94
5 45 40 5 0.89

System 10 9 1 0.90

The M-H algorithm generated draws from the marginal posterior densities for

each θi. Using the draws for θi, the marginal posterior density of θs was calculated

using Equation 3.2. Plots of the resulting marginal posterior densities are shown

as boxplots in Figure 4.2. The first five boxplots represent the densities for each of

the components and the sixth boxplot represents the posterior density for θs; this

information is also provided as numerical summaries in Appendix C; these summaries

are provided for all the following models in the appendix.

The posterior analysis focuses on the statistic of interest, system reliability, θs.
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Table 4.3 gives the mean, standard deviation, and highest posterior density (HPD)

intervals for each θs. The HPD is a Bayesian interval that consists of points such

that f(θs|y) ≥ c where f(.|y) is the posterior density of θs and c is chosen so that the

region has the desired posterior probability, (Cox & Hinkley, 1979). For this thesis,

the 95% HPDs will be reported for all θs estimates. The HPD is the shortest segment

from f(.|y) that contains 95% of the mass. This interval can be interpreted by saying

that there is a 95% chance that the θs estimate will be within this interval given the

observed data; the shorter the interval the less uncertainty that exists surrounding

the point estimate.

Table 4.3: This table shows a comparison of the numerical summaries for θs given
the different system priors used in this analysis.

Highest
Posterior
Density

π(θs) Expected
Reliability

Std Dev LB UB

Beta(2.931, .029) 0.8418 .0538 .7349 .9381
Beta(.941, .019) 0.8374 .0538 .7313 .9356

Uniform(0, 1) 0.8378 0.0543 .7335 .9347

The differences in the posterior summaries for the three priors appears to be

minimal. The HPD intervals have similar bounds with similar lengths for the three

models. The fourth boxplot in Figure 4.2 shows the densities of the three θs plotted

side-by-side. This figure highlights the similarities between the three different densi-

ties for each θs. Comparing the simulated values across the three marginal posterior

distributions shows that there is a 50% chance that any of the three models will

provide higher estimates for θs over any of the other models given the data. These

results show that the amount of data introduced to the model through the component

and system tests is enough to overwhelm any information brought into the model by

the prior.
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(a) π(θs) ∼ Beta(2.9304, .0296) (b) π(θs) ∼ Beta(.9408, .0192)

(c) π(θs) ∼ Uniform(0, 1) (d) System Reliabilities

Figure 4.2: The marginal posterior densities for θi and θs are plotted as boxplots.
Each of the first three plots represent the densities obtained using one of the three
system priors, as indicated in the subcaption. The fourth plot gives a side-by-side
comparison of the θs marginal posterior densities.
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4.1.2 42 Component System – No Covariates

The data for this nc = 42 system comes from one of the weapon systems data sets

that has been replicated six times. Since the data is replicated; only the first seven

original data points are shown in Table 4.4 One of the components in the original

data set has a relatively high level of failure; 3 of 12 tests. Since the 42 component

system has replicated the original data set 6 times, this high-failure component shows

up in the 42 component system 6 times. The analysis of this system will show how

various priors affect the final system reliability given a relatively large number of low

reliability components. Six of the components are considered “high-failure” but the

remaining 36 have zero failures. Because of the high reliability of several components

the µi transformation discussed in Section 3.4 will again be used to deal with the

large number of highly reliable components. Posterior draws were simulated from

the 42 components using an M-H algorithm with the MCMC settings from Table 3.3

and the σc values from Table B.3.

Table 4.4: This data represents the test data for the first 7 components of the 42
component system. The data used in the analysis repeated this data set 6 times
to result in a total of 42 components. The test results for component 1; are the
same for component 8, 15, etc... This table shows the total number of tests for each
component, the number of successes and failures, as well as the reliability of each
component calculated using the expression Successes

Total Tests

.

Total Tests Successes Failures Reliability
1 12 9 3 0.75
2 14 14 0 1
3 49 49 0 1
4 64 64 0 1
5 36 36 0 1
6 20 20 0 1
7 7 7 0 1

System 10 9 1 0.90

The draws from the M-H algorithm represent the marginal posterior densities of

all θi. The marginal posterior density for θs was obtained using Equation 3.2. The
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marginal posterior densities for each of the 42 components are plotted as the first

three boxplots in Figure 4.3. The fourth boxplot in Figure 4.3 shows the densities

for θs plotted as side-by-side boxplots.

The main statistic of interest in this research is the reliability of the system, not

necessarily the individual components, so side-by-side comparisons of θs based upon

the different priors are given in Table 4.5 and plotted as the fourth boxplot in Figure

4.3. The estimates for θs compared to the 5 component system are much lower. The

increase in the number of components appears to have had a significant impact on the

posterior distribution for θs, regardless of any prior information. As the number of

components in a system increases, i.e. the system gets more complex, the reliability

of each component must approach 1 to keep the overall estimate for θs as a suitable

level.

The highly informative Beta(2.9304, .0296) system prior gives the highest esti-

mate for θs; however, there is no notable difference between the θs estimates or the

range of the HPD intervals. Comparing the draws from each of the three marginal

posterior distributions shows that the highly informative prior will result in better

estimates for θs 52.3% of the time over both the low informative Beta prior and

non-informative prior; which is not a notable difference between the two models.

The conclusion that can be drawn from this data set is the impact that the num-

ber of components has on θs. As in the 5 component system, the amount of data

overwhelms the prior information which is why the resulting summaries are so similar
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Table 4.5: This table shows a comparison of the numerical summaries for θs given
the different priors used in this analysis.

Highest
Posterior
Density

π(θs) Expected
Reliability

σ2 LB .975%

Beta(2.931, .029) 0.3741 0.0791 0.2255 0.5299
Beta(.941, .019) 0.3738 0.0805 0.2208 0.5270

Uniform(0, 1) 0.3728 0.0785 0.2208 0.5293
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(a) π(θs) ∼ Beta(2.9304, .0296) (b) π(θs) ∼ Beta(.9408, .0192)

(c) π(θs) ∼ Uniform(0, 1) (d) System Reliabilities

Figure 4.3: The first three plots show the marginal posterior densities of the 42 com-
ponent reliabilities as boxplots. Each plot represents the results from using a different
prior for system reliability. The fourth boxplot shows side-by-side comparisons of the
three densities for each θs.
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4.1.3 1 Component System – With Covariates

This section introduces determining system reliability, θs, as a function of covari-

ates. The covariate of interest for this thesis is age. To use age as a covariate, a

sequence of non-destructive tests are performed measuring the response variable of

interest, yij, for each age, (Kelly & Vander Wiel, 2006). Fifty tests were simulated

using a Binomial distribution with p = θij; where θij was calculated using β = (3,−5)

and Equation 3.13. The negative slope on β1 was used to generate test data that

had a higher propensity of failing at older ages..

The simulated test results are plotted in Figure 4.4. From this plot it is evident

there is an increase in the number of failures as the component ages. Seeing this

trend in real-life data would lead one to include the covariate, age, in the model.

Figure 4.4: This plot shows the 50 test results of the component as a function of
age, a success is plotted as a 1 while a failure is plotted as a 0. One data point
was recorded for each age. The overall number of failures is small but all the failures
occur at older ages. This plot provides evidence that the covariate of age might affect
reliability and should be included in the model.

Not having any other component or system test results, the M-H algorithm was

run using the complete conditional from Equation 3.24, the MCMC settings from
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Table 3.3 and the σc in Table B.5. The prior for this model is on β and therefore the

information provided from π(θs) is not included in this model and only one analysis

will be run on this data set. The numerical marginal posterior summaries for β are

given in Table 4.6 while the posterior densities are plotted as boxplots in Figure 4.5.

Table 4.6: Marginal posterior distribution summaries of the β parameters for a 1
component covariate model.

Highest
Posterior
Density

βi Expected
Reliability

Std Dev LB UB

0 3.4223 0.5042 2.4990 4.4999
1 -1.0013 0.5216 -2.0484 0.0059

Figure 4.5: Posterior densities of the βi parameters. The second boxplot represents
the density of β1; the parameter for age. The concentration of the second boxplot
below zero, represented by the dotted line, confirms that age negatively affects θs.

The point estimate for the β1 parameter is negative, -1.0013, with a 95% HPD
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interval that barely contains zero (upper limit of 0.0059). This provides evidence

that there is a high probability confirming that age does have a negative effect on

reliability. This is an important conclusion; however, the interest of this paper is

using various models to determine θs. The β parameters need to be converted to

reliabilities. Equation 3.13 can be used to convert the β parameters into the desired

reliabilities. The estimate for θi will also represent θs because the system only has

one component. The numerical posterior summaries of θs at different ages is shown

in Table 4.7. In this analysis, age = 0 is considered the birth of the component; while

age=1 is considered the age the component is scheduled to be retired.

Table 4.7: This table shows how the reliability of a one component system degrades
it ages. The ages shown here go from component conception (age=0) to component
retirement (age=1).

Highest
Posterior
Density

Age Expected
Reliability

Std Dev LB UB

0.00 0.9652 0.0195 0.9328 0.9925
0.25 0.9565 0.0224 0.9201 0.9886
0.50 0.9450 0.0275 0.9006 0.9835
0.75 0.9298 0.0355 0.8729 0.9811
1.00 0.9099 0.0476 0.8308 0.9791

Table 4.7 shows the reliability of the system degrading from 96.5% to 90.9% as

it ages. This degradation is an expected result, what might not have been expected

is the increase in the range of HPD intervals as the component ages. This increase

of uncertainty becomes more apparent when plotted in Figure 4.6. Each consecutive

age gives on average a better estimate 64.3% of the time when compared to the

density for one age older. The density for age=0 will give a higher estimate for θs

95.0% compared to the density for age=1; this percent continues to decrease for each

age interval compared to age=1 until it gets to age=.75 providing better estimate

63.3% of the time. From this model it can be concluded that as time passes and
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Figure 4.6: The five boxplots represent θs across various ages. The boxplots show a
decrease in the expected reliability of the system at each age. The increasing spread
across ages shows how uncertainty in θs estimates increases as the system ages and
failures are introduced into the model.

failures are introduced to the model the estimates for θs decrease as the uncertainty

in the estimate increases.
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4.1.4 Full System

The fourth and last data set combines all three types of data discussed into the

full system reliability model. The full system reliability model will be applied to a 5

component system, where one of the five components has covariate information, age,

associated with each of its tests. The remaining four components have no covariate

information associated with the test data. The data comes from Section 4.1.1 and

replaces component 2 with the covariate data generated in Section 4.1.3. Using

similar data sets will allow comparisons to be made across the three different data

sets. This system also uses the same full system test data is in Section 4.1.1.

To determine θs as a function of both θi and age an M-H algorithm was run

using the settings from Table 3.3 and the σc values shown in Table B.7. The µi

transformation was used to compensate for the highly reliable components in this

analysis.

The draws generated from the M-H algorithm allow posterior summaries to be

derived for the four θi’s, β0 and β1. The densities for each of the four θi parameters

and two β are represented as boxplots in Figure 4.7. From this figure it an be noted

that θ4 has the lowest reliability estimates, which given that this component has

5 failures recorded out of 45 tests is expected. However, the posterior density for

θ3 appears to have the largest spread. Component 3 has only one failure, but the

fewest tests, 17. This result leads to the conclusion that a smaller number of tests

can increase the uncertainty surrounding the point estimates of θi; especially if a

failure is present. There are no significant differences between these four densities

than those from the Component 5 model; replacing component 2 with the covariate

component did not appear to have any effect on the posterior distributions for the

remaining 4 θi’s.

The densities for the β’s confirm the relationship between reliability and age; the

expected value of β1, the parameter for the covariate age averaged over priors is -1.7
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with HPD interval of (-3.6, -0.23). There is a 95% chance that the point estimate for

β1 is negative regardless of the system prior chosen and negatively affects the relia-

bility estimates. The β1 estimate for the full system model is conclusively negative

when the covariates are combined with additional test information as opposed to in

the one component covariate model where a slight bit of ambiguity existed around

the point estimate for β1.
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(a) π(θs) ∼ Beta(2.9304, .0296) (b) π(θs) ∼ Beta(.9408, .0192) (c) π(θs) ∼ Uniform(0, 1)

Figure 4.7: The six plots show the posterior distributions as boxplots for θi and βi by the different priors. The top
plots represent the posterior densities for θi. The bottom plots represent the posterior densities for βi where zero is
represented by a dotted line.
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Comparing the point estimates given in Table C.1 for θ1-θ4 to the point estimates

for θ1, θ2 − θ5 from the 5 component model show no difference. Comparing the pos-

terior distributions for the two models there is only a 50.5-53.1% chance that the

full system model will provide better estimates for any of the 4 components than the

5 component model. There is little evidence that incorporating the covariate infor-

mation into one of the components has any effect on the estimates of the remaining

components.

But does including the system information/tests in the model affect the estimates

for the covariate component, θ5? Using Equation 3.13 to relate β to θij the marginal

posterior distributions can be obtained for the fifth component as a function of age.

The reliability of this component will be determined at it’s youngest point, age = 0;

it’s oldest point, age = 1; and the quarter intervals in between, age = .25, .5, and .75.

Using the estimates for θ5 and the definition of a series system the reliability of the

system can be obtained at the same 5 age points. The marginal posterior summaries

for θ5 based upon the three system priors are plotted as boxplots in Figure 4.8. As

the component ages the expected reliability is shown to decrease from around 98.5%

to 94.4% with an increase in the HPD interval length, regardless of the prior. The

point estimates for θ5 are higher than they were in the one component covariate

model where they ranged from 96-90%. The higher estimates can be attributed to

the including the system priors and the system tests in the model. The confidence

from an obtained reliability point estimate will decrease the longer the component

has been fielded.



C
h
ap

ter
4.

R
esu

lts
60

(a) π(θs) ∼ Beta(2.9304, .0296) (b) π(θs) ∼ Beta(.9408, .0192) (c) π(θs) ∼ Uniform(0, 1)

Figure 4.8: The densities shown in these three plots represent the reliability of θ5 at 5 equally spaced ages. Each plot
represents a different system prior.
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It is evident that the reliability of θ5 will degrade over time and the uncertainty

in that reliability estimate increases as the component ages, but how does this affect

the reliability estimates for θs? By combining the data from θ1 through θ4 with the

data generated for the 5 data points of θ5 a complete picture of θs can be drawn as

a function of age.

The system posterior summaries are shown in Table 4.8. Across all three priors,

Table 4.8 shows about a 4% decrease in reliability as the system ages and relatively

stable HPD interval lengths; only increasing in about 2% over the age of the com-

ponent. The θs summaries illustrate that the uncertainty gained about reliability

degradation as a function of age from θ5 is decreased when combined with the static

reliability estimates from the remaining θi’s.

Figure 4.9 presents this data in a different way. The three estimates for θs as

a function of age are plotted as a line graph with 95% HPD intervals. This plot

shows the decrease in reliability as the system ages and also shows a constant level of

uncertainty across all ages; which confirms the findings from Table 4.8. The estimate

for θs coming from the non-informative prior provides the overall lowest estimate

with the smallest lower bound on the HPD interval. The two Beta priors provide

near equal estimates for θs. Averaging over the priors, when the system is at age

= 0 the model will give an estimate for system reliability higher than when age =

1 74.1% of the time. As the age increases the probability of each consecutive age

compared to age=1 decreases down to 58.2% when comparing the distribution for

age=.75 to age=1. Finally, comparing this model to the model for the 5 component

system - no covariates it can be seen which model will provide better estimates for θs.

