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Abstract

Nonparametric Regression has proven to be a very useful methodology, with

applications to a large list of modern problems such as computer models, image

data, environmental processes, to name a few. The nonparametric regression model

is given by

yi = f0(xi) + εi, i = 1, 2, ..., n (0.1)

where f0 is an unknown regression function and εi are independent error terms.

Smoothing splines are among the most popular methods for estimation of f0 due

to their good empirical performance and sound theoretical support [4, 26, 6, 30].

It is usually assumed without loss of generality that the domain of f0 is [0,1]. Let
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f (m) denote the mth derivative of f . The smoothing spline estimate f̂ is the unique

minimizer of

n∑
i=1

(yi − f(xi))
2 + λ

∫ 1

0

(
f (m)(x)

)2
dx (0.2)

over all functions, f , in mth order Sobolev space,

Sm = {f : f (j) is absolutely continuous for j = 1, ...,m− 1 and f (m) ∈ L2}

The minimizer of (0.2) trades off fidelity to the data (in terms of residual sum

of squares) against smoothness of the reconstructed curve (in terms of the inte-

grated squared derivative of order m, where m is typically taken to be two). The

smoothing spline solution uses a global smoothing parameter λ which implies that

the true underlying mean process has a constant degree of smoothness. We suggest

a more general, ”spatially adaptive”, framework that accommodates varying degrees

of roughness by seeking solutions where the smoothness penalty depends on the re-

gion of the domain being fitted. We derive the solution within a Reproducing Kernel

Hilbert Space framework [31, 10].

We propose a method which breaks down the interval [0, 1] into p disjoint sub-

intervals. Then we define p functional components in [0, 1], which have two important

features. First, the purpose of each of these p components is to estimate the true

function locally, i.e., in only one of the sub-intervals. Second, even though all compo-

nents are defined on the entire domain, i.e. [0, 1], a component has curvature only in

one of the afore mentioned intervals. The p local estimates are then added together

to produce a function estimate over the entire [0, 1] interval. This is similar in spirit

to the method of [22]. However, in the proposed method, the additional flexibility

that comes from finding these p local functional estimates does not come at any

additional computational cost. In spite of having p components there is no need

to specify (e.g., choose via cross validation) p smoothing parameters. Theory from

viii



COmponent Selection and Shrinkage Operator (COSSO) [15], reduces the problem of

specifying these p smoothing parameters to specifying only one smoothing parameter

without a loss in flexibility. In fact, empirical studies indicate superior performance

of COSSO in the additive model framework over that for the traditional additive

model [12], see [29], for example.

ix



Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Reproducing Kernel Hilbert Spaces (RKHS) 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Why Reproducing Kernel Hilbert Spaces? . . . . . . . . . . . 5

2.2 Vector, Banach and Hilbert Spaces . . . . . . . . . . . . . . . . . . . 11

2.2.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Reproducing Kernel Hilbert Space (RKHS) . . . . . . . . . . . . . . . 15

2.3.1 Examples of Reproducing Kernel Hilbert Spaces . . . . . . . . 18

2.4 Penalized Regression with RKHSs . . . . . . . . . . . . . . . . . . . . 21

x



Contents

2.4.1 Solving the General Penalized Regression Problem . . . . . . . 22

2.4.2 General Solution Applied to Ridge Regression . . . . . . . . . 25

2.4.3 General Solution Applied to Cubic Smoothing Spline . . . . . 26

2.4.4 Choosing the Degree of Smoothness . . . . . . . . . . . . . . . 27

2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Spatially Adaptive Smoothing Spline 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Smoothing Spline ANOVA and COSSO . . . . . . . . . . . . . . . . . 32

3.4 A locally Adaptive Estimator . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Specifying wj. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 Solving LACOSSO with the RKHS framework . . . . . . . . . 36

3.5.2 Finding the Reproducing Kernels . . . . . . . . . . . . . . . . 37

3.6 Asymptotic properties of LACOSSO. . . . . . . . . . . . . . . . . . . 41

3.7 Example Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7.1 Mexican Hat Function . . . . . . . . . . . . . . . . . . . . . . 43

3.7.2 Dampened Harmonic Motion . . . . . . . . . . . . . . . . . . 44

3.7.3 Rapid Change Function . . . . . . . . . . . . . . . . . . . . . 45

3.7.4 Motorcycle Crash Dataset . . . . . . . . . . . . . . . . . . . . 46

xi



Contents

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Conclusions and Future Work. 48

4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A 55

A.1 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1.1 R Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B 65

B.1 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.1.1 Calculations to find the r.k. . . . . . . . . . . . . . . . . . 65

B.1.2 Proving that R1 = K1 is the r.k. of S∗1 . . . . . . . . . . . 68

B.1.3 Proof of the Convergence Theorem. . . . . . . . . . . . . 70

References 81

xii



List of Figures

A.1 Linear Interpolating Spline . . . . . . . . . . . . . . . . . . . . . . . 62

A.2 GCV Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.3 Cubic Spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.1 Mexican hat function. Left: Data generated from the Mexican hat

Function with n=100 along with the true function. Middle: The LA-

COSSO (1,20) estimate (solid) with true function (dashed). Right:

The traditional smoothing spline estimate (solid) with the true func-

tion (dashed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B.2 Dampened harmonic function. Left: Data generated from the damp-

ened harmonic function with n=100 along with the true function.

Middle: The LACOSSO (1,10) estimate (solid) with true function

(dashed). Right: The traditional smoothing spline estimate (solid)

with the true function (dashed) . . . . . . . . . . . . . . . . . . . . . 78

xiii



List of Figures

B.3 Rapid change function. Left: Data generated from the rapid change

function with n=100 along with the true function. Middle: The LA-

COSSO (1,20) estimate (solid) with true function (dashed). Right:

The traditional smoothing spline estimate (solid) with the true func-

tion (dashed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.4 Left: Motorcycle crash data along with the estimate given by LA-

COSSO (1,5). Right: Motorcycle crash data along with the estimate

given by traditional smoothing spline. . . . . . . . . . . . . . . . . . 80

xiv



List of Tables

B.1 Table 1: Results of 100 Realizations from Mexican hat. AMSE is the

mean square error averaged over the 100 realizations; standard error

in parentheses. The percentage of the realizations that a particular

method had the smallest MSE among the other methods is given as

% Best. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.2 Table 2: Results of 100 Realizations from Dampened Harmonic.

AMSE is the mean square error averaged over the 100 realizations;

standard error in parentheses. The percentage of the realizations

that a particular method had the smallest MSE among the other

methods is given as % Best. . . . . . . . . . . . . . . . . . . . . . . 76

B.3 Table 3: Results of 100 Realizations from Rapid Change. AMSE is

the mean square error averaged over the 100 realizations; standard

error in parentheses. The percentage of the realizations that a par-

ticular method had the smallest MSE among the other methods is

given as % Best. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xv



Chapter 1

Introduction

The overarching goal of this dissertation is to contribute to the literature about the

use of reproducing kernel Hilbert spaces (RKHS) for penalized regression and present

an innovative approach to Nonparametric Regression. The work presented here fo-

cuses on two areas: 1) Making the theory of RKHS more accessible to statisticians;

and 2) Development of a new method in locally adaptive functional estimation that

allows for a solution to have a degree of roughness (or smoothness) that depends on

the region of the domain being fitted. The paragraphs below, summarize the two

stand-alone dissertation chapters.

Penalized Regression procedures have become very popular ways to estimate com-

plex functions (e.g., [31],[13],[6]). These procedures use an estimator that is the

solution to a minimization problem. In any minimization problem, there are the fol-

lowing questions: Does the solution exist? Is it unique? How can we find it? If the

problem is posed in the reproducing kernel Hilbert space (RKHS) framework that

we discuss on Chapter 2, then the solution is guaranteed to exist, it is unique and it

takes a particularly simple form. Reproducing kernel Hilbert spaces and reproducing

kernels play a central role in penalized regression. In the first section of Chapter 2

1



Chapter 1. Introduction

we present and solve simple problems while gently introducing key concepts. Section

2 takes the reader from a basic understanding of fields through Banach Spaces and

Hilbert Spaces. In Section 3, we provide elementary theory for RKHS along with

some examples. Section 4 discusses Penalized Regression with RKHS. Two specific

examples involving ridge regression and the cubic smoothing spline are given with

R codes to solidify the concepts. Chapter 2 will be submitted to Statistical Science

and is currently under review.

Nonparametric Regression is a very useful approach to a large list of modern

problems such as computer models, image data, environmental processes, to name a

few. The nonparametric regression model is given by

yi = f0(xi) + εi, i = 1, 2, ..., n (1.1)

where f0 is an unknown regression function and εi are independent error terms.

Smoothing splines are among the most popular methods for estimation of f0 due

to their good empirical performance and sound theoretical support ([4], [26], [6], [30],

and many others). It is usually assumed without loss of generality that the domain

of f0 is [0,1]. Let f (m) denote the mth derivative of f . The smoothing spline estimate

f̂ is the unique minimizer of

n∑
i=1

(yi − f(xi))
2 + λ

∫ 1

0

(
f (m)(x)

)2
dx (1.2)

over all functions, f , in mth order Sobolev space,

Sm = {f : f (j) is absolutely continuous for j = 1, ...,m− 1 and f (m) ∈ L2}

The minimizer of (1.2) trades off fidelity to the data in terms of residual sum

of squares against smoothness of the reconstructed curve in terms of the integrated

squared derivative of order m, where m is typically taken to be two. The smoothing

2



Chapter 1. Introduction

spline solution uses a global smoothing parameter λ which implies that the true

underlying mean process has a constant degree of smoothness. In Chapter 3 we

suggest a more general, ”spatially adaptive”, framework that accommodates varying

degrees of roughness by seeking solutions where the smoothness penalty depends on

the region of the domain being fitted. We derive the solution within a Reproducing

Kernel Hilbert Space. When applying the method to data we propose to breakdown

the interval [0, 1] in p intervals. Then we define p functional components in [0, 1],

which have two important features. First, the purpose of each of these p components

is to estimate the true function locally, that is, in only one of the intervals. Second,

even though all components are defined on the entire domain, i.e. [0, 1], a component

has curvature only in one of the afore mentioned intervals. The p local estimates are

then added together to produce function estimate over the entire [0, 1] interval. The

additional flexibility that comes from finding these p local functional estimates does

not come at an additional computational cost. In spite of having p components there

is no need of finding p smoothing parameters. Theory from COmponent Selection

and Shrinkage Operator (COSSO), see [15], reduces the problem of finding these

p smoothing parameters to finding only one smoothing parameter without a loss in

model’s flexibility. In fact, empirical studies indicate superior performance of COSSO

than that for the traditional additive model see [28], for example.

Chapter 4 presents a general summary and provides a detailed outline of several

possible areas for future research and development.

3



Chapter 2

Reproducing Kernel Hilbert

Spaces (RKHS)

2.1 Introduction

Penalized regression procedures have become a popular approach to estimating com-

plex functions [31, 6, 13]. These procedures use an estimator that is defined as the

solution to a minimization problem. In any minimization problem, there are the

following questions: Does the solution exist? If yes, is the solution unique? And how

can we find it? If the problem is posed in reproducing kernel Hilbert spaces (RKHS),

then the solution is guaranteed to exist, it is unique and it takes a particularly simple

form.

Reproducing kernel Hilbert spaces and reproducing kernels play a central role in

penalized regression. In the first section of Chapter 2 we present and solve simple

problems while gently introducing key concepts. Section 2 takes the reader from a

basic understanding of fields through Banach Spaces and Hilbert Spaces. In Section

3, we provide elementary theory for RKHS along with some examples. Section 4
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Chapter 2. Reproducing Kernel Hilbert Spaces (RKHS)

discusses Penalized Regression with RKHS. Two specific examples involving ridge

regression and the cubic smoothing spline are given with R codes to solidify the

concepts. Some methods for smoothing parameter selection are briefly mentioned at

the end. Section 5 contains some closing remarks.

2.1.1 Why Reproducing Kernel Hilbert Spaces?

Before introducing new concepts, we present some simple problems that illustrate

the need and utility of the RKHS framework. Consider solving the system of linear

equations

x1 + x3 = 0 (2.1)

x2 = 1. (2.2)

Clearly the real-valued solutions to this system are the vectors xt
∗ = (−α, 1, α) for

α ∈ <. Suppose we want to find the “smallest” solution. Under the usual squared

norm ‖x‖2 = x2
1 + x2

2 + x2
3, the smallest solution is xt

s = (0, 1, 0).

Consider a more general problem. For a given p× n matrix R and n× 1 matrix

η, solve

Rtx = η, (2.3)

where Rt is the transpose of R, x and the columns of R, say Rk, k = 1, 2, ..., n, are

all in <p, and η ∈ <n. We wish to find the solution xs that minimizes the norm

‖x‖ =
√

xtx. We solve the problem using concepts that extend to RKHS.

A solution x∗ (not necessarily a minimum norm solution) exists whenever η ∈
C(Rt). Here C(Rt) denotes the column space of Rt. Given one solution x∗, all

solutions x must satisfy

Rtx = Rtx∗

5



Chapter 2. Reproducing Kernel Hilbert Spaces (RKHS)

or

Rt(x∗ − x) = 0.

The vector x∗ can be written uniquely as x∗ = x0 + x1 with x0 ∈ C(R) and

x1 ∈ C(R)⊥, where C(R)⊥ is the orthogonal complement of C(R). Clearly, x0 is a

solution because Rt(x∗ − x0) = Rtx1 = 0

In fact, x0 is both the unique solution in C(R) and the minimum norm solution.

If x is any other solution in C(R) then Rt(x− x0) = 0 so we have both (x−x0) ∈
C(R)⊥ and (x−x0) ∈ C(R), two sets whose intersection is only the 0 vector. Thus

x− x0 = 0 and x = x0. In other words, every solution x∗ has the same x0 vector.