Comparing the 5 component system reliability distribution to the system reliability

distribution for age=0 results in the first model only providing higher estimates for

θs 44.4% of the time. As the system ages and the two models are compared when

age=1; the first model will provide higher estimates for θs 64.6% of the time. As

these comparisons show, the fidelity added to the model through the use of covariates
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Figure 4.9: The three solid lines represent θs as a function of age depending on the
prior reliability distribution chosen for θs. The dotted lines are the respective 95%
credible intervals for each estimate of θs.

does provide better estimates; especially in the earlier years of a systems life. Even

when the estimates for θs might be lower, the overall level of information obtained

through using the full system model and including covariates is desired.
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Table 4.8: Numerical posterior distribution summary statistics are shown for θs us-
ing the posterior distributions for θ1 − θ5. Each table represents the results based
upon different system priors. Each line represents the posterior system summary
information for different ages.

Highest
Posterior
Density

Expected
Reliability

Std Dev LB UB

0.00 0.8512 0.0518 0.7494 0.9449
0.25 0.8466 0.0518 0.7438 0.9401
0.50 0.8396 0.0522 0.7342 0.9322
0.75 0.8288 0.0534 0.7225 0.9251
1.00 0.8121 0.0573 0.6993 0.9147

(a) π(θs) ∼ Beta(2.9304, .0296)

Highest
Posterior
Density

Expected
Reliability

Std Dev LB UB

0.00 0.8520 0.0511 0.7510 0.9439
0.25 0.8473 0.0511 0.7479 0.9414
0.50 0.8404 0.0515 0.7391 0.9339
0.75 0.8297 0.0527 0.7238 0.9235
1.00 0.8131 0.0566 0.7017 0.9144

(b) π(θs) ∼ Beta(.9408, .0192)

Highest
Posterior
Density

Expected
Reliability

Std Dev LB UB

0.00 0.8283 0.0569 0.7154 0.9318
0.25 0.8239 0.0569 0.7090 0.9256
0.50 0.8171 0.0571 0.6995 0.9173
0.75 0.8066 0.0580 0.6923 0.9143
1.00 0.7904 0.0613 0.6668 0.8992

(c) π(θs) ∼ Uniform(0, 1)
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4.1.5 Simulated Data Summary

Analysis of the four simulated data sets has proven that the models developed

in this paper can address a variety of different data types. This section has shown

how combinations of the three data types and different system priors discussed in

this paper can be used by the reliability models derived in Chapter 3.

One of the biggest take-aways from this section is the importance of the vol-

ume of data. The four datasets used several data points collected from component

and/or system tests. The volume of information available minimized the difference

in estimates between the system priors. Having the data eventually overwhelm the

priors is desirable because this ensures consistency of the posterior distributions. The

influence of the prior distribution is overwhelmed as the volume of data increases.

The results were not significantly different between the priors, but they did provide

consistent results: highly informative giving the highest estimates for θs with the

smallest HPDs and the non-informative giving the smallest estimates for θs with the

largest HPDs; these differences would be even greater in the event of reduced volume

of test data.

The level of uncertainty, or the spread of each posterior density, varied greatly

under three different scenarios. The first scenario was if any failures were recorded.

Comparing the distributions of θ4 to the distributions of θ1 and θ2 in Figure 4.7

helps draw the conclusion that a component with failures will have a larger level of

uncertainty associated with the estimate of its expected reliability; this uncertainty

gets carried through when calculating θs estimates. From the same figure, looking

at the distribution for θ3 highlighted the increased spread when the number of tests

were small. Even though θ3 had less failures than θ4; the amount of data available for

θ4 was able to keep the spread of the marginal posterior distribution for θ4 smaller

than that of θ3. The third scenario involves the results from using the covariate age.

The longer a component has been out in service; the wider the credible interval will
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be surrounding the point estimate for θs.

The final conclusion from the analysis of the simulated data sets comes from

the full system reliability model. The analysis in this model showed an almost 6%

decrease in expected reliability for θ5 as it aged from 0 to 1 with increasing level of

uncertainty. However; aggregating the information for θ5 with the information from

θ1− θ4 into an estimate for θs causes a lot of that additional information to get lost.

The amount of information from the static estimates for θ1− θ4 minimize the impact

of θ5. The information for θ5 is still present in the model and shows up in a decrease

in θs across ages. Comparing this model to the first model run, 5 component system

- no covariates, showed just how much more fidelity was gained by being able to view

θs as a function of age. This example shows the importance of collecting and using

as much information as possible.

The last four sections tested the models that were developed in Chapter 3. The

results from the model have been consistent with what one would expect given the

types of data and the types of system priors used in each analysis. Knowing that

the model derived in this paper is providing useful and appropriate insights into the

reliability of systems the model can be applied to a real-world problem set using test

results from a weapons system.

4.2 Weapons System Test Data

The following section compares the results of seven data sets from component

tests on an actual weapon system. The first five data sets represent test results from

a 7 component weapon system, the final two data sets contain only one component.

For the weapon test data there are no system tests or covariate information available

to include in the model. The data sets were created from the same set of tests, but

what constituted a failure was defined differently for each data set. The change in the
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number of components is due to the way researchers defined the system structure,

from here referred to as the component block. The seven sets of data are shown in

Table 4.9.1 Besides calculating θs for the weapon system; the results will help find

the best way to define a“failure”, given that a government agencies intent is to report

highly reliable systems.

Table 4.9: The test results for the seven weapon data sets. Each data set represents
the use of a different definition for what constitutes a failure. Each data set also
represents a different definition of a component block; which is why five of the data
sets have seven components and two have one component.

Data Set 1 Data Set 3 Data Set 3

Total
Tests

Successes Failures Successes Failures Successes Failures

1 12 9 3 6 6 12 0
2 14 14 0 14 0 13 1
3 49 49 0 49 0 49 0
4 64 64 0 64 0 64 0
5 36 36 0 36 0 35 1
6 20 20 0 20 0 20 0
7 7 7 0 7 0 6 1

Data Set 4 Data Set 5

Successes Failures Successes Failures
11 1 12 0
13 1 14 0
48 1 49 0
64 0 64 0
35 1 36 0
19 1 20 0
6 1 7 0

Data Set 6 Data Set 7

Total
Tests

Successes Failures Successes Failures

302 296 6 302 0

As in the simulated section, posterior distributions for each of the parameters

will be calculated using the same three system priors. The data sets for this section

1It is worth noting how difficult it would be to model this data with traditional logistic
regression. The amount of zeros present will make MLE estimation quite difficult.
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contain highly reliable components so the µi transformation described in Section 3.4

was used. The M-H algorithm obtained draws from the complete conditional for µi

using the MCMC settings from Table 3.3 and the σc values from Table B.9.

4.2.1 Data Set 1

The first data set for the weapon test data is one of the seven component systems.

Three failures were recorded on component 1 in this data set. At the end of this

section this data set will be compared to data set 3 to see the differences between

having all failures on one component versus having failures spread across multiple

components.

The marginal posterior densities for each of the eight unknown parameters (7 θi’s

and θs) are plotted in the first three plots of Figure 4.10. The boxplots show the lower

simulated values for θ1 as well as the increased spread; things which are expected

from Section 4.1 for a component with failures. The remaining six components all

have high reliability estimates with smaller spreads. There are no surprising results

from the analysis of the seven θi. The posterior distributions for θs were calculated

using Equation 3.2 and the three θs given the system priors are plotted as side-by-side

boxplots in the fourth plot of Figure 4.10.

The final comparison for data set 1 is to look at how the three priors affect sys-

tem reliability with a side-by-side comparison. Both Table 4.10 and Figure 4.10 put

the posterior summaries for θs side-by-side. The highly informative prior gave the

largest point estimate for θs and also the smallest HPD interval. There is a 60%

probability that the highly informative Beta prior will provide higher estimates for

θs when compared to the model of the non-informative Uniform prior; this proba-

bility drops to 55% when compared to the low informative Beta prior. This is the

first instance where the prior has had a noticeable affect when comparing the three

resulting distributions. The amount of component test data is large; however, the
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impact of not including any system tests is allowing the information from the system

priors to impact the final results.

Table 4.10: Comparison of the expected reliability and HPD intervals for θs given the
different system priors.

Highest
Posterior
Density

π(θs) Expected
Reliability

Std Dev .025% .975%

Beta(2.9304, .0296) 0.7756 0.0753 .5729 .9545
Beta(.9408, .0192) 0.7684 0.0777 .5500 .9472

Uniform(0, 1) 0.7341 0.0801 .5300 .9131

4.2.2 Data Set 2

The second data set for the weapon test data contains seven different components.

This data set has 6 failures occurring on component 1. The results from this data set

can be compared to data set 4 to understand the impact of having all failures occur on

one component versus having the failures spread out. The marginal posterior density

summaries of the seven θi and θs for the three system priors are plotted as the first

three plots in Figure 4.11. The boxplots presented show the lower simulated values

for θ1 as well as the increased spread; results that are expected from Section 4.1

conclusions. The remaining six components all have high reliability estimates with

smaller spreads. The eighth boxplot in the first three plots shows how the density

of θs is strongly influenced by the θ1. Regardless of system prior, the maximum

value for θ1 does not reach 1. The addition of three extra failures on component 1

has impacted that components density by dragging the entire density down. The

remaining six components have similar distributions with a majority of the density

for each component close to 1.

Comparing the point estimates for θi from this data set to data set 1 using the
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information from Tables C.7 and C.8 show that θ2 − θ7 have similar estimates while

the point estimate for θ1 drops from 83.03% to 71.67% with the addition of the three

additional failures; a drop of 11.36%.

The real interest of this thesis is in how the three system priors affect θs. Table

4.11 and the fourth plot in Figure 4.11 put the posterior distributions for θs side-by-

side. The estimate for θs is highest from the highly informative Beta prior and lowest

for the non-informative Uniform prior. The uncertainty surround the point estimates

for each model are close to being equal with HPD intervals all covering a range of

31%. The highly informative Beta prior results in a model with a 58% probability of

giving higher estimates for θs when compared to the non-informative Uniform prior;

this probability drops slightly to 54% when compared to the less informative Beta

prior. Including information about the system through the prior does have an impact

on the final results for this data set; this impact can be attributed to the lack of any

system information coming from actual tests.

Table 4.11: Comparison of the expected reliability and HPD intervals for θs given the
different system priors.

Highest
Posterior
Density

π(θs) Expected
Reliability

Std Dev .025% .975%

Beta(2.9304, .0296) 0.7079 0.0859 .4855 .7988
Beta(.9408, .0192) 0.6945 0.0869 .4845 .7898

Uniform(0, 1) 0.6832 0.0872 .4629 .7780
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(a) π(θs) ∼ Beta(2.9304, .0296) (b) π(θs) ∼ Beta(.9408, .0192)

(c) π(θs) ∼ Uniform(0, 1) (d) System Reliabilities

Figure 4.10: The densities shown in the first three plots represent the posterior
reliabilities of the seven θi’s and θs for weapon data set 1. Each of the first three
plots represent the posterior densities obtained using one of the three different system
priors. The fourth plot provides side-by-side comparisons of the three different θs
densities.
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(a) π(θs) ∼ Beta(2.9304, .0296) (b) π(θs) ∼ Beta(.9408, .0192)

(c) π(θs) ∼ Uniform(0, 1) (d) System Reliabilities

Figure 4.11: The densities shown in the first three plots represent the posterior
reliabilities of the seven θi’s and θs for weapon data set 2. Each of the first three
plots represent the posterior densities obtained using one of the three different system
priors. The fourth plot provides side-by-side comparisons of the three different θs
densities.
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.

4.2.3 Data Set 3

The third data set for the weapon test data contains seven different components.

This data set has 3 failures spread across the 7 components, where no component has

more than one failure recorded. The marginal posterior densities for the unknown

paramaters are plotted as boxplots in the first three plots of Figure 4.12. The boxplots

show the lower estimates and wider densities for θ2, θ5, and θ7; the components with

one failure. These results are in line with what is known about the effect of a failure

on posterior densities from Section 4.1.

The main interest of this thesis is the distribution of θs. The final analysis looks

at how the three system priors affect θs with side-by-side comparisons given in Table

4.12 and the fourth plot of Figure 4.12. The highly informative Beta prior gives the

highest point estimate for θs with the smallest HPD interval. Comparing the mod-

els, there is a 60.4% probability that the highly informative Beta prior will result in

higher estimates for θs over the non-informative Uniform prior; this probability drops

to 56.5% when comparing the low informative Beta prior to the non-informative Uni-

form prior. The two Beta priors provide similar densities with the highly informative

Beta prior having a 53./6% chance of providing higher estimates. So far the results

have been consistent in the last three data sets with the highly informative Beta prior

providing higher estimates for θs with a 58-60% higher probability when compared

to the non-informative prior.

4.2.4 Data Set 4

The fourth data set for the weapon test data contains seven components with 6

failures that are evenly spread across the components; with no component containing
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Table 4.12: Comparison of the expected reliability and HPD intervals for θs given the
different system priors.

Highest
Posterior
Density

π(θs) Expected
Reliability

Std Dev .025% .975%

Beta(2.9304, .0296) 0.8039 0.1048 0.5905 0.9715
Beta(.9408, .0192) 0.7892 0.1124 0.5656 0.9742

Uniform(0, 1) 0.7649 0.1126 0.5395 0.9552

more than one failure. The marginal posterior densities of the eight unknown pa-

rameters are plotted as boxplots in the first three plots of Figure 4.13. The boxplots

show the lower estimates and wider spreads for θ1, θ2, θ3, θ5, θ6 and θ7; all of the

components with one failure recorded. The density for θs is not overly influence by

any one component as it is in data sets 1 and 2. Again, these results are in line with

what is known about the effect of a failure on posterior densities from Section 4.1.

The final analysis for data set 4 is to look at how the three priors affect θs with a

side-by-side comparison. Table 4.13 and the fourth plot of Figure 4.13 provide side-

by-side comparisons. The estimates for θs are again highest for the highly informative

Beta prior, with a 2% decrease coming from each of the other two priors. The HPD

interval is also the narrowest for the highly informative Beta prior. The highly

informative Beta prior has a 60% chance of providing higher estimates for θs when

compared to the non-informative Uniform prior, this value drops to 54.7% when

compared to the low informative Beta prior; very similar values compare to the

previous three data sets. Once again, even in spite of the large amount of information

present, the choice of a prior is having a small impact on the posterior distributions

of θs. If system tests are unavailable for inclusion in the model the more informative

the system prior can be the better.
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Table 4.13: Comparison of the expected reliability and HPD intervals for θs given the
different system priors.

Highest
Posterior
Density

Expected
Reliability

Std Dev .025% .975%

Beta(2.9304, .0296) 0.7046 0.1095 0.4841 0.9009
Beta(.9408, .0192) 0.6855 0.1152 0.4519 0.8883

Uniform(0, 1) 0.6611 0.1149 0.4361 0.8749

4.2.5 Data Set 5

The fifth data set for the weapon test data is the last data set that contains seven

components. There are zero failures recorded in this data set. This data set can be

compared to data set 7 to understand the impact of defining the block of components

differently. The marginal posterior densities of the 8 unknown parameters are plotted

as boxplots in the first three plots of Figure 4.14. The boxplots show wider densities

for θ1, θ2, and θ7. These three components have the lowest amount of data; 12, 14,

and 7 tests respectively. The small number of tests are resulting in more uncertainty

surrounding the point estimate for θi. The impact of a low number of component

tests was commented on in the full system model. Having zero failures confirms

that the conclusions made earlier about how a smaller number of component tests

increases the uncertainty for that posterior density.