Finally, x0 is also the minimum norm solution because the arbitrary solution x∗ has

xt
0x0 ≤ xt

0x0 + xt
1x1 ≤ xt

∗x∗

We have established the existence of a unique, minimum norm solution in C(R) that

can be written as

xs ≡ x0 = Rξ =
n∑

k=1

ξkRk, (2.4)

for some ξk, k = 1, . . . , n. To find xs explicitly, write xs = Rξ and the defining

equation (2.3) becomes

RtRξ = η, (2.5)

which is just a system of linear equations. Even if there exist multiple solutions ξ,

Rξ is unique.

Now we use this framework to find the “smallest” solution to the system of

6



Chapter 2. Reproducing Kernel Hilbert Spaces (RKHS)

equations (1) and (2). In the general framework we have

xt = (x1, x2, x3),

ηt = (0, 1),

Rt
1 = (1, 0, 1),

Rt
2 = (0, 1, 0).

We know that the solution has the form (2.4) and we also know that we have to solve

a system of equations given by (2.5). In this case, the system of equations is

2ξ1 + 0ξ2 = 0,

0ξ1 + 1ξ2 = 1.

The solution to the above system is (ξ1, ξ2) = (0, 1) which implies our solution to the

original problem is xt
s = 0R1 + 1R2 = (0, 1, 0) as expected.

Virtually the same methods can be used to solve a similar problem in any inner-

product space Ω. As discussed later, an inner product 〈·, ·〉 assigns real numbers to

pairs of “vectors.” For given vectors Rk ∈ Ω and numbers ηk ∈ <, find x ∈ Ω such

that

〈Rk, x〉 = ηk, k = 1, 2, ..., n (2.6)

for which the norm of ‖x‖ ≡
√
〈x, x〉 is minimal. The solution has the form

xs =
n∑

k=1

ξkRk, (2.7)

with ξk satisfying the linear equations

n∑

k=1

〈Ri,Rk〉ξi = ηi, i = 1, . . . , n.

7



Chapter 2. Reproducing Kernel Hilbert Spaces (RKHS)

For a formal proof of this result, see [17]. In RKHS vectors are taken to be functions.

Interpolating Spline Problem. We now apply these ideas to finding a function

f(t) that interpolates between the pairs of numbers (tk, ηk), k = 0, 1, 2, ..., n where

(t0, η0) ≡ (0, 0). We restrict our attention to functions f ∈ F where F={f : f is

absolutely continuous on [0,1], f(0) = 0, f ′ ∈ L2[0, 1] }. Throughout f (m) denotes

the m-th derivative of f with f ′ ≡ f (1) and f ′′ ≡ f (2). The restriction that f(0) = 0

is not really necessary, but simplifies the presentation.

In particular, we want to find the smoothest function f(t) that satisfies f(tk) = ηk,

k = 1, . . . , n. Defining the inner product

〈f, g〉 =

∫ 1

0

f ′(x)g′(x)dx

implies a norm over the space F that is small for “smooth” functions. To address

the interpolation problem, note that the functions Rk(s) ≡ min(s, tk), k = 1, 2, ..., n

have Rk(0) = 0 and the property 〈Rk, f〉 = f(tk) which we verify as follows

〈f,Rk〉 =

∫ 1

0

f ′(s)R′
k(s)ds

=

∫ tk

0

f ′(s)1ds +

∫ 1

tk

f ′(s)0ds

=

∫ tk

0

f ′(s)ds = f(tk)− f(0) = f(tk).

Thus, an interpolator f satisfies a system of equations like (6), f(tk) = 〈Rk, f〉 = ηk,

k = 1, . . . , n, and by (2.7), the smoothest function f (minimum norm) that satisfies

the requirements has the form

f̂(t) =
n∑

k=1

ξkRk(t)

where the ξjs are the solutions to the system of real linear equations

f̂(tk) = 〈Rk, f̂〉 =
n∑

j=1

〈Rk, Rj〉ξj = ηk, k = 1, 2, ..., n.

8



Chapter 2. Reproducing Kernel Hilbert Spaces (RKHS)

Note that

〈Rk, Rj〉 = Rj(tk) = Rk(tj) = min(tk, tj)

and define the function

R(s, t) = min(s, t)

which turns out to be a reproducing kernel.

Numerical example. Given points f(ti) = ηi, say, f(0) = 0, f(0.1) = 0.1,

f(0.25) = 1, f(0.5) = 2, f(0.75) = 1.5, and f(1) = 1.75, we find

arg minf∈F‖f‖2 =

∫ 1

0

f ′(x)2dx.

Recall from (2.7) that f̂(t) =
∑n

k=1 ξkRk(t), where the ξ′s are the solution to
∑n

k=1 ξkRk(ti) = ηi with Rk(ti) = min(ti, tk). The resulting system of equations

is

0.1ξ1 + 0.1ξ2 + 0.1ξ3 + 0.1ξ4 + 0.1ξ5 = 0.1

0.1ξ1 + 0.25ξ2 + 0.25ξ3 + 0.25ξ4 + 0.25ξ5 = 1

0.1ξ1 + 0.25ξ2 + 0.5ξ3 + 0.5ξ4 + 0.5ξ5 = 2

0.1ξ1 + 0.25ξ2 + 0.5ξ3 + 0.75ξ4 + 0.75ξ5 = 1.5

0.1ξ1 + 0.25ξ2 + 0.5ξ3 + 0.75ξ4 + ξ5 = 1.75.

The solution to this system of equations is ξt = (−5, 2, 6,−3, 1), which implies that

our function is

f̂(t) = −5R1(t) + 2R2(t) + 6R3(t)− 3R4(t) + 1R5(t) (2.8)

= −5R(t, t1) + 2R(t, t2) + 6R(t, t3)− 3R(t, t4) + 1R(t, t5)

9
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or, adding the slopes for t > ti and finding the intercepts,

f̂(t) =





t 0 ≤ t ≤ 0.1

6t− 0.5 0.1 ≤ t ≤ 0.25

4t 0.25 ≤ t ≤ 0.5

−2t + 3 0.5 ≤ t ≤ 0.75

t + 0.75 0.75 ≤ t ≤ 1

The solution is the linear interpolating spline as can be seen graphically in Figure

1. For this illustrative example we restricted f so that f(0) = 0. This was only for

convenience of presentation. It can be shown that the form of the solution remains

the same with any shift to the function, so that in general the solution takes the

form f̂(t) = ξ0 +
∑n

k=1 ξkRk(t).

The key points are (i) the elements Ri that allow us to express a function evaluated

at a point as an inner-product constraint, and (ii) the restriction to functions in F .

F is a very special function space, a reproducing kernel Hilbert space, and Ri is

determined by a reproducing kernel R.

Ultimately, our goal is to address more complicated regression problems like the

Linear Smoothing Spline Problem. Consider simple regression data (xi, yi),

i = 1, . . . , n and finding the function that minimizes

1

n

n∑
i=1

{yi − f(xi)}2 + λ

∫ 1

0

f ′(x)2dx. (2.9)

If f(x) is restricted to be in some class of functions F , minimizing only the first

term gives least squares estimation within F . If F contains functions with f(xi) = yi

for all i, such functions minimize the first term but are typically very “unsmooth,”

i.e., has large second term. The second “penalty” term is minimized by having a

horizontal line, but that rarely has a small first term. As we will see in Section 2.4,

10
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for suitable F the minimizer takes the form

f̂(x) = ξ0 +
n∑

i=k

ξkRk(x),

where the Rk’s are known functions and the ξk’s are coefficients found by solving a

system of linear equations. This produces a linear smoothing spline.

If our goal is only to derive the solution to the linear smoothing spline problem

with one predictor variable, RKHS theory is an overkill. The value of RKHS the-

ory lies in its generality. The linear spline penalty can be replaced by any other

penalty with an associated inner product, and the xi’s can be vectors in <p. Us-

ing RKHS results, we can solve the general problem of finding the minimizer of

1
n

∑n
i=1 (yi − f(xi))

2 +λJ(f) for a general functional J that corresponds to a squared

norm in a subspace. See [31] or [10] for a full treatment of this approach. We now

present an introduction to this theory.

2.2 Vector, Banach and Hilbert Spaces

This section summarizes background material required for the formal development

of the RKHS framework.

2.2.1 Vector Spaces

A vector space is a set that contains elements called “vectors” and supports two

kinds of operations: addition of vectors and multiplication by scalars. The scalars

are drawn from some field (which are the real numbers in the rest of this article)

and the vector space is said to be a vector space over that field. Formally, a set V

is a vector space over a field F if there exists a structure of the form 〈V, F, +,×, 0v〉

11
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consisting of V , F , a vector addition operation +, a scalar multiplication ×, and

an identity element 0v ∈ V . This structure must obey the following axioms for any

u, v,w ∈ V and a, b ∈ F :

• Associative Law: (u + v) + w = u + (v + w).

• Commutative Law: u + v = v + u.

• Inverse Law: ∃s ∈ V s.t. u + s = 0v. (Write −u ≡ s.)

• Identity Laws: 0v + u = u.

• 1× u = u.

• Distributive Laws: a× (b× u) = (a× b)× u.

• (a + b)× u = a× u + b× u.

• a× (u + v) = a× u + a× v.

We will write 0 for 0v ∈ V and u + (−v) as u − v. Any subset of a vector space

that is closed under vector addition and scalar multiplication is call a subspace.

The simplest example of a linear vector space is just < itself, which is a linear

vector space over <. Vector addition and scalar multiplication are just addition and

multiplication on <. For more on vector spaces and the other topics to follow in this

section, see, for example, [2], [18], [17], or [23].

2.2.2 Banach Spaces

Definition. A norm of a vector space V , denoted by || · ||, is a nonnegative real

valued function satisfying the following properties for all u, v ∈ V and all a ∈ <,

12
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1. Non-negative: ||u|| ≥ 0.

2. Strictly positive: ||u|| = 0 implies u = 0.

3. Homogeneous: ||au|| = |a| ||u||.

4. Triangle inequality: ||u + v|| ≤ ||u|| + ||v||.

Definition. A vector space is called a normed vector space when a norm has been

defined on the space.

Definition. A sequence {vn} in a normed vector space V is said to converge to

v0 ∈ V if

lim
n→∞

||vn − v0|| = 0.

Definition. A sequence {vn} ⊂ V is called a Cauchy sequence if any given ε > 0,

there exists an integer N such that ||vm − vn|| < ε for any m,n > N .

Convergence of sequences in normed vector spaces follows the same general idea

as sequences of real numbers except that the distance between two elements of the

space is measured by the norm of the difference between the two elements.

Definition (Banach Space). A normed vector space V is called complete if every

Cauchy sequence in V converges to an element of V . A complete normed vector

space is called a Banach Space.

Example 2.1. < with the absolute value norm ‖x‖ ≡ |x| is a complete, normed

vector space over <, and is thus a Banach space.

Example 2.2. Let x = (x1, ..., xn)t be a point in <n. For 1 ≤ p < ∞, the lp norm

on <n is defined by

||x||p =

[
n∑

i=1

|xi|p
]1/p

.

13
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One can verify properties 1-4 at the beginning of this section for each p, validating

that ||x||p is a norm on <n.

2.2.3 Hilbert Spaces

A Hilbert Space is a Banach space in which the norm is defined by an inner-product

(also called dot-product) which we define below. We typically denote Hilbert spaces

by H. For elements u, v ∈ H, write the inner product of u and v either as 〈u, v〉H
or, when it is clear by context that the inner product is taking place in H, as 〈u, v〉.
If H is a vector space over F , the result of the inner product is an element in F .

We have F = <, so the result of an inner product will be a real number. The inner

product operation must satisfy four properties for all u, v,w ∈ H and all a ∈ F .

1. Associative: 〈au, v〉 = a〈u, v〉.

2. Commutative: 〈u, v〉 = 〈v,u〉.

3. Distributive: 〈u, v + w〉 = 〈u, v〉+ 〈u, w〉.

4. Positive Definite: 〈u, u〉 ≥ 0 with equality holding only if u = 0.

Definition. A vector space with an inner product defined on it is called an inner-

product space. The norm of an element u in an inner-product space is taken as

||u|| = 〈u, u〉1/2. Two vectors are said to be orthogonal if their inner product is 0

and two sets of vectors are said to be orthogonal if every vector in one is orthogonal

to every vector in the other. The set of all vectors orthogonal to a subspace is called

the orthogonal complement of the subspace. A complete inner-product space is called

a Hilbert space.

14



Chapter 2. Reproducing Kernel Hilbert Spaces (RKHS)

Example 2.3. <n with inner product defined by

〈u, v〉 ≡ utv =
n∑

i=1

uivi

is a Hilbert space. For any positive definite matrix A, 〈u, v〉A ≡ utAv also defines

a valid inner product.

Example 2.4. Let L2(a, b) be the vector space of all functions defined on the interval

(a, b) that are square integrable and define the inner product

〈f, g〉 ≡
∫ b

a

f(x)g(x)dx.

The inner-product space L2(a, b) is well-known to be complete; see [5], thus L2(a, b)

is a Hilbert space.

2.3 Reproducing Kernel Hilbert Space (RKHS)

Hilbert spaces that display certain properties on certain linear operators are repro-

ducing kernel Hilbert spaces.

Definition. A function T mapping a vector space X into another vector space Y

is called a linear operator if T (λ1x1 +λ2x2) = λ1T (x1)+λ2T (x2) for any x1,x2 ∈ X

and any λ1, λ2 ∈ <.

Any m× n matrix A maps vectors in <n into vectors in <m via Ax = y and is

linear.

Definition. The operator T : X → Y is continuous at x0 ∈ X if and only if for

every ε > 0 we have δ = δ(ε) > 0 such that for every x with ||x − x0|| < δ implies

||Tx− Tx0|| < ε.

Linear operators are continuous everywhere if they are continuous at 0.
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Definition. A real valued function defined on a vector space is called a functional

(i.e., a function from V to <).

A 1× n matrix defines a linear functional on <n.

Example 3.1. Let S be the set of bounded real valued continuous functions {f(x)}
defined on the real line. Then S is a vector space with the usual + and × operations

for functions. Some functionals on S are φ(f) =
∫ b

a
f(x)dx and φa(f) = f ′(a) for

some fixed a. A functional of particular importance is the evaluation functional.

Definition. Let H be a Hilbert space of functions defined from E into <. For any

t ∈ E, denote by et the evaluation functional at the point t, i.e., for g ∈ H, the

mapping is et(g) = g(t).

Clearly, evaluation functionals are linear operators.

In a Hilbert space (or any normed vector space) of functions, the notion of point-

wise convergence is related to the continuity of the evaluation functionals. The

following are equivalent for a normed vector space H of real valued functions.

(i) The evaluation functionals are continuous for all t ∈ E.

(ii) If fn, f ∈ H and ||fn − f || → 0 then fn(t) → f(t) for every t ∈ E.

(iii) For every t ∈ E there exists Kt > 0 such that |f(t)| ≤ Kt||f || for all f ∈ H.

Here (ii) is the definition of (i). See [17] for a proof of (iii).

To define a reproducing kernel, we need the famous Riesz Representation Theo-

rem.

Theorem. Let H be a Hilbert space and let φ be a continuous linear functional on
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H. Then there is one and only one vector g ∈ H such that

φ(f) = 〈f, g〉, for all f ∈ H.

The vector g is sometimes called the representation of φ. However, φ and g are

different objects: φ is a linear functional on H and g is a point in H. For a proof of

this theorem see [2] or [17].

For H = <p, vectors can be viewed as functions from the set E = {1, 2, . . . , p}
into <. An evaluation functional is ei(x) = xi. The representation of this linear

functional is the indicator vector ei that is 0 everywhere except has a 1 in the ith

place. Then

xi = ei(x) = xtei.

In fact, the entire representation theorem is well known in <p because for φ(x) to be

a linear functional there must exist a vector φ such that

φ(x) = φtx.

An element of a set of functions, say f , is sometimes denoted f(·) to be explicit

that the elements are functions, whereas f(t) is the value of f(·) evaluated at t ∈ E.

Applying the Riesz Representation Theorem to a Hilbert space H of real valued

functions in which evaluations functionals are continuous, for every t ∈ E there is a

unique symmetric function R : E×E → < with R(·, t) ∈ H the representation of et,

so that

f(t) = et(f) = 〈f(·), R(·, t)〉H , f ∈ H.

The function R is called a reproducing kernel (r.k.) and f(t) = 〈f(·), R(·, t)〉 is called

the reproducing property of R. In particular, by the reproducing property

R(s, t) = 〈R(·, t), R(·, s)〉.
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In Section 1 we found the r.k. for an interpolating spline problem. Other examples

follow shortly.

Definition A Hilbert space H of functions defined on E is called a reproducing

kernel Hilbert space if all evaluation functionals are continuous.

The projection principle in RKHS.

We now consider the connection between the reproducing kernel R of the RKHS H

and the reproducing kernel R0 for a subspace H0 ⊂ H. Suppose H in an RKHS with

r.k. R and H0 is a closed subset of H and let H⊥
0 be the orthogonal complement of

H0. Then any vector f ∈ H can be written uniquely as f = f0 + f1 with f0 ∈ H0

and f1 ∈ H⊥
0 . More particularly, R(·, t) = R0(·, t) + R1(·, t) with R0(·, t) ∈ H0 and

R1(·, t) ∈ H⊥
0 if and only if R0 is the r.k. of H0 and R1 is the r.k. of H⊥

0 . For a proof

see [10].

2.3.1 Examples of Reproducing Kernel Hilbert Spaces

Example 3.2. Consider the space of all constant functionals over x = (x1, . . . , xp)
t

∈ <p

H = {fθ : fθ(x) = θ, θ ∈ <},

with 〈fθ, fλ〉 = θλ. (For simplicity, think of p = 1.) Since <p is a Hilbert Space, so

is H. H has continuous evaluation functionals, so it is an RKHS and has a unique

reproducing kernel. To find the r.k., observe that R(·,x) ∈ H, so it is a constant for

any x. Write R(x) ≡ R(·, x). By the representation theorem and the defined inner

product

θ = fθ(x) = 〈fθ(·), R(·, x)〉 = θR(x)

for any x and θ. This implies that R(x) ≡ 1 so that R(·,x) = R(x) ≡ 1 and

R(·, ·) ≡ 1.
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Example 3.3. Consider all linear functionals over x ∈ <p passing through the origin

H = {fθ : fθ(x) = θtx, θ ∈ <p}.

Define 〈fθ, fλ〉 = θtλ = θ1λ1 + θ2λ2 + . . . + θpλp. The kernel R must satisfy

fθ(x) = 〈fθ(·), R(·,x)〉

for all θ and any x. Since R(·,x) ∈ H, R(v, x) = utv for some u that depends on

x, i.e., R(·, x) = fu(x)(·), so R(v,x) = u(x)tv. By our definition of H we have

θtx = fθ(x) = 〈fθ(·), R(·, x)〉 = 〈fθ(·), fu(x)(·)〉 = θtu(x),

so we need u(x) such that for any θ and x we have

θtx = θtu(x).

It follows that u(x) = x. For example, taking θ to be indicator vector ei implies

that ui(x) = xi for every i = 1, . . . , p. We now have R(·,x) = fx(·) so that

R(x̃, x) = xtx̃ = x1x̃1 + x2x̃2 + . . . + xpx̃p.

Example 3.4. Now consider all affine functionals in <p

H = {fθ : fθ(x) = θ0 + θ1x1 + . . . + θpxp, θ ∈ <p+1}

with 〈fθ, fλ〉 = θ0λ0 + θ1λ1 + . . . + θpλp. The subspace H0 = {fθ ∈ H : θ0 ∈
<, 0 = θ1 = · · · = θp} has the orthogonal complement H⊥

0 = {fθ ∈ H : 0 = θ0}. For

practical purposes, H0 is the space of constant functionals from Example 3.2 and H⊥
0

is the space of linear functionals from Example 3.3. Note that the inner product on

H when applied to vectors in H0 and H⊥
0 , respectively, reduces to the inner products

used in Examples 3.2 and 3.3.

Write H as H = H0 ⊕H⊥
0 where ⊕ denotes the direct sum of two vector spaces.

For two subspaces A and B contained in a vector space C, the direct sum is the
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space D = {a + b : a ∈ A, b ∈ B}. Any elements d1, d2 ∈ D can be written as a1 + b1

and a2 + b2, respectively for some a1, a2 ∈ A and b1, b2 ∈ B. When the two subspaces

are orthogonal, as in our example, those decompositions are unique and the inner

product between d1 and d2 is 〈d1, d2〉 = 〈a1, a2〉 + 〈b1, b2〉. For more information

about direct sum decomposition, see [10], for example.

We have already derived the r.k.’s for H0 and H⊥
0 (call them R0 and R1, respec-

tively) in Examples 3.2 and 3.3. Applying the projection principle, the r.k. for H is

the sum of R0 and R1, i.e.,

R(x̃, x) = 1 + xtx̃.

Example 3.5. Denote by H the collection of functions f with f ′′ ∈ L2[0, 1] and

consider the subspace

W 0
2 = {f(x) ∈ H : f, f ′ absolutely continuous and f(0) = f ′(0) = 0}.

Define the inner product on H as

〈f, g〉 =

∫ 1

0

f ′′(t)g′′(t)dt. (2.10)

Below we demonstrate that for f ∈ W 0
2 and any s, f(s) can be written as

f(s) =

∫ 1

0

(s− u)+f ′′(u)du , (2.11)

where (a)+ is a for a > 0 and 0 for a ≤ 0. Given any arbitrary and fixed s ∈ [0, 1],

∫ 1

0

(s− u)+f ′′(u)du =

∫ s

0

(s− u)f ′′(u)du .

Integrating by parts
∫ s

0

(s− u)f ′′(u)du = (s− s)f ′(s)− (s− 0)f ′(0) +

∫ s

0

f ′(u)du =

∫ s

0

f ′(u)du

or, by the Fundamental Theorem of Calculus,
∫ s

0

(s− u)f ′′(u)du = f(s)− f(0) = f(s) .
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Since the r.k. of the space W 0
2 must satisfy f(s) = 〈f(·), R(·, s)〉 from (2.10) and

(2.11) we see that R(·, s) is a function such that

d2R(u, s)

d2u
= (s− u)+.

We also know that R(·, s) ∈ W 0
2 , so using R(s, t) = 〈R(·, t), R(·, s)〉

R(s, t) = gs(t) =

∫ 1

0

(t− u)+(s− u)+du =
max(s, t) min2(s, t)

2
− min3(s, t)

6
.

For further examples of RKHSs with various inner products, see [3].

2.4 Penalized Regression with RKHSs

We start this section with two common examples of penalized regression: ridge

regression and smoothing splines.

Ridge Regression. In the classical linear regression setting the ridge regression

estimator β̂R proposed by [14] minimizes

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j (2.12)

where xij is the i-th observation of the j-th predictor. The resulting estimate is

biased but it reduces the variance over the traditional least squares estimate. The

tuning parameter λ ≥ 0 is a constant that controls the trade-off between bias and

variance in β̂R, and is often selected by some form of cross validation; see Section 4.4.

Smoothing Splines. Nonparametric regression is a powerful approach for solv-

ing many modern problems such as computer modeling, image processing, and envi-

ronmental monitoring. The nonparametric regression model is

yi = f(xi) + εi, i = 1, 2, . . . , n,
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where f is an unknown regression function and the εi are independent error terms.

Smoothing splines are among the most popular methods for the estimation of f ,

due to their good empirical performance and sound theoretical support. It is usually

assumed, without loss of generality, that the domain of f is [0, 1]. With f (m) the

m-th derivative of f , a smoothing spline estimate f̂ is the unique minimizer of
n∑

i=1

{yi − f(xi)}2 + λ

∫
f (m)(x)

2
dx. (2.13)

The minimizer depends on both m and λ.

The minimization of (3.2) is implicitly over functions with square integrable m-th

derivatives. The first term of (3.2) encourages the fitted f to be close to the data,

while the second term penalizes the roughness of f . The smoothing parameter λ,

usually pre-specified, controls the trade-off between the two conflicting goals. The

special case of m = 1 reduces to the linear smoothing spline problem from (2.9).

In practice, it is common to choose m = 2 in which case the minimizer f̂λ of (3.2)

is called a cubic smoothing spline. As λ → ∞, f̂λ approaches the least squares

simple linear regression line, while as λ → 0, f̂λ approaches the minimum curvature

interpolant.

2.4.1 Solving the General Penalized Regression Problem

We now review a general framework to minimize (2.12), (3.2) and many other similar

problems, cf. [29, 28]. The data model associated with the general spline smoothing

problem is

yi = f(xi) + εi, i = 1, 2, . . . , n, (2.14)

where f ∈ HR, a given RKHS of functions on a set E, and εi are error terms. Suppose

HR is the direct sum of two orthogonal subspaces

HR = H0

⊕
H1,
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and H0 is a subspace of functions that can be represented by M ≤ n basis func-

tions, φ1, . . . , φM . Any f ∈ HR can be written uniquely as f = f0 + f1 with

f0 =
∑M

j=1 djφj(x) and f1 ∈ H1. The function f1 is called the orthogonal projection

of f onto H1 and is written P1f .

An estimate of f is obtained by minimizing

1

n

n∑
i=1

{yi − f(xi)}2 + λ||P1f ||2R, (2.15)

The penalty is placed on the norm of the H1 component of the function f , while no

penalty is placed on the H0 component. In other words, H0 represents the null space

of the penalty.

The key result is that the minimizer is a linear combination of known functions

involving the reproducing kernel on H1.

Representation Theorem. The minimizer f̂λ of equation (2.15) has the orthogonal

decomposition

f̂λ(x) =
M∑

j=1

djφj(x) +
n∑

i=1

ciR(xi, x), (2.16)

where R(s, t) is the r.k. for H1. See [31] or [10] for a proof.

Once you know that the minimizer takes this form, finding the coefficients reduces

to a quadratic minimization problem similar to whose in standard linear models.

This occurs because we can write ||P1f̂λ||2R as a quadratic form in c = (c1, . . . , cn)t.

Define Σ as the n× n matrix where the i, j entry is Σij = R(xi, xj). Now, using the

reproducing property of R, write

∥∥∥P1f̂λ

∥∥∥
2

R
=

∥∥∥∥∥
n∑

i=1

ciR(xi, ·)
∥∥∥∥∥

2

R

=

〈
n∑

i=1

ciR(xi, ·),
n∑

j=1

cjR(xj, ·)
〉

=
n∑

i=1

n∑
j=1

cicjR(xi, xj) = ctΣc.

23



Chapter 2. Reproducing Kernel Hilbert Spaces (RKHS)

Define the n ×M matrix T with ij-th entry tij = {φj(xi)}. This typically has

full column rank. The vector of predicted values ŷ = (f̂λ(x1), ..., f̂λ(xn))t can now

be written as

ŷ = Td + Σc

and the minimization problem associated with (2.15) now takes the form

min
(d,c)

1

n
[y − (Td + Σc)]t [y − (Td + Σc)] + λctΣc. (2.17)

In particular, the solution is the generalized least squares estimate from fitting the

linear model

 y

0


 =


 T Σ

0n×M In×n





 d

c


 + e, Cov(e) ∝


 In×n 0n×n

0n×n Σ−1
n×n


 .

Alternatively, define the partitioned matrices,

Qn×(n+M) =
[

Tn×M Σn×n

]
, γ(n+M)×1 =


 dM×1

cn×1


 ,

and

S(n+M)×(n+M) =


 0M×M 0M×n

0n×1 Σn×n




so that (2.17) becomes

min
γ

1

n
||y −Qγ||2 + λγtSγ.

Taking derivatives with respect to γ we have

(QtQ + λS)γ̂ = Qty,

which requires solving a system of n+M equations to find γ̂. For analytical purposes,

we can write γ̂ as

γ̂ = (QtQ + λS)−1Qty. (2.18)
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For clarity, we have restricted attention to the usual case of squared error loss

between the observations and the unknown function evaluations. The Representa-

tion Theorem also generalizes to other convex loss functions and to more general

observation equations than that in (2.14); see [31] and [10].