The final analysis for data set 5 is to compare how the three system priors affect

θs with side-by-side comparisons in Table 4.14 and the fourth plot of Figure 4.14.

The estimates for θs are fairly similar between the models using the two Beta priors,

with a 3% decrease for the non-informative Uniform prior. The HPD interval for the

non-informative prior is close to being double that of the HPD intervasl for either

the Beta prior. The information provided about θs through the Beta system priors

provides more certainty surrounding the point estimate for θs. Comparing the two
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Beta priors shows that either of the models has a 50% chance of providing higher

estimates for θs. There is a 73.5% probability that either of the Beta priors will

provide higher estimates for θs when compared to the non-informative prior. The

amount of data in this data set is the same as the four previous models; however,

having zero failures for the entire system gives more weight to the priors.

with the highly informative providing the highest estimate, with a 3% decrease for

the non-informative prior compared to either Beta prior. The HPD interval for the

non-informative prior is close to being double that of the HPD intervals for either the

Beta prior. Using a non-informative prior for this data set with zero failures resulted

in quite a bit more uncertainty surrounding the θs estimates.

Both of the models that used a Beta prior provide similar output where each

model is expected to provide higher estimates 50% of the time. There is a significant

impact from the non-informative prior. Both of the Beta prior models will provide

better estimates for θs about 73.5% of the time; with the highly informative prior

giving slightly better estimates. The amount of data is still the same; however,

having zero failures for the entire system appears to give more weight to the priors

which bring in some level of information to the model.

Table 4.14: Comparison of the expected reliability and HPD intervals for θs given the
different system priors.

Highest
Posterior
Density

π(θs) Expected
Reliability

Std Dev .025% .975%

Beta(2.9304, .0296) 0.9784 0.0354 0.9119 1.0000
Beta(.9408, .0192) 0.9768 0.0382 0.9044 1.0000

Uniform(0, 1) 0.9485 0.0567 0.8337 1.0000
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(a) π(θs) ∼ Beta(2.9304, .0296) (b) π(θs) ∼ Beta(.9408, .0192)

(c) π(θs) ∼ Uniform(0, 1) (d) System Reliabiliaties

Figure 4.12: The densities shown in the first three plots represent the posterior
reliabilities of the seven θi’s and θs for weapon data set 3. Each of the first three
plots represent the posterior densities obtained using one of the three different system
priors. The fourth plot provides side-by-side comparisons of the three different θs
densities.
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(a) π(θs) ∼ Beta(2.9304, .0296) (b) π(θs) ∼ Beta(.9408, .0192)

(c) π(θs) ∼ Uniform(0, 1) (d) System Reliabiliaties

Figure 4.13: The densities shown in the first three plots represent the posterior
reliabilities of the seven θi’s and θs for weapon data set 4. Each of the first three
plots represent the posterior densities obtained using one of the three different system
priors. The fourth plot provides side-by-side comparisons of the three different θs
densities.
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(a) π(θs) ∼ Beta(2.9304, .0296) (b) π(θs) ∼ Beta(.9408, .0192)

(c) π(θs) ∼ Uniform(0, 1) (d) System Reliabiliaties

Figure 4.14: The densities shown in the first three plots represent the posterior
reliabilities of the seven θi’s and θs for weapon data set 4. Each of the first three
plots represent the posterior densities obtained using one of the three different system
priors. The fourth plot provides side-by-side comparisons of the three different θs
densities.
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4.2.6 Data Set 6

The sixth data set for the weapon test data is the first of two data sets that contain

only one component. Six failures were recorded for this data set. Because there is only

one component, the posterior distribution for θ1 = θs. The posterior distributions

for θs are plotted side-by-side in Figure 4.15 with the numerical summaries given in

Table 4.15.

Table 4.15: Comparison of the expected reliability and HPD intervals for θs given the
different system priors.

Highest
Posterior
Density

π(θs) Expected
Reliability

Std Dev .025% .975%

Beta(2.9304, .0296) 0.9803 0.0081 0.9640 0.9939
Beta(.9408, .0192) 0.9802 0.0079 0.9645 0.9938

Uniform(0, 1) 0.9770 0.0086 0.9597 0.9917

The point estimates for θs are similar among the three system priors with similar

HPD intervals. Again, the highly informative Beta prior is giving the highest estimate

for θs. In spite of the perceived similarities, there is a 60.9% probability of either

Beta prior turning out a higher estimate for θs when compared to the non-informative

Uniform prior. appear to be similar among the three priors. Again, the highly

informative Beta prior does give the highest estimate for θs, which is expected. The

HPD intervals are similar across the three different priors. But the two models which

use a Beta prior do provide better estimates for θs 60.9% of the time when compared

to the non-informative prior.

4.2.7 Data Set 7

The seventh and final data set for the weapon test data also contains only one

component with a total of zero failures. The posterior distributions for θs are plotted
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Figure 4.15: The densities shown in these three boxplots represent the reliability of
θs for weapon data set 6 from each of the three different priors. The left hand boxplot
shows the density of θs using a highly informative Beta prior; the middle boxplot
shows the density of θs using a low informative Beta prior; the right hand boxplot
shows the density of θs using a non-informative Uniform prior.

side-by-side in Figure 4.16 with the numerical summaries given in Table 4.16.

Table 4.16: Comparison of the expected reliability and HPD intervals for θs given the
different system priors.

Highest
Posterior
Density

Expected
Reliability

Std Dev .025% .975%

Beta(2.9304, .0296) 0.9997 0.0009 0.9985 1.0000
Beta(.9408, .0192) 0.9997 0.0010 0.9971 1.0000

Uniform(0, 1) 0.9967 0.0032 0.9901 1.0000

The point estimates appear to be close to each other across all three priors, but the

non-informative estimate of θs is 3 or more standard deviations away from the other

two estimates. The HPD interval is also much wider for the non-informative prior

when considering the size of the standard deviations. There is a 94.3% probability

that either of the Beta priors will provide a higher estimate for θs. As with data set
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Figure 4.16: The densities shown in these three boxplots represent the reliability of
θs for weapon data set 7 from each of the three different priors. The left hand boxplot
shows the density of θs using a highly informative Beta prior; the middle boxplot
shows the density of θs using a low informative Beta prior; the right hand boxplot
shows the density of θs using a non-informative Uniform prior.

5, the absence of any failures gives more influence to the priors.
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4.2.8 Weapons System Test Data Conclusion

The previous sections compared the effect of different priors to seven data sets

of weapon test data. The highly informative Beta prior always provided the highest

estimate for θs; which is expected given the information provided by that prior.

However; there were no other notable conclusions made from comparing the posterior

distributions of each data set under different priors. As mentioned earlier, the seven

data sets contain information from the same tests. The differences in the seven data

sets comes from the way researchers defined a failure and/or the configuration of

components was defined. The differences between data sets is of more interest than

the differences within each data set. This section will conclude the weapon test data

section by making several of these comparisons.

Comparisons of θs between the seven different data sets will first be made. From

the previous sections it is expected that the data sets with less components are

expected to have the highest reliabilities; followed by the data sets with the fewest

number of failures. Figure 4.17 shows the densities for the 21 different data sets

grouped by system prior and ordered data set 1-7 in each group.

The densities from data sets 1-5 have similar spreads. This uncertainty can be

attributed to deriving θs as the product of the θi’s. Data set 5, with zero failures,

gives a higher point estimate for θs then data set 6, which has 6 failures only for the

two Beta priors. This comparison shows the importance of being able to include an

informative system prior.

The overall comparison of the 21 densities does not shed light on which definition

of a failure produces the highest estimate for θs; the focus will shift to comparing

the densities between data sets that contain the same number of failures to try

and answer this question. The densities for θs coming from the two data sets that

contain 3 failures are plotted side-by-side in Figure 4.18; remember data set 1 has 3

failures from one component while data set 3 has 3 failures coming from 3 different
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Figure 4.17: The densities of θs resulting from the 21 analyses of data set and prior
combinations are plotted as boxplots. The first group of 7 boxplots come from the
highly informative Beta prior, the second group of 7 boxplots comes from the low
informative Beta prior, the third group of 7 boxplots comes from the non-informative
Uniform prior.

components.

Figure 4.18 shows that the expected reliability for θs using data set 3 is consis-

tently higher than the estimate from data set 1; regardless of the system prior. This

comparison provides evidence for the conclusions that it should be preferred to have

any failures spread across the system. Averaging over the priors, data set 3 has a

57.8% probability of resulting in a higher estimate for θs than data set 1.

The next set of comparisons comes from data sets with 6 failures recorded. There

are three different datasets; each with six failures. Data set 2 has one of seven

components with 6 failures; data set 4 has six of seven components with one failure
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Figure 4.18: The densities of θs resulting from data set 1 and data set 3 are plotted
as boxplots. Data set 1 has three failures all coming from component 1; data set 3
has three failures coming from three different components. Data set 1 resulted in
the density plotted on the left of each prior comparison; data set 3 resulted in the
density plotted on the right of each prior comparison.

each; data set 6 has one component with 6 failures. The densities for θs are plotted

side-by-side by system prior in Figure 4.19. This comparison reiterates the same

findings from the comparison of the three failure data sets. The difference in expected

reliability between data set 2 and 4 is larger than it was with only three failures; with

data set 4 resulting in a higher point estimate for θs. This comparison also highlights

the advantage of a system with fewer components. Figure 4.19 shows that data set

6, where all the tests came from one component has a higher point estimate for

θs as well as a smaller spread in the density. Data set 4 has a 72.2% probability
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of producing higher estimates for θs compared to data set 2. It can be concluded,

as the overall number of failures increase it is beneficial to have the failures spread

across the system. Data set 6 has a 99.99% probability of producing higher estimates

compared to data set 2; and 99.4% of the time compared to data set 4. The fewer

number of components that are included in the component block has a significant

impact on the distributions of θs.

Data set 6 where all the tests came from one component has a higher point

estimate of θs as well as a tighter posterior distribution. Data set 4 is expected to

produce higher estimates for θs 72.2% of the time. Spreading the failures over the

components does increase the estimate for θs. Data set 6 is expected to produce

higher estimates for θs 100% of the time over data set 2, and 99.99% of the time over

data set 4. Decreasing the number of components in a system has a huge impact on

the estimates for θs.

The final comparison is between data sets with zero failures. The two data sets

with zero failures recorded are data set 5 and 7. The densities for θs that resulted

from these two data sets are plotted as side-by-side boxplots in Figure 4.20. This

plot; like Figure 4.19, highlights the impact of having a system with a large amount

of test data from a small number of components versus having the same amount of

test data spread over a larger number of components. Fewer components result in

higher estimates and smaller spreads for the densities of θs. Data set 7 has a 95.55%

chance of producing higher estimates for θs when compared to data set 5 when the

model uses the highly informative Beta prior, and that value drops down to 93.41%

when the models use the non-informative Uniform priors. Regardless of the prior,

condensing the system down to 1 component will result in better estimates for θs.
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Figure 4.19: The densities of θs resulting from data set 2, data set 4, and data set
6 are plotted as boxplots. Data set 2 has six failures all coming from component 1;
data set 4 has six total failures coming from six different components; and data set
6 has only one component with 6 failures. Data set 2 resulted in the density plotted
on the left of each prior comparison; data set 4 resulted in the density plotted in the
middle of each prior comparison; and data set 6 resulted in the density plotted to
the right of each prior comparison.
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Figure 4.20: The densities of θs resulting from data set 5 and data set 7 are plotted
as boxplots. Data set 5 has zero failures and seven components; data set 7 has zero
failures and one component. Data set 5 resulted in the density plotted on the left of
each prior comparison; data set 7 resulted in the density plotted to the right of each
prior comparison.
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Analyzing these different weapon data sets allowed for an understanding of how

two component block schemes and spread of failures among components affect the

posterior densities for θs. The conclusions made are given the assumption that the

goal of an agency is to report a high level of system reliability with high confidence

in those estimates. Figures 4.19 and 4.20 have shown that the best way to model

a system is to define a block of components using the fewest components possible

and increase the number of tests on those few components. The fewer number of

components results in an increase in the estimates for θs. Allocating a large number

of tests to few components increases the certainty one has in the estimates obtained.

The positive impact of increasing test data has been seen throughout this analysis.

Once the block of components has been defined using the fewest components

possible, the second way to increase estimates for θs is to minimize the number of

overall failures. Figure 4.17 shows that regardless of how the failures are spread over

the components; the less failures recorded the higher the estimate for θs; somewhat

of an obvious conclusion. Figures 4.19 and 4.20 show that it is beneficial to have an

even spread of failures across the components versus all the failures lumped onto any

single component. If it only takes one component to fail for the whole system to fail

a component with a lower point estimate for θi will have a bigger impact on θs.

The choice of priors has also given consistent estimates throughout. The amount

of data available in each data set, 302 tests, was enough to negate some of the

impact of each prior. The highly informative Beta prior consistently gave the highest

estimates for θs while the non-inforamative Uniform prior consistently gave the lowest

estimate for θs. The lack of any system tests in the weapons system data did make the

prior information more important. As the number of failures went to zero, there was

a noticeable difference in the results between system priors where the non-informative

Uniform prior doubled the uncertainty. If the amount of test data was limited then

the effect of these priors would be more pronounced and having the knowledge to

use a highly informative prior would be desired.
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Chapter 5

Conclusion

The United States Department of Defense is responsible for maintaining a large

and diverse arsenal of weapons and delivery systems. Ensuring that all facets of

this arsenal operate with high levels of reliability is a taxing job; especially for the

nuclear arsenal which tight testing restrictions are enforced. This thesis developed a

Bayesian model that can use a variety of available data sources to provide estimates

of a systems reliability.

The Bayesian model in this paper has been built to be flexible enough to use

different types of data so as to not restrict its use to one particular weapons system.

The first type of data that this model incorporates is expert knowledge in the form

of a prior distribution. Incorporating expert knowledge is one of the advantages of

Bayesian statistics. The reliability model derived in this thesis has been written to

incorporate different prior distributions. The first prior used in this thesis assumes

that no reliable expert knowledge is available and therefore uses a non-informative

Uniform distribution. The second prior assumes that information regarding the mean

and variance of a systems reliability is known. This information is incorporated

through a Beta system prior. Regardless of the knowledge available about system

reliability it can easily be incorporated into this model.
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Having found a way to incorporate expert opinion into the model the focus shifted

to incorporating different sources of data. The reliability model is written using a

Binomial likelihood to use pass/fail data from component and system level tests and

also covariate information when available. The full expression of the model uses any

combination of these data sources. The flexibility of this reliability model comes for

it being written in a way to incorporate a range of prior information as well as its

ability to use any combination of three data sources.

Once the reliability model was expressed in its complete form, the focus of this

thesis shifted to running a range of data through the model. All of the data sets were

run using three system priors: a highly informative Beta prior, a less informative Beta

prior, and a non-informative Uniform prior. Simulated data was used to understand

how all three types of data would affect reliability estimates. The four data sets

looked at a system with a small number of components; a system with a large number

of components; a system with only covariate information; and a full system with a

small number of components, system tests, and covariate information.

The simulated data showed the impact of increasing system complexity. System

reliability is found by taking the product of the component reliabilities. If a complex

system has any low-reliable components the estimates for θs will reflect that with

lower values. Including the covariate, age, brought a higher level of fidelity to the

estimates for θs. Including this covariate allowed for system reliability to be reported

as a function of age. In this full system model the estimates for θs ranged from 85-81%

as the system aged. These estimates are about 2-3%higher than those obtained in

the 5 component model without covariates. The nuclear arsenal has been aging over

the past 80 years with minimal refurbishments so it is valuable to have a model that

determines the rate of degradation as a function of age. Finally, the simulated data

showed how large amounts of data overwhelm the prior information and estimates

for θs will converge as the amount of data increases.