2.4.2 General Solution Applied to Ridge Regression

Here we will solve the linear ridge regression problem in (2.12) with the RKHS

approach detailed above. The RKHS framework is not necessary to solve the problem

for practical purposes, but this simple problem serves as a good illustration of the

RKHS machinery. Consider the following space of functions

F = {f(x) = β0 +

p∑
j=1

βjxj}. (2.19)

We define the following inner product for the elements in F

〈f, g〉 =

p∑
j=1

βfj
βgj

.

Notice we can write H = H0

⊕
H1 where H0 is from Example 3.2, H1 is from

Example 3.3 and H = F . Now the general smoothing spline problem of (2.15)

becomes

min
β

n∑
i=1

(yi − f(xi))
2 + λ

p∑
j=1

β2
j .

In this case, the dimension of H0 is M = 1 and φ1(x) = 1. So from (2.16) the solution

takes the form

f̂λ(x) = d̂1 +
n∑

i=1

ĉiR(xi, x) (2.20)

with

(QtQ + λS)−1Qty =


 d̂1

ĉ


 (2.21)
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as given by (2.18). In this case it is more informative to write the solution in form

f̂(x) = β̂0 + β̂1x1 + β̂2x2 + . . . + β̂pxp.

This can be done as follows, the solution in (2.20) is

f̂(x) = d̂1 + ĉ1R(x1, x) + ĉ2R(x2, x) + . . . + ĉnR(xn, x).

Recall from Example 3.3 that in this case

R(xi, x) = xi1x1 + xi2x2 + . . . + xipxp,

f̂(x) = d̂1 +
n∑

i=1

ĉixi1x1 +
n∑

i=1

ĉixi2x2 + . . . +
n∑

i=1

ĉixipxp,

which implies in this case that

β̂0 = d̂1 and β̂j =
n∑

i=1

ĉixij

for j = 1, 2, . . . , p. In Appendix A, we provide a demonstration of this solution on

some actual data using the statistical software R.

2.4.3 General Solution Applied to Cubic Smoothing Spline

Consider again the regression problem yi = f(xi)+ εi, i = 1, 2, . . . , n where xi ∈ [0, 1]

and εi ∼ N(0, σ2). We shall focus on the cubic smoothing spline solution to this

problem. That is, we find the function that minimizes

n∑
i=1

{yi − f(xi)}2 + λ

∫
f ′′(x)2dx.

In this case H0 is the space of linear functions from (2.19) with p = 1 and H1 is given

in Example 3.5. We know that the reproducing kernel for this space is

R(s, t) =

∫ 1

0

(t− u)+(s− u)+du =
max(s, t) min2(s, t)

2
− min3(s, t)

6
.
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Here a basis for H0 is φ1(x) = 1, φ2(x) = x and from the Representation Theorem,

we know that the solution has the form

f̂(x) = d̂0(1) + d̂1xi +
n∑

i=i

ĉiR(xi, x).

From (2.18) we have

(QtQ + λS)−1Qty =


 d̂

ĉ


 (2.22)

Appendix A provides a demonstration with R code of fitting the cubic smoothing

spline using the solution in (2.22) on some actual data. The demonstration also

includes searching for the best value of the tuning parameter λ which is briefly

discussed in the next subsection.

2.4.4 Choosing the Degree of Smoothness

With the penalized regression procedures described earlier, choosing the smoothing

parameter λ is an important issue. There are many methods available including

visual inspection of the fit, cross-validation, generalized maximum likelihood estima-

tion, and generalized cross-validation (GCV).

For the examples given in the appendix, we use GCV. Given a closed-form solution

as in equation (2.18), for example (2.21) or (2.22), the GCV choice of λ minimizes

V (λ) =
1

n
||(I−A(λ)y||2/[ 1

n
Trace{I−A(λ)}]2,

where

A(λ) = Q(QtQ + λS)−1Qt.

The goal of GCV is to find λ so that the resulting estimate has the smallest mean

squared error. For more details about GCV and other methods of finding λ see [9],

[1], [33] and [31].
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2.5 Concluding Remarks

In this chapter we have given several examples motivating the utility of the RKHS

approach to penalized regression problems. We reviewed the building blocks neces-

sary to define an RKHS and presented several key results about these spaces. Finally,

we used these results to perform illustrative estimation for ridge regression and the

cubic smoothing spline problems, and presented transparent R code to enhance un-

derstanding of the examples.
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Spatially Adaptive Smoothing

Spline

3.1 Introduction

3.2 Introduction

Nonparametric Regression has proven to be a very useful methodology, with appli-

cations to a large list of modern problems such as computer models, image data,

environmental processes, to name a few. The nonparametric regression model is

given by

yi = f0(xi) + εi, i = 1, 2, ..., n (3.1)

where f0 is an unknown regression function and εi are independent error terms.

Smoothing splines are among the most popular methods for estimation of f0 due

to their good empirical performance and sound theoretical support [4, 26, 6, 30].

It is usually assumed without loss of generality that the domain of f0 is [0,1]. Let
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f (m) denote the mth derivative of f . The smoothing spline estimate f̂ is the unique

minimizer of

n∑
i=1

(yi − f(xi))
2 + λ

∫ 1

0

(
f (m)(x)

)2
dx (3.2)

over all functions, f , in mth order Sobolev space,

Sm = {f : f (j) is absolutely continuous for j = 1, ...,m− 1 and f (m) ∈ L2}

The minimizer of (3.2) trades off fidelity to the data (in terms of residual sum of

squares) against smoothness of the reconstructed curve (in terms of the integrated

squared derivative of order m, where m is typically taken to be two). The smoothing

spline solution uses a global smoothing parameter λ which implies that the true

underlying mean process has a constant degree of smoothness. In this chapter we

suggest a more general, ”spatially adaptive”, framework that accommodates varying

degrees of roughness by seeking solutions where the smoothness penalty depends on

the region of the domain being fitted. We derive the solution within a Reproducing

Kernel Hilbert Space framework [31, 10].

There are many approaches to surface fitting using spatially adaptive knot place-

ment (basis function selection) with regression splines; see [8], [27], [16], and [11].

However, the properties of these estimators are difficult to study analytically since

they are the result of an algorithm and not an explicit solution to an optimization

problem. [22] use a piecewise constant function for λ in (3.2). However, this form of

λ(x) requires specifying the number of knots, the knot locations, and the values of

λ(x) in between knot locations. This was accomplished by selecting one of several

candidate knot location options and λ values between the knots via GCV. Unfortu-

nately this leads to a smoothing method with large number of smoothing parameters

whose values need to be selected. The Loco-Spline procedure of [28] uses a spatially

varying penalty based on an initial estimate. The final estimate is penalized less
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where the initial estimate indicates more curvature is needed. However, this pro-

cedure can be unstable for small sample sizes and is computationally expensive for

larger samples.

We propose a method which breaks down the interval [0, 1] into p disjoint sub-

intervals. Then we define p functional components in [0, 1], which have two important

features. First, the purpose of each of these p components is to estimate the true

function locally, i.e., in only one of the sub-intervals. Second, even though all compo-

nents are defined on the entire domain, i.e. [0, 1], a component has curvature only in

one of the afore mentioned intervals. The p local estimates are then added together

to produce a function estimate over the entire [0, 1] interval. This is similar in spirit

to the method of [22]. However, in the proposed method, the additional flexibility

that comes from finding these p local functional estimates does not come at any

additional computational cost. In spite of having p components there is no need

to specify (e.g., choose via cross validation) p smoothing parameters. Theory from

COmponent Selection and Shrinkage Operator (COSSO) [15], reduces the problem of

specifying these p smoothing parameters to specifying only one smoothing parameter

without a loss in flexibility. In fact, empirical studies indicate superior performance

of COSSO in the additive model framework over that for the traditional additive

model [12], see [29], for example.

In Section 3.3 of this chapter we review the COSSO framework that we will use

to solve for our proposed estimator. In Section 3.4, we present the Locally Adaptive

COmponent Selection and Shrinkage Operator (LACOSSO), a new method for spa-

tially adaptive nonparametric regression. We discuss the main differences between

COSSO and LACOSSO and also the advantages of LACOSSO over its competi-

tors. Section 3.5 is devoted to computational details, e.g., finding the reproducing

kernel of the functional spaces needed to solve the proposed optimization problem.

In Section 3.6 we state a theorem that establishes the optimal MSE convergence
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rate of LACOSSO. The proof of this result can be found in the appendix. Sec-

tion 3.7 presents results from a simulation study and an example dataset to compare

LACOSSO to other existing methods. In all the examples presented, LACOSSO’s

performance is better, or comparable, to the performance shown by its competitors.

Section 3.8 concludes the chapter with some closing remarks and mentions areas

which we would like to explore in the future.

3.3 Smoothing Spline ANOVA and COSSO

In this section we review only the necessary concepts of Smoothing Spline (SS)-

ANOVA needed for the development of LACOSSO. For a more detailed overview

of Smoothing Splines and SS-ANOVA see [31], [32], [24], [10], and [3]. For a gentle

introduction to RKHS and penalized regression, see [19].

In the smoothing spline literature it is typically assumed that f ∈ F where F

is a reproducing kernel Hilbert space (RKHS). Denote the reproducing kernel (r.k.),

inner product, and norm of F as KF , 〈·, ·〉F , and || · ||F respectively. Often F is

chosen to contain only functions with a certain degree of smoothness. For example,

functions on one variable are often assumed to belong to the second order Sobolev

space, S2 = {f : f, f ′ are absolutely continuous and f ′′ ∈ L2[0, 1]}.

A RKHS F can always be written as

F = {1} ⊕ {
p⊕

j=1

Fj}, (3.3)

where ⊕ represents the direct sum operation, F1, ..., Fp is some orthogonal decompo-

sition of the space, and each of the Fj is itself a RKHS. A familiar example of such

a decomposition is the additive model f(x) = b0 +
∑p

j=i fj(xj) when there is more

than one predictor.
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A traditional smoothing spline type method finds f̂ ∈ F to minimize

1

n

n∑
i=1

(yi − f(xi))
2 + λ

p∑
j=1

θ−1
j ||P jf ||2 (3.4)

where P jf is the orthogonal projection of f onto Fj and θ ≥ 0. If θj = 0, then the

minimizer is taken to satisfy ||P jf ||2 = 0. We use the convention 0/0 = 0 throughout

this paper. The smoothing parameter λ is confounded with the θ′s, but is usually

included in the setup for computational purposes.

The COSSO [15] penalizes on the sum of the norms instead of the squared norms

as in the traditional smoothing spline and hence achieves sparse solutions (e.g. some

of the functional components are estimated to be exactly zero). Specifically, the

COSSO estimate, f̂ , is given by the function f̂ ∈ F that minimizes

1

n

n∑
i=1

(yi − f(xi))
2 + λ

p∑
j=1

||P jf ||F (3.5)

where λ is a smoothing parameter.

The Adaptive COSSO (ACOSSO) improves upon COSSO by using individually

weighted norms to smooth each of the components. Specifically, ACOSSO selects as

the estimate the function f ∈ F that minimizes

1

n

n∑
i=1

(yi − f(xi))
2 + λ

p∑
j=1

wj‖P jf‖F (3.6)

where 0 < wj < ∞ are weights that can depend on an initial estimate of f which we

denote f̃ . The wjs are not tuning parameters in the sense that they would need to

be chosen by cross validation. For more details about ACOSSO see [29].

Finally, it is possible to give an equivalent form of (3.6) that is useful for com-

putational purposes. Consider the problem of finding [θ1, ..., θp] ∈ <p and f ∈ F to

minimize

min
f∈F

1

n

n∑
i=1

(yi − f(xi))
2 + λ0

p∑
j=1

w2
j

θj

‖P jf‖2
F + λ1

p∑
j=1

θj (3.7)
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subject to θj ≥ 0, j = 1, ..., p, λ0 is a constant that can be fixed at any positive value,

and λ1 is a smoothing parameter. For a given λ in (3.6), there is a value of λ1 in

(3.7) that will result in the same minimizing function f̂ . See [29] for a proof of this

equivalence. We don’t typically care which value of λ1 corresponds to which value

of λ, since the smoothing parameter is usually not prespecified, rather it is chosen

based on some goodness of fit measure anyhow. Notice, that the minimization in (3.7)

has the same flexibility as a minimization with p smoothing parameters θ1, . . . , θp.

However, the θj are treated as if they are additional model parameters, then they are

also penalized (in the last term). This is similar to modeling the θj with a hyper-prior

in a hierarchical Bayesian framework.

3.4 A locally Adaptive Estimator

Notice that the penalty term on the right of (3.2) is an overall measure of the rough-

ness of the function over the domain. The tuning parameter λ controls the trade-off

in the resulting estimate between smoothness and fidelity to the data; large values of

λ will result in smoother functions while smaller values of λ result in rougher func-

tions but with better agreement to the data. In many cases the underlying function

changes more abruptly in some regions than in others. In situations like this the

global penalty will cause the smoothing spline estimator to either over-smooth in

some regions and/or under-smooth in others [28].

Here we consider spatially adaptive estimators which are defined by the explicit

function minimization problem,

1

n

n∑
i=1

(yi − f(xi))
2 + λ

p∑
j=1

wj

{∫ τj

τj−1

[f ′′(x)]2dx

}1/2

(3.8)

over all functions, f ∈ S2, for given knots 0 = τ0 < τ1 < · · · < τp = 1. The knots

need to be prespecified (they could be chosen to be equally spaced on the quantiles
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of x, for example).

An equivalent minimization to (3.8) which is more convenient for computational

purposes is

1

n

n∑
i=1

(
yi − b0 − b1xi −

p∑
j=1

fj(xi)

)2

+ λ

p∑
j=1

wj

{∫ τj

τj−1

[f ′′j (x)]2dx

}1/2

(3.9)

over b0, b1 ∈ <, and all functions f1 ∈ S∗1 , . . . , fp ∈ S∗p , where

S∗j = {f : f and f ′ absolutely continuous, f ′′ ∈ L2 , with f(x) = 0 if x ∈ [0, τj−1),

f is linear for x ∈ (τj, 1]} j = 1, . . . , p.