Moving from the simulated data to actual weapon test data allowed the model to
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analyze real-world information. The weapon test data can easily compare how the

estimate for θs was affect by various changes within the same set of tests. Throughout

the analysis of the seven data sets, the highly informative prior consistently gave

higher estimates for θs, some models provided better estimates for θs 72.2% of the

time when compared to the non-informative Uniform prior. The weapons test data

showed a real difference between the three priors in spite of having 300+ tests. This

difference between priors is a result of not having any system test data. Collecting

data on the overall system can provide the model with more information than if the

same amount of data came from component tests.

Comparing the 7 data sets showed up decreasing the size of a component block

as well as spreading failures across the system resulted in higher point estimates for

θs with higher levels of certainty in those estimates. The real world data led to the

conclusion that the more tests performed on a component the more confident one can

be in the results; regardless of the number of failures. There are increased levels of

uncertainty for the point estimates if either a small number of tests are performed or

failures are recorded. Out of these two, the one way to control the level of confidence

in the point estimate for θs is to increase the number of tests performed.

This thesis has successfully developed a Bayesian reliability model that can be

used by government agencies charged with the responsibility of determining system

reliability. This model has concluded the impact that the number of tests, spread of

failures, and age can have on estimates for system reliability. A wide range of topics

has been covered by this thesis; but there are still topics that this research can be

expanded to cover. This model has been written to include as many covariates as

the researcher desires; but only one, age, was address in this paper. Other covariates

could have an impact on the estimates of θi and θs. Future covariates of interest

include: production facility, storage facility, and refurbishments. Knowing if these,

or any other covariates, cause significant differences in θs can aide decision makers.

If resources are limiting the number of component replacements that can be made;
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knowing which covariates lower system reliability can ensure the components associ-

ated with those covariates are replaced first; therefore lowering the risk of a failure

to the entire stockpile.

Resource allocation has been a constant theme throughout the introduction and

conclusion. Using this model to address cost would be a worthwhile extension of

the current efforts. Do the estimates for θs increase more from one system test or a

handful of component tests? If a failure has been recorded, is it worth spending the

money to obtain additional (hopefully failure free) tests? At what point does the

fidelity of the results begin to diminish with added tests? These are questions that

could be answered with minor modifications to the main framework of the model.

These concepts are extensions to the current research that would further to enhance

the U.S. weapons program.

This thesis has proven through the analysis that a reliability model can easily be

applied to real-world problems. This paper set the stage for future work to be con-

ducted in this field. Models such as the reliability model presented in this thesis are

irreplaceable to the Stockpile Stewardship Program. The ability to answer questions

regarding the future needs of the U.S. weapons program lie in the continuous use of

reliability models such as the one developed in this thesis.
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Appendix A

Distributions

A.1 Beta Distribution

X| α, β ∼ Beta(α, β)

f(x|α, β) =
Γ(α + β)

Γ(α) + Γ(β)
xα−1(1− x)β−1, 0 ≤ x ≤ 1, α > 0, β > 0.

E[X] =
α

α + β
, var(X) =

αβ

(α + β)2(α + β + 1)
.

The parameters are α and β.
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Figure A.1: Probability density function of the Beta distribution using various pa-
rameter values.
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A.2 Binomial Distribution

X|n, p ∼ Binomial(n, p)

f(x|n, p) =

(
n

x

)
px(1− p)x, x = 0, 1, 2, 3, . . . , n, 0 < p < 1.

E[X] = p, var(X) = np(1− p).

n is the number of tests and p is the probability of seeing a success.

Figure A.2: Probability density function of the Binomial distribution using various
parameter values.
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A.3 Normal Distribution

X|µ, σ2 ∼ N(µ, σ2)

f(x|µ, σ2) =
1√

2πσ2
exp

[
− 1

2σ2
(x− µ)2

]
−∞ < x <∞, −∞ < µ <∞, σ > 0

E[X] = µ, var(X) = σ2.

Figure A.3: Probability density function of the Normal distribution using various
parameter values.
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A.4 Uniform Distribution

X ∼ Unif(a, b)

f(x|a, b) =
1

b− a
, a < x < b

E[X] =
a+ b

2
var(X) =

(b− a)2

12

Figure A.4: Probability density function of the Uniform distribution on the most
common range (0, 1)
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Appendix B

Convergence Diagnostics

This section covers the diagnostics that were used to determine if the M-H al-

gorithms were converging to stationary distributions. No one single diagnostic can

confirm convergence; however, the combination of several diagnostics can lead one to

conclude that the results appear stationary. All of the M-H algorithms run for the

analysis in this paper were concluded to have converged by looking at a combination

of acceptance rates, trace plots, Geweke diagnostics, and Gelman and Rubin diag-

nostics. The Gelman and Rubin diagnostic point estimates were 1 for the majority

of the models; these diagnostics will not be individually displayed for the models in

which this diagnostic equaled 1.

B.1 5 Component System

This section presents all of the convergence diagnostics for the 5 component sys-

tem analyzed in Section 4.1. The σc and corresponding acceptance rates for the M-H

algorithm run on the 5 component system data are shown in Table B.1.

The trace plots for the 5 unknown parameters are given in Figure B.1. The
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Table B.1: This table gives the σc values used in the M-H algorithm for a 5 component
system. Three different sets of σc and acceptance rates are given for each of the three
system priors.

π(θs) ∼ Beta(2.9304, .0296) Beta(.9408, .0192) Uniform(0, 1)
Acceptance Rates

θi σc Acc Rate σc Acc Rate σc Acc Rate
1 14.00 0.4027 14.00 .4272 15.00 .4009
2 3.50 0.3634 3.50 .3658 3.50 .3641
3 14.00 0.3852 14.00 .4105 15.00 .3890
4 3.50 0.3641 3.50 .3614 3.50 .3593
5 2.50 0.2281 2.50 .2296 2.50 .2275

Geweke statistics are shown in Table B.2. Each column of the table represents the

Geweke statistics for each component and each prior.

Table B.2: The Geweke diagnostics are shown in this table. One Geweke diagnostics
is given for each component for each system prior.

Component Beta(2.9304, .0296) Beta(.9408, .0192) Uniform(0, 1)
1 .6985 1.8088 -2.607
2 2.1138 -1.7903 0.4702
3 .4857 -0.4054 -0.8514
4 1.6258 -0.1214 -0.3453
5 1.0884 -0.8065 0.4993
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(a) π(θs) ∼ Beta(2.9304, .0296) (b) π(θs) ∼ Beta(.9408, .0192)

(c) π(θs) ∼ Unif(0, 1)

Figure B.1: Trace plots of the 5 unknown parameters in the 5 component system.
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B.2 42 Component System

This section presents all of the convergence diagnostics for the 42 component

system analyzed in Section 4.1. The σc and corresponding acceptance rates for the

M-H algorithm run on the 42 component system data are shown in Table B.3.

Table B.3: σc is the value that represents the spread of

the proposal density for each unknown parameter. This

spread affects the acceptance rate. Both the σc and the

corresponding acceptance rates for the three different sys-

tem priors are listed in this table. The middle portion of

this table shows the statistics from the Geweke Diagnos-

tic. The final portion of this table shows the statistics

from the Gelman and Rubin diagnostic based off of three

chains.

π(θs) ∼ Beta(2.9304, .0296) Beta(.9408, .0192) Uniform(0, 1)

θi σc Acc Rate σc Acc Rate σc Acc Rate

1 14 0.199 4 0.2018 4 0.2016

2 3.5 0.4189 14 0.4199 14 0.4129

3 14 0.3991 14 0.4 14 0.3975

4 3.5 0.3943 14 0.3941 14 0.3922

5 2.5 0.4058 14 0.4038 14 0.4002

6 14 0.4147 14 0.4145 14 0.4095

7 3.5 0.4257 14 0.4269 14 0.4204

8 14 0.1995 4 0.1997 4 0.1985

9 3.5 0.3722 16 0.3768 16 0.3715

10 2.5 0.3581 16 0.3578 16 0.3509

11 14 0.352 16 0.3521 16 0.3504

12 3.5 0.3621 16 0.3623 16 0.3558

13 14 0.3711 16 0.3732 16 0.3654

14 3.5 0.3811 16 0.3833 16 0.3811

15 2.5 0.1997 4 0.201 4 0.1977

Continued on Next Page . . .
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Table B.3 – Continued

θi σc Acc Rate σc Acc Rate σc Acc Rate

16 14 0.3769 16 0.3786 16 0.3712

17 3.5 0.3583 16 0.3565 16 0.3554

18 14 0.3544 16 0.3513 16 0.3494

19 3.5 0.362 16 0.3638 16 0.3582

20 2.5 0.3701 16 0.3725 16 0.3666

21 14 0.3819 16 0.3823 16 0.3773

22 3.5 0.1977 4 0.1989 4 0.1995

23 14 0.3757 16 0.3759 16 0.3701

24 3.5 0.3553 16 0.3582 16 0.3534

25 2.5 0.3533 16 0.3542 16 0.3516

26 14 0.3627 16 0.3614 16 0.3566

27 3.5 0.3696 16 0.3735 16 0.3669

28 14 0.3845 16 0.384 16 0.3726

29 3.5 0.1974 4 0.2008 4 0.1983

30 2.5 0.3729 16 0.3768 16 0.3722

31 14 0.3599 16 0.3577 16 0.3523

32 3.5 0.355 16 0.354 16 0.3494

33 14 0.3634 16 0.364 16 0.3606

34 3.5 0.3729 16 0.3716 16 0.3669

35 2.5 0.3822 16 0.381 16 0.3766

36 14 0.1979 4 0.1994 4 0.1987

37 3.5 0.3767 16 0.3767 16 0.3716

38 14 0.3556 16 0.3574 16 0.3552

39 3.5 0.3527 16 0.3522 16 0.3507

40 2.5 0.3617 16 0.3646 16 0.3582

41 14 0.3687 16 0.3692 16 0.3663

42 3.5 0.3805 16 0.3836 16 0.3779

All 42 trace plots were inspected to ensure that the chains visually converged but

because the data for this analysis was a seven component system replicated 6 times

only the first 7 trace plots are shown in Figure B.2. The Geweke statistics for each

of 42 component system are given in Table B.4.
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(a) π(θs) ∼ Beta(2.9304, .0296) (b) π(θs) ∼ Beta(.9408, .0192)

(c) π(θs) ∼ Unif(0, 1)

Figure B.2: Trace plots of the 5 unknown parameters in the 5 component system.
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Table B.4: The Geweke diagnostics are shown in this table. One Geweke diagnostics is given for each component for
each system prior. The top line represents the system prior which resulted in each statistic; the component values are
given in the first and fifth column.

π(θs) Beta(2.9304,
.0296)

Beta(.9408,
.0192)

Uniform (0, 1) Beta(2.9304,
.0296)

Beta(.9408,
.0192)

Uniform (0, 1)

1 -0.13 0.00 0.32 22 -0.44 -0.17 -1.42
2 -0.18 -1.61 0.84 23 0.40 1.67 0.22
3 -0.85 -1.68 -0.07 24 1.27 0.40 0.05
4 -0.91 0.02 0.63 25 -0.16 1.63 1.90
5 0.38 -0.86 -0.74 26 -0.23 -0.90 -0.67
6 -0.33 0.91 1.27 27 0.44 -0.72 0.22
7 0.88 -0.76 -1.48 28 0.58 2.14 -1.40
8 0.88 -0.96 -0.19 29 2.13 0.53 0.16
9 1.29 -0.30 -1.10 30 -0.96 -0.36 -0.76
10 0.38 -0.11 -1.35 31 -0.09 -0.76 -1.00
11 0.11 0.95 2.14 32 0.10 -1.05 0.03
12 -1.08 -1.85 -1.61 33 0.37 0.71 0.49
13 -0.56 -0.24 -1.02 34 -0.45 0.14 -0.33
14 0.14 1.88 -1.12 35 1.32 0.62 -0.49
15 0.06 0.66 0.54 36 0.11 -0.48 0.92
16 -0.57 2.19 0.61 37 -0.17 0.67 1.19
17 -1.75 -0.51 0.44 38 1.36 1.66 -1.00
18 -0.34 0.55 0.14 39 -0.60 0.76 -0.05
19 -0.43 0.02 0.34 40 -1.08 0.20 1.12
20 1.53 0.60 -1.39 41 0.54 -1.47 0.08
21 -3.34 -0.48 -0.17 42 -1.01 0.01 1.02
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B.3 1 Component System – With Covariates

This section presents all of the convergence diagnostics for the 1 component sys-

tem analyzed in Section 4.1. The σc and corresponding acceptance rates for the M-H

algorithm run on the covariate model are shown in Table B.5.

Table B.5: The σc values and corresponding acceptance rate for each of the unknown
parameters in the covariate model are given below.

βi σc Acc Rate
0 2 .188
1 1.25 .3749

The trace plots for the unknown parameters are given in Figure B.3; these trace

plots represent the draws made on β0 and β1. The Geweke and Gelman and Rubin

statistics for each of the unknown parameters are shown in the Table B.6.

Figure B.3: Trace plots of the β0 and β1 parameters from the covariate model.



Appendix B. Convergence Diagnostics 106

Table B.6: The top half of this table gives the Geweke diagnostics for the β sim-
ulations. The second half of this table gives the Gelman and Rubin point estimate
diagnostics.

Geweke Diagnostics
β0 1.0275
β1 .3556
Gelman and Rubin Diagnostics
β0 1.01
β1 1.11

B.4 Full System Diagnostics

This section presents all of the convergence diagnostics for the full system model

analyzed in Section 4.1. The σc and corresponding acceptance rates for the M-H

algorithm run on the full system data are shown in Table B.7.

Table B.7: The σc values determine the spread of the proposal density for each un-
known parameter. This spread affects the acceptance rate of the algorithm. Both the
σc and the acceptance rates for each of the three system priors are listed in this table.

π(θs) Beta(2.9304, .0296) Beta(.9408, .0192) Uniform (0, 1)
σc Acc Rate σc Acc Rate σc Acc Rate

µ1 5.0 0.1795 5.0 0.1659 5.0 0.1642
µ2 18.0 0.3856 20.0 0.3538 20.0 0.3554
µ3 18.0 0.3853 20.0 0.3522 20.0 0.3543
µ4 18.0 0.3859 20.0 0.3570 20.0 0.3560
µ5 18.0 0.3861 20.0 0.3552 20.0 0.3560
µ6 18.0 0.3863 20.0 0.3532 20.0 0.3539
µ7 18.0 0.3885 20.0 0.3544 20.0 0.3549
β0 1.5 0.3817 1.5 0.3801 1.5 0.3816
β1 2.0 0.3254 2.0 0.3249 2 0.2859

The trace plots for the unknown parameters are given in Figure B.3; trace plots

for the simulated values of the µi’s and the βi’s were inspected to ensure that the

chains visually converged. The Geweke diagnostics are shown in Table B.8.
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Table B.8: The Geweke diagnostics are shown in this table. One Geweke diagnostics
is given for each parameter and each system prior.