The proposed estimator in (3.8) has several important properties. First, this for-

mulation allows for the functional estimate to vary adaptively with x allowing for

more/less penalty in regions of the domain where it is beneficial. This is accom-

plished by breaking the function down into the p functional components. Second, we

are not penalizing the squared norm, rather the norm of each of these p variables, as

in the COSSO framework. In doing so our estimator also inherits the computational

advantages from COSSO as discussed further in Section 3.5. Third, we have p new

elements in our minimization problem, w1, w2, ..., wp. However, these are not smooth-

ing parameters (i.e., we do not need to estimate them), rather they are weights that

can depend on an initial estimate of f which we denote f̃ . For example, we could

initially estimate f via the traditional smoothing spline (we will discuss a particular

way of finding these quantities in the next subsection). Finally, we only have one

smoothing parameter to choose via cross validation or similar means which keeps

computation more feasible.

3.4.1 Specifying wj.

Given an initial estimate f̃ , we wish to construct wj’s so that the prominent func-

tional components enjoy the benefit of a smaller penalty relative to less important
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functional components. In contrast to the adaptive LASSO procedure for linear mod-

els ([34]), there is no single coefficient, or set of coefficients, to measure importance

of a variable. One possible scheme would be to make use of an estimate of the RKHS

norm used in the COSSO-like penalty and set

wj = ‖f̃j‖−γ
F . (3.10)

We suggest the following procedure to specify the wjs:

1. Set wj = 1 for j = 1, 2, ..., p in (3.8). Note that by doing this we are placing

the same importance on each of the functional components. With this choice

of wj’s (3.8) becomes

1

n

n∑
i=1

(yi − f(xi))
2 + λ

p∑
j=1

‖P jf‖F . (3.11)

The solution to the above minimization problem gives us f̃ .

2. Set wj = ‖P j f̃‖−γ
F , for some parameter γ. We have found that setting γ = 1

or γ = 2 provides good results in practice.

3.5 Computation

3.5.1 Solving LACOSSO with the RKHS framework

If we endow each of the S∗j with the inner product

〈f, g〉 =

∫ 1

0

f ′′(x)g′′(x)dx

then each of the S∗j are orthogonal in the space F =
⊕

j S∗j . It then becomes clear

that (3.9) is a special case of (3.6). Thus, using the equivalence of (3.6) and (3.7),
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we can write the minimization in (3.9) as the minimizer of

1

n

n∑
i=1

(
yi − b0 − b1xi −

p∑
j=1

fj(xi)

)2

+λ0

p∑
j=1

w2
j

θj

{∫ τj

τj−1

[f ′′j (x)]2dx

}
+λ1

p∑
j=1

θj (3.12)

over b0, b1 ∈ <, and all functions f1 ∈ S∗1 , . . . , fp ∈ S∗p .

The algorithm used to solve (3.7) is detailed in [29] and can be used here to solve

(3.12) as well. It hinges on the representation theorem of [31] to write the solution

to (3.12) in the form

f̂(x) = b̂0 + b̂1 +
n∑

i=1

ĉi

p∑
j=1

Rj(xi, x) (3.13)

The main ingredient needed in the ACOSSO algorithm is thus the reproducing kernel

Rj for each orthogonal subspace S∗j . These reproducing kernels are presented in the

next subsection. First, we present a simple form for the wj in (3.10) based on the

initial estimate f̃ . Write the initial estimate in the form f̃ = b̃0+ b̃1+
∑n

i=1 c̃iRj(xi, x)

as given in (3.13). We know that f̃j is given by the orthogonal projection of f̃ onto

Hj, which is P j f̃ =
∑n

i=1 c̃iRj(xi, ·). Hence,

‖P j f̃‖2
F = 〈

n∑
i=1

c̃iRj(xi, ·),
n∑

i=1

c̃iRj(xi, ·)〉 = c̃′Σc̃, (3.14)

or

wj = (c̃′Σc̃)
−γ/2

(3.15)

3.5.2 Finding the Reproducing Kernels

Finding the reproducing kernel (r.k.) directly for the S∗j would be difficult. Hence,

we instead make use of the connection between a RKHS H with reproducing ker-

nel R(s, t) and a Gaussian Process (GP) with covariance K(s, t) = R(s, t). The

connection is based on the following result, let {X(t), t ∈ T} be a real Gaussian
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Stochastic Process defined on a probability space, with mean function E[X(t)] = 0

and covariance K(s, t) = E[X(t)X(s)]. It is well known, see [20], that K determines

a Hilbert space H(K), called the RKHS of K, which has the following properties:

K(·, t) ∈ H(K) and 〈f, K(·, t)〉 = f(t) for every t ∈ T . We say that {f(t), t ∈ T} is

a representation of the process {X(t), t ∈ T}. Before finding the r.k. for the space

of functions we are interested in, we present an example that will guide our intuition

through our search process.

Example (Integrated Brownian Motion). Denote by H the collection of functions

f with f ′′ ∈ L2[0, 1] and consider the subspace W2 = {f(x) ∈ H : f, f ′ absolutely

continuous and f(0) = f ′(0) = 0}. Define the inner product on H as

〈f, g〉 =

∫ 1

0

f ′′(t)g′′(t)dt (3.16)

It can be shown, see [19], that

R(s, t) =
max(s, t) min2(s, t)

2
− min3(s, t)

6
(3.17)

Now, we also present a stochastic process with K(s, t) = R(s, t). Let {X(t), t ∈
[0, 1]} be the Wiener process. Define a new stochastic process {Z(t), t ∈ [0, 1]} by

Z(t) =

∫ t

0

X(s)ds (3.18)

We call {Z(t), t ∈ [0, 1]} the integrated Wiener process or integrated Brownian

process. It can be shown, see [21], that E[Z(t)] = 0 and

E[Z(s)Z(t)] =
max(s, t) min2(s, t)

2
− min3(s, t)

6
. (3.19)

Thus W2 is a representation of {X(t), t ∈ [0, 1]}.

Using intuition gained from this example, we will find the reproducing kernels for

the S∗j . The steps we take to find the r.k. are the following:
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(i). Use intuition to guess at the G.P. {X(t), t ∈ [0, 1]} that corresponds to the

RKHS H for which we want to know the r.k. R.

(ii). Find the covariance function K for X(t).

(iii). Demonstrate that R = K is such that R(·, t) ∈ H and 〈R(·, t), f〉 = f(t) for

f ∈ H, so that R is the unique r.k. for H.

For ease of presentation, we first consider the simplest case: two subintervals.

Let τ1 ∈ [0, 1], given τ1 we break down the [0, 1] interval into two subintervals. The

basic idea is to express our function f(x) as

f(x) = α + βx + f1(x) + f2(x) (3.20)

where f1 ∈ S∗1 and f2 ∈ S∗2 . Note that (3.20) expresses f(x) as a function in the space

F = {1}⊕{x}⊕S∗1⊕S∗2 . To apply the RKHS framework and computational solution

of ACOSSO to this problem we need to define RKHS’s H1 ⊂ S∗1 and H2 ⊂ S∗2 and

find the corresponding r.k.’s R1 and R2, respectively. It is not necessary to define a

RKHS for the constant or linear term since they lie in the null space of the penalty

in (3.9).

We define H1 = S∗1 with inner product 〈f1, g1〉H1 =
∫ 1

0
f ′′1 (t)g′′1(t)dt. Similarly

H2 = S∗2 with inner product 〈f2, g2〉H2 =
∫ 1

0
f ′′2 (t)g′′2(t)dt. As previously mentioned,

the locally adaptive estimator in (3.9) now becomes a special case of ACOSSO in

(3.6).

First, we find the r.k. for H1. Note that, by the definition of H1, f1 ∈ H1 implies

f1 has curvature only in [0, τ1], f1 ∈ S2 (where S2 represents 2nd order Sobolev

Space) and the inner product for H1 is the same as that in the previous example

involving W2 and integrated Brownian motion.

In an effort to find the GP representation of H1 we construct a Gaussian process
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as follows

Z1(t) =





∫ t

0
X(s)ds 0 ≤ t ≤ τ1∫ t

0
X(s)ds + X(τ1)(t− τ1) τ1 ≤ t ≤ 1

where X(t) is a Wiener Process or Brownian motion.

The covariance function for Z1, K1, is a function whose domain is <⊗<. Note

that given τ1, a couple (s, t) can fall into one of four regions: (i) s ∈ [0, τ1] and

t ∈ [0, τ1], (ii) s ∈ (τ1, 1] and t ∈ (τ1, 1], (iii) s ∈ [0, τ1] and t ∈ (τ1, 1] and (iv)

t ∈ [0, τ1] and s ∈ (τ1, 1].

We define K1(s, t) for each of these cases. However, knowing that K1(s, t) must be

a symmetric function cases (iii) and (iv) are the same so we end up with only three

cases. The calculations for each case are carried out in the appendix, but the results

are given here for convenience. K1(s, t) is defined as follows

=





max(s,t)min2(s,t)
2

− min3(s,t)
6

for s, t ∈ [0, τ1]
τ3
1

3
+

(max(s,t)−τ1)τ2
1

2
+

(min(s,t)−τ1)τ2
1

2
+ 2[min(s,t)−τ1][max(s,t)−τ1]τ1

2
for s, t ∈ (τ1, 1]

max(s,t)min2(s,t)
2

− min3(s,t)
6

otherwise

(3.21)

We demonstrate, in the appendix, that K1(s, t) = R1(s, t) has the reproducing

property, and hence, is the r.k. for H1. Note that K1(s, t) also depends on τ1. For

ease of notation, we make this dependence explicit by writing K∗(s, t, τ1) = K1(s, t).

Now, by the definition of S∗2 , the functions in S∗2 are functions equal to zero in

[0, τ1] and with curvature in (τ1, 1]. Parallel to that above, we define the stochastic

process Z2(t) as follows

Z2(t) =





0 0 ≤ t ≤ τ1∫ t

τ1
X(s− τ1)ds τ1 ≤ t ≤ 1

where X(t) is a Wiener Process or Brownian motion. From the above definition, it

should be clear that Z2(t) is a shifted version of Z1(t), taking on a value of exactly 0
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in the region where Z1 is nonlinear, and providing nonlinearity in the region where

Z1 is linear.

The covariance function of Z2 is

K2(s, t) =





K∗( s−τ1
1−τ1

, t−τ1
1−τ1

, τ2−τ1
1−τ1

) for s, t ∈ (τ1, 1]

0 otherwise
(3.22)

Again, it is demonstrated in the appendix that K2(s, t) = R2(s, t) has the reproducing

property, and hence, is the r.k. for H2.

One can do something analogous to derive the reproducing kernels in the case of

multiple knots 0 = τ0 < τ1 < · · · < τp−1 < τp = 1. In the general case that Hj = S∗j

with inner product 〈fj, gj〉Hj
=

∫ 1

0
f ′′j (t)g′′j (t)dt, the r.k. for Hj is

Kj(s, t) =





K∗( s−τj−1

1−τj−1
,

t−τj−1

1−τj−1
,

τj−τj−1

1−τj−1
) for s, t ∈ (τj−1, τj]

K∗( s−τj

1−τj
,

t−τj

1−τj
,

1−τj−1

1−τj−1
) for s, t ∈ (τj, 1]

0 otherwise

(3.23)

3.6 Asymptotic properties of LACOSSO.

Let the L2 norm of a function evaluated at the data points be denoted

‖f‖2
n =

1

n

n∑
i=1

f 2(xi)

The following theorem states that LACOSSO attains the optimal convergence rate

for nonparametric regression estimators. The proof is deferred to the appendix.

Theorem. Consider the regression model yi = f0(xi) + εi, i = 1, 2, ..., n, where

x′is are given values of a covariate in [0, 1], and ε′is are independent N(0, σ2) errors.

Assume f0 lies in S2 with S2 being the second order Sobolev space.
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Let f̂ be defined as in (3.8) with wj = 1 for all j and let I(f) =
∫ 1

0
[f ′′(x)]2dx.

Then (i) if f0 is a nonlinear function, and λ−1
n = Op(n

2/5)I3/10(f0), we have

‖f̂ − f0‖n = Op(λn)I1/2(f0); (ii) if f0 is a linear function, we have ‖f̂ − f0‖n =

Op(max(nλn)−2/3, n−1/2).

Remark 1. if λn ∼ n−2/5 then ‖f̂ − f0‖n = Op(n
−2/5) which is optimal for nonpara-

metric regression estimators.

Remark 2. Here we have assumed wj = 1, but this could be relaxed. All we really

need is for wj = Op(1) and w−1
j = Op(1) in order for the proof to go through.

3.7 Example Results

In this section we evaluate the performance of LACOSSO on several simulated data

sets. We compare the results to those from several other competing methods. The

methods included in these simulations are:

LOCO - The Loco-Spline procedure with tuning parameter selection via 5-fold CV

as described in [28].

SAS(5)- the version of the spatially adaptive smoothing spline suggested in [22]

which uses piecewise constant (with 5 bins since this had the best performance in

their paper) for λ(x).

TRAD - the traditional smoothing spline (TRAD) with tuning parameter chosen via

GCV.

LOKERN - local kernel regression with plug-in local bandwidth as provided by the

R package lokern. This procedure uses a second order kernel with a plug-in estimate

of the asymptotically optimal local bandwidth.
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MARS - Multivariate Adaptive Regression Splines [7] as provided by the R pack-

age polymars. This procedure uses regression splines with spatially adaptive knot

placement.

LACOSSO(0,5) - Locally Adaptive COSSO procedure with tuning parameter selec-

tion via GCV with γ = 0 and p = 5 bins (τ ′js placed at evenly spaced quantiles of

x).

LACOSSO(1,5) - Locally Adaptive COSSO procedure with tuning parameter selec-

tion via GCV with γ = 1 and p = 5 bins.

LACOSSO(0,10) - Locally Adaptive COSSO procedure with tuning parameter selec-

tion via GCV with γ = 0 and p = 10 bins.

LACOSSO(1,10) - Locally Adaptive COSSO procedure with tuning parameter selec-

tion via GCV with γ = 1 and p = 10 bins.

LACOSSO(0,20) - Locally Adaptive COSSO procedure with tuning parameter selec-

tion via GCV with γ = 0 and p = 20 bins.