Parameter Geweke Diagnostics
µ1 -0.1946 0.8863 0.3021
µ2 0.1294 0.3613 -0.0685
µ3 -2.3748 -0.8503 0.6715
µ4 0.2044 0.6874 -0.5707
µ5 0.7534 -0.3498 0.7299
µ6 0.0509 -0.0671 -0.9328
µ7 1.1839 -1.6387 -0.1720
β0 -0.0491 -0.1248 0.9383
β1 -1.1680 -0.3489 -0.6839

(a) π(θs) ∼ Beta(2.9304, .0296)

(b) π(θs) ∼ Beta(2.9304, .0296)
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(c) π(θs) ∼ Beta(2.9304, .0296)

Figure B.3: Trace plots of the 9 unknown parameters in the full system model. The
left hand side represents the trace plots for the 7 µi parameters; the right hand side
represents the trace plots for the 2 βi parameters.
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B.5 Weapons System Test Data Diagnostics

This section presents all of the convergence diagnostics for the weapon test data

analyzed in Section 4.2. The σc and corresponding acceptance rates for the M-H

algorithm run on all seven data sets are shown in Table B.9.

Table B.9: The σc values determine the spread of the proposal density for each un-
known parameter. This spread affects the acceptance rate of the algorithm. Both
the σc and the acceptance rates for each of the three system priors are listed in the
columns of each table. Each table shows the σc and acceptance rates for one of the
seven different data sets

π(θs) Beta(2.9304, .0296) Beta(.9408, .0192) Uniform (0, 1)
σc Acc Rate σc Acc Rate σc Acc Rate

1 3 0.2328 3 0.2351 3 0.235
2 15 0.4005 15 0.4004 15 0.3177
3 15 0.3803 15 0.3793 15 0.3108
4 15 0.3725 15 0.3732 15 0.3085
5 15 0.3865 15 0.3886 15 0.3128
6 15 0.2944 15 0.3947 15 0.3156
7 15 0.4085 15 0.4134 15 0.32207

(a) Weapon Data Set 1

π(θs) Beta(2.9304, .0296) Beta(.9408, .0192) Uniform (0, 1)
σc Acc Rate σc Acc Rate σc Acc Rate

1 3 0.1813 2.5 0.2161 3 0.1793
2 18 0.3397 18 0.3385 18 0.2717
3 18 0.3235 18 0.3216 18 0.2625
4 18 0.3216 18 0.3203 18 0.2627
5 18 0.3291 18 0.3286 18 0.2653
6 18 0.3364 18 0.3367 18 0.2706
7 18 0.3487 18 0.3486 18 0.2749

(b) Weapon Data Set 2

π(θs) Beta(2.9304, .0296) Beta(.9408, .0192) Uniform (0, 1)
σc Acc Rate σc Acc Rate σc Acc Rate

1 5 0.3874 5 0.3544 5 0.2778
2 20 0.2335 20 0.2297 20 0.3467
3 20 0.3398 20 0.3248 20 0.2676
4 20 0.3287 20 0.3287 20 0.2653
5 20 0.2315 20 0.2358 20 0.3589
6 20 0.3458 20 0.3487 20 0.2783
7 20 0.1764 20 0.2288 20 0.3386

(c) Weapon Data Set 3

The trace plots for the unknown parameters are given in Figures B.4, B.5, and
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π(θs) Beta(2.9304, .0296) Beta(.9408, .0192) Uniform (0, 1)
σc Acc Rate σc Acc Rate σc Acc Rate

1 6 0.2306 6 0.2338 6 0.2173
2 6 0.2329 6 0.2317 6 0.2197
3 6 0.2307 6 0.2324 6 0.2176
4 18 0.3188 18 0.3192 18 0.2617
5 6 0.23386 6 0.2331 6 0.2188
6 6 0.2328 6 0.2322 6 0.2177
7 6 0.1762 6 0.2305 6 0.2184

(d) Weapon Data Set 4

π(θs) Beta(2.9304, .0296) Beta(.9408, .0192) Uniform (0, 1)
σc Acc Rate σc Acc Rate σc Acc Rate

1 15 0.3801 15 0.3797 15 0.2977
2 15 0.38 15 0.3804 15 0.2975
3 15 0.3798 15 0.3786 15 0.3066
4 18 0.3176 18 0.3241 18 0.2594
5 15 0.383 15 0.3828 15 0.3053
6 15 0.3821 15 0.3852 15 0.3019
7 15 0.3748 15 0.3713 15 0.2889

(e) Weapon Data Set 5

π(θs) Beta(2.9304, .0296) Beta(.9408, .0192) Uniform (0, 1)
σc Acc Rate σc Acc Rate σc Acc Rate

1 1.5 0.3038 2.5 0.1923 1.5 0.2878

(f) Weapon Data Set 6

π(θs) Beta(2.9304, .0296) Beta(.9408, .0192) Uniform (0, 1)
σc Acc Rate σc Acc Rate σc Acc Rate

1 4.5 0.28031 4.5 0.2857 4.5 0.2083

(g) Weapon Data Set 7

B.6. Trace plots are for the µi values that were simulated during the M-H algorithm.

All trace plots were inspected to ensure that the chains visually converged.
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(a) Weapon Data Set 1 (b) Weapon Data Set 2 (c) Weapon Data Set 3 (d) Weapon Data Set 4

(e) Weapon Data Set 5 (f) Weapon Data Set 6 (g) Weapon Data Set 7

Figure B.4: The seven trace plots represent the trace plots for the µi draws from the M-H algorithm where the system
prior was a Beta(2.9304, .0296). Each trace plot represents a distribution that has converged. Under the system prior
Beta(2.9304, .0296) the M-H algorithm converged to a stationary distribution.
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(a) Weapon Data Set 1 (b) Weapon Data Set 2 (c) Weapon Data Set 3 (d) Weapon Data Set 4

(e) Weapon Data Set 5 (f) Weapon Data Set 6 (g) Weapon Data Set 6

Figure B.5: The seven trace plots represent the trace plots for the µi draws from the M-H algorithm where the system
prior was a Beta(.9408, .0192). Each trace plot represents a distribution that has converged. Under the system prior
Beta(.9408, .0192) the M-H algorithm converged to a stationary distribution.
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(a) Weapon Data Set 1 (b) Weapon Data Set 2 (c) Weapon Data Set 3 (d) Weapon Data Set 4

(e) Weapon Data Set 5 (f) Weapon Data Set 6 (g) Weapon Data Set 7

Figure B.6: The seven trace plots represent the trace plots for the µi draws from the M-H algorithm where the system
prior was a Uniform(0, 1). Each trace plot represents a distribution that has converged. Under the system prior
Uniform(0, 1) the M-H algorithm converged to a stationary distribution.
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The Geweke diagnostic statistics for the weapons data sets are shown in the Table

B.9.
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Table B.9: The Geweke diagnostics for the weapons system are shown in this table. One Geweke diagnostics is given
for each component for each system prior.

π(θs) Beta(2.9304,
.0296)

Beta(.9408,
.0192)

Uniform (0, 1)

1 0.9925 1.0326 -1.7745
2 -1.1829 -1.9139 0.6532
3 -0.8969 -0.4063 -0.7893
4 0.9765 -0.6696 0.0660
5 -0.3033 0.8482 -1.7007
6 -0.0444 -1.0775 -0.2595
7 0.5360 0.4635 0.2956

(a) Weapon Data Set 1

π(θs) Beta(2.9304,
.0296)

Beta(.9408,
.0192)

Uniform (0, 1)

1 -0.9037 2.6354 -1.1485
2 0.6242 -1.0851 1.1389
3 0.6806 -0.5422 0.2155
4 -0.4196 -0.8299 -0.4443
5 0.5489 -0.4140 -0.7143
6 -0.3613 -0.8700 0.2883
7 0.2424 1.1015 -0.5357

(b) Weapon Data Set 2

π(θs) Beta(2.9304,
.0296)

Beta(.9408,
.0192)

Uniform (0, 1)

1 0.2970 -0.1687 1.1093
2 -0.6309 0.7616 -1.6109
3 0.2228 1.1606 -0.7199
4 -0.3025 0.7400 -1.3869
5 -0.9670 -0.6739 -0.1472
6 -1.7636 -0.9048 1.2862
7 -0.1823 -1.9673 -1.7418

(c) Weapon Data Set 3

π(θs) Beta(2.9304,
.0296)

Beta(.9408,
.0192)

Uniform (0, 1)

1 0.2827 0.9340 1.6689
2 0.2069 1.0569 -1.5809
3 -0.0520 0.3087 -1.2898
4 2.1167 1.0243 -0.4535
5 1.1342 -0.2573 1.1180
6 1.0400 0.1515 -1.5721
7 0.9605 0.6248 -1.3462

(d) Weapon Data Set 4

π(θs) Beta(2.9304,
.0296)

Beta(.9408,
.0192)

Uniform (0, 1)

1 0.1148 -0.2330 0.8897
2 -1.0618 -0.7931 -3.2348
3 -1.3793 -0.6897 1.2391
4 -2.4769 -0.1768 0.3602
5 1.5716 2.1468 0.7764
6 0.6595 1.4855 -0.5765
7 0.3934 -1.9377 0.3117

(e) Weapon Data Set 5

π(θs) Beta(2.9304,
.0296)

Beta(.9408,
.0192)

Uniform (0, 1)

1 -0.9829 0.9846 1.2330

(f) Weapon Data Set 6

π(θs) Beta(2.9304,
.0296)

Beta(.9408,
.0192)

Uniform (0, 1)

1 0.2535 0.9458 0.3928

(g) Weapon Data Set 7
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Appendix C

Quantile Summaries

This appendix provides summaries of the mean, standard deviation, and 5 number

quantile summary of each data set. Numerical summaries are for the component

marginal posterior densities. Each table displays the results obtained from all three

system priors; starting with the highly informative Beta prior on top and the non-

informative Uniform prior at the bottom.

C.1 5 Component System

Table C.1 gives the numerical summaries for marginal posterior distributions of

the 5 θi’s for this model.

C.2 42 Component System

Table C.2 gives the numerical summaries for marginal posterior distributions of

the 42 θi’s for this model.
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Table C.1: The numerical summaries are given for each of the θi as well as for θs.
Each table represents the posterior summaries obtained using one of the three system
priors.

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9964 0.0131 0.7613 0.9993 1.0000 1.0000 1.0000
2 0.9809 0.0183 0.8233 0.9732 0.9865 0.9943 1.0000
3 0.9983 0.0061 0.8709 0.9997 1.0000 1.0000 1.0000
4 0.9574 0.0393 0.5557 0.9395 0.9691 0.9868 1.0000
5 0.9013 0.0402 0.6419 0.8771 0.9059 0.9308 0.9920

(a) π(θs) ∼ Beta(2.9304, .0296)

Quantile Summary
Expexted
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9963 0.0135 0.7320 0.9994 1.0000 1.0000 1.0000
2 0.9805 0.0188 0.8196 0.9726 0.9861 0.9943 1.0000
3 0.9982 0.0063 0.8379 0.9996 1.0000 1.0000 1.0000
4 0.9549 0.0413 0.6511 0.9361 0.9665 0.9857 1.0000
5 0.8994 0.0408 0.6559 0.8748 0.9043 0.9291 0.9897

(b) π(θs) ∼ Beta(.9408, .0192)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9961 0.0142 0.7350 0.9993 1.0000 1.0000 1.0000
2 0.9805 0.0189 0.8200 0.9728 0.9863 0.9942 1.0000
3 0.9983 0.0064 0.8554 0.9997 1.0000 1.0000 1.0000
4 0.9554 0.0410 0.6331 0.9369 0.9670 0.9859 1.0000
5 0.8995 0.0404 0.6940 0.8750 0.9041 0.9291 0.9955

(c) π(θs) ∼ Unif(0, 1)

Table C.2: Numerical summaries for 42 θi are given in

the following three tables. Each table represents the sum-

maries obtained using the different system priors.

Quantile Summary

Expected

Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.8682 0.0691 0.5020 0.8275 0.8786 0.9203 0.9963

Continued on Next Page . . .
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Table C.2 – Continued

Quantile Summary

Expected

Reliability

Std Dev 0% 25% 50% 75% 100%

2 0.9973 0.0101 0.7896 0.9995 1.0000 1.0000 1.0000

3 0.9989 0.0039 0.8968 0.9998 1.0000 1.0000 1.0000

4 0.9991 0.0033 0.9117 0.9998 1.0000 1.0000 1.0000

5 0.9986 0.0054 0.8587 0.9997 1.0000 1.0000 1.0000

6 0.9979 0.0077 0.8211 0.9996 1.0000 1.0000 1.0000

7 0.9962 0.0140 0.6751 0.9994 1.0000 1.0000 1.0000

8 0.8668 0.0701 0.5197 0.8256 0.8773 0.9194 0.9971

9 0.9974 0.0097 0.8133 0.9995 1.0000 1.0000 1.0000

10 0.9989 0.0041 0.8962 0.9998 1.0000 1.0000 1.0000

11 0.9991 0.0033 0.9267 0.9998 1.0000 1.0000 1.0000

12 0.9986 0.0052 0.8766 0.9997 1.0000 1.0000 1.0000

13 0.9979 0.0077 0.8010 0.9996 1.0000 1.0000 1.0000

14 0.9964 0.0132 0.7459 0.9994 1.0000 1.0000 1.0000

15 0.8663 0.0691 0.5154 0.8252 0.8770 0.9178 0.9963

16 0.9976 0.0093 0.7762 0.9996 1.0000 1.0000 1.0000

17 0.9988 0.0043 0.8340 0.9997 1.0000 1.0000 1.0000

18 0.9990 0.0036 0.9017 0.9998 1.0000 1.0000 1.0000

19 0.9986 0.0052 0.8982 0.9997 1.0000 1.0000 1.0000

20 0.9979 0.0080 0.8199 0.9996 1.0000 1.0000 1.0000

21 0.9965 0.0129 0.6494 0.9993 1.0000 1.0000 1.0000

22 0.8669 0.0685 0.5039 0.8254 0.8769 0.9193 0.9970

23 0.9975 0.0096 0.7735 0.9995 1.0000 1.0000 1.0000

24 0.9988 0.0043 0.8928 0.9998 1.0000 1.0000 1.0000

25 0.9991 0.0034 0.9136 0.9998 1.0000 1.0000 1.0000

26 0.9986 0.0052 0.8948 0.9997 1.0000 1.0000 1.0000

27 0.9979 0.0078 0.8314 0.9996 1.0000 1.0000 1.0000

28 0.9964 0.0136 0.6903 0.9994 1.0000 1.0000 1.0000

29 0.8675 0.0689 0.5006 0.8277 0.8782 0.9185 0.9972

30 0.9973 0.0104 0.7909 0.9995 1.0000 1.0000 1.0000

31 0.9988 0.0042 0.9122 0.9997 1.0000 1.0000 1.0000

32 0.9991 0.0033 0.9366 0.9998 1.0000 1.0000 1.0000

Continued on Next Page . . .
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Table C.2 – Continued

Quantile Summary

Expected

Reliability

Std Dev 0% 25% 50% 75% 100%

33 0.9986 0.0051 0.8959 0.9997 1.0000 1.0000 1.0000

34 0.9979 0.0079 0.8221 0.9996 1.0000 1.0000 1.0000

35 0.9964 0.0136 0.6941 0.9994 1.0000 1.0000 1.0000

36 0.8675 0.0687 0.5166 0.8273 0.8779 0.9189 0.9971

37 0.9973 0.0099 0.7815 0.9995 1.0000 1.0000 1.0000

38 0.9989 0.0041 0.9116 0.9998 1.0000 1.0000 1.0000

39 0.9991 0.0035 0.8853 0.9998 1.0000 1.0000 1.0000

40 0.9986 0.0051 0.8843 0.9997 1.0000 1.0000 1.0000

41 0.9978 0.0081 0.8338 0.9996 1.0000 1.0000 1.0000

42 0.9963 0.0135 0.6510 0.9993 1.0000 1.0000 1.0000

Quantile Summary

Expected

Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.8593 0.0731 0.5020 0.8156 0.8700 0.9138 0.9966