LACOSSO(1,20) - Locally Adaptive COSSO procedure with tuning parameter selec-

tion via GCV with γ = 1 and p = 20 bins.

3.7.1 Mexican Hat Function

The first test problem which we call the Mexican hat function is a quadratic function

with a sharp Gaussian bump in the middle of the domain. Specifically the function

is given by

f(x) = −1 + 1.5x + 0.02φ0.02(x− 0.5) (3.24)

where φσ(x−µ) is the N(µ, σ2) density evaluated at x. We generate a simple random

sample of size n from xi ∼ Unif(0, 1), i = 1, 2, ..., n. We then generate Yi = f(xi)+εi,
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where εi ∼ N(0, 0.25).

Figure 1 displays the data along with the corresponding fits from LACOSSO and

traditional smoothing spline for a typical realization with n = 100. Here we see that

LACOSSO-spline is able to both better capture the peak and stay smooth where

the function is flat. On the other hand, see how the traditional smoothing spline

”chases” data points in areas where the true function is flat.

In the top of Table 1 we can compare the performance on the Mexican hat example

for these methods as sample size increases. The reported summary statistics are

the average mean squared error (AMSE) and the percent best. The AMSE is the

average of the MSE over 100 realizations at the respective sample sizes. Here we

are using the definition of MSE which averages squared errors at the data points,

i.e. MSE = 1
n

∑n
i=1(f(xi) − f̂(xi))

2. The percent best is the percentage of the

100 realizations that a given method had the smallest MSE among the competing

methods.

In the Mexican hat section of the table it is clear that LACOSSO has a very

competitive performance for all sample sizes on this example. LACOSSO (1,20) had

the smallest MSE for approximately 40% of the realizations for each sample size.

3.7.2 Dampened Harmonic Motion

The next problem is a dampened harmonic motion also known as the spring equa-

tion. Functions with this type of behavior are common to just about any structural

engineering problem. The spring equation is given by

f(x) = a exp{−b(1− x)} cos{w(1− x)} (3.25)

We have chosen the parameter values of a = 1, b = 30, w = 30π to produce the

data for this simulation. We again consider xi ∼ Unif (0, 1), i = 1, 2, ..., n with
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Yi = f(xi) + εi, but here ε ∼ N(0, 0.05).

Figure 2 displays the data and the corresponding fits from LACOSSO and tra-

ditional smoothing spline for a typical realization with n = 100. Here we see that

the LACOSSO-spline captures better the behavior of this function. Note how the

traditional smoothing estimate does not capture the higher amplitude oscillation as

well as LACOSSO does and, again, allows for the undesirable behavior of ”chasing”

points in areas where the true function is flat.

The second tier of Table 1 summarizes the performance on the dampened har-

monic example for sample sizes n = 100, 200, and 300. In this example, our method

has a performance as good as the one shown by LOCO and SAS(5). However, LA-

COSSO (1,10) has smaller MSE in, roughly, 30% of the realizations for all sample

sizes, almost twice as much as SAS(5), its closest competitor.

3.7.3 Rapid Change Function

The rapid change function is defined as

f(x) =
0.8

1 + exp[−75(x− 0.8)]
(3.26)

We once again consider xi ∼ Unif (0, 1) with Yi = f(xi) + εi and εi ∼ N(0, 0.05).

Figure 3 displays the data and the corresponding fits from the traditional smooth-

ing spline for a typical realization with n = 100. Notice how rough the smoothing

spline is overall whereas the LACOSSO-spline is able to fit the true function just as

well in the rapid change region as in the other regions.

Tier 3 of Table 1 summarizes the results of the simulations from this example.

In this example, LACOSSO (1, 10) and (1, 20) have a lower AMSE than the other

methods at all sample sizes. The only method that compares to these two is LOCO-

Spline.
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3.7.4 Motorcycle Crash Dataset

Here we take a look at a real data set that benefits from our local approach to

smoothing. This data comes from a computer simulation of motorcycle accidents.

The response is a series of measurements of head acceleration over time in a simulated

motorcycle accident used to test crash helmets. This benchmark example data set

made popular by ([25]) is available as mcycle in the R library MASS.

Figure 4 shows the estimated curves from LACOSSO and TRAD respectively.

Notice how the LACOSSO estimate appears to have better agreement with the data,

in general, especially in the last part of the domain (time > 0.6). See how the

traditional smoothing spline estimate bounces around some in this region while LA-

COSSO remains very smooth which seems to give a much more visually appealing

fit to the data.

3.8 Conclusions

Our new estimator, LACOSSO, is obtained via solving a regularization problem with

a novel adaptive penalty on the sum of functional norms which allows for a locally

varying smoothness of the resulting estimate. We demonstrated the effectiveness of

this approach as a scatterplot smoother when compared to the traditional smoothing

spline. LACOSSO machinery can be effectively transferred into higher dimensional

problems and non-continuous responses (Bernoulli data, Poisson data, etc.) and its

performance is not heavily affected when allowed for more flexibility (more bins)

unlike other methods that have a tendency to overfit. In fact the performance of

LACOSSO seems to improve with the addition of bins, which is a contrast to the

method of [22], for example, with 10 and 20 bins. We attribute this behavior to

the formulation of the minimization in the COSSO like framework, which involves
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only one tuning parameter, instead of one tuning parameter per bin. The MSE

asymptotic optimality of this method has also been established.
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Conclusions and Future Work.

4.1 Conclusions

We have given several examples motivating the utility of the RKHS approach to

penalized regression problems. We reviewed the building blocks necessary to define

an RKHS and presented several key results about these spaces. We also used these

results to perform illustrative estimation for ridge regression and the cubic smoothing

spline problems, and presented transparent R code to enhance understanding of the

examples.

We have introduced the LACOSSO, a new method for scatterplot smoothing

which allows for locally varying smoothness of the resulting estimate. We have

demonstrated the MSE asymptotic optimality of this method, and we have also

shown the benefit that the local flexibility on smoothness can provide on many

simulated examples. The new method compares favorably to existing methods for

both speed and estimation accuracy as determined by extensive empirical testing.
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4.2 Future Work.

Multiple Predictor Case.

Before we generalize the ideas we presented in the previous chapter, we recall

what we did in the univariate case. Our function estimate is given by the minimizer

of

1

n

n∑
i=1

(yi − f(xi))
2 + λ

p∑
j=1

wj

[∫ τj

τj−1

[f ′′(x)]2dx

]1/2

(4.1)

The w′
js will help us to penalize the different regions of the domain differently. Then

we define S∗j , where S∗j = {f : f and f ′ a.c. withf ′′ ∈ L2 for x ∈ [τj−1, τj], f(x) =

0 if x ∈ [0, τ − j − 1), f is linear for x ∈ (τj, 1]}, j = 1, ..., p, for knots 0 = τ0 < τ1 <

... < τp = 1. These functional spaces allow us to decompose f(x) as

f(x) = f1(x) + f2(x) + ... + fp(x) (4.2)

with fj ∈ S∗j . Expressing f(x) in this way and using theory from RKHS, the

ACOSSO framework and the Smothing Spline ANOVA, we can find the minimizer

of (4.1) by solving an equivalent problem that is easier to solve, namely

1

n

n∑
i=1

(yi − f(xi))
2 + λ

p∑
j=1

wj

[∫ τj

τj−1

[f ′′j (x)]2dx

]1/2

(4.3)

A natural extension of our method is considering functions with multiple predic-

tors. To reduce the level of abstraction, we discuss the two-predictor case. Suppose

that two explanatory variables, x1 and x2, are available for a response variable, y,

and that a simple additive model structure

yi = f1(x1i) + f2(x2i) + εi (4.4)

is appropriate. The fj are smooth functions and the εi are iid N(0, σ2). Again, for

simplicity, assume that x1 and x2 lie in [0, 1].
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The fact that the model now contains more than one function introduces an

identifiability problem: f1 and f2 are each only estimable to within an additive

constant. To see this, note that any constant could be simultaneously added to f1 and

subtracted from f2, without changing the model predictions. Hence identifiability

constraints have to be imposed on the model before fitting. One of the simplest ways

to deal with this is to constrain one of the intercepts to zero.

Now let’s try to generalize LACOSSO to estimate (4.4). Doing something similar

to what we did in the univariate case, we define our estimate as the minimizer of

1

n

n∑
i=1

(yi−f(x))2 +λ

[
p∑

j=1

wj1

∫ τj

τj−1

(
∂2f

∂2x1

)dx2
1 +

p∑
j=1

wj2

∫ τj

τj−1

(
∂2f

∂2x2

)2dx2

]1/2

(4.5)

which in this case is equivalent to

1

n

n∑
i=1

(yi−f(x))2+λ

[
p∑

j=1

wj1

∫ τj

τj−1

(f ′′1 (x1))
2dx1 +

p∑
j=1

wj2

∫ τj

τj−1

(f ′′2 (x2))
2dx2

]1/2

(4.6)

Note that we have a common smoothing parameter λ for both predictors but the

w′
js will provide us with the flexibility we need to estimate our function.

And parallel to what we did in the univariate case, decomposing f1(x1) =
∑p

j=1 fj1(x1)

and f2 =
∑p

j=1 fj2(x2) with fjk ∈ S∗j , the solution to (4.5) is equivalent to find the

minimizer of

1

n

n∑
i=1

(yi− f(x))2 +λ

[
p∑

j=1

wj1

∫ τj

τj−1

(f ′′j1(x1))
2dx1 +

p∑
j=1

wj2

∫ τj

τj−1

(f ′′j2(x2))
2dx2

]1/2

(4.7)

From the last equation it should be clear that the additive model can be repre-

sented and estimated in the same way as for the univariate model. The asymptotic

properties of the estimator for the multiple predictor model are the same as those

for the univariate model. The proof would be almost identical.
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Non-Gaussian Responses.

To have a better understanding of the main issues when extending penalized re-

gression methods to non-normal responses we will revisit the cubic smoothing spline.

Consider a ”regression” problem yi = η + εi where εi ∼ N(0, σ2) and η is an un-

known constant. A sensible approach to this problem would be to find η, unknown

”regression” function, using maximum likelihood. In this case, it is easy to see that

the log-likelihood that we want to maximize is proportional to

−
n∑

i=1

(yi − η)2. (4.8)

Maximizing this last expression would be equivalent to minimizing the negative log-

likelihood

n∑
i=1

(yi − η)2 (4.9)

Now, consider another regression problem yi = η(xi)+ εi where εi ∼ N(0, σ2) and

η(x) is an unknown function. If we attempt to maximize the log-likelihood

−
n∑

i=1

(yi − η(xi))
2 (4.10)

over all smooth functions η, the result is useless. It is always possible to choose η

sufficiently complicated that it interpolates the data. Hence, instead of maximizing

the log-likelihood alone, we choose η̂ in second order Sobolev space to maximize the

penalized log-likelihood

−
n∑

i=1

(yi − η(xi))
2 − λ

2

∫ 1

0

(η′′(x))2 (4.11)

which is equivalent to minimizing the negative log-likelihood

n∑
i=1

(yi − η(xi))
2 +

λ

2

∫ 1

0

(η′′(x))2 (4.12)
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where, as we already know, the first term discourages the lack of fit of η to the data,

the second penalizes the roughness of η, and the smoothing parameter λ controls the

trade-off between the two conflicting goals. We also know, from chapter 2, that the

minimizer ηλ is called a cubic smoothing spline.

Now consider exponential family distributions with densities of the form

f(y|x) = exp ([yη(x)− b(η(x))]/a(φ) + c(y, φ)) (4.13)

where a > 0, b, and c are known functions, η(x) is the parameter of interest dependent

on a covariate x and φ is either known or considered as a nuisance parameter that

is independent of x. Observing yi|xi ∼ f(y|xi), i = 1, 2, ..., n, one is to estimate the

regression function η(x). Parallel to what happened in the normal case, we could

minimize the negative of the penalized log-likelihood functional

1

n

n∑
i=1

(yiη(xi)− b(η(xi)))
2 +

λ

2
J(η) (4.14)

for some penalty J(η) such as a penalty on smoothness as in (4.11). It can be shown

(see [10]) that the minimizer ηλ of (4.14) takes the form

η(x) =
m∑

ν=1

dνφν(x) +
n∑

i=1

ciR(xi, x) (4.15)

where {φν}m
ν=1 is a basis of the null space of the penalty J(η) and R(xi, x) is an ap-

propriate reproducing kernel. With a non-normal log likelihood, one needs iterations

to compute ηλ, even for fixed smoothing parameters, which adds to the complexity

of the problem.

The implementation of efficient and effective algorithms to locate good estimates

from among the ηλ’s with varying smoothing parameters would allow us to fit models

with non-normal responses using our method. Such algorithms do exist, see chapter

five of [10].

Variable Selection.
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Variable selection for multivariate nonparametric regression is a challenging prob-

lem due to the infinite dimensionality of the function space. We say a nonparametric

regression estimator has the nonparametric oracle property if it selects the correct

subset of predictors with probability tending to one and estimates the regression

surface f at the optimal nonparametric rate; see ([28]). It would be interesting to

investigate if our method, LACOSSO, in the additive model case could be a non-

parametric oracle and, if so, under which conditions.
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A.1 Appendix

A.1.1 R Codes

Ridge Regression. We consider a sample of size n = 20, (y1, y2, y3, ..., y20), from

the model

yi = β0 + β1xi1 + β2xi2 + εi

where β0 = 2, β1 = 3, β2 = 0 and εi has a N(0, 0.252) . The distribution of the

covariates, x1 and x2, is uniform in [0, 1]2 so that x2 is uninformative. The following

lines of code generate the data.

###### Data ########

set.seed(3)

n<-20

x1<-runif(n)

x2<-runif(n)

X<-matrix(c(x1,x2),ncol=2) # design matrix

y<-2+3*x1+rnorm(n,sd=0.25)
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Below we give a function “ridge regression” to solve the ridge regression problem

using the RKHS framework we discussed in Section 4.2.