2 0.9974 0.0098 0.7574 0.9996 1.0000 1.0000 1.0000

3 0.9989 0.0042 0.8919 0.9998 1.0000 1.0000 1.0000

4 0.9991 0.0035 0.9145 0.9998 1.0000 1.0000 1.0000

5 0.9986 0.0051 0.8376 0.9997 1.0000 1.0000 1.0000

6 0.9978 0.0084 0.7934 0.9997 1.0000 1.0000 1.0000

7 0.9963 0.0139 0.7110 0.9994 1.0000 1.0000 1.0000

8 0.8601 0.0722 0.5105 0.8165 0.8704 0.9147 0.9976

9 0.9973 0.0102 0.7303 0.9995 1.0000 1.0000 1.0000

10 0.9989 0.0043 0.9009 0.9998 1.0000 1.0000 1.0000

11 0.9991 0.0034 0.9237 0.9998 1.0000 1.0000 1.0000

12 0.9986 0.0053 0.8655 0.9998 1.0000 1.0000 1.0000

13 0.9979 0.0078 0.8288 0.9996 1.0000 1.0000 1.0000

14 0.9963 0.0143 0.5576 0.9994 1.0000 1.0000 1.0000

15 0.8590 0.0742 0.5038 0.8154 0.8693 0.9150 0.9977

16 0.9974 0.0101 0.7944 0.9996 1.0000 1.0000 1.0000

Continued on Next Page . . .
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Table C.3 – Continued

Quantile Summary

Expected

Reliability

Std Dev 0% 25% 50% 75% 100%

17 0.9989 0.0042 0.8784 0.9998 1.0000 1.0000 1.0000

18 0.9991 0.0034 0.8616 0.9998 1.0000 1.0000 1.0000

19 0.9986 0.0053 0.8549 0.9997 1.0000 1.0000 1.0000

20 0.9980 0.0079 0.7707 0.9997 1.0000 1.0000 1.0000

21 0.9963 0.0142 0.5691 0.9995 1.0000 1.0000 1.0000

22 0.8592 0.0730 0.5005 0.8159 0.8694 0.9141 0.9973

23 0.9974 0.0100 0.7532 0.9996 1.0000 1.0000 1.0000

24 0.9989 0.0042 0.8866 0.9998 1.0000 1.0000 1.0000

25 0.9991 0.0034 0.9262 0.9998 1.0000 1.0000 1.0000

26 0.9986 0.0053 0.8208 0.9997 1.0000 1.0000 1.0000

27 0.9979 0.0082 0.7892 0.9996 1.0000 1.0000 1.0000

28 0.9962 0.0145 0.6718 0.9994 1.0000 1.0000 1.0000

29 0.8597 0.0728 0.5027 0.8166 0.8706 0.9148 0.9971

30 0.9974 0.0103 0.7117 0.9996 1.0000 1.0000 1.0000

31 0.9988 0.0046 0.9139 0.9998 1.0000 1.0000 1.0000

32 0.9991 0.0034 0.9306 0.9998 1.0000 1.0000 1.0000

33 0.9986 0.0053 0.8811 0.9998 1.0000 1.0000 1.0000

34 0.9978 0.0081 0.8432 0.9996 1.0000 1.0000 1.0000

35 0.9961 0.0148 0.6677 0.9994 1.0000 1.0000 1.0000

36 0.8590 0.0734 0.5016 0.8159 0.8703 0.9135 0.9968

37 0.9974 0.0098 0.7402 0.9996 1.0000 1.0000 1.0000

38 0.9989 0.0043 0.8976 0.9998 1.0000 1.0000 1.0000

39 0.9991 0.0034 0.8934 0.9998 1.0000 1.0000 1.0000

40 0.9986 0.0052 0.8396 0.9998 1.0000 1.0000 1.0000

41 0.9978 0.0081 0.8352 0.9996 1.0000 1.0000 1.0000

42 0.9964 0.0138 0.6122 0.9995 1.0000 1.0000 1.0000
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Quantile Summary

Expected

Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.8609 0.0724 0.5020 0.8182 0.8720 0.9149 0.9974

2 0.9969 0.0108 0.7945 0.9993 1.0000 1.0000 1.0000

3 0.9987 0.0045 0.8751 0.9997 1.0000 1.0000 1.0000

4 0.9990 0.0036 0.8985 0.9997 1.0000 1.0000 1.0000

5 0.9984 0.0057 0.8792 0.9996 1.0000 1.0000 1.0000

6 0.9975 0.0086 0.8390 0.9995 1.0000 1.0000 1.0000

7 0.9957 0.0152 0.6771 0.9991 1.0000 1.0000 1.0000

8 0.8606 0.0721 0.5058 0.8183 0.8714 0.9141 0.9983

9 0.9969 0.0109 0.7711 0.9993 1.0000 1.0000 1.0000

10 0.9987 0.0047 0.8800 0.9997 1.0000 1.0000 1.0000

11 0.9990 0.0035 0.9195 0.9997 1.0000 1.0000 1.0000

12 0.9983 0.0061 0.8592 0.9996 1.0000 1.0000 1.0000

13 0.9976 0.0086 0.8293 0.9995 1.0000 1.0000 1.0000

14 0.9958 0.0145 0.7144 0.9990 1.0000 1.0000 1.0000

15 0.8609 0.0720 0.5055 0.8188 0.8714 0.9145 0.9966

16 0.9969 0.0109 0.7498 0.9994 1.0000 1.0000 1.0000

17 0.9987 0.0045 0.8862 0.9997 1.0000 1.0000 1.0000

18 0.9989 0.0040 0.8839 0.9997 1.0000 1.0000 1.0000

19 0.9983 0.0058 0.8826 0.9996 1.0000 1.0000 1.0000

20 0.9975 0.0089 0.8146 0.9994 1.0000 1.0000 1.0000

21 0.9958 0.0147 0.5744 0.9991 1.0000 1.0000 1.0000

22 0.8602 0.0720 0.5019 0.8171 0.8709 0.9144 0.9982

23 0.9969 0.0107 0.7391 0.9993 1.0000 1.0000 1.0000

24 0.9987 0.0045 0.9056 0.9997 1.0000 1.0000 1.0000

25 0.9989 0.0038 0.9198 0.9997 1.0000 1.0000 1.0000

26 0.9984 0.0058 0.8461 0.9996 1.0000 1.0000 1.0000

27 0.9975 0.0090 0.8027 0.9995 1.0000 1.0000 1.0000

28 0.9957 0.0146 0.7604 0.9990 1.0000 1.0000 1.0000

29 0.8608 0.0722 0.5001 0.8194 0.8714 0.9138 0.9974

30 0.9970 0.0106 0.7869 0.9994 1.0000 1.0000 1.0000

31 0.9987 0.0044 0.8799 0.9997 1.0000 1.0000 1.0000

Continued on Next Page . . .
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Table C.4 – Continued

Quantile Summary

Expected

Reliability

Std Dev 0% 25% 50% 75% 100%

32 0.9990 0.0036 0.9386 0.9997 1.0000 1.0000 1.0000

33 0.9984 0.0055 0.8698 0.9996 1.0000 1.0000 1.0000

34 0.9976 0.0086 0.7808 0.9994 1.0000 1.0000 1.0000

35 0.9957 0.0150 0.6308 0.9990 1.0000 1.0000 1.0000

36 0.8603 0.0722 0.5047 0.8177 0.8707 0.9138 0.9989

37 0.9969 0.0112 0.7079 0.9993 1.0000 1.0000 1.0000

38 0.9987 0.0047 0.8464 0.9997 1.0000 1.0000 1.0000

39 0.9989 0.0037 0.9154 0.9997 1.0000 1.0000 1.0000

40 0.9983 0.0059 0.8675 0.9996 1.0000 1.0000 1.0000

41 0.9975 0.0088 0.7629 0.9994 1.0000 1.0000 1.0000

42 0.9958 0.0147 0.7041 0.9991 1.0000 1.0000 1.0000
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C.3 Full System Model

Table C.5 gives the numerical summaries for marginal posterior distributions of

the 4 θi’s for this model.

Table C.5: Numerical posterior summaries for the four θi’s without covariate in-
formation of the full system model. Each table gives the simulation results using a
different prior for θs.

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

θ1 0.9966 0.0122 0.7859 0.9994 1.0000 1.0000 1.0000
θ2 0.9985 0.0057 0.8826 0.9997 1.0000 1.0000 1.0000
θ3 0.9593 0.0382 0.6353 0.9429 0.9705 0.9874 1.0000
θ4 0.9047 0.0394 0.6615 0.8811 0.9093 0.9337 0.9910

(a) π(θs) ∼ Beta(2.9304, .0296)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

θ1 0.9966 0.0120 0.8173 0.9993 1.0000 1.0000 1.0000
θ2 0.9985 0.0055 0.8946 0.9997 1.0000 1.0000 1.0000
θ3 0.9593 0.0383 0.6320 0.9424 0.9704 0.9876 1.0000
θ4 0.9056 0.0390 0.6751 0.8821 0.9105 0.9341 0.9937

(b) π(θs) ∼ Beta(.9408, .0192)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

θ1 0.9880 0.0244 0.6891 0.9875 0.9982 0.9999 1.0000
θ2 0.9946 0.0111 0.8508 0.9945 0.9992 1.0000 1.0000
θ3 0.9504 0.0424 0.6267 0.9311 0.9614 0.9818 1.0000
θ4 0.8998 0.0405 0.6240 0.8749 0.9046 0.9295 0.9916

(c) π(θs) ∼ Uniform (0, 1)

Table C.6 shows the numerical summaries for the fifth component as a function

of age.
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Table C.6: Numerical posterior distribution summary statistics are shown for θ5.
Each table represents the results based upon different system priors. Each line rep-
resents the posterior summary information for various ages.

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

0.00 0.9857 0.0120 0.8844 0.9802 0.9889 0.9947 1.0000
0.25 0.9804 0.0144 0.8599 0.9731 0.9837 0.9911 1.0000
0.50 0.9723 0.0182 0.7017 0.9632 0.9760 0.9854 1.0000
0.75 0.9599 0.0249 0.4556 0.9482 0.9646 0.9768 0.9999
1.00 0.9405 0.0366 0.2294 0.9244 0.9470 0.9647 0.9998

(a) π(θs) ∼ Beta(2.9304, .0296)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

0.00 0.9856 0.0120 0.8929 0.9799 0.9888 0.9945 1.0000
0.25 0.9803 0.0143 0.8361 0.9731 0.9834 0.9909 1.0000
0.50 0.9722 0.0181 0.6988 0.9632 0.9757 0.9853 1.0000
0.75 0.9599 0.0247 0.5135 0.9483 0.9643 0.9768 0.9998
1.00 0.9407 0.0364 0.3244 0.9244 0.9471 0.9647 0.9994

(b) π(θs) ∼ Beta(.9408, .0192)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

0.00 0.9859 0.0117 0.8820 0.9803 0.9888 0.9946 1.0000
0.25 0.9805 0.0141 0.8322 0.9734 0.9836 0.9910 1.0000
0.50 0.9725 0.0180 0.7073 0.9634 0.9759 0.9854 1.0000
0.75 0.9601 0.0248 0.4979 0.9484 0.9645 0.9771 0.9998
1.00 0.9407 0.0369 0.2893 0.9244 0.9474 0.9652 0.9996

(c) π(θs) ∼ Uniform (0, 1)
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C.4 Weapons System Data Set 1

Table C.7 gives the numerical summaries for marginal posterior distributions of

the 7 θi’s for this model.

Table C.7: Numerical posterior distribution summary statistics are shown for the
first weapon data set with three failures occurring in the first component.

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.8303 0.0769 0.5033 0.7829 0.8403 0.8870 0.9916
2 0.9968 0.0116 0.7772 0.9995 1.0000 1.0000 1.0000
3 0.9987 0.0046 0.8932 0.9998 1.0000 1.0000 1.0000
4 0.9991 0.0034 0.9184 0.9998 1.0000 1.0000 1.0000
5 0.9984 0.0062 0.8560 0.9997 1.0000 1.0000 1.0000
6 0.9975 0.0091 0.7926 0.9996 1.0000 1.0000 1.0000
7 0.9952 0.0171 0.6913 0.9992 1.0000 1.0000 1.0000

(a) π(θs) ∼ Beta(2.9304, .0296)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.8300 0.0784 0.5021 0.7813 0.8403 0.8882 0.9960
2 0.9928 0.0179 0.7149 0.9953 0.9997 1.0000 1.0000
3 0.9974 0.0066 0.8743 0.9983 0.9999 1.0000 1.0000
4 0.9979 0.0054 0.9108 0.9986 0.9999 1.0000 1.0000
5 0.9965 0.0090 0.8432 0.9977 0.9998 1.0000 1.0000
6 0.9946 0.0137 0.7528 0.9963 0.9998 1.0000 1.0000
7 0.9894 0.0256 0.6074 0.9925 0.9995 1.0000 1.0000

(b) π(θs) ∼ Beta(.9408, .0192)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.8300 0.0784 0.5021 0.7813 0.8403 0.8882 0.9960
2 0.9928 0.0179 0.7149 0.9953 0.9997 1.0000 1.0000
3 0.9974 0.0066 0.8743 0.9983 0.9999 1.0000 1.0000
4 0.9979 0.0054 0.9108 0.9986 0.9999 1.0000 1.0000
5 0.9965 0.0090 0.8432 0.9977 0.9998 1.0000 1.0000
6 0.9946 0.0137 0.7528 0.9963 0.9998 1.0000 1.0000
7 0.9894 0.0256 0.6074 0.9925 0.9995 1.0000 1.0000

(c) π(θs) ∼ Unif(0, 1)
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C.5 Weapons System Data Set 2

Table C.8 gives the numerical summaries for marginal posterior distributions of

the 7 θi’s for this model.

Table C.8: Numerical posterior distribution summary statistics are shown for the
second weapon data set with six failures occurring in the first component.

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.7167 0.0858 0.5001 0.6575 0.7210 0.7798 0.9590
2 0.9972 0.0104 0.7295 0.9995 1.0000 1.0000 1.0000
3 0.9989 0.0042 0.8970 0.9998 1.0000 1.0000 1.0000
4 0.9991 0.0035 0.9112 0.9998 1.0000 1.0000 1.0000
5 0.9985 0.0055 0.8631 0.9997 1.0000 1.0000 1.0000
6 0.9977 0.0083 0.8261 0.9996 1.0000 1.0000 1.0000
7 0.9962 0.0142 0.6400 0.9994 1.0000 1.0000 1.0000

(a) π(θs) ∼ Beta(2.9304, .0296)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.7035 0.0869 0.5000 0.6413 0.7069 0.7683 0.9756
2 0.9970 0.0114 0.6591 0.9995 1.0000 1.0000 1.0000
3 0.9989 0.0043 0.8807 0.9998 1.0000 1.0000 1.0000
4 0.9991 0.0034 0.9301 0.9998 1.0000 1.0000 1.0000
5 0.9985 0.0055 0.8525 0.9997 1.0000 1.0000 1.0000
6 0.9978 0.0079 0.8237 0.9996 1.0000 1.0000 1.0000
7 0.9959 0.0153 0.6816 0.9993 1.0000 1.0000 1.0000

(b) π(θs) ∼ Beta(.9408, .0192)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.7032 0.0872 0.5001 0.6404 0.7074 0.7677 0.9599
2 0.9934 0.0168 0.7435 0.9957 0.9997 1.0000 1.0000
3 0.9975 0.0066 0.8993 0.9983 0.9999 1.0000 1.0000
4 0.9980 0.0052 0.9045 0.9986 0.9999 1.0000 1.0000
5 0.9967 0.0086 0.8548 0.9978 0.9999 1.0000 1.0000
6 0.9951 0.0124 0.7607 0.9966 0.9998 1.0000 1.0000
7 0.9908 0.0233 0.6118 0.9941 0.9996 1.0000 1.0000

(c) π(θs) ∼ Uniform (0, 1)
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C.6 Weapons System Data Set 3

Table C.9 gives the numerical summaries for marginal posterior distributions of

the 7 θi’s for this model.