##### function to find the inverse of a matrix ####

my.inv<-function(X,eps=1e-12){ eig.X<-eigen(X,symmetric=T)

P<-eig.X[[2]] lambda<-eig.X[[1]] ind<-lambda>eps

lambda[ind]<-1/lambda[ind] lambda[!ind]<-0

ans<-P%*%diag(lambda,nrow=length(lambda))%*%t(P)

return(ans) }

###### Reproducing Kernel #########

rk<-function(s,t){

p<-length(s)

rk<-0

for (i in 1:p){

rk<-s[i]*t[i]+rk

}

return( (rk) )

} ##### Gram matrix ####### get.gramm<-function(X){ n<-dim(X)[1]

Gramm<-matrix(0,n,n) #initializes Gramm array #i=index for rows

#j=index for columns Gramm<-as.matrix(Gramm) # Gramm matrix

for(i in 1:n){

for (j in 1:n){

Gramm[i,j]<-rk(X[i,],X[j,])

}
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} return(Gramm) }

ridge.regression<-function(X,y,lambda){

Gramm<-get.gramm(X) #Gramm matrix (nxn)

n<-dim(X)[1] # n=length of y

J<-matrix(1,n,1) # vector of ones dim=n

Q<-cbind(J,Gramm) # design matrix

m<-1 # dimension of the null space

# of the penalty

S<-matrix(0,n+m,n+m) #initialize S

S[(m+1):(n+m),(m+1):(n+m)]<-Gramm #non-zero part of S

M<-(t(Q)%*%Q+lambda*S)

M.inv<-my.inv(M) # inverse of M

gamma.hat<-crossprod(M.inv,crossprod(Q,y))

f.hat<-Q%*%gamma.hat

A<-Q%*%M.inv%*%t(Q)

tr.A<-sum(diag(A)) #trace of hat matrix

rss<-t(y-f.hat)%*%(y-f.hat) #residual sum of squares

gcv<-n*rss/(n-tr.A)^2 #obtain GCV score

return(list(f.hat=f.hat,gamma.hat=gamma.hat,gcv=gcv))

}

A simple direct search for the GCV optimal smoothing parameter can be made

as follows:

# Plot of GCV
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lambda<-1e-8 V<-rep(0,40) for (i in 1:40){

V[i]<-ridge.regression(X,y,lambda)$gcv #obtain GCV score

lambda<-lambda*1.5 #increase lambda

} index<-(1:40) plot(1.5^(index-1)*1e-8,V,type="l",main="GCV

score",lwd=2,xlab="lambda",ylab="GCV") # plot score

The GCV plot produced by this code is displayed in Figure 2.

Now, by following Section 4.2, β̂0, β̂1 and β̂2 can be obtained as follows.

i<-(1:60)[V==min(V)] # extract index of min(V)

opt.mod<-ridge.regression(X,y,1.5^(i-1)*1e-8) #fit optimal model

### finding beta.0, beta.1 and beta.2 ##########

gamma.hat<-opt.mod$gamma.hat

beta.hat.0<-opt.mod$gamma.hat[1]#intercept

beta.hat<-gamma.hat[2:21, ]%*%X #slope and noise term coefficients

The resulting estimates are: β̂0 = 2.1253, β̂1 = 2.6566 and β̂2 = 0.1597.

Cubic Smoothing Spline. We consider a sample of size n = 50, (y1, y2, y3, ..., y20),

from the model

yi = sin(2πxi) + εi

where εi has a N(0, 0.22) . The following code generates x and y

###### Data ########
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set.seed(3)

n<-50

x<-matrix(runif(n),nrow=n,ncol=1)

x.star<-matrix(sort(x),nrow=n,ncol=1) # sorted x, used by plot

y<-sin(2*pi*x.star)+rnorm(n,sd=0.2)

Below we give a function to find the cubic smoothing spline using the RKHS frame-

work we discussed in Section 4.3. We also provide a graph with our estimation along

with the true function and data.

#### Reproducing Kernel for <f,g>=int_0^1 f’’(x)g’’(x)dx #####

rk.1<-function(s,t){

return( (1/2)*min(s,t)^2)*(max(s,t)+ (1/6)*(min(s,t))^3 )

}

get.gramm.1<-function(X){

n<-dim(X)[1]

Gramm<-matrix(0,n,n) #initializes Gramm array

#i=index for rows

#j=index for columns

Gramm<-as.matrix(Gramm) # Gramm matrix

for (i in 1:n){

for (j in 1:n){

Gramm[i,j]<-rk.1(X[i,],X[j,])

}

}

59



Appendix A.

return(Gramm) }

smoothing.spline<-function(X,y,lambda){

Gramm<-get.gramm.1(X) #Gramm matrix (nxn)

n<-dim(X)[1] # n=length of y

J<-matrix(1,n,1) # vector of ones dim=n

T<-cbind(J,X) # matrix with a basis for the null

# space of the penalty

Q<-cbind(T,Gramm) # design matrix

m<-dim(T)[2] # dimension of the null space of

# the penalty

S<-matrix(0,n+m,n+m) #initialize S

S[(m+1):(n+m),(m+1):(n+m)]<-Gramm #non-zero part of S

M<-(t(Q)%*%Q+lambda*S)

M.inv<-my.inv(M) # inverse of M

gamma.hat<-crossprod(M.inv,crossprod(Q,y))

f.hat<-Q%*%gamma.hat

A<-Q%*%M.inv%*%t(Q)

tr.A<-sum(diag(A)) #trace of hat matrix

rss<-t(y-f.hat)%*%(y-f.hat) #residual sum of squares

gcv<-n*rss/(n-tr.A)^2 #obtain GCV score

return(list(f.hat=f.hat,gamma.hat=gamma.hat,gcv=gcv))

}

A simple direct search for the GCV optimal smoothing parameter can be made as
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follows:

### Now we have to find an optimal lambda using GCV...

### Plot of GCV

lambda<-1e-8 V<-rep(0,60) for (i in 1:60){

V[i]<-smoothing.spline(x.star,y,lambda)$gcv #obtain GCV score

lambda<-lambda*1.5 #increase lambda

} plot(1:60,V,type="l",main="GCV score",xlab="i") # plot score

i<-(1:60)[V==min(V)] # extract index of min(V)

opt.mod.2<-smoothing.spline(x.star,y,1.5^(i-1)*1e-8) #fit optimal

model

#Graph (Cubic Spline)

plot(x.star,opt.mod.2$f.hat,type="l",lty=2,lwd=2,col="blue",xlab="x",

ylim=c(-2.5,1.5),xlim=c(-0.1,1.1),ylab="response",main="CubicSpline")

#predictions

lines(x.star,sin(2*pi*x.star),lty=1,lwd=2) #true

legend(-0.1,-1.5,c("predictions","true"),lty=c(2,1),bty="n",

lwd=c(2,2),col=c("blue","black")) points(x.star,y) #data

This graph is plotted in Figure 3.
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B.1 Appendix

B.1.1 Calculations to find the r.k.

Here we give the specific calculations of the covariance functions K1 and K2 for

section 3.5.2. We then demonstrate that K1 and K2 are the r.k.’s for S∗1 and S∗2 ,

respectively.

Case 1. 0 ≤ s ≤ t ≤ τ1

First, we need to recall that the mean value and covariance of a Wiener Process

are given by

m(t) = E[X(t)] = 0 (B.1)

Cov[X(s), X(t)] = min(s, t) (B.2)

Now, note that the expectation of Z1(t) is equal to zero.

E

[∫ t

0

X(ν)dν

]
=

∫ t

0

E[X(ν)]dν = 0 (B.3)
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This implies that the covariance between Z1(s) and Z1(t) is given by

Cov[Z1(s)Z1(t)] = E [Z1(s)Z1(t)]

= E

[∫ s

0

X(y)dy

∫ t

0

X(u)du

]

= E

[∫ s

0

∫ t

0

X(y)X(u)dydu

]

=

∫ s

0

∫ t

0

E [X(y)X(u)] dydu

=

∫ s

0

∫ t

0

min(y, u)dydu

=

∫ s

0

(∫ u

0

ydy +

∫ t

u

udy

)
du

= s2

(
t

2
− s

6

)
=

s2t

2
− s3

6

or in general for 0 < s < τ1, 0 < t < τ1,

E [Z1(s)Z1(t)] =
min2(s, t) max(s, t)

2
− min3(s, t)

6
(B.4)

Case 2. If t and s are in [τ1, 1] and s < t.

First, note that E(Z1(t)) = 0.

To determine the covariance between Z1(s) and Z1(t) we need to find its product

Z1(s)Z1(t) = [Z1(τ1) + (s− τ1)X(τ1)][Z1(τ1) + (t− τ1)X(τ1)]

= Z2
1(τ1) + Z1(τ1)X(τ1)(t− τ1) + Z1(τ1)X(τ1)(s− τ1) + (s− τ1)(t− τ1)X

2(τ1)

= Z2
1(τ1) + Z1(τ1)X(τ1)[(t− τ1) + (s− τ1)] + (s− τ1)(t− τ1)X

2(τ1)

Now,

E[Z1(s)Z1(t)] = E[Z2
1(τ1)]+[(t−τ1)+(s−τ1)]E[Z1(τ1)X(τ1)]+(s−τ1)(t−τ1)E[X2(τ1)]

(B.5)
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We know, from case 1, that

E[Z2
1(τ1)] =

τ 3
1

2
− τ 3

1

6
=

τ 3
1

3
(B.6)

E[X(τ1)Z1(τ1)] = E

[∫ τ1

0

X(y)X(τ1)dy

]
(B.7)

=

∫ τ1

0

min(y, τ1)dy =
τ 2
1

2
(B.8)

E[X2(τ1)] = min(τ1, τ1) = τ1 (B.9)

Then, substituting (B.6), (B.8) and (B.9) into (B.5) gives

E[Z1(s)Z1(t)] =
τ 3
1

3
+ [(t− τ1) + (s− τ1)]

[
τ 2
1

2

]
+ (s− τ1)(t− τ1)τ1 (B.10)

Case 3. 0 ≤ s ≤ τ1 ≤ t ≤ 1.

From the two cases discussed above, we have that E(Z1(t)) = 0. To find the

covariance of Z1(t), first we need the product Z1(s)Z1(t)

Z1(s)Z1(t) =

[∫ s

0

X(ν)dν

] [∫ τ1

0

X(ν)dν + (t− τ1)X(τ1)

]

=

[∫ s

0

X(ν)dν

] [∫ s

0

X(ν)dν +

∫ τ1

s

X(ν)dν + (t− τ1)X(τ1)

]

=

[∫ s

0

X(ν)dν

]2

+

[∫ s

0

X(ν)dν

] [∫ τ1

s

X(ν)dν

]
+ (t− τ1)X(τ1)

[∫ s

0

X(ν)dν

]

= [Z1(s)]
2 + [Z1(s)] [Z1(τ1)− Z1(s)] + (t− τ1)X(τ1) [Z1(s)]

Now,

E[Z1(s)Z1(t)] = E [Z1(s)]
2+E [Z1(s)] [Z1(τ1)− Z1(s)]+(t−τ1)E [X(τ1)Z1(s)] (B.11)

From calculations in cases 1 and 2, we know that

E[Z2
1(s)] = V ar[Z1(s)] =

s3

3
(B.12)
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E[X(τ1)Z1(s)] =
s2

2
(B.13)

We also need to find the following expectation

E [Z1(s)] [Z1(τ1)− Z1(s)] = Cov [Z1(s)Z1(τ1)]− V ar [Z1(s)] (B.14)

=

[
s2τ1

2
− s3

6
− s3

3

]
=

[
s2τ1 − s3

2

]
(B.15)

Finally, substituting (B.12),(B.13) and (B.15) into (B.11) we have that

E[Z1(s)Z1(t)] =
s3

3
+

[
τ1s

2 − s3

2

]
+

(t− τ1)s
2

2
=

ts2

2
− s3

6
(B.16)

or for general case 0 ≤ s ≤ τ1 ≤ t ≤ 1 or 0 ≤ t ≤ τ1 ≤ s ≤ 1

E[Z1(s)Z1(t)] =
max(s, t) min2(s, t)

2
− min3(s, t)

6
(B.17)

B.1.2 Proving that R1 = K1 is the r.k. of S∗1.

We now prove that R∗
1 = K1 has the ”reproducing property” and hence is the r.k.

of the space S∗1 . We split this into two cases: (1) t ∈ [0, τ1] and (2) t ∈ [τ1, 1].

Case 1. Assume that t ∈ [0, τ1], by definition the inner product between f(·) and

K(·, t) is given by

〈f(t), K(·, t)〉 =

∫ 1

0

∂2

∂s2
K(s, t)f ′′(s)ds

=

∫ t

0

∂2

∂s2
K(s, t)f ′′(s)ds +

∫ τ1

t

∂2

∂s2
K(s, t)f ′′(s)ds +

∫ 1

τ1

∂2

∂s2
K(s, t)f ′′(s)ds

Note that the second term and the third term on the right hand side of the last

equation are equal to zero. One can see this by using our definition of K(s, t), case

1 in (B.4) and case 3 in (B.17) respectively, and finding the second partial derivative

of K(s, t) for each case with respect to s when s > t.
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Doing this we have that

〈f(t), K(s, t)〉 =

∫ t

0

∂2

∂s2
K(s, t)f ′′(s)ds =

∫ t

0

(t− s)f ′′(s)ds. (B.18)

Integrating by parts this last expression

〈f(t), K(s, t)〉 = (t− t)f ′(t)− (t− 0)f ′(0) + f(t)− f(0). (B.19)

Finally, recall that f ′(0) = f(0) = 0 which implies that

〈f(t), K(s, t)〉 = f(t). (B.20)

Case 2. Assume that t ∈ [τ1, 1], by definition the inner product between f(·) and

K(·, t) is given by

〈f(t), K(s, t)〉 =

∫ 1

0

∂2

∂s2
K(s, t)f ′′(s)ds

=

∫ τ1

0

∂2

∂s2
K(s, t)f ′′(s)ds +

∫ t

τ1

∂2

∂s2
K(s, t)f ′′(s)ds +

∫ 1

t

∂2

∂s2
K(s, t)f ′′(s)ds

Note that the second term and third terms on the right hand side of the equation

shown above are equal to zero, by our definition of K(s, t), so that

〈f(t), K(s, t)〉 =

∫ τ1

0

∂2

∂s2
K(s, t)f ′′(s)ds =

∫ τ1

0

(t− s)f ′′(s)ds (B.21)

=

∫ τ1

0

(t− s)f ′′(s)ds = (t− τ1)f
′(τ1)− tf ′(0) + f(τ1)− f(0) (B.22)

Recalling that f ′(0) = f(0) = 0 we have that

〈f(t), K(s, t)〉 = f(τ1) + (t− τ1)f
′(τ1) = f(t) (B.23)

Applying the same arguments to the shifted and rescaled versions of s and t, one

can prove that R∗
2 = K2 is the r.k. for S∗2 as well.
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B.1.3 Proof of the Convergence Theorem.

Before presenting a proof for the result regarding optimal MSE convergence, we state

a definition and a lemma necessary for the proof.

Definition. (Entropy for the supremum norm) For a function space G, let N∞(δ,G)

be the smallest value of N such that there exists {gj}N
j=1 with

sup
g∈G

min
j=1,..,N

|g − gj|∞ ≤ δ.

Then H∞(δ,G) = log N∞(δ,G) is called the δ-entropy of G for the supremum norm.

Where |g|∞ = supx∈X |g(x)|.

Lemma 1. Consider a regression model yi = g0(xi) + εi, i = 1, ..., n where g0 is

known to lie in a class G of functions, xi are given covariates in [0, 1]p, and εi are

independent N(0, σ2) errors. Let I : G → [0,∞) be a pseudo-norm on G. Define

ĝ = arg min
g∈G

1

n

n∑
i=1

{yi − g(xi)}2 + λ2
nI(g)

Assume

H∞

(
δ, { g − g0

I(g) + I(g0)
: g ∈ G, I(g) + I(g0) > 0}

)
≤ Aδ−α (B.24)

for all δ > 0, n ≥ 1 and some A > 0, 0 < α < 2. Here H∞ stands for the entropy

for the supreme norm. Then i) if I(g0) > 0 and λ−1
n = Op(n

1
2+α )I

2−α
4+2α (g0), we have

‖ĝ − g0‖n = Op(λn)I1/2(g0); ii) if I(g0) = 0 we have ‖ĝ − g0‖n = Op(n
−1
2−α )λ

−2α
2−α
n

Before actually proving the theorem we give a brief sketch of the proof to provide

more clarity. First, note that if we prove that G, the class of functions we are

interested in, is bounded in entropy then we can use Lemma 1 and we are done. It

turns out that with the supremum norm we have problems with the linear part of

our functions. That is, Lemma 1 cannot be used directly since (B.24) is not satisfied

in our case. To see this define the following set of functions

F = {f(x) = α + βx, x ∈ [0, 1], α, β ∈ <} (B.25)
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Note that given any δ > 0 and any finite set of functions gj’s we can find a function

f ∈ F such that |f − gj|∞ > δ. Therefore, we decompose our functional space

into two parts: linear part and non-linear part. Then we deal with each of these

components separately. After we give a rate of convergence for the linear part, we

deal with the non-linear part. We will show that the entropy of the functional space

of the nonlinear part has the form A∗δ1/2, for some A∗ and the desired result follows

from Lemma 1.

Proof of the Theorem. Lemma 1 cannot be used directly since (B.24) is not

satisfied in our case. Therefore, to apply lemma 1 we have to decompose the space

of functions in two parts: linear part and non-linear part. This problem can be dealt

with with the following arguments. For any f ∈ S2, we can write

f(x) = b0 + b1x + f1(x) + ... + fp(x) = g1(x) + g2(x)

where g1(x) = b0 + b1x, g2(x) = f1(x) + ... + fp(x), fj ∈ S∗j ,
∑n

i=1 fj(xi) = 0 and
∑n

i=1 xifj(xi) = 0 for j = 1, 2, ..., p.

Similarly, for the unknown underlying function f0, write

f0(x) = b00 + b01x + f01(x) + ... + f0p(x) = g01(x) + g02(x)

where g01(x) = b00 + b01x, g02(x) = f01(x) + ... + f0p(x), f0j ∈ S∗j ,
∑n

i=1 f0j(xi) = 0

and
∑n

i=1 xif0j(xi) = 0 for j = 1, 2, ..., p. Then, by construction
∑n

i=1{g01(xi) −
g1(xi)}{g02(xi)− g2(xi)} = 0.

Then we can write 1
n

∑n
i=1[yi − f(xi)]

2 + λnJ(f) , where

J(f) =
∑p

j=1

{∫ τj

τj−1
[f ′′(x)]2dx

}1/2

, as

1

n

n∑
i=1

{(g01(xi)− g1(xi)) + (g02(xi)− g2(xi) + εi)}2 + λnJ(g)

1
n

∑n
i=1{(g01(xi)− g1(xi))}2 + 2

n

∑n
i=1(g01(xi)− g1(xi))(g02(xi)− g2(xi) + εi)

+
∑n

i=1(g02(xi)− g2(xi) + εi)
2 + λnJ(g).
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Due to the conditions imposed above (we have those conditions to guarantee that

g1 and g2 are orthogonal under the empirical inner product), we have

1

n

n∑
i=1

{(g01(xi)− g1(xi))}2 +
2

n

n∑
i=1

(g01(xi)− g1(xi))εi +
n∑

i=1

(g02(xi)− g2(xi) + εi)
2

+ λnJ(g2)

Therefore the corresponding g1 to the f which minimizes (3.8) must minimize

1

n

n∑
i=1

{(g01(xi)− g1(xi))}2 +
2

n

n∑
i=1

(g01(xi)− g1(xi))εi.

By example 9.3.1 ([30] page 152), we have that ĝ1 converges with rate n−1/2.

On the other hand, the non-linear part, ĝ2 must minimize

1

n

n∑
i=1

[g02(xi)− g2(xi)]
2 + λnJ(g2)

Let G = {g ∈ S2 : g(x) = f1(x) + ... + fp(x) with fj ∈ S∗j ,
∑n

i=1 fj(xi) = 0, and
∑n

i=1 xifj(xi) = 0, j = 1, 2, ..., p}.

We can now apply lemma 1 with I = J and α = 1/2. All that remains to be

shown is that (B.24) is satisfied. The conclusion of the Theorem then follows from

the conclusion of lemma 1.

Let J∗(g) =
∫ 1

0
[f ′′(x)]2dx. From page 168 of [30], note that

H∞(δ, {g ∈ G : J∗(g) ≤ 1}) ≤ Aδ−1/2.

Also,

J∗(g) =

∫ 1

0

[f ′′(x)]2dx ≤



p∑
j=1

{∫ τj

τj−1

[f ′′(x)]2dx

}1/2



2

= J2(g)

Thus J(g) ≤ 1 implies that J∗(g) ≤ 1 so that {g ∈ G : J(g) ≤ 1} ⊂ {g ∈ G :

J∗(g) ≤ 1}. Now if {g ∈ G : J∗(g) ≤ 1} can be covered by N balls of radius δ, then

{g ∈ G : J(g) ≤ 1} can be covered by the same balls since it is a smaller set. Hence,

H∞(δ, {g ∈ G : J(g) ≤ 1}) ≤ Aδ−1/2.
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Lastly, noting that J(g − g0) ≤ J(g) + J(g0) for any g ∈ G, we see that (B.24) is

satisfied. The conclusion of the Theorem then follows from the conclusion of lemma

1.
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Figure B.1: Mexican hat function. Left: Data generated from the Mexican hat
Function with n=100 along with the true function. Middle: The LACOSSO (1,20)
estimate (solid) with true function (dashed). Right: The traditional smoothing spline
estimate (solid) with the true function (dashed)

.
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Mexihat n=100 AMSE ×10−4 % Best
LOCO 158.40 (5.82) 23
SAS(5) 106.47 (5.40) 8
TRAD 205.27 (4.62) 0

LOKERN 342.03 (20.81) 0
MARS 655.64 (40.3) 0

LACO (0,5) 173.38(5.74) 0
LACO (1,5) 103.56 (4.39) 10
LACO (0,10) 145.07 (5.30) 1
LACO (1,10) 88.59 (3.87) 18
LACO (0,20) 134.87 (5.40) 0
LACO (1,20) 85.08 (4.00) 40

Mexihat n=200 AMSE ×10−4 % Best
LOCO 52.69 (2.71) 21
SAS(5) 55.10(3.09) 10
TRAD 116.96 (2.62) 0

LOKERN 157.31(6.12) 0
MARS 645.70 (44.54) 0

LACO (0,5) 89.93 (3.07) 0
LACO (1,5) 48.66 (1.79) 12
LACO (0,10) 77.20 (2.79) 0
LACO (1,10) 44.81 (1.78) 18
LACO (0,20) 74.61 (2.84) 0
LACO (1,20) 43.67 (1.99) 39

Mexihat n=300 AMSE ×10−4 % Best
LOCO 37.32(1.88) 14
SAS(5) 35.45(1.59) 9
TRAD 81.77(1.57) 0

LOKERN 108.64(3.05) 0
MARS 493.14(33.11) 0

LACO (0,5) 61.78(2.04) 0
LACO (1,5) 31.55(1.29) 16
LACO (0,10) 52.98(1.80) 0
LACO (1,10) 30.62(1.21) 13
LACO (0,20) 46.6(1.64) 2
LACO (1,20) 27.91(1.16) 46

Table B.1: Table 1: Results of 100 Realizations from Mexican hat. AMSE is the
mean square error averaged over the 100 realizations; standard error in parentheses.
The percentage of the realizations that a particular method had the smallest MSE
among the other methods is given as % Best.
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Harmonic n=100 AMSE ×10−4 % Best
LOCO 3.75(0.40) 2
SAS(5) 3.33(0.17) 17
TRAD 9.40(0.26) 0

LOKERN 31.50(2.15) 0
MARS 44.13(3.17) 1

LACO (0,5) 5.12(0.19) 0
LACO(1,5) 3.59(0.16) 8

LACO (0,10) 3.77(0.16) 6
LACO (1,10) 3.17(0.16) 31
LACO (0,20) 3.67(0.15) 6
LACO (1,20) 3.31(0.17) 29

Harmonic n=200 AMSE ×10−4 % Best
LOCO 2.99(0.29) 0
SAS(5) 1.92(0.07) 17
TRAD 5.86(0.11) 0

LOKERN 22.98(1.50) 0
MARS 52.02(2.44) 0

LACO (0,5) 2.91(0.09) 0
LACO(1,5) 2.06(0.08) 11

LACO (0,10) 2.11(0.08) 6
LACO (1,10) 1.82(0.09) 29
LACO (0,20) 2.03(0.08) 11
LACO (1,20) 2.040(0.09) 24

Harmonic n=300 AMSE ×10−4 % Best
LOCO 2.33(0.08) 0
SAS(5) 1.3(0.04) 16
TRAD 4.09(0.06) 0

LOKERN 19.68(1.55) 0
MARS 68.37(1.97) 0

LACO (0,5) 1.89(0.06) 0
LACO(1,5) 1.32(0.04) 7

LACO (0,10) 1.37(0.04) 6
LACO (1,10) 1.23(0.05) 39
LACO (0,20) 1.31(0.04) 16
LACO (1,20) 1.37(0.04) 16

Table B.2: Table 2: Results of 100 Realizations from Dampened Harmonic. AMSE
is the mean square error averaged over the 100 realizations; standard error in paren-
theses. The percentage of the realizations that a particular method had the smallest
MSE among the other methods is given as % Best.
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Rapid n=100 AMSE×10−4 % Best
LOCO 3.54(0.22) 31
SAS(5) 4.15(0.25) 4
TRAD 5.49(0.16) 0

LOKERN 7.41(0.32) 0
MARS 5.34(0.34) 7

LACO (0,5) 4.26(0.11) 0
LACO (1,5) 3.16(0.12) 3
LACO (0,10) 4.32(0.12) 0
LACO (1,10) 2.69(0.13) 26
LACO (0,20) 4.83(0.12) 0
LACO (1,20) 2.77(0.14) 29
Rapid n=200 AMSE×10−4 % Best

LOCO 1.61(0.09) 33
SAS(5) 2.05(0.10) 4
TRAD 3.05(0.07) 0

LOKERN 3.76(0.12) 0
MARS 3.37(0.20) 6

LACO (0,5) 2.43(0.07) 0
LACO (1,5) 1.87(0.08) 2
LACO (0,10) 2.46(0.07) 0
LACO (1,10) 1.55(0.09) 17
LACO (0,20) 2.53(0.07) 0
LACO (1,20) 1.45(0.09) 38
Rapid n=300 AMSE×10−4 % Best

LOCO 1.13(0.05) 28
SAS(5) 1.36(0.05) 11
TRAD 2.15(0.04) 0

LOKERN 2.68(0.07) 0
MARS 2.61(0.1) 7

LACO (0,5) 1.81(0.06) 0
LACO (1,5) 1.33(0.05) 1
LACO (0,10) 1.86(0.05) 0
LACO (1,10) 1.07(0.04) 17
LACO (0,20) 1.87(0.05) 0
LACO (1,20) 0.98(0.04) 36

Table B.3: Table 3: Results of 100 Realizations from Rapid Change. AMSE is the
mean square error averaged over the 100 realizations; standard error in parentheses.
The percentage of the realizations that a particular method had the smallest MSE
among the other methods is given as % Best.
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Figure B.2: Dampened harmonic function. Left: Data generated from the dampened
harmonic function with n=100 along with the true function. Middle: The LACOSSO
(1,10) estimate (solid) with true function (dashed). Right: The traditional smoothing
spline estimate (solid) with the true function (dashed)
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Figure B.3: Rapid change function. Left: Data generated from the rapid change
function with n=100 along with the true function. Middle: The LACOSSO (1,20)
estimate (solid) with true function (dashed). Right: The traditional smoothing spline
estimate (solid) with the true function (dashed)
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Figure B.4: Left: Motorcycle crash data along with the estimate given by LACOSSO
(1,5). Right: Motorcycle crash data along with the estimate given by traditional
smoothing spline.
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