Table C.9: Numerical posterior distribution summary statistics are shown for the
third weapon data set where three failures occurred; one failure in three different
components.

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9966 0.0126 0.7659 0.9994 1.0000 1.0000 1.0000
2 0.9487 0.0460 0.5838 0.9269 0.9614 0.9829 1.0000
3 0.9988 0.0046 0.9016 0.9997 1.0000 1.0000 1.0000
4 0.9990 0.0034 0.9273 0.9998 1.0000 1.0000 1.0000
5 0.9753 0.0237 0.7781 0.9650 0.9824 0.9925 1.0000
6 0.9975 0.0094 0.7811 0.9996 1.0000 1.0000 1.0000
7 0.9231 0.0657 0.5019 0.8892 0.9407 0.9739 1.0000

(a) π(θs) ∼ Beta(2.9304, .0296)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9966 0.0126 0.7248 0.9994 1.0000 1.0000 1.0000
2 0.9467 0.0469 0.5888 0.9244 0.9590 0.9821 1.0000
3 0.9987 0.0049 0.8514 0.9997 1.0000 1.0000 1.0000
4 0.9990 0.0037 0.9155 0.9998 1.0000 1.0000 1.0000
5 0.9750 0.0241 0.7571 0.9650 0.9822 0.9926 1.0000
6 0.9974 0.0096 0.8171 0.9995 1.0000 1.0000 1.0000
7 0.9176 0.0698 0.5035 0.8833 0.9356 0.9710 1.0000

(b) π(θs) ∼ Beta(.9408, .0192)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9919 0.0198 0.7003 0.9943 0.9997 1.0000 1.0000
2 0.9425 0.0491 0.5612 0.9196 0.9552 0.9795 1.0000
3 0.9973 0.0069 0.8865 0.9982 0.9999 1.0000 1.0000
4 0.9979 0.0053 0.9142 0.9986 0.9999 1.0000 1.0000
5 0.9729 0.0245 0.7665 0.9617 0.9799 0.9911 1.0000
6 0.9944 0.0144 0.7495 0.9962 0.9997 1.0000 1.0000
7 0.9142 0.0691 0.5153 0.8787 0.9313 0.9667 1.0000

(c) π(θs) ∼ Uniform (0, 1)
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C.7 Weapons System Data Set 4

Table C.10 gives the numerical summaries for marginal posterior distributions of

the 7 θi’s for this model.

Table C.10: Numerical posterior distribution summary statistics are shown for the
fourth weapon data set where six failures occurred; one failure in six different com-
ponents.

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9281 0.0670 0.5022 0.8980 0.9483 0.9783 1.0000
2 0.9370 0.0590 0.5120 0.9108 0.9545 0.9809 1.0000
3 0.9805 0.0193 0.7632 0.9725 0.9865 0.9943 1.0000
4 0.9990 0.0038 0.9203 0.9998 1.0000 1.0000 1.0000
5 0.9734 0.0259 0.7366 0.9628 0.9811 0.9922 1.0000
6 0.9542 0.0435 0.5596 0.9358 0.9672 0.9862 1.0000
7 0.8906 0.0952 0.5004 0.8420 0.9174 0.9645 1.0000

(a) π(θs) ∼ Beta(2.9304, .0296)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9230 0.0704 0.5070 0.8911 0.9431 0.9758 1.0000
2 0.9328 0.0624 0.5032 0.9054 0.9507 0.9794 1.0000
3 0.9800 0.0194 0.7986 0.9720 0.9858 0.9941 1.0000
4 0.9990 0.0038 0.9292 0.9998 1.0000 1.0000 1.0000
5 0.9728 0.0264 0.7230 0.9619 0.9809 0.9920 1.0000
6 0.9521 0.0454 0.5880 0.9334 0.9658 0.9854 1.0000
7 0.8779 0.1036 0.5000 0.8225 0.9066 0.9596 1.0000

(b) π(θs) ∼ Beta(.9408, .0192)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9158 0.0722 0.5027 0.8806 0.9359 0.9699 1.0000
2 0.9269 0.0639 0.5015 0.8973 0.9445 0.9742 1.0000
3 0.9778 0.0203 0.7902 0.9690 0.9834 0.9926 1.0000
4 0.9978 0.0058 0.8915 0.9985 0.9999 1.0000 1.0000
5 0.9698 0.0276 0.6975 0.9579 0.9775 0.9898 1.0000
6 0.9471 0.0475 0.5530 0.9250 0.9599 0.9828 1.0000
7 0.8690 0.1053 0.5006 0.8098 0.8960 0.9526 1.0000

(c) π(θs) ∼ Uniform (0, 1)
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C.8 Weapons System Data Set 5

Table C.11 gives the numerical summaries for marginal posterior distributions of

the 7 θi’s for this model.

Table C.11: Numerical posterior distribution summary statistics are shown for the
fifth weapon data set where zero failures occurred.

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9900 0.0256 0.6412 0.9953 1.0000 1.0000 1.0000
2 0.9913 0.0229 0.6560 0.9963 1.0000 1.0000 1.0000
3 0.9975 0.0079 0.8628 0.9994 1.0000 1.0000 1.0000
4 0.9982 0.0058 0.9064 0.9995 1.0000 1.0000 1.0000
5 0.9965 0.0107 0.7892 0.9990 1.0000 1.0000 1.0000
6 0.9935 0.0180 0.7595 0.9978 1.0000 1.0000 1.0000
7 0.9849 0.0350 0.5833 0.9897 0.9999 1.0000 1.0000

(a) π(θs) ∼ Beta(2.9304, .0296)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9893 0.0275 0.6009 0.9947 0.9999 1.0000 1.0000
2 0.9904 0.0247 0.6424 0.9953 0.9999 1.0000 1.0000
3 0.9975 0.0078 0.8670 0.9993 1.0000 1.0000 1.0000
4 0.9982 0.0060 0.8899 0.9996 1.0000 1.0000 1.0000
5 0.9968 0.0097 0.8165 0.9990 1.0000 1.0000 1.0000
6 0.9936 0.0179 0.7376 0.9978 1.0000 1.0000 1.0000
7 0.9841 0.0368 0.5527 0.9884 0.9999 1.0000 1.0000

(b) π(θs) ∼ Beta(.9408, .0192)

Quantile Summary
Expected
Reliability

Std Dev 0% 25% 50% 75% 100%

1 0.9860 0.0287 0.5495 0.9862 0.9990 1.0000 1.0000
2 0.9873 0.0264 0.6632 0.9876 0.9991 1.0000 1.0000
3 0.9964 0.0088 0.8516 0.9974 0.9998 1.0000 1.0000
4 0.9973 0.0068 0.8875 0.9980 0.9999 1.0000 1.0000
5 0.9950 0.0119 0.7922 0.9962 0.9997 1.0000 1.0000
6 0.9906 0.0205 0.6565 0.9921 0.9995 1.0000 1.0000
7 0.9784 0.0411 0.5351 0.9757 0.9979 1.0000 1.0000

(c) π(θs) ∼ Uniform (0, 1)
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Appendix D

Glossary

Table D.1: This is the notation used in this document

with definitions of what each notation represents.

Notation Definition

Basic Notation

Θ Denotes all unknown parameters

θi Reliability of component i

i Index for components; i = 1 . . . nc

nc Total number of components in the system

n0 Number of components without covariates (full system model only)

np Number of components with covariates (full system model only)

θs Reliability of the system

y Vector of 0’s and 1’s representing the test data

yij Represents the jth test of component i

ysj Represents the jth test of the system

j Index for component tests; j = 1 . . . ni

ni Number of tests for component i

ns Number of successful system tests

nt Number of overall system tests

Covariate Notation

Continued on Next Page. . .
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Table D.1 – Continued

Notation Definition

Xij The jth set of covariate values for component i

mi Number of covariates for component i

Xi An m× j matrix of all covariate information for component i

βi Vector of all parameter estimates for component i

βik The kth parameter estimate for component i

θij The reliability of the ith component at the jth covariate values

µ Vector of known mean parameter values of the βi prior MVN distribu-

tion

Σ The known variance parameter value of the βi prior MVN distribution;

can also be written σ2(X ′iXi)
−1

(X ′iXi) Design matrix of the covariates for component i

Simulation Notation

σc Candidate sigma value for proposal distribution of the MCMC simula-

tions

θ
[t]
i tth simulated value for the ith component

T Number of MCMC iterations
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Appendix E

R Code

E.1 R Code for Uniform and Beta Simulations

This section gives the code that was used for simulating the product of nc Beta

distributions that resulted in either a Uniform or Beta system reliability that was

used in Section 3.2.

> ###################

> ###

> ### Solving Parameters for a System with a Uniform Prior Distribution

> ### (Beta Distribution on Components)

> ### Rebecca L. Lilley

> ### April 24, 2013

> ###################

>

> ###Beta Parameters (a, b) for K=1

> m <- .5

> k <- 1
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> con <-(1- m^(1/k))/m^(1/k)

> a.fun <- con/( (2+con) * ((1/( 12 *(1/(1+con))^(2*k)) +1)^(1/k) -1 ) )

> b.fun <-a.fun*con

> nint <- 100000

> theta.1 <- numeric(nint)

> for(i in 1:nint){

+ theta.1[i] <- rbeta(1, a.fun, b.fun)

+ }

> ###################

> ###

> ### Solving Parameters for a System with a Beta Prior Distribution

> ### (Beta Distribution on Components)

> ###

> ###################

>

> ###K = 1

> ###Select the mean and variance of the system...

>###solve for system parameters (a, b)

> r <- .8

> vr <- 1/100

> a <- ((1-r)/r)/(vr*(1+2*(1-r)/r+((1-r)/r)^2)*(1+(1-r)/r))-1/(1+(1-r)/r)

> b <- a*(1-r)/r

> ###Solve for the component prior hyperparameters (c, d)

> m <- r

> k <- 1

> con <-(1- m^(1/k))/m^(1/k)

> c.fun <- con/( (2+con) * ((1/( (1/vr) *(1/(1+con))^(2*k)) +1)^(1/k)-1))
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> d.fun <-c.fun*con

> ####Simulation for R* = .8, VR*=.01

> nint <- 10000

> theta.1 <- numeric(nint)

> for(i in 1:nint){

+ theta.1[i] <- rbeta(1, c.fun, d.fun)

+ }

>

> ##Repeat above process for various mean/variance

>##combinations at different K's

E.2 R Code of Functions For All Models

This section gives the functions that were used to run the 5 component, 42 com-

ponent, and 7 weapons system data sets. The code includes functions for generating

the ap, bp parameters, performing the µi transformation and running the Metropolis-

Hastings algorithm. The second half of the code gives the functions that are used

for generating the summary statistics. The final part of the code gives the functions

that were used to generate the χ2 lack-of-fit diagnostics.

> ###Functions to estimate priors based upon different system priors

> estBetaParams <- function(mu, var) {

+ a <- ((1 - mu) / var - 1 / mu) * mu ^ 2

+ b <- a * (1 / mu - 1)

+ return(params = list(a=a, b=b))

+ }

> estCompPriors <- function(m, ncomp, vr){
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+ con <- (1- m^(1/nc))/(m^(1/nc))

+ a <- con/( (2+con)*((1/( (1/vr) *(1/(1+con))^(2*nc)) +1)^(1/nc)-1))

+ b <-a*con

+ return(priors = list(a=a, b=b))

+ }

> #############

> # Mu_i Transformation for MCMC (ALL MODELS)

> #############

> log.mu.post <- function(j, mu, sumy.ij, n.t, c.fun, d.fun){

+ dbeta((exp(mu[j])/(1+exp(mu[j]))), c.fun+sumy.ij[j],

d.fun+n.t[j]-sumy.ij[j], log=T) + xs[2]*log(exp(mu[j])

/(1+exp(mu[j]))) + xs[3]*log(1-prod(exp(mu)/(1+exp(mu))))

+ (mu[j]) -2*log(1+exp(mu[j]))

+ }

> #########

> # Acceptance Function for Transformation

> #########

> r <- function(j, p.cand, mu, sumy.ij, n.t, a, b){

+ log.mu.post(j, p.cand, sumy.ij, n.t, a, b)

- log.mu.post(j, mu, sumy.ij, n.t, a, b)

+ }

> ###########

> # Mu Metropolis Function

> ###########

> mu.metrop.fun <- function(TT, ncomp, mu.init, csig, sumy.ij, n.t, a, b){

+ mu <- matrix(1, nrow=TT, ncol=ncomp)

+ mu[1,] <- mu.init

+ acc <- rep(0, ncomp)

+ for(i in 2:TT){
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+ for(j in 1:ncomp){

+ mu[i, j] <- mu[i-1, j]

+ cand <- rnorm(1, mu[i-1, j], csig[j])

+ if(cand>0){

+ if(cand<20){

+ ttt<-mu[i-1,]

+ ttt[j]<-cand

+ accept <- r(j, ttt, mu[i-1,], sumy.ij, n.t, a, b)

+ u <- runif(1, 0, 1)

+ if(log(u) < accept){mu[i, j] <- cand;

acc[j] <- acc[j]+1}

+ }

+ }

+ }

+ }

+ list(mu=mu, acc=acc)

+ }

> #####

> # Theta Complete Conditional

> #####

> log.post <- function (ind, theta, sumy.ij, n.t, xs, a, b){

+ (sumy.ij[ind] + a-1)*log(theta[ind]) +

(n.t[ind] - sumy.ij[ind] + b-1)*log(1-theta[ind])+

(xs[2])*sum(log(theta))+(xs[3])*log(1-prod(theta))

+ }

> #####

> # Theta Acceptance Function

> #####

> r.theta <- function(ind, theta, ttt, sumy.ij, n.t, xs, a, b){
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+ log.post(ind, ttt, sumy.ij, n.t, xs,a, b)

- log.post(ind, theta[i-1,], sumy.ij, n.t, xs, a, b)

+ }

> ####

> # Theta Metropolis-Hastings Function

> ####

> theta.metrop.fun <- function(TT, ncomp, theta.init, csig,

sumy.ij, n.t, a, b){

+ theta <- matrix(1, nrow=TT, ncol=ncomp)

+ theta[1,] <- theta.init

+ acc <- rep(0, ncomp)

+ for(i in 2:TT){

+ for(j in 1:ncomp){

+ theta[i, j] <- theta[i-1, j]

+ cand <- rnorm(1, theta[i-1, j], csig[j])

+ if(cand>0){

+ if(cand<1){

+ ttt<-theta[i-1,]

+ ttt[j]<-cand

+ accept <- r(j, ttt, theta[i-1,], sumy.ij, n.t, a, b)

+ u <- runif(1, 0, 1)

+ if(log(u) < accept){theta[i, j] <- cand;

acc[j] <- acc[j]+1}

+ }

+ }

+ }

+ }

+ list(theta=theta, acc=acc)

+ }
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##FINAL MODEL FUNCTIONS

##########

#Beta Complete Conditional for MCMC (Covariates Only)

##########

beta.cc <- function(beta.sims, sigma2, X, beta.mu, X.sim, mu){

convert2theta <- 1/(1+exp(-X.sim \%*\% beta.sims))

beta.post <- sum(-y.j*log(1+exp(-X\%*\% beta.sims))

+ (1-y.j)*(-X\%*\%beta.sims)-log(exp(-X\%*\%beta.sims)+1))

- 1/2*t(beta.sims-beta.mu)\%*\% (sigma2*solve(t(X)\%*\%X))

\%*\% (beta.sims-beta.mu) + (xs[2])*sum(-log(1+exp(-X.sim

\%*\% beta.sims))) + (xs[3])*log(1-prod(exp(mu)/(1+exp(mu)))

*prod(convert2theta))

return(beta.post)

}

#############

# Mu_i Transformation for Final Model

#############

log.mu.post <- function(j, mu, sumy.ij, n.t, c.fun, d.fun, X.sim, beta.sims){

convert2theta <- 1/(1+exp(-X.sim \%*\% beta.sims))

mu.post <-dbeta((exp(mu[j])/(1+exp(mu[j]))), c.fun+sumy.ij[j],

d.fun+n.t[j]-sumy.ij[j], log=T) + xs[2]*log(exp(mu[j])/(1+exp(mu[j])))

+ xs[3]*log(1-prod(convert2theta)*prod(exp(mu)/(1+exp(mu)))) + (mu[j]) -2*log(1+exp(mu[j]))

return(mu.post)

}

### ACCEPTANCE FUNCTIONS FOR FINAL MODEL
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r.mu <- function(j, ttt, mu, sumy.ij, n.t, a, b, X.sim, beta.sims){

log.mu.post(j, ttt, sumy.ij, n.t, a, b, X.sim, beta.sims)

- log.mu.post(j, mu, sumy.ij, n.t, a, b, X.sim, beta.sims)

}

r.beta <- function(ttt, beta.sims, sigma2, X, beta.mu, X.sim, mu){

beta.cc(ttt, sigma2, X, beta.mu, X.sim, mu) - beta.cc(beta.sims, sigma2, X, beta.mu, X.sim, mu)

}

####

# Metropolis Hastings Algorithm for Final Model

####

full.model.metrop <- function(niter, ncomp, mu.init, csig, r.mu,

nparam, beta.init, csigb, r.beta, sumy.ij, n.t, a, b, X.sim, beta.sims, sigma2, beta.mu){

mu <- matrix(0, nrow=(niter), ncol=ncomp)

mu[1,] <- mu.init

acc <- rep(0, ncomp)

beta.sims <- matrix(0, nrow=(niter), ncol=nparam)

beta.sims[1,] <- beta.init

accb <- rep(0, nparam)

for(i in 2:niter){

####Update Mus

for(j in 1:ncomp){

mu[i,j] <- mu[i-1, j]

cand <- rnorm(1, mu[i-1, j], csig[j])

if(cand>0){

if(cand<20){

ttt<-mu[i-1,]
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ttt[j]<-cand

accept <- r.mu(j, ttt, mu[i-1,], sumy.ij,

n.t, a, b, X.sim, beta.sims[i-1,])

u <- runif(1, 0, 1)

if(log(u) < accept){mu[i, j] <- cand;

acc[j] <- acc[j]+1}

}

}

}

####Update Betas

for(k in 1:nparam){

beta.sims[i,k] <- beta.sims[i-1, k]

cand <- rnorm(1, beta.sims[i-1, k], csigb[k])

bbb <- matrix( beta.sims[i-1,], ncol=nparam)

bbb[k] <- cand

acceptb <- r.beta(t(bbb), beta.sims[i-1,],

sigma2, X, beta.mu, X.sim, mu[i,])

u <- runif(1, 0, 1)

if(log(u) < acceptb){beta.sims[i, k] <- cand;

accb[k] <- accb[k]+1}

}

}

return(list(mu=mu, acc=acc, beta.sims=beta.sims, accb=accb))

}

> ###Functions for posterior summary information

> param.summary <- function(sims, burn, niter){

+ param.mean <- apply(sims[(burn+1):niter,], 2, mean)

+ param.sd <- apply(sims[(burn+1):niter,], 2, sd)
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+ param.q <- apply(sims[(burn+1):niter,], 2, quantile)

+ param.95 <- apply(sims[(burn+1):niter,],2, quantile,

probs=c(.025, .975))

+ return(p.summary = list(param.mean=param.mean,

param.sd=param.sd, param.q=param.q, param.95=param.95))

+ }

> sys.summary <- function(sys, burn, niter){

+ sys.mean <- mean(sys[(burn+1):niter])

+ sys.sd <- sd(sys[(burn+1):niter])

+ sys.q <- quantile(sys[(burn+1):niter])

+ sys.95 <- quantile(sys[(burn+1):niter], probs=c(.025, .975))

+ return(sys.summary = list(sys.mean=sys.mean,

sys.sd=sys.sd, sys.q=sys.q, sys.95=sys.95))

+ }

> ###HPD SUMMARY

> hpd.int <- function(p, burn, sim, system){

+ sort.sys <- sort(system[(burn+1):(burn+sim)])

+ HPD <- p*sim

+ bound <- matrix(0, ncol=3, nrow=HPD)

+ for(i in 1:HPD){

+ bound[i, 1] <- sort.sys[i]

+ bound[i, 2] <- sort.sys[i+(1-p)*sim]

+ bound[i, 3] <- bound[i,2]-bound[i,1]

+ }

+ ind2 <- which(bound[,3] == min(bound[,3]), arr.ind=T)

+ interval <- bound[ind2,]

+ return(interval)

+ }

> tables <- function(comp.r, csig, acc, niter, psummary, ssummary){
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+ f.table1 <- cbind(comp.r[,1], comp.r[,2], compr[,3], comp.r[,4])

+ f.table2 <- cbind(csig, acc/niter)

+ f.table3 <- cbind(psummary$param.mean, psummary$param.sd,

t(psummary$param.q))

+ f.table4 <- cbind(psummary$param.mean, psummary$param.sd,

t(psummary$param.95))

+ f.table5 <- cbind(ssummary$sys.mean, ssummary$sys.sd,

t(ssummary$sys.q))

+ f.table6 <- cbind(ssummary$sys.mean, ssummary$sys.sd,

t(ssummary$sys.95))

+ data.table <- xtable(f.table1, digits=4)

+ acc.table <- xtable(f.table2, digits=4)

+ param.table1 <- xtable(f.table3, digits=4)

+ param.table2 <- xtable(f.table4, digits=4)

+ sys.table1 <- xtable(f.table5, digits=4)

+ sys.table2 <- xtable(f.table6, digits=4)

+ return(list(data.table=data.table, acc.table=acc.table,

param.table1=param.table1, param.table2=

param.table2, sys.table1=sys.table1, sys.table2=sys.table2))

+ }

>

###MODEL FIT DIAGNOSTICS

> zobs <- rep(0, sim)

> zsim <- rep(0, sim)

> simdraws <- function(diag.yij, n.t, theta, burn, sim, ncomp){

for(t in 1:sim){

for(i in 1:ncomp){
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diag.yij[t, i] <- rbinom(1, n.t[i], theta[burn+t, i])

}

}

return(diag.yij)

}

> z.values <- function(diag.yij, n.t, theta, burn, sim, ncomp, sumy.ij){

for(t in 1:sim){

for(i in 1:ncomp){

zobs[t] <- sum(((sumy.ij[i]-n.t[i]*theta[burn+t, i])^2)

/(n.t[i]*theta[burn+t, i]))

zsim[t] <- sum(((diag.yij[t, i]-n.t[i]*theta[burn+t, i])^2)

/(n.t[i]*theta[burn+t, i]))

}

}

return(list(zobs=zobs, zsim=zsim))

}

>compare <- function(zsim, zobs){

mean(zsim>zobs)

}

E.3 R Code for Executing Functions for Compo-

nent and/or System Test Data

This section gives the code that was used for executing the 5 component system

for one of the priors. It shows how the test data needs to be formatted to run through
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the functions given in the previous section.

##################

#

# LOAD MODEL_FUNCTIONS.R

#

#################

####################

# Simulated Data Analysis

# 5 Component System

# Three Different Priors

# Rebecca L. Lilley

# May 26, 2013

####################

#Simulated Data

#Number of tests per component

> n.t <- c(11, 47, 34, 17, 45)

#Number of successes were generated from an random binomial

> sumy.ij <- c(11, 46, 34, 16, 40)

> failures <- n.t-sumy.ij

> prior.rel <- sumy.ij/n.t

> comp.r <- cbind(n.t, sumy.ij, failures, prior.rel)

> ncomp <- dim(comp.r)[[1]]

#System tests

> xs <- c(10, 9, 1, .9)
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#####################

> r.star1 <- .99

> vr.star1 <- .0025

#####################

> model5.1 <- estCompPriors(r.star, ncomp, vr.star)

> burn <- 10000

> sim <- 100000

> niter <- burn + sim

> csig1 <- c(14, 3.5, 14, 3.5, 2.5)

> muinit5.1 <- c(1, 1, 1, 1, 1)

> muinit5.2 <- c(5, 5, 5, 5, 5)

> muinit5.3 <- c(3, 3, 3, 3, 3)

> chainmodel5.1 <- mu.metrop.fun(niter, ncomp, muinit5.1,

csig1, sumy.ij, n.t, model5.1$a, model5.1$b, xs)

> chainmodel5.2 <- mu.metrop.fun(niter, ncomp, muinit5.2,

csig1, sumy.ij, n.t, model5.1$a, model5.1$b, xs)

> chainmodel5.3 <- mu.metrop.fun(niter, ncomp, muinit5.3,

csig1, sumy.ij, n.t, model5.1$a, model5.1$b, xs)

> write.table(chainmodel5.1$mu, "/Users/Utah/Desktop/

MH_Results/chain1_model51.txt", sep=',')

#####

# DIAGNOSTICS

#####
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> jpeg("betahh_trace5.jpg")

> par(mfrow=c(5, 1), mar=c(0,0,0,0))

> for(i in 1:ncomp){

plot(chainmodel5.1$mu[,1], ann=F)

> }

> dev.off()

> geweke.diag(chainmodel5.1$mu[(burn+1):niter])

> all.chains.model5 <- mcmc.list(as.mcmc(chainmodel5.1[[1]]),

as.mcmc(chainmodel5.2[[1]]), as.mcmc(chainmodel5.3[[1]]))

> gelman.diag(all.chains.model5)

####ANALYSIS

> theta5.1 <- apply(chainmodel5.1$mu, 2, function(x) exp(x)/(1+exp(x)))

> sysrel5.1 <- apply(theta5.1, 1, prod)

> thetasum5.1 <- param.summary(theta5.1, burn, niter)

> syssum5.1 <- sys.summary(sysrel5.1, burn, niter)

> hpdtheta5.1 <- hpd.int(.05, burn, sim, sysrel5.1)

> theta5.1tables <- tables(comp.r, csig1, chainmodel5.1$acc,

niter, thetasum5.1, syssum5.1)

####After running through this code for the different system priors:

####SYSTEM COMPARISON

> mean(sysrel5.1[(burn+1):niter]<sysrel5.2[(burn+1):niter])

> mean(sysrel5.1[(burn+1):niter]<sysrel5.3[(burn+1):niter])

> mean(sysrel5.2[(burn+1):niter]<sysrel5.3[(burn+1):niter])
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###MODEL FIT DIAGNOSTICS

mdraws.model5 <- simdraws(diag.yij, n.t, theta5.1, burn, sim, ncomp)

mzvalues.model5 <- z.values(mdraws.model5, n.t, theta5.1,

burn, sim, ncomp, sumy.ij)

compare(mzvalues.model5$zsim, mzvalues.model5$zobs)

E.4 R Code for Full Model

This section gives the code that was used for executing the full model. This code

differs from the previous sections because it has an extra section for converting the

βi to θi and calculating system reliability as a function of the covariates.

#####################

#####################

r.star <- .99

vr.star <- .0025

#####################

fullmodel.param1 <- estCompPriors(r.star, ncomp, vr.star)

burn <- 10000

sim <- 100000

niter <- burn+sim
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####For Mu Updates

csig <- c(30, 30, 4.5, 2.5)

mu.init <- c(5, 5, 5, 5)

####For Beta Updates

beta.init <- c(3, -.5)

csigb <- c(2, 2)

sigma2 <- .5

chain1 <- full.model.metrop(niter, ncomp, mu.init, csig, r.mu,

nparam, beta.init, csigb, r.beta, sumy.ij, n.t, fullmodel.param1\$a,

fullmodel.param1\$b, X.sim, beta.sims, sigma2, beta.mu)

chain1\$acc/niter

chain1\$accb/niter

###

# DIAGNOSTICS

###

jpeg("fullmubetaHH_trace.jpg")

par(mfrow=c(4, 1), mar=c(0, 0, 0, 0))

for(i in 1:ncomp){

plot(chain1$mu[(burn+1):niter, i])

}

dev.off()

jpeg("fullmubetaHH_trace_beta.jpg")

par(mfrow=c(2, 1), mar=c(0, 0, 0, 0))

plot(beta.sims[(burn+1):niter, 1])
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plot(beta.sims[(burn+1):niter, 2])

dev.off()

write.table(mu, "/Users/Utah/Desktop/full1_mu_0520.txt", sep=",")

write.table(beta.sims, "/Users/Utah/Desktop/full1_beta_0520.txt", sep=",")

###Converting Mu's to Theta

thetafull.sims1 <- apply(chain1$mu, 2, function(x) exp(x)/(1+exp(x)))

###Functions for posterior summary information

fulltheta1.1 <- param.summary(thetafull.sims1, burn, niter)

fulltheta1.1

fullbeta1.1 <- param.summary(chain1$beta.sims, burn, niter)

png("fullbetaHH_thetamu_boxplot.#png")

boxplot(thetafull.sims1[(burn+1):niter,1:5])

dev.off()

png("fullbetaHH_betamu_boxplot.#png")

boxplot(chain1$beta.sims[(burn+1):niter,1],

chain1$beta.sims[(burn+1):niter,2])

dev.off()

####Posterior Summaries for Covariate Component and

Overall System Reliability Using 5 Covariate Points

post.age <- seq(0, 1, length=5)

intercept <- c(rep(1, 5))

post.X <-cbind(intercept, post.age)

post.theta1 <- t(convert2theta(post.X, t(chain1$beta.sims)))
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postthetasum1 <- param.summary(post.theta1, burn, niter)

postthetasum1

png("theta6mubetaHH_boxplot.#png")

boxplot(post.theta1[1,], post.theta1[2,], post.theta1[3,],

post.theta1[4,], post.theta1[5,])

dev.off()

sysrel.sub <- apply(thetafull.sims1, 1, prod)

sysrel.full1 <- sysrel.sub*(post.theta1)

syssum.full1 <- param.summary(sysrel.full1, burn, niter)

syssum.full1

tables.full1 <- tables(comp.r, csig, acc, niter, thetasum.full1, syssum.full1)

tables.full1

hpd.int(.05, burn, sim, post.theta1[,1])

hpd.int(.05, burn, sim, post.theta1[,2])

hpd.int(.05, burn, sim, post.theta1[,3])

hpd.int(.05, burn, sim, post.theta1[,4])

hpd.int(.05, burn, sim, post.theta1[,5])

png("finalbetaHH_systemmu_boxplot.#png")

boxplot(sysrel.full1[,1], sysrel.full1[,2], sysrel.full1[,3],

sysrel.full1[,4], sysrel.full1[,5])

dev.off()
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